JP2014207061A - 燃料電池システム及びその制御方法 - Google Patents

燃料電池システム及びその制御方法 Download PDF

Info

Publication number
JP2014207061A
JP2014207061A JP2013082461A JP2013082461A JP2014207061A JP 2014207061 A JP2014207061 A JP 2014207061A JP 2013082461 A JP2013082461 A JP 2013082461A JP 2013082461 A JP2013082461 A JP 2013082461A JP 2014207061 A JP2014207061 A JP 2014207061A
Authority
JP
Japan
Prior art keywords
fuel cell
ion exchange
cell system
air
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013082461A
Other languages
English (en)
Other versions
JP6100066B2 (ja
Inventor
暁人 杠
Akihito Yuzuriha
暁人 杠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013082461A priority Critical patent/JP6100066B2/ja
Priority to US14/782,503 priority patent/US9660282B2/en
Priority to PCT/JP2014/054781 priority patent/WO2014167907A1/en
Priority to EP14709760.4A priority patent/EP2984694B1/en
Publication of JP2014207061A publication Critical patent/JP2014207061A/ja
Application granted granted Critical
Publication of JP6100066B2 publication Critical patent/JP6100066B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/14Controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04656Other electric variables, e.g. resistance or impedance of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04686Failure or abnormal function of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04843Humidity; Water content of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】イオン交換効率の向上を図るとともに、耐久性の向上、部品点数の削減及びメンテナンス工数の削減を図り、しかも水への空気の混入を可及的に抑制することを可能にする。【解決手段】燃料電池システム10を構成する制御装置22は、電気導電率計164で計測されたイオン交換装置78の内部の水の電気伝導率と予め設定された電気伝導率範囲とを比較する導電率比較部194と、前記導電率比較部194による比較結果に基づいて、前記イオン交換装置78の内部に空気が混入しているか否かの判定、及び前記イオン交換装置78のイオン交換効率が低下しているか否かの判定を任意に行うイオン交換環境判定部196と、を備えている。【選択図】図1

