WO2014003034A1 - 二次電池用正極、二次電池および二次電池用正極の製造方法 - Google Patents

二次電池用正極、二次電池および二次電池用正極の製造方法 Download PDF

Info

Publication number
WO2014003034A1
WO2014003034A1 PCT/JP2013/067443 JP2013067443W WO2014003034A1 WO 2014003034 A1 WO2014003034 A1 WO 2014003034A1 JP 2013067443 W JP2013067443 W JP 2013067443W WO 2014003034 A1 WO2014003034 A1 WO 2014003034A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
material layer
Prior art date
Application number
PCT/JP2013/067443
Other languages
English (en)
French (fr)
Inventor
唯 森島
井上 英俊
中山 邦彦
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to US14/409,857 priority Critical patent/US9899681B2/en
Priority to EP13810339.5A priority patent/EP2869365A4/en
Priority to JP2014522652A priority patent/JP6495009B2/ja
Priority to KR1020157002070A priority patent/KR20150027253A/ko
Priority to CN201380034342.9A priority patent/CN104541390A/zh
Publication of WO2014003034A1 publication Critical patent/WO2014003034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention generally relates to a positive electrode for a secondary battery used as a positive electrode constituting a secondary battery, a secondary battery provided with the same, and a method for producing a positive electrode for a secondary battery.
  • the present invention relates to a positive electrode for a secondary battery used for a positive electrode such as a lithium ion battery or a lithium ion polymer battery, a secondary battery including the same, and a method for producing a positive electrode for a secondary battery.
  • Batteries are used as a power source for various electric and electronic devices because they perform the action of discharging electric charges or charging and discharging electric charges by utilizing electrochemical changes.
  • lithium ion batteries lithium ion polymer batteries, and the like are used as power sources for mobile phones, personal computers, cameras, and the like as secondary batteries with high energy efficiency.
  • the positive electrode is formed of a positive electrode active material such as Li 1 + x Mn 2-xy MyO 4 , as described in, for example, JP-A-2003-68282 (hereinafter referred to as Patent Document 1).
  • a positive electrode active material slurry prepared by mixing carbon particles, a binder, and a solvent such as N-methyl-2-pyrrolidone (NMP) was applied to an aluminum foil as a current collector, and then dried. It is produced by pressing to a predetermined thickness.
  • NMP N-methyl-2-pyrrolidone
  • the binder for example, polyvinylidene fluoride (PVDF) excellent in chemical resistance and the like is widely used as described in Patent Document 1 and Japanese Translation of PCT International Publication No. 2000-507996 (Patent Document 2). Yes.
  • PVDF used as a binder has low heat resistance and may decompose at a temperature of about 75 ° C. Further, even when PVDF having high heat resistance is used, when the temperature exceeds 60 ° C., PVDF swells by absorbing the electrolytic solution, and as a result, peeling of the positive electrode active material may occur. Furthermore, when a lithium ion battery having a positive electrode obtained by binding a positive electrode active material on the surface of an aluminum foil using PVDF is subjected to rapid charge / discharge, the battery is rapidly charged due to the electric resistance of the battery. Due to the heat generated during discharge, the temperature inside the battery rises.
  • the positive electrode is deteriorated, the capacity drop is increased, and the capacity is reduced as compared with the case where charge and discharge are repeatedly performed in a low temperature environment. That is, since the positive electrode to which the positive electrode active material is bound using PVDF as the binder is deteriorated by heat, there is a problem that the lithium ion battery including the positive electrode is inferior in heat resistance.
  • an object of the present invention is to improve the rapid charge / discharge characteristics of the secondary battery and to increase the heat resistance of the secondary battery, and a secondary battery positive electrode including the same. And the manufacturing method of the positive electrode for secondary batteries is to provide.
  • a positive electrode for a secondary battery according to the present invention includes an aluminum material, a positive electrode active material layer containing a lithium-containing metal oxide as a positive electrode active material formed on the surface of the aluminum material, and the aluminum material and the positive electrode active material. And an intervening layer containing aluminum and carbon formed between the layers.
  • the lithium-containing metal oxide as the positive electrode active material is preferably LiFePO 4 .
  • the intervening layer preferably includes a surface portion including an aluminum carbide formed in at least a partial region of the surface of the aluminum material.
  • a secondary battery according to the present invention includes a positive electrode for a secondary battery having the characteristics described above.
  • the secondary battery of the present invention is preferably either a lithium ion battery or a lithium ion polymer battery.
  • a method for manufacturing a positive electrode for a secondary battery according to the present invention includes a positive electrode active material layer forming step of forming a positive electrode active material layer containing a lithium-containing metal oxide as a positive electrode active material on a surface of an aluminum material, and a hydrocarbon-containing material. And a heating step of heating in a state where an aluminum material in which a positive electrode active material layer is formed is disposed in a space containing the substance.
  • the heating step is preferably performed at a temperature of 450 ° C. or higher and lower than 660 ° C.
  • the positive electrode active material layer is fixed on the surface of the aluminum material by the intervening layer, and the intervening layer is not deteriorated by the heat generated during the rapid charge / discharge of the secondary battery.
  • the rapid charge / discharge characteristics can be improved, and even if the secondary battery is used in a high temperature environment, the intervening layer does not deteriorate, so the heat resistance of the secondary battery can be improved.
  • the rapid charge / discharge characteristics of the secondary battery can be improved.
  • Example 1 of the present invention In order to observe the intervening layer in the positive electrode for a secondary battery produced in Example 1 of the present invention, the aluminum portion was dissolved using a bromo-methanol mixed solution, and the surface of the remaining intervening layer was scanned with a scanning electron microscope (SEM). ) It is a figure which shows the charging / discharging characteristic of a secondary battery provided with the positive electrode for secondary batteries produced in Example 1 of this invention. It is a figure which shows the charging / discharging characteristic of a secondary battery provided with the positive electrode for secondary batteries produced by the comparative example 1 of this invention. It is a figure which shows the rapid (2C) charging / discharging characteristic of a secondary battery provided with the positive electrode for secondary batteries after the heating produced in Example 1 of this invention.
  • SEM scanning electron microscope
  • a positive electrode active material layer containing a lithium-containing metal oxide as a positive electrode active material is formed on the surface of an aluminum material.
  • An intervening layer containing aluminum and carbon is formed between the aluminum material and the positive electrode active material layer.
  • an intervening layer containing aluminum and carbon formed between the aluminum material and the positive electrode active material layer is formed on the surface of the aluminum material and on the surface of the aluminum material.
  • action which improves the adhesiveness between positive electrode active material layers is carried out.
  • the positive electrode for a secondary battery of the present invention is used in a secondary battery such as a lithium ion battery, the secondary battery is heated to a high temperature due to heat generated during rapid charge / discharge of the secondary battery.
  • the intervening layer does not deteriorate, so that the rapid charge / discharge characteristics of the secondary battery can be improved and the heat resistance of the secondary battery can be improved.
  • the electrical resistance of the secondary battery is lowered, and the rapid charge / discharge characteristics of the secondary battery can be improved.
  • the aluminum material used as the base material of the positive electrode for the secondary battery is not particularly limited. Pure aluminum or an aluminum alloy can be used as the aluminum material. Such an aluminum material preferably has an aluminum purity of 98% by mass or more as a value measured according to the method described in “JIS H2111”.
  • the aluminum material used in the present invention has a composition of lead (Pb), silicon (Si), iron (Fe), copper (Cu), manganese (Mn), magnesium (Mg), chromium (Cr), zinc ( Zn alloy, titanium (Ti), vanadium (V), gallium (Ga), nickel (Ni), and aluminum alloy to which at least one alloy element is added within the necessary range, or the above inevitable It also includes aluminum with limited impurity element content.
  • the thickness of the aluminum material is not particularly limited, but is preferably 5 ⁇ m or more and 200 ⁇ m or less for a foil, and more than 200 ⁇ m and 3 mm or less for a plate.
  • the above-mentioned aluminum material can be manufactured by a known method. For example, a molten aluminum or aluminum alloy having the above predetermined composition is prepared, and an ingot obtained by casting the molten metal is appropriately homogenized. Thereafter, an aluminum material can be obtained by subjecting the ingot to hot rolling and cold rolling. In addition, you may perform an intermediate annealing process at the temperature of 150 to 400 degreeC in the middle of said cold rolling process.
  • a positive electrode active material layer containing a lithium-containing metal oxide as a positive electrode active material is formed on the surface of an aluminum material.
  • the lithium-containing metal oxide is not particularly limited as long as it is generally used as a positive electrode active material constituting a positive electrode of a lithium ion battery.
  • This lithium-containing metal oxide is preferably one that is not easily decomposed by heat, hardly changes its property by heat, is stable to heat, and has heat resistance in the heating step described later.
  • the lithium-containing metal oxides for example, as a general formula is represented by Li x MO 2, Li x M 2 O 4, Li x MAO 4 or the like.
  • M is one or more transition metal elements, such as Co, Ni, Mn, Fe, and the like.
  • A is P, Si, S, V or the like.
  • the lithium-containing metal oxide used in the present invention is not particularly limited as long as the composition or crystal structure does not change in the heating step.
  • LiMPO 4 , LiM 2 O 4 and the like can be exemplified, and further LiFePO 4. It is more preferable that
  • M is one or more transition metal elements, and examples thereof include Co, Ni, Mn, and Fe.
  • the shape of the lithium-containing metal oxide is not particularly limited.
  • the lithium-containing metal oxide is preferably contained in the positive electrode active material layer in a form in which the surface is not coated with carbon in terms of adhesion, conductivity, and high capacity.
  • the lithium-containing metal oxide may be contained in the positive electrode active material layer in a form in which the surface is coated with carbon.
  • the particle size of the lithium-containing metal oxide is not particularly limited, but may be 0.001 ⁇ m to 100 ⁇ m, and preferably 0.001 ⁇ m to 50 ⁇ m from the viewpoint of improving electrical characteristics.
  • the positive electrode active material layer only needs to be formed on at least one surface of the aluminum material, and may be formed on both surfaces.
  • the thickness of the positive electrode active material layer is not particularly limited, but is preferably 1 ⁇ m or more and 500 ⁇ m or less on one side, and more preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less. Since adhesion with a material can be secured, it is more preferable. Further, the positive electrode active material layer may be formed on the entire surface of the aluminum material, but depending on the application to be finally applied, a portion where the positive electrode active material layer is not formed may be provided on a part of the aluminum material. Good (for example, when it is desired to provide a portion where the positive electrode active material layer is not formed in order to connect the terminal to the end of the aluminum material).
  • the positive electrode active material layer constituting the positive electrode for the secondary battery of the present invention is heated by the heating step described later.
  • Carbides presumed to have changed from the above binder are included. In this case, since the above-mentioned carbide plays a role as a conductive material, the conductivity of the positive electrode active material layer can be increased.
  • the positive electrode active material layer may appropriately include other components, for example, carbon-containing particles acting as another active material, a surfactant, a viscosity modifier, a metal powder, and the like as necessary.
  • the type of carbon-containing particles is not particularly limited.
  • the carbon-containing particles for example, activated carbon fiber, activated carbon cloth, activated carbon felt, activated carbon powder, black ink, carbon black, or graphite may be used.
  • carbon compounds, such as silicon carbide can also be suitably used as the carbon-containing particles.
  • an intervening layer containing aluminum and carbon is formed between the aluminum material and the positive electrode active material layer.
  • the intervening layer is preferably formed in at least a part of the surface of the aluminum material, and contains an aluminum carbide, for example, Al 4 C 3 . Due to the presence of this intervening layer, the positive electrode active material layer is firmly adhered to the aluminum material.
  • the plurality of intervening layers may be formed in an island shape at intervals from each other on the surface of the aluminum material, or may be formed in an island shape adjacent to each other.
  • the size of the intervening layer is not particularly limited.
  • the positive electrode for a secondary battery of the present invention having the above-described features is used for constituting a secondary battery.
  • Examples of the secondary battery in which the positive electrode for the secondary battery of the present invention is used include a lithium ion battery or a lithium ion polymer battery.
  • the secondary battery provided with the positive electrode for a secondary battery of the present invention can maintain stable rapid charge / discharge characteristics and can increase the life of the secondary battery.
  • a positive electrode active material layer containing a lithium-containing metal oxide as a positive electrode active material is formed on the surface of the aluminum material.
  • the aluminum material on which the positive electrode active material layer is formed is heated on the aluminum material on the surface of the aluminum material by performing a heating step in which the aluminum material is disposed in the space containing the hydrocarbon-containing material.
  • a positive electrode active material layer containing a lithium-containing metal oxide as a positive electrode active material is formed on the surface of an aluminum material.
  • a lithium-containing metal oxide is deposited on the surface of the aluminum material.
  • this positive electrode active material layer forming step there is no particular limitation on the method of attaching a lithium-containing metal oxide as the positive electrode active material on the surface of the aluminum material.
  • a method is adopted in which lithium-containing metal oxide particles or lithium-containing metal oxide particles and a binder are dispersed in a solvent to form a slurry, and this slurry is applied onto the surface of an aluminum material.
  • the application method in this case is not particularly limited.
  • the coating method for example, a spin coating method, a bar coating method, a flow coating method, a dip coating method, or the like can be used.
  • adhesion methods methods such as an extrusion method can be employed.
  • the type of solvent that can be used is not particularly limited.
  • the solvent for example, aromatics such as toluene, ketones such as methyl ethyl ketone, alcohols such as isopropyl alcohol, water and the like can be used.
  • the volume of toluene, methyl ethyl ketone and isopropyl alcohol is 6: 3: 1.
  • a mixed solvent mixed at a ratio can be used.
  • the amount of the solvent in the slurry is not particularly limited.
  • the amount of the solvent is in the range of 1 g to 200 g with respect to 30 g of the lithium-containing metal oxide particles dispersed in the solvent.
  • the type of binder that can be used is not particularly limited.
  • a resin having a cyclic structure such as polyvinyl alcohol, polyvinyl butyral, epoxy or aromatic (for example, phenol), an acrylic resin or the like can be used, and in particular, a polyvinyl butyral resin.
  • the amount of the binder in the slurry is not particularly limited.
  • the amount of the binder is in the range of 0.1 to 100 g (solid content) with respect to 30 g of the lithium-containing metal oxide particles dispersed in the solvent.
  • the positive electrode active material layer forming step may include a drying step of drying the positive electrode active material layer formed on the surface of the aluminum material.
  • the drying step may be performed by heating.
  • the heating temperature in a drying process is not specifically limited, For example, 10 to 150 degreeC, More preferably, 50 to 150 degreeC is preferable. In this case, it is preferable to dry the positive electrode active material layer uniformly.
