WO2013190900A1 - 固体酸化物型燃料電池システム及びその制御方法 - Google Patents

固体酸化物型燃料電池システム及びその制御方法 Download PDF

Info

Publication number
WO2013190900A1
WO2013190900A1 PCT/JP2013/061912 JP2013061912W WO2013190900A1 WO 2013190900 A1 WO2013190900 A1 WO 2013190900A1 JP 2013061912 W JP2013061912 W JP 2013061912W WO 2013190900 A1 WO2013190900 A1 WO 2013190900A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
combustion
combustion gas
gas
electrode
Prior art date
Application number
PCT/JP2013/061912
Other languages
English (en)
French (fr)
Inventor
岩切 保憲
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP13807212.9A priority Critical patent/EP2863464B1/en
Priority to US14/409,052 priority patent/US9391335B2/en
Priority to CN201380032540.1A priority patent/CN104396072B/zh
Priority to EP17154344.0A priority patent/EP3182491B1/en
Publication of WO2013190900A1 publication Critical patent/WO2013190900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04455Concentration; Density of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system using a solid oxide fuel cell (SOFC, Solid Oxide Fuel Cell) and a control method thereof.
  • SOFC Solid Oxide Fuel Cell
  • SOFC solid oxide fuel cell
  • Patent Document 1 in order to supply an inert gas into a fuel cell system, there is a method in which an oxygen removing unit is provided in a flow path opened to the atmosphere to supply a gas from which oxygen has been removed to the fuel cell. It is disclosed.
  • An object of the present invention is to provide a solid oxide fuel cell system that can be prevented and a control method thereof.
  • a solid oxide fuel cell system includes a fuel cell stack having a fuel electrode and an oxidant electrode, a combustion section provided for system startup, and combustion when the system is stopped. And a control unit that controls to fill the fuel electrode of the fuel cell stack with the combustion gas containing the inert gas discharged from the unit.
  • a solid oxide fuel cell system control method includes a fuel cell stack having a fuel electrode and an oxidant electrode, and a combustion unit provided for starting up the system.
  • a control method for a physical fuel cell system in which, when the system is stopped, a fuel gas of a fuel cell stack is filled with a combustion gas containing an inert gas discharged from a combustion section as a component.
  • FIG. 1 is a block diagram showing a configuration of a solid oxide fuel cell system 1 according to a first embodiment to which the present invention is applied.
  • FIG. 2 is a schematic diagram showing the structure of the startup combustor 12 shown in FIG.
  • FIG. 3 is a flowchart showing an example of a control processing procedure when the solid oxide fuel cell system 1 shown in FIG. 1 is started.
  • FIG. 4 is a flowchart showing an example of a control processing procedure when the solid oxide fuel cell system shown in FIG. 1 is stopped.
  • FIG. 5 is a block diagram showing a configuration of a solid oxide fuel cell system 51 according to a second embodiment to which the present invention is applied.
  • FIG. 6 is a flowchart showing an example of a control processing procedure when the solid oxide fuel cell system 51 shown in FIG. 5 is activated.
  • FIG. 7 is a flowchart showing an example of a control processing procedure when the solid oxide fuel cell system 51 shown in FIG. 5 is stopped.
  • a solid oxide fuel cell system 1 according to the present embodiment includes a fuel cell stack 4 having a fuel electrode 2 and an oxidant electrode 3, a reformer 7 having a reforming passage 5 and a heating passage 6.
  • the flow passage blocking device 9 for blocking the flow path to the reforming passage 5 of the reformer 7, and the reforming passage 5
  • a channel control valve 11 for controlling the flow rate of the fuel electrode exhaust gas discharged from the fuel electrode 2, and an oxidant electrode by supplying combustion gas at the time of startup 3
  • an activation combustor 12 for heating 3
  • an oxidant electrode flow path 13 for supplying the oxidant electrode exhaust gas discharged from the oxidant electrode 3 to the heating passage 6, and exhaust gas from the heating passage 6 to the outside air
  • the air supplied to the oxidant electrode 3 is heated by exchanging heat with the exhaust gas.
  • An air preheater 15, a combustion gas passage 16 for supplying a part of the combustion gas discharged from the startup combustor 12 to the fuel electrode 2 through the reformer 7, and a combustion gas passage 16 are installed in the middle of the combustion gas passage 16.
  • An outlet passage valve 20 that opens and closes the outlet side of the gas container 17 and a control unit 21 that controls processing in the solid oxide fuel cell system 1 are provided.
  • the fuel cell stack 4 is a solid oxide fuel cell (SOFC), and includes a fuel electrode 2 to which a reformed gas is supplied from a reformer 7 as a fuel gas, and air containing oxygen as an oxidant gas. And an oxidant electrode 3 to be supplied.
  • SOFC solid oxide fuel cell
  • electric power is generated by reacting hydrogen contained in the reformed gas with oxygen contained in the oxidant gas.
  • the reformer 7 reforms a reforming fuel such as natural gas, gasoline, or methanol to generate a reformed gas containing hydrogen.
  • a reforming fuel such as natural gas, gasoline, or methanol
  • the reforming fuel supplied together with the air is reacted using the heat from the heating passage 6 to generate reformed gas.
  • the heating passage 6 the oxidant electrode exhaust gas discharged from the oxidant electrode 3 and the heating fuel are supplied, and heat of reaction is generated by the heating catalyst to transfer heat to the reforming passage 5.
  • the start-up combustor 12 is a combustor provided for system start-up, and operates at the time of start-up of the system to supply a high-temperature combustion gas to the oxidant electrode 3 to increase the temperature of the fuel cell stack 4. It has been installed from the past. However, in the present embodiment, a part of the combustion gas discharged from the startup combustor 12 can be supplied to the combustion gas passage 16.
  • the combustion gas channel 16 is a channel for supplying the combustion gas discharged from the startup combustor 12 to the fuel electrode 2 of the fuel cell stack 4 via the reformer 7, and in FIG. It is connected between the flow path blocking device 9.
  • the combustion gas container 17 is installed in the middle of the combustion gas flow path 16 and stores a part of the combustion gas discharged from the startup combustor 12 at the time of startup.
  • the capacity of the combustion gas container 17 is such that the space formed by the reforming passage 5, the fuel electrode passage 10, and the fuel electrode 2 between the passage cutoff device 9 and the passage control valve 11 exceeds a predetermined pressure. It is set in advance so that a sufficient amount of combustion gas can be accommodated. Further, the inflow / outflow of the combustion gas to / from the combustion gas container 17 is controlled by opening / closing the inlet passage valve 19 and the outlet passage valve 20.
  • the gas pressurization pump 18 is installed in order to store a sufficient amount of combustion gas in the combustion gas container 17 by pressurizing and sending the combustion gas discharged from the startup combustor 12.
