JP5381237B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5381237B2
JP5381237B2 JP2009084082A JP2009084082A JP5381237B2 JP 5381237 B2 JP5381237 B2 JP 5381237B2 JP 2009084082 A JP2009084082 A JP 2009084082A JP 2009084082 A JP2009084082 A JP 2009084082A JP 5381237 B2 JP5381237 B2 JP 5381237B2
Authority
JP
Japan
Prior art keywords
fuel cell
power
tank
cell system
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009084082A
Other languages
English (en)
Other versions
JP2010238467A (ja
Inventor
裕記 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2009084082A priority Critical patent/JP5381237B2/ja
Publication of JP2010238467A publication Critical patent/JP2010238467A/ja
Application granted granted Critical
Publication of JP5381237B2 publication Critical patent/JP5381237B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池システムに関する。
燃料電池システムの一例としては、特許文献1に示されている燃料電池システムがある。この燃料電池システムは、燃料電池を搭載した移動体に関し、詳しくは、燃料電池を搭載した移動体によって、冠水路上等を移動するための技術に関するものである。この燃料電池システムは、特許文献1の図2に示されているように、水位センサ72によって、冠水路上に存在する水の水位を検出し、検出された水位が所定の閾値以上になった場合には、例えば、燃料電池スタック10による発電を停止するようになっている。これにより、冠水路上等を移動するときに、移動体に搭載された燃料電池の故障を抑制することができるようになっている。
特開2008−125214号公報
しかし、特許文献1に記載の燃料電池システムにおいては、水位センサにより冠水を検知することができるものの、冠水を検知するための専用センサである水位センサを設けているために、コスト上昇となっていた。
本発明は、上述した問題を解消するためになされたもので、燃料電池システムにおいて、コスト上昇を抑制しつつ、冠水を的確に検知することを目的とする。
上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、燃料と酸化剤ガスとにより発電して外部電力負荷に出力する燃料電池を備えた燃料電池システムであって、燃料電池から出力される電力を入力し所定の電力に変換して外部電力負荷に出力する電力変換装置と、燃料電池システムで使用する液体を貯蔵する容器であり、該液体の導電率を検知する導電率計を容器内に備えたタンクと、燃料電池を少なくとも含んで構成された燃料電池モジュールと、燃料電池モジュールから排気される燃焼排ガスが供給され、該燃焼排ガスを凝縮する凝縮器と、凝縮器から凝縮水が供給され、該凝縮水を純水化する純水器と、導電率計の検知結果が送信される制御装置と、を備え、タンクが、燃料電池システム内であって燃料電池から外部電力負荷までの電流系統のうち浸水することで漏電する可能性のある漏電可能部位より下方に設置されており、純水器で処理された後の水を液体として貯蔵するものであり、制御装置は、タンク内の液体の導電率値が、純水器で処理された後の水の導電率より大きい値に設定されている所定値以上となった場合、タンクが浸水したと判断して燃料電池システムを停止することである。
また請求項2に係る発明の構成上の特徴は、燃料と酸化剤ガスとにより発電して外部電力負荷に出力する燃料電池を備えた燃料電池システムであって、燃料電池から出力される電力を入力し所定の電力に変換して外部電力負荷に出力する電力変換装置と、燃料電池システムで使用する液体を貯蔵する容器であり、該液体の導電率を検知する導電率計を容器内に備えたタンクと、導電率計の検知結果が送信される制御装置と、を備え、タンクが、燃料電池システム内であって燃料電池から外部電力負荷までの電流系統のうち浸水することで漏電する可能性のある漏電可能部位より下方に設置されており、制御装置は、タンク内の液体の導電率値の変化速度が所定速度以上となった場合、タンクが浸水したと判断して燃料電池システムを停止することである。
また請求項3に係る発明の構成上の特徴は、請求項2において、燃料電池を少なくとも含んで構成された燃料電池モジュールと、燃料電池モジュールから排気される燃焼排ガスが供給され、該燃焼排ガスを凝縮する凝縮器と、凝縮器から凝縮水が供給され、該凝縮水を純水化する純水器と、をさらに備え、タンクは、純水器で処理された後の水を液体として貯蔵するものであることである。
上記のように構成した請求項1に係る発明においては、燃料電池システムで使用する液体を貯蔵する容器であり、該液体の導電率を検知する導電率計を容器内に備えたタンクが、燃料電池システム内であって燃料電池から外部電力負荷までの電流系統のうち浸水することで漏電する可能性のある漏電可能部位より下方に設置されている。これにより、燃料電池システムが冠水した場合、外部の水(例えば洪水時の水:一般的に正常状態の燃料電池システムの回収水より導電率が高い)がタンク内に浸入すると、その外部の水は導電率が高いので、導電率計の測定値がそれまでの値(外部の水が進水する前のタンク内の液体の値)より高くなる。したがって、このことを利用することで、外部の水がタンク内に浸入することすなわち燃料電池システムの冠水を確実かつ的確に検出することが可能であり、この検出時から時間をおかないで燃料電池システムを早期に停止(電力変換装置の停止も含む)することが可能となる。そうすると、さらに冠水が進んで、タンクより上方に配設された漏電可能部位が浸水する前に、燃料電池システムを停止することができ、ひいては漏電可能部位が浸水しても該漏電可能部位からの漏電を抑制することができる。また、専用の水位センサを設けなくても、従来から燃料電池システムのタンク(純水タンク)内に設置されていた導電率計を使用することで冠水を検知できるので、コスト上昇を抑制しつつ、冠水を的確に検知することができる。