Description

本発明は、燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池が複数積層された燃料電池スタックを備える燃料電池システム及びその制御方法に関する。
通常、固体酸化物形燃料電池(SOFC)は、固体電解質に酸化物イオン導電体、例えば、安定化ジルコニアを用いている。固体電解質の一方側にアノード電極が、前記固体電解質の他方側にカソード電極が、それぞれ配設された電解質・電極接合体(MEA)を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、通常、電解質・電極接合体とセパレータとが所定数だけ積層された燃料電池スタックとして使用されている。
上記の燃料電池に供給される燃料ガスは、通常、改質装置によって炭化水素系の原燃料から生成される水素ガスが使用されている。改質装置では、一般的に、メタンやLNG等の化石燃料等の炭化水素系の原燃料から改質原料ガスを得た後、この改質原料ガスに、例えば、水蒸気改質を施すことにより、改質ガス(燃料ガス)が生成されている。
上記の水蒸気改質では、改質反応に使用される水蒸気量に対応した水を補給する必要がある。このため、外部から必要な水量の水を供給する方式が採用されているが、これに代えて、燃料電池の発電により発生した排ガスを凝縮させることにより、改質に必要な水を完全循環(水自立)させる水回収方式が注目されている。その際、凝縮された水から不純物を除去する必要があり、水処理装置、例えば、イオン交換装置が採用されている。
例えば、特許文献1に開示されている燃料電池装置は、図13に示すように、燃料電池1aと、燃料ガスを生成するための改質部2aと、前記改質部2aに原燃料を供給するための原燃料供給手段3aと、前記改質部2aに酸素含有ガスを供給するための酸素含有ガス供給手段4aと、前記改質部2aに水を供給するための水ポンプ5aとを具備している。燃料電池装置は、さらに改質部2aに供給される水を処理するための水処理手段と、定常運転時は、前記改質部2aにて水蒸気改質を行わせるように制御する制御部6aとを具備している。
制御部6aでは、水処理手段と改質部2aとの間に具備する水質検出手段7aからの信号により、前記改質部2aに供給される水の水質が悪化したと判定した場合には、水ポンプ5aによる水の供給を停止している。そして、改質部2aにて、原燃料供給手段3aにより供給される原燃料と、酸素含有ガス供給手段4aにより供給される酸素含有ガスとで、部分酸化改質を行わせるように制御している。
また、特許文献2に開示されている燃料電池装置では、図14に示すように、排ガスと水とで熱交換を行う熱交換器1bと、前記熱交換器1bでの熱交換により生じる凝縮水を改質器2bに向けて供給するための凝縮水供給管3bとを備えている。凝縮水供給管3bには、弁4bが設けられるとともに、熱交換器1bと前記弁4bとの間には、凝縮水の導電率を測定するための導電率センサ5bが配設されている。
燃料電池装置は、制御装置6bを備えている。制御装置6bは、導電率センサ5bにより計測される凝縮水の導電率が所定の値以下の場合に、凝縮水を改質器2bに向けて供給するように弁4bを制御している。一方、制御装置6bは、導電率センサ5bにより計測される凝縮水の導電率が所定の値より高い場合に、凝縮水を排水するように弁4bを制御している。
また、特許文献3に開示されている燃料電池装置は、図15に示すように、水素と酸素の反応により発電し、水蒸気を含むガスを排出する燃料電池スタック1cと、前記ガスを冷却して前記水蒸気を凝縮し、凝縮水を生成する凝縮部2cと、上水を供給する上水供給部3cとを備えている。
燃料電池装置は、さらに凝縮部2cで生成される凝縮水と、上水供給部3cから供給される上水と、を統合して原料水として蓄積するタンク4cと、前記原料水を浄化するフィルタ5cと、前記フィルタ5cを通過後の原料水の導電率を計測する導電率計測部6cと、コントローラ7cとを備えている。コントローラ7cは、導電率計測部6cでの計測結果に基づき、フィルタ5cの寿命の到来を検出する第1検出部、上水供給部3cから供給される上水の供給量を計測する供給量計測部、及び前記供給量計測部での計測結果に基づき、前記フィルタ5cの寿命の到来を検出する第2検出部としての機能を有している。
特開2008−243598号公報 特開2011−029116号公報 特開2011−249185号公報
上記の特許文献1では、改質部2aに供給される水の水質が悪化したか否かの判定を行うものの、前記改質部2aに供給される前記水に空気が混入しているか否かの判定を行うことができない。このため、正確且つ安定した量の改質水を供給することができないという問題がある。しかも、水蒸気改質器の他に、部分酸化改質器を配置しなければならず、部品点数の増加によりコストが高騰するという問題がある。
また、上記の特許文献2では、改質器2bに供給される凝縮水に空気が混入しているか否かの判定を行うことができない。従って、正確且つ安定した量の改質水を供給することができないという問題がある。しかも、凝縮水の導電率が高い場合に排水するため、改質水が不足するおそれがある。これを解決するためには、例えば、外部水浄化装置を配置しなければならず、部品点数の増加によりコストが高騰するという問題がある。
さらに、上記の特許文献3では、改質器に供給される凝縮水に空気が混入しているか否かの判定を行うことができない。これにより、正確且つ安定した量の改質水を供給することができないという問題がある。しかも、フィルタ5cを通過後の原料水の導電率を計測する導電率計測部6cと、上水供給部3cから供給される上水の供給量を計測する供給量計測部とに基づいて、前記フィルタ5cの寿命の到来を判断している。このため、部品点数の増加によりコストが高騰するという問題がある。
本発明は、この種の問題を解決するものであり、イオン交換効率の向上を図るとともに、耐久性の向上、部品点数の削減及びメンテナンス工数の削減を図り、しかも水への空気の混入を可及的に抑制することが可能な燃料電池システム及びその制御方法を提供することを目的とする。
本発明は、燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池が複数積層された燃料電池スタックと、前記燃料電池から排出される排ガスに含まれる水を通すためのイオン交換装置と、前記イオン交換装置の内部の前記水の電気伝導率を計測する導電率計測部と、前記燃料電池スタックの発電量を制御する制御装置と、を備える燃料電池システム及びその制御方法に関するものである。
この燃料電池システムでは、制御装置は、導電率計測部で計測された電気伝導率と予め設定された電気伝導率範囲とを比較する導電率比較部と、前記導電率比較部による比較結果に基づいて、イオン交換装置の内部に空気が混入しているか否かの判定、及び前記イオン交換装置のイオン交換効率が低下しているか否かの判定を任意に行うイオン交換環境判定部と、を備えている。
また、この燃料電池システムでは、イオン交換環境判定部により、イオン交換装置の内部に空気が混入していると判定された際、又は、前記イオン交換装置の効率が低下していると判定された際、燃料電池スタックの発電を停止させる発電停止部を備えることが好ましい。このため、燃料電池システムの点検が必要である際に、予め燃料電池スタックの発電が停止されているので、停止に要する時間が短縮され、部品交換等の作業が迅速且つ円滑に遂行可能になる。
さらに、この燃料電池システムでは、イオン交換環境判定部は、計測された電気伝導率が、予め設定された電気伝導率範囲の下限値未満であることが検出された際、イオン交換装置の内部に空気が混入していると判定する空気混入判定部を有することが好ましい。従って、水の電気伝導率を検出するだけで、前記水への空気の混入を検知することが可能になる。これにより、比較的簡単且つ経済的な構成で、イオン交換装置の下流に空気が流通することを抑制することができる。