  • drying time changes with kinds of the solvent and binder used for making a positive electrode active material adhere 30 seconds or more and 5 hours or less are preferable.
  • the heating temperature in the drying step is less than 10 ° C.
  • the binder does not adhere and the positive electrode active material layer may peel off from the surface of the aluminum material.
  • the solvent remains without being sufficiently evaporated, and the solvent is rapidly evaporated during heating in the subsequent heating step. There is a possibility that bubbles (bubbling) may occur in the positive electrode active material layer.
  • the heating temperature in a drying process exceeds 400 degreeC, there exists a possibility that the crack resulting from rapid heating may arise in the surface of a positive electrode active material layer.
  • the positive electrode active material layer should just be formed in the at least one surface of the aluminum material.
  • the density of the positive electrode active material layer is not particularly limited. However, when the density of the positive electrode active material layer exceeds a predetermined range, the electrical characteristics of the positive electrode active material layer may be deteriorated. Therefore, it is preferable to adjust the density of the positive electrode active material layer within a predetermined range by appropriately performing a pressing step.
  • the pressing step may be performed at any stage as long as the positive electrode active material layer is formed on the surface of the aluminum material, but the adhesion between the aluminum material and the positive electrode active material layer is performed before the heating step described later. Is preferable in that it is further improved.
  • the density of the positive electrode active material layer is preferably 1 g / cm 3 to 3 g / cm 3 .
  • an oxidation heating step of heating the aluminum material on which the positive electrode active material layer is formed in an oxidizing atmosphere such as air may be performed.
  • an oxidation heating step of heating the aluminum material on which the positive electrode active material layer is formed in an oxidizing atmosphere such as air.
  • the aluminum material on which the positive electrode active material layer is formed is heated in a state where the aluminum material is disposed in the space containing the hydrocarbon-containing material, so that the intervening layer containing aluminum and carbon becomes the aluminum material. And the positive electrode active material layer.
  • the type of hydrocarbon-containing material used in the heating step is not particularly limited.
  • the hydrocarbon-containing material include paraffinic hydrocarbons such as methane, ethane, propane, n-butane, isobutane and pentane, olefinic hydrocarbons such as ethylene, propylene, butene and butadiene, and acetylenes such as acetylene.
  • examples thereof include hydrocarbons and derivatives of these hydrocarbons.
  • paraffinic hydrocarbons such as methane, ethane, and propane are preferable because they are gaseous in the heating process. More preferred is any one of methane, ethane and propane. The most preferred hydrocarbon is methane.
  • the hydrocarbon-containing substance may be used in any state such as liquid or gas in the production method of the present invention.
  • the hydrocarbon-containing material may be present in the space where the aluminum material is present, and may be introduced into the space where the aluminum material is disposed by any method.
  • the hydrocarbon-containing substance is gaseous (methane, ethane, propane, etc.)
  • the hydrocarbon-containing substance may be filled alone or together with an inert gas in a sealed space where the heating step is performed.
  • the hydrocarbon-containing substance is a liquid
  • the hydrocarbon-containing substance may be filled alone or together with an inert gas so as to be vaporized in the sealed space.
  • the pressure of the heating atmosphere is not particularly limited, and may be normal pressure, reduced pressure, or increased pressure. Further, the pressure adjustment may be performed at any time during the temperature rise to a certain heating temperature or during the temperature lowering from the certain heating temperature while the pressure is maintained at a certain heating temperature.
  • the mass ratio of the hydrocarbon-containing substance introduced into the space where the heating step is performed is not particularly limited, but is usually preferably 0.1 parts by mass or more and 50 parts by mass or less in terms of carbon with respect to 100 parts by mass of aluminum, In particular, 0.5 parts by mass or more and 30 parts by mass or less are preferable.
  • the heating temperature may be appropriately set according to the composition of the aluminum material to be heated, but is usually preferably 450 ° C. or higher and lower than 660 ° C., more preferably 530 ° C. or higher and 640 ° C. or lower.
  • heating the aluminum material at a temperature lower than 450 ° C. is not excluded, and the aluminum material may be heated at a temperature exceeding at least 300 ° C.
  • the heating time depends on the heating temperature and the like, it is generally 1 hour to 100 hours.
  • the oxygen concentration in the heating atmosphere is preferably 1.0% by volume or lower.
  • the heating temperature is 400 ° C. or higher and the oxygen concentration in the heating atmosphere exceeds 1.0% by volume, the thermal oxide film on the surface of the aluminum material may be enlarged, and the surface resistance value of the aluminum material may increase.
  • the surface of the aluminum material may be roughened before the heating step.
  • the surface roughening method is not particularly limited, and known techniques such as cleaning, etching, blasting and the like can be used.
  • the positive electrode active material layer including the lithium-containing metal oxide as the positive electrode active material is adhered on the surface of the aluminum material to form the positive electrode active material layer.
  • the positive electrode active material layer can be fixed on the surface of the aluminum material by a simple method of heating the material in a state where the material is disposed in a space containing the hydrocarbon-containing material.
  • the intervening layer contributing to the fixation of the positive electrode active material layer on the surface of the aluminum material is the intervening layer even if the secondary battery is used in a high temperature environment due to heat generated during rapid charge / discharge of the secondary battery. Since the battery does not deteriorate, the heat resistance of the secondary battery can be improved.
  • the electrical resistance of the secondary battery is lowered, and the rapid charge / discharge characteristics of the secondary battery can be improved.
  • a positive electrode for a secondary battery using an aluminum material (aluminum foil) as a base material was produced.
  • Lithium iron phosphate (LiFePO 4 ) particles (thermal decomposition temperature in air: 400 ° C. or higher) as a lithium-containing metal oxide that is a positive electrode active material, polyvinyl butyral resin as a binder, and toluene, methyl ethyl ketone, and isopropyl alcohol as a solvent was mixed at a volume ratio of 6: 3: 1 so that the mass ratio of lithium iron phosphate particles and binder was 80:20, and the above mixed solvent was added as appropriate to prepare a slurry.
  • Lithium iron phosphate (LiFePO 4 ) particles thermal decomposition temperature in air: 400 ° C. or higher
  • polyvinyl butyral resin as a binder
  • toluene, methyl ethyl ketone, and isopropyl alcohol as a solvent was mixed at a volume ratio of 6: 3: 1 so that the mass ratio of lithium iron phosphate particles and binder was 80
  • This slurry was applied on the surface of an aluminum foil having a purity of 99.85% by a doctor blade method at an application amount of 6.2 mg / cm 2 (converted in terms of mass after drying), and then 120 ° C. in a drying oven.
  • the positive electrode active material layer was formed on the surface (single side) of the aluminum foil by holding at the temperature of 3 minutes and drying.
  • the aluminum foil with the positive electrode active material layer formed on the surface was heated and dried in an air atmosphere. By this drying, it is possible to promote the decomposition of a certain amount of binder and adjust the amount of binder contained in the positive electrode active material layer. As a result, a gap is formed between the aluminum foil and the positive electrode active material layer in the heating process, which is a subsequent process, and methane gas easily penetrates and an intervening layer is easily formed. After the heating process, the aluminum foil and the positive electrode active material are formed. Adhesion between the layers is improved.
  • FIG. 1 is a photograph of the back surface of the intervening layer exposed by removing the aluminum material from the intervening layer toward the positive electrode active material layer.
  • the magnification of the photograph is 10,000 times.
  • the thickness of the positive electrode active material layer was measured by measuring the thickness of the positive electrode for secondary batteries using a micrometer, and the thickness of the aluminum foil was determined from the thickness. It was 40 ⁇ m when calculated by subtracting the minutes.
  • Lithium iron phosphate (LiFePO 4 ) particles (thermal decomposition temperature in air: 400 ° C. or more) as a lithium-containing metal oxide that is a positive electrode active material, polyvinylidene fluoride (PVDF), acetylene black particles, and a solvent as a binder N-methyl-2-pyrrolidone (NMP) was blended so that the mass ratio of lithium iron phosphate particles, binder, and acetylene black particles was 86: 7: 7, and the above solvent was added as appropriate to prepare a slurry. .
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • This slurry was applied on the surface of an aluminum foil having the same composition as that used in Example 1 by a doctor blade method at a coating amount of 6.2 mg / cm 2 (in terms of mass after drying), and then dried in a drying oven.
  • the positive electrode active material layer was formed on the surface (one side) of the aluminum foil by holding at 120 ° C. for 3 minutes and drying.
  • the aluminum foil having the positive electrode active material layer formed on the surface was further dried by heating to completely evaporate the solvent.
  • the aluminum foil having the positive electrode active material layer formed on the surface thereof is punched into a disk shape having a diameter of 15.5 mm, and the density of the positive electrode active material layer (calculated value from the coating amount and thickness) is 1.7 g / cm. Pressed to 3
  • the thickness of the positive electrode active material layer was calculated by the same method as in Example 1, the thickness of the positive electrode active material layer was 40 ⁇ m.
  • Lithium foil manufactured by Honjo Metal Co., Ltd.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a non-aqueous electrolyte obtained by dissolving at a mol / liter ratio manufactured by Kishida Chemical Co., Ltd.
  • paper TF4050 manufactured by Nippon Kogyo Paper Industries Co., Ltd.
  • the secondary batteries of Example 1 and Comparative Example 1 were configured by being housed in an HS flat cell (Keihin Rika Kogyo Co., Ltd.).
  • the voltage (rate condition) of the portion where the voltage is flat (flat portion) in the discharge curves of FIGS. 2 and 3 is shown in Table 1 below for 0.1 C and 2 C, respectively.
  • Example 1 and Comparative Example 1 are compared with respect to the value of polarization A under rate condition 2C, according to Table 2, the value of polarization A in Example 1 is smaller than that in Comparative Example 1, so that the secondary of Example 1 It can be seen that the battery has a lower resistance than the secondary battery of Comparative Example 1.
  • the secondary battery of Comparative Example 1 using the positive electrode containing acetylene black particles as the carbon-containing particles was used. It can be seen that better electrical characteristics can be obtained compared to the secondary battery. The reason for this is considered that the binder carbonized in the heating step uniformly coats the surface of the positive electrode active material particles.
  • Example 1 is low resistance compared with Comparative Example 1, when the secondary battery of Example 1 was produced and rapid charge / discharge was repeated, heat generated by rapid charge / discharge (due to electrical resistance) Therefore, it is expected that deterioration of the secondary battery due to heat can be suppressed.
  • FIG. 4 shows the results of the rapid (2C) charge / discharge characteristics of the secondary battery of Example 1 manufactured using the positive electrode for a secondary battery (after heating).
  • FIG. 4 shows the rapid (2C) of the secondary battery obtained in Comparative Example 1.
  • the results of charge / discharge characteristics are shown in FIG.
  • Table 3 below shows the voltage (after heating) of the portion (flat portion) where the voltage is flat in the discharge curves (2C) of FIG. 4 and FIG.
  • Example 1 produced using the voltage (flat part) of the portion where the voltage is flat (flat portion) in the discharge curves (2C) of FIGS. 2 and 3 (positive electrode for secondary battery (before heating)).
  • the flat portion voltage at 2C in Table 1 is also shown in Table 3 below.
  • Example 1 A comparison between Example 1 and Comparative Example 1 regarding the difference in polarization A between the secondary battery using the positive electrode for the secondary battery before heating and the secondary battery using the positive electrode for the secondary battery after heating is as follows. According to No. 4, since the value of the difference in polarization A in Example 1 is smaller than that in Comparative Example 1, it can be seen that the secondary battery in Example 1 has better heat resistance than the secondary battery in Comparative Example 1. .
  • Lithium iron phosphate (LiFePO 4 ) particles thermal decomposition temperature in air of 400 ° C. or higher
  • Lithium iron phosphate (LiFePO 4 ) particles thermal decomposition temperature in air of 400 ° C. or higher
  • polyvinyl butyral resin as a binder
  • aluminum powder aluminum powder
  • toluene and methyl ethyl ketone as a solvent
  • a mixed solvent in which methyl isobutyl ketone and isopropyl alcohol are mixed at a volume ratio of 7: 1: 1: 1 is blended so that the mass ratio of lithium iron phosphate particles, binder and aluminum powder is 88: 5: 7,
  • the above mixed solvent was appropriately added to prepare a slurry.
  • This slurry was applied on the surface of an aluminum foil having a purity of 99.85% by a doctor blade method at a coating amount of 10.5 mg / cm 2 (converted in terms of mass after drying), and then in a drying oven at 80 ° C.
  • the positive electrode active material layer was formed on the surface (single side) of the aluminum foil by holding at the temperature of 3 minutes and drying.
  • the positive electrode active material layer was pressed so that the density (calculated value from the coating amount and thickness) was 1.94 g / cm 3 .
  • the aluminum foil with the positive electrode active material layer formed on the surface was heated and dried in an air atmosphere. By this drying, it is possible to promote the decomposition of a certain amount of binder and adjust the amount of binder contained in the positive electrode active material layer. As a result, a gap is formed between the aluminum foil and the positive electrode active material layer in the heating process, which is a subsequent process, and methane gas easily penetrates and an intervening layer is easily formed. After the heating process, the aluminum foil and the positive electrode active material are formed. Adhesion between the layers is improved.
  • Example 2 In the positive electrode for secondary battery of the present invention obtained in Example 2, when the thickness of the positive electrode active material layer was calculated by the same method as in Example 1, the thickness of the positive electrode active material layer was 54 ⁇ m.
  • Lithium iron phosphate (LiFePO 4 ) particles (a thermal decomposition temperature in air of 400 ° C. or higher) as lithium-containing metal oxide as a positive electrode active material, and a 1: 2 weight ratio of ethyl cellulose resin and phenol resin as binder
  • the mixed binder, and a mixed solvent obtained by mixing toluene and methyl ethyl ketone as a solvent in a volume ratio of 1: 1 are blended so that the mass ratio of the lithium iron phosphate particles and the binder is 85:15, and the above mixed solvent Was appropriately added to prepare a slurry.
  • This slurry was applied to the surface of an aluminum foil having a purity of 99.85% by a doctor blade method at a coating amount of 5.4 mg / cm 2 (converted in terms of mass after drying), and then dried at 70 ° C. in a drying oven.
  • the positive electrode active material layer was formed on the surface (single side) of the aluminum foil by holding at the temperature of 5 minutes and drying.
  • the density (calculated value from the coating amount and thickness) of the positive electrode active material layer after coating was 1.54 mg / cm 3 .
  • the aluminum foil with the positive electrode active material layer formed on the surface was heated and dried in an air atmosphere. By this drying, it is possible to promote the decomposition of a certain amount of binder and adjust the amount of binder contained in the positive electrode active material layer. As a result, a gap is formed between the aluminum foil and the positive electrode active material layer in the heating process, which is a subsequent process, and methane gas easily penetrates and an intervening layer is easily formed. After the heating process, the aluminum foil and the positive electrode active material are formed. Adhesion between the layers is improved.
  • Example 3 when the thickness of the positive electrode active material layer was calculated by the same method as in Example 1, the thickness of the positive electrode active material layer was 35 ⁇ m.