さらに、燃料電池を少なくとも含んで構成された燃料電池モジュールと、燃料電池モジュールから排気される燃焼排ガスが供給され、該燃焼排ガスを凝縮する凝縮器と、凝縮器から凝縮水が供給され、該凝縮水を純水化する純水器と、をさらに備え、タンクは、純水器で処理された後の水を液体として貯蔵する。これにより、タンクに貯蔵されている液体(純水化後の凝縮水)の導電率は比較的小さい値であるため、純水タンクの冠水を感度良く検出することができる。
さらに、導電率計の検知結果が送信される制御装置をさらに備え、制御装置は、タンク内の液体の導電率値が所定値以上となった場合、タンクが浸水したと判断して燃料電池システムを停止する。これにより、燃料電池システムの冠水を事前に検出することができ、この検出時から時間をおかないで燃料電池システムを確実かつ早期に停止(電力変換装置の停止も含む)することができる。
上記のように構成した請求項2に係る発明においては、燃料電池システムで使用する液体を貯蔵する容器であり、該液体の導電率を検知する導電率計を容器内に備えたタンクが、燃料電池システム内であって燃料電池から外部電力負荷までの電流系統のうち浸水することで漏電する可能性のある漏電可能部位より下方に設置されている。これにより、燃料電池システムが冠水した場合、外部の水(例えば洪水時の水:一般的に正常状態の燃料電池システムの回収水より導電率が高い)がタンク内に浸入すると、その外部の水は導電率が高いので、導電率計の測定値がそれまでの値(外部の水が進水する前のタンク内の液体の値)より高くなる。したがって、このことを利用することで、外部の水がタンク内に浸入することすなわち燃料電池システムの冠水を確実かつ的確に検出することが可能であり、この検出時から時間をおかないで燃料電池システムを早期に停止(電力変換装置の停止も含む)することが可能となる。そうすると、さらに冠水が進んで、タンクより上方に配設された漏電可能部位が浸水する前に、燃料電池システムを停止することができ、ひいては漏電可能部位が浸水しても該漏電可能部位からの漏電を抑制することができる。また、専用の水位センサを設けなくても、従来から燃料電池システムのタンク(純水タンク)内に設置されていた導電率計を使用することで冠水を検知できるので、コスト上昇を抑制しつつ、冠水を的確に検知することができる。
さらに、導電率計の検知結果が送信される制御装置をさらに備え、制御装置は、タンク内の液体の導電率値の変化速度が所定速度以上となった場合、タンクが浸水したと判断して燃料電池システムを停止する。これにより、例えば純水器などの異常と区別して燃料電池システムの冠水を事前に検出することができ、この検出時から時間をおかないで燃料電池システムを確実かつ早期に停止(電力変換装置の停止も含む)することができる。
上記のように構成した請求項3に係る発明においては、請求項2において、燃料電池を少なくとも含んで構成された燃料電池モジュールと、燃料電池モジュールから排気される燃焼排ガスが供給され、該燃焼排ガスを凝縮する凝縮器と、凝縮器から凝縮水が供給され、該凝縮水を純水化する純水器と、をさらに備え、タンクは、純水器で処理された後の水を液体として貯蔵する。これにより、タンクに貯蔵されている液体(純水化後の凝縮水)の導電率は比較的小さい値であるため、純水タンクの冠水を感度良く検出することができる。

本発明による燃料電池システムの一実施の形態の概要を示す概要図である。 本発明による燃料電池システムの一実施の形態の電気的な構成を示す構成ブロック図である。 図1に示す燃料電池システムを示すブロック図である。 図3に示す制御装置で実行される制御プログラムのフローチャートである。 図3に示す制御装置で実行される制御プログラムのフローチャートである。 本発明による燃料電池システムの他の実施の形態の電気的な構成を示す構成ブロック図である。
以下、本発明による燃料電池システムの一実施の形態について説明する。図1はこの燃料電池システムの概要を示す概要図である。この燃料電池システムは、箱状の筐体11、燃料電池モジュール20、排熱回収システム30、インバータ装置50および燃料電池システム制御装置(以下、制御装置という。)60を備えている。
筐体11は、筐体11内を区画して第1室R1および第2室R2を形成する仕切部材12を備えている。仕切部材12は、筐体11を上下に区画する(仕切る)板状部材である。筐体11内には、仕切部材12より上方および下方に第1室R1および第2室R2が形成される。なお、本実施の形態では、仕切部材12を一枚の板状部材で構成したが、仕切部材12を箱状部材で構成してもよく、また、第1室R1および第2室R2をそれぞれ区画する箱状に形成された2つの別部材
で構成してもよい。
燃料電池モジュール20は、第1室R1内に該第1室R1の内壁面から空間をおいて収納されている。燃料電池モジュール20は、ケーシング21、燃料電池24を少なくとも含んで構成されるものである。本実施の形態では、燃料電池モジュール20は、ケーシング21、蒸発部22、改質部23および燃料電池24を備えている。
ケーシング21は、断熱性材料で箱状に形成されている。ケーシング21は、第1室R1内に該第1室R1の内壁面から空間をおいて図示しない支持構造により支持されている。なお、ケーシング21の全ての面が第1室R1の内壁面に接していなければよく、ケーシング21の面(6面)のうちいずれかが第1室R1の内壁面との間に空間があればよい。ケーシング21内には、蒸発部22、改質部23および燃料電池24が配設されている。このとき、蒸発部22、改質部23が燃料電池24の上方に位置するように配設されている。
蒸発部22は、後述する燃焼ガスにより加熱されて、供給された改質水を蒸発させて水蒸気を生成するとともに、供給された改質用原料を予熱するものである。蒸発部22は、このように生成された水蒸気と予熱された改質用原料を混合して改質部23に供給するものである。改質用原料としては天然ガス、LPGなどの改質用気体燃料、灯油、ガソリン、メタノールなどの改質用液体燃料があり、本実施形態においては天然ガスにて説明する。
この蒸発部22には、一端(下端)が純水タンク13内に配設された給水管41の他端が接続されている。給水管41には、改質水ポンプ41aが設けられている。改質水ポンプ41aは、蒸発部22に改質水を供給するとともにその改質水供給量を調整するものである。
