WO2017104210A1 - 燃料電池システム及びその制御方法 - Google Patents

燃料電池システム及びその制御方法 Download PDF

Info

Publication number
WO2017104210A1
WO2017104210A1 PCT/JP2016/078211 JP2016078211W WO2017104210A1 WO 2017104210 A1 WO2017104210 A1 WO 2017104210A1 JP 2016078211 W JP2016078211 W JP 2016078211W WO 2017104210 A1 WO2017104210 A1 WO 2017104210A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
path
cathode
combustor
Prior art date
Application number
PCT/JP2016/078211
Other languages
English (en)
French (fr)
Inventor
佐藤 裕一
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201680070895.3A priority Critical patent/CN108370047B/zh
Priority to EP16875196.4A priority patent/EP3392951B1/en
Priority to JP2017556365A priority patent/JP6555361B2/ja
Priority to US16/061,413 priority patent/US10756359B2/en
Priority to CA3008768A priority patent/CA3008768C/en
Priority to BR112018012004-9A priority patent/BR112018012004B1/pt
Publication of WO2017104210A1 publication Critical patent/WO2017104210A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04343Temperature; Ambient temperature of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a control method thereof.
  • a solid oxide fuel cell that operates at a relatively high temperature by supplying an anode gas on one side and a cathode gas (air, etc.) on the other side is known. .
  • SOFC solid oxide fuel cell
  • a fuel cell system using a fuel cell since the fuel cell must be cooled, it takes time until it completely stops (JP2007-066876A). For example, some stationary fuel cell systems require from one day to several days to completely stop.
  • the anode electrode of SOFC is easily oxidized at high temperatures. Further, the cathode electrode may be deteriorated by reacting with the anode gas. Therefore, the anode gas is supplied to the anode electrode and the cathode gas is supplied to the cathode electrode even during the stop process.
  • the anode gas that has not completely reacted in the SOFC during the stop process of the fuel cell system may be discharged as unburned gas.
  • oxidation catalyst treatment using an exhaust combustor on such unburned gas, discharge of unburned gas to the atmosphere is suppressed.
  • the catalyst used for such an oxidation catalyst treatment has a relatively high operating temperature.
  • An object of the present invention is to suppress discharge of unburned gas to the atmosphere during the stop process of the fuel cell system.
  • a fuel cell system is a fuel cell system including a solid oxide fuel cell that generates power by receiving supply of an anode gas and a cathode gas, and the cathode gas is converted into a cathode gas.
  • a cathode gas supply unit for supplying fuel to the fuel cell through the supply path, a first combustor provided in the cathode gas supply path, a second combustor for burning the anode off-gas and the cathode off-gas discharged from the fuel cell, and the cathode
  • a first branch path that branches from the upstream side of the first combustor and merges downstream of the first combustor; a branch path from the downstream side of the first combustor in the cathode gas supply path;
  • a second branch passage that joins a cathode off-gas discharge passage for discharging off-gas to the second combustor.
  • FIG. 1 is a configuration diagram of a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a stop control process of the fuel cell system.
  • FIG. 3A is a flowchart showing a fuel supply stop process.
  • FIG. 3B is a configuration diagram of the fuel cell system during the fuel supply stop process.
  • FIG. 4A is a flowchart showing a process for changing the anode off-gas discharge path.
  • FIG. 4B is a configuration diagram of the fuel cell system during the process of changing the anode off-gas discharge path.
  • FIG. 5A is a flowchart showing an anode gas supply stop process.
  • FIG. 5B is a configuration diagram of the fuel cell system during the anode gas supply stop process.
  • FIG. 5A is a flowchart showing an anode gas supply stop process.
  • FIG. 5B is a configuration diagram of the fuel cell system during the anode gas supply stop process.
  • FIG. 6A is a flowchart showing the termination process.
  • FIG. 6B is a configuration diagram of the fuel cell system during the termination process.
  • FIG. 7 is a flowchart showing another stop control process of the fuel cell system.
  • FIG. 8A is a flowchart showing switching processing of the cathode offgas discharge path.
  • FIG. 8B is a configuration diagram of the fuel cell system during the switching process of the cathode offgas discharge path.
  • FIG. 9 is a configuration diagram of the fuel cell system according to the second embodiment.
  • FIG. 10 is a flowchart showing stop control of the fuel cell system.
  • FIG. 1 is a schematic configuration diagram of a solid oxide fuel cell (SOFC) system according to the first embodiment.
  • SOFC solid oxide fuel cell
  • the fuel cell stack 1 which is an SOFC includes an electrolyte layer formed of a solid oxide such as ceramic, an anode electrode (fuel electrode) to which an anode gas (fuel gas) is supplied, and oxygen as a cathode gas (oxidation gas).
  • the cell is formed by being sandwiched between cathode electrodes (air electrodes) supplied with air.
  • electric power is generated by reacting a fuel such as hydrogen contained in the anode gas with oxygen in the cathode gas, and the reacted anode gas (anode off gas) and the reacted cathode gas (cathode off gas). Is discharged.
  • a solid oxide fuel cell system including the fuel cell stack 1 (hereinafter referred to as a fuel cell system 100) includes a fuel supply system for supplying anode gas (fuel) to the fuel cell stack 1, and a fuel cell stack 1
  • An air supply system that supplies cathode gas (air) and an exhaust system that exhausts anode off-gas and cathode off-gas discharged from the fuel cell stack 1 to the outside of the fuel cell system 100 are provided.
  • a drive system directly connected to the fuel cell stack 1 is provided.
  • the fuel supply system includes an evaporator 2, a raw material heater 3, a reformer 4, and the like.
  • the air supply system includes a compressor 5, an air heat exchanger 6, an activation combustor 7, and the like.
  • the exhaust system includes an exhaust combustor 8 and the like.
  • the drive system includes a DC-DC converter 9A, a battery 9B, a drive motor 9C, and the like.
  • the fuel cell system 100 includes a control unit 10 that controls the operation of the entire system.
  • the control unit 10 controls the entire fuel cell system 100 by controlling each component of the fuel cell system 100 and valves in each system.
  • the control unit 10 includes a microcomputer that includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • I / O interface input / output interface
  • liquid fuel stored in a fuel tank (not shown) is supplied to the fuel cell stack 1 via the evaporator 2, the raw material heater 3, and the reformer 4.
  • hydrous ethanol in which ethanol and water are mixed is used.
  • the fuel path in the fuel supply system includes a path 101 from the fuel tank to the evaporator 2, a path 102 from the evaporator 2 to the raw material heater 3, a path 103 from the raw material heater 3 to the reformer 4, and a modification.
  • a path 104 from the quality device 4 toward the fuel cell stack 1 is provided.
  • a branch path 105 is provided that branches from the middle of the path 103 and joins to paths 121 and 122 through which the anode off-gas is discharged from the fuel cell stack 1.
  • the paths 121 and 122 are connected via the valve 11, and the branch path 105 joins at the valve 11.
  • the branch path 105 is switched between cutoff and conduction.
  • the branch path 105 is blocked by the valve 11 and the paths 121 and 122 are conductive.
  • the path 102 is provided with a temperature sensor T1
  • the path 104 is provided with a temperature sensor T2 and a pressure sensor P1.
  • the evaporator 2 vaporizes the fuel using the heat of the exhaust gas exhausted from the exhaust combustor 8.
  • the raw material heater 3 further heats the vaporized fuel gas to a temperature at which the reformer 4 can be reformed, using the heat of the exhaust gas from the exhaust combustor 8.
  • the liquid fuel that was about 30 degrees in the path 101 becomes a fuel gas of about 400 degrees in the path 102.
  • the fuel gas is further heated to about 660 degrees.
  • the fuel gas is reformed into anode gas by the reformer 4.
  • the reformer 4 reforms the fuel into an anode gas by a catalytic reaction, and supplies the anode gas to the anode electrode of the fuel cell stack 1.
  • a catalytic reaction For example, water-containing ethanol as a fuel is reformed into an anode gas containing methane, hydrogen, carbon monoxide, and the like.
  • heat absorption due to a catalytic reaction occurs, so the anode gas in the path 104 is about 520 degrees.
  • the cathode gas taken from the outside is supplied to the fuel cell stack 1 via the compressor 5, the air heat exchanger 6, and the startup combustor 7.
  • the compressor 5 is an example of a cathode gas supply unit, and a blower or the like may be used instead.
  • the air path in the air supply system includes a path 111 from the compressor 5 to the air heat exchanger 6, a path 112 from the air heat exchanger 6 to the start combustor 7, and the start combustor 7 to the fuel cell stack 1.
  • Routes 113 and 114 are provided.
  • the paths 113 and 114 are connected via the valve 13.
  • a branch path 115 is provided that branches from the valve 13 and joins the path 124 through which the cathode off-gas discharged from the fuel cell stack 1 is discharged.
  • the supply destination of the anode gas from the startup combustor 7 is switched to the fuel cell stack 1 via the path 114 or the exhaust combustor 8 via the branch path 115.
  • paths 113 and 114 are conducted by valve 13 and branch path 115 is blocked.
  • a valve 12 is provided in the path 111, and the cathode gas is taken into the fuel cell system 100 by opening the valve 12 during operation of the fuel cell system 100.
  • a branch path 116 that branches from the middle of the path 112 and joins to the path 114 is provided.
  • the branch path 116 is provided with a valve 15. By opening and closing the valve 15, the branch path 116 is switched between cutoff and conduction. The valve 15 is closed during normal operation, and the branch path 116 is blocked.
  • the path 113 is provided with a temperature sensor T3 and a pressure sensor P2.
  • the air heat exchanger 6 uses the heat of the exhaust gas from the exhaust combustor 8 to heat the cathode gas.
  • the start-up combustor 7 is configured to be able to ignite by mixing air and fuel supplied from the outside.
  • the start-up combustor 7 is started when the fuel cell system 100 is started and supplies the heated cathode gas to the fuel cell stack 1.
  • a valve 14 is provided in the air supply path from the outside to the startup combustor 7. By using the valve 14, the combustion amount of the startup combustor 7 can be controlled.
  • the temperature of the cathode gas is about 60 degrees in the path 111, about 300 degrees in the path 112, and about 700 degrees in the path 113.
  • anode off-gas is discharged via paths 121 and 122, and cathode off-gas is discharged via paths 123 and 124.