  • Example 4 ⁇ Positive electrode active material layer forming step> Lithium iron phosphate (LiFePO 4 ) particles (thermal decomposition temperature in air of 400 ° C. or higher) as a lithium-containing metal oxide that is a positive electrode active material, polyvinyl alcohol resin as a binder, and water and isopropyl alcohol as a solvent are 1: A mixed solvent mixed at a volume ratio of 1 was blended so that the mass ratio of lithium iron phosphate particles and binder was 80:20, and the above mixed solvent was added as appropriate to prepare a slurry.
  • Lithium iron phosphate (LiFePO 4 ) particles thermo decomposition temperature in air of 400 ° C. or higher
  • polyvinyl alcohol resin as a binder
  • water and isopropyl alcohol as a solvent are 1:
  • a mixed solvent mixed at a volume ratio of 1 was blended so that the mass ratio of lithium iron phosphate particles and binder was 80:20, and the above mixed solvent was added as
  • This slurry was applied on the surface of an aluminum foil having a purity of 99.85% by a doctor blade method at an application amount of 5.1 mg / cm 2 (converted in terms of mass after drying), and then 120 ° C. in a drying oven.
  • the positive electrode active material layer was formed on the surface (single side) of the aluminum foil by holding at the temperature of 5 minutes and drying.
  • the positive electrode active material layer was pressed so that the density (calculated value from the coating amount and thickness) was 1.83 g / cm 3 .
  • the aluminum foil with the positive electrode active material layer formed on the surface was heated and dried in an air atmosphere. By this drying, it is possible to promote the decomposition of a certain amount of binder and adjust the amount of binder contained in the positive electrode active material layer. As a result, a gap is formed between the aluminum foil and the positive electrode active material layer in the heating process, which is a subsequent process, and methane gas easily penetrates and an intervening layer is easily formed. After the heating process, the aluminum foil and the positive electrode active material are formed. Adhesion between the layers is improved.
  • Example 4 In the positive electrode for secondary battery of the present invention obtained in Example 4, when the thickness of the positive electrode active material layer was calculated by the same method as in Example 1, the thickness of the positive electrode active material layer was 28 ⁇ m.
  • Lithium iron phosphate (LiFePO 4 ) particles (thermal decomposition temperature in air of 400 ° C. or higher) as a lithium-containing metal oxide that is a positive electrode active material, polyvinyl butyral resin as a binder, aluminum powder, and toluene and methyl ethyl ketone as a solvent
  • a mixed solvent in which methyl isobutyl ketone and isopropyl alcohol are mixed at a volume ratio of 7: 1: 1: 1 is blended so that the mass ratio of lithium iron phosphate particles, binder and aluminum powder is 88: 5: 7,
  • the above mixed solvent was appropriately added to prepare a slurry.
  • This slurry was applied on the surface of an aluminum foil having a purity of 99.85% by a doctor blade method at a coating amount of 14.0 mg / cm 2 (converted in terms of mass after drying), and then in a drying oven at 80 ° C.
  • the positive electrode active material layer was formed on the surface (single side) of the aluminum foil by holding at the temperature of 3 minutes and drying.
  • the positive electrode active material layer was pressed so that the density (calculated value from the coating amount and thickness) was 2.03 g / cm 3 .
  • the aluminum foil with the positive electrode active material layer formed on the surface was heated and dried in an air atmosphere. By this drying, it is possible to promote the decomposition of a certain amount of binder and adjust the amount of binder contained in the positive electrode active material layer. As a result, a gap is formed between the aluminum foil and the positive electrode active material layer in the heating process, which is a subsequent process, and methane gas easily penetrates and an intervening layer is easily formed. After the heating process, the aluminum foil and the positive electrode active material are formed. Adhesion between the layers is improved.
  • Example 5 when the thickness of the positive electrode active material layer was calculated by the same method as in Example 1, the thickness of the positive electrode active material layer was 69 ⁇ m.
  • ⁇ Positive electrode active material layer forming step> Spinel lithium manganate (LiMn 2 O 4 ) particles (thermal decomposition temperature in air of 350 ° C. or higher) as a lithium-containing metal oxide that is a positive electrode active material, polyvinyl butyral resin as a binder, and toluene and methyl ethyl ketone as a solvent
  • a mixed solvent in which methyl isobutyl ketone and isopropyl alcohol are mixed at a volume ratio of 7: 1: 1: 1 is blended so that the mass ratio of the lithium manganate particles to the binder is 80:20, and the above mixed solvent is appropriately added.
  • a slurry was prepared.
  • This slurry was applied onto the surface of an aluminum foil having a purity of 99.85% by a doctor blade method at a coating amount of 7.0 mg / cm 2 (converted in terms of mass after drying), and then 80 ° C. in a drying oven.
  • the positive electrode active material layer was formed on the surface (single side) of the aluminum foil by holding at the temperature of 3 minutes and drying.
  • the positive electrode active material layer was pressed so that the density (calculated value from the coating amount and thickness) was 2.12 g / cm 3 .
  • the aluminum foil with the positive electrode active material layer formed on the surface was heated and dried in an air atmosphere. By this drying, it is possible to promote the decomposition of a certain amount of binder and adjust the amount of binder contained in the positive electrode active material layer. As a result, a gap is formed between the aluminum foil and the positive electrode active material layer in the heating process, which is a subsequent process, and methane gas easily penetrates and an intervening layer is easily formed. After the heating process, the aluminum foil and the positive electrode active material are formed. Adhesion between the layers is improved.
  • the intervening layer was formed between the aluminum foil and the positive electrode active material layer by holding the aluminum foil having the positive electrode active material layer formed on the surface thereof in a methane gas atmosphere at a temperature of 615 ° C. for 15 hours. Thereafter, an aluminum foil having a positive electrode active material layer formed on the surface thereof was punched into a disk shape having a diameter of 15.5 mm.
  • Example 6 when the thickness of the positive electrode active material layer was calculated by the same method as in Example 1, the thickness of the positive electrode active material layer was 33 ⁇ m.
  • This slurry was applied on the surface of an aluminum foil having a purity of 99.85% by a doctor blade method at a coating amount of 6.8 mg / cm 2 (in terms of mass after drying), and then dried at 50 ° C. in a drying oven.
  • the positive electrode active material layer was formed on the surface (single side) of the aluminum foil by holding at the temperature of 3 minutes and drying.
  • the positive electrode active material layer was pressed so that the density (calculated from the coating amount and thickness) was 2.20 g / cm 3 .
  • the aluminum foil with the positive electrode active material layer formed on the surface was heated and dried in an air atmosphere. By this drying, it is possible to promote the decomposition of a certain amount of binder and adjust the amount of binder contained in the positive electrode active material layer. As a result, a gap is formed between the aluminum foil and the positive electrode active material layer in the heating process, which is a subsequent process, and methane gas easily penetrates and an intervening layer is easily formed. After the heating process, the aluminum foil and the positive electrode active material are formed. Adhesion between the layers is improved.
  • the intervening layer was formed between the aluminum foil and the positive electrode active material layer by holding the aluminum foil having the positive electrode active material layer formed on the surface thereof in a methane gas atmosphere at a temperature of 615 ° C. for 15 hours. Thereafter, an aluminum foil having a positive electrode active material layer formed on the surface thereof was punched into a disk shape having a diameter of 15.5 mm.
  • Example 7 In the positive electrode for secondary battery of the present invention obtained in Example 7, when the thickness of the positive electrode active material layer was calculated by the same method as in Example 1, the thickness of the positive electrode active material layer was 31 ⁇ m.
  • Lithium iron phosphate (LiFePO 4 ) particles (thermal decomposition temperature in air of 400 ° C. or higher) as a lithium-containing metal oxide that is a positive electrode active material, polyvinylidene fluoride (PVDF), acetylene black (AB) particles as a binder, and N-methyl-2-pyrrolidone (NMP) was mixed as a solvent, and the above solvent was added as appropriate to prepare a slurry.
  • the blending ratio of lithium iron phosphate (LiFePO 4 ) particles, polyvinylidene fluoride (PVDF), and acetylene black (AB) particles was the slurry blending ratio shown in Table 5 below.
  • This slurry was applied on the surface of an aluminum foil having the same composition as that used in Example 1 at the application amount shown in Table 5 (in terms of mass after drying) by the doctor blade method, and then in a drying oven.
  • the positive electrode active material layer was formed on the surface (single side) of the aluminum foil by holding at 120 ° C. for 10 minutes and drying.
  • the positive electrode active material layer was pressed so that the density (calculated from the coating amount and thickness) was 1.77 g / cm 3 to 2.07 g / cm 3 , and the positive electrode active material layer was formed on the surface.
  • the aluminum foil was punched into a disk shape having a diameter of 15.5 mm. Specific densities of the positive electrode active material are as shown in Table 5.
  • the thickness of the positive electrode active material layer was calculated in the same manner as in Example 1. As shown in Table 5, the thickness of the positive electrode active material layer was 25 ⁇ m to 54 ⁇ m. Met.
  • LiMn 2 O 4 Spinel-type lithium manganate (LiMn 2 O 4 ) particles (thermal decomposition temperature in air of 350 ° C. or higher) as a lithium-containing metal oxide that is a positive electrode active material, polyvinylidene fluoride (PVDF), acetylene black particles as a binder, and As a solvent, N-methyl-2-pyrrolidone (NMP) was blended so that the mass ratio of lithium manganate particles, binder and acetylene black particles was 90: 5: 5, and the above solvent was added as appropriate to prepare a slurry. did.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • This slurry was applied on the surface of an aluminum foil having the same composition as that used in Example 1 by a doctor blade method at a coating amount of 6.2 mg / cm 2 (in terms of mass after drying), and then dried in a drying oven.
  • the positive electrode active material layer was formed on the surface (one side) of the aluminum foil by holding at 80 ° C. for 20 minutes and drying.
  • the aluminum foil having the positive electrode active material layer formed on the surface thereof was pressed so that the density of the positive electrode active material layer (calculated value from the coating amount and thickness) was 2.14 g / cm 3. Punched into a 5 mm disk.
  • the thickness of the positive electrode active material layer was calculated by the same method as in Example 1, the thickness of the positive electrode active material layer was 29 ⁇ m.
  • Lithium nickel metal cobalt oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) particles thermal decomposition temperature in air of 300 ° C. or higher
  • PVDF polyvinylidene fluoride
  • acetylene black particles and N-methyl-2-pyrrolidone (NMP) as a solvent
  • PVDF polyvinylidene fluoride
  • acetylene black particles and N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • This slurry was applied on the surface of an aluminum foil having the same composition as that used in Example 1 by a doctor blade method at a coating amount of 5.5 mg / cm 2 (in terms of mass after drying), and then dried in a drying oven.
  • the positive electrode active material layer was formed on the surface (one side) of the aluminum foil by holding at 80 ° C. for 20 minutes and drying.
  • the aluminum foil on which the positive electrode active material layer was formed on the surface was pressed so that the density of the positive electrode active material layer (calculated value from the coating amount and thickness) was 2.20 g / cm 3. Punched into a 5 mm disk.
  • the thickness of the positive electrode active material layer was calculated in the same manner as in Example 1, the thickness of the positive electrode active material layer was 25 ⁇ m.
  • the obtained positive electrode material was heated and dried in a vacuum drying furnace to completely evaporate moisture.
  • Lithium foil manufactured by Honjo Metal Co., Ltd.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • HS The secondary batteries of Examples 2 to 5 and Comparative Examples 2 to 5 were configured by being housed in a flat cell (Keihin Rika Kogyo Co., Ltd.).
  • Example 2 and Comparative Example 2 Using the secondary batteries of Example 2 and Comparative Example 2, Example 3 and Comparative Example 3, Example 4 and Comparative Example 4, respectively, under conditions of low speed (low rate) to rapid (high rate)
  • the charging rate is 0.5 C to 20 C
  • Example 3 and Comparative Example 3 is 0.5 C to 2 C
  • Example 4 and Comparative Example 4 is 0.5 C to 5 C.
  • a discharge test was conducted. The upper limit voltage during charging / discharging was 4.2V, and the lower limit voltage was 2.0V.
  • FIG. 6 shows the discharge curves at 20C of Example 2 and Comparative Example 2 and
  • FIG. 7 shows the discharge curves at 2C of Example 3 and Comparative Example 3.
  • FIG. 8 shows the relationship between the discharge rate of the secondary battery obtained in Example 2 and Comparative Example 2 and the average discharge voltage, and the discharge rate and average discharge of the secondary battery obtained in Example 3 and Comparative Example 3.
  • FIG. 9 shows the result of the relationship with the voltage
  • FIG. 10 shows the result of the relationship between the discharge rate and the average discharge voltage of the secondary batteries obtained in Example 4 and Comparative Example 4.
  • the positive electrode containing acetylene black particles was used as the carbon-containing particles. It can be seen that better electrical characteristics can be obtained as compared with the secondary batteries of Comparative Examples 2 and 3. The reason for this is considered that the binder carbonized in the heating step uniformly coats the surface of the positive electrode active material particles.
  • Example 2 When comparing Example 2 and Comparative Example 2 with respect to the value of the average discharge voltage under the rate condition 20C, according to FIG. 8 and Table 6, the value of the average discharge voltage in Example 2 is higher than that of Comparative Example 2, and Table 7 Therefore, since the polarization in Example 2 is smaller than that of Comparative Example 2, it can be seen that the secondary battery of Example 2 has a lower resistance than the secondary battery of Comparative Example 2.
  • Example 3 When comparing Example 3 and Comparative Example 3 with respect to the value of the average discharge voltage in the rate condition 2C, according to FIG. 9 and Table 8, the value of the average discharge voltage in Example 3 is higher than that of Comparative Example 3, and Table 9 Therefore, since the polarization in Example 3 is smaller than that of Comparative Example 3, it can be seen that the secondary battery of Example 3 has a lower resistance than the secondary battery of Comparative Example 3.
  • Example 6 and Comparative Example 6 and Example 7 and Comparative Example 7 the secondary batteries were similarly prepared and the charge / discharge characteristics were confirmed. In each case, it was confirmed that the Examples had lower resistance. It was done.
  • Examples 2 to 4, 6, and 7 have lower resistance than Comparative Examples 2 to 4, 6, and 7, secondary batteries of Examples 2 to 4, 6, and 7 were manufactured and repeated rapid charging and discharging. If performed, heat generation (heat generated due to electrical resistance) caused by rapid charge / discharge is suppressed, so that it is expected that deterioration of the secondary battery due to heat can be suppressed.
  • FIG. 11 shows the change in discharge capacity (capacity maintenance ratio) with respect to the number of cycles in Example 5 and Comparative Example 5 when the initial discharge capacity is 100%.
  • Example 5 and Comparative Example 5 are compared with respect to changes in the discharge capacity with respect to the number of cycles, according to FIG. 11, the decrease in the discharge capacity according to Example 5 is smaller than that of Comparative Example 5. Therefore, the secondary battery of Example 5 This shows that the secondary battery of Comparative Example 5 has better heat resistance.
  • Example 6 and Comparative Example 6 Example 7 and Comparative Example 7, the secondary battery was similarly produced, the heat resistance test B was performed, and the heat resistance of the secondary battery was confirmed. It was confirmed that Examples 6 and 7 were superior in heat resistance.
  • the positive electrode for a secondary battery of the present invention to form a secondary battery such as a lithium ion battery or a lithium ion polymer battery, the rapid charge / discharge characteristics of the secondary battery can be improved. It becomes possible to improve the heat resistance of the secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