また、蒸発部22には、燃料供給源(図示省略)からの改質用原料が改質用原料供給管42を介して供給されている。改質用原料供給管42には、上流から順番に一対の原料バルブ(図示省略)、脱硫器42a、および原料ポンプ42bが設けられている。原料バルブは改質用原料供給管42を開閉する電磁開閉弁である。脱硫器42aは改質用原料中の硫黄分(例えば、硫黄化合物)を除去するものである。原料ポンプ42bは、燃料供給源からの燃料供給量を調整するものであり、その吐出量は調整制御(例えば燃料電池24の負荷電力量(消費電力量)に応じて制御)されるものである。
改質部23は、後述する燃焼ガスにより加熱されて水蒸気改質反応に必要な熱が供給されることで、蒸発部22から供給された混合ガス(改質用原料、水蒸気)から改質ガスを生成して導出するものである。改質部23内には、触媒(例えば、RuまたはNi系の触媒)が充填されており、混合ガスが触媒によって反応し改質されて水素ガスと一酸化炭素ガスが生成されている(いわゆる水蒸気改質反応)。これと同時に、水蒸気改質反応にて生成された一酸化炭素と水蒸気が反応して水素ガスと二酸化炭素とに変成するいわゆる一酸化炭素シフト反応が生じている。これら生成されたガス(いわゆる改質ガス)は燃料電池24の燃料極に導出されるようになっている。改質ガスは、水素、一酸化炭素、二酸化炭素、水蒸気、未改質の天然ガス(メタンガス)を含んでいる。なお、水蒸気改質反応は吸熱反応であり、一酸化炭素シフト反応は発熱反応である。
燃料電池24は、燃料極、空気極(酸化剤極)、および両極の間に介装された電解質からなる複数のセル24aが積層されて構成されている。本実施の形態の燃料電池は、固体酸化物形燃料電池であり、電解質として固体酸化物の一種である酸化ジルコニウムを使用している。燃料電池24の燃料極には、燃料として水素、一酸化炭素、メタンガスなどが供給される。動作温度は700〜1000℃程度である。水素だけではなく天然ガスや石炭ガスなども直接燃料として用いることが可能である。この場合、改質部23は省略することができる。
セル24aの燃料極側には、燃料である改質ガスが流通する燃料流路24bが形成されている。セル24aの空気極側には、酸化剤ガスである空気(カソードエア)が流通する空気流路24cが形成されている。
燃料電池24は、マニホールド25上に設けられている。マニホールド25には、改質部23からの改質ガスが改質ガス供給管43を介して供給されるとともに、カソードエアがカソードエア供給管44を介して供給されるようになっている。燃料流路24bは、その下端(一端)がマニホールド25の燃料導出口に接続されており、その燃料導出口から導出される改質ガスが下端から導入され上端から導出されるようになっている。空気流路24cは、その下端(一端)がエア用マニホールドを介してカソードエア供給管44に接続されており、カソードエア供給管44から導出されるカソードガスが下端から導入され上端から導出されるようになっている。
なお、カソードエア供給管44の一端はエア用マニホールド(図示しない)に接続され、他端はカソードエアブロワ44a(カソードエア送出(送風)手段)に接続されている。カソードエアブロワ44aは、第2室R2内に配設されている。カソードエアブロワ44aは、第2室R2内の空気を吸入し燃料電池24の空気極に吐出するものであり、その吐出量は調整制御(例えば燃料電池24の負荷電力量(消費電力量)に応じて制御)されるものである。
燃料電池24においては、燃料極に供給された燃料と空気極に供給された酸化剤ガスによって発電が行われる。すなわち、燃料極では、下記化1および化2に示す反応が生じ、空気極では、下記化3に示す反応が生じている。すなわち、空気極で生成した酸化物イオン(O2−)が電解質を透過し、燃料極で水素と反応することにより電気エネルギーを発生させている。したがって、燃料流路24bおよび空気流路24cからは、発電に使用されなかった改質ガスおよび酸化剤ガス(空気)が導出する。
(化1)
+O2−→HO+2e
(化2)
CO+O2−→CO+2e
(化3)
1/2O+2e→O2−
そして、燃料流路24bおよび空気流路24cから導出した、発電に使用されなかった改質ガスは、燃料電池24と蒸発部22(改質部23)の間の燃焼空間R3にて、発電に使用されなかった酸化剤ガス(空気)によって燃焼され、その燃焼ガスによって蒸発部22および改質部23が加熱される。さらには、燃料電池モジュール20内を動作温度に加熱している。その後、燃焼ガスは導出口21aから燃料電池モジュール20の外に排気される。
排熱回収システム30は、貯湯水を貯湯する貯湯槽31と、貯湯水が循環する貯湯水循環ライン32と、燃料電池モジュール20からの燃焼排ガスと貯湯水との間で熱交換が行われる第1熱交換器33と、が備えられている。
貯湯槽31は、1つの柱状容器を備えており、その内部に温水が層状に、すなわち上部の温度が最も高温であり下部にいくにしたがって低温となり下部の温度が最も低温であるように貯留されるようになっている。貯湯槽31の柱状容器の下部には水道水などの水(低温の水)が補給され、貯湯槽31に貯留された高温の温水が貯湯槽31の柱状容器の上部から導出されるようになっている。
貯湯水循環ライン32の一端は貯湯槽31の下部に、他端は貯湯槽31の上部に接続されている。貯湯水循環ライン32上には、一端から他端に向かって順番に貯湯水循環手段である貯湯水循環ポンプ32a、第1熱交換器33、および温度センサ32bが配設されている。貯湯水循環ポンプ32aは、貯湯槽31の下部の貯湯水を吸い込んで貯湯水循環ライン32を図示矢印方向へ通水させて貯湯槽31の上部に吐出するものであり、その流量(送出量)が制御されるようになっている。温度センサ32bは、貯湯水の貯湯槽31の入口温度を検出するものであり、その検出結果を制御装置(図示省略)に送信するようになっている。貯湯水循環ポンプ32aは、温度センサ32bの検出温度(貯湯水の貯湯槽31の入口温度)が所定の温度または温度範囲となるように、送出量が制御されるようになっている。
第1熱交換器33は、燃料電池モジュール20から排気される燃焼排ガスが供給されるとともに貯湯槽31からの貯湯水が供給され燃焼排ガスと貯湯水が熱交換する熱交換器である。この第1熱交換器33は、筐体11内に配設されている。本実施の形態では、第1熱交換器33は、燃料電池モジュール20の下部に設けられており、少なくとも第1熱交換器33の下部は仕切部材12を貫通して第2室R2に突出されて配設されている。
