WO2014002810A1 - 高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法 - Google Patents

高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法 Download PDF

Info

Publication number
WO2014002810A1
WO2014002810A1 PCT/JP2013/066577 JP2013066577W WO2014002810A1 WO 2014002810 A1 WO2014002810 A1 WO 2014002810A1 JP 2013066577 W JP2013066577 W JP 2013066577W WO 2014002810 A1 WO2014002810 A1 WO 2014002810A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer compound
protected
ring
carbon atoms
Prior art date
Application number
PCT/JP2013/066577
Other languages
English (en)
French (fr)
Inventor
西村政通
江口明良
大野充
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012147874A external-priority patent/JP5986825B2/ja
Priority claimed from JP2012147875A external-priority patent/JP5986826B2/ja
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to US14/406,238 priority Critical patent/US9261785B2/en
Priority to KR1020147034796A priority patent/KR102076529B1/ko
Priority to CN201380029608.0A priority patent/CN104379617A/zh
Publication of WO2014002810A1 publication Critical patent/WO2014002810A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/14Esters having no free carboxylic acid groups, e.g. dialkyl maleates or fumarates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/22Esters containing nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a polymer compound, a resin composition for photoresist, and a method for producing a semiconductor, which are used when fine processing of a semiconductor is performed.
  • a positive photoresist used in a semiconductor manufacturing process needs to have properties such as a property that an irradiated portion changes to alkali-soluble by light irradiation, adhesion to a silicon wafer, plasma etching resistance, and the like.
  • a positive photoresist generally includes a polymer as a main component, a photoacid generator, and several additives for adjusting the above characteristics.
  • lithography exposure light sources used for semiconductor production have become shorter in wavelength year by year, and are moving from KrF excimer lasers having a wavelength of 248 nm to ArF excimer lasers having a wavelength of 193 nm.
  • examples of monomer units that are dissolved by an acid generated from a photoacid generator and exhibit alkali developer solubility include monomers derived from 2-methyl-2-methacryloyloxyadamantane.
  • Patent Documents 1 to 3 Those having an acid leaving group containing a large alicyclic structure such as a unit or a monomer unit derived from 1- (1-methacryloyloxy-1-methylethyl) adamantane are known (Patent Documents 1 to 3). However, the photoresist resin having these monomer units has not been sufficiently satisfactory in terms of resolution, pattern shape and developability.
  • a monomer unit derived from 1- (1-methacryloyloxyethyl) cyclopropane is known as a monomer unit having an acid leaving group containing a small alicyclic structure (Patent Document 4).
  • the photoresist resin having the monomer unit is not sufficiently satisfactory in terms of sensitivity.
  • an object of the present invention is to provide a polymer compound and a photoresist that are excellent in sensitivity and resolution, have small line edge roughness (LER), can form fine patterns with high accuracy, and can reduce development defects.
  • Another object is to provide a resin composition.
  • Another object of the present invention is a polymer compound that is excellent in sensitivity, resolution and etching resistance, has small line edge roughness (LER), can form fine patterns with high accuracy, and can reduce development defects. It is in providing the resin composition for photoresists.
  • Still another object of the present invention is to provide a semiconductor manufacturing method using the polymer compound and the photoresist resin composition.
  • a monomer unit having an acid-eliminable group having a large alicyclic structure as a monomer unit that is partly eliminated by acid and exhibits alkali solubility.
  • a molecular compound is used as a photoresist resin composition, a compound containing a large alicyclic structure that has been eliminated by an acid is difficult to dissolve in an alkaline developer, and therefore remains as a scum on the substrate surface after development, thereby reducing the line edge roughness. It was found that (LER) deteriorated and development defects occurred.
  • a polymer compound containing a specific monomer unit having an acid-eliminable group containing a small alicyclic structure having 3 or 4 carbon atoms and a monomer unit containing an alicyclic skeleton having a polar group is used as a resin composition for photoresist.
  • the monomer unit having an acid-eliminable group containing a small alicyclic structure is sensitive to light irradiation (that is, highly reactive to acids) and is alkali-soluble by eliminating the acid-eliminable group.
  • the monomer unit includes a specific monomer unit having an acid-eliminable group having a small alicyclic structure and a large alicyclic structure having 5 to 20 carbon atoms.
  • the present invention provides a polymer compound including at least a monomer unit a represented by the following formula (a) and a monomer unit b including an alicyclic skeleton having a polar group.
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • R 1 and R 2 are the same or different and have a substituent.
  • R 3 is a substituent bonded to ring Z 1 , an oxo group, an alkyl group, a hydroxyl group which may be protected with a protecting group, or a protecting group; Represents a hydroxyalkyl group which may be protected with, a carboxyl group which may be protected with a protecting group, or a cyano group, n represents an integer of 0 to 3. When n is 2 or more, 2 or more R 3 may be the same or different, and ring Z 1 represents an alicyclic hydrocarbon ring having 3 or 4 carbon atoms.
  • the polar group of the monomer unit b includes —O—, —C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —O—, —C ( ⁇ O).
  • the monomer unit b is preferably at least one selected from the following formulas (b1) to (b6).
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom
  • A represents a single bond or a linking group
  • X represents a non-bonded, methylene group.
  • Y represents a methylene group or a carbonyl group
  • R 4 to R 8 may be the same or different and may be protected by a hydrogen atom, an alkyl group or a protecting group.
  • R 9 is a hydroxyl group that may be protected with a protective group
  • ring Z 2 represents an alicyclic hydrocarbon ring having 6 to 20 carbon atoms.
  • m is 1 ⁇ Represents an integer of)
  • the polymer compound of the present invention preferably further contains at least one monomer unit c selected from the following formulas (c1) to (c4).
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • R 10 to R 12 may be the same or different and have a substituent.
  • R 13 represents an alkyl group of 1 to 6 also carbon atoms and .R 13, R 14 are the same or different, .R 15 represents a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms Represents a —COOR d group, wherein R d represents an optionally substituted tertiary hydrocarbon group, tetrahydrofuranyl group, tetrahydropyranyl group, or oxepanyl group, p is an integer of 1 to 3
  • R c is a substituent bonded to ring Z 3 and is the same or different and is protected by an oxo group, an alkyl group, a hydroxyl group which may be protected by a protecting group, or a protecting group. May be protected with a hydroxyalkyl group or a protecting group Represents a good carboxyl group, q represents an integer of 0 to 3.
  • Ring Z 3 represents an alicyclic hydrocarbon ring having 5 to 20 carbon atom
  • the weight average molecular weight of the polymer compound is preferably 1,000 to 50,000, and the molecular weight distribution (ratio of weight average molecular weight to number average molecular weight: Mw / Mn) is preferably 1.0 to 3.0.
  • the present invention also provides a photoresist resin composition comprising at least the polymer compound, a photoacid generator, and an organic solvent.
  • the present invention further provides a method for producing a semiconductor, wherein a pattern is formed using the resin composition for photoresist.
  • the polymer compound of the present invention is a monomer unit derived from a specific unsaturated carboxylic acid ester having an alicyclic hydrocarbon group having 3 or 4 carbon atoms as a monomer unit that is partially eliminated by an acid and exhibits alkali solubility. Therefore, the compound that has been removed by the acid can be easily removed and the occurrence of scum can be prevented. Furthermore, since it also has a monomer unit containing an alicyclic skeleton having a polar group, it is excellent in substrate adhesion and etching resistance.
  • a monomer unit derived from a specific unsaturated carboxylic acid ester having a small alicyclic structure having 3 or 4 carbon atoms as a monomer unit partially desorbed by an acid and exhibiting alkali solubility has a large carbon number of 5 to 20
  • Polymer compounds with monomer units derived from unsaturated carboxylic acid esters with acid-eliminating groups containing alicyclic structures are very reactive with acids, and compounds eliminated by acids can be easily removed from the substrate surface. In addition to preventing scum from being generated and reducing line edge roughness (LER), it is possible to exhibit even more excellent etching resistance.
  • LER line edge roughness
  • the polymer compound of the present invention includes at least a monomer unit a represented by the formula (a) and a monomer unit b including an alicyclic skeleton having a polar group.
  • the polymer compound of the present invention may further contain a monomer unit c in addition to the monomer unit a and the monomer unit b.
  • the monomer unit a of the present invention is represented by the above formula (a), and an acid-eliminable group (a protective group for a carboxyl group) is rapidly eliminated by an acid to generate a carboxyl group that contributes to alkali solubilization.
  • the monomer unit a of the present invention gives the polymer compound the property of being changed to alkali solubility by an acid.
  • the monomer unit a of the present invention can be introduced into a polymer compound by subjecting an unsaturated carboxylic acid ester represented by the following formula (a-1) to polymerization.
  • R, R 1, R 2, R 3, n, ring Z 1 is in the formula (a) R, R 1, R 2, R 3, n, corresponding to the ring Z 1 R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • R 1 and R 2 are the same or different and each represents an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • R 3 is a substituent bonded to ring Z 1 , an oxo group, an alkyl group, a hydroxyl group which may be protected with a protecting group, a hydroxyalkyl group which may be protected with a protecting group, or a protecting group.
  • n represents an integer of 0 to 3. When n is 2 or more, two or more R 3 s may be the same or different.
  • Ring Z 1 represents an alicyclic hydrocarbon ring having 3 or 4 carbon atoms.
  • the unsaturated carboxylic acid ester represented by the formula (a-1) is, for example, the following formula (1) or (2) R 1 MgX 1 (1)
  • R 1 Li (2) (Wherein R 1 represents an optionally substituted alkyl group having 1 to 6 carbon atoms, and X 1 represents a halogen atom)
  • an organic metal compound represented by the following formula (3) (Wherein R 2 represents an optionally substituted alkyl group having 1 to 6 carbon atoms, ring Z 1 represents an alicyclic hydrocarbon ring having 3 or 4 carbon atoms, and R 3 represents a ring Z 1 is a substituent bonded to Z 1 , an oxo group, an alkyl group, a hydroxyl group which may be protected with a protecting group, a hydroxyalkyl group which may be protected with a protecting group, and a protecting group And n represents an integer of 0 to 3.
  • R 3 s When n is 2 or more, two or more R 3 s may be the same or different.
  • the addition reaction product with a ketone represented by the following formula (4) (Wherein R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, and X 2 represents a halogen atom) It can manufacture by making the unsaturated carboxylic acid halide represented by these react.
  • the addition reaction product of the organometallic compound represented by the formula (1) or (2) and the ketone represented by the formula (3) is an organometallic represented by the formula (1).
  • the unsaturated carboxylic acid ester represented by the above formula (a-1) can be produced through the following steps. 1st process: The organometallic compound represented by the said Formula (1) or (2) and the ketone represented by the said Formula (3) are made to react, and the organometallic compound represented by the said Formula (1) is made. When used, the organometallic compound adduct of the tertiary alcohol represented by the formula (5-2) when the organometallic compound represented by the formula (5-1) or the formula (2) is used.
  • Step 2 In the presence of a tertiary amine in the organometallic compound adduct of the tertiary alcohol represented by the formula (5-1) or the formula (5-2), the formula (4) A step of reacting an unsaturated carboxylic acid halide represented by formula (a-1) to form an unsaturated carboxylic acid ester represented by the formula (a-1).
  • R 1 represents an optionally substituted alkyl group having 1 to 6 carbon atoms, and corresponds to R 1 in the above formula (a-1).
  • alkyl group having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, isoamyl, s-amyl, t-amyl, hexyl group and the like. be able to.
  • a C 1-4 alkyl group is preferable.
  • Examples of the substituent that the alkyl group having 1 to 6 carbon atoms in R 1 may have include, for example, a halogen atom, a hydroxy group, a substituted hydroxy group (for example, methoxy, ethoxy, propoxy group, etc., 1 to 4 carbon atoms). And an cyano group.
  • Examples of the substituted alkyl group having 1 to 6 carbon atoms include one or two or more hydrogen atoms constituting the alkyl group such as trifluoromethyl, 2,2,2-trifluoroethyl group, etc.
  • Examples of the halogen atom for X 1 include a chlorine atom, a bromine atom, and an iodine atom.
  • organometallic compound represented by the formula (1) include organomagnesium compounds such as methylmagnesium bromide, ethylmagnesium bromide, butylmagnesium bromide, methylmagnesium chloride, ethylmagnesium chloride, and butylmagnesium chloride (Grineer reagent ).
  • organolithium compounds such as methyllithium, ethyllithium, n-butyllithium, and t-butyllithium.
  • organometallic compound As the organometallic compound, it is preferable to use the organometallic compound represented by the formula (1) because it is easy to handle, can be safely scaled up, and is suitable for industrialization. .
  • R 2 represents an optionally substituted alkyl group having 1 to 6 carbon atoms
  • the ring Z 1 represents an alicyclic hydrocarbon ring having 3 or 4 carbon atoms
  • R 3 is a substituent bonded to ring Z 1 , an oxo group, an alkyl group, a hydroxyl group which may be protected with a protecting group, a hydroxyalkyl group which may be protected with a protecting group, or a protecting group.
  • n represents an integer of 0 to 3.
  • two or more R 3 s may be the same or different.
  • R 2, R 3, ring Z 1, n, the above formula (a-1) in R 2, R 3, corresponds to the ring Z 1, n.
  • Examples of the alkyl group having 1 to 6 carbon atoms in R 2 include the same examples as in the above R 1 . Among these, a C 1-4 alkyl group is preferable, a C 1-3 alkyl group is particularly preferable, and a C 1-2 alkyl group is most preferable.
  • Examples of the substituent that the alkyl group having 1 to 6 carbon atoms may have in R 2 include the same examples as in the above R 1 .
  • Examples of the alicyclic hydrocarbon ring having 3 or 4 carbon atoms in the ring Z 1 include cycloalkane rings such as cyclopropyl and cyclobutyl; cycloalkene rings such as cyclopropene and cyclobutene.
  • R 3 is a substituent bonded to ring Z 1 , an oxo group, an alkyl group, a hydroxyl group which may be protected with a protecting group, a hydroxyalkyl group which may be protected with a protecting group, or a protecting group.
  • An optionally protected carboxyl group or cyano group is shown.
  • alkyl group examples include alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, pentyl, isoamyl, s-amyl, t-amyl, and hexyl groups. Etc.
  • Examples of the protective group that the hydroxyl group may have include, for example, a C 1-4 alkyl group such as methyl, ethyl, and t-butyl group; an acetal bond together with an oxygen atom that constitutes a hydroxyl group such as methoxymethyl group.
  • a group that forms an ester bond with an oxygen atom constituting a hydroxyl group such as an acetyl group or a benzoyl group;
  • hydroxyalkyl group examples include hydroxy C 1-6 alkyl such as hydroxymethyl, 2-hydroxyethyl, 1-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, 4-hydroxybutyl, and 6-hydroxyhexyl groups. Groups and the like.
  • Examples of the protective group that the hydroxyalkyl group may have include, for example, a C 1-4 alkyl group such as methyl, ethyl, and t-butyl group; an acetal bond together with an oxygen atom that constitutes a hydroxyl group such as methoxymethyl group A group that forms an ester bond with an oxygen atom that constitutes a hydroxyl group such as an acetyl group or a benzoyl group.
  • Examples of the protective group for the carboxyl group include 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, pentyl, isoamyl, s-amyl, t-amyl, and hexyl groups.
  • Typical examples of the ketone represented by the formula (3) include cyclopropyl methyl ketone, cyclopropyl ethyl ketone, cyclobutyl methyl ketone, cyclobutyl ethyl ketone and the like.
  • tertiary amine examples include aliphatic amines, aromatic amines, alicyclic amines, and heterocyclic amines. Moreover, a hydroxyl group, a nitro group, etc. may be contained. Furthermore, in addition to monoamines, polyamines such as diamines may be used.
  • tertiary amine examples include trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, triisopropylamine, tributylamine, N-methyl-diethylamine, N-ethyl-dimethylamine, N-ethyl-diamilamine.
  • Aliphatic amines such as N, N-dimethylaniline and N, N-diethylaniline; cycloaliphatic amines such as N, N-dimethylcyclohexylamine and N, N-diethylcyclohexylamine; N , N-dimethylaminopyridine, N-methylmorpholine, diazabicycloundecene (DBU), diazabicyclononene (DBN), heterocyclic amines such as N-methylpyridine, N-methylpyrrolidine; tetramethylethylenediamine, triethylenediamine Etc. Amine and the like can be mentioned.
  • aliphatic amines such as trimethylamine and triethylamine
  • heterocyclic amines such as N-methylmorpholine
  • aliphatic amines such as trimethylamine and triethylamine are particularly preferred for the unsaturated carboxylic acid ester. This is preferable in that the rate can be further improved.
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom
  • X 2 represents a halogen atom
  • halogen atom in R and X 2 examples include a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group having 1 to 6 carbon atoms in R examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, isoamyl, s-amyl, t-amyl, and hexyl groups.
  • alkyl group having 1 to 6 carbon atoms (haloalkyl group) having a halogen atom include one or more hydrogen atoms constituting the alkyl group such as trifluoromethyl, 2,2,2-trifluoroethyl group, etc. And a group in which is replaced by a halogen atom such as a fluorine atom or a chlorine atom.
  • (meth) acrylic acid chloride As the unsaturated carboxylic acid halide represented by the formula (4), (meth) acrylic acid chloride, (meth) acrylic acid bromide, (meth) acrylic acid iodide and the like are preferable, Methacrylic acid chloride is preferred.
  • (meth) acrylic acid means “acrylic acid” and / or “methacrylic acid”.
  • a ketone having excellent reactivity with the organometallic compound is used as a starting material, even if it has a group having a large steric hindrance, it can be reacted rapidly.
  • An organometallic compound adduct of a tertiary alcohol can be formed. And since it transfers to a 2nd process, without quenching after completion
  • the organometallic compound adduct of the tertiary alcohol obtained in the first step is reacted with an unsaturated carboxylic acid halide represented by the formula (4) in the presence of a tertiary amine. Therefore, even if the unsaturated carboxylic acid halide is activated by a tertiary amine and is a methacrylic acid halide having a large steric hindrance, it can be rapidly reacted with an organometallic compound adduct of a tertiary alcohol.
  • the unsaturated carboxylic acid ester represented by the formula (a-1) is obtained in a high yield.
  • the amount of the organometallic compound represented by the formula (1) or (2) is, for example, 0.5 to 2.0 mol with respect to 1 mol of the ketone represented by the formula (3) as a starting material. , Preferably 0.8 to 1.8 mol, particularly preferably 1.1 to 1.4 mol.
  • the usage-amount of the organometallic compound represented by Formula (1) or (2) is less than the said range, there exists a tendency for a yield to fall.