  • the anode off-gas and cathode off-gas are burned in the exhaust combustor 8 to become exhaust gas.
  • the exhaust gas is discharged to the outside through the raw material heater 3, the evaporator 2, and the air heat exchanger 6.
  • the paths in the exhaust system are paths 121 and 122 for discharging the cathode offgas from the fuel cell stack 1, paths 123 and 124 for discharging the anode offgas, a path 125 from the exhaust combustor 8 to the material heater 3, and the material heater 3
  • a path 126 from the evaporator 2 to the evaporator 2 a path 127 from the evaporator 2 to the air heat exchanger 6, and a path 128 from the air heat exchanger 6 to the outside.
  • the cathode off-gas in the paths 121 and 122 and the anode off-gas in the paths 123 and 124, which were about 750 degrees, are combusted in the exhaust combustor 8 and are discharged into the path 125 as exhaust gas of about 760 degrees.
  • the temperature of the exhaust gas is about 720 degrees in the path 126, about 550 degrees in the path 127, and about 410 degrees in the path 128.
  • a valve 16 is provided between the paths 123 and 124, and an exhaust path 129 that branches from the valve 16 and can exhaust the cathode off gas to the outside is provided.
  • the discharge destination of the cathode off gas from the fuel cell stack 1 is switched to the exhaust combustor 8 via the path 124 or outside the fuel cell system 100 via the exhaust path 129.
  • the valve 16 is closed and the exhaust path 129 is blocked.
  • valve 128 is provided in the path 128, and the valve 18 is closed when the fuel cell system 100 is stopped, so that the air is prevented from flowing back to the fuel cell stack 1 from the path 128.
  • the exhaust combustor 8 includes a catalyst made of a ceramic material such as alumina, mixes anode off-gas and cathode off-gas, oxidizes the mixed gas, and generates exhaust gas mainly composed of carbon dioxide and water. Generate.
  • This oxidation catalytic reaction has a temperature range in which the reaction proceeds appropriately. During normal startup, the temperatures of the anode off-gas and the cathode off-gas discharged from the fuel cell stack 1 are high, so that the oxidation catalyst reaction proceeds appropriately in the exhaust combustor 8.
  • the oxidation catalyst reaction is an exothermic reaction
  • the temperature of the exhaust from the exhaust combustor 8 becomes higher than the temperatures of the anode off-gas and the cathode off-gas.
  • the exhaust combustor 8 is configured to be able to ignite by mixing air and fuel supplied from the outside. Fuel and air are supplied to the exhaust combustor 8 so that the anode off gas and the cathode off gas have an optimal catalytic combustion reaction ratio.
  • the catalytic combustion reaction in the exhaust combustor 8 is controlled using a valve 18 provided in an external air supply path.
  • a temperature sensor T4 is provided in the path 121
  • a temperature sensor T5 is provided in the path 123
  • a temperature sensor T6 is provided in the path 125.
  • the DC-DC converter 9A is connected to the fuel cell stack 1, boosts the output voltage of the fuel cell stack 1, and supplies power to the battery 9B or the drive motor 9C.
  • the battery 9B charges power supplied from the DC-DC converter 9A and supplies power to the drive motor 9C.
  • the drive motor 9C is connected to the battery 9B and the DC-DC converter 9A via an inverter (not shown), and serves as a power source for the vehicle.
  • stop control processing of the fuel cell system 100 will be described.
  • This stop control process is performed when the vehicle on which the fuel cell system 100 is mounted stops, when the stop button of the fuel cell system 100 is pressed, or when the secondary battery stores the power generated in the fuel cell stack 1. Start when the battery is fully charged.
  • the stop control process is performed until the cooling of the fuel cell system 100 proceeds, the risk of oxidation of the anode electrode of the fuel cell stack 1 is reduced, and the fuel cell system 100 is in a state where only natural cooling is performed.
  • the system stop control that is a stop control process of the fuel cell system 100 is a control that is executed while the system is stopped, and that the system is stopped means a period from the start of the system stop control to the next system startup. .
  • FIG. 2 is a flowchart showing the stop control process. These controls are performed by the control unit 10.
  • step S21 a fuel supply stop process is performed. Details of the fuel supply stop process will be described later with reference to FIGS. 3A and 3B.
  • step S22 it is determined whether or not the temperature Tc of the fuel cell stack 1 has become equal to or lower than the discharge path change temperature Tc1 (for example, 500 degrees).
  • the temperature Tc of the fuel cell stack 1 is higher than the discharge path change temperature Tc1 (S22: No)
  • the process of S22 is continued.
  • the temperature Tc of the fuel cell stack 1 is equal to or lower than the discharge path change temperature Tc1 (S22: Yes)
  • the process proceeds to S23.
  • the temperature Tc of the fuel cell stack 1 may be acquired by a temperature sensor (not shown) provided in the fuel cell stack 1, or may be estimated from measured temperatures of the temperature sensors T4 and T5.
  • the discharge path change temperature Tc1 is the temperature of the fuel cell stack 1 that may be in such a state.
  • step S23 a process for changing the cathode offgas discharge path is performed. Details of the cathode offgas discharge path changing process will be described later with reference to FIGS. 4A and 4B.
  • step S24 it is determined whether or not the temperature Tc of the fuel cell stack 1 has become equal to or lower than the stop temperature Tc2 (for example, 300 degrees).
  • the stop temperature Tc2 is a temperature at which the anode electrode of the fuel cell stack 1 does not oxidize even when it comes into contact with oxygen.
  • step S25 an anode gas supply stop process is performed. Details of the anode gas supply stop process will be described later with reference to FIGS. 5A and 5B.
  • step S26 it is determined whether or not the temperature T6 of the temperature sensor T6 indicating the outlet temperature of the exhaust combustor 8 is equal to or lower than the stop temperature Tc3 (for example, 730 degrees).
  • the stop temperature Tc3 for example, 730 degrees.
  • the process of S26 is continued.
  • the outlet temperature T6 of the exhaust combustor 8 is equal to or lower than the stop temperature Tc3 (S26: Yes)
  • the process proceeds to S27.
  • step S27 end processing is performed. Details of the termination process will be described later with reference to FIGS. 6A and 6B.
  • FIG. 3A shows details of the fuel supply stop process
  • FIG. 3B shows a configuration diagram of the fuel cell stack during the fuel supply stop process.
  • the path 101 is blocked and the supply of fuel to the fuel cell system 100 is stopped (S211). Then, the branch path 105 is conducted by operating the valve 11 (S212). In this way, the fuel remaining in the evaporator 2, the path 102, and the raw material heater 3 of the fuel supply system is supplied to the exhaust combustor 8 via the branch path 105. Therefore, the supply of the anode gas to the fuel cell stack 1 is stopped, so that the power generation amount of the fuel cell stack 1 is reduced.
  • the branch path 116 is conducted by operating the valve 15 (S213). Furthermore, by operating the valve 13, the path 114 is blocked and the branch path 115 is conducted (S214). Then, the start combustor 7 is started (S215). Since the compressor 5 continues to operate, the fuel cell stack 1 is supplied with the cathode gas before being supplied to the startup combustor 7 via the branch path 116. Therefore, the fuel cell stack 1 is gradually cooled by the cathode gas having a relatively low temperature (about 310 degrees).
  • the exhaust combustor 8 is supplied with a cathode gas of about 700 degrees heated by the startup combustor 7 via the branch path 115. Therefore, the exhaust combustor 8 has a temperature suitable for the catalytic reaction, and the catalytic combustion reaction proceeds appropriately.
  • EAP processing is performed in the drive system (S216). Specifically, a reverse bias voltage is applied to the fuel cell stack 1 from the battery 9B via the DC-DC converter 9A. By doing so, oxidation of the anode electrode of the fuel cell stack 1 is suppressed.
  • FIG. 4A shows details of the process for changing the cathode offgas discharge path
  • FIG. 4B shows a configuration diagram of the fuel cell stack during the process for changing the cathode offgas discharge path.
  • the valve 16 is operated, the path 124 is shut off, and the exhaust path 129 is conducted (S231).
  • route 123 from the fuel cell stack 1 is discharged
  • the cathode off-gas whose temperature has decreased is not supplied to the exhaust combustor 8.
  • the exhaust combustor 8 is suppressed from temperature decrease and the oxidation catalytic reaction proceeds. Temperature is ensured.
  • the exhaust combustor 8 can be maintained at a temperature at which the oxidation catalyst reaction proceeds while cooling the fuel cell stack 1.
  • FIG. 5A shows details of the anode gas supply stop process
  • FIG. 5B shows a configuration diagram of the fuel cell stack during the anode gas supply stop process.
  • the branch path 105 is blocked by operating the valve 11, and the supply of fuel to the exhaust combustor 8 is stopped. (S251). Then, by operating the valve 15, the branch path 116 is blocked, and the supply of the cathode gas to the fuel cell stack 1 is stopped (S252). Then, the EAP process is stopped (S253). In this way, the cooling process of the fuel cell stack 1 is completed, and thereafter, the fuel cell stack 1 is naturally cooled.
  • the exhaust gas combustor 8 is supplied with high-temperature cathode gas that has passed through the compressor 5, the air heat exchanger 6, and the start-up combustor 7 via the branch path 115. Therefore, the oxidation catalyst reaction appropriately proceeds in the exhaust combustor 8.
  • FIG. 6A shows details of the anode gas supply stop process
  • FIG. 6B shows a configuration diagram of the fuel cell stack 1 during the anode gas supply stop process.
  • the branch process (S26) performed before the end process (S27) shown in FIG. 2 will be described.
  • About 700 degrees of cathode gas is supplied to the exhaust combustor 8 from the start combustor 7 through the branch path 115.
  • the catalytic combustion reaction proceeds in the exhaust combustor 8. Therefore, the temperature of the exhaust from the exhaust combustor 8 to the path 125 is about 760 degrees.
  • the catalytic combustion reaction does not occur in the exhaust combustor 8, and the temperature of the exhaust gas from the exhaust combustor 8 to the path 125 becomes low.
  • FIG. 7 shows another example of the stop control process.
  • the cathode offgas discharge path switching process (S71) is performed. If the temperature Tc of the fuel cell stack 1 is higher than the stop temperature Tc2 (S24: No), it is determined that the cooling of the fuel cell stack 1 is necessary, and the process returns to S71.
  • the valve 16 is operated so that the temperature of the exhaust combustor 8 is within an appropriate temperature range in which the oxidation catalytic reaction proceeds.