このため、空気の巻き込みによる水ポンプの性能低下、改質器への空気の混入による改質触媒の酸化、電極への炭素付着等による燃料電池の発電電圧の不安定化を抑制することが可能になるとともに、メンテナンス工数の削減が容易に図られる。
さらにまた、この燃料電池システムでは、イオン交換環境判定部は、計測された電気伝導率が、予め設定された電気伝導率範囲の上限値を超過したことが検出された際、イオン交換装置のイオン交換効率が低下していると判定する効率低下判定部を有することが好ましい。従って、比較的簡単且つ経済的な構成で、イオン交換装置の交換時期を検知することができ、点検内容の早期特定が可能になって、メンテナンス工数の削減が容易に図られる。
また、この燃料電池システムでは、イオン交換環境判定部は、計測された電気伝導率が、予め設定された電気伝導率範囲内であることが検出された際、燃料電池スタックの発電を継続させる発電継続判定部を有することが好ましい。これにより、電気伝導率が適正な場合に、燃料電池スタックの発電が継続されるため、水に関連する不具合の発生を可及的に抑制することが可能になる。このため、燃料電池システムの耐久性が良好に向上する。
さらに、この燃料電池システムでは、イオン交換装置は、少なくとも水蒸気改質に用いられる水に含まれる不純物を除去するために、固体酸化物形燃料電池に適用されることが好ましい。イオン交換装置は、水蒸気改質を行う固体酸化物形燃料電池に最適である。
さらにまた、この制御方法では、導電率計測部で計測された電気伝導率と予め設定された電気伝導率範囲とを比較する導電率比較工程と、導電率比較部による比較結果に基づいて、イオン交換装置の内部に空気が混入しているか否かの判定、及び前記イオン交換装置のイオン交換効率が低下しているか否かの判定を任意に行うイオン交換環境判定工程と、を有している。
また、この制御方法では、イオン交換装置の内部に空気が混入していると判定された際、又は、前記イオン交換装置の効率が低下していると判定された際、燃料電池スタックの発電を停止させる発電停止工程を有することが好ましい。従って、燃料電池システムの点検が必要である際に、予め燃料電池スタックの発電が停止されているので、停止に要する時間が短縮され、部品交換等の作業が迅速且つ円滑に遂行することができる。
さらに、この制御方法では、計測された電気伝導率が、予め設定された電気伝導率範囲の下限値未満であることが検出された際、イオン交換装置の内部に空気が混入していると判定することが好ましい。これにより、水の電気伝導率を検出するだけで、前記水への空気の混入を検知することが可能になる。このため、比較的簡単且つ経済的な構成で、イオン交換装置の下流に空気が流通することを抑制することができる。従って、空気の巻き込みによる水ポンプの性能低下、改質器への空気の混入による改質触媒の酸化、電極への炭素付着等による燃料電池の発電電圧の不安定化を抑制することが可能になるとともに、メンテナンス工数の削減が容易に図られる。
さらにまた、この制御方法では、計測された電気伝導率が、予め設定された電気伝導率範囲の上限値を超過したことが検出された際、イオン交換装置のイオン交換効率が低下していると判定することが好ましい。これにより、比較的簡単且つ経済的な構成で、イオン交換装置の交換時期を検知することができ、点検内容の早期特定が可能になって、メンテナンス工数の削減が容易に図られる。
また、この制御方法では、計測された電気伝導率が、予め設定された電気伝導率範囲内であることが検出された際、燃料電池スタックの発電を継続させることが好ましい。このため、電気伝導率が適正な場合に、燃料電池スタックの発電が継続されるため、水に関連する不具合の発生を可及的に抑制することが可能になる。従って、燃料電池システムの耐久性が良好に向上する。
さらに、この制御方法では、イオン交換装置は、少なくとも水蒸気改質に用いられる水に含まれる不純物を除去するために、固体酸化物形燃料電池に適用されることが好ましい。イオン交換装置は、水蒸気改質を行う固体酸化物形燃料電池に最適である。
本発明によれば、イオン交換装置の内部の水の電気伝導率を計測するだけで、前記イオン交換装置の内部に空気が混入しているか否かの判定、及び前記イオン交換装置のイオン交換効率が低下しているか否かの判定を任意に行うことができる。このため、簡単且つ経済的な構成で、メンテナンス工数の削減が容易に図られる。
しかも、導電率計測部により計測された電気伝導率が低い場合に、イオン交換装置の内部に空気が混入していると判定することにより、比較的簡単且つ経済的な構成で、水への空気の混入を検知することが可能になる。従って、空気の巻き込みによる水ポンプの性能低下、改質器への空気の混入による改質触媒の酸化、電極への炭素付着等による燃料電池の発電電圧の不安定化を抑制することが可能になるとともに、メンテナンス工数の削減が容易に図られる。
さらに、導電率計測部により計測された電気伝導率が高い場合に、イオン交換装置のイオン交換効率が低下していると判定することにより、比較的簡単且つ経済的な構成で、前記イオン交換装置の交換時期を検知することができる。これにより、点検内容の早期特定が可能になって、メンテナンス工数の削減が容易に図られる。
本発明の第1の実施形態に係る燃料電池システムの概略構成説明図である。 前記燃料電池システムの一方の側部側からの概略斜視説明図である。 前記燃料電池システムの他方の側部側からの概略斜視説明図である。 前記燃料電池システムの概略正面説明図である。 前記燃料電池システムを構成するイオン交換装置の概略斜視説明図である。 前記イオン交換装置の縦断面説明図である。 前記イオン交換装置に電気導電率計が装着された状態の縦断面説明図である。 前記イオン交換装置に空気排出配管が装着された状態の縦断面説明図である。 前記イオン交換装置にドレイン排出配管が装着された状態の縦断面説明図である。 前記電気導電率計による検出結果に基づいて、前記イオン交換装置のステータスを検知する方法を説明するフローチャートである。 前記方法の処理説明図である。 本発明の第2の実施形態に係る燃料電池システムを構成するイオン交換装置の縦断面説明図である。 特許文献1の燃料電池装置の概略構成説明図である。 特許文献2の燃料電池装置の概略構成説明図である。 特許文献3の燃料電池装置の概略構成説明図である。
図1に示すように、本発明の第1の実施形態に係る燃料電池システム10は、定置用として使用されるが、その他、車載用等の種々の用途にも用いられている。
燃料電池システム10は、燃料ガス(例えば、水素ガスにメタン、一酸化炭素が混合した気体)と酸化剤ガス(空気)との電気化学反応により発電する燃料電池モジュール(SOFCモジュール)12と、前記燃料電池モジュール12に炭化水素を主体とする原燃料(例えば、都市ガス)である前記燃料ガスを供給する燃料ガス供給装置14と、前記燃料電池モジュール12に前記酸化剤ガスを供給する酸化剤ガス供給装置16と、前記燃料電池モジュール12に水を供給する水供給装置18と、前記燃料電池モジュール12で発生した直流電力を要求仕様電力に変換する電力変換装置20と、前記燃料電池モジュール12の発電量を制御する制御装置22とを備え、これらが単一の筐体24に収容される(図2〜図4参照)。
燃料電池モジュール12は、図1に示すように、複数の固体酸化物形の燃料電池26が鉛直方向(又は水平方向)に積層される燃料電池スタック28を備える。燃料電池26は、図示しないが、例えば、安定化ジルコニア等の酸化物イオン導電体で構成される固体電解質(固体酸化物)をアノード電極とカソード電極とで挟んで構成される電解質・電極接合体(MEA)30とセパレータ32とを積層して構成される。