  • the control unit 21 includes a general-purpose electronic circuit including a microcomputer, a microprocessor, and a CPU, and peripheral devices, and executes a process for controlling the solid oxide fuel cell system 1 by executing a specific program. .
  • the start-up combustor 12 is configured by connecting a primary burner 12A as a precombustor and a secondary burner 12B as a main combustor.
  • the primary burner 12A injects fuel from the fuel injection valve 121, mixes it with combustion air, ignites it with the ignition device 122, and generates combustion gas.
  • Part of the generated combustion gas is supplied to the combustion gas passage 16 and is stored in the combustion gas container 17 by the gas pressurizing pump 18.
  • This combustion gas does not contain oxygen, and an inert gas is a component.
  • the remaining combustion gas other than that supplied to the combustion gas passage 16 is introduced into the secondary burner 12B.
  • the secondary burner 12B in addition to the combustion gas from the primary burner 12A, an additional supply of fuel and secondary air is received by the fuel injection valve 123, and a large amount of combustion gas is generated as the main combustion gas. This combustion gas is supplied to the oxidant electrode 3 to heat the fuel cell stack 4 and the reformer 7.
  • fuel spraying by the fuel injection valve 123 is shown as a fuel supply method for the secondary burner 12B, but other methods such as fuel gas supply by a fuel evaporator can also be used.
  • a combustion method such as catalytic combustion or pre-evaporation premixed lean combustion can be adopted, and it may be selected according to the composition of the fuel to be used, exhaust requirements, and the like.
  • the diffusion combustion method is exemplified as the combustion method of the primary burner 12 ⁇ / b> A, but it is also possible to perform catalytic combustion using an electrically heated catalyst or a low-temperature active catalyst depending on the temperature state of the fuel and air. is there.
  • the start-up combustor 12 is activated in step S101 to discharge the combustion gas containing the inert gas as a component.
  • a part of the combustion gas is supplied to the oxidant electrode 3 to raise the temperature of the fuel cell stack 4 and is then introduced into the heating passage 6 of the reformer 7 as the oxidant electrode exhaust gas to heat the reformer 7. Also used for. Further, another part of the combustion gas generated by the start-up combustor 12 is discharged to the combustion gas passage 16.
  • step S102 the control unit 21 closes the outlet channel valve 20 and opens the inlet channel valve 19 in step S103. Further, the control unit 21 activates the gas pressurization pump 18 in step S ⁇ b> 104, whereby the combustion gas discharged from the startup combustor 12 is pumped and stored in the combustion gas container 17.
  • step S105 the controller 21 determines whether or not the temperature of the fuel cell stack 4 has reached the operating temperature. If not, the controller 21 continues to operate the gas pressurization pump 18.
  • the combustion gas container 17 is continuously filled with the combustion gas.
  • the control unit 21 closes the inlet flow path valve 19 in step S106 and stops the gas pressurization pump 18 in step S107. As a result, the combustion gas containing the inert gas as a component is stored in the combustion gas container 17.
  • control unit 21 stops the start combustor 12 in step S108, ends the control process when starting the system, and shifts to control during normal power generation.
  • the reformed gas and the oxidant gas are supplied, and power generation is performed in the fuel cell stack 4.
  • the fuel electrode exhaust gas after being generated is discharged through the flow path control valve 11.
  • the oxidant electrode exhaust gas is mixed with the heating fuel in the oxidant electrode flow path 13 and supplied to the heating passage 6 of the reformer 7, where reaction heat is generated by the heating catalyst, and reforming is performed. Heat is transferred to the passage 5. Thereafter, when the oxidant electrode exhaust gas is discharged from the heating passage 6, it is sent to the air preheater 15 through the exhaust passage 14 to perform heat exchange and then discharged to the outside air.
  • the controller 21 first stops the reforming fuel and air supply device 8 in step S201, and then opens the outlet flow path valve 20 in step S202. As a result, the combustion gas stored in the combustion gas container 17 at the time of startup is supplied from the reforming passage 5 of the reformer 7 to the fuel electrode 2 through the combustion gas passage 16.
  • control unit 21 determines whether or not the fuel electrode 2 is filled with combustion gas in step S203.
  • the flow path control valve 11 is shut off in step S204 to close the outlet of the fuel electrode 2, and then provided in the inlet of the reforming passage 5 in step S205.
  • the flow path blocking device 9 is blocked. In this way, the interior of the space that leads from the reforming passage 5 to the fuel electrode channel 10 and the fuel electrode 2 can be filled with a combustion gas containing an inert gas that does not contain oxygen. Accordingly, it is possible to prevent oxygen from entering the fuel electrode 2 and to remove hydrogen remaining from the fuel electrode 2.
  • control unit 21 closes the outlet flow path valve 20 in step S206 and ends the control process when the system is stopped.
  • the inert gas discharged from the startup combustor 12 provided for system startup is supplied to the fuel cell stack 4.
  • the combustion gas discharged from the startup combustor 12 at the time of starting the system is stored in the combustion gas container 17, and the combustion gas at the time of system shutdown.
  • the combustion gas accommodated in the container 17 is filled in the fuel electrode 2 of the fuel cell stack 4. Therefore, it is possible to fill the fuel cell with the inert gas using the startup combustor 12 provided for starting the system. As a result, it is possible to prevent oxygen from entering the fuel cell stack 4 by effectively using the existing apparatus.
  • the solid oxide fuel cell system 51 includes a gas burner 52 that supplies combustion gas to the fuel electrode 2 during startup, and startup that supplies the combustion gas discharged from the gas burner 52 during startup of the system to the fuel electrode 2.
  • the heat exchanger 56 installed in the middle of the hour channel 54, the circulation gas channel 57 for circulating the fuel electrode exhaust gas discharged from the fuel electrode 2 to the reformer 7, and installed in the middle of the circulation gas channel 57.
  • a circulation device 58 that circulates the fuel electrode exhaust gas, and a heating gas passage 59 that branches from the circulation gas passage 57 and supplies a part of the fuel electrode exhaust gas as a heating gas for the reformer 7.
  • combustion gas flow path 16 of the first embodiment shown in FIG. 1 and each device installed in the combustion gas flow path 16 are not provided, and the flow control valve 11 is used as the heating gas flow path 59.
  • the installation is different from the first embodiment.