  • the cathode offgas discharge destination is switched to the path 124 or 129. Therefore, the flow of the relatively low temperature cathode off-gas to the exhaust combustor 8 is controlled, so that the exhaust combustor 8 has an appropriate temperature, and the catalytic combustion reaction proceeds appropriately.
  • the cathode off-gas discharge path switching process will be described with reference to FIGS. 8A and 8B.
  • FIG. 8A shows a flowchart of the switching process of the cathode offgas discharge path
  • FIG. 8B shows a configuration diagram of the fuel cell stack 1 during the switching process of the cathode offgas discharge path.
  • the upper limit temperature of an appropriate temperature range in which the oxidation catalyst reaction proceeds in the exhaust combustor 8 is K1 (combustion upper limit temperature), and the lower limit temperature is K2 (combustion lower limit temperature).
  • the cathode offgas discharge destination from the fuel cell stack 1 is switched to the path 124 or the exhaust path 129.
  • step S711 it is determined whether or not the outlet temperature T6 of the exhaust combustor 8 is equal to or lower than the combustion lower limit temperature K2.
  • the outlet temperature T6 of the exhaust combustor 8 is equal to or lower than the combustion lower limit temperature K2 (S711: Yes)
  • the outlet temperature T6 of the exhaust combustor 8 is higher than the combustion lower limit temperature K2 (S711: No)
  • the process proceeds to S713.
  • step S712 the valve 16 is operated to discharge the cathode off-gas discharged from the fuel cell stack 1 to the path 123 to the outside of the fuel cell system 100 not from the path 124 but from the exhaust path 129.
  • the valve 16 is operated to discharge the cathode off-gas discharged from the fuel cell stack 1 to the path 123 to the outside of the fuel cell system 100 not from the path 124 but from the exhaust path 129.
  • step S713 it is determined whether or not the outlet temperature T6 of the exhaust combustor 8 is equal to or higher than the combustion upper limit temperature K1. If the outlet temperature T6 of the exhaust combustor 8 is equal to or higher than the combustion upper limit temperature K1, it is determined that the temperature increase of the exhaust combustor 8 needs to be suppressed, and the process proceeds to S714. On the other hand, when the outlet temperature T6 of the exhaust combustor 8 is higher than the combustion lower limit temperature K2, the exhaust combustor 8 determines that it is in an appropriate temperature range in which the oxidation catalyst reaction proceeds, and switches the cathode offgas discharge path. The process (S71) ends.
  • step S714 the valve 16 is operated to supply the cathode off-gas discharged from the fuel cell stack 1 to the path 123 to the exhaust combustor 8 via the path 124 instead of the exhaust path 129.
  • the exhaust combustor 8 receives not only the hot cathode gas from the startup combustor 7 via the branch path 115 but also the cold cathode off-gas from the fuel cell stack 1 via the paths 123 and 124. Since it is supplied, the temperature of the exhaust combustor 8 is within the temperature range in which the rise is suppressed and the oxidation catalytic reaction proceeds.
  • the switching process of the cathode offgas discharge path (S71) is terminated.
  • the compressor 5 that supplies the cathode gas to the fuel cell stack 1 via the paths 111, 112, 113, and 114 (cathode gas supply paths).
  • a startup combustor 7 (first combustor) provided in the cathode gas supply path
  • an exhaust combustor 8 (second combustor) for burning the anode off-gas and the cathode off-gas discharged from the fuel cell stack 1
  • a branch path 116 (first branch path) branching upstream of the start-up combustor 7 in the cathode gas supply path and joining downstream of the start-up combustor 7, and downstream of the start-up combustor 7 in the cathode gas supply path Branches and the paths 123 and 124 (cathode offgas discharge paths) where the cathode offgas discharged from the fuel cell stack 1 goes to the exhaust combustor 8.
  • the fuel cell system 100 also discharges the cathode gas from the starter combustor 7 (first combustor) and the valve 15 (first valve) that switches between the cutoff and conduction of the branch path 116 (first branch path). And a valve 13 (second valve) that switches either the fuel cell stack 1 or the path 124 (cathode offgas discharge path) via the branch path 115 (second branch path).
  • the cathode gas supplied from the compressor 5 is supplied to the fuel cell stack 1 via the branch path 116 by operating the valve 15 to make the branch path 116 conductive.
  • First branch path control step: S213 the valve 13 is operated to make the branch path 115 conductive, and the cathode gas supplied from the starting combustor 7 to the fuel cell stack 1 is supplied to the exhaust combustor 8 (second branch path).
  • Control step: S214 the exhaust combustor 8 is activated (first combustor activation step: S215).
  • the exhaust combustor 8 is supplied with the high-temperature cathode gas that has passed through the startup combustor 7, so that the temperature drop of the exhaust combustor 8 is suppressed. Therefore, the catalytic combustion reaction of the exhaust combustor 8 appropriately proceeds and the unburned gas contained in the anode off gas is suppressed from leaking out of the fuel cell system 100.
  • the cathode 123 can be exhausted by branching upstream of the junction of the branch path 115 (second branch path) in the paths 123 and 124 (cathode off gas path).
  • a further exhaust path 129 exhaust path is further provided.
  • the fuel cell system 100 sends the cathode off-gas from the fuel cell stack 1 to the outside of the fuel cell system 100 via the exhaust combustor 8 (second combustor) or the exhaust path 129 (exhaust path).
  • a valve 16 exhaust valve for switching to either is provided.
  • the exhaust combustor 8 is supplied with the low-temperature cathode off-gas from the cooling fuel cell stack 1 even if the high-temperature exhaust from the start-up combustor 7 is supplied via the branch path 115.
  • the temperature is such that the catalytic reaction does not proceed. Therefore, when the fuel cell falls below a predetermined temperature (discharge path change temperature Tc1), the valve 16 is controlled to make the exhaust path 129 conductive.
  • the cathode off gas is discharged out of the fuel cell system 100 from the exhaust path 129, or exhaust combustion is performed via the path 124.
  • Switching control exhaust path switching step: S71 of whether to supply to the container 8 may be further performed.
  • the valve 16 is controlled to conduct the exhaust path 129.
  • the cathode off-gas is discharged out of the fuel cell system 100 from the exhaust path 129 (S712).
  • the flow of the low-temperature cathode off-gas to the exhaust combustor 8 is suppressed, and the temperature of the exhaust combustor 8 exceeds the lower limit temperature at which the catalytic reaction can proceed, so that the oxidation catalytic reaction proceeds appropriately.
  • the valve 16 is controlled to make the exhaust path 129 conductive.
  • the temperature of the exhaust combustor 8 is lower than the upper limit temperature at which the oxidation catalytic reaction can proceed appropriately, and the catalytic reaction proceeds appropriately.
  • the exhaust combustor 8 (second combustion) is located upstream of the branch point of the branch path 116 (second branch path) in the path 112 (cathode gas supply path). It further has an air heat exchanger 6 using the exhaust from the vessel.
  • the cathode gas heated by the air heat exchanger 6 is supplied to the fuel cell stack 1 when the fuel cell system 100 is stopped. Therefore, since the fuel cell stack 1 is prevented from being rapidly cooled, cracks such as an anode electrode in the fuel cell stack 1 can be prevented.
  • the paths 121 and 122 branch from the path 103 (anode gas supply path) and between the fuel cell stack 1 and the exhaust combustor 8 (second combustor). It further has a branch path 105 (third branch path) that merges with the (anode offgas discharge path).
  • the fuel cell system 100 switches the cathode gas supply destination to either the fuel cell stack 1 or the path 124 (anode offgas discharge path) via the branch path 105 (third branch path) ( A third valve).
  • the fuel remaining in the fuel supply system after the fuel supply is stopped is not the fuel cell stack 1 but the exhaust combustor 8. (Third branch path conduction step: S251). Therefore, after the supply of fuel is stopped, no fuel is supplied to the fuel cell stack 1, so that the power generation of the fuel cell stack 1 can be stopped earlier, so that the stop time of the fuel cell system 100 is shortened. be able to. Furthermore, since the fuel remaining in the fuel supply system can be used in the exhaust combustor 8, the amount of fuel used can be suppressed.
  • FIG. 9 is a diagram showing a configuration during normal operation of the fuel cell system 100 of the second embodiment.
  • the configuration shown in this figure is different from the configuration of the fuel cell system 100 of the first embodiment shown in FIG. 1 in that the path 114 is branched from the upstream side of the air heat exchanger 6.
  • FIG. 10 is a diagram showing a stop process in the fuel cell system 100 of the present embodiment. Compared with the other stop control process of the first embodiment shown in FIG. 7, the process of FIG. In the fuel supply stop process (S21), the cathode offgas discharge path switching process (S71), the anode gas supply stop process (S25), and the end process (S27), the same processes as those in the first embodiment are performed.
  • the temperature Tc of the fuel cell stack becomes the stop temperature Tc2 (S24: Yes), and until the anode gas supply stop process (S25) is started.
  • the switching process of S71 is performed.
  • the exhaust combustor 8 is always at a temperature at which the oxidation catalyst reaction appropriately proceeds, so that discharge of unburned gas contained in the anode off-gas to the atmosphere is suppressed.
  • the exhaust combustor 8 (second combustion) is provided between the branch point of the first branch path in the cathode gas supply path and the startup combustor 7 (first combustor). It further has an air heat exchanger 6 using the exhaust from the vessel.
  • the cathode gas at room temperature without passing through the air heat exchanger 6 is supplied to the fuel cell stack 1. Therefore, since the fuel cell stack 1 can be rapidly cooled, the stop time of the fuel cell system 100 can be shortened.
  • the cathode offgas discharge path changing process (S23) is deleted as compared with the stop control process of the first embodiment shown in FIG. By doing in this way, the processing load of the control part 10 can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池システムは、アノードガス及びカソードガスの供給を受けて発電する固体酸化物型の燃料電池を備える燃料電池システムであって、カソードガスを、カソードガス供給路を介して燃料電池に供給するカソードガス供給部と、カソードガス供給路に設けられる第1燃焼器と、燃料電池から排出されるアノードオフガス及びカソードオフガスを燃焼させる第2燃焼器と、カソードガス供給路において、第1燃焼器の上流から分岐して第1燃焼器の下流へと合流する第1分岐路と、カソードガス供給路における第1燃焼器の下流から分岐し、燃料電池からカソードオフガスを第2燃焼器に排出するカソードオフガス排出路へと合流する第2分岐路と、を有する。