第1熱交換器(凝縮器)33は、ケーシング33aを備えている。ケーシング33aには、燃焼排ガスが導入される導入口33b、燃焼排ガスが導出される導出口33c、および凝縮された凝縮水が導出される導出口33dが設けられている。ケーシング33a内には、貯湯水循環ライン32に接続されている熱交換部(凝縮部)33eが配設されている。導入口33bは、燃料電池モジュール20のケーシング21の下部に設けられ燃焼排ガスが導出される導出口21aに連通するようになっている。燃焼排ガスの導出口33cは、排気管45を介して第1排気口11aに接続されている。凝縮水の導出口33dは、ケーシング33aの底部に形成されている。燃焼排ガスの導出口33cは、凝縮水が燃焼排ガスの導出口33cから導出するのを防止するため、凝縮水の導出口33dより上方に形成されている。
このように構成された第1熱交換器33においては、燃料電池モジュール20からの燃焼排ガスは、導入口33bからケーシング33a内に導入され、貯湯水が流通する熱交換部33eを通る際に貯湯水との間で熱交換が行われ凝縮されるとともに冷却される。凝縮後の燃焼排ガスは導出口33cおよび排気管45を通って第1排気口11aから外部に排出される。また、凝縮された凝縮水は、凝縮水の導出口33dおよび凝縮水供給管46を通って純水器14に供給される(自重で落水する)。一方、熱交換部33eに流入した貯湯水は、加熱されて流出される。
また、燃料電池システムは、純水タンク13および純水器14を備えている。純水タンク13および純水器14は第2室R2内に配設されている。
純水タンク13は、純水器14から導出された純水(すなわち、純水器14で処理された後の水)を貯めておくもの(液体を貯蔵する容器)である。純水タンク13には、容器内の液体(本実施の形態では純水)の導電率を検知する導電率計13aが備えられている。導電率計13aの検知結果は、制御装置60に送信されるようになっている。また、純水タンク13には、純水タンク13内の純水量を検出する図示しない水量センサ(水位センサ)が備えられている。水量センサは例えばフロート式、静電容量式などの水位計である。水量センサは制御装置60に検出信号を送信するようになっている。
また、純水タンク13には、オーバーフローライン13bが設けられている。オーバーフローライン13bの上端は純水タンク13の上部に接続され、下端は下方に延設されており、純水タンク13からオーバーフローした純水がオーバーフローライン13bを通って外部に排水されるようになっている。また、純水タンク13の上部はシールをしないで密閉性がなくてもよい。燃料電池システムが冠水した場合、純水タンク13には、オーバーフローライン13bや、上部のシールしていない部分から外部の水が浸入する。
純水器14は、活性炭とイオン交換樹脂を内蔵しており、例えばフレーク状の活性炭と粒状のイオン交換樹脂を充填している。また被処理水の状態によっては、中空糸フィルタを設置しても良い。純水器14は、第1熱交換器33からの凝縮水を活性炭とイオン交換樹脂によって純水化するものである。純水器14は、配管47を介して純水タンク13に連通しており、純水器14内の純水は配管47を通って純水タンク13に導出される。
また、第1室R1は、第1室R1内に外部からの空気を導入する空気導入口12aと、第1室R1内の空気を外部に導出する空気導出口(第2排気口)11bと、空気導入口12aから空気導出口11bまでの空気が流通する流通路上に設けられ該空気(換気用空気)を送出するための換気用空気ブロワ(送風手段)15と、を備えている。
空気導入口12aは、仕切部材12に形成されている。なお、空気導入口12aは、第1室R1を形成する筐体11に形成するようにしてもよい。第2排気口11bは、第1室R1を形成する筐体11に形成されている。換気用空気ブロワ15は、空気導入口12aに設けられている。換気用空気ブロワ15は、第2室R2内の空気を吸い込んで、空気導入口12aを通して第1室R1内に送出している。なお、空気導入口12aから空気導出口11bまでの空気が流通する流通路には、空気導入口12aおよび空気導出口11bも含まれる。また、第2室R2は、第2室R2内に外部からの空気を導入する空気導入口11cを備えている。
これにより、換気用空気ブロワ15の駆動によって、第2室R2内の空気が空気導入口12aを通して第1室R1内に送出される。第1室R1内に導入された換気用空気は、第1室R1の内壁面とケーシング21と間を、空気導出口11bに向かって流通し、空気導出口11bから外部に排出される。
さらに、燃料電池システムは、インバータ装置(電力変換装置)50を備えている。インバータ装置50は、燃料電池24から出力される電力を入力し所定の電力に変換して外部電力負荷53に出力するものである。インバータ装置50は、燃料電池24から出力される直流電圧を入力し所定の交流電圧に変換して交流の系統電源51および外部電力負荷53に接続されている電源ライン52に出力する第1機能と、系統電源51からの交流電圧を電源ライン52を介して入力し所定の直流電圧に変換して補機55に出力する第2機能と、を有している。
インバータ装置50は、DC/DCコンバータ50a、DC/ACインバータ50b、系統連系インバータ制御装置50c、およびインバータ用電源DC/DCコンバータ50dを備えている。
DC/DCコンバータ(コンバータ)50aは、燃料電池24から出力される直流電圧(例えば40V)を入力し所定の直流電圧(例えば350V)に変換して出力するものである。DC/DCコンバータ50aは、本燃料電池システムを運転させるための補機55に、燃料電池24から入力した直流電圧を所定の直流電圧に変換して出力するものである。DC/DCコンバータ50aは、例えばトランスを構成要素として構成され入力側と出力側が絶縁されている絶縁型であることが好ましい。
DC/ACインバータ(インバータ)50bは、DC/DCコンバータ50aから出力される直流電圧(例えば350V)を入力し交流電圧(例えば200V)に変換して電源ライン52に出力し、かつ電源ライン52から入力した交流電圧(例えば200V)を所定の直流電圧(例えば350V)に変換して補機用電源基板54を介して補機55に出力するものである。このように、DC/ACインバータ50bは、直流を交流に変換する機能と、交流を直流に変換する機能とを有している。