  • the gas burner 52 is a combustion section provided for starting up the system, and at the time of starting up the system, the combustion gas is supplied to the fuel electrode 2 of the fuel cell stack 4 to increase the temperature and moisture is supplied to the fuel cell stack 4. It is what has been installed conventionally to supply to. Normally, when starting up, water is required for the circulation system including the fuel electrode 2, the circulation gas passage 57 and the reforming passage 5. For this reason, conventionally, in order to supply the moisture, the fuel is burned by the gas burner 52 and the combustion gas containing moisture is supplied to the fuel electrode 2. In this embodiment, control is performed so that the gas burner 52 provided for activation is operated even when stopped to supply the combustion gas to the fuel electrode 2. In addition, as a structure of the gas burner 52, the thing similar to the primary burner 12A of the starting combustor 12 shown in FIG. 2 is preferable.
  • the heat exchanger 56 removes moisture from the combustion gas by exchanging heat between the combustion gas discharged from the gas burner 52 and the air introduced from the air supply device 8. Thereby, when the system is stopped, the fuel electrode 2 is filled with the dry combustion gas, so that it is possible to prevent moisture from condensing due to a decrease in temperature and a decrease in the pressure of the fuel electrode during the system stop.
  • the control unit 21 first operates the air supply device 8 in step S301 to start supplying air to the gas burner 52, and ignites the gas burner 52 in step S302.
  • the control unit 21 connects the flow path switching valve 55 to the startup flow path 53 in step S303, and in step S304.
  • the passage blocking device 9 is opened to supply the combustion gas to the fuel electrode 2.
  • the start-up combustor 12 supplies the combustion gas for heating to the oxidant electrode 3.
  • the temperature of the fuel cell stack 4 rises.
  • the combustion gas is introduced into the heating passage 6 of the reformer 7 as an oxidant electrode exhaust gas, the temperature of the reformer 7 is also raised.
  • control unit 21 determines whether or not the temperature of the fuel cell stack 4 has reached the operating temperature in step S305.
  • the gas burner 52 is stopped in step S306.
  • the control unit 21 simultaneously stops the startup combustor 12.
  • step S307 the control part 21 interrupts
  • the fuel electrode exhaust gas is discharged from the fuel electrode 2 to the circulation gas passage 57, and is pumped by the circulation device 58 and circulated to the reforming passage 5 of the reformer 7. At this time, a part of the fuel electrode exhaust gas is branched and introduced into the heating gas passage 59, mixed with the oxidant electrode exhaust gas discharged from the oxidant electrode 3, and heated in the heating passage 6 of the reformer 7. Supplied as a gas.
  • the case where the circulating gas passage 57 and the heating gas passage 59 are not provided is illustrated, but the circulating gas passage 57 and the heating gas passage 59 are provided in the first embodiment. May be installed.
  • the control unit 21 first stops the supply of reforming fuel in step S401, and ignites the gas burner 52 in step S402.
  • the control unit 21 connects the flow path switching valve 55 to the stop time flow path 54 in step S403, and the heat exchanger The combustion gas is supplied to the fuel electrode 2 through 56.
  • the heat exchanger 56 controls the temperature of the combustion gas to reduce the amount of water vapor, the dried combustion gas is supplied to the fuel electrode 2.
  • control unit 21 determines whether or not the combustion electrode 2 is filled with the combustion gas in step S404, and when determining that the combustion gas is filled in the fuel electrode 2, the control unit 21 stops the gas burner 52 in step S405.
  • the fuel electrode 2 may be determined according to the time after the gas burner 52 is ignited, or the composition of the gas in the circulating gas flow path 57 (for example, hydrogen concentration, dew point temperature) may be detected and determined according to the composition.
  • the composition of the gas in the circulating gas flow path 57 For example, hydrogen concentration, dew point temperature
  • control unit 21 shuts off the flow path shut-off device 9 provided at the inlet of the reforming passage 5 in step S406, and then shuts off the flow path control valve 11 in step S407 and opens the outlet of the fuel electrode 2. Close.
  • the interior of the space that leads from the reforming passage 5 to the fuel electrode passage 10, the fuel electrode 2, and the circulating gas passage 57 can be filled with a combustion gas containing an inert gas containing no oxygen, Accordingly, it is possible to prevent oxygen from entering the fuel electrode 2 and to remove hydrogen remaining from the fuel electrode 2.
  • control unit 21 stops the circulation device 58 in step S408 and ends the control process when the system is stopped.
  • the solid oxide fuel cell system 51 includes the gas burner 52 that supplies the combustion gas to the fuel electrode 2, and operates the gas burner 52 when the system is stopped. Since the electrode 2 is filled with the combustion gas, it is possible to fill the fuel cell with the inert gas by using the gas burner 52 provided for starting the system. Therefore, it is possible to prevent oxygen from entering the fuel cell stack 4 by effectively using existing devices.
  • the start-up flow path 53 that supplies the combustion gas discharged from the gas burner 52 to the fuel electrode 2 when the system is started, and the gas burner 52 when the system is stopped.
  • a stop-time flow path 54 for supplying the combustion gas discharged from the fuel electrode 2 and a heat exchanger 56 installed in the middle of the stop-time flow path 54, and the start-time flow path 53 is selected when the system is started. Since the stop flow path 54 is selected when the engine is stopped, the combustion gas containing moisture discharged from the gas burner 52 can be supplied to the fuel electrode 2 at the time of startup, and the combustion gas from which moisture has been removed by the heat exchanger 56 when stopped. Can be supplied to the fuel electrode 2.
  • the reformer 7 that reforms the fuel gas into the reformed gas and supplies the reformed gas to the fuel electrode 2, and the fuel discharged from the fuel electrode 2
  • a circulation gas flow channel 57 for circulating the polar exhaust gas to the reformer 7 and a part of the fuel electrode exhaust gas branched from the circulation gas flow channel 57 are mixed with the oxidant electrode exhaust gas discharged from the oxidant electrode 3. Since the heating gas flow path 59 supplied as the heating gas for the reformer 7 is provided, the exhaust gas containing hydrogen and water vapor discharged from the fuel electrode 2 can be reused, and the efficiency of the system is improved. be able to.
  • the inert gas discharged from the combustion section provided for starting the system is filled in the fuel electrode of the fuel cell stack.
  • hydrogen remaining in the fuel electrode can be removed by filling the fuel electrode with an inert gas.
  • the present invention has industrial applicability.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 固体酸化物型燃料電池システム(1、51)は、燃料極2と酸化剤極3とを有する燃料電池スタック4と、システムの起動用に設けられた燃焼部(12、52)と、システムの停止時に、燃焼部(12、52)から排出された不活性ガスを成分とする燃焼ガスを燃料電池スタック4の燃料極2に充填するように制御する制御部(21)と、を備える。