Description

燃料電池システム及びその制御方法
 本発明は燃料電池システム及びその制御方法に関する。
 一方の側にアノードガスを供給し、他方の側にカソードガス(空気等)を供給して、比較的高温で動作する固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)が知られている。このような燃料電池を用いた燃料電池システムは、当該燃料電池を冷却しなければならないため、完全に停止するまでに時間を要する(JP2007-066876A)。例えば、定置用の燃料電池システムの中には完全に停止させるまでに1日から数日を要するものもある。
 SOFCのアノード極は高温では酸化しやすい性質を持つ。また、カソード極はアノードガスと反応して劣化してしまうおそれがある。そのため、停止処理中においても、アノード極へのアノードガスの供給、及び、カソード極へのカソードガスの供給が行われる。
 また、燃料電池システムの停止処理中にSOFC内で完全に反応しきれなかったアノードガスは、未燃ガスとして排出されるおそれがある。このような未燃ガスに対して排気燃焼器を用いた酸化触媒処理を行うことにより、大気への未燃ガスの排出が抑制される。このような酸化触媒処理に用いられる触媒は、動作温度が比較的高い。
 しかしながら、停止処理中はSOFC全体の温度が低下しているため、排気燃焼器の触媒が適切な動作温度にならず、未燃ガスの全てが酸化触媒処理されずに、一部が燃料電池システム外に排出されるおそれがあるという課題がある。
 本発明の目的は、燃料電池システムの停止処理中における未燃ガスの大気への排出を抑制することである。
 本発明の一態様の燃料電池システムは、燃料電池システムは、アノードガス及びカソードガスの供給を受けて発電する固体酸化物型の燃料電池を備える燃料電池システムであって、カソードガスを、カソードガス供給路を介して燃料電池に供給するカソードガス供給部と、カソードガス供給路に設けられる第1燃焼器と、燃料電池から排出されるアノードオフガス及びカソードオフガスを燃焼させる第2燃焼器と、カソードガス供給路において、第1燃焼器の上流から分岐して第1燃焼器の下流へと合流する第1分岐路と、カソードガス供給路における第1燃焼器の下流から分岐し、燃料電池からカソードオフガスを第2燃焼器に排出するカソードオフガス排出路へと合流する第2分岐路と、を有する。
図1は、本発明の第1実施形態の燃料電池システムの構成図ある。 図2は、燃料電池システムの停止制御処理を示すフローチャートである。 図3Aは、燃料供給停止処理を示すフローチャートである。 図3Bは、燃料供給停止処理中の燃料電池システムの構成図である。 図4Aは、アノードオフガス排出経路の変更処理を示すフローチャートである。 図4Bは、アノードオフガス排出経路の変更処理中の燃料電池システムの構成図である。 図5Aは、アノードガス供給停止処理を示すフローチャートである。 図5Bは、アノードガス供給停止処理中の燃料電池システムの構成図である。 図6Aは、終了処理を示すフローチャートである。 図6Bは、終了処理中の燃料電池システムの構成図である。 図7は、燃料電池システムの他の停止制御処理を示すフローチャートである。 図8Aは、カソードオフガス排出経路の切替処理を示すフローチャートである。 図8Bは、カソードオフガス排出経路の切替処理中の燃料電池システムの構成図である。 図9は、第2実施形態の燃料電池システムの構成図である。 図10は、燃料電池システムの停止制御を示すフローチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 (第1実施形態)
 図1は、第1実施形態における固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)システムの概略構成図である。なお、図1に示されたSOFCシステムは、通常運転中であるものとする。
 SOFCである燃料電池スタック1は、セラミック等の固体酸化物で形成された電解質層を、アノードガス(燃料ガス)が供給されるアノード極(燃料極)と、カソードガス(酸化ガス)として酸素を含む空気が供給されるカソード極(空気極)により挟み込んで構成されたセルを積層したものである。燃料電池スタック1では、アノードガス中に含まれる水素などの燃料とカソードガス中の酸素とを反応させて発電を行い、反応後のアノードガス(アノードオフガス)と反応後のカソードガス(カソードオフガス)を排出する。
 燃料電池スタック1を備える固体酸化物型燃料電池システム(以後、燃料電池システム100と称す。)には、燃料電池スタック1にアノードガス(燃料)を供給する燃料供給系統と、燃料電池スタック1にカソードガス(空気)を供給する空気供給系統と、燃料電池スタック1から排出されるアノードオフガス及びカソードオフガスとを燃料電池システム100外へと排気する排気系統とが設けられている。また、これらの系統とは別に、燃料電池スタック1に直接接続された駆動系統が設けられている。
 燃料供給系統は、蒸発器2、原料加熱器3、改質器4等を含む。空気供給系統は、コンプレッサー5、空気熱交換器6、起動燃焼器7等を含む。排気系統は、排気燃焼器8等を含む。駆動系統は、DC-DCコンバータ9A、バッテリ9B、駆動モータ9C等により構成される。また、燃料電池システム100は、システム全体の動作を制御する制御部10を備える。
 制御部10は、燃料電池システム100の各構成や各系統における弁などを制御することで、燃料電池システム100全体を制御する。なお、制御部10は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。
 以下では、それぞれの系統について詳細に説明する。まず、燃料供給系統の詳細について説明する。
 燃料供給系統においては、不図示の燃料タンクに蓄えられている液体の燃料が、蒸発器2、原料加熱器3、改質器4を介して、燃料電池スタック1に供給される。燃料としては、エタノールと水を混合させた含水エタノールなどが用いられる。
 燃料供給系統における燃料の経路は、燃料タンクから蒸発器2へ向かう経路101、蒸発器2から原料加熱器3へと向かう経路102、原料加熱器3から改質器4へと向かう経路103、改質器4から燃料電池スタック1へと向かう経路104を備える。また、経路103の途中から分岐し、燃料電池スタック1からアノードオフガスが排出される経路121、122へと合流する、分岐経路105が設けられている。
 経路121と122とは弁11を介して接続されており、分岐経路105は弁11にて合流する。この弁11が開閉されることによって、分岐経路105の遮断と導通とが切り替えられる。通常運転中は、弁11によって、分岐経路105が遮断されるとともに、経路121、122が導通している状態となる。なお、経路102には温度センサT1が、経路104には温度センサT2、圧力センサP1が設けられている。
 蒸発器2は、排気燃焼器8から排気される排気ガスの熱を利用して燃料を気化させる。原料加熱器3は、排気燃焼器8からの排気ガスの熱を用いて、気化させた燃料ガスを改質器4において改質可能な温度までさらに加熱する。具体的には、経路101において約30度であった液体の燃料は、経路102において約400度の燃料ガスとなる。経路103において、燃料ガスは約660度にさらに加熱される。そして、燃料ガスは改質器4にてアノードガスに改質される。
 改質器4は、触媒反応によって燃料をアノードガスに改質して、そのアノードガスを燃料電池スタック1のアノード極に供給する。例えば、燃料である含水エタノールは、メタン、水素、及び、一酸化炭素などを含むアノードガスに改質される。改質器4においては触媒反応による吸熱が起こるので、経路104におけるアノードガスは約520度となる。
 次に、空気供給系統の詳細について説明する。
 空気供給系統においては、外部から取り込まれたカソードガスは、コンプレッサー5、空気熱交換器6、起動燃焼器7を介して、燃料電池スタック1に供給される。なお、コンプレッサー5は、カソードガス供給部の一例であり、ブロワなどを替わりに用いてもよい。
 空気供給系統における空気の経路は、コンプレッサー5から空気熱交換器6へと向かう経路111、空気熱交換器6から起動燃焼器7へと向かう経路112、起動燃焼器7から燃料電池スタック1へと向かう経路113、114を備える。経路113と114とは弁13を介して接続されている。また、弁13から分岐し、燃料電池スタック1から排出されるカソードオフガスが排出される経路124へと合流する分岐経路115が設けられている。弁13が操作されることによって、起動燃焼器7からのアノードガスの供給先が、経路114を介した燃料電池スタック1、又は、分岐経路115を介した排気燃焼器8に切り替えられる。通常運転時においては、弁13によって、経路113、114は導通されるとともに、分岐経路115は遮断されている。
 さらに、経路111には弁12が設けられており、燃料電池システム100の動作中はこの弁12が開かれることで、燃料電池システム100にカソードガスが取り込まれる。また、経路112の途中から分岐して経路114へと合流する分岐経路116が設けられている。この分岐経路116には弁15が設けられている。弁15が開閉されることによって、分岐経路116の遮断と導通とが切り替えられる。弁15は通常運転時には閉じられており、分岐経路116は遮断されている。なお、経路113には温度センサT3、圧力センサP2が設けられている。
 空気熱交換器6は、排気燃焼器8からの排気ガスの熱を利用して、カソードガスを加熱する。起動燃焼器7は、外部から供給される空気と燃料とを混合して着火可能に構成されている。起動燃焼器7は、燃料電池システム100の起動時などに起動され、燃料電池スタック1へ加熱したカソードガスを供給する。また、起動燃焼器7への外部からの空気の供給経路には弁14が設けられている。弁14を用いることで、起動燃焼器7の燃焼量を制御できる。なお、カソードガスの温度は、経路111では約60度、経路112では約300度、経路113では約700度となる。
 次に、排気系統の詳細について説明する。
 燃料電池スタック1からは、経路121、122を介してアノードオフガスが、経路123、124を介してカソードオフガスが排出される。アノードオフガス及びカソードオフガスは、排気燃焼器8にて燃焼されて排気ガスとなる。排気ガスは、原料加熱器3、蒸発器2、空気熱交換器6を介して外部に排出される。
 排気系統における経路は、燃料電池スタック1からカソードオフガスを排出する経路121、122、アノードオフガスを排出する経路123、124、排気燃焼器8から原料加熱器3へと向かう経路125、原料加熱器3から蒸発器2へと向かう経路126、蒸発器2から空気熱交換器6へと向かう経路127、空気熱交換器6から外部へと向かう経路128とを備える。
 約750度であった経路121、122のカソードオフガス、及び、経路123、124のアノードオフガスは、排気燃焼器8にて燃焼されて、約760度の排気ガスとして経路125に排出される。この排気ガスの温度は、経路126では約720度、経路127では約550度、経路128では約410度となる。
 経路123と124と間には弁16が設けられており、弁16から分岐してカソードオフガスを外部へ排気可能な排気経路129が設けられている。弁16が制御されることによって、燃料電池スタック1からのカソードオフガスの排出先が、経路124を介した排気燃焼器8、又は、排気経路129を介した燃料電池システム100外に切り替えられる。通常運転中には、弁16は閉じられており、排気経路129は遮断されている。
 また、経路128には、弁17が設けられており、燃料電池システム100の停止時に弁18が閉じられることで、経路128から大気が燃料電池スタック1に逆流するのが防止される。
 排気燃焼器8は、アルミナなどのセラミック材料により構成された触媒を備えており、アノードオフガスとカソードオフガスとを混合し、その混合ガスを酸化させ、二酸化炭素や水を主成分とする排気ガスを生成する。この酸化触媒反応には、適切に反応が進行する温度範囲がある。通常起動時においては、燃料電池スタック1から排出されるアノードオフガス及びカソードオフガスの温度が高いので、排気燃焼器8において酸化触媒反応は適切に進行する。