  • the usage-amount of the organometallic compound represented by Formula (1) or (2) exceeds the said range, there exists a tendency for economical efficiency to deteriorate.
  • the reaction can be performed in the presence or absence of a solvent.
  • a solvent for example, saturated or unsaturated hydrocarbon solvents such as pentane, hexane, heptane, octane, petroleum ether; aromatic hydrocarbon solvents such as benzene, toluene, xylene; methylene chloride, chloroform, 1 Halogenated hydrocarbon solvents such as 1,2-dichloroethane, chlorobenzene, bromobenzene; ethers such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran (THF), dioxane, 1,2-dimethoxyethane, cyclopentyl methyl ether (CPME) System solvents; sulfolanes such as sulfolane; high-boiling solvents such as silicone oil can be used.
  • saturated or unsaturated hydrocarbon solvents such as pentane, he
  • ether solvents such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran (THF), cyclopentyl methyl ether (CPME), methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, bromobenzene It is preferable to use halogenated hydrocarbon solvents such as
  • the amount of the solvent used is not particularly limited as long as it can dissolve or disperse the reaction components and does not impair the economy.
  • the amount is, for example, about 0.1 to 100 parts by weight, preferably 1 to 20 parts by weight with respect to 1 part by weight of the ketone represented by the formula (3) as a starting material.
  • the reaction may be performed by dropping the ketone represented by the formula (3) into the organometallic compound represented by the formula (1) or (2), and the ketone represented by the formula (3) is represented by the formula (1).
  • Or (2) may be added dropwise.
  • the temperature at the time of dropwise addition and reaction ripening is, for example, ⁇ 80 ° C. or higher, the boiling point of the reaction system or lower, preferably ⁇ 20 to 80 ° C., particularly preferably ⁇ 5 to 50 ° C.
  • the temperature at the time of dripping and reaction ripening may be the same or different.
  • the reaction atmosphere can be appropriately selected within a range that does not inhibit the reaction, and may be any of an air atmosphere, an oxygen atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the reaction can be performed under normal pressure or reduced pressure (eg, about 0.0001 to 0.1 MPa, preferably about 0.001 to 0.1 MPa), and may be performed under pressure for operational reasons. .
  • the amount of the unsaturated carboxylic acid halide represented by the formula (4) is, for example, about 0.5 to 20 moles, preferably 0 with respect to 1 mole of the ketone represented by the formula (3) as a starting material. .8 to 8 mol, particularly preferably 1 to 3 mol.
  • the usage-amount of the unsaturated carboxylic acid halide represented by Formula (4) is less than the said range, there exists a tendency for reaction rate to fall.
  • the amount of the unsaturated carboxylic acid halide represented by the formula (4) exceeds the above range, no improvement in the reaction results is observed, and the economy tends to deteriorate.
  • the amount of the tertiary amine to be used is, for example, about 0.5 to 20 mol, preferably 0.8 to 8 mol, particularly preferably relative to 1 mol of the ketone represented by the formula (3) as the starting material. 1 to 3 moles.
  • the amount of the tertiary amine used with respect to the unsaturated carboxylic acid halide is, for example, about 0.5 to 10 mol, preferably 0.8 to 5 mol, particularly preferably 1 with respect to 1 mol of the unsaturated carboxylic acid halide. ⁇ 3 moles.
  • a polymerization inhibitor is preferably added to the system.
  • the unsaturated carboxylic acid halide represented by the formula (4) as a raw material and the unsaturated carboxylic acid ester represented by the formula (a-1) as a target product are polymerized.
  • copolymerization it is possible to prevent by-production of oligomers, and an unsaturated carboxylic acid ester having an extremely low oligomer content as an impurity can be obtained.
  • polymerization inhibitor examples include 4,4′-thiobis (6-t-butyl-m-cresol), 4,4′-butylidenebis (6-t-butyl-m-cresol), 1,1,3 -Tris (5-t-butyl-4-hydroxy-2-methylphenyl) butane, p-methoxyphenol, phenothiazine and the like.
  • the polymerization reaction can also be suppressed by allowing a component containing molecular oxygen (for example, air diluted with air, nitrogen, etc.) to coexist in the reaction system. These can be used alone or in combination of two or more.
  • the amount of the polymerization inhibitor used is, for example, about 0.0001 to 5 parts by weight, preferably 0.005 to 0.3 parts by weight with respect to 100 parts by weight of the ketone represented by the formula (3).
  • the reaction can be performed in the presence or absence of a solvent.
  • a solvent for example, ester solvents such as ethyl acetate and butyl acetate; saturated or unsaturated hydrocarbon solvents such as pentane, hexane, heptane, octane and petroleum ether; aromatics such as benzene, toluene and xylene Hydrocarbon solvents: halogenated hydrocarbon solvents such as methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, bromobenzene; diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran (THF), dioxane, 1,2-dimethoxy Ether solvents such as ethane and cyclopentyl methyl ether (CPME); nitriles such as acetonitrile and benzonitrile; sulfoxide solvents such as dimethyl
  • a tertiary amine may also serve as a solvent.
  • ester solvents such as ethyl acetate and butyl acetate, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran (THF), dioxane, 1,2-dimethoxyethane, cyclopentyl methyl ether (CPME), etc.
  • Ether solvents such as acetonitrile and benzonitrile, and halogenated hydrocarbon solvents such as methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, and bromobenzene are preferably used.
  • the amount of the solvent used is not particularly limited as long as it can dissolve or disperse the reaction components and does not impair the economy.
  • the amount is, for example, about 0.5 to 100 parts by weight, preferably 1 to 20 parts by weight with respect to 1 part by weight of the unsaturated carboxylic acid halide represented by the formula (4).
  • the solvent used in the second step may be the same as the solvent used in the first step, or a different solvent may be used.
  • the solvent may be used as it is after the completion of the first step.
  • the concentration of the solvent is adjusted by concentration and dilution before use. Also good.
  • the reaction temperature is, for example, about ⁇ 50 to 150 ° C., and the lower limit thereof is preferably ⁇ 10 ° C., particularly preferably 0 ° C., and most preferably 10 ° C.
  • the upper limit is preferably 80 ° C., more preferably 50 ° C., particularly preferably 45 ° C., most preferably 40 ° C., and further preferably less than 40 ° C.
  • the reaction atmosphere can be appropriately selected within a range that does not inhibit the reaction, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the reaction can be performed under normal pressure or reduced pressure (eg, about 0.0001 to 0.1 MPa, preferably about 0.001 to 0.1 MPa), and may be performed under pressure for operational reasons. .
  • a tertiary amine is added to the addition reaction product obtained in the first step, and then an unsaturated carboxylic acid halide (or a solution containing the same) represented by the formula (4) is added to the reaction system. It can carry out by the method of adding sequentially in the inside.
  • the polymerization inhibitor is added, it is preferably added to the reaction system at an appropriate time before adding the unsaturated carboxylic acid halide represented by the formula (4).
  • the reaction can be carried out by a conventional method such as batch, semi-batch or continuous.
  • the target unsaturated carboxylic acid ester represented by the formula (a-1) can be used as it is after the reaction or after separation and purification.
  • Separation / purification can be performed by a conventional separation / purification method, for example, extraction, washing (for example, washing with acid, alkali or water), distillation, rectification, molecular distillation, adsorption and the like. Separation and purification may be performed continuously or discontinuously (batch mode). The pressure during the separation / purification operation may be reduced pressure or normal pressure.
  • the organic solvent include aliphatic hydrocarbon solvents such as hexane and heptane; alicyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and cyclopentane; aromatic hydrocarbon solvents such as toluene and xylene; Examples thereof include ester solvents such as ethyl and butyl acetate; halogenated hydrocarbon solvents such as methylene chloride and chloroform.
  • the organic solvent include aliphatic hydrocarbon solvents such as hexane and heptane; alicyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and cyclopentane; aromatic hydrocarbon solvents such as toluene and xylene; Examples thereof include ester solvents such as ethyl and butyl acetate; halogenated hydrocarbon solvents such as methylene chloride and chloroform.
  • an alicyclic hydrocarbon solvent such as cyclohexane or methylcyclohexane
  • an ester solvent such as ethyl acetate or butyl acetate
  • Carboxylic acid esters are preferred because they can be obtained with an excellent recovery rate.
  • the method for producing the unsaturated carboxylic acid ester it is excellent in yield (for example, 50% or more, preferably 60% or more) and high purity (for example, purity 75% or more, preferably purity 80% or more, particularly preferably). Can obtain an unsaturated carboxylic acid ester having a purity of 90% or more.
  • unsaturated carboxylic acid ester represented by the formula (a-1) of the present invention compounds represented by the following formulas (a-1-1) to (a-1-6) are particularly preferable.
  • the monomer unit b of the present invention is a monomer unit containing an alicyclic skeleton having a polar group, and has a function of imparting substrate adhesion and etching resistance to a polymer compound.
  • Examples of the polar group include —O—, —C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —O—, —C ( ⁇ O) —O.
  • R a represents an alkyl group which may have a substituent.
  • the alkyl group include those having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, pentyl, isoamyl, s-amyl, t-amyl, and n-hexyl group.
  • An alkyl group etc. can be mentioned.
  • Examples of the substituent that the alkyl group may have in R a include, for example, a halogen atom such as a fluorine, chlorine and bromine atom, a C 1-5 haloalkyl group such as a trifluoromethyl group, a hydroxyl group, and a methoxy group.
  • C 1-4 alkoxy group such as an amino group, di C 1-4 alkylamino group, a carboxyl group, C 1-4 alkoxycarbonyl group such as methoxycarbonyl group, a nitro group, a cyano group, such as acetyl group C 1- And 6 aliphatic acyl groups.
  • the monomer unit b of the present invention preferably contains at least one selected from the following formulas (b1) to (b6).
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom
  • A represents a single bond or a linking group.
  • X represents a non-bond, a methylene group, an ethylene group, an oxygen atom, or a sulfur atom.
  • Y represents a methylene group or a carbonyl group.
  • R 4 to R 8 are the same or different and are protected by a hydrogen atom, an alkyl group, a hydroxyl group that may be protected with a protecting group, a hydroxyalkyl group that may be protected with a protecting group, or a protecting group.
  • R 9 represents a hydroxyl group that may be protected with a protecting group, a hydroxyalkyl group that may be protected with a protecting group, or a carboxyl group that may be protected with a protecting group Or a cyano group.
  • Ring Z 2 represents an alicyclic hydrocarbon ring having 6 to 20 carbon atoms.
  • m represents an integer of 1 to 5
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, and examples thereof are the same as R in the formula (4).
  • Examples of the linking group in A include an alkylene group, a carbonyl group (—C ( ⁇ O) —), an ether bond (—O—), an ester bond (—C ( ⁇ O) —O—), an amide bond ( And —C ( ⁇ O) —NH—), carbonate bonds (—O—C ( ⁇ O) —O—), and groups in which a plurality of these are linked.
  • Examples of the alkylene group include linear or branched alkylene groups such as methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups, 1,2-cyclopentylene, and 1,3-cyclopentylene.
  • Divalent alicyclic hydrocarbon groups such as len, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, and cyclohexylidene groups (especially divalent hydrocarbon groups). Cycloalkylene group) and the like.
  • Examples of the alkyl group in R 4 to R 8 include the same examples as in R 3 in the formula (3).
  • Examples of the hydroxyl group that may be protected with a protecting group in R 4 to R 9, the hydroxyalkyl group that may be protected with a protecting group, and the carboxyl group that may be protected with a protecting group include those represented by the formula (3)
  • the example similar to the example in R ⁇ 3 > in a) can be mentioned.
  • the ring Z 2 represents an alicyclic hydrocarbon ring having 6 to 20 carbon atoms, such as 6 to 20 members (preferably 6 to 15 members, particularly preferably 6 to 12 members) such as cyclohexane ring and cyclooctane ring.
  • a cycloalkane ring of about 6 to 20 members such as a cyclohexene ring; a monocyclic alicyclic carbocyclic ring such as a cycloalkene ring; an adamantane ring, norbornane Ring, norbornene ring, bornane ring, isobornane ring, tricyclo [5.2.1.0 2,6 ] decane ring, tetracyclo [4.4.0.1 2,5 .
  • the monomer unit represented by the formula (b6) can impart high transparency and etching resistance to the polymer compound.
  • the monomer unit a and the monomer unit b in particular, monomers represented by the formulas (b1), (b2), (b3), (b4), and (b5) It is preferable that at least one selected from the units and the monomer unit represented by the formula (b6) include substrate adhesion, etching resistance, and transparency.
  • the content of monomer units selected from the monomer units represented by formulas (b1), (b2), (b3), (b4), and (b5) (when two or more types are included) Is the total amount) and the content ratio of the monomer unit represented by the formula (b6) (the former / the latter (molar ratio)) is, for example, 1 or more, preferably 2 or more, particularly preferably 3 or more.
  • Examples of the monomer unit b of the present invention include monomer units represented by the following formula.
  • the monomer unit b can be introduced into the polymer compound by subjecting the corresponding polymerizable monomer to polymerization.
  • the monomer unit c of the present invention is at least one monomer unit selected from the following formulas (c1) to (c4) (excluding those contained in the monomer unit b), and an acid-eliminable group (carboxyl) by an acid.
  • a protecting group such as a group is rapidly eliminated to form a carboxyl group that contributes to alkali solubilization.
  • the monomer unit c of the present invention gives the polymer compound the property of changing to alkali solubility with an acid and the etching resistance.
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • R 10 to R 12 are the same or different and each represents an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • R 13 and R 14 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • R 15 represents a —COOR d group, and R d represents an optionally substituted tertiary hydrocarbon group, tetrahydrofuranyl group, tetrahydropyranyl group, or oxepanyl group.
  • R c is a substituent bonded to ring Z 3 and is the same or different and is an oxo group, an alkyl group, a hydroxyl group which may be protected with a protecting group, or a hydroxy group which is protected with a protecting group An alkyl group or a carboxyl group which may be protected with a protecting group is shown.
  • q represents an integer of 0 to 3.
  • Ring Z 3 represents an alicyclic hydrocarbon ring having 5 to 20 carbon atoms.
  • R represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, and examples thereof are the same as R in the formula (4).
  • Examples of the alkyl group having 1 to 6 carbon atoms in R 10 to R 14 include the same examples as in the above R 1 . Among these, a C 1-4 alkyl group is preferable, a C 1-3 alkyl group is particularly preferable, and a C 1-2 alkyl group is most preferable.
  • Examples of the substituent that the alkyl group having 1 to 6 carbon atoms in R 10 to R 14 may have include the same examples as in the above R 1 .
  • Examples of the tertiary hydrocarbon group for R d include a t-butyl group and a t-pentyl group.
  • Examples of the substituent that the tertiary hydrocarbon group in R d may have include, for example, a halogen atom, a hydroxy group, a substituted hydroxy group (eg, methoxy, ethoxy, propoxy group, etc. having 1 to 4 carbon atoms).
  • An alkoxy group) and a cyano group examples of the substituent that the tertiary hydrocarbon group in R d may have include, for example, a halogen atom, a hydroxy group, a substituted hydroxy group (eg, methoxy, ethoxy, propoxy group, etc. having 1 to 4 carbon atoms).
  • An alkoxy group and a cyano group.
  • R c the alkyl group, the hydroxyl group that may be protected with a protecting group, the hydroxyalkyl group that may be protected with a protecting group, or the carboxyl group that may be protected with a protecting group may be represented by the above formula. Examples similar to those for R 3 in (3) can be given.
  • Examples of the alicyclic hydrocarbon ring having 5 to 20 carbon atoms in the ring Z 3 include 5 to 20 members (preferably 5 to 15 members, particularly preferably 5 to 15 members) such as cyclopentane ring, cyclohexane ring and cyclooctane ring.
  • Examples of the unsaturated carboxylic acid ester corresponding to the monomer unit c include compounds represented by the following formulae.
  • the monomer unit c can be introduced into the polymer compound by subjecting the corresponding unsaturated carboxylic acid ester to polymerization.
  • Polymerization of the monomer mixture containing the monomer can be performed by a conventional method used for producing an acrylic polymer, such as solution polymerization, bulk polymerization, suspension polymerization, bulk-suspension polymerization, emulsion polymerization, etc.
  • Solution polymerization is preferred.
  • drop polymerization is preferable among solution polymerization.
  • a monomer solution obtained by dissolving a monomer in an organic solvent and a polymerization initiator solution obtained by dissolving a polymerization initiator in an organic solvent are prepared in advance.
  • a method in which a monomer is dropped into an organic solvent maintained at a constant temperature, (iii) a monomer solution obtained by dissolving the monomer in the organic solvent, and a polymerization start obtained by dissolving the polymerization initiator in the organic solvent A method in which a polymerization initiator solution is dropped into the monomer solution prepared in advance and maintained at a constant temperature, and (iv) a monomer obtained by dissolving some monomers in an organic solvent A monomer solution 2 obtained by dissolving the solution 1 and the remaining monomer in an organic solvent, and a polymerization initiator dissolved in the organic solvent
  • the polymerization initiator solution obtained in this manner is prepared in advance, and the monomer solution 2 and the polymerization initiator solution are dropped into the monomer solution 1 maintained at a constant temperature.
  • a conventional solvent can be used as the polymerization solvent.
  • ethers chain ethers including glycol ethers such as diethyl ether and propylene glycol monomethyl ether; cyclic ethers such as tetrahydrofuran and dioxane), esters (methyl acetate) Chain esters such as ethyl acetate, butyl acetate and ethyl lactate; glycol ether esters such as propylene glycol monomethyl ether acetate), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), amides (N, N-dimethyl) Acetamide, N, N-dimethylformamide, etc.), sulfoxide (dimethylsulfoxide, etc.), alcohol (methanol, ethanol, propanol, etc.), hydrocarbon (benzene, toluene, xyle, etc.) Aliphatic
  • the polymer compound obtained by polymerization can be purified by precipitation or reprecipitation.
  • the precipitation or reprecipitation solvent may be an organic solvent and water, may be a mixed solvent of two or more organic solvents, or may be a mixed solvent of an organic solvent and water.
  • the organic solvent used as the precipitation or reprecipitation solvent include hydrocarbons (aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; benzene, toluene, xylene, and the like.
  • Aromatic hydrocarbons halogenated hydrocarbons (halogenated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene), nitro compounds (nitromethane, nitroethane, etc.) ), Nitrile (acetonitrile, benzonitrile, etc.), ether (chain ether such as diethyl ether, diisopropyl ether, dimethoxyethane; cyclic ether such as tetrahydrofuran, dioxane), ketone (acetone, methyl ethyl ketone, diisobutyl keto) Etc.), esters (ethyl acetate, butyl acetate, etc.), carbonates (dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, etc.), alcohols (methanol, ethanol, propanol