Description

固体酸化物型燃料電池システム及びその制御方法
 本発明は、固体酸化物型燃料電池(SOFC、Solid Oxide Fuel Cell)を用いた燃料電池システム及びその制御方法に関する。
 近年、地球環境問題への関心の高まりから各種燃料電池の自動車への利用が検討されている。例えば、効率の高い固体酸化物型燃料電池の場合、水素が多く含まれているガスを燃料とし、酸素を酸化剤として、水素及び一酸化炭素、炭化水素との電気化学的反応で発電を行っている。燃料としては各種液体燃料を改質し、得られた改質ガスを供給する方法が取られる場合がある。
 ここで、固体酸化物型燃料電池(SOFC)を自動車に利用する場合の特殊性として、定置用とは異なり起動と停止が頻繁に行なわれる点が挙げられる。SOFCを停止する場合には、まず原料ガスの供給が停止されるので、改質器から燃料電池のアノードおよびアノード排出ガス管に至る配管中に水素リッチガスが滞留することになる。
 このとき、セル温度が低下してセル内が負圧になったり、保管中にガスが拡散したりすることによって、セル内に外気が侵入すると、外気に含まれている酸素と残存している水素が反応して急激な燃焼を起こしたり、電極の触媒が酸化されて性能低下を引き起こすなどの恐れがある。そのため頻繁に燃料電池の起動、停止、保管の動作を繰り返すと、安定した性能を維持することが難しいという問題点がある。
 そこで、燃料電池システムを停止する際には、水素製造装置内に存在する触媒や燃料電池の電極を保護することを目的として、窒素に代表される不活性ガスを供給して酸素の侵入を防止する必要がある。例えば、特許文献1では、燃料電池システム内へ不活性ガスを供給するために、大気に開放された流路に酸素除去手段を設けて大気から酸素を除去したガスを燃料電池に供給する方法が開示されている。
特開2005-179081号公報
 しかしながら、上述した特許文献1に開示された技術では、酸素除去手段や管路の変更によって燃料電池システム内に不活性ガスを供給しているので、停止動作のためだけの特殊な装置や配管系を多数追加する必要があり、装置の増加によってコストアップしてしまうという問題点があった。特に、この問題は自動車に搭載する場合には不利になるので、解決する必要があった。
そこで、本発明は、上述した実情に鑑みて提案されたものであり、通常発電時に用いる装置以外には僅かな装置を追加するだけで燃料電池内へ不活性ガスを充填して酸素の侵入を防止することのできる固体酸化物型燃料電池システム及びその制御方法を提供することを目的とする。
 本発明の第1の態様に係わる固体酸化物型燃料電池システムは、燃料極と酸化剤極とを有する燃料電池スタックと、システムの起動用に設けられた燃焼部と、システムの停止時に、燃焼部から排出された不活性ガスを成分とする燃焼ガスを燃料電池スタックの燃料極に充填するように制御する制御部とを備える。
 本発明の第2の態様に係わる固体酸化物型燃料電池システムの制御方法は、燃料極と酸化剤極とを有する燃料電池スタックと、システムの起動用に設けられた燃焼部とを備える固体酸化物型燃料電池システムの制御方法であって、システムの停止時に、燃焼部から排出された不活性ガスを成分とする燃焼ガスを燃料電池スタックの燃料極に充填する。
図1は、本発明を適用した第1実施形態に係る固体酸化物型燃料電池システム1の構成を示すブロック図である。 図2は、図1に示した起動燃焼器12の構造を示す模式図である。 図3は、図1に示した固体酸化物型燃料電池システム1のシステム起動時における制御処理の手順の一例を示すフローチャートである。 図4は、図1に示した固体酸化物型燃料電池システムのシステム停止時における制御処理の手順の一例を示すフローチャートである。 図5は、本発明を適用した第2実施形態に係る固体酸化物型燃料電池システム51の構成を示すブロック図である。 図6は、図5に示す固体酸化物型燃料電池システム51のシステム起動時における制御処理の手順の一例を示すフローチャートである。 図7は、図5に示す固体酸化物型燃料電池システム51のシステム停止時における制御処理の手順の一例を示すフローチャートである。
 以下、本発明を適用した第1及び第2実施形態について図面を参照して説明する。
[第1実施形態]
 [固体酸化物型燃料電池システムの構成]
 図1を参照して、本実施形態に係る固体酸化物型燃料電池システムの構成を説明する。本実施形態に係る固体酸化物型燃料電池システム1は、燃料極2と酸化剤極3とを有する燃料電池スタック4と、改質用通路5と加熱用通路6とを有する改質器7と、改質用燃料と混合するための空気を供給する空気供給装置8と、改質器7の改質用通路5への流路を遮断する流路遮断装置9と、改質用通路5から燃料極2へ改質ガスを供給する燃料極流路10と、燃料極2から排出される燃料極排ガスの流量を制御する流路制御弁11と、起動時に燃焼ガスを供給して酸化剤極3を加熱する起動燃焼器12と、酸化剤極3から排出された酸化剤極排ガスを加熱用通路6へ供給する酸化剤極流路13と、加熱用通路6からの排気ガスを外気へ排出する排気流路14と、排気ガスと熱交換することによって酸化剤極3へ供給される空気を加熱する空気予熱器15と、起動燃焼器12から排出された燃焼ガスの一部を改質器7を介して燃料極2に供給する燃焼ガス流路16と、燃焼ガス流路16の途中に設置されて燃焼ガスを収容する燃焼ガス容器17と、燃焼ガス容器17へ燃焼ガスを加圧して送出するガス加圧ポンプ18と、燃焼ガス容器17の入口側を開閉する入口流路バルブ19と、燃焼ガス容器17の出口側を開閉する出口流路バルブ20と、固体酸化物型燃料電池システム1における処理を制御する制御部21とを備えている。
 ここで、燃料電池スタック4は、固体酸化物型燃料電池(SOFC)であり、燃料ガスとして改質器7から改質ガスが供給される燃料極2と、酸化剤ガスとして酸素を含む空気が供給される酸化剤極3とを有している。燃料電池スタック4では、改質ガス中に含まれる水素と酸化剤ガス中に含まれる酸素とを反応させて発電を行っている。
 改質器7は、天然ガスやガソリン、メタノール等の改質用燃料を改質して水素を含む改質ガスを生成する。改質用通路5では、空気とともに供給された改質用燃料を加熱用通路6からの熱を利用して反応させ、改質ガスを生成している。加熱用通路6では、酸化剤極3から排出された酸化剤極排ガスと加熱用燃料とが供給され、加熱用触媒による反応熱を発生させて改質用通路5へ熱伝達を行っている。
 起動燃焼器12は、システムの起動用に設けられた燃焼部であり、システムの起動時に作動して高温の燃焼ガスを酸化剤極3に供給して燃料電池スタック4の温度を上昇させるために従来から設置されているものである。ただし、本実施形態では起動燃焼器12から排出される燃焼ガスの一部を燃焼ガス流路16へ供給できるような構造となっている。
 燃焼ガス流路16は、起動燃焼器12から排出された燃焼ガスを、改質器7を介して燃料電池スタック4の燃料極2に供給する流路であり、図1では空気供給装置8と流路遮断装置9との間に接続されている。
 燃焼ガス容器17は、燃焼ガス流路16の途中に設置されて起動時に起動燃焼器12から排出された燃焼ガスの一部を収容しておくものである。燃焼ガス容器17の容量は、流路遮断装置9から流路制御弁11までの間の改質用通路5、燃料極流路10及び燃料極2で形成される空間を、所定の圧力以上で満たすために十分な量の燃焼ガスを収容できるように予め設定されている。また、燃焼ガス容器17に対する燃焼ガスの出入りは、入口流路バルブ19及び出口流路バルブ20の開閉によって制御されている。
 ガス加圧ポンプ18は、起動燃焼器12から排出される燃焼ガスを加圧して送出することにより燃焼ガス容器17に十分な量の燃焼ガスを収容するために設置されている。
 制御部21は、マイクロコンピュータ、マイクロプロセッサ、CPUを含む汎用の電子回路と周辺機器から構成され、特定のプログラムを実行することにより固体酸化物型燃料電池システム1を制御するための処理を実行する。
 ここで、図2を参照して起動燃焼器12の構造を説明する。