 二次電池の急速充放電特性を向上させることができ、かつ、二次電池の耐熱性を高めることが可能な二次電池用正極、それを備えた二次電池、および、二次電池用正極の製造方法を提供する。二次電池用正極は、アルミニウム材と、このアルミニウム材の表面上に形成された、正極活物質としてリチウム含有金属酸化物を含む正極活物質層と、アルミニウム材と正極活物質層との間に形成された、アルミニウムと炭素を含む介在層とを備える。正極活物質としてリチウム含有金属酸化物を含む正極活物質層をアルミニウム材の表面上に形成し、炭化水素含有物質を含む空間に正極活物質層が形成されたアルミニウム材を配置した状態で加熱することにより、二次電池用正極が製造される。

Description

二次電池用正極、二次電池および二次電池用正極の製造方法
 本発明は、一般的には、二次電池を構成する正極として用いられる二次電池用正極、それを備えた二次電池、および、二次電池用正極の製造方法に関し、特定的には、リチウムイオン電池、リチウムイオンポリマー電池等の正極に用いられる二次電池用正極、それを備えた二次電池、および、二次電池用正極の製造方法に関するものである。
 化学的エネルギを電気的エネルギに直接変換するための手段として電池がある。電池は、電気化学的な変化を利用して、電荷の放電、または、電荷の充電と放電を繰り返す作用を行なうので、種々の電気電子機器の電源として用いられる。
 近年、高いエネルギ効率の二次電池として、リチウムイオン電池、リチウムイオンポリマー電池等が、携帯電話機、パーソナルコンピュータ、カメラ等の電源として用いられている。
 リチウムイオン電池の場合、正極は、たとえば、特開2003-68282号公報(以下、特許文献1という)に記載されているように、Li1+xMn2-x-yMyO4等の正極活物質と、カーボン粒子と、バインダーと、N-メチル-2-ピロリドン(NMP)のような溶媒とを混合して調製した正極活物質スラリーを、集電体としてのアルミニウム箔に塗布した後、乾燥させ、所定の厚みまでプレス加工することによって作製される。また、バインダーとしては、たとえば、特許文献1、特表2000-507996号公報(特許文献2)に記載されているように、耐薬品性などに優れたポリフッ化ビニリデン(PVDF)が広く用いられている。
特開2003-68282号公報 特表2000-507996号公報
 しかし、バインダーとして用いられるPVDFは耐熱性が低く、75℃程度の温度で分解してしまうおそれがある。また、耐熱性が高いPVDFが用いられる場合であっても、温度が60℃を超えると、PVDFが電解液を吸収することにより膨潤し、その結果として正極活物質の剥離が起こる場合がある。さらに、PVDFを用いて正極活物質をアルミニウム箔の表面上に結着させて得られた正極を備えるリチウムイオン電池に対して、急速充放電を行うと、電池の電気抵抗に起因して急速充放電時に生じる熱により、電池内部の温度が上昇する。これにより、急速充放電時の容量が低速充放電時に比べて低下するという問題がある。すなわち、結着剤としてPVDFを用いて正極活物質がアルミニウム箔の表面上に固着された正極を備えるリチウムイオン電池は急速充放電特性に劣るという問題がある。
 また、近年、二次電池はより高温度の環境で用いることが求められている。しかし、上記の正極を備えるリチウムイオン電池に対して、高温度の環境で急速充放電を行うと、低温度の環境の場合に比べて容量が低下するという問題がある。これは、以下の理由による。理論的には、高温になるとLiイオンの導電性が向上するため、高温度の環境で充放電を行うと容量が上昇するはずである。しかし、実際には、高温度の環境で繰り返し充放電を行うと、上述したように、PVDFが電解液を吸収することによって膨潤するため、正極活物質が剥離する。これにより正極が劣化し、容量低下が大きくなり、低温度の環境で繰り返し充放電を行う場合に比べて容量が低下してしまう。すなわち、結着剤としてPVDFを用いて正極活物質が結着された正極は熱により劣化するため、その正極を備えるリチウムイオン電池は耐熱性に劣るという問題がある。
 そこで、本発明の目的は、二次電池の急速充放電特性を向上させることができ、かつ、二次電池の耐熱性を高めることが可能な二次電池用正極、それを備えた二次電池、および、二次電池用正極の製造方法を提供することである。
 本発明に従った二次電池用正極は、アルミニウム材と、このアルミニウム材の表面上に形成された、正極活物質としてリチウム含有金属酸化物を含む正極活物質層と、アルミニウム材と正極活物質層との間に形成された、アルミニウムと炭素を含む介在層とを備える。
 本発明の二次電池用正極において、正極活物質としてのリチウム含有金属酸化物は、LiFePO4であることが好ましい。
 また、本発明の二次電池用正極において、介在層は、アルミニウム材の表面の少なくとも一部の領域に形成された、アルミニウムの炭化物を含む表面部分を含むことが好ましい。
 本発明に従った二次電池は、上述の特徴を有する二次電池用正極を備える。
 本発明の二次電池は、リチウムイオン電池およびリチウムイオンポリマー電池のいずれかであることが好ましい。
 本発明に従った二次電池用正極の製造方法は、正極活物質としてリチウム含有金属酸化物を含む正極活物質層をアルミニウム材の表面上に形成する正極活物質層形成工程と、炭化水素含有物質を含む空間に正極活物質層が形成されたアルミニウム材を配置した状態で加熱する加熱工程とを備える。
 本発明の二次電池用正極の製造方法において、加熱工程は、450℃以上660℃未満の温度で行われることが好ましい。
 本発明によれば、正極活物質層が介在層によりアルミニウム材の表面上に固着され、二次電池の急速充放電時に発生する熱によっても介在層が劣化することがないので、二次電池の急速充放電特性を向上させることができ、かつ、二次電池が高温度の環境で用いられても介在層が劣化することがないので、二次電池の耐熱性を高めることが可能になる。また、低抵抗の二次電池を得ることができるので、二次電池の急速充放電特性を向上させることができる。
本発明の実施例1で作製された二次電池用正極における介在層を観察するため、ブロム-メタノール混合溶液を用いてアルミニウム部分を溶解し、残存した介在層の表面を走査型電子顕微鏡(SEM)によって直接観察した写真である。 本発明の実施例1で作製された二次電池用正極を備えた二次電池の充放電特性を示す図である。 本発明の比較例1で作製された二次電池用正極を備えた二次電池の充放電特性を示す図である。 本発明の実施例1で作製された加熱後の二次電池用正極を備えた二次電池の急速(2C)充放電特性を示す図である。 本発明の比較例1で作製された加熱後の二次電池用正極を備えた二次電池の急速(2C)充放電特性を示す図である。 本発明の実施例2および比較例2で作製された二次電池用正極を備えた二次電池の放電特性を示す図である。 本発明の実施例3および比較例3で作製された二次電池用正極を備えた二次電池の放電特性を示す図である。 本発明の実施例2および比較例2で作製された二次電池用正極を備えた二次電池の放電レートと平均放電電圧との関係を示す図である。 本発明の実施例3および比較例3で作製された二次電池用正極を備えた二次電池の放電レートと平均放電電圧との関係を示す図である。 本発明の実施例4および比較例4で作製された二次電池用正極を備えた二次電池の放電レートと平均放電電圧との関係を示す図である。 本発明の実施例5および比較例5で作製された二次電池用正極を備えた二次電池の耐熱性試験での充放電のサイクル回数に対する放電容量の変化(容量維持率)を示す図である。
 以下、本発明の実施の形態を説明する。
 (二次電池用正極)
 本発明の一つの実施形態として、二次電池用正極の断面構造では、アルミニウム材の表面上に、正極活物質としてリチウム含有金属酸化物を含む正極活物質層が形成されている。アルミニウム材と正極活物質層との間には、アルミニウムと炭素を含む介在層が形成されている。
 本発明の二次電池用正極においては、アルミニウム材と正極活物質層との間に形成された、アルミニウムと炭素を含む介在層が、アルミニウム材の表面と、アルミニウム材の表面上に形成される正極活物質層との間の密着性を高める作用をする。この作用の結果として、本発明の二次電池用正極がリチウムイオン電池等の二次電池に用いられた場合、二次電池の急速充放電時に発生する熱によっても、二次電池が高温度の環境で用いられても、介在層は劣化することがないので、二次電池の急速充放電特性を向上させることができ、かつ、二次電池の耐熱性を高めることが可能になる。
 さらに、二次電池の電気抵抗が低くなり、二次電池の急速充放電特性を向上させることができる。
 (アルミニウム材)
 本発明の一つの実施の形態として、二次電池用正極の基材として用いられるアルミニウム材は特に限定されない。アルミニウム材としては、純アルミニウムまたはアルミニウム合金を用いることができる。このようなアルミニウム材は、アルミニウム純度が「JIS H2111」に記載された方法に準じて測定された値で98質量%以上のものが好ましい。本発明で用いられるアルミニウム材は、その組成として、鉛(Pb)、珪素(Si)、鉄(Fe)、銅(Cu)、マンガン(Mn)、マグネシウム(Mg)、クロム(Cr)、亜鉛(Zn)、チタン(Ti)、バナジウム(V)、ガリウム(Ga)、ニッケル(Ni)およびホウ素(B)の少なくとも1種の合金元素を必要範囲内において添加したアルミニウム合金、または、上記の不可避的不純物元素の含有量を限定したアルミニウムも含む。アルミニウム材の厚みは、特に限定されないが、箔であれば5μm以上200μm以下、板であれば200μmを越え3mm以下が好ましい。
 上記のアルミニウム材は、公知の方法によって製造されるものを使用することができる。たとえば、上記の所定の組成を有するアルミニウムまたはアルミニウム合金の溶湯を調製し、この溶湯を鋳造して得られた鋳塊を適切に均質化処理する。その後、この鋳塊に熱間圧延と冷間圧延を施すことにより、アルミニウム材を得ることができる。なお、上記の冷間圧延工程の途中で、150℃以上400℃以下の温度で中間焼鈍処理を施してもよい。
 (正極活物質層)
 本発明の二次電池用正極においては、アルミニウム材の表面上に、正極活物質としてリチウム含有金属酸化物を含む正極活物質層が形成されている。
 リチウム含有金属酸化物は、一般的にリチウムイオン電池の正極を構成する正極活物質として用いられているものであれば、特に限定されない。このリチウム含有金属酸化物は、後述する加熱工程において、熱により分解し難く、熱により性質が変化し難く、熱に対して安定であり、耐熱性を有するものが好ましい。
 なお、リチウム含有金属酸化物は、たとえば、一般式として、LixMO2、Lix24、LixMAO4等で表される。ここで、Mは1種類または2種類以上の遷移金属元素であり、Co、Ni、Mn、Fe等である。また、AはP、Si、S、V等である。本発明で用いるリチウム含有金属酸化物は、加熱工程で組成または結晶構造が変化しないものであればよく、具体的にはLiMPO4、LiM24等を例示することができ、さらにはLiFePO4であることがより好ましい。ここで、Mは1種類または2種類以上の遷移金属元素であり、Co、Ni、Mn、Fe等が挙げられる。
 また、リチウム含有金属酸化物の形状は特に限定されない。リチウム含有金属酸化物はその表面が炭素で被覆されていない形態で正極活物質層に含まれていることが密着性、導電性および高容量化の点で好ましい。リチウム含有金属酸化物はその表面が炭素で被覆されている形態で正極活物質層に含まれていてもよい。また、リチウム含有金属酸化物の粒径は、特に限定されないが、0.001μm以上100μm以下であればよく、好ましくは0.001μm以上50μm以下であれば、電気特性向上の点でよい。
 正極活物質層はアルミニウム材の少なくとも片方の面に形成されていればよく、両面に形成されていてもよい。正極活物質層の厚みは、特に限定されないが、片面側で1μm以上500μm以下であることが好ましく、さらに10μm以上200μm以下、より好ましくは10μm以上100μm以下であれば、リチウム含有金属酸化物とアルミニウム材との密着性を確保することができるのでより好ましい。また、正極活物質層は、アルミニウム材の全面上に形成されていてもよいが、最終的に適用される用途に応じて、アルミニウム材の一部分に正極活物質層を形成しない部分を設けてもよい(たとえば、アルミニウム材の端部に端子を接続するために正極活物質層を形成しない部分を設けたい場合等)。
 なお、後述する正極活物質層形成工程において正極活物質含有スラリー中にバインダーが含まれる場合、本発明の二次電池用正極を構成する正極活物質層には、後述する加熱工程での加熱により、上記のバインダーから変化したものと推測される炭化物が含まれる。この場合、上記の炭化物が導電性物質としての役割を果たすので、正極活物質層の導電性を高めることができる。
 また、正極活物質層は、他の成分、たとえば、別の活物質として作用する炭素含有粒子、界面活性剤、粘度調整剤、金属粉等を必要に応じて適宜含んでいてもよい。炭素含有粒子の種類は特に限定されない。炭素含有粒子として、たとえば、活性炭素繊維、活性炭クロス、活性炭フェルト、活性炭粉末、墨汁、カーボンブラックまたはグラファイト等のいずれを用いてもよい。また、炭素含有粒子として、炭化珪素等の炭素化合物も好適に使用できる。
 (介在層)
 本発明の二次電池用正極においては、アルミニウム材と正極活物質層との間に、アルミニウムと炭素を含む介在層が形成されている。
 介在層は、好ましくは、アルミニウム材の表面の少なくとも一部の領域に形成され、アルミニウムの炭化物、たとえばAl43を含む。この介在層が存在することにより、正極活物質層がアルミニウム材により強固に密着している。
 なお、複数の介在層が、アルミニウム材の表面上で、互いに間隔をあけて島状に形成されていてもよく、互いに隣接して島状に形成されていてもよい。介在層の大きさは特に限定されない。
 (二次電池)
 上述の特徴を有する本発明の二次電池用正極は、二次電池を構成するために用いられる。本発明の二次電池用正極が用いられる二次電池としては、リチウムイオン電池またはリチウムイオンポリマー電池等を挙げることができる。本発明の二次電池用正極を備えた二次電池は、安定した急速充放電特性を維持し、二次電池の寿命を高めることができる。