  • a solvent containing at least a hydrocarbon is preferable.
  • a hydrocarbon for example, hexane or the like.
  • the ratio of [aliphatic hydrocarbon) to other solvent [the former / the latter (weight ratio)] is, for example, about 10/90 to 99/1, preferably 30/70 to 98/2, particularly preferably 50/50 to 97/3.
  • the content of the monomer unit a is, for example, about 5 to 99 mol%, preferably 10 to 90%, based on the entire monomer units constituting the polymer.
  • the mol% particularly preferably 30 to 80 mol%.
  • the content of the monomer unit b is, for example, about 1 to 95 mol%, preferably 10 to 90 mol%, particularly preferably 20 to 70 mol%, based on the entire monomer units constituting the polymer.
  • the content of the monomer unit a is, for example, about 5 to 95 mol%, preferably 10 to 80 mol% with respect to the monomer unit constituting the polymer. Particularly preferred is 20 to 70 mol%, and most preferred is 20 to 50 mol%.
  • the content of the monomer unit b is, for example, about 1 to 90 mol%, preferably 10 to 80 mol%, particularly preferably 20 to 70 mol%, most preferably 30 to 30 mol% with respect to the monomer unit constituting the polymer. 60 mol%.
  • the content of the monomer unit c is, for example, about 5 to 90 mol%, preferably 5 to 70 mol%, particularly preferably 5 to 50 mol%, most preferably 5 to 5 mol% with respect to the monomer unit constituting the polymer. 40 mol%.
  • the weight average molecular weight (Mw) of the polymer compound of the present invention is, for example, about 1000 to 50000, preferably 3000 to 20000, particularly preferably 4000 to 15000, and the molecular weight distribution (the weight average molecular weight and the number average molecular weight are The ratio (Mw / Mn) is, for example, about 1.0 to 3.0, preferably 1.0 to 2.5.
  • said Mn shows a number average molecular weight
  • both Mn and Mw are values of polystyrene conversion.
  • the photoresist resin composition of the present invention contains at least the polymer compound, a photoacid generator, and an organic solvent.
  • photoacid generator examples include conventional compounds that efficiently generate acid upon exposure, such as diazonium salts, iodonium salts (diphenyliodohexafluorophosphate, etc.), sulfonium salts (triphenylsulfonium hexafluoroantimonate, triphenylsulfonium).
  • diazonium salts such as diazonium salts, iodonium salts (diphenyliodohexafluorophosphate, etc.), sulfonium salts (triphenylsulfonium hexafluoroantimonate, triphenylsulfonium).
  • the content of the photoacid generator can be appropriately selected according to the strength of the acid generated by light irradiation, the ratio of each monomer unit (repeating unit) in the polymer compound, and the like, with respect to 100 parts by weight of the polymer compound. For example, about 0.1 to 30 parts by weight, preferably 1 to 25 parts by weight, particularly preferably 2 to 20 parts by weight.
  • organic solvent examples include ethers (chain ethers including glycol ethers such as propylene glycol monomethyl ether, cyclic ethers such as dioxane), esters (chain esters such as methyl acetate, ethyl acetate, butyl acetate, and ethyl lactate; and cyclic esters such as ⁇ -butyrolactone; glycol ether esters such as propylene glycol monomethyl ether acetate) and ketones (methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.). These can be used alone or in combination of two or more.
  • ethers chain ethers including glycol ethers such as propylene glycol monomethyl ether, cyclic ethers such as dioxane
  • esters chain esters such as methyl acetate, ethyl acetate, butyl acetate, and ethyl lactate
  • the content of the organic solvent can be appropriately selected according to the thickness of the resist film to be formed, and the concentration of the polymer compound is, for example, about 1 to 20% by weight, preferably 2 to 15% by weight. The amount is preferably 3 to 10% by weight.
  • the photoresist resin composition of the present invention improves, for example, stability over time at the time of leaving between the exposure process and the post-exposure heating process.
  • Basic compounds triethylamine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), 1,5-diazabicyclo [4.3.0] -5-nonene (DBN), etc.
  • Additive resins for improving resist performance surfactants for improving coatability during film formation, dissolution inhibitors, stabilizers, plasticizers, photosensitizers for controlling solubility during development, It may contain a light absorber or the like.
  • the method for producing a semiconductor of the present invention is characterized in that a pattern is formed using the photoresist resin composition, the photoresist resin composition is applied onto a substrate or a substrate, and dried. After forming a coating film (resist film), the coating film is exposed to light through a predetermined mask (or further subjected to post-exposure baking) to form a latent image pattern and then developed. be able to.
  • Examples of the base material or the substrate include a silicon wafer, metal, plastic, glass, and ceramic.
  • the application of the photoresist resin composition can be performed using a conventional application means such as a spin coater, a dip coater, or a roller coater.
  • the thickness of the coating film is, for example, about 0.01 to 1 ⁇ m, preferably 0.03 to 0.5 ⁇ m.
  • light beams of various wavelengths for example, ultraviolet rays, X-rays, etc.
  • light beams of various wavelengths for example, ultraviolet rays, X-rays, etc.
  • semiconductor resists usually g-line, i-line, and excimer lasers (for example, XeCl, KrF, KrCl). , ArF, ArCl, F 2 , Kr 2 , KrAr, Ar 2, etc.).
  • an acid is generated from a photoacid generator by light irradiation, and this acid causes the monomer unit a (monomer unit a and monomer unit c if the monomer unit c is also included) of the polymer compound.
  • the acid leaving group (protecting group for the carboxyl group) is rapidly eliminated to generate a carboxyl group that contributes to solubilization.
  • the compound desorbed from the monomer unit a by acid exhibits alkali solubility, it can be washed away with an alkali developer, and the occurrence of scum on the substrate surface can be suppressed. Therefore, a fine pattern can be accurately formed by development with water or an alkali developer.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined by GPC measurement (gel permeation chromatography) using a tetrahydrofuran solvent. Polystyrene was used as the standard sample, and a refractometer (Refractive Index Detector; RI detector) was used as the detector. For GPC measurement, three columns “KF-806L” manufactured by Showa Denko Co., Ltd.
  • Example 1 (Production of polymer compound represented by the following formula) In a round bottom flask equipped with a reflux tube, a stirrer, a three-way cock, and a thermometer, 35.7 g of cyclohexanone was placed under a nitrogen atmosphere to maintain the temperature at 80 ° C., and while stirring, 5-methacryloyloxy-3-oxa Tricyclo [4.2.1.0 4,8 ] nonan-2-one 13.56 g (61.1 mmol), 1-hydroxy-3-methacryloyloxyadamantane 3.60 g (15.3 mmol), 1- (1 -Methacryloyloxy-1-methylethyl) cyclopropane 12.83 g (76.4 mmol), dimethyl 2,2′-azobisisobutyrate (trade name “V-601”, manufactured by Wako Pure Chemical Industries, Ltd.) 1 A monomer solution in which .80 g and 66.3 g of cyclohexanone were mixed was dropped at a constant rate over 6 hours
  • Example 2 (Production of polymer compound represented by the following formula) As a monomer component, 5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one 10.45 g (47.1 mmol), 3-methacryloyloxy-2-oxotetrahydrofuran 2 .67 g (15.7 mmol), 1-hydroxy-3-methacryloyloxyadamantane 3.70 g (15.7 mmol), 1- (1-methacryloyloxy-1-methylethyl) cyclopropane 13.18 g (78.5 mmol) The same operation as in Example 1 was carried out except that it was used, whereby 27.0 g of the desired polymer compound was obtained. The recovered polymer compound was analyzed by GPC. As a result, the weight average molecular weight (Mw) was 9500, and the molecular weight distribution (Mw / Mn) was 1.92.
  • Mw weight average molecular weight
  • Mw / Mn was
  • Example 3 (Production of polymer compound represented by the following formula) As a monomer component, 5- (2-methacryloyloxyacetoxy) -3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one 15.30 g (54.6 mmol), 1-hydroxy-3 -The same operation as in Example 1 was performed except that 3.22 g (13.7 mmol) of methacryloyloxyadamantane and 11.48 g (68.3 mmol) of 1- (1-methacryloyloxy-1-methylethyl) cyclopropane were used. As a result, 26.8 g of the desired polymer compound was obtained. The recovered polymer compound was analyzed by GPC. As a result, the weight average molecular weight (Mw) was 8700, and the molecular weight distribution (Mw / Mn) was 1.88.
  • Mw weight average molecular weight
  • Mw / Mn the molecular weight distribution
  • Example 4 (Production of polymer compound represented by the following formula) As the monomer component, 14.36 g (58.1 mmol) of 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one, 1-hydroxy-3- The same operation as in Example 1 was carried out except that 3.43 g (14.57 mmol) of methacryloyloxyadamantane and 12.21 g (72.7 mmol) of 1- (1-methacryloyloxy-1-methylethyl) cyclopropane were used. As a result, 27.1 g of the desired polymer compound was obtained. When the recovered polymer compound was analyzed by GPC, it was found that the weight average molecular weight (Mw) was 9100 and the molecular weight distribution (Mw / Mn) was 1.90.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 5 (Production of polymer compound represented by the following formula) As a monomer component, 11.19 g (45.3 mmol) of 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one, 3-methacryloyloxy-2 -Oxotetrahydrofuran 2.57 g (15.1 mmol), 1-hydroxy-3-methacryloyloxyadamantane 3.56 g (15.1 mmol), 1- (1-methacryloyloxy-1-methylethyl) cyclopropane 12.68 g (75 0.5 mmol) was used in the same manner as in Example 1 to obtain 26.6 g of the desired polymer compound. When the recovered polymer compound was analyzed by GPC, the weight average molecular weight (Mw) was 9300, and the molecular weight distribution (Mw / Mn) was 1.90.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 6 (Production of polymer compound represented by the following formula) As a monomer component, 15.94 g (52.3 mmol) of 1-cyano-5- (2-methacryloyloxyacetoxy) -3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one, Example 1 except that 3.08 g (13.1 mmol) of 1-hydroxy-3-methacryloyloxyadamantane and 10.98 g (65.3 mmol) of 1- (1-methacryloyloxy-1-methylethyl) cyclopropane were used. As a result, 26.7 g of the desired polymer compound was obtained. The recovered polymer compound was analyzed by GPC. As a result, the weight average molecular weight (Mw) was 8500, and the molecular weight distribution (Mw / Mn) was 1.86.
  • Mw weight average molecular weight
  • Mw / Mn the molecular weight distribution
  • Example 7 (Production of polymer compound represented by the following formula) As a monomer component, 1-cyano-5- (2-methacryloyloxyacetoxy) -3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one 19.34 g (63.4 mmol), 1 The same operation as in Example 1 was carried out except that 10.66 g (63.4 mmol) of-(1-methacryloyloxy-1-methylethyl) cyclopropane was used, to obtain 25.6 g of the desired polymer compound. . The recovered polymer compound was analyzed by GPC. As a result, the weight average molecular weight (Mw) was 8600, and the molecular weight distribution (Mw / Mn) was 1.84.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 8 (Production of polymer compound represented by the following formula) As a monomer component, 5-methacryloyloxy-3-oxa-2-thiatricyclo [4.2.1.0 4,8 ] nonane-2,2-dione 14.69 g (56.9 mmol), 1-hydroxy-3- The same operation as in Example 1 was carried out except that 3.36 g (14.2 mmol) of methacryloyloxyadamantane and 11.95 g (71.2 mmol) of 1- (1-methacryloyloxy-1-methylethyl) cyclopropane were used. As a result, 27.1 g of the desired polymer compound was obtained. GPC analysis of the recovered polymer compound revealed that the weight average molecular weight (Mw) was 8900 and the molecular weight distribution (Mw / Mn) was 1.88.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 9 (Production of polymer compound represented by the following formula) As a monomer component, 5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one 12.94 g (58.3 mmol), 1-hydroxy-3-methacryloyloxyadamantane 3 .44 g (14.6 mmol), 1- (1-methacryloyloxy-1-methylethyl) cyclopropane 9.80 g (58.3 mmol), 1- (1-methacryloyloxy-1-methylethyl) adamantane 3.82 g ( The same operation as in Example 1 was carried out except that 14.6 mmol) was used, and 27.5 g of the desired polymer compound was obtained. When the recovered polymer compound was analyzed by GPC, it was found that the weight average molecular weight (Mw) was 9000 and the dispersity (Mw / Mn) was 1.90.
  • Mw weight average molecular weight
  • Mn dis
  • Example 10 (Production of polymer compound represented by the following formula) As a monomer component, 5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one 9.96 g (44.9 mmol), 3-methacryloyloxy-2-oxotetrahydrofuran 5 0.08 g (29.9 mmol), 1- (1-methacryloyloxy-1-methylethyl) cyclopropane 7.54 g (44.9 mmol), 2-ethyl-2-methacryloyloxyadamantane 7.42 g (29.9 mmol) The same operation as in Example 1 was carried out except that it was used, whereby 25.4 g of the desired polymer compound was obtained. The recovered polymer compound was analyzed by GPC. As a result, the weight average molecular weight (Mw) was 8600, and the molecular weight distribution (Mw / Mn) was 1.85.
  • Mw weight average molecular weight
  • Example 11 (Production of polymer compound represented by the following formula) As a monomer component, 14.17 g (57.4 mmol) of 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one, 1-hydroxy-3- 3.38 g (14.3 mmol) of methacryloyloxyadamantane, 7.23 g (43.0 mmol) of 1- (1-methacryloyloxy-1-methylethyl) cyclopropane, 5.22 g of 1-ethyl-1-methacryloyloxycyclopentane ( The same operation as in Example 1 was carried out except that 28.7 mmol) was used, and 25.9 g of the desired polymer compound was obtained. The recovered polymer compound was analyzed by GPC. As a result, the weight average molecular weight (Mw) was 8300, and the molecular weight distribution (Mw / Mn) was 1.81.
  • Mw weight average
  • Example 12 (Production of polymer compound represented by the following formula) As a monomer component, 13.73 g (55.6 mmol) of 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one, 1-hydroxy-3- 3.28 g (13.9 mmol) of methacryloyloxyadamantane, 9.34 g (55.6 mmol) of 1- (1-methacryloyloxy-1-methylethyl) cyclopropane, 1- (1-methacryloyloxy-1-methylethyl) adamantane
  • the same operation as in Example 1 was carried out except that 3.64 g (13.9 mmol) was used, and 27.0 g of the desired polymer compound was obtained.
  • GPC analysis of the recovered polymer compound revealed that the weight average molecular weight (Mw) was 8900 and the molecular weight distribution (Mw / Mn) was 1.88.
  • Example 13 (Production of polymer compound represented by the following formula) As a monomer component, 1-cyano-5- (2-methacryloyloxyacetoxy) -3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one 14.73 g (48.3 mmol), 1 -Hydroxy-3-methacryloyloxyadamantane 2.85 g (12.1 mmol), 1- (1-methacryloyloxy-1-methylethyl) cyclopropane 6.09 g (36.2 mmol), 1- (1-methacryloyloxy-1 The same operation as in Example 1 was carried out except that 6.33 g (24.2 mmol) of -methylethyl) adamantane was used, and 26.9 g of the desired polymer compound was obtained. The recovered polymer compound was analyzed by GPC. As a result, the weight average molecular weight (Mw) was 8600, and the molecular weight distribution (Mw / Mn) was
  • Example 14 (Production of polymer compound represented by the following formula) As a monomer component, 1-cyano-5- (2-methacryloyloxyacetoxy) -3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one 11.24 g (36.8 mmol), 3 -Methacryloyloxy-2-oxotetrahydrofuran 2.09 g (12.3 mmol), 1-hydroxy-3-methacryloyloxyadamantane 2.90 g (12.3 mmol), 1- (1-methacryloyloxy-1-methylethyl) cyclopropane The same operation as in Example 1 was carried out except that 4.13 g (24.6 mmol) and 1- (1-methacryloyloxy-1-methylethyl) adamantane 9.65 g (36.8 mmol) were used.
  • Example 15 (Production of polymer compound represented by the following formula) As a monomer component, 5-methacryloyloxy-3-oxa-2-thiatricyclo [4.2.1.0 4,8 ] nonane-2,2-dione 14.06 g (54.5 mmol), 1-hydroxy-3- Methacryloyloxyadamantane 3.22 g (13.6 mmol), 1- (1-methacryloyloxy-1-methylethyl) cyclopropane 9.16 g (54.5 mmol), 1- (1-methacryloyloxy-1-methylethyl) adamantane
  • the same operation as in Example 1 was carried out except that 3.57 g (13.6 mmol) was used, and 27.2 g of a desired polymer compound was obtained.
  • the recovered polymer compound was analyzed by GPC. As a result, the weight average molecular weight (Mw) was 9100, and the molecular weight distribution (Mw / Mn) was 1.92.
  • Example 16 (Production of polymer compound represented by the following formula) As a monomer component, 5-methacryloyloxy-3-oxa-2-thiatricyclo [4.2.1.0 4,8 ] nonane-2,2-dione 10.98 g (42.6 mmol), 3-methacryloyloxy-2 -Oxotetrahydrofuran 4.82 g (28.4 mmol), 1- (1-methacryloyloxy-1-methylethyl) cyclopropane 7.15 g (42.6 mmol), 2-ethyl-2-methacryloyloxyadamantane 7.04 g (28 .4 mmol) was used in the same manner as in Example 1 to obtain 26.1 g of the desired polymer compound. When the recovered polymer compound was analyzed by GPC, the weight average molecular weight (Mw) was 8400, and the molecular weight distribution (Mw / Mn) was 1.83.
  • Mw weight average molecular weight
  • Comparative Example 1 (Production of polymer compound represented by the following formula) As a monomer component, 5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one 10.94 g (49.3 mmol), 1-hydroxy-3-methacryloyloxyadamantane 2 The same procedure as in Example 1 was performed, except that .91 g (12.3 mmol) and 1- (1-methacryloyloxy-1-methylethyl) adamantane 16.15 g (61.6 mmol) were used. 27.6 g of molecular compound was obtained. When the recovered polymer compound was analyzed by GPC, the weight average molecular weight (Mw) was 8400, and the molecular weight distribution (Mw / Mn) was 1.82.
  • Mw weight average molecular weight
  • Mn molecular weight distribution
  • Comparative Example 2 (Production of polymer compound represented by the following formula) As a monomer component, 11.70 g (47.4 mmol) of 1-cyano-5-methacryloyloxy-3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one, 1-hydroxy-3- The same operation as in Example 1 was carried out except that 2.79 g (11.8 mmol) of methacryloyloxyadamantane and 15.51 g (59.2 mmol) of 1- (1-methacryloyloxy-1-methylethyl) adamantane were used. As a result, 27.3 g of a desired polymer compound was obtained. The recovered polymer compound was analyzed by GPC. As a result, the weight average molecular weight (Mw) was 8500, and the molecular weight distribution (Mw / Mn) was 1.84.
  • Mw weight average molecular weight
  • Mw / Mn the molecular weight distribution
  • Example 17 (Preparation of resin composition for photoresist) 3 parts by weight of triphenylsulfonium hexafluoroantimonate and 0.3 parts by weight of 1,5-diazabicyclo [4.3.0] -5-nonene with respect to 100 parts by weight of the polymer compound obtained in Example 1 Then, propylene glycol monomethyl ether acetate (PGMEA) was further added to prepare a resin composition for photoresist having a polymer concentration of 10% by weight.
  • PGMEA propylene glycol monomethyl ether acetate
  • the obtained resin composition for photoresist is filtered through a 0.1 ⁇ m polyethylene filter, applied onto a silicon wafer by spin coating, and subjected to a heat treatment at 120 ° C. for 90 seconds to give a photosensitive film having a thickness of about 0.3 ⁇ m. A layer was formed. After exposing the line and space pattern with an ArF excimer laser having a wavelength of 193 nm, the film was subjected to a heat treatment at a temperature of 120 ° C. for 90 seconds, developed with a 0.3M tetramethylammonium hydroxide aqueous solution, and rinsed with pure water. As a result, a line and space pattern of 0.12 ⁇ m was clearly and accurately obtained.
  • a line and space pattern was prepared in the same manner as in Example 17.
  • the polymer compounds obtained in Examples 2 to 16 were used, a 0.12 ⁇ m line was formed. An and-space pattern was obtained clearly and accurately.
  • the polymer compounds obtained in Comparative Examples 1 to 3 were used, although a line and space pattern of 0.12 ⁇ m was obtained, a lot of resist scum was observed in the space portion.
  • the polymer compound of the present invention has very high reactivity with acids, and the compounds eliminated by the acids can be easily removed, and the occurrence of scum can be prevented. Furthermore, it is excellent in substrate adhesion and etching resistance. Therefore, when a photoresist resin composition containing the polymer compound of the present invention is used, a fine pattern can be accurately formed.