 また、酸化触媒反応は発熱反応であるため、排気燃焼器8からの排気の温度は、アノードオフガス及びカソードオフガスの温度よりも高くなる。排気燃焼器8は、外部から供給される空気と燃料とを混合して着火可能に構成されている。排気燃焼器8には、アノードオフガスとカソードオフガスとが最適に触媒燃焼反応する比率となるように、燃料及び空気が供給される。排気燃焼器8における触媒燃焼反応は、外部からの空気の供給路に設けられた弁18を用いて制御される。
 なお、経路121に温度センサT4が、経路123に温度センサT5が、経路125に温度センサT6が設けられている。
 次に、駆動系統について説明する。
 DC-DCコンバータ9Aは、燃料電池スタック1に接続され、燃料電池スタック1の出力電圧を昇圧してバッテリ9Bまたは駆動モータ9Cに電力を供給する。バッテリ9Bは、DC-DCコンバータ9Aから供給される電力を充電するとともに、駆動モータ9Cに電力を供給する。駆動モータ9Cは、インバータ(不図示)を介してバッテリ9B及びDC-DCコンバータ9Aに接続され、車両の動力源となっている。
 次に、燃料電池システム100の停止制御処理について説明する。なお、この停止制御処理は、燃料電池システム100を搭載する車両が停車した時や、燃料電池システム100の停止ボタンが押された時や、燃料電池スタック1において発電する電力が蓄えられる二次電池が満充電になった時から開始する。そして、停止制御処理は、燃料電池システム100の冷却が進み、燃料電池スタック1のアノード極の酸化するおそれが低下して、燃料電池システム100が自然冷却のみが行われる状態になるまで行われる。また、燃料電池システム100の停止制御処理であるシステム停止制御は、システム停止中に実行される制御であり、システム停止中とはシステム停止制御の開始から次回のシステム起動時までの期間を意味する。
 図2は、停止制御処理を示すフローチャートである。これらの制御は、制御部10によって行われる。
 ステップS21においては、燃料供給停止処理が行われる。燃料供給停止処理の詳細は、後に、図3A、3Bを用いて説明する。
 ステップS22においては、燃料電池スタック1の温度Tcが、排出経路変更温度Tc1(例えば、500度)以下となったか否かを判定する。燃料電池スタック1の温度Tcが排出経路変更温度Tc1よりも高い場合には(S22:No)、S22の処理を継続する。一方、燃料電池スタック1の温度Tcが排出経路変更温度Tc1以下である場合には(S22:Yes)、S23の処理に進む。なお、燃料電池スタック1の温度Tcは、燃料電池スタック1に設けられた不図示の温度センサにより取得してもよいし、温度センサT4、T5などの測定温度から推測してもよい。
 なお、燃料電池スタック1の温度が低下して、燃料電池スタック1から比較的低温のカソードオフガスが排気燃焼器8に供給されてしまうと、排気燃焼器8の温度が低下して、酸化触媒反応が進行しなくなる状態になる。排出経路変更温度Tc1は、このような状態になるおそれがある燃料電池スタック1の温度である。
 ステップS23では、カソードオフガス排出経路の変更処理が行われる。カソードオフガス排出経路の変更処理の詳細は、後に、図4A、4Bを用いて説明する。
 ステップS24においては、燃料電池スタック1の温度Tcが、停止温度Tc2(例えば、300度)以下となったか否かを判定する。燃料電池スタック1の温度Tcが停止温度Tc2よりも高い場合には(S24:No)、S24の処理を継続する。一方、燃料電池スタック1の温度Tcが停止温度Tc2以下である場合には(S24:Yes)、S25の処理に進む。なお、停止温度Tc2は、燃料電池スタック1のアノード極が酸素と接触しても、酸化しない温度である。
 ステップS25では、アノードガス供給停止処理が行われる。アノードガス供給停止処理の詳細は、後に、図5A、5Bを用いて説明する。
 ステップS26においては、排気燃焼器8の出口温度を示す温度センサT6の温度T6が、停止温度Tc3(例えば、730度)以下であるか否かが判定される。排気燃焼器8の出口温度T6が、停止温度Tc3よりも高い場合には(S26:No)、S26の処理を継続する。一方、排気燃焼器8の出口温度T6が停止温度Tc3以下である場合には(S26:Yes)、S27の処理に進む。
 ステップS27では、終了処理が行われる。終了処理の詳細は、後に、図6A、6Bを用いて説明する。
 次に、図3A~6Bを用いて、図2の燃料供給停止処理(S21)、カソードオフガス排出経路の変更処理(S23)、アノードガス供給停止処理(S25)、及び、終了処理(S27)の詳細について説明する。
 まず、燃料供給停止処理の詳細について、図3A、3Bを用いて説明する。
 図3Aには、燃料供給停止処理の詳細が示されており、図3Bには、燃料供給停止処理中の燃料電池スタックの構成図が示されている。
 まず、燃料供給系統においては、経路101が遮断されて燃料電池システム100への燃料の供給が停止される(S211)。そして、弁11が操作されることで分岐経路105が導通する(S212)。このようにすることで、燃料供給系統の蒸発器2、経路102、及び、原料加熱器3に残っている燃料が、分岐経路105を介して排気燃焼器8に供給される。したがって、燃料電池スタック1へのアノードガスの供給が停止されるので、燃料電池スタック1は発電量が低下する。
 空気供給系統においては、弁15が操作されることで、分岐経路116が導通する(S213)。さらに、弁13が操作されることで、経路114が遮断されるとともに分岐経路115が導通する(S214)。そして、起動燃焼器7が起動される(S215)。コンプレッサー5は動作を継続しているので、燃料電池スタック1には分岐経路116を介して起動燃焼器7に供給される前のカソードガスが供給される。したがって、比較的低温(約310度)のカソードガスにより燃料電池スタック1は徐々に冷却されることになる。また、排気燃焼器8には、分岐経路115を介して、起動燃焼器7で加熱された約700度のカソードガスが供給される。そのため、排気燃焼器8は、触媒反応に適切な温度となり、触媒燃焼反応が適切に進行する。
 駆動系統においては、EAP処理が行われる(S216)。具体的には、バッテリ9BからDC-DCコンバータ9Aを介して、燃料電池スタック1に逆バイアスの電圧が印加される。このようにすることで、燃料電池スタック1のアノード極の酸化が抑制される。
 次に、カソードオフガス排出経路の変更処理(S23)の詳細について、図4A、4Bを用いて説明する。
 図4Aには、カソードオフガス排出経路の変更処理の詳細が示されており、図4Bには、カソードオフガス排出経路の変更処理中の燃料電池スタックの構成図が示されている。
 まず、図2に示された、カソードオフガス排出経路の変更処理(S23)の前段に行われる分岐処理(S22)について説明する。燃料電池スタック1の冷却が進み、燃料電池スタック1の温度Tcが排出経路変更温度Tc1(約500度)以下となる(S22:Yes)。この状態では、経路123、124を介して燃料電池スタック1から排気燃焼器8に供給されるカソードオフガスの温度が低いので、分岐経路115を介して起動燃焼器7から高温のカソードガスが供給されていても、排気燃焼器8は酸化触媒反応が進行しない温度に低下してしまう。そのため、カソードオフガス排出経路変更処理(S23)を行う。一方、燃料電池スタック1の温度Tcが排出経路変更温度Tc1よりも高い場合には(S22:No)、排気燃焼器8は酸化触媒反応が進行する適切な温度であるため、S22の処理を継続する。
 ここで、図4A、4Bを参照すると、カソードオフガス排出経路の変更処理(S23)においては、弁16が操作されて、経路124が遮断されるとともに、排気経路129が導通される(S231)。このようにすることで、燃料電池スタック1から経路123を経て排出されたカソードオフガスは、排気経路129を介して外部へ排出される。そのため、排気燃焼器8には温度が低下したカソードオフガスが供給されなくなる。
 このように、排気燃焼器8には、分岐経路115を介して起動燃焼器7から高温のカソードガスのみが供給されるので、排気燃焼器8は、温度低下が抑制され、酸化触媒反応が進行する温度が確保される。排気燃焼器8において適切に酸化触媒反応が行われることにより、アノードオフガスに含まれる未燃ガスが大気に排出されるのが抑制される。このように、燃料電池スタック1を冷却しながら、排気燃焼器8を酸化触媒反応が進行する温度に維持することができる。
 次に、アノードガス供給停止処理(S25)の詳細について、図5A、5Bを用いて説明する。
 図5Aには、アノードガス供給停止処理の詳細が示されており、図5Bには、アノードガス供給停止処理中の燃料電池スタックの構成図が示されている。
 まず、図2に示された、アノードガス供給停止処理(S25)の前段に行われる分岐処理(S24)について説明する。燃料電池スタック1の冷却がさらに進み、燃料電池スタック1の温度Tcが停止温度Tc2(約300度)以下となると(S24:Yes)、燃料電池スタック1のアノード極が大気接触しても酸化が進行しないと判断され、アノードガス供給停止処理(S25)が行われる。一方、燃料電池スタック1の温度Tcが停止温度Tc2よりも高い場合には(S24:No)、燃料電池スタック1のアノード極が大気接触してしまうと酸化してしまうので、さらなる燃料電池スタック1の冷却が必要であると判断され、S24の処理を継続する。
 ここで、図5A、5Bを参照すると、アノードガス供給停止処理(S25)においては、弁11が操作されることで分岐経路105が遮断されて、排気燃焼器8への燃料の供給が停止される(S251)。そして、弁15が操作されることで分岐経路116が遮断されて、燃料電池スタック1へのカソードガスの供給が停止される(S252)。そして、EAP処理が停止される(S253)。このようにして、燃料電池スタック1の冷却処理が終了し、以降においては、燃料電池スタック1は自然冷却されることになる。なお、排気燃焼器8には、コンプレッサー5、空気熱交換器6、及び、起動燃焼器7を経た高温のカソードガスが、分岐経路115を介して供給される。そのため、排気燃焼器8においては適切に酸化触媒反応が進行することになる。
 次に、停止処理(S27)の詳細について、図6A、6Bを用いて説明する。
 図6Aには、アノードガス供給停止処理の詳細が示されており、図6Bには、アノードガス供給停止処理中の燃料電池スタック1の構成図が示されている。
 まず、図2に示された、終了処理(S27)の前段に行われる分岐処理(S26)について説明する。排気燃焼器8へは起動燃焼器7から分岐経路115を介して約700度のカソードガスが供給されている。燃料供給系統に未燃ガスが残っている間は、排気燃焼器8にて触媒燃焼反応が進行する。そのため、排気燃焼器8から経路125への排気の温度は約760度となる。しかしながら、燃料供給系統に未燃ガスが含まれなくなると、排気燃焼器8にて触媒燃焼反応が起こらないため、排気燃焼器8から経路125への排気の温度は低くなる。
 そこで、経路125の温度センサT6が示す排気燃焼器8の出口温度T6が停止温度Tc3以下となると(S26:Yes)、燃料供給系統に未燃ガスが残っていないと判断され、停止処理(S27)が行われる。一方、出口温度T6が停止温度Tc3以上である場合には(S26:No)、燃料供給系統に未燃ガスが残っていると判断され、S26の処理を継続する。
 ここで、図6A、6Bを参照すると、停止処理(S27)においては、起動燃焼器7を停止する(S271)とともに、コンプレッサー5を停止する。そして、弁12が操作されて経路111が遮断される(S272)。そして、弁17が操作されて経路128が遮断される(S273)ことで、燃料電池システム100への大気の逆流が防止される。このような状態になることで、燃料電池システム100内は密閉された状態となる。このような状態で、燃料電池スタック1が外気温度と等しくなるまで自然冷却が継続される。
 ここで、図7には、停止制御処理の他の一例が示されている。
 図7を参照すると、カソードオフガス排出経路の変更処理(S23)が開始された後に、カソードオフガス排出経路の切替処理(S71)が行われている。そして、燃料電池スタック1の温度Tcが停止温度Tc2よりも高い場合には(S24:No)、燃料電池スタック1の冷却の継続が必要であると判断され、S71の処理に戻る。
 カソードオフガス排出経路の切替処理においては。排気燃焼器8の温度が酸化触媒反応が進行する適切な温度範囲内となるように、弁16が操作される。弁16の操作を行うことにより、カソードオフガスの排出先が経路124又は129に切り替えられる。そのため、排気燃焼器8への比較的低温のカソードオフガスの流入が制御されるので、排気燃焼器8は適切な温度となり、触媒燃焼反応が適切に進行する。