燃料電池モジュール12は、原燃料と水蒸気との混合ガスを改質して燃料ガス(改質ガス)を生成するとともに、燃料電池スタック28に前記燃料ガスを供給する改質器34と、水を蒸発させるとともに、水蒸気を前記改質器34に供給する蒸発器36と、燃焼ガスとの熱交換により酸化剤ガスを昇温させるとともに、前記燃料電池スタック28に前記酸化剤ガスを供給する熱交換器38と、前記燃料電池スタック28から排出される前記燃料ガスである燃料排ガスと前記酸化剤ガスである酸化剤排ガスとを燃焼させ、前記燃焼ガスを発生させる排ガス燃焼器40、前記原燃料と前記酸化剤ガスとを燃焼させて前記燃焼ガスを発生させる起動用燃焼器42とを備える。
燃料ガス供給装置14は、都市ガス(13A)を改質器34に供給する原燃料通路44を備える。原燃料通路44の途上には、一対の調整弁46a、46bが調圧器48を介装して配置される。原燃料通路44には、調整弁46bの下流に燃料ポンプ50が設けられるとともに、前記燃料ポンプ50の下流には、バッファタンク52、流量センサ54及び脱硫器56が、順次、配設される。原燃料通路44には、調整弁46aと調圧器48との間に位置して原燃料分岐通路58が設けられる。この原燃料分岐通路58は、起動用燃焼器42に接続されるとともに、途上に調整弁46cが配設される。
酸化剤ガス供給装置16は、空気供給管60を備える。空気供給管60には、上流から下流に向かって、集塵フィルタ62、流量センサ64及び空気ポンプ66が配置され、前記空気供給管60は、熱交換器38に接続される。空気供給管60から空気分岐通路68が分岐し、前記空気分岐通路68は、バーナ用ブロア70を配設して起動用燃焼器42に接続される。起動用燃焼器42は、例えば、バーナを備えており、上記のように、原燃料及び空気が供給される。
水供給装置18は、凝縮水タンク72を備える。凝縮水タンク72には、水位センサ74が設けられるとともに、前記凝縮水タンク72の下部には、水通路(水導入配管)76aが連通する。水通路76aは、イオン交換装置78に接続される一方、前記イオン交換装置78から純水通路(水排出配管)76bが延在する。純水通路76bは、蒸発器36に接続され、その途上には、上流から下流に向かって、純水ポンプ(水ポンプ)80及び流量センサ82が配設される。凝縮水タンク72には、貯湯用熱交換器84が排水通路86を介して接続される。なお、凝縮水タンク72とイオン交換装置78とは、互いに入れ替えて配置してもよい。
貯湯用熱交換器84は、排気管88を介して熱交換器38に接続される。熱交換器38は、燃料電池スタック28から排出される使用済み反応ガス(以下、排ガス又は燃焼排ガスともいう)と、被加熱流体である空気とを、互いに対向流に流して熱交換を行う。熱交換後の排ガスは、排気管88に排出される一方、熱交換後の空気は、酸化剤ガスとして燃料電池スタック28に供給される。
貯湯用熱交換器84には、給湯装置90の貯湯タンク(給湯タンク)91から導出された給湯管92が接続される。給湯管92には、給湯ポンプ96が配設され、貯湯用熱交換器84に低温の水を供給する。貯湯用熱交換器84では、供給される水と排ガスとを熱交換させ、昇温された温水を温水供給管92aから貯湯タンク91に戻す。凝縮水タンク72には、定格排気管(定格時に大気開放する配管)100とドレイン管102とが接続される。
図2及び図3に示すように、筐体24は、矩形状を有する。図4に示すように、筐体24は、燃料電池モジュール12が配置されるモジュール部110と、燃料ガス供給装置14が配置される第1流体供給部112と、酸化剤ガス供給装置16及び水供給装置18が配置される第2流体供給部114と、電力変換装置20及び制御装置22が配置される電装部116と、に区分けされる。
モジュール部110、第1流体供給部112、第2流体供給部114及び電装部116の区分けは、それぞれ仕切り部材により互いに遮断してもよく、又は、見かけ上、空間的に4つの領域に振り分けてもよい。筐体24内には、電装部116を仕切って鉛直方向に延在する縦仕切り板118が設けられる。縦仕切り板118の下部側には、断面L字状の基台部120が設けられるとともに、第1流体供給部112側には、短尺な縦仕切り板122が設けられる。
第1流体供給部112と電装部116との間には、モジュール部110及び第2流体供給部114が介装され、且つ前記モジュール部110の下面に前記第2流体供給部114が配置される。電装部116と第2流体供給部114との間には、すなわち、縦仕切り板118には、前記電装部116内の空気を前記第2流体供給部114に導く空気流通口124が設けられる。電装部116は、筐体24の外部の空気を前記筐体24の内部に導く空気導入口126を備える。空気導入口126は、筐体24の側面に形成される。第1流体供給部112は、筐体24の内部の空気を前記筐体24の外部に導く空気排出口128及び換気ファン130を備える。空気排出口128は、筐体24の側面に形成される。
筐体24の内部には、空気導入口126から電装部116、モジュール部110の上方、第1流体供給部112及び空気排出口128に連なる第1換気流通路132と、前記空気導入口126から前記電装部116、空気流通口124及び第2流体供給部114に連なる第2換気流通路134とが形成される。
第1流体供給部112には、燃料ガスの漏れを検知する燃料ガス検知器136と、前記燃料ガスの硫黄成分を除去する脱硫器56と、燃料ガス供給装置14と、燃料電池モジュール12から排出される排ガスと貯湯タンク91から供給される貯湯水との熱交換を行う貯湯用熱交換器84と、給湯ポンプ96と、が配設される。
第2流体供給部114には、酸化剤ガス供給装置16と、燃料電池モジュール12から排出される排ガスから得られる凝縮水を貯留する凝縮水タンク72と、前記凝縮水を通流させるイオン交換装置78と、水供給装置18と、が配設される。
電装部116は、電力変換装置20が制御装置22の上方に配置される。換気ファン130は、貯湯用熱交換器84と空気排出口128との間に配置される。モジュール部110の上部には、第1流体供給部112と電装部116とを繋ぐ配線138が敷かれる橋架板140が設置される。
イオン交換装置78は、凝縮水から不純物を除去して純水を得る機能を有する。ここで、不純物とは、塵埃以外に、純水に含まれない物質、例えば、カルシウム、マグネシウム、シリカ、ナトリウム及びカリウム等の塩類、水溶性の電解質成分及び有機物を含む。
イオン交換装置78は、図5及び図6に示すように、角筒形状の装置本体142を備える。装置本体142の下部端部と上部端部とには、下部蓋部材144と上部蓋部材146とが取り付けられる。図6に示すように、装置本体142の内部には、下部フィルタ148aと上部フィルタ148bとが配設される。下部フィルタ148a及び上部フィルタ148bは、例えば、メッシュフィルタで構成され、これらの間には、例えば、粒状のイオン交換樹脂150が充填される。
装置本体142の下部側には、すなわち、下部蓋部材144には、水(凝縮水)をイオン交換樹脂150に導入する水導入口152aが設けられる。装置本体142の上部側には、すなわち、上部蓋部材146には、イオン交換樹脂150を通過した水を排出する水排出口152bが設けられる。水導入口152aは、水平方向(横方向)から装置本体142の下部中央まで延在し、該下部中央から上方に向かって前記装置本体142内に開口される。下部フィルタ148aの中心位置から通水するためである。
水導入口152aには、水通路76aを離脱自在に接続するワンタッチコックである水導入用封止弁154aが設けられ、水排出口152bには、純水通路76bを離脱自在に接続するワンタッチコックである水排出用封止弁154bが設けられる。水導入用封止弁154aと水排出用封止弁154bとは、それぞれの配管着脱方向が同一方向(矢印A方向)に設定される。