DC/ACインバータ50bは、燃料電池24から入力した電力を変換して電源ライン52に出力する出力電力を測定する電力測定装置50eを有している。該電力測定装置50eは、燃料電池システムの起動時および/または停止制御時に、系統電源12から電源ライン52を介して入力した電力を変換して補機55に消費電力として出力する補機消費電力も測定するものである。本実施の形態では、DC/ACインバータ50bは、直流を交流に変換する機能と交流を直流に変換する機能の両機能を内蔵した一つの機器で構成しているが、それぞれの機能を別の機器で構成するようにしてもよい。この場合、電力測定装置50eは、それぞれ別の機器に予め備えられていることが望ましい。
系統連系インバータ制御装置50cは、DC/DCコンバータ50a、DC/ACインバータ50bの駆動、第1接続器50g、第2接続器50hのオン・オフを制御するものである。この系統連系インバータ制御装置50cは、制御装置60と互いに通信可能に接続されており、制御装置60の指示にしたがってDC/DCコンバータ50a、DC/ACインバータ50bの駆動、第1接続器50g、第2接続器50hのオン・オフを制御する。
系統連系インバータ制御装置50cは、電力測定装置50eが接続されており、電力測定装置50eからの検出信号(電力測定値)が入力されるようになっている。系統連系インバータ制御装置50cは、電力測定値を制御装置60に送信するようになっている。制御装置60は、起動時や停止制御時には電力測定値に基づいて起動時や停止制御時の消費電力を算出している。
インバータ用電源DC/DCコンバータ50dは、DC/DCコンバータ50a、DC/ACインバータ50bまたは整流回路50fからの直流電圧を入力して所定の直流電圧に変換して、DC/DCコンバータ50aとDC/ACインバータ50bと系統連系インバータ制御装置50cに電源電圧(駆動電圧)として供給するものである。
整流回路50fは、電源ライン52と補機55との間にDC/ACインバータ50bに並列に設けられ、電源ライン52からの交流電圧を整流して直流電圧に変換して補機55に供給可能なものである。例えば、整流回路50fは、整流素子である4つのダイオードから構成され、ダイオードブリッジ回路から構成されている。トランスと組み合わせてもよく、平滑化のため抵抗、コンデンサ、コイルなどと組み合わせてもよい。
補機用電源基板54は、DC/DCコンバータ50a、DC/ACインバータ50bおよび整流回路50fに接続されており、DC/DCコンバータ50a、DC/ACインバータ50bまたは整流回路50fからの直流電圧を入力して所定の直流電圧(例えば24V)に変換して、補機55に電源電圧として供給するものである。補機用電源基板54は、制御装置60の指令によって制御されている。
さらに、燃料電池システムは、燃料電池24とDC/DCコンバータ50aとの間に設けられた第1接続器50g、およびDC/ACインバータ50bと電源ライン52との間に設けられた第2接続器50hをさらに備えている。
第1接続器50gは、燃料電池24とDC/DCコンバータ50aとを連通・遮断(オン・オフ)するものであり、系統連系インバータ制御装置50cに接続されその指示によってオン・オフ制御されるものである。第2接続器50hはDC/ACインバータ50bと電源ライン52とを連通・遮断(オン・オフ)するものであり、系統連系インバータ制御装置50cに接続されその指示によってオン・オフ制御されるものである。
電源ライン52には、系統電源12に対する電力の入出力および電力量を検知する電力測定装置52aが設けられており、その検知結果が系統連系インバータ制御装置50cに出力されている。系統連系インバータ制御装置50cは、電力測定値を制御装置60に送信するようになっている。なお、電力測定値を制御装置60に出力するようにしてもよい。
また、燃料電池システムは、独自のブレーカ52bを備えている。ブレーカ52bは、電源ライン52とインバータ装置50とを接続する電源ラインに設けられている。ブレーカ52bは、ある量以上の電力を使ったり、異常電流が流れたりすると、回路を自動的に遮断して、ブレーカ52bからシステム内部側に電力が供給されるのを禁止する。この遮断時においても、ブレーカ52bの入力端52b1には電力が供給されている。この入力端52b1は浸水すると、漏電する可能性があるので、該入力端52b1は漏電可能部位である。
なお、系統電源(または商用電源)51は、該系統電源51に接続された電源ライン52を介して電力負荷53に電力を供給するものである。燃料電池24はインバータ装置50を介して電源ライン52に接続されている。電力負荷53は、交流電源で駆動される負荷であり、例えばドライヤ、冷蔵庫、テレビなどの電化製品である。補機55は、燃料電池モジュール20に改質用原料、水、空気を供給するためのモータ駆動のポンプ41a,42bおよび換気用空気ブロワ15などから構成されている。すなわち、補機55は燃料電池システムを起動、発電、停止させるためのものである。この補機55は直流電圧にて駆動されるものであり、その駆動電圧は補機用電源基板18から供給されるようになっている。
また、本実施の形態では、上述した燃料電池システム内(すなわち筐体11内)であって系統電源51からインバータ装置50までの交流電流系統56のうち浸水することで漏電する可能性のある部位が漏電可能部位である。例えば、ブレーカ52bの入力端52b1は漏電可能部位である。また、インバータ装置50も漏電可能部位であり、特に、DC/ACインバータ50b、電力測定装置50e、整流回路50f、第2接続器50h(特にそれぞれの下端部)が漏電可能部位である。
本実施の形態の燃料電池システムにおいては、この漏電可能部位が純水タンク13より上方に設置されている。オーバーフローライン13bが設けられている場合には、漏電可能部位は、オーバーフローライン13bが接続されている部位より上方に設置されることが望ましい。オーバーフローライン13bが設けられていない場合には、漏電可能部位は、純水タンク13の上部開口部(水が浸入する箇所)より上方に設置されることが望ましい。すなわち、外部から純水タンク13内に水が浸入(流入)する口より、漏電可能部位が上方に設置されることが望ましい。
漏電可能部位は、高電圧(例えば、80V以上)の部位である。直流、交流の別はない。実施形態の場合、制御装置60は5V駆動である。補機55は直流24V駆動である。燃料電池24の出力は直流90〜100Vである。電力変換装置50と外部電力負荷53の間は交流200V(単相三線)である。漏電可能部位は、燃料電池24から外部電力負荷53までの電流系統の部位で、電力変換装置50自身も含む(第1接続器50gも含む)。