 (二次電池用正極の製造方法)
 本発明の二次電池用正極の製造方法において、正極活物質層形成工程では、アルミニウム材の表面上に、正極活物質としてリチウム含有金属酸化物を含む正極活物質層を形成する。正極活物質層形成工程の後に、正極活物質層が形成されたアルミニウム材を、炭化水素含有物質を含む空間に配置した状態で、加熱する加熱工程を行なうことにより、アルミニウム材の表面上にアルミニウムと炭素を含む介在層を介して正極活物質層が形成された二次電池用正極を得ることができる。
 <正極活物質層形成工程>
 本発明に従った二次電池用正極の製造方法の一つの実施の形態においては、まず、アルミニウム材の表面上に正極活物質としてリチウム含有金属酸化物を含む正極活物質層を形成するために、リチウム含有金属酸化物をアルミニウム材の表面上に付着させる。
 この正極活物質層形成工程において、アルミニウム材の表面上に正極活物質としてリチウム含有金属酸化物を付着させる方法は特に限定されない。たとえば、リチウム含有金属酸化物の粒子を、または、リチウム含有金属酸化物の粒子とバインダーとを、溶媒中に分散させてスラリーにし、このスラリーをアルミニウム材の表面上に塗布する方法が採用される。この場合の塗布方法は特に限定されない。塗布方法としては、たとえば、スピンコーティング法、バーコーティング法、フローコーティング法またはディップコーティング法等を用いることができる。また、その他の付着方法としては、押し出し法等の方法を採用することができる。
 上述したようにスラリーをアルミニウム材の表面に塗布する場合、使用できる溶媒の種類は特に限定されない。溶媒としては、たとえば、トルエン等の芳香族類、メチルエチルケトン等のケトン類、イソプロピルアルコール等のアルコール類、水等を用いることができ、たとえば、トルエンとメチルエチルケトンとイソプロピルアルコールを6:3:1の体積比率で混合した混合溶媒を用いることができる。スラリー中の溶媒の量も特に限定されない。たとえば、溶媒中に分散させるリチウム含有金属酸化物の粒子30gに対して溶媒の量を1g~200gの範囲内にする。
 また、スラリー中にバインダーを含ませる場合、使用できるバインダーの種類は特に限定されない。バインダーとしては、たとえば、ポリビニルアルコール系、ポリビニルブチラール系、エポキシ系、芳香族等の環状構造を有する樹脂(たとえば、フェノール系)、アクリル系等の樹脂を用いることができ、特にポリビニルブチラール系の樹脂が好ましい。スラリー中のバインダーの量も特に限定されない。たとえば、溶媒中に分散させるリチウム含有金属酸化物の粒子30gに対してバインダーの量を0.1g~100g(固形分)の範囲内にする。
 この正極活物質層形成工程が、アルミニウム材の表面上に形成された正極活物質層を乾燥させる乾燥工程を含んでもよい。乾燥工程は加熱により行われてもよい。乾燥工程での加熱温度は特に限定されないが、たとえば、10℃以上150℃以下、より好ましくは50℃以上150℃以下が好ましい。この場合、正極活物質層を均一に乾燥させることが好ましい。また、乾燥時間は、正極活物質を付着させるために使用される溶媒とバインダーの種類によって異なるが、30秒間以上5時間以下が好ましい。
 乾燥工程での加熱温度が10℃未満であれば、バインダーが固着せず、正極活物質層がアルミニウム材の表面から剥がれ落ちるおそれがある。また、正極活物質の付着をスラリーの塗布により行った場合には、溶媒が十分に揮発せずに残留してしまい、その後の加熱工程での加熱時において、溶媒が急激に揮発することにより、正極活物質層に気泡(バブリング)が発生してしまうおそれがある。また、乾燥工程での加熱温度が400℃を超えると、急激な加熱に起因した割れが正極活物質層の表面に生じてしまうおそれがある。
 なお、正極活物質層はアルミニウム材の少なくとも片方の面に形成されていればよい。また、正極活物質層の密度も特に限定されない。しかし、正極活物質層の密度が所定の範囲を超えると、正極活物質層の電気的特性が悪くなるおそれがある。したがって、プレス工程を適宜行なうことによって正極活物質層の密度を所定の範囲に調整することが好ましい。プレス工程はアルミニウム材の表面に正極活物質層の形成した後であれば、どの段階で行ってもよいが、後述の加熱工程の前に行うのがアルミニウム材と正極活物質層との密着性がより向上するという点で好ましい。具体的な密度の範囲は、リチウム含有金属酸化物の種類、バインダーの種類、リチウム含有金属酸化物とバインダーとの配合比率により、変わるので一概には特定できない。リチウム含有金属酸化物としてLiFePO4を用いる場合には、正極活物質層の密度が1g/cm3~3g/cm3であることが好ましい。
 また、乾燥工程の後で、正極活物質層が形成されたアルミニウム材を空気中等の酸化雰囲気中で加熱する酸化加熱工程を行ってもよい。この酸化加熱工程を行うことによって、余剰のバインダーが酸化分解するので、バインダーの酸化分解に伴って正極活物質層中に空間が発生する。その結果、正極活物質層とアルミニウム材の界面に、後述する加熱工程で形成されるアルミニウムと炭素とを含む介在層が形成されやすくなり、密着性を高めることが可能になる。
 <加熱工程>
 正極活物質層形成工程の後で、正極活物質層が形成されたアルミニウム材を、炭化水素含有物質を含む空間に配置した状態で、加熱することにより、アルミニウムと炭素を含む介在層がアルミニウム材と正極活物質層との間に形成される。
 本発明の二次電池用正極の製造方法の一つの実施の形態では、加熱工程で用いられる炭化水素含有物質の種類は特に限定されない。炭化水素含有物質の種類としては、たとえば、メタン、エタン、プロパン、n‐ブタン、イソブタンおよびペンタン等のパラフィン系炭化水素、エチレン、プロピレン、ブテンおよびブタジエン等のオレフィン系炭化水素、アセチレン等のアセチレン系炭化水素等、またはこれらの炭化水素の誘導体が挙げられる。これらの炭化水素の中でも、メタン、エタン、プロパン等のパラフィン系炭化水素は、加熱工程においてガス状になるので好ましい。さらに好ましいのは、メタン、エタンおよびプロパンのうち、いずれか一種の炭化水素である。最も好ましい炭化水素はメタンである。
 また、炭化水素含有物質は、本発明の製造方法において液体、気体等のいずれの状態で用いてもよい。炭化水素含有物質は、アルミニウム材が存在する空間に存在するようにすればよく、アルミニウム材を配置する空間にどのような方法で導入してもよい。たとえば、炭化水素含有物質がガス状である場合(メタン、エタン、プロパン等)には、加熱工程が行なわれる密閉空間中に炭化水素含有物質を単独または不活性ガスとともに充填すればよい。また、炭化水素含有物質が液体である場合には、その密閉空間中で気化するように炭化水素含有物質を単独または不活性ガスとともに充填してもよい。
 加熱工程において、加熱雰囲気の圧力は特に限定されず、常圧、減圧または加圧下であってもよい。また、圧力の調整は、ある一定の加熱温度に保持している間、ある一定の加熱温度までの昇温中、または、ある一定の加熱温度から降温中のいずれの時点で行なってもよい。
 加熱工程が行なわれる空間に導入される炭化水素含有物質の質量比率は、特に限定されないが、通常はアルミニウム100質量部に対して炭素換算値で0.1質量部以上50質量部以下が好ましく、特に0.5質量部以上30質量部以下が好ましい。
 加熱工程において、加熱温度は、加熱対象物であるアルミニウム材の組成等に応じて適宜設定すればよいが、通常は450℃以上660℃未満が好ましく、530℃以上640℃以下がより好ましい。ただし、本発明の製造方法において、450℃未満の温度でアルミニウム材を加熱することを排除するものではなく、少なくとも300℃を超える温度でアルミニウム材を加熱すればよい。
 加熱時間は、加熱温度等にもよるが、一般的には1時間以上100時間以下である。加熱温度が400℃以上になる場合は、加熱雰囲気中の酸素濃度を1.0体積%以下にすることが好ましい。加熱温度が400℃以上で加熱雰囲気中の酸素濃度が1.0体積%を超えると、アルミニウム材の表面の熱酸化被膜が肥大し、アルミニウム材の表面抵抗値が増大するおそれがある。
 また、加熱工程の前にアルミニウム材の表面を粗面化してもよい。粗面化方法は、特に限定されず、洗浄、エッチング、ブラスト等の公知の技術を用いることができる。
 以上のように、本発明の製造方法によれば、アルミニウム材の表面上に、正極活物質としてのリチウム含有金属酸化物を含む正極活物質を付着させて正極活物質層を形成した後、アルミニウム材を、炭化水素含有物質を含む空間に配置した状態で、加熱するという簡便な方法で、アルミニウム材の表面上に正極活物質層を固着することができる。アルミニウム材の表面上への正極活物質層の固着に寄与する介在層は、二次電池の急速充放電時に発生する熱によっても、二次電池が高温度の環境で用いられても、介在層は劣化することがないので、二次電池の耐熱性を高めることが可能になる。
 さらに、二次電池の電気抵抗が低くなり、二次電池の急速充放電特性を向上させることができる。
 以下の実施例と比較例に従って、アルミニウム材(アルミニウム箔)を基材として用いた二次電池用正極を作製した。
 (実施例1)
 <正極活物質層形成工程>
 正極活物質であるリチウム含有金属酸化物としてリン酸鉄リチウム(LiFePO4)粒子(空気中における熱分解温度:400℃以上)、バインダーとしてポリビニルブチラール系樹脂、および、溶媒としてトルエンとメチルエチルケトンとイソプロピルアルコールを6:3:1の体積比率で混合した混合溶媒を、リン酸鉄リチウム粒子とバインダーの質量比率が80:20になるように配合し、上記の混合溶媒を適宜加え、スラリーを調製した。
 このスラリーを、純度が99.85%のアルミニウム箔の表面上に、ドクターブレード法によって6.2mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて120℃の温度で3分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 さらに、正極活物質層が表面に形成されたアルミニウム箔を、空気雰囲気中にて加熱乾燥させた。この乾燥により、一定量のバインダーの分解を促し、正極活物質層に含まれるバインダー量を調整することができる。その結果、後工程である加熱工程においてアルミニウム箔と正極活物質層の間に隙間が生じて、メタンガスが浸透しやすくなり、介在層が生成しやすくなり、加熱工程後においてアルミニウム箔と正極活物質層との間の密着性が向上する。
 <加熱工程>
 正極活物質層が表面に形成されたアルミニウム箔をメタンガス雰囲気中にて630℃の温度で20時間保持することにより、アルミニウム箔と正極活物質層との間に介在層を形成した。その後、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜き、正極活物質層の密度(塗布量と厚みからの算出値)が1.7g/cm3になるようにプレス加工した。
 このようにして、本発明の二次電池用正極を作製した。
 得られた実施例1の二次電池用正極において介在層を観察するため、ブロム-メタノール混合溶液を用いてアルミニウム部分を溶解し、残存した介在層の表面を走査型電子顕微鏡(SEM)によって直接観察した写真を図1に示す。すなわち、図1は、アルミニウム材を除去して露出された介在層の表面を、介在層から正極活物質層に向かって裏面を観察した写真である。図1において、写真の倍率は、10000倍である。
 図1に示すように、実施例1の二次電池用正極において、アルミニウム材の表面の少なくとも一部の領域に、多数の介在層が島状に分散して形成されている状態がよくわかる。
 なお、実施例1で得られた本発明の二次電池用正極において、正極活物質層の厚みは、マイクロメーターを用いて二次電池用正極の厚みを測定し、その厚みからアルミニウム箔の厚み分を差引くことにより算出したところ、40μmであった。
 (比較例1)
 正極活物質であるリチウム含有金属酸化物としてリン酸鉄リチウム(LiFePO4)粒子(空気中における熱分解温度:400℃以上)、バインダーとしてポリフッ化ビニリデン(PVDF)、アセチレンブラック粒子、および、溶媒としてN-メチル-2-ピロリドン(NMP)を、リン酸鉄リチウム粒子とバインダーとアセチレンブラック粒子の質量比率が86:7:7になるように配合し、上記の溶媒を適宜加え、スラリーを調製した。
 このスラリーを、実施例1で用いたものと同じ組成のアルミニウム箔の表面上に、ドクターブレード法によって6.2mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて120℃の温度で3分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 正極活物質層が表面に形成されたアルミニウム箔を、さらに加熱乾燥させ、上記の溶媒を完全に蒸発させた。
 その後、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜き、正極活物質層の密度(塗布量と厚みからの算出値)が1.7g/cm3になるようにプレス加工した。
 このようにして、結着剤としてPVDFを用いて正極活物質がアルミニウム箔の表面上に固着された比較例1の二次電池用正極を作製した。
 なお、比較例1の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは40μmであった。
 (二次電池の作製)
 実施例1と比較例1の二次電池用正極を用いて次のようにして二次電池を作製した。
 負極としてリチウム箔(本城金属株式会社製)、電解液としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とを体積比率で1:1になるように調製した溶媒にヘキサフルオロリン酸リチウムを1モル/リットルの割合で溶解させることにより得られた非水系電解液(キシダ化学株式会社製)、セパレータとして紙製のTF4050(ニッポン高度紙工業株式会社製)を用いて、二次電池用正極とともにHSフラットセル(株式会社京浜理化工業)内に収容して、実施例1と比較例1の二次電池を構成した。
 (二次電池の評価)
 <充放電試験>