装置本体142の上部側には、すなわち、上部蓋部材146には、前記装置本体142の内部に混入した空気を集中して収容する空気収容部156が設けられる。空気収容部156は、上方に湾曲するドーム形状を有しており、前記空気収容部156の上部側には、水平方向に延在して水排出口152bが連通する。空気収容部156には、水排出口152bよりも上方に位置して、接続口158が重力方向上方に向かって開口する。接続口158には、閉塞キャップ160が取り付けられるとともに、前記閉塞キャップ160は、留め具162により空気収容部156に固定される。
接続口158には、閉塞キャップ160に代えて、図7に示す電気導電率計(導電率計測部)164と、図8に示す空気排出配管(余剰流体排出配管)166と、図9に示すドレイン排出配管(余剰流体排出配管)167とが、選択的に取り付けられる。電気導電率計164は、イオン交換樹脂150を通過した水の電気伝導率(導電率)σを計測する機能を有し、空気排出配管166は、装置本体142から空気を排出する機能を有し、ドレイン排出配管167は、前記装置本体142から余剰水及び空気を排出する機能を有する。
図7に示すように、接続口158には、Oリング169aを介装して連結筒体168が取り付けられるとともに、前記連結筒体168に電気導電率計164が装着される。連結筒体168は、接続口158の開口端部に当接するフランジ部168aを有する。連結筒体168内には、段付き孔部168bが形成され、前記段付き孔部168bには、電気導電率計164の小径な先端部164aがOリング169bを介装して装着される。
電気導電率計164の先端部164aには、一対の測定端子170が設けられ、前記測定端子170は、空気収容部156の内部に露呈する。測定端子170の先端(下端)位置は、水排出口152bよりも上方に設定されることが好ましい。電気導電率計164の後端部には、ハーネス172が設けられ、前記ハーネス172は、制御装置22に接続される。
図8に示すように、空気排出配管166では、接続口158にOリング174を介装して筒部材176が取り付けられる。筒部材176は、接続口158の開口端部に当接するフランジ部176aと、上端部に拡径するフランジ部176bとを設ける。筒部材176には、フランジ部176a、176b間に位置してエア抜き用の排出通路178が設けられる。排出通路178は、外部に開放される。
筒部材176内には、段付き孔部176cが形成され、前記段付き孔部176cには、ボール180が配設される。ボール180は、段付き孔部176cの段部に当接することにより、空気収容部156と排出通路178とを遮断する。段付き孔部176cには、Oリング182を介装してピストン部184が上下に摺動自在に配置される。
なお、ピストン部184に代えて、段付き孔部176cの内周面に形成されるねじ溝(図示せず)に螺合するねじ部材を用いることができる。また、手動操作で開閉されるピストン部184に代えて、空気収容部156と排出通路178とを遮断及び開放させる電磁弁(図示せず)を備え、電気伝導率σに応じて自動的に開閉し、空気抜きを行うことも可能である。
図9に示すように、ドレイン排出配管167は、Oリング186を介して接続口158に取り付けられる筒部材188を備える。筒部材188は、上端が閉塞されるとともに、接続口158の開口端部に当接するフランジ部188aを有する。筒部材188の上部側には、内部に連通し且つ水平方向(径方向)に貫通する接続孔部190が形成される。接続孔部190には、ドレイン配管192の一端が接続されるとともに、前記ドレイン配管192の他端は、例えば、凝縮水タンク72に接続される。
図1に示すように、制御装置22は、電気導電率計164で計測された電気伝導率σと予め設定された電気伝導率範囲とを比較する導電率比較部194と、前記導電率比較部194による比較結果に基づいて、イオン交換装置78の内部に空気が混入しているか否かの判定、及び前記イオン交換装置78のイオン交換効率が低下しているか否かの判定を任意に行うイオン交換環境判定部196と、を備える。
制御装置22は、さらにイオン交換環境判定部196により、イオン交換装置78の内部に空気が混入していると判定された際、又は、前記イオン交換装置78の効率が低下していると判定された際、燃料電池スタック28の発電を停止させる発電停止部198を備える。
イオン交換環境判定部196は、計測された電気伝導率σが、予め設定された電気伝導率範囲の下限値(5μS/cm)未満であることが検出された際、イオン交換装置78の内部に空気が混入していると判定する空気混入判定部196aを有する。イオン交換環境判定部196は、計測された電気伝導率σが、予め設定された電気伝導率範囲の上限値(30μS/cm)を超過したことが検出された際、イオン交換装置78のイオン交換効率が低下していると判定する効率低下判定部196bを有する。イオン交換環境判定部196は、計測された電気伝導率σが、予め設定された電気伝導率範囲(5μS/cm〜30μS/cm)内であることが検出された際、燃料電池スタック28の発電を継続させる発電継続判定部196cを有する。
このように構成される燃料電池システム10の動作について、以下に説明する。
図1に示すように、燃料電池システム10の起動時には、燃料ガス供給装置14の駆動作用下に、原燃料通路44には、例えば、都市ガス(CH4、C26、C38、C410を含む)等の原燃料が供給される。この原燃料は、原燃料通路44から原燃料分岐通路58を通って起動用燃焼器42に供給される。一方、酸化剤ガス供給装置16では、バーナ用ブロア70の駆動作用下に、空気が空気分岐通路68を通って起動用燃焼器42に供給される。
このため、起動用燃焼器42内では、原燃料と空気との混合ガスが供給され、この混合ガスが着火されて燃焼が開始される。従って、熱交換器38、改質器34及び蒸発器36に燃焼ガスが供給されてこれらが加温(昇温)される。
次いで、燃料ガス供給装置14では、燃料ポンプ50が駆動され、原燃料通路44から脱硫器56に原燃料が供給される。脱硫器56で脱硫された原燃料は、改質器34に供給される。一方、水供給装置18では、純水ポンプ80を介して純水通路76bに供給される水は、蒸発器36で蒸発された後、改質器34に供給される。
改質器34では、原燃料と水蒸気との混合燃料が水蒸気改質され、C2+の炭化水素が除去(改質)されてメタンを主成分とする改質ガス(燃料ガス)が得られる。この改質ガスは、燃料電池スタック28に供給される。このため、改質ガス中のメタンが改質されて水素ガスが得られ、この水素ガスを主成分とする燃料ガスは、アノード電極(図示せず)に供給される。
酸化剤ガス供給装置16では、空気ポンプ66の作用下に、空気供給管60に空気が供給され、この空気は、熱交換器38に供給される。空気は、熱交換器38に沿って移動する際、後述する排ガスとの間で熱交換が行われ、所望の温度に予め加温されている。熱交換器38で加温された空気は、燃料電池スタック28に導入され、図示しないカソード電極に供給される。
従って、電解質・電極接合体30では、燃料ガスと空気との電気化学反応により発電が行われる。各電解質・電極接合体30から排出される高温(数百℃)の排ガスは、熱交換器38を通って空気と熱交換を行い、この空気を所望の温度に加温して温度低下が惹起される。
排ガスは、蒸発器36に供給されて水を蒸発させる。蒸発器36を通過した排ガスは、排気管88を介して貯湯用熱交換器84に送られる。貯湯用熱交換器84には、給湯装置90の貯湯タンク91から低温の水が供給される。給湯装置90では、給湯ポンプ96の作用下に、給湯管92に水が供給され、この水は、貯湯用熱交換器84に導入されて排ガスと熱交換される。これにより、温水供給管92aから貯湯タンク91には、昇温された温水が戻され、この温水が家庭用温水として利用される。
次に、本発明に係る制御方法について、図10に示すフローチャートに沿って以下に説明する。
先ず、一般的には、電気導電率計164により検出された電気伝導率σが、5μS/cm〜30μS/cmの範囲内であれば、純水であり、前記電気伝導率σが、30μS/cm〜50μS/cmの範囲内であれば、凝縮水であり、電気伝導率σが、0.001μS/cm以下であれば、空気である。なお、Sは、ジーメンス(1/Ω)である。