さらに、燃料電池システムは、制御装置60を備えている。制御装置60には、上述した導電率計13a、各ポンプ32a,41a,42b、各ブロワ15,44a、系統連系インバータ制御装置50cが接続されている(図3参照)。制御装置60はマイクロコンピュータ(図示省略)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも図示省略)を備えている。CPUは、燃料電池システムの運転を実施している。RAMは同プログラムの実行に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。
この制御装置60は、燃料電池24が発電可能な状態において、電力測定装置50cにより検知されるインバータ装置50からの出力電力、および電力測定装置52aにより検知される系統電源51に入出する電力に基づいて外部電力負荷53で消費される消費電力(発電負荷)を算出する。例えば、インバータ装置50からの出力電力と系統電源51に入出する電力との和が消費電力として算出される。制御装置60は、燃料電池24の発電電力が、算出した消費電力となるように、燃料電池モジュール20に供給する原料、水などの供給量を制御する。なお、消費電力が燃料電池24の最大発電電力を超える場合には、燃料電池24は最大発電電力で運転される(すなわち発電負荷は最大発電電力となる。)。
また、制御装置60は、燃料電池システムの全体的な制御を一括集中して行うものであり、燃料電池24や改質器21を制御したり、補機55の駆動を制御したり、インバータ装置50の駆動を制御したり、補機用電源基板54を制御したりする。制御装置60は、DC/DCコンバータ50a、DC/ACインバータ50bおよび整流回路50fに接続されているので、制御装置60には、待機時でも運転時(起動時(起動制御時)、発電時、停止制御時を含む。)でも常に電圧が供給されている。起動時は起動指令が出てから発電開始するまでの間であり、停止制御時は、停止指令が出てからシステムが停止するまでの間である。待機時は、燃料電池システムの発電停止状態のことであり、発電指示(スタートスイッチのオンなど)を待っている状態のことである。
次に、上述した燃料電池システムの作動について図4を参照して説明する。制御装置60は、図示しない起動スイッチがオンされると、図5に示すフローチャートに対応するプログラムを所定の短時間毎(例えば、10ミリ秒)に実行する。制御装置60は、導電率計13aから純水タンク13内の純水の導電率を読み込む(ステップ102)。
制御装置60は、ステップ104において、その導電率が所定値より小さいか否かを判定する。例えば、所定値は100μS/cm(マイクロジーメンスパーセンチメートル)に設定されている。純水器14が劣化していない場合には、純水器14で純水処理された純水の導電率は1〜10μS/cmであり、一般的な水道水の導電率は100〜300μS/cmであるので、所定値はその間の値に設定されている。例えば、正常値1〜10μS/cmに対して所定値50μS/cmに設定されている。一般的な水道水100〜300μS/cmや洪水などでの泥水(100〜300μS/cm以上)に対して異常と検知可能な値が設定されている。
制御装置60は、純水タンク13内の液体の導電率値が所定値未満である場合には、ステップ104にて「YES」と判定し、定常運転、起動運転、待機運転を継続する(ステップ106)。一方、制御装置60は、純水タンク13内の液体の導電率値が所定値以上である場合には、ステップ104にて「NO」と判定し、ステップ110にて、定常運転、起動運転、待機運転を停止する(すなわちシステムを停止する)。なお、制御装置60は、停止するに先立って、停止する旨の警告を行う(ステップ108)。警告は、音声、画像、点灯などで行われる。
制御装置60は、ステップ110において、最初に第2接続器50hを遮断させ(開状態とし)、次に原料ポンプ42b、改質水ポンプ41aの駆動を停止することで燃料電池24の発電を停止させ、貯湯水循環ポンプ32a、各ブロワ15,44aの駆動を停止させ、その後、第1接続器50gを遮断させる(開状態とする)。その後、系統連系インバータ制御装置50cは、DC/DCコンバータ50a、DC/ACインバータ50b、およびインバータ用電源DC/DCコンバータ50dの動作を停止する。
上述した説明から明らかなように、本実施の形態においては、液体の導電率を検知する導電率計13aを容器内に備えた純水タンク13が、燃料電池システム内であって系統電源51からインバータ装置50までの交流電流系統56のうち浸水することで漏電する可能性のある漏電可能部位より下方に設置されている。これにより、燃料電池システムが冠水した場合、外部の水(例えば洪水時の水:一般的に正常状態の燃料電池システムの回収水より導電率が高い)が、オーバーフローライン13bを逆流したり純水タンク13の上部から流入するなどして純水タンク13内に浸入すると、その外部の水は導電率が高いので、導電率計13aの測定値がそれまでの値(外部の水が進水する前の純水タンク13a内の液体の値)より高くなる。したがって、このことを利用することで、外部の水が純水タンク13内に浸入することすなわち燃料電池システムの冠水を確実かつ的確に検出することが可能であり、この検出時から時間をおかないで燃料電池システムを早期に停止(電力変換装置の停止も含む)することが可能となる。そうすると、さらに冠水が進んで、純水タンク13より上方に配設されたインバータ装置59を含む漏電可能部位が浸水する前に、燃料電池システムを停止することができ、ひいては漏電可能部位が浸水しても該漏電可能部位からの漏電を抑制することができる。また、専用の水位センサを設けなくても、従来から燃料電池システムの純水タンク13内に設置されていた導電率計13aを使用することで冠水を検知できるので、コスト上昇を抑制しつつ、冠水を的確に検知することができる。
また、燃料電池24を少なくとも含んで構成された燃料電池モジュール20と、燃料電池モジュール20から排気される燃焼排ガスが供給され、該燃焼排ガスを凝縮する凝縮器33と、凝縮器33から凝縮水が供給され、該凝縮水を純水化する純水器14と、をさらに備え、純水タンク13は、純水器14で処理された後の水を液体として貯蔵する。これにより、純水器14で処理された後の純水タンク13に貯蔵されている液体(純水化後の凝縮水)の導電率は比較的小さい値であるため、純水タンク13の冠水を感度良く検出することができる。
また、導電率計13aの検知結果が送信される制御装置60をさらに備え、制御装置60は、純水タンク13内の液体の導電率値が所定値以上となった場合、燃料電池システムを停止する。これにより、燃料電池システムの冠水を事前に検出することができ、この検出時から時間をおかないで燃料電池システムを確実かつ早期に停止(インバータ装置50の停止も含む)することができる。