Abstract

 感度、解像度に優れ、ラインエッジラフネスが小さく、微細パターンを精度よく形成することができ、現像欠陥の発生を低減できる高分子化合物を提供する。 本発明の高分子化合物は、下記式(a)で表されるモノマー単位a、及び極性基を有する脂環式骨格を含むモノマー単位bを少なくとも含む。前記モノマー単位bの極性基としては、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-C(=O)-O-C(=O)-、-C(=O)-NH-、-S(=O)-O-、-S(=O)2-O-、-ORa、-C(=O)-ORa(Ra:置換基を有していてもよいアルキル基)、及び-CNから選択される少なくとも1種の基が好ましい。

Description

高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法
 本発明は、半導体の微細加工等を行う際に用いる高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法に関する。
 半導体製造工程で用いられるポジ型フォトレジストは、光照射により被照射部がアルカリ可溶性に変化する性質、シリコンウェハへの密着性、プラズマエッチング耐性等の特性を兼ね備える必要がある。ポジ型フォトレジストは、一般に、主剤であるポリマーと光酸発生剤と上記特性を調整するための数種の添加剤を含む。
 半導体集積回路の微細化に伴い、半導体の製造に用いられるリソグラフィの露光光源は年々短波長化しており、波長248nmのKrFエキシマレーザーから波長193nmのArFエキシマレーザーに移行しつつある。KrF又はArFエキシマレーザー露光に用いられるレジスト用ポリマーにおいて、光酸発生剤から発生する酸によって脱離してアルカリ現像液可溶性を示すモノマー単位としては、例えば2-メチル-2-メタクリロイルオキシアダマンタン由来のモノマー単位や1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン由来のモノマー単位等の大きい脂環構造を含む酸脱離性基を有するものが知られている(特許文献1~3)。しかし、これらのモノマー単位を有するフォトレジスト用樹脂は、解像度、パターン形状や現像性の点で十分満足できるものではなかった。
 一方、小さい脂環構造を含む酸脱離性基を有するモノマー単位としては1-(1-メタクリロイルオキシエチル)シクロプロパン由来のモノマー単位が知られている(特許文献4)。しかし、前記モノマー単位を有するフォトレジスト用樹脂は、感度の点で十分満足できるものではなかった。
特許第3751065号公報 特許第3803286号公報 特開2003-223001号公報 特開2010-197615号公報
 従って、本発明の目的は、感度、解像度に優れ、ラインエッジラフネス(LER)が小さく、微細パターンを精度よく形成することができ、現像欠陥の発生を低減することができる高分子化合物、フォトレジスト用樹脂組成物を提供することにある。
 本発明の他の目的は、感度、解像度、エッチング耐性に優れ、ラインエッジラフネス(LER)が小さく、微細パターンを精度よく形成することができ、現像欠陥の発生を低減することができる高分子化合物、フォトレジスト用樹脂組成物を提供することにある。
 本発明の更に他の目的は、前記高分子化合物、フォトレジスト用樹脂組成物を使用した半導体の製造方法を提供することにある。
 本発明者等は上記課題を解決するため鋭意検討した結果、酸によりその一部が脱離してアルカリ可溶性を示すモノマー単位として大きい脂環構造を含む酸脱離性基を有するモノマー単位を有する高分子化合物をフォトレジスト用樹脂組成物として使用すると、酸により脱離した大きい脂環構造を含む化合物はアルカリ現像液に溶解し難いので現像後も基板表面にスカムとして残存し、それによりラインエッジラフネス(LER)が悪化し、現像欠陥が発生することを見いだした。そして、炭素数3又は4の小さい脂環構造を含む酸脱離性基を有する特定のモノマー単位と極性基を有する脂環式骨格を含むモノマー単位を含む高分子化合物をフォトレジスト用樹脂組成物として使用すると、前記小さい脂環構造を含む酸脱離性基を有するモノマー単位は、光照射により感度よく(すなわち、酸に対する反応性が非常に高く)酸脱離性基を脱離してアルカリ可溶性を示すこと、脱離した小さい脂環構造を含む基はアルカリ現像液に溶解し易いので、現像の際に基板表面から容易に除去することができ、スカム(=レジスト残渣)の発生を防止することができ、ラインエッジラフネス(LER)を小さく抑制し、現像欠陥の発生を低減することができること、すなわち解像度に優れることを見いだした。また、酸によりその一部が脱離してアルカリ可溶性を示すモノマー単位として、上記小さい脂環構造を含む酸脱離性基を有する特定のモノマー単位と炭素数5~20の大きい脂環構造を含む基を有するモノマー単位を併せて有する高分子化合物を含むフォトレジスト用樹脂組成物は、解像度に優れると共にエッチング耐性にも優れることを見いだした。そして、上記高分子化合物をフォトレジスト用樹脂として使用すると、所望の微細パターンを精度よく形成することができるレジスト膜が得られることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、下記式(a)で表されるモノマー単位a、及び極性基を有する脂環式骨格を含むモノマー単位bを少なくとも含む高分子化合物を提供する。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示す。R1、R2は同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R3は環Z1に結合している置換基であり、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示す。nは0~3の整数を示す。nが2以上の場合、2個以上のR3は同一であってもよく、異なっていてもよい。環Z1は炭素数3又は4の脂環式炭化水素環を示す)
 前記モノマー単位bの極性基としては、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-C(=O)-O-C(=O)-、-C(=O)-NH-、-S(=O)-O-、-S(=O)2-O-、-ORa、-C(=O)-ORa(Ra:置換基を有していてもよいアルキル基)、及び-CNから選択される少なくとも1種の基が好ましい。
 前記モノマー単位bとしては、下記式(b1)~(b6)から選択される少なくとも1種が好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、Aは単結合又は連結基を示す。Xは非結合、メチレン基、エチレン基、酸素原子、又は硫黄原子を示す。Yはメチレン基、又はカルボニル基を示す。R4~R8は、同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示し、R9は保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示す。環Z2は炭素数6~20の脂環式炭化水素環を示す。mは1~5の整数を示す)
 本発明の高分子化合物は、更に、下記式(c1)~(c4)から選択される少なくとも1種のモノマー単位cを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示す。R10~R12は同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R13、R14は同一又は異なって、水素原子又は置換基を有していてもよい炭素数1~6のアルキル基を示す。R15は-COORd基を示し、前記Rdは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、又はオキセパニル基を示す。pは1~3の整数を示す。Rcは環Z3に結合している置換基であって、同一又は異なって、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。qは0~3の整数を示す。環Z3は炭素数5~20の脂環式炭化水素環を示す)
 前記高分子化合物の重量平均分子量としては1000~50000が好ましく、分子量分布(重量平均分子量と数平均分子量との比:Mw/Mn)としては、1.0~3.0が好ましい。
 本発明は、また、前記高分子化合物と光酸発生剤と有機溶剤を少なくとも含むフォトレジスト用樹脂組成物を提供する。
 本発明は、更にまた、前記フォトレジスト用樹脂組成物を使用してパターンを形成することを特徴とする半導体の製造方法を提供する。
 本発明の高分子化合物は、酸によりその一部が脱離してアルカリ可溶性を示すモノマー単位として、炭素数3又は4の脂環式炭化水素基を有する特定の不飽和カルボン酸エステル由来のモノマー単位を有するため、酸に対する反応性が非常に高く、酸により脱離した化合物は容易に除去することができ、スカムの発生を防止することができる。更に、極性基を有する脂環式骨格を含むモノマー単位も有するため、基板密着性及び耐エッチング性に優れる。
 また、酸によりその一部が脱離してアルカリ可溶性を示すモノマー単位として前記炭素数3又は4の小さい脂環構造を有する特定の不飽和カルボン酸エステル由来のモノマー単位と共に炭素数5~20の大きい脂環構造を含む酸脱離性基を有する不飽和カルボン酸エステル由来のモノマー単位を有する高分子化合物は、酸に対する反応性が非常に高く、酸により脱離した化合物は基板表面から容易に除去することができ、スカムの発生を防止してラインエッジラフネス(LER)を低減することができると共に、より一層優れた耐エッチング性を発揮することができる。
 更にまた、本発明のフォトレジスト用樹脂組成物を使用する半導体の製造方法によれば、レジストとして上記のように優れた特性を有する高分子化合物を用いるので、微細なパターンを精度よく形成することができる。
 [高分子化合物]
 本発明の高分子化合物は、前記式(a)で表されるモノマー単位a、及び極性基を有する脂環式骨格を含むモノマー単位bを少なくとも含む。本発明の高分子化合物は、前記モノマー単位a、モノマー単位bの他に、更にモノマー単位cを含んでいてもよい。
 (モノマー単位a)
 本発明のモノマー単位aは前記式(a)で表され、酸により酸脱離性基(カルボキシル基の保護基)が速やかに脱離して、アルカリ可溶化に寄与するカルボキシル基が生成する。本発明のモノマー単位aは高分子化合物に酸によりアルカリ可溶性に変化する性質を付与する。本発明のモノマー単位aは下記式(a-1)で表される不飽和カルボン酸エステルを重合に付すことにより高分子化合物内に導入することができる。
Figure JPOXMLDOC01-appb-C000007
 式(a-1)中、R、R1、R2、R3、n、環Z1は前記式(a)中のR、R1、R2、R3、n、環Z1に対応し、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示す。R1、R2は同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R3は環Z1に結合している置換基であり、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示す。nは0~3の整数を示す。nが2以上の場合、2個以上のR3は同一であってもよく、異なっていてもよい。環Z1は炭素数3又は4の脂環式炭化水素環を示す。
 前記式(a-1)で表される不飽和カルボン酸エステルは、例えば、下記式(1)又は(2)
 R1MgX1      (1)
 R1Li        (2)
(式中、R1は置換基を有していてもよい炭素数1~6のアルキル基を示し、X1はハロゲン原子を示す)
で表される有機金属化合物と下記式(3)
Figure JPOXMLDOC01-appb-C000008
(式中、R2は置換基を有していてもよい炭素数1~6のアルキル基を示し、環Z1は炭素数3又は4の脂環式炭化水素環を示す。R3は環Z1に結合している置換基であり、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示し、nは0~3の整数を示す。nが2以上の場合、2個以上のR3は同一であってもよく、異なっていてもよい)
で表されるケトンとの付加反応生成物に、第3級アミンの存在下、下記式(4)
Figure JPOXMLDOC01-appb-C000009
(式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、X2はハロゲン原子を示す)
で表される不飽和カルボン酸ハライドを反応させることにより製造することができる。
 本発明において、前記式(1)又は(2)で表される有機金属化合物と前記式(3)で表されるケトンとの付加反応生成物は、前記式(1)で表される有機金属化合物を使用した場合は下記式(5-1)、前記式(2)で表される有機金属化合物を使用した場合は下記式(5-2)で表される第3級アルコールの有機金属化合物付加物である。
Figure JPOXMLDOC01-appb-C000010
(式中、R1、R2、R3、n、環Z1、X1は前記に同じ)
 すなわち、上記式(a-1)で表される不飽和カルボン酸エステルは、下記工程を経て製造することができる。
 第1工程:前記式(1)又は(2)で表される有機金属化合物と、前記式(3)で表されるケトンを反応させて、前記式(1)で表される有機金属化合物を使用した場合は前記式(5-1)、前記式(2)で表される有機金属化合物を使用した場合は前記式(5-2)で表される第3級アルコールの有機金属化合物付加物を形成する工程
 第2工程:前記式(5-1)又は前記式(5-2)で表される第3級アルコールの有機金属化合物付加物に第3級アミンの存在下で前記式(4)で表される不飽和カルボン酸ハライドを反応させ、前記式(a-1)で表される不飽和カルボン酸エステルを形成する工程
 前記式(1)又は(2)中、R1は置換基を有していてもよい炭素数1~6のアルキル基を示し、上記式(a-1)中のR1に対応する。炭素数1~6のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、イソアミル、s-アミル、t-アミル、ヘキシル基等を挙げることができる。これらの中でも、C1-4アルキル基が好ましい。
 R1において炭素数1~6のアルキル基が有していてもよい置換基としては、例えば、ハロゲン原子、ヒドロキシ基、置換ヒドロキシ基(例えば、メトキシ、エトキシ、プロポキシ基等の炭素数1~4のアルコキシ基等)、シアノ基等を挙げることができる。置換基を有する炭素数1~6のアルキル基としては、例えば、トリフルオロメチル、2,2,2-トリフルオロエチル基等の前記アルキル基を構成する水素原子の1個又は2個以上がフッ素原子、塩素原子等のハロゲン原子で置き換えられたハロアルキル基;ヒドロキシメチル、2-ヒドロキシエチル、メトキシメチル、2-メトキシエチル、エトキシメチル、2-エトキシエチル、シアノメチル、2-シアノエチル基等を挙げることができる。
 X1におけるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子等を挙げることができる。
 式(1)で表される有機金属化合物の代表的な例としては、メチルマグネシウムブロミド、エチルマグネシウムブロミド、ブチルマグネシウムブロミド、メチルマグネシウムクロリド、エチルマグネシウムクロリド、ブチルマグネシウムクロリド等の有機マグネシウム化合物(グリニア試薬)が挙げられる。また、式(2)で表される有機金属化合物の代表的な例としては、メチルリチウム、エチルリチウム、n-ブチルリチウム、t-ブチルリチウム等の有機リチウム化合物が挙げられる。
 前記有機金属化合物としては、なかでも、取り扱いが容易であり、安全にスケールアップすることができ工業化に適している点で、前記式(1)で表される有機金属化合物を使用することが好ましい。
 前記式(3)中、R2は置換基を有していてもよい炭素数1~6のアルキル基を示し、環Z1は炭素数3又は4の脂環式炭化水素環を示す。R3は環Z1に結合している置換基であり、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示し、nは0~3の整数を示す。nが2以上の場合、2個以上のR3は同一であってもよく、異なっていてもよい。式(3)中の、R2、R3、環Z1、nは、上記式(a-1)中のR2、R3、環Z1、nに対応する。
 R2における炭素数1~6のアルキル基としては、上記R1における例と同様の例を挙げることができる。これらの中でもC1-4アルキル基が好ましく、特に好ましくはC1-3アルキル基、最も好ましくはC1-2アルキル基である。
 R2において炭素数1~6のアルキル基が有していてもよい置換基としては、上記R1における例と同様の例を挙げることができる。
 環Z1における炭素数3又は4の脂環式炭化水素環としては、例えば、シクロプロピル、シクロブチル等のシクロアルカン環;シクロプロペン、シクロブテン等のシクロアルケン環等を挙げることができる。
 R3は環Z1に結合している置換基であり、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示す。
 前記アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、s-ブチル、t-ブチル、ペンチル、イソアミル、s-アミル、t-アミル、ヘキシル基等の炭素数1~6のアルキル基等を挙げることができる。
 前記ヒドロキシル基が有していてもよい保護基としては、例えば、メチル、エチル、t-ブチル基等のC1-4アルキル基;メトキシメチル基等のヒドロキシル基を構成する酸素原子とともにアセタール結合を形成する基;アセチル基、ベンゾイル基等のヒドロキシル基を構成する酸素原子とともにエステル結合を形成する基等を挙げることができる。
 前記ヒドロキシアルキル基としては、例えば、ヒドロキシメチル、2-ヒドロキシエチル、1-ヒドロキシエチル、3-ヒドロキシプロピル、2-ヒドロキシプロピル、4-ヒドロキシブチル、6-ヒドロキシヘキシル基等のヒドロキシC1-6アルキル基等を挙げることができる。
 前記ヒドロキシアルキル基が有していてもよい保護基としては、例えば、メチル、エチル、t-ブチル基等のC1-4アルキル基;メトキシメチル基等のヒドロキシル基を構成する酸素原子とともにアセタール結合を形成する基;アセチル基、ベンゾイル基等のヒドロキシル基を構成する酸素原子とともにエステル結合を形成する基等を挙げることができる。
 前記カルボキシル基の保護基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、s-ブチル、t-ブチル、ペンチル、イソアミル、s-アミル、t-アミル、ヘキシル基等の炭素数1~6のアルキル基;2-テトラヒドロフラニル基、2-テトラヒドロピラニル基、2-オキセパニル基等を挙げることができる。
 前記式(3)で表されるケトンの代表的な例としては、シクロプロピルメチルケトン、シクロプロピルエチルケトン、シクロブチルメチルケトン、シクロブチルエチルケトン等を挙げることができる。
 前記第3級アミンとしては、例えば、脂肪族アミン、芳香族アミン、脂環式アミン、複素環アミン等を挙げることができる。また、ヒドロキシル基やニトロ基等が含まれていてもよい。さらに、モノアミンの他、ジアミン等のポリアミンであってもよい。