 実施例1と比較例1のそれぞれの二次電池を用いて0.1C(低速:低レート)と2C(急速:高レート)の条件で充放電試験を行った。充放電時の上限電圧を4.2V、下限電圧を2.0Vとした。実施例で得られた二次電池の充放電特性の結果を図2、比較例1で得られた二次電池の充放電特性の結果を図3に示す。
 図2と図3の放電曲線において電圧が平坦になっている部分(フラット部)の電圧(レート条件)を0.1Cと2Cのそれぞれについて以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、実施例1と比較例1の二次電池の放電曲線におけるフラット部の理論電圧値が3.43Vであることから、分極A[V](=(フラット部の理論電圧値(3.43V))-(フラット部の電圧値(表1)))の値を算出し、0.1Cと2Cのそれぞれについて以下の表2に示す。また、レート条件0.1Cと2Cにおける分極Aの差(=(0.1Cの分極Aの値)-(2Cの分極Aの値))を算出し、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 レート条件2Cにおける分極Aの値について、実施例1と比較例1を比較すると、表2によれば、実施例1における分極Aの値が比較例1よりも小さいので、実施例1の二次電池は比較例1の二次電池よりも低抵抗であることがわかる。
 また、これらの結果からわかるように、炭素含有粒子としてアセチレンブラック粒子を含まない正極を用いた実施例1の二次電池では、炭素含有粒子としてアセチレンブラック粒子を含む正極を用いた比較例1の二次電池に比べて、より良好な電気特性が得られることがわかる。この理由としては、加熱工程において炭化されたバインダーが正極活物質粒子の表面を均一に被覆しているためであると考えられる。
 また、レート条件0.1Cの二次電池と、レート条件2Cの二次電池用正極を用いた二次電池との分極Aの差について、実施例1と比較例1を比較すると、表2によれば、実施例1における分極Aの差の値が比較例1よりも小さい。この理由は、比較例1に比べて実施例1の方が抵抗が低いためであると考えられる。そして、実施例1は比較例1に比べて低抵抗なので、実施例1の二次電池を作製して急速充放電を繰り返し行った場合には、急速充放電により生じる発熱(電気抵抗に起因して生じる熱)が抑えられるので、熱による二次電池の劣化を抑えることが可能になると予想される。
 <耐熱性試験A>
 上記の実施例1と比較例1で作製された二次電池用正極(加熱前)のそれぞれを200℃の温度で12時間保持することにより、二次電池用正極(加熱後)を作製した。得られた実施例1と比較例1の二次電池用正極(加熱後)を用いて、上記と同様にして二次電池を作製した。実施例1と比較例1のそれぞれの二次電池を用いて2C(急速:高レート)の条件で充放電試験を行った。
 二次電池用正極(加熱後)を用いて作製された実施例1の二次電池の急速(2C)充放電特性の結果を図4、比較例1で得られた二次電池の急速(2C)充放電特性の結果を図5に示す。
 図4と図5の放電曲線(2C)において電圧が平坦になっている部分(フラット部)の電圧(加熱後)を以下の表3に示す。比較のため、図2と図3の放電曲線(2C)において電圧が平坦になっている部分(フラット部)の電圧(二次電池用正極(加熱前)を用いて作製された実施例1と比較例1の二次電池について、表1にて2Cのときのフラット部電圧)も以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 また、実施例1と比較例1の二次電池の放電曲線におけるフラット部の理論電圧値が3.43Vであることから、分極A[V](=(フラット部の理論電圧値(3.43V))-(フラット部の電圧値(表3)))の値を算出し、以下の表4に示す。また、加熱前の二次電池用正極を用いた二次電池と、加熱後の二次電池用正極を用いた二次電池とにおける分極Aの差(=(加熱前の分極Aの値)-(加熱後の分極Aの値))を算出し、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 加熱前の二次電池用正極を用いた二次電池と、加熱後の二次電池用正極を用いた二次電池との分極Aの差について、実施例1と比較例1を比較すると、表4によれば、実施例1における分極Aの差の値が比較例1よりも小さいので、実施例1の二次電池は比較例1の二次電池よりも耐熱性に優れていることがわかる。
 この理由として以下のことが考えられる。比較例1の二次電池では、正極が加熱されることによってバインダーであるPVDFが劣化または分解してしまったために特性が低下したものと考えられる。一方、実施例1の二次電池では、介在層が耐熱性を有するため、加熱前後での特性に差があまり生じなかったものと考えられる。
 (実施例2)
 <正極活物質層形成工程>
 正極活物質であるリチウム含有金属酸化物としてリン酸鉄リチウム(LiFePO4)粒子(空気中における熱分解温度400℃以上)、バインダーとしてポリビニルブチラール系樹脂、アルミニウム粉末、および、溶媒としてトルエンとメチルエチルケトンとメチルイソブチルケトンとイソプロピルアルコールを7:1:1:1の体積比率で混合した混合溶媒を、リン酸鉄リチウム粒子とバインダーとアルミニウム粉末の質量比率が88:5:7になるように配合し、上記の混合溶媒を適宜加え、スラリーを調製した。
 このスラリーを、純度が99.85%のアルミニウム箔の表面上に、ドクターブレード法によって10.5mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて80℃の温度で3分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 正極活物質層の密度(塗布量と厚みからの算出値)が1.94g/cm3になるようにプレス加工した。
 さらに、正極活物質層が表面に形成されたアルミニウム箔を、空気雰囲気中にて加熱乾燥させた。この乾燥により、一定量のバインダーの分解を促し、正極活物質層に含まれるバインダー量を調整することができる。その結果、後工程である加熱工程においてアルミニウム箔と正極活物質層の間に隙間が生じて、メタンガスが浸透しやすくなり、介在層が生成しやすくなり、加熱工程後においてアルミニウム箔と正極活物質層との間の密着性が向上する。
 <加熱工程>
 正極活物質層が表面に形成されたアルミニウム箔をメタンガス雰囲気中にて630℃の温度で20時間保持することにより、アルミニウム箔と正極活物質層との間に介在層を形成した。その後、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜いた。
 このようにして、本発明の二次電池用正極を作製した。
 なお、実施例2で得られた本発明の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは54μmであった。
 (実施例3)
 <正極活物質層形成工程>
 正極活物質であるリチウム含有金属酸化物としてリン酸鉄リチウム(LiFePO4)粒子(空気中における熱分解温度400℃以上)、バインダーとしてエチルセルロース系樹脂およびフェノール系樹脂の1:2の重量比で混合した混合バインダー、および、溶媒としてトルエンとメチルエチルケトンを1:1の体積比率で混合した混合溶媒を、リン酸鉄リチウム粒子とバインダーの質量比率が85:15になるように配合し、上記の混合溶媒を適宜加え、スラリーを調製した。
 このスラリーを、純度が99.85%のアルミニウム箔の表面上に、ドクターブレード法によって5.4mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて70℃の温度で5分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。塗工後の正極活物質層の密度(塗布量と厚みからの算出値)は1.54mg/cm3であった。
 さらに、正極活物質層が表面に形成されたアルミニウム箔を、空気雰囲気中にて加熱乾燥させた。この乾燥により、一定量のバインダーの分解を促し、正極活物質層に含まれるバインダー量を調整することができる。その結果、後工程である加熱工程においてアルミニウム箔と正極活物質層の間に隙間が生じて、メタンガスが浸透しやすくなり、介在層が生成しやすくなり、加熱工程後においてアルミニウム箔と正極活物質層との間の密着性が向上する。
 <加熱工程>
 正極活物質層が表面に形成されたアルミニウム箔をメタンガス雰囲気中にて615℃の温度で12時間保持することにより、アルミニウム箔と正極活物質層との間に介在層を形成した。その後、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜いた。
 このようにして、本発明の二次電池用正極を作製した。
 なお、実施例3で得られた本発明の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは35μmであった。
 (実施例4)
 <正極活物質層形成工程>
 正極活物質であるリチウム含有金属酸化物としてリン酸鉄リチウム(LiFePO4)粒子(空気中における熱分解温度400℃以上)、バインダーとしてポリビニルアルコール系樹脂、および、溶媒として水とイソプロピルアルコールを1:1の体積比率で混合した混合溶媒を、リン酸鉄リチウム粒子とバインダーの質量比率が80:20になるように配合し、上記の混合溶媒を適宜加え、スラリーを調製した。
 このスラリーを、純度が99.85%のアルミニウム箔の表面上に、ドクターブレード法によって5.1mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて120℃の温度で5分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 正極活物質層の密度(塗布量と厚みからの算出値)が1.83g/cm3になるようにプレス加工した。
 さらに、正極活物質層が表面に形成されたアルミニウム箔を、空気雰囲気中にて加熱乾燥させた。この乾燥により、一定量のバインダーの分解を促し、正極活物質層に含まれるバインダー量を調整することができる。その結果、後工程である加熱工程においてアルミニウム箔と正極活物質層の間に隙間が生じて、メタンガスが浸透しやすくなり、介在層が生成しやすくなり、加熱工程後においてアルミニウム箔と正極活物質層との間の密着性が向上する。
 <加熱工程>
 正極活物質層が表面に形成されたアルミニウム箔をメタンガス雰囲気中にて630℃の温度で20時間保持することにより、アルミニウム箔と正極活物質層との間に介在層を形成した。その後、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜いた。
 このようにして、本発明の二次電池用正極を作製した。
 なお、実施例4で得られた本発明の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは28μmであった。
 (実施例5)
 <正極活物質層形成工程>
 正極活物質であるリチウム含有金属酸化物としてリン酸鉄リチウム(LiFePO4)粒子(空気中における熱分解温度400℃以上)、バインダーとしてポリビニルブチラール系樹脂、アルミニウム粉末、および、溶媒としてトルエンとメチルエチルケトンとメチルイソブチルケトンとイソプロピルアルコールを7:1:1:1の体積比率で混合した混合溶媒を、リン酸鉄リチウム粒子とバインダーとアルミニウム粉末の質量比率が88:5:7になるように配合し、上記の混合溶媒を適宜加え、スラリーを調製した。
 このスラリーを、純度が99.85%のアルミニウム箔の表面上に、ドクターブレード法によって14.0mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて80℃の温度で3分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 正極活物質層の密度(塗布量と厚みからの算出値)が2.03g/cm3になるようにプレス加工した。
 さらに、正極活物質層が表面に形成されたアルミニウム箔を、空気雰囲気中にて加熱乾燥させた。この乾燥により、一定量のバインダーの分解を促し、正極活物質層に含まれるバインダー量を調整することができる。その結果、後工程である加熱工程においてアルミニウム箔と正極活物質層の間に隙間が生じて、メタンガスが浸透しやすくなり、介在層が生成しやすくなり、加熱工程後においてアルミニウム箔と正極活物質層との間の密着性が向上する。
 <加熱工程>
 正極活物質層が表面に形成されたアルミニウム箔をメタンガス雰囲気中にて630℃の温度で20時間保持することにより、アルミニウム箔と正極活物質層との間に介在層を形成した。その後、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜いた。
 このようにして、本発明の二次電池用正極を作製した。
 なお、実施例5で得られた本発明の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは69μmであった。
 (実施例6)
 <正極活物質層形成工程>
 正極活物質であるリチウム含有金属酸化物としてスピネル型マンガン酸リチウム(LiMn24)粒子(空気中における熱分解温度350℃以上)、バインダーとしてポリビニルブチラール系樹脂、および、溶媒としてトルエンとメチルエチルケトンとメチルイソブチルケトンとイソプロピルアルコールを7:1:1:1の体積比率で混合した混合溶媒を、マンガン酸リチウム粒子とバインダーの質量比率が80:20になるように配合し、上記の混合溶媒を適宜加え、スラリーを調製した。
 このスラリーを、純度が99.85%のアルミニウム箔の表面上に、ドクターブレード法によって7.0mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて80℃の温度で3分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 正極活物質層の密度(塗布量と厚みからの算出値)が2.12g/cm3になるようにプレス加工した。