なお、導電率計13bは、そもそも純水器14の劣化や燃料電池24の故障(故障により燃料電池24からの電解物質(イオン状態)が流出する故障)を検出するために設けられている。したがって、導電率計13bの測定値が所定値以上となったからといって、燃料電池システムが冠水したと判断しきれない部分はある。
そこで、制御装置60は、純水タンク13内の液体の導電率値の変化速度が所定速度以上となった場合、純水タンク13が浸水したと判断し、燃料電池システムを停止するようにしてもよい。この場合。図5に示すフローチャートに沿ってプログラムを実行すればよい。基本的には図4に示すフローチャートと同様であるので、異なる処理のみ説明する。なお、図4のフローチャートと同一処理は同一符号を付してその説明を省略する。
ステップ152において、制御装置60は、ステップ102で読み込んだ導電率値から導電率の変化速度を導出する。ステップ154において、制御装置60は、導出された導電率の変化速度が所定速度より小さいか否かを判定する。純水器14の劣化、燃料電池24の故障による導電率値の上昇より、燃料電池システムが冠水し泥水が純水タンク13内に浸入することによる導電率値の上昇のほうが速いと想定されるため、泥水が純水タンク13内に浸入することによる変化速度に基づいて所定速度を設定すればよい。
制御装置60は、導電率の変化速度が所定速度未満である場合には、ステップ154にて「YES」と判定し、定常運転、起動運転、待機運転を継続する(ステップ106)。一方、制御装置60は、導電率の変化速度が所定速度以上である場合には、ステップ154にて「NO」と判定し、ステップ110にて、定常運転、起動運転、待機運転を停止する(すなわちシステムを停止する)。
このように、制御装置60は、純水タンク13内の液体の導電率値の変化速度が所定速度以上となった場合、純水タンク13が浸水したと判断し、燃料電池システムを停止する。これにより、例えば純水器などの異常と区別して燃料電池システムの冠水を事前に検出することができ、この検出時から時間をおかないで燃料電池システムを確実かつ早期に停止(電力変換装置の停止も含む)することができる。
また、導電率計13bは、そもそも純水器14の劣化や燃料電池24の故障(故障により燃料電池24からの電解物質(イオン状態)が流出する故障)を検出するために設けられている。したがって、この導電率計13bは日常的に作動しているセンサであり、このように日常的に作動しているセンサによって燃料電池システムの冠水を検出できるため、頻繁に発生しない冠水でも高い信頼性で検出することができる。
また、上述した実施の形態において、図6に示すように、燃料電池システムが2次電源(バッテリ)57を備えていてもよい。これによれば、制御装置60が浸水していなければ、2次電源57からの電力が制御装置60に供給可能となるので、制御装置60の制御により燃料電池システムを自動的に復帰させることができる。
なお、燃料電池システムで使用する液体のタンクとして、純水タンク13以外に、凝縮水を貯蔵する凝縮水タンク、純水器(水精製器)、高分子形燃料電池などのように燃料電池を冷却する冷却水回路が存在する燃料電池システムでは冷却水タンク、原燃料がエタノールなどの液体を使用する場合には原燃料タンクなどがある。純水タンク13以外の場合には導電率計が新たに必要である。
また、例えば、凝縮器33の熱交換部33eに穴が開いて貯湯水がもれたとき、後段のタンク(純水タンク13)の導電率が上昇する。これによって浸水以外の場合の不具合を判断できる。この場合にもシステムを停止する。なお、その後段のタンクとして凝縮水タンクで判断するほうが早く判断できるため好ましいが、純水器(水精製器)や純水タンクでも貯湯水によってイオン交換樹脂のイオン交換能力が飽和して導電率が上がるため判断できる。このように、水道水(貯湯水)も検出対象である。
11…筐体、11a…第1排気口、11b…空気導出口、11c…空気導入口、12…仕切部材、12a…空気導入口、13…純水タンク、14…純水器、15…換気用空気ブロワ(送風手段)、20…燃料電池モジュール、21…ケーシング、21a…導出口、22…蒸発部、23…改質部、24…燃料電池、24a…セル、24b…燃料流路、24c…空気流路、25…マニホールド、30…排熱回収システム、31…貯湯槽、32…貯湯水循環ライン、32…貯湯水循環ポンプ、32b…温度センサ、33…第1熱交換器、50…インバータ装置(電力変換装置)、50a…DC/DCコンバータ、50b…DC/ACインバータ、50c…系統連系インバータ制御装置、50d…インバータ用電源DC/DCコンバータ、50e…電力測定装置、50f…整流回路、50g…第1接続器、50h…第2接続器、51…系統電源、52…電源ライン、52a…電力測定装置、53…外部電力負荷、54…補機用電源基板、55…補機、56…交流電流系統、57…2次電源(バッテリ)、60…制御装置、R1…第1室、R2…第2室。

Claims (3)

  1. 燃料と酸化剤ガスとにより発電して外部電力負荷に出力する燃料電池を備えた燃料電池システムであって、
    前記燃料電池から出力される電力を入力し所定の電力に変換して前記外部電力負荷に出力する電力変換装置と、
    前記燃料電池システムで使用する液体を貯蔵する容器であり、該液体の導電率を検知する導電率計を前記容器内に備えたタンクと、
    前記燃料電池を少なくとも含んで構成された燃料電池モジュールと、
    前記燃料電池モジュールから排気される燃焼排ガスが供給され、該燃焼排ガスを凝縮する凝縮器と、
    前記凝縮器から凝縮水が供給され、該凝縮水を純水化する純水器と、
    前記導電率計の検知結果が送信される制御装置と、
    を備え、
    前記タンクが、前記燃料電池システム内であって前記燃料電池から前記外部電力負荷までの電流系統のうち浸水することで漏電する可能性のある漏電可能部位より下方に設置されており、前記純水器で処理された後の水を前記液体として貯蔵するものであり、
    前記制御装置は、前記タンク内の液体の導電率値が、前記純水器で処理された後の水の導電率より大きい値に設定されている所定値以上となった場合、前記タンクが浸水したと判断して前記燃料電池システムを停止することを特徴とする燃料電池システム。
  2. 燃料と酸化剤ガスとにより発電して外部電力負荷に出力する燃料電池を備えた燃料電池システムであって、
    前記燃料電池から出力される電力を入力し所定の電力に変換して前記外部電力負荷に出力する電力変換装置と、