 カソードオフガス排出経路の切替処理について、図8A、8Bを用いて説明する。
 図8Aには、カソードオフガス排出経路の切替処理のフローチャートが示されており、図8Bには、カソードオフガス排出経路の切替処理中の燃料電池スタック1の構成図が示されている。
 排気燃焼器8において酸化触媒反応が進む適切な温度範囲の上限温度をK1(燃焼上限温度)で、下限温度をK2(燃焼下限温度)と示すものとする。また、図8Bに示されているように、本切替処理では、燃料電池スタック1からのカソードオフガスの排出先が、経路124、又は、排気経路129に切り替えられる。
 ステップS711においては、排気燃焼器8の出口温度T6が燃焼下限温度K2以下であるか否かを判定する。排気燃焼器8の出口温度T6が燃焼下限温度K2以下である場合には(S711:Yes)、排気燃焼器8の温度の低下を抑制させる必要があると判断して、S712に進む。一方、排気燃焼器8の出口温度T6が燃焼下限温度K2よりも大きい場合には(S711:No)、S713に進む。
 ステップS712においては、弁16を操作して、燃料電池スタック1から経路123に排出されるカソードオフガスを、経路124でなく排気経路129から燃料電池システム100外へと排出する。このようにすることで、排気燃焼器8には、分岐経路115を介して起動燃焼器7から高温のカソードガスのみが供給されることになるので、排気燃焼器8の温度は低下が抑制され、酸化触媒反応が進行する温度範囲内となる。S712の処理を終えると、カソードオフガス排出経路の切替処理(S71)を終了する。
 ステップS713においては、排気燃焼器8の出口温度T6が燃焼上限温度K1以上であるか否かを判定する。排気燃焼器8の出口温度T6が燃焼上限温度K1以上である場合には、排気燃焼器8の温度の上昇を抑制する必要あると判断して、S714に進む。一方、排気燃焼器8の出口温度T6が燃焼下限温度K2よりも大きい場合には、排気燃焼器8は酸化触媒反応が進行する適切な温度範囲にあると判断して、カソードオフガス排出経路の切替処理(S71)の処理を終了する。
 ステップS714においては、弁16を操作して、燃料電池スタック1から経路123に排出されるカソードオフガスを、排気経路129でなく経路124を介して排気燃焼器8へと供給する。このようにすることで、排気燃焼器8には、分岐経路115を介して起動燃焼器7から高温のカソードガスだけでなく、経路123、124を介して燃料電池スタック1から低温のカソードオフガスが供給されることになるので、排気燃焼器8の温度は上昇が抑制され、酸化触媒反応が進行する温度範囲内となる。S714の処理を終えると、カソードオフガス排出経路(S71)の切替処理を終了する。
 第1実施形態によれば、以下の効果を得ることができる。
 第1実施形態の燃料電池スタック1を発電する燃料電池システム100によれば、カソードガスを、経路111、112、113、114(カソードガス供給路)を介して燃料電池スタック1に供給するコンプレッサー5と、カソードガス供給路に設けられた起動燃焼器7(第1燃焼器)と、燃料電池スタック1から排出されるアノードオフガス及びカソードオフガスを燃焼させる排気燃焼器8(第2燃焼器)と、カソードガス供給路において起動燃焼器7の上流にて分岐し、起動燃焼器7の下流にて合流する分岐経路116(第1分岐路)と、カソードガス供給路における起動燃焼器7の下流にて分岐し、燃料電池スタック1から排出されるカソードオフガスが排気燃焼器8へと向かう経路123、124(カソードオフガス排出路)へと合流する分岐経路115(第2分岐路)とを有する。
 また、燃料電池システム100は、分岐経路116(第1分岐路)の遮断と導通とを切り替える弁15(第1の弁)と、起動燃焼器7(第1燃焼器)からのカソードガスの排出先を、燃料電池スタック1、又は、分岐経路115(第2分岐路)を経た経路124(カソードオフガス排出路)のいずれかに切り替える弁13(第2の弁)と、を備える。
 燃料電池システム100の停止処理が開始されると燃料電池スタック1の温度が低下するため、排気燃焼器8の温度が低下してしまい、排気燃焼器8にて適切に触媒燃焼反応が進行しないおそれがある。そこで、燃料供給停止処理(S21)においては、弁15を操作して分岐経路116を導通させることで、コンプレッサー5から供給されるカソードガスを、分岐経路116を介して燃料電池スタック1に供給する(第1分岐路制御ステップ:S213)。そして、弁13を操作して、分岐経路115を導通させるとともに、起動燃焼器7から燃料電池スタック1へとカソードガスを供給されるカソードガスを、排気燃焼器8に供給する(第2分岐路制御ステップ:S214)。そして、排気燃焼器8を起動させる(第1燃焼器起動ステップ:S215)。
 このようにすることで、燃料電池スタック1には分岐経路116を介して低温のカソードガスが供給される。したがって、燃料電池スタック1には起動燃焼器7からの高温のカソードガスが供給されないので、燃料電池スタック1を効率よく冷却することができる。
 さらに、燃料電池スタック1が冷却されていたとしても、排気燃焼器8には起動燃焼器7を経た高温のカソードガスが供給されるので、排気燃焼器8の温度低下が抑制される。したがって、排気燃焼器8の触媒燃焼反応が適切に進行して、アノードオフガスに含まれる未燃ガスが燃料電池システム100外に漏洩することが抑制される。
 また、第1実施形態の燃料電池システム100によれば、経路123、124(カソードオフガス通路)における分岐経路115(第2分岐路)の合流点よりも上流にて分岐し、カソードオフガスを排気可能な排気経路129(排気路)を、さらに有する。
 また、燃料電池システム100は、燃料電池スタック1からのカソードオフガスの排出先を、排気燃焼器8(第2燃焼器)、又は、排気経路129(排気路)を経た燃料電池システム100の外部のいずれかに切り替える弁16(排気弁)を備える。
 燃料電池システム100の温度Tcの冷却が進むと、カソードオフガスの温度が低下する。そのため、排気燃焼器8は、分岐経路115を介して起動燃焼器7からの高温の排気が供給されていたとしても、冷却中の燃料電池スタック1から低温のカソードオフガスが供給されるため、酸化触媒反応が進行しない温度になってしまう。そこで、燃料電池が所定の温度(排出経路変更温度Tc1)を下回る場合には、弁16を制御して排気経路129を導通させる。このようにすることで、燃料電池スタック1から経路123へ排出される低温のカソードオフガスを、経路124を経て排気燃焼器8に供給するのでなく、排気経路129から燃料電池スタック1外へ排出させる(排気路変更ステップ:S23、S231)。そのため、排気燃焼器8は、温度の低下が抑制されて適切な酸化触媒反応が進行する温度範囲となるので、触媒燃焼反応が適切に進行する。このようにすることで、アノードオフガスに含まれる未燃ガスが燃料電池システム100外に漏洩することが抑制される。
 なお、変形例として、排気燃焼器8の温度に応じて弁16を操作することで、カソードオフガスを、排気経路129から燃料電池システム100外へ排出するか、又は、経路124を介して排気燃焼器8へ供給するかの切り替え制御(排気路切替ステップ:S71)がさらに行われてもよい。例えば、排気燃焼器8の温度が低くなり、触媒反応が進行可能な下限温度(燃焼下限温度)を下回ってしまった場合には(S711:Yes)、弁16を制御して排気経路129を導通させることで、カソードオフガスを排気経路129から燃料電池システム100外へ排出する(S712)。そのため、排気燃焼器8への低温のカソードオフガスの流入が抑制されて、排気燃焼器8の温度は触媒反応が進行可能な下限温度を上回るので、適切に酸化触媒反応が進行する。一方、排気燃焼器8の温度が高くなり、触媒反応が行われる上限温度(燃焼上限温度)を上回ってしまった場合には(S713:Yes)、弁16を制御して排気経路129を導通させることで、起動燃焼器7から高温のカソードガスのみが分岐経路115を経て排気燃焼器8に供給される(S714)。そのため、排気燃焼器8の温度は酸化触媒反応が適切に進行可能な上限温度を下回り、適切に触媒反応が進行する。
 また、第1実施形態の燃料電池システム100によれば、経路112(カソードガス供給路)における分岐経路116(第2分岐路)の分岐点よりも上流側に、排気燃焼器8(第2燃焼器)からの排気を利用した空気熱交換器6をさらに有する。
 このような空気熱交換器6が設けられることにより、燃料電池システム100の停止時には、空気熱交換器6にて加熱されたカソードガスが燃料電池スタック1に供給されることになる。そのため、燃料電池スタック1が急激に冷却されることが妨げられるので、燃料電池スタック1におけるアノード極などのクラックを防止することができる。
 また、第1実施形態の燃料電池システム100によれば、経路103(アノードガス供給路)から分岐し、燃料電池スタック1から排気燃焼器8(第2燃焼器)までの間の経路121、122(アノードオフガス排出路)に合流する分岐経路105(第3分岐路)をさらに有する。
 また、燃料電池システム100は、カソードガスの供給先を、燃料電池スタック1、又は、分岐経路105(第3の分岐路)を経た経路124(アノードオフガス排出路)のいずれかに切り替える弁11(第3の弁)を備える。
 燃料電池システム100の停止時に、弁11を操作して分岐経路105を導通させると、燃料の供給を停止した後において燃料供給系統内に残る燃料を、燃料電池スタック1ではなく、排気燃焼器8に供給することができる(第3分岐路導通ステップ:S251)。したがって、燃料の供給の停止後においては、燃料電池スタック1へ燃料が全く供給されなくなるため、燃料電池スタック1の発電をより早く停止することができるので、燃料電池システム100の停止時間を短くすることができる。さらに、燃料供給系統に残る燃料を排気燃焼器8にて使用できるので、燃料の使用量を抑制することができる。
 (第2実施形態)
 第2実施形態では、燃料電池スタック1を積極的に冷却させる例について説明する。
 図9は、第2実施形態の燃料電池システム100の通常運転時の構成を示す図である。この図に示した構成は、図1に示した第1実施形態の燃料電池システム100の構成と比較すると、経路114が空気熱交換器6の上流から分岐している点が異なる。
 図10は、本実施形態の燃料電池システム100における停止処理を示す図である。この図の処理は、図7に示した第1実施形態の他の停止制御処理と比較すると、ステップS23の処理が削除されている。なお、燃料供給停止処理(S21)、カソードオフガス排出経路の切替処理(S71)、アノードガス供給停止処理(S25)、終了処理(S27)においては、第1実施形態と同じ処理が行われる。
 このように、燃料供給停止処理(S21)の後であって、燃料電池スタックの温度Tcは停止温度Tc2となり(S24:Yes)、アノードガス供給停止処理(S25)が開始されるまでの間、S71の切替処理が行われる。そのため、排気燃焼器8は、常に、酸化触媒反応が適切に進行する温度となるので、アノードオフガスに含まれる未燃ガスの大気への排出が抑制される。
 第2実施形態によれば、以下の効果を得ることができる。
 第2実施形態の燃料電池システム100によれば、前記カソードガス供給路における第1分岐路の分岐点と起動燃焼器7(第1燃焼器)との間に、排気燃焼器8(第2燃焼器)からの排気を利用した空気熱交換器6をさらに有する。
 このような構成となることにより、空気熱交換器6を介さない常温のカソードガスが燃料電池スタック1に供給されることになる。したがって、燃料電池スタック1を急冷できるので、燃料電池システム100の停止時間を短くすることができる。
 また、図10に示した停止制御処理は、図7に示した第1実施形態の停止制御処理と比較すると、カソードオフガス排出経路の変更処理(S23)が削除されている。このようにすることで、制御部10の処理負荷を軽減することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記実施形態は、適宜組み合わせ可能である。
 本国際出願は,2015年12月15日に日本国特許庁に出願された特願2015-244487に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (12)