 さらに、正極活物質層が表面に形成されたアルミニウム箔を、空気雰囲気中にて加熱乾燥させた。この乾燥により、一定量のバインダーの分解を促し、正極活物質層に含まれるバインダー量を調整することができる。その結果、後工程である加熱工程においてアルミニウム箔と正極活物質層の間に隙間が生じて、メタンガスが浸透しやすくなり、介在層が生成しやすくなり、加熱工程後においてアルミニウム箔と正極活物質層との間の密着性が向上する。
 <加熱工程>
 正極活物質層が表面に形成されたアルミニウム箔をメタンガス雰囲気中にて615℃の温度で15時間保持することにより、アルミニウム箔と正極活物質層との間に介在層を形成した。その後、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜いた。
 このようにして、本発明の二次電池用正極を作製した。
 なお、実施例6で得られた本発明の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは33μmであった。
 (実施例7)
 <正極活物質層形成工程>
 正極活物質であるリチウム含有金属酸化物としてニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/32)粒子(空気中における熱分解温度300℃以上)、バインダーとしてポリビニルブチラール系樹脂、および、溶媒としてトルエンとメチルエチルケトンとメチルイソブチルケトンとイソプロピルアルコールを7:1:1:1の体積比率で混合した混合溶媒を、ニッケルマンガンコバルト酸リチウム粒子とバインダーの質量比率が80:20になるように配合し、上記の混合溶媒を適宜加え、スラリーを調製した。
 このスラリーを、純度が99.85%のアルミニウム箔の表面上に、ドクターブレード法によって6.8mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて50℃の温度で3分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 正極活物質層の密度(塗布量と厚みからの算出値)が2.20g/cm3になるようにプレス加工した。
 さらに、正極活物質層が表面に形成されたアルミニウム箔を、空気雰囲気中にて加熱乾燥させた。この乾燥により、一定量のバインダーの分解を促し、正極活物質層に含まれるバインダー量を調整することができる。その結果、後工程である加熱工程においてアルミニウム箔と正極活物質層の間に隙間が生じて、メタンガスが浸透しやすくなり、介在層が生成しやすくなり、加熱工程後においてアルミニウム箔と正極活物質層との間の密着性が向上する。
 <加熱工程>
 正極活物質層が表面に形成されたアルミニウム箔をメタンガス雰囲気中にて615℃の温度で15時間保持することにより、アルミニウム箔と正極活物質層との間に介在層を形成した。その後、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜いた。
 このようにして、本発明の二次電池用正極を作製した。
 なお、実施例7で得られた本発明の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは31μmであった。
 (比較例2~5)
 正極活物質であるリチウム含有金属酸化物としてリン酸鉄リチウム(LiFePO4)粒子(空気中における熱分解温度400℃以上)、バインダーとしてポリフッ化ビニリデン(PVDF)、アセチレンブラック(AB)粒子、および、溶媒としてN-メチル-2-ピロリドン(NMP)を混合し、上記の溶媒を適宜加え、スラリーを調整した。リン酸鉄リチウム(LiFePO4)粒子とポリフッ化ビニリデン(PVDF)とアセチレンブラック(AB)粒子との配合比率を以下の表5に示すスラリー配合比とした。
Figure JPOXMLDOC01-appb-T000005
 このスラリーを、実施例1で用いたものと同じ組成のアルミニウム箔の表面上に、ドクターブレード法によって表5に示した塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて120℃の温度で10分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 その後、正極活物質層の密度(塗布量と厚みからの算出値)が1.77g/cm3~2.07g/cm3になるようにプレス加工し、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜いた。具体的な正極活物質の密度は表5に示す通りである。
 このようにして、結着剤としてPVDFを用いて正極活物質がアルミニウム箔の表面上に固着された比較例2~5の二次電池用正極を作製した。
 なお、比較例2~5の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは表5に示す通り、25μm~54μmであった。
 (比較例6)
 正極活物質であるリチウム含有金属酸化物としてスピネル型マンガン酸リチウム(LiMn24)粒子(空気中における熱分解温度350℃以上)、バインダーとしてポリフッ化ビニリデン(PVDF)、アセチレンブラック粒子、および、溶媒としてN-メチル-2-ピロリドン(NMP)を、マンガン酸リチウム粒子とバインダーとアセチレンブラック粒子の質量比率が90:5:5になるように配合し、上記の溶媒を適宜加え、スラリーを調製した。
 このスラリーを、実施例1で用いたものと同じ組成のアルミニウム箔の表面上に、ドクターブレード法によって6.2mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて80℃の温度で20分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 その後、正極活物質層の密度(塗布量と厚みからの算出値)が2.14g/cm3になるようにプレス加工し、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜いた。
 このようにして、結着剤としてPVDFを用いて正極活物質がアルミニウム箔の表面上に固着された比較例6の二次電池用正極を作製した。
 なお、比較例6の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは29μmであった。
 (比較例7)
 正極活物質であるリチウム含有金属酸化物としてニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/32)粒子(空気中における熱分解温度300℃以上)、バインダーとしてポリフッ化ビニリデン(PVDF)、アセチレンブラック粒子、および、溶媒としてN-メチル-2-ピロリドン(NMP)を、ニッケルマンガンコバルト酸リチウム粒子とバインダーとアセチレンブラック粒子の質量比率が90:5:5になるように配合し、上記の溶媒を適宜加え、スラリーを調製した。
 このスラリーを、実施例1で用いたものと同じ組成のアルミニウム箔の表面上に、ドクターブレード法によって5.5mg/cm2の塗布量(乾燥後の質量で換算)で塗布した後、乾燥オーブンにて80℃の温度で20分間保持して乾燥させることによって、アルミニウム箔の表面(片面)上に正極活物質層を形成した。
 その後、正極活物質層の密度(塗布量と厚みからの算出値)が2.20g/cm3になるようにプレス加工し、正極活物質層が表面に形成されたアルミニウム箔を、直径が15.5mmの円板状に打ち抜いた。
 このようにして、結着剤としてPVDFを用いて正極活物質がアルミニウム箔の表面上に固着された比較例の二次電池用正極を作製した。
 なお、比較例の二次電池用正極において、実施例1と同様の方法で正極活物質層の厚みを算出したところ、正極活物質層の厚みは25μmであった。
 (二次電池の作製)
 実施例2~5と比較例2~5の二次電池用正極を用いて次のようにして二次電池を作製した。
 得られた正極材は、真空乾燥炉で加熱乾燥させ、水分を完全に蒸発させた。
 負極としてリチウム箔(本城金属株式会社製)、電解液としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とを体積比率で1:1になるように調製した溶媒にヘキサフルオロリン酸リチウムを1モル/リットルの割合で溶解させることにより得られた非水系電解液(キシダ化学株式会社製)、セパレータとしてガラスフィルターGA-100(東洋濾紙株式会社製)を用いて、二次電池用正極とともにHSフラットセル(株式会社京浜理化工業)内に収容して、実施例2~5と比較例2~5の二次電池を構成した。
 (二次電池の評価)
 <充放電試験>
 実施例2と比較例2、実施例3と比較例3、実施例4と比較例4のそれぞれの二次電池を用いて、低速(低レート)から急速(高レート)の条件で、具体的には、実施例2と比較例2では0.5Cから20C、実施例3と比較例3では0.5Cから2C、実施例4と比較例4では0.5Cから5Cの放電レート条件で充放電試験を行った。充放電時の上限電圧を4.2V、下限電圧を2.0Vとした。
 得られた実施例2と比較例2の20Cにおける放電曲線を図6、実施例3と比較例3の2Cにおける放電曲線を図7に示す。
 また、得られた充放電試験結果のうち、平均放電電圧を、それぞれの放電レートに対しプロットした。実施例2と比較例2で得られた二次電池の放電レートと平均放電電圧との関係の結果を図8、実施例3と比較例3で得られた二次電池の放電レートと平均放電電圧との関係の結果を図9、実施例4と比較例4で得られた二次電池の放電レートと平均放電電圧との関係の結果を図10に示す。
 なお、平均放電電圧は次式で算出される。
放電モードの各測定データ1、2、・・・nにおける放電開始からの経過時間:T(1,2・・・n)、各経過時間Tに対する放電電圧:V(1,2、・・・n)に対し、電圧変化幅の中間点をv(n)={V(n-1)+V(n)}/2、時間変化幅をt(n)=T(n)―T(n-1)とすると、平均放電電圧は以下の式で表される。
Figure JPOXMLDOC01-appb-M000006
 実施例2~4と比較例2~4の各二次電池について算出された平均放電電圧[V]を以下の表6、表8、表10に示す。
 また、二次電池の放電曲線における平均放電電圧理論値が3.43Vであることから、実施例2~4と比較例2~4の各二次電池について、分極B[V](=(平均放電電圧理論値(3.43V))-(平均放電電圧値))の値を算出した。
 実施例2~4と比較例2~4の各二次電池について算出された分極B[V]を以下の表7、表9、表11に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 図6と図7の結果からわかるように、炭素含有粒子としてアセチレンブラック粒子を含まない正極を用いた実施例2、3の二次電池では、炭素含有粒子としてアセチレンブラック粒子を含む正極を用いた比較例2、3の二次電池に比べて、より良好な電気特性が得られることがわかる。この理由としては、加熱工程において炭化されたバインダーが正極活物質粒子の表面を均一に被覆しているためであると考えられる。
 レート条件20Cにおける平均放電電圧の値について、実施例2と比較例2を比較すると、図8と表6によれば実施例2における平均放電電圧の値が比較例2よりも高く、表7によれば実施例2における分極は比較例2よりも小さいので、実施例2の二次電池は比較例2の二次電池よりも低抵抗であることがわかる。
 レート条件2Cにおける平均放電電圧の値について、実施例3と比較例3を比較すると、図9と表8によれば実施例3における平均放電電圧の値が比較例3よりも高く、表9によれば実施例3における分極は比較例3よりも小さいので、実施例3の二次電池は比較例3の二次電池よりも低抵抗であることがわかる。
 レート条件5Cにおける平均放電電圧の値について、実施例4と比較例4を比較すると、図10と表10によれば実施例4における平均放電電圧の値が比較例4よりも高く、表11によれば実施例4における分極は比較例4よりも小さいので、実施例4の二次電池は比較例4の二次電池よりも低抵抗であることがわかる。
 実施例6と比較例6、実施例7と比較例7についても同様に二次電池を作製して充放電特性を確認したところ、いずれの場合も実施例の方が低抵抗であることが確認された。
 また、実施例2~4、6、7は比較例2~4、6、7に比べて低抵抗なので、実施例2~4、6、7の二次電池を作製して急速充放電を繰り返し行った場合には、急速充放電により生じる発熱(電気抵抗に起因して生じる熱)が抑えられるので、熱による二次電池の劣化を抑えることが可能になると予想される。
 <耐熱性試験B>
 実施例5と比較例5のそれぞれの二次電池を60℃の恒温槽に入れ、レート条件3Cで充放電試験を行った。初回の放電容量を100%としたときの実施例5と比較例5のサイクル回数に対する放電容量の変化(容量維持率)を図11に示す。
 サイクル回数に対する放電容量の変化について、実施例5と比較例5を比較すると、図11によれば、実施例5による放電容量の低下が比較例5よりも小さいので、実施例5の二次電池は比較例5の二次電池よりも耐熱性に優れていることがわかる。
 この理由として以下のことが考えられる。比較例5の二次電池では、二次電池が加熱されることによってバインダーであるPVDFが電解液を吸収して膨潤し、充放電を繰り返すことによってPVDFが劣化し、正極活物質層の剥離が起こり、特性が低下したものと考えられる。一方、実施例5の二次電池では、耐熱性が低いバインダーを用いず、かつ介在層が耐熱性を有するため、高温で充放電を行っても放電容量の低下が抑えられたものと考えられる。
 なお、実施例6と比較例6、実施例7と比較例7についても同様に二次電池を作製して耐熱性試験Bを行い、二次電池の耐熱性を確認したところ、いずれの場合も実施例6、7の方が耐熱性に優れていることが確認された。
 以上に開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものと意図される。
 本発明の二次電池用正極を用いて、特にリチウムイオン電池、リチウムイオンポリマー電池等の二次電池を構成することにより、二次電池の急速充放電特性を向上させることができ、かつ、二次電池の耐熱性を高めることが可能になる。
                                                                                