 図2に示すように、起動燃焼器12は、予燃焼器としての1次バーナ12Aと、主燃焼器としての2次バーナ12Bとが接続されて構成されている。1次バーナ12Aは燃料噴射弁121から燃料を噴射し、燃焼用空気と混合して着火装置122で着火し、燃焼ガスを発生する。発生した燃焼ガスの一部は燃焼ガス流路16に供給され、ガス加圧ポンプ18によって燃焼ガス容器17に収容される。この燃焼ガスは、酸素を含んでおらず、不活性ガスが成分となっている。一方、燃焼ガス流路16に供給された以外の残りの燃焼ガスは2次バーナ12Bに導入される。2次バーナ12Bでは、1次バーナ12Aからの燃焼ガスに加えて燃料噴射弁123で燃料と2次空気の追加供給を受け、主燃焼ガスとして大量に燃焼ガスを生成する。この燃焼ガスは酸化剤極3へ供給されて燃料電池スタック4や改質器7を加熱する。
 図2では、2次バーナ12Bの燃料供給方法として燃料噴射弁123による燃料噴霧を記載しているが、燃料蒸発器による燃料ガスの供給などその他の方法も利用可能である。また、2次バーナ12Bの燃焼方式としては、触媒燃焼や予蒸発予混合希薄燃焼等の燃焼方式を採用することができ、使用する燃料の組成や排気要求などに応じて選択すればよい。図2では、1次バーナ12Aの燃焼方式として拡散燃焼方式を例示したが、この他に燃料と空気の温度状態によって電気加熱触媒や低温活性な触媒を用いて触媒燃焼を行わせることも可能である。
 [燃料電池システムの起動時における制御処理の手順]
 次に、図3のフローチャートを参照して、本実施形態に係る固体酸化物型燃料電池システム1の起動時における制御処理の手順を説明する。
 図3に示すように、システムが起動を開始すると、まずステップS101において起動燃焼器12が作動して不活性ガスを成分とする燃焼ガスを排出する。この燃焼ガスの一部は酸化剤極3に供給されて燃料電池スタック4を昇温させると共に、その後酸化剤極排ガスとして改質器7の加熱用通路6に導入され、改質器7の加熱にも利用される。また、起動用燃焼器12で生成された燃焼ガスの他の一部は、燃焼ガス流路16に排出される。
 そして、ステップS102において制御部21は出口流路バルブ20を閉弁するとともに、ステップS103において入口流路バルブ19を開弁する。さらに制御部21はステップS104においてガス加圧ポンプ18を作動させ、これによって起動燃焼器12から排出された燃焼ガスを燃焼ガス容器17に圧送して収容する。
 次に、ステップS105において、制御部21は、燃料電池スタック4の温度が作動温度に到達したか否かを判定し、到達していない場合にはガス加圧ポンプ18を継続して作動させて燃焼ガスを燃焼ガス容器17に充填し続ける。そして、燃料電池スタック4の温度が作動温度に到達すると、制御部21はステップS106において入口流路バルブ19を閉弁するとともにステップS107においてガス加圧ポンプ18を停止する。これにより、燃焼ガス容器17には不活性ガスを成分とする燃焼ガスが貯蔵されることになる。
 さらに、制御部21はステップS108において起動燃焼器12を停止させてシステムの起動時における制御処理を終了し、通常発電時における制御へと移行する。
 [燃料電池システムの通常発電時の動作]
 次に、本実施形態に係る固体酸化物型燃料電池システム1の通常発電時における動作を説明する。システムの通常発電時には、まず改質器7に対して改質用燃料と空気供給装置8からの改質用空気とが混合されて供給される。改質器7の改質用通路5では改質反応によって改質ガスが生成され、生成された改質ガスは燃料極流路10を通じて燃料極2に供給される。一方、酸化剤極3には、図示しないコンプレッサからの空気が空気予熱器15で加熱されて酸化剤ガスとして供給される。
 こうして改質ガスと酸化剤ガスとが供給されて燃料電池スタック4において発電が行われる。そして、発電された後の燃料極排ガスは流路制御弁11を通って排出される。また、酸化剤極排ガスは、酸化剤極流路13で加熱用燃料と混合されて改質器7の加熱用通路6に供給され、ここで加熱用触媒によって反応熱を発生し、改質用通路5に熱伝達を行う。この後、酸化剤極排ガスは、加熱用通路6から排出されると、排気流路14を通じて空気予熱器15に送られて熱交換を行ってから外気へ排出される。
 [燃料電池システムの停止時における制御処理の手順]
 次に、図4のフローチャートを参照して、本実施形態に係る固体酸化物型燃料電池システム1の停止時における制御処理の手順を説明する。
 図4に示すように、システムが停止動作を開始すると、制御部21はまずステップS201において改質用燃料と空気供給装置8を停止してからステップS202において出口流路バルブ20を開弁する。これにより起動時に燃焼ガス容器17に蓄えられていた燃焼ガスが、燃焼ガス流路16を通じて改質器7の改質用通路5から燃料極2へと供給される。
 ここで、制御部21はステップS203において燃料極2に燃焼ガスが充填されたか否かを判定する。燃焼ガスが燃料極2に充填されたと判定すると、ステップS204において流路制御弁11を遮断して燃料極2の出口を閉鎖してから、ステップS205において改質用通路5の入口に設けられた流路遮断装置9を遮断する。こうして改質用通路5から燃料極流路10、燃料極2へと通じる空間の内部を、酸素を含まない不活性ガスを成分とする燃焼ガスで充填することができる。これによって燃料極2への酸素の侵入を防止できるとともに燃料極2から残存した水素を除去することも可能となる。
 尚、燃料極2に燃焼ガスが充填されたか否かを判定する方法としては以下に示す例がある。燃焼ガス容器17の容量と燃焼ガスが充填される改質用通路5から燃料極2までの容積に基づいて出口流路バルブ20を開弁してから燃焼ガスが燃料極2に充填されるまでの時間を設定しておき、その時間が経過した時点で燃料極2に燃焼ガスが充填されたと判定すればよい。また、この他にも燃焼ガス容器17の内部圧力が所定の圧力に低下した時点で燃焼ガスが燃料極2に充填されたと判定してもよいし、さらに燃料極2の周辺の圧力を検出して燃焼ガスが燃料極2に充填されたと判定してもよい。
 こうして燃料極2に燃焼ガスが充填されると、制御部21はステップS206において出口流路バルブ20を閉弁してシステムの停止時における制御処理を終了する。
 [第1実施形態の効果]
 以上詳細に説明したように、本実施形態に係る固体酸化物型燃料電池システム1によれば、システムの起動用に設けられた起動燃焼器12から排出される不活性ガスを燃料電池スタック4の燃料極2に充填する。よって、通常発電時に用いる装置以外には僅かな装置を追加するだけで燃料電池内へ不活性ガスを充填して酸素の侵入を防止することができる。さらに、燃料極2に不活性ガスを充填することにより、燃料極2に残存する水素を除去することも可能となる。これにより、侵入した酸素が残存している水素と反応して急激な燃焼を起こしたり、触媒が酸化劣化したりすることを防止でき、燃料電池システムの安定した性能を維持することができる。
 また、本実施形態に係る固体酸化物型燃料電池システム1によれば、システムの起動時に起動燃焼器12から排出された燃焼ガスを燃焼ガス容器17に収容しておき、システムの停止時に燃焼ガス容器17に収容された燃焼ガスを燃料電池スタック4の燃料極2に充填する。よって、システムの起動用に設けられた起動燃焼器12を利用して燃料電池内へ不活性ガスを充填することができる。これにより、既存の装置を有効に利用して燃料電池スタック4への酸素の侵入を防止することができる。
[第2実施形態]
 次に、本発明の第2実施形態に係る固体酸化物型燃料電池システムについて説明する。
 [固体酸化物型燃料電池システムの構成]
 図5を参照して、本実施形態に係る固体酸化物型燃料電池システム51の構成を説明する。本実施形態に係る固体酸化物型燃料電池システム51は、起動時に燃料極2に燃焼ガスを供給するガスバーナ52と、システムの起動時にガスバーナ52から排出された燃焼ガスを燃料極2に供給する起動時流路53と、システムの停止時にガスバーナ52から排出された燃焼ガスを燃料極2に供給する停止時流路54と、起動時流路53と停止時流路54とを切り替える流路切替弁55と、停止時流路54の途中に設置された熱交換器56と、燃料極2から排出される燃料極排ガスを改質器7へ循環させる循環ガス流路57と、循環ガス流路57の途中に設置されて燃料極排ガスを循環させる循環装置58と、循環ガス流路57から分岐して燃料極排ガスの一部を改質器7の加熱用ガスとして供給する加熱ガス流路59とをさらに備えたことが第1実施形態と相違している。
 また、本実施形態では、図1に示した第1実施形態の燃焼ガス流路16と、燃焼ガス流路16に設置された各装置がなく、流路制御弁11を加熱ガス流路59に設置したことが第1実施形態と相違している。