  1.  アノードガス及びカソードガスの供給を受けて発電する固体酸化物型の燃料電池を備える燃料電池システムであって、
     前記カソードガスを、カソードガス供給路を介して前記燃料電池に供給するカソードガス供給部と、
     前記カソードガス供給路に設けられる第1燃焼器と、
     前記燃料電池から排出されるアノードオフガス及びカソードオフガスを燃焼させる第2燃焼器と、
     前記カソードガス供給路において、前記第1燃焼器の上流から分岐して前記第1燃焼器の下流へと合流する第1分岐路と、
     前記カソードガス供給路における前記第1燃焼器の下流から分岐し、前記燃料電池から前記カソードオフガスを前記第2燃焼器に排出するカソードオフガス排出路へと合流する第2分岐路と、
     を有する燃料電池システム。
  2.  請求項1に記載の燃料電池システムであって、
     前記第1分岐路の遮断と導通とを切り替える第1の弁と、
     前記第1燃焼器からの前記カソードガスの排出先を、前記燃料電池、又は、前記第2分岐路を経た前記カソードオフガス排出路のいずれかに切り替える第2の弁を、
     さらに有する燃料電池システム。
  3.  請求項1または2に記載の燃料電池システムであって、
     前記カソードオフガス排出路における前記第2分岐路の合流点よりも上流から分岐して、前記カソードオフガスを前記燃料電池システムの外部へと排気する排気路を、
     さらに有する燃料電池システム。
  4.  請求項3に記載の燃料電池システムであって、
     前記燃料電池からの前記カソードオフガスの排出先を、前記第2燃焼器、又は、前記排気路を経た前記燃料電池システムの外部のいずれかに切り替える排気弁を、
     さらに有する燃料電池システム。
  5.  請求項1から4のいずれか1項に記載の燃料電池システムであって、
     前記カソードガス供給路における前記第1分岐路の分岐点の上流に設けられ、前記カソードガスを加熱する熱交換機を、
     さらに有する燃料電池システム。
  6.  請求項1から4のいずれか1項に記載の燃料電池システムであって、
     前記カソードガス供給路における前記第1分岐路の分岐点と前記第1燃焼器との間に、前記カソードガスを加熱する熱交換機を、
     さらに有する燃料電池システム。
  7.  請求項1から6のいずれか1項に記載の燃料電池システムであって、
     前記燃料電池へ前記アノードガスを供給するアノードガス供給路から分岐し、前記燃料電池から前記アノードオフガスを前記第2燃焼器に排出するアノードオフガス排出路に合流する第3分岐路を、
     さらに有する燃料電池システム。
  8.  請求項7に記載の燃料電池システムであって、
     前記カソードガスの供給先を、前記燃料電池、又は、前記第3分岐路を経た前記アノードオフガス排出路のいずれかに切り替える第3の弁を、
     さらに有する燃料電池システム。
  9.  アノードガス及びカソードガスの供給を受けて発電する固体酸化物型の燃料電池と、
     前記カソードガスを、カソードガス供給路を介して、前記燃料電池に供給するカソードガス供給部と、
     前記カソードガス供給路に設けられる第1燃焼器と、
     前記燃料電池から排出されるアノードオフガス及びカソードオフガスを燃焼させる第2燃焼器と、
     前記カソードガス供給路において、前記第1燃焼器の上流から分岐して前記第1燃焼器の下流へと合流する第1分岐路と、
     前記カソードガス供給路における前記第1燃焼器の下流から分岐し、前記燃料電池から前記カソードオフガスを前記第2燃焼器に排出するカソードオフガス排出路へと合流する第2分岐路と、
     を有する燃料電池システムの制御方法であって、
     前記燃料電池システムの停止中に、
     前記第1分岐路を導通させることで、前記カソードガス供給部から供給される前記カソードガスを、前記第1分岐路を介して前記燃料電池に供給する第1分岐路制御ステップと、
     前記第2分岐路を導通させるとともに、前記カソードガス供給路における前記第1燃焼器から前記燃料電池までの間を遮断することで、前記カソードガス供給部から前記第1燃焼器を介して前記第2燃焼器に前記カソードガスを供給する第2分岐路制御ステップと、
     前記第1燃焼器を起動する第1燃焼器起動ステップと、
     を実行する制御方法。
  10.  請求項9に記載の燃料電池システムの制御方法であって、
     前記燃料電池システムは、
      前記カソードオフガス排出路における前記第2分岐路の合流点よりも上流から分岐して、前記カソードオフガスを前記燃料電池システム外へと排気する排気路をさらに有し、
     前記燃料電池システムの停止中に、
     前記燃料電池が所定の温度を下回る場合には、前記排気路を導通させることで、前記燃料電池から前記排気路を介して前記燃料電池システム外へと前記カソードオフガスを排出させる排気路変更ステップを、
     さらに実行する制御方法。
  11.  請求項9に記載の燃料電池システムの制御方法であって、
     前記燃料電池システムは、
      前記カソードオフガス排出路における前記第2分岐路の合流点よりも上流から分岐して、前記カソードオフガスを前記燃料電池システム外へと排気する排気路をさらに有し、
     前記燃料電池システムの停止中に、
     前記第2燃焼器が燃焼上限温度を上回る場合には、前記排気路を遮断することで、前記燃料電池から前記第2燃焼器に前記カソードオフガスを排出させ、前記第2燃焼器が燃焼下限温度を下回る場合には、前記排気路を導通させることで、前記燃料電池から前記排気路を介して前記燃料電池システム外へと前記カソードオフガスを排出させる排気路切替ステップを、
     さらに実行する制御方法。
  12.  請求項9から11のいずれか1項に記載の燃料電池システムの制御方法であって、
     前記燃料電池システムは、
      前記燃料電池へ前記アノードガスを供給するアノードガス供給路から分岐し、前記燃料電池からアノードオフガスを前記第2燃焼器に排出するアノードオフガス排出路に合流する第3分岐路をさらに有し、
     前記燃料電池システムの停止中に、
     第3分岐路を導通させることにより、前記アノードガスの前記燃料電池への供給を停止するとともに、前記アノードガスを前記第2燃焼器へ供給する第3分岐路導通ステップを、
     さらに実行する制御方法。
PCT/JP2016/078211 2015-12-15 2016-09-26 燃料電池システム及びその制御方法 WO2017104210A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680070895.3A CN108370047B (zh) 2015-12-15 2016-09-26 燃料电池系统及其控制方法
EP16875196.4A EP3392951B1 (en) 2015-12-15 2016-09-26 Fuel cell system and control method therefor
JP2017556365A JP6555361B2 (ja) 2015-12-15 2016-09-26 燃料電池システム及びその制御方法
US16/061,413 US10756359B2 (en) 2015-12-15 2016-09-26 Fuel cell system and controlling method of same
CA3008768A CA3008768C (en) 2015-12-15 2016-09-26 Fuel cell system and controlling method of same
BR112018012004-9A BR112018012004B1 (pt) 2015-12-15 2016-09-26 Sistema de células de combustível e método de controle do mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-244487 2015-12-15
JP2015244487 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017104210A1 true WO2017104210A1 (ja) 2017-06-22