 前記第3級アミンの具体例としては、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリブチルアミン、N-メチル-ジエチルアミン、N-エチル-ジメチルアミン、N-エチル-ジアミルアミン等の脂肪族アミン;N,N-ジメチルアニリン、N,N-ジエチルアニリン等の芳香族アミン;N,N-ジメチル-シクロヘキシルアミン、N,N-ジエチル-シクロヘキシルアミン等の脂環式アミン;N,N-ジメチルアミノピリジン、N-メチルモルホリン、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、N-メチルピリジン、N-メチルピロリジン等の複素環アミン;テトラメチルエチレンジアミン、トリエチレンジアミン等のジアミン等を挙げることができる。
 前記第3級アミンとしては、なかでも、トリメチルアミン、トリエチルアミン等の脂肪族アミン;N-メチルモルホリン等の複素環アミンが好ましく、特にトリメチルアミン、トリエチルアミン等の脂肪族アミンが、不飽和カルボン酸エステルの収率をより一層向上させることができる点で好ましい。
 前記式(4)中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、X2はハロゲン原子を示す。式(4)中のRは上記式(a-1)中のRに対応する。
 前記R、X2におけるハロゲン原子としては、例えば、塩素原子、臭素原子、ヨウ素原子等を挙げることができる。
 前記Rにおける炭素数1~6のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、イソアミル、s-アミル、t-アミル、ヘキシル基等を挙げることができる。ハロゲン原子を有する炭素数1~6のアルキル基(ハロアルキル基)としては、トリフルオロメチル、2,2,2-トリフルオロエチル基等の前記アルキル基を構成する水素原子の1個又は2個以上がフッ素原子、塩素原子等のハロゲン原子で置き換えられた基等を挙げることができる。
 前記式(4)で表される不飽和カルボン酸ハライドとしては、(メタ)アクリル酸クロライド、(メタ)アクリル酸ブロミド、(メタ)アクリル酸アイオダイド等が好ましく、特に入手が容易な点で、(メタ)アクリル酸クロライドが好ましい。尚、本明細書において、「(メタ)アクリル酸」は「アクリル酸」及び/又は「メタクリル酸」を示す。
 前記製造方法では第1工程において、出発原料として、前記有機金属化合物との反応性に優れるケトンを使用するため、立体障害が大きい基を有していても速やかに反応させることができ、前記第3級アルコールの有機金属化合物付加物を形成することができる。そして、第1工程終了後、クエンチすることなく(すなわち、水や酸を添加することなく)第2工程に移行するため、第3級アルコールは形成されない。
 また、第2工程においては、第1工程で得られた第3級アルコールの有機金属化合物付加物に、式(4)で表される不飽和カルボン酸ハライドを第3級アミンの存在下で反応させるため、前記不飽和カルボン酸ハライドが第3級アミンにより活性化され、立体障害が大きいメタクリル酸ハライド等であっても、第3級アルコールの有機金属化合物付加物と速やかに反応させることができ、高収率で前記式(a-1)で表される不飽和カルボン酸エステルが得られる。
 (第1工程)
 前記式(1)又は(2)で表される有機金属化合物の使用量としては、出発原料である式(3)で表されるケトン1モルに対して、例えば0.5~2.0モル、好ましくは0.8~1.8モル、特に好ましくは1.1~1.4モルである。式(1)又は(2)で表される有機金属化合物の使用量が前記範囲を下回ると、収率が低下する傾向がある。一方、式(1)又は(2)で表される有機金属化合物の使用量が前記範囲を上回ると、経済性が悪化する傾向がある。
 反応は、溶媒の存在下又は非存在下で行うことができる。溶媒を用いる場合には、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテル等の飽和又は不飽和炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン(THF)、ジオキサン、1,2-ジメトキシエタン、シクロペンチルメチルエーテル(CPME)等のエーテル系溶媒;スルホラン等のスルホラン類;シリコーンオイル等の高沸点溶媒等を使用することができる。これらは単独で又は2種以上を混合して使用することができる。本発明においては、なかでも、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン(THF)、シクロペンチルメチルエーテル(CPME)等のエーテル系溶媒や、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒を使用することが好ましい。
 溶媒の使用量としては、反応成分を溶解または分散可能であり、かつ経済性等を損なわない程度であれば特に制限されない。出発原料である式(3)で表されるケトン1重量部に対して、例えば0.1~100重量部程度、好ましくは1~20重量部である。
 反応は、式(1)又は(2)で表される有機金属化合物に式(3)で表されるケトンを滴下して行ってもよく、式(3)で表されるケトンに式(1)又は(2)で表される有機金属化合物を滴下して行ってもよい。滴下時および反応熟成時温度は、例えば-80℃以上、反応系の沸点以下、好ましくは-20~80℃、特に好ましくは-5~50℃である。滴下時と反応熟成時の温度は、同一であってもよく、異なっていてもよい。
 反応の雰囲気は、反応を阻害しない範囲内で適宜選択することができ、空気雰囲気、酸素雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。また、反応は、常圧下又は減圧下(例えば0.0001~0.1MPa程度、好ましくは0.001~0.1MPa程度)で行うことができ、操作上の理由により加圧下で行ってもよい。
 (第2工程)
 式(4)で表される不飽和カルボン酸ハライドの使用量としては、出発原料である式(3)で表されるケトン1モルに対して、例えば0.5~20モル程度、好ましくは0.8~8モル、特に好ましくは1~3モルである。式(4)で表される不飽和カルボン酸ハライドの使用量が前記範囲を下回ると、反応速度が低下する傾向がある。一方、式(4)で表される不飽和カルボン酸ハライドの使用量が前記範囲を上回っても反応成績の向上は認められず、経済性が悪化する傾向がある。
 第3級アミンの使用量としては、出発原料である式(3)で表されるケトン1モルに対して、例えば0.5~20モル程度、好ましくは0.8~8モル、特に好ましくは1~3モルである。また、第3級アミンの不飽和カルボン酸ハライドに対する使用量は、不飽和カルボン酸ハライド1モルに対して、例えば0.5~10モル程度、好ましくは0.8~5モル、特に好ましくは1~3モルである。第3級アミンの使用量が前記範囲を下回ると、収率が低下する傾向がある。一方、第3級アミンの使用量が前記範囲を上回ると、経済性が悪化する傾向がある。
 反応及び分離・精製の際には、系内に重合禁止剤を添加することが好ましい。重合禁止剤を添加することにより、原料である式(4)で表される不飽和カルボン酸ハライドや、目的物である式(a-1)で表される不飽和カルボン酸エステルがそれぞれ重合して、若しくは共重合して、オリゴマーを副生することを防止することができ、不純物としてのオリゴマー含有量が極めて低い不飽和カルボン酸エステルを得ることができる。
 前記重合禁止剤としては、例えば、4,4'-チオビス(6-t-ブチル-m-クレゾール)、4,4'-ブチリデンビス(6-t-ブチル-m-クレゾール)、1,1,3-トリス(5-t-ブチル-4-ヒドロキシ-2-メチルフェニル)ブタン、p-メトキシフェノール、フェノチアジン等を挙げることができる。また、反応系に分子状酸素を含む成分(例えば、空気、窒素等で希釈した空気)を共存させることによっても、重合反応を抑制することができる。これらは単独で又は2種以上を組み合わせて使用することができる。
 重合禁止剤の使用量は、式(3)で表されるケトン100重量部に対して、例えば0.0001~5重量部程度、好ましくは0.005~0.3重量部である。
 反応は、溶媒の存在下又は非存在下で行うことができる。溶媒を用いる場合には、例えば、酢酸エチル、酢酸ブチル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテル等の飽和又は不飽和炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン(THF)、ジオキサン、1,2-ジメトキシエタン、シクロペンチルメチルエーテル(CPME)等のエーテル系溶媒;アセトニトリル、ベンゾニトリル等のニトリル類;ジメチルスルホキシド等のスルホキシド系溶媒;スルホラン等のスルホラン類;ジメチルホルムアミド等のアミド系溶媒;シリコーンオイル等の高沸点溶媒等を使用することができる。これらは単独で又は2種以上を混合して使用することができる。また、第3級アミンが溶媒を兼ねてもよい。本発明においては、なかでも、酢酸エチル、酢酸ブチル等のエステル系溶媒、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン(THF)、ジオキサン、1,2-ジメトキシエタン、シクロペンチルメチルエーテル(CPME)等のエーテル系溶媒や、アセトニトリル、ベンゾニトリル等のニトリル類、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒を使用することが好ましい。
 溶媒の使用量は、反応成分を溶解または分散可能であり、且つ経済性を損なわない程度であれば特に制限されない。式(4)で表される不飽和カルボン酸ハライド1重量部に対して、例えば0.5~100重量部程度、好ましくは1~20重量部である。
 第2工程の溶媒は、第1工程の溶媒と共通の溶媒を使用してもよく、異なる溶媒を使用してもよい。第1工程の溶媒と共通の溶媒を使用する場合、第1工程終了後、溶媒をそのまま使用してもよく、第1工程終了後、濃縮、希釈によって溶媒の濃度を調整してから使用してもよい。
 反応温度は、例えば-50~150℃程度であり、その下限は、好ましくは-10℃、特に好ましくは0℃、最も好ましくは10℃である。上限は、好ましくは80℃、より好ましくは50℃、特に好ましくは45℃、最も好ましくは40℃、更に好ましくは40℃未満である。
 反応の雰囲気は、反応を阻害しない範囲で適宜選択でき、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。また、反応は、常圧下又は減圧下(例えば0.0001~0.1MPa程度、好ましくは0.001~0.1MPa程度)で行うことができ、操作上の理由により加圧下で行ってもよい。
 反応は、例えば、第1工程で得られた付加反応生成物に第3級アミンを添加し、次いで、式(4)で表される不飽和カルボン酸ハライド(又はこれを含む溶液)を反応系内に逐次添加する方法等により行うことができる。前記重合禁止剤を添加する場合は、式(4)で表される不飽和カルボン酸ハライドを添加する前の適宜な時期に反応系内に添加することが好ましい。また、反応は、回分式、半回分式、連続式等の慣用の方法により行うことができる。
 目的物である式(a-1)で表される不飽和カルボン酸エステルは、反応後そのまま、または分離・精製して使用することができる。分離・精製は、慣用の分離・精製方法、例えば、抽出、洗浄(例えば、酸、アルカリ又は水による洗浄)、蒸留、精留、分子蒸留、吸着等により行うことができる。分離・精製は、連続的に行ってもよく、非連続的(回分式)に行ってもよい。分離・精製操作時の圧力は減圧または常圧の何れであってもよい。
 本発明においては、なかでも、反応後、水と有機溶媒を使用して抽出(分液)する工程を設けることが好ましい。前記有機溶媒としては、例えば、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、シクロペンタン等の脂環式炭化水素系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒等を挙げることができる。本発明では、特にシクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒を使用することが、高純度の式(a-1)で表される不飽和カルボン酸エステルを優れた回収率で得ることができる点で好ましい。
 前記不飽和カルボン酸エステルの製造方法によれば、優れた収率(例えば50%以上、好ましくは60%以上)で、高純度(例えば、純度75%以上、好ましくは純度80%以上、特に好ましくは純度90%以上)の不飽和カルボン酸エステルを得ることができる。
 本発明の式(a-1)で表される不飽和カルボン酸エステルとしては、特に、下記式(a-1-1)~(a-1-6)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 (モノマー単位b)
 本発明のモノマー単位bは極性基を有する脂環式骨格を含むモノマー単位であり、高分子化合物に基盤密着性及び耐エッチング性を付与する働きを有する。
 前記極性基としては、例えば、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-C(=O)-O-C(=O)-、-C(=O)-NH-、-S(=O)-O-、-S(=O)2-O-、-ORa、-C(=O)-ORa、-CN等を挙げることができる。これらは単独で有していてもよく、2種以上を組み合わせて有していてもよい。
 前記Raは置換基を有していてもよいアルキル基を示す。前記アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、s-ブチル、t-ブチル、ペンチル、イソアミル、s-アミル、t-アミル、n-ヘキシル基等の炭素数1~6のアルキル基等を挙げることができる。
 前記Raにおいて、アルキル基が有していてもよい置換基としては、例えば、フッ素、塩素、臭素原子等のハロゲン原子、トリフルオロメチル基等のC1-5ハロアルキル基、ヒドロキシル基、メトキシ基等のC1-4アルコキシ基、アミノ基、ジC1-4アルキルアミノ基、カルボキシル基、メトキシカルボニル基等のC1-4アルコキシカルボニル基、ニトロ基、シアノ基、アセチル基等のC1-6脂肪族アシル基等を挙げることができる。
 本発明のモノマー単位bとしては、下記式(b1)~(b6)から選択される少なくとも1種を含むことが好ましい。下記式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、Aは単結合又は連結基を示す。Xは非結合、メチレン基、エチレン基、酸素原子、又は硫黄原子を示す。Yはメチレン基、又はカルボニル基を示す。R4~R8は、同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示し、R9は保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示す。環Z2は炭素数6~20の脂環式炭化水素環を示す。mは1~5の整数を示す
Figure JPOXMLDOC01-appb-C000012
 前記Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、前記式(4)中のRと同様の例を挙げることができる。
 前記Aにおける連結基としては、例えば、アルキレン基、カルボニル基(-C(=O)-)、エーテル結合(-O-)、エステル結合(-C(=O)-O-)、アミド結合(-C(=O)-NH-)、カーボネート結合(-O-C(=O)-O-)、及びこれらが複数個連結した基等を挙げることができる。前記アルキレン基としては、例えば、メチレン、メチルメチレン、ジメチルメチレン、エチレン、プロピレン、トリメチレン基等の直鎖状又は分岐鎖状のアルキレン基や、1,2-シクロペンチレン、1,3-シクロペンチレン、シクロペンチリデン、1,2-シクロへキシレン、1,3-シクロへキシレン、1,4-シクロへキシレン、シクロヘキシリデン基等の2価の脂環式炭化水素基(特に2価のシクロアルキレン基)等を挙げることができる。
 前記R4~R8におけるアルキル基としては、前記式(3)中のR3における例と同様の例を挙げることができる。
 前記R4~R9における保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基としては、前記式(3)中のR3における例と同様の例を挙げることができる。
 前記環Z2は炭素数6~20の脂環式炭化水素環を示し、例えば、シクロヘキサン環、シクロオクタン環等の6~20員(好ましくは6~15員、特に好ましくは6~12員)程度のシクロアルカン環;シクロヘキセン環等の6~20員(好ましくは6~15員、特に好ましくは6~10員)程度のシクロアルケン環等の単環の脂環式炭素環;アダマンタン環、ノルボルナン環、ノルボルネン環、ボルナン環、イソボルナン環、トリシクロ[5.2.1.02,6]デカン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環等のノルボルナン環又はノルボルネン環を含む環;パーヒドロインデン環、デカリン環(パーヒドロナフタレン環)、パーヒドロフルオレン環(トリシクロ[7.4.0.03,8]トリデカン環)、パーヒドロアントラセン環等の多環の芳香族縮合環が水素添加された環(好ましくは完全水素添加された環);トリシクロ[4.2.2.12,5]ウンデカン環等の2環系、3環系、4環系等の橋架け炭素環(例えば、炭素数6~20程度の橋架け炭素環)等の2~6環程度の橋かけ環式炭素環等を挙げることができる。
 モノマー単位bのなかでも、式(b1)、(b2)、(b3)、(b4)、及び(b5)で表されるモノマー単位は、「-C(=O)-O-」、又は「-S(=O)2-O-」を含むため親水性が高く、高分子化合物に優れた基板密着性機能を付与することができる。また、式(b6)で表されるモノマー単位は、高分子化合物に高い透明性及びエッチング耐性を付与することができる。そのため、本発明の高分子化合物としては、前記モノマー単位aと共に、モノマー単位bとして、特に、式(b1)、(b2)、(b3)、(b4)、及び(b5)で表されるモノマー単位から選択される少なくとも1種と、式(b6)で表されるモノマー単位を含むことが、基板密着性、耐エッチング性、及び透明性を兼ね備えることができる点で好ましい。
 本発明の高分子化合物において、式(b1)、(b2)、(b3)、(b4)、及び(b5)で表されるモノマー単位から選択されるモノマー単位の含有量(2種以上含む場合は合計量)と、式(b6)で表されるモノマー単位の含有量の比(前者/後者(モル比))は、例えば1以上、好ましくは2以上、特に好ましくは3以上である。
 本発明のモノマー単位bとしては下記式で表されるモノマー単位等を挙げることができる。前記モノマー単位bは、対応する重合性モノマーを重合に付すことにより高分子化合物内に導入することができる。
Figure JPOXMLDOC01-appb-C000013
 (モノマー単位c)