 ここで、ガスバーナ52は、システムの起動用に設けられた燃焼部であり、システムの起動時に燃料電池スタック4の燃料極2に燃焼ガスを供給して温度を上昇させるとともに水分を燃料電池スタック4に供給するために従来から設置されているものである。通常、起動する際には、燃料極2、循環ガス流路57及び改質用通路5を含む循環系に水分が必要となる。このため、その水分を供給するために従来からガスバーナ52で燃料を燃焼させ、水分を含んだ燃焼ガスを燃料極2に供給することが行われていた。そして、本実施形態では、起動用に設けられたガスバーナ52を停止時にも作動させて燃焼ガスを燃料極2に供給するように制御している。尚、ガスバーナ52の構造としては、図2に示した起動燃焼器12の1次バーナ12Aと同様の構造のものが好ましい。
 熱交換器56は、ガスバーナ52から排出された燃焼ガスと空気供給装置8から導入された空気との間で熱交換を行って、燃焼ガスから水分を取り除いている。これにより、システムの停止時には燃料極2に乾燥した燃焼ガスが充填されるので、システムの停止中に温度の低下によって水分が凝縮して燃料極の圧力が低下することを防止できる。
 [燃料電池システムの起動時における制御処理の手順]
 次に、図6のフローチャートを参照して、本実施形態に係る固体酸化物型燃料電池システム1の起動時における制御処理の手順を説明する。
 図6に示すように、システムが起動を開始すると、まず制御部21はステップS301において空気供給装置8を作動させてガスバーナ52への空気の供給を開始し、ステップS302においてガスバーナ52を点火する。ガスバーナ52の点火によって酸素を含まない不活性ガスを成分とする燃焼ガスの排出が開始されると、制御部21はステップS303において流路切替弁55を起動時流路53に接続し、ステップS304において流路遮断装置9を開弁して燃焼ガスを燃料極2に供給する。
 一方、このとき起動用燃焼器12は加熱用の燃焼ガスを酸化剤極3に供給している。これにより燃料電池スタック4の温度は上昇する。さらに燃焼ガスが酸化剤極排ガスとして改質器7の加熱用通路6に導入されるので、改質器7の温度も上昇させている。
 この後、制御部21は、ステップS305において燃料電池スタック4の温度が作動温度に到達したか否かを判定する。作動温度に到達すると、ステップS306においてガスバーナ52を停止させる。このとき制御部21は同時に起動燃焼器12も停止させる。
 そして、ステップS307において、制御部21は流路切替弁55を遮断してシステムの起動時における制御処理を終了し、通常発電時における制御へと移行する。
 [燃料電池システムの通常発電時の動作]
 次に、本実施形態に係る固体酸化物型燃料電池システム51の通常発電時における動作を説明する。ただし、本実施形態では発電が行われるまでの動作は第1実施形態と同一であり、燃料極排ガスの流れだけが第1実施形態と相違しているので、燃料極排ガスの流れについてのみ説明する。
 燃料電池スタック4において発電が行われると、燃料極排ガスは燃料極2から循環ガス流路57へ排出され、循環装置58によって圧送されて改質器7の改質用通路5へ循環される。このとき、燃料極排ガスの一部は加熱ガス流路59へ分岐して導入され、酸化剤極3から排出される酸化剤極排ガスに混合されて改質器7の加熱用通路6に加熱用ガスとして供給される。
 尚、上述した第1実施形態では、循環ガス流路57及び加熱ガス流路59が設置されていない場合を例示しているが、第1実施形態に循環ガス流路57及び加熱ガス流路59を設置してもよい。
 [燃料電池システムの停止時における制御処理の手順]
 次に、本実施形態に係る固体酸化物型燃料電池システム51の停止時における制御処理の手順を図7のフローチャートを参照して説明する。
 図7に示すように、システムが停止動作を開始すると、制御部21はまずステップS401において改質用燃料の供給を停止し、ステップS402においてガスバーナ52を点火する。ガスバーナ52の点火によって酸素を含まない不活性ガスを成分とする燃焼ガスの排出が開始されると、制御部21はステップS403において流路切替弁55を停止時流路54に接続し、熱交換器56を介して燃焼ガスを燃料極2に供給する。このとき熱交換器56は燃焼ガスの温度をコントロールして水蒸気量を低下させているので、燃料極2には乾燥した燃焼ガスが供給される。
 そして、制御部21はステップS404において燃料極2に燃焼ガスが充填されたか否かを判定し、燃焼ガスが燃料極2に充填されたと判定すると、ステップS405においてガスバーナ52を停止する。
 尚、燃料極2に燃焼ガスが充填されたか否かを判定する方法としては、ガスバーナ52が点火されてからの時間に応じて判定してもよいし、循環ガス流路57におけるガスの組成(例えば水素濃度、露点温度)を検出してその組成に応じて判定してもよい。
 この後、制御部21は、ステップS406において改質用通路5の入口に設けられた流路遮断装置9を遮断してからステップS407において流路制御弁11を遮断して燃料極2の出口を閉鎖する。こうして改質用通路5から燃料極流路10、燃料極2、循環ガス流路57へと通じる空間の内部を、酸素を含まない不活性ガスを成分とする燃焼ガスで充填することができ、これによって燃料極2への酸素の侵入を防止できるとともに燃料極2から残存した水素を除去することも可能となる。
 こうして燃料極2に燃焼ガスが充填されると、制御部21はステップS408において循環装置58を停止してシステムの停止時における制御処理を終了する。
 [第2実施形態の効果]
 以上詳細に説明したように、本実施形態に係る固体酸化物型燃料電池システム51によれば、燃料極2へ燃焼ガスを供給するガスバーナ52を備え、システムの停止時にガスバーナ52を作動させて燃料極2に燃焼ガスを充填するので、システムの起動用に設けられたガスバーナ52を利用して燃料電池内へ不活性ガスを充填することができる。したがって、既存の装置を有効に利用して燃料電池スタック4への酸素の侵入を防止することができる。
 また、本実施形態に係る固体酸化物型燃料電池システム51によれば、システムの起動時にガスバーナ52から排出された燃焼ガスを燃料極2に供給する起動時流路53と、システムの停止時にガスバーナ52から排出された燃焼ガスを燃料極2に供給する停止時流路54と、停止時流路54の途中に設置された熱交換器56とを備え、システムの起動時には起動時流路53を選択し、システムの停止時には停止時流路54を選択するので、起動時にはガスバーナ52から排出される水分を含んだ燃焼ガスを燃料極2に供給することができ、停止時には熱交換器56で水分を取り除いた燃焼ガスを燃料極2に供給することができる。
 さらに、本実施形態に係る固体酸化物型燃料電池システム51によれば、燃料ガスを改質ガスに改質して燃料極2に供給する改質器7と、燃料極2から排出される燃料極排ガスを改質器7へ循環させる循環ガス流路57と、循環ガス流路57から分岐された燃料極排ガスの一部を、酸化剤極3から排出される酸化剤極排ガスに混合させて改質器7の加熱用ガスとして供給する加熱ガス流路59とを備えているので、燃料極2から排出される水素や水蒸気を含んだ排ガスを再利用することができ、システムの効率を高めることができる。
 特願2012-137589号(出願日:2012年6月19日)の全内容は、ここに援用される。
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明の実施形態に係る固体酸化物型燃料電池システム及びその制御方法によれば、システムの起動用に設けられた燃焼部から排出される不活性ガスを燃料電池スタックの燃料極に充填するので、通常発電時に用いる装置以外には僅かな装置を追加するだけで燃料電池内へ不活性ガスを充填して酸素の侵入を防止することができる。さらに、燃料極に不活性ガスを充填することにより、燃料極に残存した水素を除去することも可能となる。これにより、侵入した酸素が残存している水素と反応して急激な燃焼を起こしたり、触媒が酸化劣化したりすることを防止でき、燃料電池システムの安定した性能を維持することができる。よって、本発明は、産業上の利用可能性を有する。
 1、51 固体酸化物型燃料電池システム
 2 燃料極
 3 酸化剤極
 4 燃料電池スタック
 7 改質器
 12 起動燃焼器(燃焼部)
 16 燃焼ガス流路
 17 燃焼ガス容器
 21 制御部
 52 ガスバーナ(燃焼部)
 53 起動時流路
 54 停止時流路
 57 循環ガス流路
 59 加熱ガス流路