制御装置22では、図11に示すように、電気伝導率σの値によってイオン交換装置78のステータス(環境状況)が判断されるとともに、その処理内容が設定される。具体的には、電気伝導率σが、30μS/cmを超過していると、凝縮水(イオン交換されていない水)であると判断し、イオン交換効率が低下していると判定して外部に表示するとともに、発電停止処理を行う。電気伝導率σが、5μS/cm〜30μS/cmの範囲内であると、純水であると判断し、発電が継続される。電気伝導率σが、5μS/cm未満であると、空気を検出したと判断し、空気が混入していると判定して外部に表示するとともに、発電停止処理を行う。
そこで、燃料電池システム10による運転が開始されると(ステップS1)、ステップS2に進んで、電気導電率計164により空気収容部156の内部の電気伝導率σ(≧0)が検出される。そして、電気導電率計164により検出された電気伝導率σが、30μS/cm以下である判断されると(ステップS3中、YES)、ステップS4に進む。
ステップS4では、電気導電率計164により検出された電気伝導率σが、5μS/cm以上であると判断されると(ステップS4中、YES)、すなわち、前記電気伝導率σが、5μS/cm〜30μS/cmの範囲内であると判断されると、ステップS5に進んで、正常運転が確認される。このため、イオン交換装置78では、凝縮水が適正にイオン交換されて純水が得られていると判断し、運転が終了するまで(ステップS6中、YES)、発電が継続される。
一方、ステップS3において、電気導電率計164により検出された電気伝導率σが、30μS/cmを超過したと判断されると(ステップS3中、NO)、ステップS7のイオン交換環境判定に進む。このステップS7では、イオン交換効率が低下している(イオン交換樹脂150が寿命である)と判定し、ステップS8に進んで、外部に表示するとともに、発電停止処理を行う。
また、ステップS4において、電気導電率計164により検出された電気伝導率σが、5μS/cm未満であると判断されると(ステップS4中、NO)、ステップS9のイオン交換環境判定に進む。このステップS9では、空気が混入している(凝縮水の不足)と判定し、ステップS10に進んで、外部に表示するとともに、発電停止処理を行う。
この場合、第1の実施形態では、電気導電率計164を使用してイオン交換装置78の内部の水の電気伝導率σを計測するだけで、前記イオン交換装置78の内部に空気が混入しているか否かの判定、及び前記イオン交換装置78のイオン交換効率が低下しているか否かの判定を任意に行うことができる。このため、簡単且つ経済的な構成で、メンテナンス工数の削減が容易に図られる。
しかも、電気導電率計164により計測された電気伝導率σが低い場合に、具体的には、計測された電気伝導率σが、5μS/cm未満であることが検出された際、イオン交換装置78の内部に空気が混入していると判定している。従って、比較的簡単且つ経済的な構成で、水への空気の混入を検知することが可能になる。これにより、空気の巻き込みによる純水ポンプ80の性能低下、改質器34への空気の混入による改質触媒の酸化、電極への炭素付着等による燃料電池26の発電電圧の不安定化を抑制することが可能になるとともに、メンテナンス工数の削減が容易に図られる。
さらに、電気導電率計164により計測された電気伝導率σが高い場合に、具体的には、計測された電気伝導率σが、30μS/cmを超過したことが検出された際、イオン交換装置78のイオン交換効率が低下していると判定している。このため、比較的簡単且つ経済的な構成で、イオン交換装置78の交換時期を検知することができる。従って、点検内容の早期特定が可能になって、メンテナンス工数の削減が容易に図られる。
さらにまた、電気導電率計164により計測された電気伝導率σが、5μS/cm〜30μS/cmの範囲であることが検出された際、燃料電池スタック28の発電を継続させている。これにより、電気伝導率σが適正な場合に、燃料電池スタック28の発電が継続されるため、水に関連する不具合の発生を可及的に抑制することが可能になる。このため、燃料電池システム10の耐久性が良好に向上する。
また、制御装置22は、イオン交換環境判定部196により、イオン交換装置78の内部に空気が混入していると判定された際、又は、前記イオン交換装置78の効率が低下していると判定された際、燃料電池スタック28の発電を停止させる発電停止部198を備えている。従って、燃料電池システム10の点検が必要である際に、予め燃料電池スタック28の発電が停止されているので、停止に要する時間が短縮され、部品交換等の作業が迅速且つ円滑に遂行可能になる。
さらに、イオン交換装置78は、少なくとも水蒸気改質に用いられる水に含まれる不純物を除去する固体酸化物形の燃料電池26に最適である。なお、固体酸化物形の燃料電池26に代えて、他の高温型燃料電池や中温型燃料電池にも好適に用いることができる。例えば、溶融炭酸塩形燃料電池(MCFC)、リン酸形燃料電池(PAFC)及び水素分離膜形燃料電池(HMFC)等が良好に採用可能である。
図12は、本発明の第2の実施形態に係る燃料電池システムを構成するイオン交換装置200の縦断面説明図である。なお、第1の実施形態に係るイオン交換装置78と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。
イオン交換装置200を構成する上部蓋部材146には、装置本体142の内部に混入した空気を集中して収容する空気収容部202が設けられる。空気収容部202には、水排出口152bよりも上方に位置して、接続口204が重力方向上方に向かって開口する。この接続口204には、空気排出配管166(又はドレイン排出配管167)が取り付けられる。空気収容部202の上部側には、空気排出配管166に干渉しない位置に且つ下方に傾斜する取り付け孔部206が形成され、前記取り付け孔部206には、電気導電率計164が装着される。
このように構成される第2の実施形態では、空気収容部202には、電気導電率計164及び空気排出配管166が装着されている。このため、イオン交換樹脂150を通過した水の電気伝導率(導電率)σを計測して空気溜まりやイオン交換効率の低下を検出するとともに、空気の排出が良好に遂行される。従って、イオン交換が確実に遂行されてイオン交換効率の向上が図られるとともに、空気の巻き込みによる発電電圧の不安定化を抑制することができる等、上記の第1の実施形態と同様の効果が得られる。
10…燃料電池システム 12…燃料電池モジュール
14…燃料ガス供給装置 16…酸化剤ガス供給装置
18…水供給装置 20…電力変換装置
22…制御装置 24…筐体
26…燃料電池 28…燃料電池スタック
34…改質器 36…蒸発器
38…熱交換器 40…排ガス燃焼器
42…起動用燃焼器 44…原燃料通路
50…燃料ポンプ 56…脱硫器
58…原燃料分岐通路 60…空気供給管
66…空気ポンプ 68…空気分岐通路
72…凝縮水タンク 76a…水通路
78、200…イオン交換装置 80…純水ポンプ
96…給湯ポンプ 112、114…流体供給部
116…電装部 124…空気流通口
126…空気導入口 128…空気排出口
142…装置本体 144…下部蓋本体
146…上部蓋本体 148a…下部フィルタ
148b…上部フィルタ 150…イオン交換樹脂
152a…水導入口 152b…水排出口
154a、154b…封止弁 156、202…空気収容部
158、204…接続口 160…閉塞キャップ
164…電気導電率計 166…空気排出配管
167…ドレイン排出配管 194…導電率比較部
196…イオン交換環境判定部 196a…空気混入判定部
196b…効率低下判定部 196c…発電継続判定部
198…発電停止部 206…取り付け孔部