 本発明のモノマー単位cは、下記式(c1)~(c4)から選択される少なくとも1種のモノマー単位(モノマー単位bに含まれるものを除く)であり、酸により酸脱離性基(カルボキシル基等の保護基)が速やかに脱離して、アルカリ可溶化に寄与するカルボキシル基を生成する。本発明のモノマー単位cは酸によりアルカリ可溶性に変化する性質及び耐エッチング性を高分子化合物に付与する。
 下記式(c1)~(c4)中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示す。R10~R12は同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R13、R14は同一又は異なって、水素原子又は置換基を有していてもよい炭素数1~6のアルキル基を示す。R15は-COORd基を示し、前記Rdは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、又はオキセパニル基を示す。pは1~3の整数を示す。Rcは環Z3に結合している置換基であって、同一又は異なって、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。qは0~3の整数を示す。環Z3は炭素数5~20の脂環式炭化水素環を示す
Figure JPOXMLDOC01-appb-C000014
 前記Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、前記式(4)中のRと同様の例を挙げることができる。
 R10~R14における炭素数1~6のアルキル基としては、上記R1における例と同様の例を挙げることができる。これらの中でもC1-4アルキル基が好ましく、特に好ましくはC1-3アルキル基、最も好ましくはC1-2アルキル基である。
 R10~R14における炭素数1~6のアルキル基が有していてもよい置換基としては、上記R1における例と同様の例を挙げることができる。
 前記Rdにおける第3級炭化水素基としては、例えば、t-ブチル基、t-ペンチル基等を挙げることができる。
 前記Rdにおける第3級炭化水素基が有していてもよい置換基としては、例えば、ハロゲン原子、ヒドロキシ基、置換ヒドロキシ基(例えば、メトキシ、エトキシ、プロポキシ基等の炭素数1~4のアルコキシ基など)、シアノ基等を挙げることができる。
 前記Rcにおける、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基としては、前記式(3)中のR3における例と同様の例を挙げることができる。
 前記環Z3における炭素数5~20の脂環式炭化水素環としては、例えば、シクロペンタン環、シクロヘキサン環、シクロオクタン環等の5~20員(好ましくは5~15員、特に好ましくは5~12員)程度のシクロアルカン環;シクロペンテン環、シクロヘキセン環等の5~20員(好ましくは5~15員、特に好ましくは5~10員)程度のシクロアルケン環等の単環の脂環式炭素環;アダマンタン環;ノルボルナン環、ノルボルネン環、ボルナン環、イソボルナン環、トリシクロ[5.2.1.02,6]デカン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環等のノルボルナン環又はノルボルネン環を含む環;パーヒドロインデン環、デカリン環(パーヒドロナフタレン環)、パーヒドロフルオレン環(トリシクロ[7.4.0.03,8]トリデカン環)、パーヒドロアントラセン環等の多環の芳香族縮合環が水素添加された環(好ましくは完全水素添加された環);トリシクロ[4.2.2.12,5]ウンデカン環等の2環系、3環系、4環系等の橋架け炭素環(例えば、炭素数6~20程度の橋架け炭素環)等の2~6環程度の橋かけ環式炭素環等を挙げることができる。
 前記モノマー単位cに対応する不飽和カルボン酸エステルとしては下記式で表される化合物等を挙げることができる。モノマー単位cは、対応する不飽和カルボン酸エステルを重合に付すことにより高分子化合物内に導入することができる。
Figure JPOXMLDOC01-appb-C000015
 本発明の高分子化合物を得るに際し、少なくとも式(a-1)で表される不飽和カルボン酸エステル、モノマー単位bに対応する重合性モノマー、及び必要に応じてモノマー単位cに対応する重合性モノマーを含むモノマー混合物の重合は、溶液重合、塊状重合、懸濁重合、塊状-懸濁重合、乳化重合等、アクリル系ポリマーを製造する際に用いる慣用の方法により行うことができるが、特に、溶液重合が好適である。さらに、溶液重合のなかでも滴下重合が好ましい。滴下重合は、具体的には、(i)単量体を有機溶媒に溶解して得られる単量体溶液と、重合開始剤を有機溶媒に溶解して得られる重合開始剤溶液とを予め調製し、一定温度に保持した有機溶媒中に前記単量体溶液と重合開始剤溶液とを各々滴下する方法、(ii)単量体と重合開始剤とを有機溶媒に溶解して得られる混合溶液を、一定温度に保持した有機溶媒中に滴下する方法、(iii)単量体を有機溶媒に溶解して得られる単量体溶液と、重合開始剤を有機溶媒に溶解して得られる重合開始剤溶液とを予め調製し、一定温度に保持した前記単量体溶液中に重合開始剤溶液を滴下する方法、(iv)一部の単量体を有機溶媒に溶解して得られる単量体溶液1と残りの単量体を有機溶媒に溶解して得られる単量体溶液2、重合開始剤を有機溶媒に溶解して得られる重合開始剤溶液とを予め調製し、一定温度に保持した前記単量体溶液1中に単量体溶液2および重合開始剤溶液を滴下する方法等により行われる。
 重合溶媒としては慣用の溶媒を使用することができ、例えば、エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類を含む鎖状エーテル;テトラヒドロフラン、ジオキサン等の環状エーテル等)、エステル(酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル等の鎖状エステル;プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテルエステル類等)、ケトン(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、アミド(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等)、スルホキシド(ジメチルスルホキシド等)、アルコール(メタノール、エタノール、プロパノール等)、炭化水素(ベンゼン、トルエン、キシレン等の芳香族炭化水素;ヘキサン等の脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素等)、及びこれらの混合溶媒等を挙げることができる。また、重合開始剤としては、慣用の重合開始剤を使用することができる。重合温度は、例えば30~150℃程度、好ましくは50~120℃、特に好ましくは60~100℃である。
 重合により得られた高分子化合物は、沈殿又は再沈殿により精製できる。沈殿又は再沈殿溶媒は有機溶媒及び水の何れであってもよく、2種以上の有機溶媒の混合溶媒であってもよいし、有機溶媒と水の混合溶媒であってもよい。沈殿又は再沈殿溶媒として用いる有機溶媒としては、例えば、炭化水素(ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素)、ハロゲン化炭化水素(塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化脂肪族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素等)、ニトロ化合物(ニトロメタン、ニトロエタン等)、ニトリル(アセトニトリル、ベンゾニトリル等)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン等の鎖状エーテル;テトラヒドロフラン、ジオキサン等の環状エーテル)、ケトン(アセトン、メチルエチルケトン、ジイソブチルケトン等)、エステル(酢酸エチル、酢酸ブチル等)、カーボネート(ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等)、アルコール(メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール等)、カルボン酸(酢酸等)、及びこれらの混合溶媒等を挙げることができる。
 なかでも、前記沈殿又は再沈殿溶媒として用いる有機溶媒として、少なくとも炭化水素(特に、ヘキサン等の脂肪族炭化水素)を含む溶媒が好ましく、炭化水素を含む溶媒において、炭化水素(例えば、ヘキサン等の脂肪族炭化水素)と他の溶媒との比率[前者/後者(重量比)]は、例えば10/90~99/1程度、好ましくは30/70~98/2、特に好ましくは50/50~97/3である。
 本発明の高分子化合物(モノマー単位cを含まない場合)において、前記モノマー単位aの含有量は、ポリマーを構成するモノマー単位全体に対して、例えば5~99モル%程度、好ましくは10~90モル%、特に好ましくは30~80モル%である。また、モノマー単位bの含有量は、ポリマーを構成するモノマー単位全体に対して、例えば1~95モル%程度、好ましくは10~90モル%、特に好ましくは20~70モル%である。
 本発明の高分子化合物(モノマー単位cを含む場合)において、前記モノマー単位aの含有量は、ポリマーを構成するモノマー単位に対して、例えば5~95モル%程度、好ましくは10~80モル%、特に好ましくは20~70モル%、最も好ましくは20~50モル%である。また、モノマー単位bの含有量は、ポリマーを構成するモノマー単位に対して、例えば1~90モル%程度、好ましくは10~80モル%、特に好ましくは20~70モル%、最も好ましくは30~60モル%である。更に、モノマー単位cの含有量は、ポリマーを構成するモノマー単位に対して、例えば5~90モル%程度、好ましくは5~70モル%、特に好ましくは5~50モル%、最も好ましくは5~40モル%である。
 また、本発明の高分子化合物の重量平均分子量(Mw)は、例えば1000~50000程度、好ましくは3000~20000、特に好ましくは4000~15000であり、分子量分布(重量平均分子量と数平均分子量との比:Mw/Mn)は、例えば1.0~3.0程度、好ましくは1.0~2.5である。なお、前記Mnは数平均分子量を示し、Mn及びMwともにポリスチレン換算の値である。
 [フォトレジスト用樹脂組成物]
 本発明のフォトレジスト用樹脂組成物は、前記高分子化合物と光酸発生剤と有機溶剤を少なくとも含む。
 前記光酸発生剤としては、露光により効率よく酸を生成する慣用の化合物、例えば、ジアゾニウム塩、ヨードニウム塩(ジフェニルヨードヘキサフルオロホスフェート等)、スルホニウム塩(トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムメタンスルホネート等)、スルホン酸エステル[1-フェニル-1-(4-メチルフェニル)スルホニルオキシ-1-ベンゾイルメタン、1,2,3-トリスルホニルオキシメチルベンゼン、1,3-ジニトロ-2-(4-フェニルスルホニルオキシメチル)ベンゼン、1-フェニル-1-(4-メチルフェニルスルホニルオキシメチル)-1-ヒドロキシ-1-ベンゾイルメタン等]、オキサチアゾール誘導体、s-トリアジン誘導体、ジスルホン誘導体(ジフェニルジスルホン等)、イミド化合物、オキシムスルホネート、ジアゾナフトキノン、ベンゾイントシレート等を挙げることができる。これらは単独で又は2種以上を組み合わせて使用することができる。
 光酸発生剤の含有量は、光照射により生成する酸の強度や前記高分子化合物における各モノマー単位(繰り返し単位)の比率等に応じて適宜選択でき、前記高分子化合物100重量部に対して、例えば0.1~30重量部程度、好ましくは1~25重量部、特に好ましくは2~20重量部である。
 前記有機溶剤としては、エーテル(プロピレングリコールモノメチルエーテル等のグリコールエーテル類を含む鎖状エーテル、ジオキサン等の環状エーテル等)、エステル(酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル等の鎖状エステル;γ-ブチロラクトン等の環状エステル;プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテルエステル類等)、ケトン(メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)を挙げることができる。これらは単独で又は2種以上を組み合わせて使用することができる。本発明においては、特に、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、γ-ブチロラクトン、シクロヘキサノン等から選択される少なくとも1種を含むことが好ましい。
 有機溶剤の含有量は、形成されるレジスト膜の厚み等に応じて適宜選択することができ、前記高分子化合物の濃度が、例えば1~20重量%程度、好ましくは2~15重量%、特に好ましくは3~10重量%となる量の範囲である。
 本発明のフォトレジスト用樹脂組成物は、前記高分子化合物と光酸発生剤と有機溶剤以外にも、例えば、露光工程と露光後加熱工程との間の引き置き時の経時安定性を向上させるための塩基性化合物(トリエチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)等)、レジスト性能を改良するための添加樹脂、製膜時の塗布性を向上させるための界面活性剤、現像時の溶解性を制御するための溶解抑制剤、安定剤、可塑剤、光増感剤、光吸収剤等を含んでいてもよい。
 [半導体の製造方法]
 本発明の半導体の製造方法は、前記フォトレジスト用樹脂組成物を使用してパターンを形成することを特徴とし、前記フォトレジスト用樹脂組成物を基材又は基板上に塗布し、乾燥して、塗膜(レジスト膜)を形成した後、所定のマスクを介して、前記塗膜に光線を露光して(又は、さらに露光後ベークを行い)潜像パターンを形成し、次いで現像することにより行うことができる。
 前記基材又は基板としては、例えば、シリコンウェハ、金属、プラスチック、ガラス、セラミック等を挙げることができる。フォトレジスト用樹脂組成物の塗布は、スピンコータ、ディップコータ、ローラコータ等の慣用の塗布手段を用いて行うことができる。塗膜の厚みは、例えば0.01~1μm程度、好ましくは0.03~0.5μmである。
 露光には、種々の波長の光線(例えば、紫外線、X線等)を利用することができ、特に、半導体レジスト用では、通常、g線、i線、エキシマレーザー(例えば、XeCl、KrF、KrCl、ArF、ArCl、F2、Kr2、KrAr、Ar2等)等が使用される。
 本発明の半導体の製造方法では、光照射により光酸発生剤から酸が生成し、この酸により前記高分子化合物のモノマー単位a(モノマー単位cも有する場合はモノマー単位aとモノマー単位c)の酸脱離性基(カルボキシル基の保護基)が速やかに脱離して、可溶化に寄与するカルボキシル基が生成する。また、モノマー単位aから酸により脱離した化合物はアルカリ可溶性を示すため、アルカリ現像液で洗い流すことができ、基板表面においてスカムの発生を抑制することができる。そのため、水又はアルカリ現像液による現像により、微細なパターンを精度よく形成することができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 尚、ポリマーの重量平均分子量(Mw)及び数平均分子量(Mn)は、テトラヒドロフラン溶媒を用いたGPC測定(ゲル浸透クロマトグラフ)により求めた。標準試料にはポリスチレンを使用し、検出器としては屈折率計(Refractive Index Detector;RI検出器)を用いた。また、GPC測定には、昭和電工(株)製カラム「KF-806L」を3本直列につないで使用し、カラム温度40℃、RI温度40℃、テトラヒドロフラン流速0.8mL/分の条件で行った。分散度(Mw/Mn)は前記測定値より算出した。
 調製例1(1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパンの製造)
 容量50mLの4つ口フラスコに還流冷却管と滴下漏斗、温度計を装着した。ここへメチルマグネシウムクロリドのTHF溶液(1.75M)88.3g(メチルマグネシウムクロリドとして0.15mol)を加え、窒素雰囲気下、反応系を撹拌した。
 ここへ、シクロプロピルメチルケトン10g(0.12mol)を、反応器内温度を20~25℃に保持しつつ、約1時間かけて滴下した。滴下終了後、反応器内温度を20~30℃に保持しつつ4時間撹拌した。
 得られた反応液から19.2g(ケトン0.024mol分に相当)を分取し酢酸エチル8.0g、p-メトキシフェノール0.005g、フェノチアジン0.015gを添加した。ここへ、トリエチルアミン3.8g(0.037mol)を添加し、反応器内温度を15~20℃に保持し、窒素雰囲気下で撹拌しつつ、メタクリル酸クロリド3.2g(0.026mol)を10分間かけて滴下した。さらに、5時間撹拌を継続し、反応を終了した。
 反応終了後、反応系を酸処理して分析したところ、目的物である1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパンが86%検出された。主たる副生物は、原料由来の化合物である1-メチル-1-シクロプロピルエタノールが4%、メタクリル酸が9%であった。
 実施例1(下記式で表される高分子化合物の製造)
 還流管、撹拌子、3方コック、温度計を備えた丸底フラスコに、窒素雰囲気下、シクロヘキサノン35.7gを入れて温度を80℃に保ち、撹拌しながら、5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン13.56g(61.1mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.60g(15.3mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン12.83g(76.4mmol)、ジメチル2,2'-アゾビスイソブチレート(商品名「V-601」、和光純薬工業(株)製)1.80g、シクロヘキサノン66.3gを混合したモノマー溶液を6時間かけて一定速度で滴下した。滴下終了後、さらに2時間撹拌を続けた。重合反応終了後、得られた反応溶液を孔径0.1μmのフィルターで濾過した後、該反応溶液の7倍量のヘキサンと酢酸エチルの9:1(重量比)混合液中に撹拌しながら滴下した。生じた沈殿物を濾別、乾燥することにより、所望の高分子化合物27.3gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が9300、分散度(Mw/Mn)が1.91であった。
Figure JPOXMLDOC01-appb-C000016
 実施例2(下記式で表される高分子化合物の製造)