    前記燃料電池システムで使用する液体を貯蔵する容器であり、該液体の導電率を検知する導電率計を前記容器内に備えたタンクと、
    前記導電率計の検知結果が送信される制御装置と、
    を備え、
    前記タンクが、前記燃料電池システム内であって前記燃料電池から前記外部電力負荷までの電流系統のうち浸水することで漏電する可能性のある漏電可能部位より下方に設置されており、
    前記制御装置は、前記タンク内の液体の導電率値の変化速度が所定速度以上となった場合、前記タンクが浸水したと判断して前記燃料電池システムを停止することを特徴とする燃料電池システム。
  3. 請求項2において、前記燃料電池を少なくとも含んで構成された燃料電池モジュールと、
    前記燃料電池モジュールから排気される燃焼排ガスが供給され、該燃焼排ガスを凝縮する凝縮器と、
    前記凝縮器から凝縮水が供給され、該凝縮水を純水化する純水器と、をさらに備え、
    前記タンクは、前記純水器で処理された後の水を前記液体として貯蔵するものであることを特徴とする燃料電池システム。
JP2009084082A 2009-03-31 2009-03-31 燃料電池システム Active JP5381237B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084082A JP5381237B2 (ja) 2009-03-31 2009-03-31 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084082A JP5381237B2 (ja) 2009-03-31 2009-03-31 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010238467A JP2010238467A (ja) 2010-10-21
JP5381237B2 true JP5381237B2 (ja) 2014-01-08

Family

ID=43092629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084082A Active JP5381237B2 (ja) 2009-03-31 2009-03-31 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5381237B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5876336B2 (ja) * 2012-03-12 2016-03-02 アイシン精機株式会社 発電装置
JP5966147B2 (ja) * 2012-06-06 2016-08-10 パナソニックIpマネジメント株式会社 燃料電池システム
JP2015125890A (ja) * 2013-12-26 2015-07-06 住友電気工業株式会社 燃料電池システム
KR102529912B1 (ko) * 2017-12-13 2023-05-08 현대자동차주식회사 배터리 시스템의 수분 유입 감지 장치 및 방법, 그리고 차량 시스템
US11566964B2 (en) * 2018-10-10 2023-01-31 Huawei Technologies Co., Ltd. Water ingress detection method and circuit, and electric device
JP7450514B2 (ja) 2020-10-12 2024-03-15 東京瓦斯株式会社 燃料電池システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283649A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 燃料電池装置
JP2002170591A (ja) * 2000-12-04 2002-06-14 Sanyo Electric Co Ltd 固体高分子形燃料電池発電装置
JP2004214085A (ja) * 2003-01-07 2004-07-29 Nissan Motor Co Ltd 燃料電池の加湿システム
JP4994075B2 (ja) * 2007-03-22 2012-08-08 本田技研工業株式会社 燃料電池システム
JP2009037830A (ja) * 2007-08-01 2009-02-19 Aisin Seiki Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
JP2010238467A (ja) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5381239B2 (ja) 燃料電池システム
JP5381237B2 (ja) 燃料電池システム
JP5786521B2 (ja) 燃料電池システム
JP2011034701A (ja) 燃料電池システム
JP6111762B2 (ja) 燃料電池システム
JP2010255950A (ja) 排熱回収装置および燃料電池システム
JP6100066B2 (ja) 燃料電池システム及びその制御方法
JP5988701B2 (ja) 燃料電池システム
KR20100054824A (ko) 연료전지 시스템
JP6179390B2 (ja) 燃料電池システム
US20070048581A1 (en) Fuel cell system
JP2014204636A (ja) 分散型電源システム
JP6111855B2 (ja) 燃料電池システム
EP3070774B1 (en) Fuel cell system
JP5458628B2 (ja) 燃料電池システム
JP2017062973A (ja) 燃料電池システム
JP5946298B2 (ja) 燃料電池システム
JP2014191965A (ja) 燃料電池システム
JP5282472B2 (ja) 燃料電池発電システムの運転方法
JP4684576B2 (ja) 燃料電池発電システム
JP5026353B2 (ja) 燃料電池発電システム
JP2019057438A (ja) 燃料電池システム
JP6115230B2 (ja) 燃料電池システム
JP2011090862A (ja) 燃料電池システム
JP6167280B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350