Claims (12)

  1. 燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池が複数積層された燃料電池スタックと、
    前記燃料電池から排出される排ガスに含まれる水を通すためのイオン交換装置と、
    前記イオン交換装置の内部の前記水の電気伝導率を計測する導電率計測部と、
    前記燃料電池スタックの発電量を制御する制御装置と、
    を備える燃料電池システムであって、
    前記制御装置は、前記導電率計測部で計測された前記電気伝導率と予め設定された電気伝導率範囲とを比較する導電率比較部と、
    前記導電率比較部による比較結果に基づいて、前記イオン交換装置の内部に空気が混入しているか否かの判定、及び前記イオン交換装置のイオン交換効率が低下しているか否かの判定を任意に行うイオン交換環境判定部と、
    を備えることを特徴とする燃料電池システム。
  2. 請求項1記載の燃料電池システムにおいて、前記イオン交換環境判定部により、前記イオン交換装置の内部に空気が混入していると判定された際、又は、前記イオン交換装置の効率が低下していると判定された際、前記燃料電池スタックの発電を停止させる発電停止部を備えることを特徴とする燃料電池システム。
  3. 請求項1又は2記載の燃料電池システムにおいて、前記イオン交換環境判定部は、計測された前記電気伝導率が、予め設定された電気伝導率範囲の下限値未満であることが検出された際、前記イオン交換装置の内部に空気が混入していると判定する空気混入判定部を有することを特徴とする燃料電池システム。
  4. 請求項1〜3のいずれか1項に記載の燃料電池システムにおいて、前記イオン交換環境判定部は、計測された前記電気伝導率が、予め設定された電気伝導率範囲の上限値を超過したことが検出された際、前記イオン交換装置のイオン交換効率が低下していると判定する効率低下判定部を有することを特徴とする燃料電池システム。
  5. 請求項1〜4のいずれか1項に記載の燃料電池システムにおいて、前記イオン交換環境判定部は、計測された前記電気伝導率が、予め設定された電気伝導率範囲内であることが検出された際、前記燃料電池スタックの発電を継続させる発電継続判定部を有することを特徴とする燃料電池システム。
  6. 請求項1〜5のいずれか1項に記載の燃料電池システムにおいて、前記イオン交換装置は、少なくとも水蒸気改質に用いられる水に含まれる不純物を除去するために、固体酸化物形燃料電池に適用されることを特徴とする燃料電池システム。
  7. 燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池が複数積層された燃料電池スタックと、
    前記燃料電池から排出される排ガスに含まれる水を通すためのイオン交換装置と、
    前記イオン交換装置の内部の前記水の電気伝導率を計測する導電率計測部と、
    前記燃料電池スタックの発電量を制御する制御装置と、
    を備える燃料電池システムの制御方法であって、
    前記導電率計測部で計測された前記電気伝導率と予め設定された電気伝導率範囲とを比較する導電率比較工程と、
    導電率比較部による比較結果に基づいて、前記イオン交換装置の内部に空気が混入しているか否かの判定、及び前記イオン交換装置のイオン交換効率が低下しているか否かの判定を任意に行うイオン交換環境判定工程と、
    を有することを特徴とする燃料電池システムの制御方法。
  8. 請求項7記載の制御方法において、前記イオン交換装置の内部に空気が混入していると判定された際、又は、前記イオン交換装置の効率が低下していると判定された際、前記燃料電池スタックの発電を停止させる発電停止工程を有することを特徴とする燃料電池システムの制御方法。
  9. 請求項7記載の制御方法において、計測された前記電気伝導率が、予め設定された電気伝導率範囲の下限値未満であることが検出された際、前記イオン交換装置の内部に空気が混入していると判定することを特徴とする燃料電池システムの制御方法。
  10. 請求項7記載の制御方法において、計測された前記電気伝導率が、予め設定された電気伝導率範囲の上限値を超過したことが検出された際、前記イオン交換装置のイオン交換効率が低下していると判定することを特徴とする燃料電池システムの制御方法。
  11. 請求項7記載の制御方法において、計測された前記電気伝導率が、予め設定された電気伝導率範囲内であることが検出された際、前記燃料電池スタックの発電を継続させることを特徴とする燃料電池システムの制御方法。
  12. 請求項7〜11のいずれか1項に記載の制御方法において、前記イオン交換装置は、少なくとも水蒸気改質に用いられる水に含まれる不純物を除去するために、固体酸化物形燃料電池に適用されることを特徴とする燃料電池システムの制御方法。
JP2013082461A 2013-04-10 2013-04-10 燃料電池システム及びその制御方法 Active JP6100066B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013082461A JP6100066B2 (ja) 2013-04-10 2013-04-10 燃料電池システム及びその制御方法
US14/782,503 US9660282B2 (en) 2013-04-10 2014-02-20 Fuel cell system and method of controlling the fuel cell system
PCT/JP2014/054781 WO2014167907A1 (en) 2013-04-10 2014-02-20 Fuel cell system and method of controlling the fuel cell system
EP14709760.4A EP2984694B1 (en) 2013-04-10 2014-02-20 Fuel cell system and method of controlling the fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082461A JP6100066B2 (ja) 2013-04-10 2013-04-10 燃料電池システム及びその制御方法