Claims (7)

  1.  燃料極と酸化剤極とを有する燃料電池スタックと、
     システムの起動用に設けられた燃焼部と、
     システムの停止時に、前記燃焼部から排出された不活性ガスを成分とする燃焼ガスを前記燃料電池スタックの燃料極に充填するように制御する制御部と、
    を備えたことを特徴とする固体酸化物型燃料電池システム。
  2.  前記燃焼部は前記燃料電池スタックの酸化剤極へ燃焼ガスを供給するものであり、
     前記燃焼部から排出された燃焼ガスの一部を前記燃料電池スタックの燃料極に供給する燃焼ガス流路と、前記燃焼ガス流路の途中に設置されて前記燃焼ガスを収容する燃焼ガス容器とをさらに備え、
     前記制御部は、システムの起動時に前記燃焼部から排出された燃焼ガスを前記燃焼ガス容器に収容し、システムの停止時には前記燃焼ガス容器に収容された燃焼ガスを前記燃料電池スタックの燃料極に充填することを特徴とする請求項1に記載の固体酸化物型燃料電池システム。
  3.  前記燃焼部は前記燃料電池スタックの燃料極へ燃焼ガスを供給するものであり、
     前記制御部は、システムの停止時に前記燃焼部を作動させて前記燃料電池スタックの燃料極に燃焼ガスを充填することを特徴とする請求項1に記載の固体酸化物型燃料電池システム。
  4.  システムの起動時に前記燃焼部から排出された燃焼ガスを前記燃料電池スタックの燃料極に供給する起動時流路と、
     システムの停止時に前記燃焼部から排出された燃焼ガスを前記燃料電池スタックの燃料極に供給する停止時流路と、
     前記停止時流路の途中に設置された熱交換器とをさらに備え、
     前記制御部は、システムの起動時には前記起動時流路を選択し、システムの停止時には前記停止時流路を選択することを特徴とする請求項3に記載の固体酸化物型燃料電池システム。
  5.  燃料ガスを改質ガスに改質して前記燃料電池スタックの燃料極に供給する改質器と、
     前記燃料電池スタックの燃料極から排出される燃料極排ガスを前記改質器へ循環させる循環ガス流路と、
     前記循環ガス流路から分岐された前記燃料極排ガスの一部を、前記燃料電池スタックの酸化剤極から排出される酸化剤極排ガスに混合させて前記改質器の加熱用ガスとして供給する加熱ガス流路と
    をさらに備えたことを特徴とする請求項2~4のいずれか1項に記載の固体酸化物型燃料電池システム。
  6.  燃料極と酸化剤極とを有する燃料電池スタックと、システムの起動用に設けられた燃焼部とを備える固体酸化物型燃料電池システムの制御方法であって、
     システムの停止時に、前記燃焼部から排出された不活性ガスを成分とする燃焼ガスを前記燃料電池スタックの燃料極に充填する
    ことを特徴とする固体酸化物型燃料電池システムの制御方法。
  7.  システムの起動時に、前記燃焼部から排出された燃焼ガスの一部を前記燃料電池スタックの酸化剤極へ供給し、且つ、前記燃焼部から排出された燃焼ガスの他の一部を燃焼ガス容器に収容し、
     システムの停止時に、前記燃焼ガス容器に収容された燃焼ガスを前記燃料電池スタックの燃料極に充填する
    ことを特徴とする請求項6に記載の固体酸化物型燃料電池システムの制御方法。
PCT/JP2013/061912 2012-06-19 2013-04-23 固体酸化物型燃料電池システム及びその制御方法 WO2013190900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13807212.9A EP2863464B1 (en) 2012-06-19 2013-04-23 Solid oxide fuel cell system and method for controlling same
US14/409,052 US9391335B2 (en) 2012-06-19 2013-04-23 Solid oxide fuel cell system and method for controlling same
CN201380032540.1A CN104396072B (zh) 2012-06-19 2013-04-23 固体氧化物型燃料电池系统及其控制方法
EP17154344.0A EP3182491B1 (en) 2012-06-19 2013-04-23 Solid oxide fuel cell system and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012137589A JP6248376B2 (ja) 2012-06-19 2012-06-19 固体酸化物型燃料電池システム
JP2012-137589 2012-06-19

Publications (1)

Publication Number Publication Date
WO2013190900A1 true WO2013190900A1 (ja) 2013-12-27

Family

ID=49768507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061912 WO2013190900A1 (ja) 2012-06-19 2013-04-23 固体酸化物型燃料電池システム及びその制御方法

Country Status (5)