 モノマー成分として、5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン10.45g(47.1mmol)、3-メタクリロイルオキシ-2-オキソテトラヒドロフラン2.67g(15.7mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.70g(15.7mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン13.18g(78.5mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物27.0gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が9500、分子量分布(Mw/Mn)が1.92であった。
Figure JPOXMLDOC01-appb-C000017
 実施例3(下記式で表される高分子化合物の製造)
 モノマー成分として、5-(2-メタクリロイルオキシアセトキシ)-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン15.30g(54.6mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.22g(13.7mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン11.48g(68.3mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物26.8gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8700、分子量分布(Mw/Mn)が1.88であった。
Figure JPOXMLDOC01-appb-C000018
 実施例4(下記式で表される高分子化合物の製造)
 モノマー成分として、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン14.36g(58.1mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.43g(14.57mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン12.21g(72.7mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物27.1gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が9100、分子量分布(Mw/Mn)が1.90であった。
Figure JPOXMLDOC01-appb-C000019
 実施例5(下記式で表される高分子化合物の製造)
 モノマー成分として、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン11.19g(45.3mmol)、3-メタクリロイルオキシ-2-オキソテトラヒドロフラン2.57g(15.1mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.56g(15.1mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン12.68g(75.5mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物26.6gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が9300、分子量分布(Mw/Mn)が1.90であった。
Figure JPOXMLDOC01-appb-C000020
 実施例6(下記式で表される高分子化合物の製造)
 モノマー成分として、1-シアノ-5-(2-メタクリロイルオキシアセトキシ)-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン15.94g(52.3mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.08g(13.1mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン10.98g(65.3mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物26.7gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8500、分子量分布(Mw/Mn)が1.86であった。
Figure JPOXMLDOC01-appb-C000021
 実施例7(下記式で表される高分子化合物の製造)
 モノマー成分として、1-シアノ-5-(2-メタクリロイルオキシアセトキシ)-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン19.34g(63.4mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン10.66g(63.4mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物25.6gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8600、分子量分布(Mw/Mn)が1.84であった。
Figure JPOXMLDOC01-appb-C000022
 実施例8(下記式で表される高分子化合物の製造)
 モノマー成分として、5-メタクリロイルオキシ-3-オキサ-2-チアトリシクロ[4.2.1.04,8]ノナン-2,2-ジオン14.69g(56.9mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.36g(14.2mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン11.95g(71.2mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物27.1gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8900、分子量分布(Mw/Mn)が1.88であった。
Figure JPOXMLDOC01-appb-C000023
 実施例9(下記式で表される高分子化合物の製造)
 モノマー成分として、5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン12.94g(58.3mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.44g(14.6mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン9.80g(58.3mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン3.82g(14.6mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物27.5gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が9000、分散度(Mw/Mn)が1.90であった。
Figure JPOXMLDOC01-appb-C000024
 実施例10(下記式で表される高分子化合物の製造)
 モノマー成分として、5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン9.96g(44.9mmol)、3-メタクリロイルオキシ-2-オキソテトラヒドロフラン5.08g(29.9mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン7.54g(44.9mmol)、2-エチル-2-メタクリロイルオキシアダマンタン7.42g(29.9mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物25.4gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8600、分子量分布(Mw/Mn)が1.85であった。
Figure JPOXMLDOC01-appb-C000025
 実施例11(下記式で表される高分子化合物の製造)
 モノマー成分として、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン14.17g(57.4mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.38g(14.3mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン7.23g(43.0mmol)、1-エチル-1-メタクリロイルオキシシクロペンタン5.22g(28.7mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物25.9gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8300、分子量分布(Mw/Mn)が1.81であった。
Figure JPOXMLDOC01-appb-C000026
 実施例12(下記式で表される高分子化合物の製造)
 モノマー成分として、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン13.73g(55.6mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.28g(13.9mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン9.34g(55.6mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン3.64g(13.9mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物27.0gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8900、分子量分布(Mw/Mn)が1.88であった。
Figure JPOXMLDOC01-appb-C000027
 実施例13(下記式で表される高分子化合物の製造)
 モノマー成分として、1-シアノ-5-(2-メタクリロイルオキシアセトキシ)-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン14.73g(48.3mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン2.85g(12.1mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン6.09g(36.2mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン6.33g(24.2mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物26.9gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8600、分子量分布(Mw/Mn)が1.86であった。
Figure JPOXMLDOC01-appb-C000028
 実施例14(下記式で表される高分子化合物の製造)
 モノマー成分として、1-シアノ-5-(2-メタクリロイルオキシアセトキシ)-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン11.24g(36.8mmol)、3-メタクリロイルオキシ-2-オキソテトラヒドロフラン2.09g(12.3mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン2.90g(12.3mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン4.13g(24.6mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン9.65g(36.8mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物26.5gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8700、分子量分布(Mw/Mn)が1.86であった。
Figure JPOXMLDOC01-appb-C000029
 実施例15(下記式で表される高分子化合物の製造)
 モノマー成分として、5-メタクリロイルオキシ-3-オキサ-2-チアトリシクロ[4.2.1.04,8]ノナン-2,2-ジオン14.06g(54.5mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン3.22g(13.6mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン9.16g(54.5mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン3.57g(13.6mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物27.2gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が9100、分子量分布(Mw/Mn)が1.92であった。
Figure JPOXMLDOC01-appb-C000030
 実施例16(下記式で表される高分子化合物の製造)
 モノマー成分として、5-メタクリロイルオキシ-3-オキサ-2-チアトリシクロ[4.2.1.04,8]ノナン-2,2-ジオン10.98g(42.6mmol)、3-メタクリロイルオキシ-2-オキソテトラヒドロフラン4.82g(28.4mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)シクロプロパン7.15g(42.6mmol)、2-エチル-2-メタクリロイルオキシアダマンタン7.04g(28.4mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物26.1gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8400、分子量分布(Mw/Mn)が1.83であった。
Figure JPOXMLDOC01-appb-C000031
 比較例1(下記式で表される高分子化合物の製造)
 モノマー成分として、5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン10.94g(49.3mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン2.91g(12.3mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン16.15g(61.6mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物27.6gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8400、分子量分布(Mw/Mn)が1.82であった。
Figure JPOXMLDOC01-appb-C000032
 比較例2(下記式で表される高分子化合物の製造)
 モノマー成分として、1-シアノ-5-メタクリロイルオキシ-3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン11.70g(47.4mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン2.79g(11.8mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン15.51g(59.2mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物27.3gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8500、分子量分布(Mw/Mn)が1.84であった。
Figure JPOXMLDOC01-appb-C000033
 比較例3(下記式で表される高分子化合物の製造)
 モノマー成分として、5-メタクリロイルオキシ-3-オキサ-2-チアトリシクロ[4.2.1.04,8]ノナン-2,2-ジオン12.01g(46.5mmol)、1-ヒドロキシ-3-メタクリロイルオキシアダマンタン2.75g(11.6mmol)、1-(1-メタクリロイルオキシ-1-メチルエチル)アダマンタン15.24g(58.2mmol)を用いた以外は実施例1と同様の操作を行ったところ、所望の高分子化合物28.1gを得た。回収した高分子化合物をGPC分析したところ、重量平均分子量(Mw)が8600、分子量分布(Mw/Mn)が1.85であった。
Figure JPOXMLDOC01-appb-C000034
 実施例17(フォトレジスト用樹脂組成物の調製)
 実施例1で得られた高分子化合物100重量部に対して3重量部のトリフェニルスルホニウムヘキサフルオロアンチモネート及び0.3重量部の1,5-ジアザビシクロ[4.3.0]-5-ノネンを加え、更にプロピレングリコールモノメチルエーテルアセテート(PGMEA)を加えてポリマー濃度10重量%のフォトレジスト用樹脂組成物を調製した。
 得られたフォトレジスト用樹脂組成物を0.1μmのポリエチレン製フィルターで濾過し、シリコンウェハ上にスピンコーティング法により塗布し、温度120℃で90秒間加熱処理を行い、厚み約0.3μmの感光層を形成した。波長193nmのArFエキシマレーザーでラインアンドスペースパターンを露光した後、温度120℃で90秒間加熱処理を行い、0.3Mのテトラメチルアンモニウムヒドロキシド水溶液で現像し、純水でリンスした。その結果、0.12μmのラインアンドスペースパターンが鮮明且つ精度よく得られた。
 実施例18~32、比較例4~6(フォトレジスト用樹脂組成物の調製)
 実施例1で得られた高分子化合物に代えて実施例2~16及び比較例1~3で得られた各高分子化合物を使用した以外は実施例17と同様にしてフォトレジスト用樹脂組成物を得た。
 得られたフォトレジスト用樹脂組成物について、実施例17と同様にラインアンドスペースパターンを作成したところ、実施例2~16で得られた高分子化合物を用いた場合には、0.12μmのラインアンドスペースパターンが鮮明且つ精度よく得られた。一方、比較例1~3で得られた高分子化合物を用いた場合には、0.12μmのラインアンドスペースパターンは得られたものの、スペースの部分にレジストのスカムが多く見られた。
 本発明の高分子化合物は、酸に対する反応性が非常に高く、酸により脱離した化合物は容易に除去することができ、スカムの発生を防止することができる。更に、基板密着性及び耐エッチング性に優れる。そのため、本発明の高分子化合物を含有するフォトレジスト用樹脂組成物を使用すると微細なパターンを精度よく形成することができる。