Family

ID=59056495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078211 WO2017104210A1 (ja) 2015-12-15 2016-09-26 燃料電池システム及びその制御方法

Country Status (7)

Country Link
US (1) US10756359B2 (ja)
EP (1) EP3392951B1 (ja)
JP (1) JP6555361B2 (ja)
CN (1) CN108370047B (ja)
BR (1) BR112018012004B1 (ja)
CA (1) CA3008768C (ja)
WO (1) WO2017104210A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212591A (ja) * 2018-06-08 2019-12-12 日産自動車株式会社 燃料電池システムの制御方法及び燃料電池システム
JP2021093283A (ja) * 2019-12-10 2021-06-17 日産自動車株式会社 燃料電池システム
JP7408855B1 (ja) 2022-07-05 2024-01-05 三菱重工業株式会社 燃料電池システムおよび燃料電池システムの運転方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521948B1 (de) * 2018-11-21 2020-07-15 Avl List Gmbh Brennstoffzellensystem und Verfahren zum Temperieren eines Brennstoffzellensystems
CN111969229B (zh) * 2019-01-07 2021-08-31 中氢新能技术有限公司 一种甲醇燃料电池的排气阀角度的控制系统
CN114556645A (zh) * 2019-08-30 2022-05-27 日产自动车株式会社 燃料电池系统以及燃料电池系统的控制方法
WO2021090041A1 (ja) * 2019-11-07 2021-05-14 日産自動車株式会社 燃料電池システム
US20230116672A1 (en) * 2021-10-12 2023-04-13 Saudi Arabian Oil Company Solid oxide fuel cell systems and methods of operating solid oxide fuel cell systems
CN117080504B (zh) * 2023-10-13 2024-01-26 成都岷山绿氢能源有限公司 一种燃料电池系统以及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110212A (ja) * 2000-09-29 2002-04-12 Nissan Motor Co Ltd 燃料改質装置
JP2004111243A (ja) * 2002-09-19 2004-04-08 Nissan Motor Co Ltd 燃料電池の暖機システム
JP2014207061A (ja) * 2013-04-10 2014-10-30 本田技研工業株式会社 燃料電池システム及びその制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820992B2 (ja) 2002-01-08 2006-09-13 日産自動車株式会社 燃料電池システム
JP4464692B2 (ja) * 2004-01-19 2010-05-19 トヨタ自動車株式会社 燃料電池システム
US7422810B2 (en) * 2004-01-22 2008-09-09 Bloom Energy Corporation High temperature fuel cell system and method of operating same
JPWO2006049299A1 (ja) * 2004-11-08 2008-05-29 松下電器産業株式会社 燃料電池システム
JP5373256B2 (ja) 2005-08-01 2013-12-18 カシオ計算機株式会社 電源システム及び電源システムの制御方法並びに電源システムを備える電子機器
GB0621784D0 (en) 2006-11-01 2006-12-13 Ceres Power Ltd Fuel cell heat exchange systems and methods
EP2220716A1 (en) * 2007-12-17 2010-08-25 Shell Internationale Research Maatschappij B.V. Fuel cell-based process for generating electric power
US20090253007A1 (en) 2008-04-04 2009-10-08 Mergler Christopher M Method and apparatus for anode oxidation prevention and cooling of a solid-oxide fuel cell stack
WO2011124240A1 (en) * 2010-04-09 2011-10-13 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Angewandten Forschung E.V. System having high-temperature fuel cells
JP6248376B2 (ja) 2012-06-19 2017-12-20 日産自動車株式会社 固体酸化物型燃料電池システム
EP3147979B1 (en) 2014-05-21 2020-06-17 Panasonic Corporation Solid oxide fuel cell system and stopping method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110212A (ja) * 2000-09-29 2002-04-12 Nissan Motor Co Ltd 燃料改質装置
JP2004111243A (ja) * 2002-09-19 2004-04-08 Nissan Motor Co Ltd 燃料電池の暖機システム
JP2014207061A (ja) * 2013-04-10 2014-10-30 本田技研工業株式会社 燃料電池システム及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392951A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212591A (ja) * 2018-06-08 2019-12-12 日産自動車株式会社 燃料電池システムの制御方法及び燃料電池システム
JP7102960B2 (ja) 2018-06-08 2022-07-20 日産自動車株式会社 燃料電池システムの制御方法及び燃料電池システム
JP2021093283A (ja) * 2019-12-10 2021-06-17 日産自動車株式会社 燃料電池システム
JP7353158B2 (ja) 2019-12-10 2023-09-29 日産自動車株式会社 燃料電池システム
JP7408855B1 (ja) 2022-07-05 2024-01-05 三菱重工業株式会社 燃料電池システムおよび燃料電池システムの運転方法
WO2024009552A1 (ja) * 2022-07-05 2024-01-11 三菱重工業株式会社 燃料電池システムおよび燃料電池システムの運転方法

Also Published As

Publication number Publication date
JPWO2017104210A1 (ja) 2018-09-27
JP6555361B2 (ja) 2019-08-07
US20190372136A1 (en) 2019-12-05
CN108370047B (zh) 2020-05-26
EP3392951A4 (en) 2018-10-24
BR112018012004B1 (pt) 2021-07-20
CN108370047A (zh) 2018-08-03
EP3392951A1 (en) 2018-10-24
CA3008768C (en) 2019-04-30
EP3392951B1 (en) 2020-03-18
BR112018012004A2 (ja) 2018-12-04
US10756359B2 (en) 2020-08-25
CA3008768A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6555361B2 (ja) 燃料電池システム及びその制御方法
US8916304B2 (en) Hydrogen generator and fuel cell system including same
JP6627887B2 (ja) 燃料電池システム、及び燃料電池システムの制御方法
WO2017104213A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
CN108475799B (zh) 燃料电池系统以及燃料电池系统的控制方法
CN108370050B (zh) 燃料电池系统的控制方法以及燃料电池系统
WO2017098787A1 (ja) 固体酸化物型燃料電池システム、及び固体酸化物型燃料電池システムの換気方法
JP2015135735A (ja) 燃料電池システム
JP2005166439A (ja) 燃料電池システムと、その起動方法
JP6620890B2 (ja) 燃料電池システム、及び、燃料電池システムの制御方法
JP2009217951A (ja) 燃料電池システム
US9865892B2 (en) Fuel cell system and method for operating the same
JP5274003B2 (ja) 燃料電池システム
JP4773790B2 (ja) 燃料電池システム
JP2006040828A (ja) 燃料電池のオフガス処理装置
JP2008293755A (ja) 燃料電池システム及びその運転方法
JP2015215980A (ja) 燃料電池システム
JP5942092B2 (ja) 燃料電池システム
JP2022188468A (ja) 燃料電池システム
JP2016152061A (ja) 燃料電池システム及びその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556365

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3008768

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012004

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016875196

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875196

Country of ref document: EP

Effective date: 20180716

ENP Entry into the national phase

Ref document number: 112018012004

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180613