Country Link
US (1) US9391335B2 (ja)
EP (2) EP2863464B1 (ja)
JP (1) JP6248376B2 (ja)
CN (1) CN104396072B (ja)
WO (1) WO2013190900A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392947B1 (en) * 2015-12-15 2019-11-20 Nissan Motor Co., Ltd. Fuel cell system and control method therefor
WO2017104210A1 (ja) * 2015-12-15 2017-06-22 日産自動車株式会社 燃料電池システム及びその制御方法
JP6528858B2 (ja) * 2015-12-15 2019-06-12 日産自動車株式会社 燃料電池システム、及び、燃料電池システムの制御方法
KR102587217B1 (ko) * 2016-05-24 2023-10-12 주식회사 미코파워 연료전지 시스템
JP6981418B2 (ja) * 2016-09-15 2021-12-15 日産自動車株式会社 燃料電池システム
WO2019035168A1 (ja) * 2017-08-14 2019-02-21 日産自動車株式会社 燃料電池システム及び燃料電池システムの暖機方法
AT520482B1 (de) * 2017-10-03 2019-11-15 Avl List Gmbh Verfahren zum schnellen Aufheizen eines Brennstoffzellensystems
JP7144369B2 (ja) * 2019-07-10 2022-09-29 日立造船株式会社 燃料電池システム
JP2021103642A (ja) * 2019-12-25 2021-07-15 富士電機株式会社 燃料電池システム
JP7354981B2 (ja) * 2020-10-07 2023-10-03 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
CN114551942A (zh) * 2020-11-27 2022-05-27 中国科学院大连化学物理研究所 一种高温燃料电池低气压运行控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195671A (ja) * 1988-01-29 1989-08-07 Hitachi Ltd 燃料電池発電システムとその運転方法
JPH09223511A (ja) * 1996-02-19 1997-08-26 Matsushita Electric Ind Co Ltd 電源装置
JPH09231989A (ja) * 1996-02-20 1997-09-05 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電設備
JP2003229164A (ja) * 2002-02-05 2003-08-15 Tokyo Gas Co Ltd 固体酸化物形燃料電池システム
JP2003272677A (ja) * 2002-03-13 2003-09-26 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池及びそれを用いたコージェネレーションシステム
JP2005506659A (ja) * 2001-10-11 2005-03-03 ユーティーシー フューエル セルズ,エルエルシー 有機燃料から作られた不活性ガスで燃料電池システムをパージする方法
JP2005179081A (ja) 2003-12-16 2005-07-07 Nippon Oil Corp 水素製造装置および燃料電池システム並びにその運転方法
WO2005071781A1 (ja) * 2004-01-21 2005-08-04 Matsushita Electric Industrial Co., Ltd. 燃料電池システム
JP2006156088A (ja) * 2004-11-29 2006-06-15 Toyota Motor Corp 水素分離膜モジュールシステム
JP2007106612A (ja) * 2005-10-11 2007-04-26 Mitsubishi Heavy Ind Ltd 燃料改質装置及びこれを利用する燃料電池発電システム
JP2011165498A (ja) * 2010-02-10 2011-08-25 Mazda Motor Corp 燃料電池システム
JP2012114056A (ja) * 2010-11-29 2012-06-14 Honda Motor Co Ltd 燃料電池システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293207A (ja) * 1988-09-30 1990-04-04 Hitachi Ltd 温風暖房装置
JPH06203865A (ja) * 1993-01-06 1994-07-22 Sanyo Electric Co Ltd 燃料電池システム
JPH11233129A (ja) * 1998-02-17 1999-08-27 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池発電システム
JP2002231293A (ja) * 2001-01-31 2002-08-16 Toshiba Corp 燃料電池システムのパージ装置およびその方法
JP2003059519A (ja) * 2001-08-09 2003-02-28 Mitsubishi Heavy Ind Ltd 燃料電池システム及びコジェネレーションシステム
EP1473794A4 (en) 2002-02-05 2009-10-28 Tokyo Gas Co Ltd SOLID OXIDE FUEL CELL SYSTEM
JP4056755B2 (ja) * 2002-02-05 2008-03-05 東京瓦斯株式会社 固体酸化物形燃料電池用触媒燃焼一体型熱交換器
US8039154B2 (en) * 2003-08-25 2011-10-18 Panasonic Corporation Fuel cell system, method of starting fuel cell system
CN1636860B (zh) * 2003-12-26 2011-04-20 松下电器产业株式会社 氢生成装置和使用该装置的燃料电池系统
JP4831973B2 (ja) 2005-01-25 2011-12-07 トヨタ自動車株式会社 燃料電池システム
JP4555149B2 (ja) * 2005-05-23 2010-09-29 本田技研工業株式会社 燃料電池システム及びその運転方法
JP2007109529A (ja) * 2005-10-14 2007-04-26 Mitsubishi Electric Corp 燃料電池発電システムの制御方法
JP5128072B2 (ja) * 2005-12-27 2013-01-23 三星エスディアイ株式会社 燃料電池発電システム
JP2008243633A (ja) * 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd 燃料電池システム及びその運転方法
JP5269447B2 (ja) * 2008-03-14 2013-08-21 Jx日鉱日石エネルギー株式会社 高温型燃料電池システムとその運転方法
JP5251204B2 (ja) * 2008-03-27 2013-07-31 カシオ計算機株式会社 発電システム及び発電システムの停止方法
JP5408420B2 (ja) * 2009-07-30 2014-02-05 日産自動車株式会社 燃料電池システムとこの燃料電池システムに用いる燃料電池の昇温方法
FI20105196A (fi) * 2010-03-01 2011-09-02 Waertsilae Finland Oy Menetelmä ja järjestely anodin hapettumisen estämiseksi

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195671A (ja) * 1988-01-29 1989-08-07 Hitachi Ltd 燃料電池発電システムとその運転方法
JPH09223511A (ja) * 1996-02-19 1997-08-26 Matsushita Electric Ind Co Ltd 電源装置
JPH09231989A (ja) * 1996-02-20 1997-09-05 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電設備
JP2005506659A (ja) * 2001-10-11 2005-03-03 ユーティーシー フューエル セルズ,エルエルシー 有機燃料から作られた不活性ガスで燃料電池システムをパージする方法
JP2003229164A (ja) * 2002-02-05 2003-08-15 Tokyo Gas Co Ltd 固体酸化物形燃料電池システム
JP2003272677A (ja) * 2002-03-13 2003-09-26 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池及びそれを用いたコージェネレーションシステム
JP2005179081A (ja) 2003-12-16 2005-07-07 Nippon Oil Corp 水素製造装置および燃料電池システム並びにその運転方法
WO2005071781A1 (ja) * 2004-01-21 2005-08-04 Matsushita Electric Industrial Co., Ltd. 燃料電池システム
JP2006156088A (ja) * 2004-11-29 2006-06-15 Toyota Motor Corp 水素分離膜モジュールシステム
JP2007106612A (ja) * 2005-10-11 2007-04-26 Mitsubishi Heavy Ind Ltd 燃料改質装置及びこれを利用する燃料電池発電システム
JP2011165498A (ja) * 2010-02-10 2011-08-25 Mazda Motor Corp 燃料電池システム
JP2012114056A (ja) * 2010-11-29 2012-06-14 Honda Motor Co Ltd 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2863464A4 *

Also Published As

Publication number Publication date
JP2014002929A (ja) 2014-01-09
JP6248376B2 (ja) 2017-12-20
CN104396072A (zh) 2015-03-04
EP3182491B1 (en) 2019-11-27
EP3182491A1 (en) 2017-06-21
CN104396072B (zh) 2016-09-07
EP2863464B1 (en) 2017-03-22
US20150188174A1 (en) 2015-07-02
US9391335B2 (en) 2016-07-12
EP2863464A4 (en) 2015-07-01
EP2863464A1 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP6248376B2 (ja) 固体酸化物型燃料電池システム
US8415064B2 (en) Fuel cell system
US9023542B2 (en) Fuel cell system including an ammonia remover and method of operating the same
US8927162B2 (en) Solid oxide fuel cell system performing different restart operations depending on operation temperature
CN108475799B (zh) 燃料电池系统以及燃料电池系统的控制方法
CN108432015B (zh) 燃料电池系统和燃料电池系统的控制方法
CN108370050B (zh) 燃料电池系统的控制方法以及燃料电池系统
WO2017098787A1 (ja) 固体酸化物型燃料電池システム、及び固体酸化物型燃料電池システムの換気方法
US10096851B2 (en) Solid oxide fuel cell system and method of stopping the same
EP3514874B1 (en) Fuel cell system
KR101251278B1 (ko) 연료전지 냉시동 향상 장치
JP2019029323A (ja) 燃料電池システム
JPWO2018029829A1 (ja) 燃料電池システム、及び、燃料電池システムの制御方法
JP2012190630A (ja) 固体酸化物形燃料電池システム
JP2008059828A (ja) 燃料電池システム及びその起動方法
JP2008293755A (ja) 燃料電池システム及びその運転方法
JP2009081112A (ja) 燃料電池発電装置の運転方法及び燃料電池発電装置
JP6897301B2 (ja) 燃料電池システム
JP2014007047A (ja) 固体酸化物型燃料電池システム
KR101514258B1 (ko) 재가동을 고려한 연료전지 시스템 및 그 제어방법
JP2004199931A (ja) 燃料電池システム
JP2007250406A (ja) 燃料電池システムおよびその運転方法
JP2008287946A (ja) 燃料電池発電システム及びその制御方法
JP2006147225A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14409052

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013807212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013807212

Country of ref document: EP