Claims (7)

  1.  アルミニウム材と、
     前記アルミニウム材の表面上に形成された、正極活物質としてリチウム含有金属酸化物を含む正極活物質層と、
     前記アルミニウム材と前記正極活物質層との間に形成された、アルミニウムと炭素を含む介在層と、
    を備えた、二次電池用正極。
  2.  前記リチウム含有金属酸化物は、LiFePO4である、請求項1に記載の二次電池用正極。
  3.  前記介在層は、前記アルミニウム材の表面の少なくとも一部の領域に形成された、アルミニウムの炭化物を含む表面部分を含む、請求項1に記載の二次電池用正極。
  4.  請求項1に記載の二次電池用正極を備えた、二次電池。
  5.  当該二次電池が、リチウムイオン電池およびリチウムイオンポリマー電池のいずれかである、請求項4に記載の二次電池。
  6.  正極活物質としてリチウム含有金属酸化物を含む正極活物質層をアルミニウム材の表面上に形成する正極活物質層形成工程と、
     炭化水素含有物質を含む空間に前記正極活物質層が形成された前記アルミニウム材を配置した状態で加熱する加熱工程と、
    を備えた、二次電池用正極の製造方法。
  7.  前記加熱工程は、450℃以上660℃未満の温度で行われる、請求項6に記載の二次電池用正極の製造方法。
                                                                                    
PCT/JP2013/067443 2012-06-27 2013-06-26 二次電池用正極、二次電池および二次電池用正極の製造方法 WO2014003034A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/409,857 US9899681B2 (en) 2012-06-27 2013-06-26 Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
EP13810339.5A EP2869365A4 (en) 2012-06-27 2013-06-26 POSITIVE ELECTRODE FOR SECONDARY BATTERIES, SECONDARY BATTERY AND MANUFACTURING PROCESS FOR A POSITIVE ELECTRODE FOR SECONDARY BATTERIES
JP2014522652A JP6495009B2 (ja) 2012-06-27 2013-06-26 二次電池用正極、二次電池および二次電池用正極の製造方法
KR1020157002070A KR20150027253A (ko) 2012-06-27 2013-06-26 이차 전지용 양극, 이차 전지 및 이차 전지용 양극의 제조방법
CN201380034342.9A CN104541390A (zh) 2012-06-27 2013-06-26 二次电池用正极、二次电池及二次电池用正极的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-143751 2012-06-27
JP2012143751 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014003034A1 true WO2014003034A1 (ja) 2014-01-03

Family

ID=49783175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067443 WO2014003034A1 (ja) 2012-06-27 2013-06-26 二次電池用正極、二次電池および二次電池用正極の製造方法

Country Status (7)

Country Link
US (1) US9899681B2 (ja)
EP (1) EP2869365A4 (ja)
JP (1) JP6495009B2 (ja)
KR (1) KR20150027253A (ja)
CN (1) CN104541390A (ja)
TW (1) TWI625886B (ja)
WO (1) WO2014003034A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028273A (ja) * 2015-07-15 2017-02-02 セイコーインスツル株式会社 電気化学セル
JP2017028274A (ja) * 2015-07-15 2017-02-02 セイコーインスツル株式会社 電気化学セル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180027984A (ko) * 2016-09-07 2018-03-15 솔브레인 주식회사 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
CN112751075B (zh) * 2019-10-31 2024-06-25 苏州微木智能系统有限公司 一种锂离子电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507996A (ja) 1997-01-22 2000-06-27 エルフ アトケム ソシエテ アノニム フッ化樹脂の金属材料への接着方法
JP2003068282A (ja) 2001-06-14 2003-03-07 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2004335344A (ja) * 2003-05-09 2004-11-25 Sanyo Electric Co Ltd リチウム二次電池用正極及びリチウム二次電池
JP2008098590A (ja) * 2006-10-16 2008-04-24 Nippon Zeon Co Ltd 電気化学素子用電極およびこれを用いてなる電気化学素子
WO2010109783A1 (ja) * 2009-03-23 2010-09-30 東洋アルミニウム株式会社 電極構造体、コンデンサ、電池および電極構造体の製造方法
WO2012115050A1 (ja) * 2011-02-21 2012-08-30 日本蓄電器工業株式会社 電極箔、集電体、電極及び、これを用いた蓄電素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990081865A (ko) 1996-01-22 1999-11-15 베아트리체 델로스탈 금속에 대한 플루오르화 수지의 부착 방법
WO2004086539A1 (en) 2003-03-26 2004-10-07 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
EP1619699B1 (en) 2003-03-31 2015-11-18 Toyo Aluminium Kabushiki Kaisha Foil for negative electrode of capacitor and process for producing the same
JP5239311B2 (ja) * 2006-11-27 2013-07-17 株式会社デンソー 集電体、電極および蓄電装置
JP2008160053A (ja) * 2006-11-27 2008-07-10 Denso Corp 集電体、電極および蓄電装置
CN101260282B (zh) 2008-03-18 2010-08-11 成都中科来方能源科技有限公司 锂离子电池用水性粘合剂、制备方法及锂离子电池正极片
CN101752545A (zh) 2008-12-03 2010-06-23 北京有色金属研究总院 锂离子电池电极及其制备方法和采用该电极的锂离子电池
JP2010186626A (ja) 2009-02-12 2010-08-26 Sumitomo Bakelite Co Ltd 二次電池
DE102009051214A1 (de) 2009-10-29 2011-05-12 Li-Tec Battery Gmbh Stromableiter mit einem Durchgangsbereich
TWI462381B (zh) 2009-11-25 2014-11-21 Univ Nat Taiwan 高性能電流收集裝置
TWI565125B (zh) 2010-11-25 2017-01-01 鴻海精密工業股份有限公司 鋰離子電池電極複合材料及其製備方法以及電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507996A (ja) 1997-01-22 2000-06-27 エルフ アトケム ソシエテ アノニム フッ化樹脂の金属材料への接着方法
JP2003068282A (ja) 2001-06-14 2003-03-07 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2004335344A (ja) * 2003-05-09 2004-11-25 Sanyo Electric Co Ltd リチウム二次電池用正極及びリチウム二次電池
JP2008098590A (ja) * 2006-10-16 2008-04-24 Nippon Zeon Co Ltd 電気化学素子用電極およびこれを用いてなる電気化学素子
WO2010109783A1 (ja) * 2009-03-23 2010-09-30 東洋アルミニウム株式会社 電極構造体、コンデンサ、電池および電極構造体の製造方法
WO2012115050A1 (ja) * 2011-02-21 2012-08-30 日本蓄電器工業株式会社 電極箔、集電体、電極及び、これを用いた蓄電素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2869365A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028273A (ja) * 2015-07-15 2017-02-02 セイコーインスツル株式会社 電気化学セル
JP2017028274A (ja) * 2015-07-15 2017-02-02 セイコーインスツル株式会社 電気化学セル

Also Published As

Publication number Publication date
EP2869365A1 (en) 2015-05-06
TW201414058A (zh) 2014-04-01
US20150364765A1 (en) 2015-12-17
EP2869365A4 (en) 2016-02-24
CN104541390A (zh) 2015-04-22
JPWO2014003034A1 (ja) 2016-06-02
JP6495009B2 (ja) 2019-04-03
TWI625886B (zh) 2018-06-01
KR20150027253A (ko) 2015-03-11
US9899681B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
US9843045B2 (en) Negative electrode active material and method for producing the same
CN111433947B (zh) 用于电化学活性材料的粘合剂及形成电化学活性材料的方法
JP5757148B2 (ja) リチウムイオン二次電池用負極活物質及びその負極活物質を用いたリチウムイオン二次電池
EP2605325A2 (en) Cathode current collector coated with a primer and magnesium secondary battery including same
JP2021116191A (ja) 複合炭素材料及びリチウムイオン二次電池
JP2010262860A (ja) リチウムイオン電池
JP2007220452A (ja) 非水電解液二次電池用セパレータおよび非水電解液二次電池
US10135071B2 (en) Conductive carbons for lithium ion batteries
JP5595349B2 (ja) リチウムイオン二次電池用正極集電体、リチウムイオン二次電池用正極およびリチウムイオン二次電池用正極集電体の製造方法
JP2007329001A (ja) 非水電解質二次電池用負極材料およびその製造方法、ならびにそれを用いる非水電解質二次電池
JP2010043333A (ja) 正極集電体用アルミニウム箔
JP2005259682A (ja) 非水電解質二次電池用集電体およびそれを用いた非水電解質二次電池用極板ならびに非水電解質二次電池用極板の製造方法
JP2011192610A (ja) リチウムイオン電池
EP3506393A1 (en) Separator, method for preparing separator, and electrochemical device containing separator
JP2009266705A (ja) リチウム二次電池
JP6495009B2 (ja) 二次電池用正極、二次電池および二次電池用正極の製造方法
CN115152049A (zh) 二次电池用负极和其制造方法以及二次电池
JP2009076278A (ja) 正極電極体およびリチウム二次電池
JP2010027304A (ja) 正極集電体用アルミニウム箔
JP2009230976A (ja) 非水電解質二次電池及びその製造方法
CN107078274B (zh) 锂离子二次电池用正极以及使用该正极的锂离子二次电池
JP6264299B2 (ja) リチウムイオン二次電池用負極材及びその評価方法
JP2017147058A (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP2012178309A (ja) リチウムイオン二次電池用負極と、これを用いたリチウムイオン二次電池
JP2009295470A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810339

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014522652

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14409857

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013810339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013810339

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157002070

Country of ref document: KR

Kind code of ref document: A