Claims (8)

  1.  下記式(a)で表されるモノマー単位a、及び極性基を有する脂環式骨格を含むモノマー単位bを少なくとも含む高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示す。R1、R2は同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R3は環Z1に結合している置換基であり、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示す。nは0~3の整数を示す。nが2以上の場合、2個以上のR3は同一であってもよく、異なっていてもよい。環Z1は炭素数3又は4の脂環式炭化水素環を示す)
  2.  前記モノマー単位bの極性基が、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-C(=O)-O-C(=O)-、-C(=O)-NH-、-S(=O)-O-、-S(=O)2-O-、-ORa、-C(=O)-ORa(Ra:置換基を有していてもよいアルキル基)、及び-CNから選択される少なくとも1種の基である請求項1に記載の高分子化合物。
  3.  前記モノマー単位bが下記式(b1)~(b6)から選択される少なくとも1種である請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示し、Aは単結合又は連結基を示す。Xは非結合、メチレン基、エチレン基、酸素原子、又は硫黄原子を示す。Yはメチレン基、又はカルボニル基を示す。R4~R8は、同一又は異なって、水素原子、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示し、R9は保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、保護基で保護されていてもよいカルボキシル基、又はシアノ基を示す。環Z2は炭素数6~20の脂環式炭化水素環を示す。mは1~5の整数を示す)
  4.  更に、下記式(c1)~(c4)から選択される少なくとも1種のモノマー単位cを含む請求項1~3の何れか1項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは水素原子、ハロゲン原子、又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を示す。R10~R12は同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基を示す。R13、R14は同一又は異なって、水素原子又は置換基を有していてもよい炭素数1~6のアルキル基を示す。R15は-COORd基を示し、前記Rdは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、又はオキセパニル基を示す。pは1~3の整数を示す。Rcは環Z3に結合している置換基であって、同一又は異なって、オキソ基、アルキル基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいヒドロキシアルキル基、又は保護基で保護されていてもよいカルボキシル基を示す。qは0~3の整数を示す。環Z3は炭素数5~20の脂環式炭化水素環を示す)
  5.  重量平均分子量が1000~50000である請求項1~4の何れか1項に記載の高分子化合物。
  6.  分子量分布(重量平均分子量と数平均分子量との比:Mw/Mn)が1.0~3.0である請求項1~5の何れか1項に記載の高分子化合物。
  7.  請求項1~6の何れか1項に記載の高分子化合物と光酸発生剤と有機溶剤を少なくとも含むフォトレジスト用樹脂組成物。
  8.  請求項7に記載のフォトレジスト用樹脂組成物を使用してパターンを形成することを特徴とする半導体の製造方法。
PCT/JP2013/066577 2012-06-29 2013-06-17 高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法 WO2014002810A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/406,238 US9261785B2 (en) 2012-06-29 2013-06-17 Polymer compound, resin composition for photoresists, and method for producing semiconductor
KR1020147034796A KR102076529B1 (ko) 2012-06-29 2013-06-17 고분자 화합물, 포토레지스트용 수지 조성물, 및 반도체의 제조 방법
CN201380029608.0A CN104379617A (zh) 2012-06-29 2013-06-17 高分子化合物、光致抗蚀剂用树脂组合物、及半导体的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-147874 2012-06-29
JP2012147874A JP5986825B2 (ja) 2012-06-29 2012-06-29 高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法
JP2012-147875 2012-06-29
JP2012147875A JP5986826B2 (ja) 2012-06-29 2012-06-29 高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法

Publications (1)

Publication Number Publication Date
WO2014002810A1 true WO2014002810A1 (ja) 2014-01-03

Family

ID=49782971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066577 WO2014002810A1 (ja) 2012-06-29 2013-06-17 高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法

Country Status (5)

Country Link
US (1) US9261785B2 (ja)
KR (1) KR102076529B1 (ja)
CN (1) CN104379617A (ja)
TW (1) TW201412790A (ja)
WO (1) WO2014002810A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754683B (zh) * 2016-10-20 2022-02-11 日商Jsr股份有限公司 抗蝕劑底層膜形成用組成物、抗蝕劑底層膜及其形成方法、經圖案化基板的製造方法及化合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102632268B1 (ko) 2016-01-11 2024-01-31 삼성전자주식회사 포토 레지스트 조성물 및 이를 이용한 반도체 장치의 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221852A (ja) * 1997-02-06 1998-08-21 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH10232495A (ja) * 1997-02-18 1998-09-02 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH10239847A (ja) * 1997-02-28 1998-09-11 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH10307397A (ja) * 1997-05-09 1998-11-17 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH11109628A (ja) * 1997-09-30 1999-04-23 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH11282163A (ja) * 1998-03-26 1999-10-15 Fuji Photo Film Co Ltd ポジ型感光性組成物
JP2000047386A (ja) * 1998-07-27 2000-02-18 Fuji Photo Film Co Ltd ポジ型感光性組成物
JP2000098613A (ja) * 1998-09-24 2000-04-07 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP2002107920A (ja) * 2000-09-28 2002-04-10 Fuji Photo Film Co Ltd 電子線又はx線用ポジ型レジスト組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3751065B2 (ja) 1995-06-28 2006-03-01 富士通株式会社 レジスト材料及びレジストパターンの形成方法
US6042991A (en) * 1997-02-18 2000-03-28 Fuji Photo Film Co., Ltd. Positive working photosensitive composition
EP0877293B1 (en) * 1997-05-09 2004-01-14 Fuji Photo Film Co., Ltd. Positive photosensitive composition
US6291130B1 (en) 1998-07-27 2001-09-18 Fuji Photo Film Co., Ltd. Positive photosensitive composition
JP3803286B2 (ja) 2001-12-03 2006-08-02 東京応化工業株式会社 ポジ型レジスト組成物及びレジストパターンの形成方法
JP2003223001A (ja) 2002-01-31 2003-08-08 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP4033826B2 (ja) * 2003-10-14 2008-01-16 ダイセル化学工業株式会社 フォトレジスト用樹脂及びフォトレジスト用樹脂組成物
JP2010197615A (ja) 2009-02-24 2010-09-09 Fujifilm Corp 感活性光線性または感放射線性樹脂組成物及び該組成物を用いたパターン形成方法
US8580480B2 (en) * 2010-07-27 2013-11-12 Jsr Corporation Radiation-sensitive resin composition, method for forming resist pattern, polymer and compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221852A (ja) * 1997-02-06 1998-08-21 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH10232495A (ja) * 1997-02-18 1998-09-02 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH10239847A (ja) * 1997-02-28 1998-09-11 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH10307397A (ja) * 1997-05-09 1998-11-17 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH11109628A (ja) * 1997-09-30 1999-04-23 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH11282163A (ja) * 1998-03-26 1999-10-15 Fuji Photo Film Co Ltd ポジ型感光性組成物
JP2000047386A (ja) * 1998-07-27 2000-02-18 Fuji Photo Film Co Ltd ポジ型感光性組成物
JP2000098613A (ja) * 1998-09-24 2000-04-07 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP2002107920A (ja) * 2000-09-28 2002-04-10 Fuji Photo Film Co Ltd 電子線又はx線用ポジ型レジスト組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754683B (zh) * 2016-10-20 2022-02-11 日商Jsr股份有限公司 抗蝕劑底層膜形成用組成物、抗蝕劑底層膜及其形成方法、經圖案化基板的製造方法及化合物

Also Published As

Publication number Publication date
US20150168831A1 (en) 2015-06-18
CN104379617A (zh) 2015-02-25
KR20150028243A (ko) 2015-03-13
KR102076529B1 (ko) 2020-02-13
US9261785B2 (en) 2016-02-16
TW201412790A (zh) 2014-04-01

Similar Documents

Publication Publication Date Title
US9513545B2 (en) Homoadamantane derivatives, process for preparing same, and photoresist compositions
KR101432395B1 (ko) 중합체의 제조 방법, 리소그라피용 중합체, 레지스트 조성물, 및 기판의 제조 방법
US9170487B2 (en) Resist composition, method of forming resist pattern, and polymeric compound
JP5967082B2 (ja) フォトレジスト組成物
KR20110136716A (ko) 포지티브형 레지스트 조성물, 레지스트 패턴 형성 방법
JP4651283B2 (ja) 不飽和カルボン酸ヘミアセタールエステル、高分子化合物及びフォトレジスト用樹脂組成物
JP5914241B2 (ja) 高分子化合物の製造方法、高分子化合物、及びフォトレジスト用樹脂組成物
JP5042699B2 (ja) フッ素原子含有ヘミアセタールエステル構造を有する重合性単量体、及び高分子化合物
JP5107089B2 (ja) 液浸用フォトレジスト高分子化合物及び組成物
TWI614230B (zh) 化合物、自由基聚合起始劑、化合物之製造方法、聚合物、光阻組成物、光阻圖型之形成方法
US9261785B2 (en) Polymer compound, resin composition for photoresists, and method for producing semiconductor
US9862695B2 (en) Monomer having N-acyl carbamoyl group and lactone skeleton, and polymeric compound
JP7110461B2 (ja) フォトレジスト樹脂の製造方法
JP5986826B2 (ja) 高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法
JP5986825B2 (ja) 高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法
JP5329211B2 (ja) ラクトン骨格を含む高分子化合物及びフォトレジスト組成物
JP2003221403A (ja) フォトレジスト用高分子化合物の製造方法
JP2005029520A (ja) 重合性アダマンタン誘導体、高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法
JP7236830B2 (ja) 単量体、フォトレジスト用樹脂、フォトレジスト用樹脂組成物、及びパターン形成方法
JP5586898B2 (ja) 不飽和カルボン酸ヘミアセタールエステル、高分子化合物及びフォトレジスト用樹脂組成物
JP4295052B2 (ja) フッ素原子含有重合性不飽和単量体、フッ素原子含有高分子化合物及びフォトレジスト用樹脂組成物
JP2010047637A (ja) リソグラフィー用重合体の製造方法、及びパターン形成方法
TW202108643A (zh) 光阻用樹脂、光阻用樹脂的製造方法、光阻用樹脂組成物及圖案形成方法
JP2006036890A (ja) β−カルボキシ−α−不飽和アシルオキシ−γ−ブチロラクトン誘導体、高分子化合物及びフォトレジスト用樹脂組成物
JP2004285327A (ja) ポリマー及びポジ型レジスト組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14406238

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147034796

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810093

Country of ref document: EP

Kind code of ref document: A1