Publications (2)

Publication Number Publication Date
JP2014207061A true JP2014207061A (ja) 2014-10-30
JP6100066B2 JP6100066B2 (ja) 2017-03-22

Family

ID=50272675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082461A Active JP6100066B2 (ja) 2013-04-10 2013-04-10 燃料電池システム及びその制御方法

Country Status (4)

Country Link
US (1) US9660282B2 (ja)
EP (1) EP2984694B1 (ja)
JP (1) JP6100066B2 (ja)
WO (1) WO2014167907A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137419A (ja) * 2015-01-26 2016-08-04 本田技研工業株式会社 脱硫器及びこれを組み込む燃料電池システム
JP2016207342A (ja) * 2015-04-17 2016-12-08 本田技研工業株式会社 燃料電池モジュール
WO2017104210A1 (ja) * 2015-12-15 2017-06-22 日産自動車株式会社 燃料電池システム及びその制御方法
JP2019018120A (ja) * 2017-07-12 2019-02-07 アイシン精機株式会社 水精製器および燃料電池システム
JP7327365B2 (ja) 2020-11-30 2023-08-16 トヨタ自動車株式会社 燃料電池モジュール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834674B2 (ja) * 2017-03-27 2021-02-24 トヨタ自動車株式会社 燃料電池ユニット
JP7114548B2 (ja) * 2019-10-04 2022-08-08 本田技研工業株式会社 燃料電池車両

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276947A (ja) * 2007-04-25 2008-11-13 Kyocera Corp 燃料電池装置
JP2009009807A (ja) * 2007-06-27 2009-01-15 Kyocera Corp 燃料電池装置
JP2012221903A (ja) * 2011-04-14 2012-11-12 Hitachi Ltd 燃料電池システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220566A (ja) * 1996-02-19 1997-08-26 Hitachi Ltd 純水製造装置
JP4114577B2 (ja) * 2003-09-16 2008-07-09 トヨタ自動車株式会社 燃料電池の冷却装置
JP2005259470A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp 燃料電池の冷却装置
US8981018B2 (en) * 2004-03-15 2015-03-17 Jentek Sensors, Inc. Internal material condition monitoring for control
JP5013034B2 (ja) * 2004-09-07 2012-08-29 トヨタ自動車株式会社 燃料電池システム
JP5110929B2 (ja) 2007-03-27 2012-12-26 京セラ株式会社 燃料電池装置
JP2011029116A (ja) 2009-07-29 2011-02-10 Kyocera Corp 燃料電池装置
JP5579502B2 (ja) 2010-05-28 2014-08-27 日本特殊陶業株式会社 燃料電池装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276947A (ja) * 2007-04-25 2008-11-13 Kyocera Corp 燃料電池装置
JP2009009807A (ja) * 2007-06-27 2009-01-15 Kyocera Corp 燃料電池装置
JP2012221903A (ja) * 2011-04-14 2012-11-12 Hitachi Ltd 燃料電池システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137419A (ja) * 2015-01-26 2016-08-04 本田技研工業株式会社 脱硫器及びこれを組み込む燃料電池システム
JP2016207342A (ja) * 2015-04-17 2016-12-08 本田技研工業株式会社 燃料電池モジュール
WO2017104210A1 (ja) * 2015-12-15 2017-06-22 日産自動車株式会社 燃料電池システム及びその制御方法
JPWO2017104210A1 (ja) * 2015-12-15 2018-09-27 日産自動車株式会社 燃料電池システム及びその制御方法
US10756359B2 (en) 2015-12-15 2020-08-25 Nissan Motor Co., Ltd. Fuel cell system and controlling method of same
JP2019018120A (ja) * 2017-07-12 2019-02-07 アイシン精機株式会社 水精製器および燃料電池システム
JP7327365B2 (ja) 2020-11-30 2023-08-16 トヨタ自動車株式会社 燃料電池モジュール

Also Published As

Publication number Publication date
WO2014167907A1 (en) 2014-10-16
US20160064756A1 (en) 2016-03-03
EP2984694A1 (en) 2016-02-17
US9660282B2 (en) 2017-05-23
EP2984694B1 (en) 2017-03-29
JP6100066B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6100066B2 (ja) 燃料電池システム及びその制御方法
JP6100065B2 (ja) 燃料電池システム用イオン交換装置
US8419910B2 (en) Electrolyzer cell stack system
US7353085B2 (en) Electrolyzer cell stack system
JP2021501966A (ja) 漏れ回収能を備えた燃料電池モジュールのアレンジメントおよび使用方法
JP2012528448A (ja) 開放型燃料電池システム
US8765318B2 (en) System and method for electrochemical cell system and leak detection and indication
JP5057295B2 (ja) 燃料電池装置
JP5381237B2 (ja) 燃料電池システム
EP2639869B1 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP2013235697A (ja) 燃料電池システム
US20070048581A1 (en) Fuel cell system
US20070154745A1 (en) Purging a fuel cell system
JP2010153195A (ja) 燃料電池発電システム及びその運転方法
JP2014191965A (ja) 燃料電池システム
JP6190764B2 (ja) 脱硫器
JP2012038608A (ja) 燃料電池システム及び燃料電池システムにおける改質用水供給量の制御方法
JP4719407B2 (ja) 燃料電池コージェネレーションシステム
KR20210085524A (ko) 연료전지 시스템
JP2007193952A (ja) 燃料電池
JP2006114413A (ja) 燃料電池発電装置の水質管理方法
KR20090036014A (ko) 연료전지시스템의 스택정화방법
JP2007018859A (ja) 燃料電池発電システム
JP2009252496A (ja) 燃料電池システム
US20070154359A1 (en) Conditioning a de-sulfurization system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170222

R150 Certificate of patent or registration of utility model

Ref document number: 6100066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150