WO2013190759A1 - 固体撮像素子及びその製造方法 - Google Patents

固体撮像素子及びその製造方法 Download PDF

Info

Publication number
WO2013190759A1
WO2013190759A1 PCT/JP2013/002750 JP2013002750W WO2013190759A1 WO 2013190759 A1 WO2013190759 A1 WO 2013190759A1 JP 2013002750 W JP2013002750 W JP 2013002750W WO 2013190759 A1 WO2013190759 A1 WO 2013190759A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
contact plug
solid
state imaging
imaging device
Prior art date
Application number
PCT/JP2013/002750
Other languages
English (en)
French (fr)
Inventor
良太 境田
高橋 信義
幸作 佐伯
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014520877A priority Critical patent/JPWO2013190759A1/ja
Publication of WO2013190759A1 publication Critical patent/WO2013190759A1/ja
Priority to US14/553,559 priority patent/US9735204B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising semiconducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76889Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by forming silicides of refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid-state imaging device and a manufacturing method thereof.
  • a solid-state imaging device mounted on a digital still camera or the like for example, a CMOS (Complementary Metal-Oxide Semiconductor) sensor or a CCD (Charge-Coupled Device) sensor has a plurality of two-dimensionally arranged photodiodes. Conventionally, each photodiode is configured by forming a PN junction in a semiconductor substrate.
  • CMOS Complementary Metal-Oxide Semiconductor
  • CCD Charge-Coupled Device
  • the pixel size has been reduced with the increase in the number of pixels and miniaturization, and the area of the photodiode region tends to be reduced.
  • the area of the photodiode region is reduced, there is a problem that the sensor characteristics are deteriorated, such as a decrease in the saturation signal amount per pixel, or a decrease in sensitivity due to a decrease in aperture ratio and light collection efficiency.
  • noise reduction becomes important.
  • One of the causes of noise is crystal defects and metal contamination in the charge storage portion and readout portion in the pixel region.
  • the metal for forming the silicide diffuses into the charge storage portion and the readout portion and appears as noise such as white spots.
  • JP 2006-245540 A JP 2009-130090 A JP 58-103165 A JP 58-103166 A JP 2003-332551 A
  • a metal material such as tungsten or titanium is used for the contact connected to the charge accumulation portion, the readout portion, and the diffusion region such as the source / drain formed on the semiconductor substrate. Used. For this reason, an alloying reaction occurs at the contact surface between the diffusion region and the metal contact, resulting in crystal defects.
  • the contact area between the diffusion region formed in the pixel region of the semiconductor substrate and the metal contact is relatively small.
  • noise due to crystal defects generated on the contact surface is at a level that cannot be ignored.
  • the contact resistance increases. Further, the contact resistance increases due to miniaturization, and there arises a problem that sensor characteristics such as high-speed operability deteriorate.
  • FIG. 15 shows the correlation between the contact diameter and the contact resistance in the contact on the diffusion region where no silicide is formed. Since the correlation between the contact diameter and the contact resistance varies depending on conditions such as the constituent material of the contact, the impurity concentration of the substrate surface, and the processing temperature, FIG. 15 shows an example of the correlation between the general contact diameter and the contact resistance. Accordingly, the numerical values shown in FIG. 15 are approximate. From the viewpoint of circuit operation for high-speed operation, the contact resistance in the pixel region is required to be a low-resistance contact resistance on the order of kilo ohms (k ⁇ ). However, when miniaturization proceeds with a structure in which no silicide is formed in the pixel region, As can be seen from FIG. 15, the contact resistance rapidly increases to a resistance on the order of megaohms (M ⁇ ).
  • M ⁇ megaohms
  • noise caused by crystal defects at the contact surface between the charge storage portion, which is a diffusion region formed on the semiconductor substrate, and the metal contact is particularly problematic.
  • the signal charges photogenerated by the photoelectric conversion layer are accumulated in a charge accumulation portion formed on the semiconductor substrate.
  • a metal contact is formed on the charge storage unit.
  • a crystal defect due to an alloying reaction occurs at the contact surface between the semiconductor substrate on which the charge storage portion is formed and the metal contact, which causes noise in the charge storage portion.
  • a photoelectric conversion layer that generates a signal and a charge storage unit are electrically connected. For this reason, the noise in the charge accumulating section is accumulated together with the signal charge, and as a result, it greatly affects the sensor characteristics, so that the problem is great.
  • An object of the present invention is to solve the above-described problems, to suppress the generation of noise and to reduce the contact resistance of the pixel region.
  • the present invention uses a semiconductor for the contact plug provided in the pixel region, and further, the lower part of the contact plug made of semiconductor is embedded in an insulating film, and only the upper part exposed from the insulating film is silicided.
  • the configuration is as follows.
  • the present invention increases contact resistance in a structure in which no silicide is formed in the pixel region, and alloying at the contact surface between the diffusion region such as the charge storage portion, readout portion, and source / drain formed on the semiconductor substrate and the metal contact. It is intended to solve problems such as generation of noise due to reaction and metal contamination, and to realize a solid-state imaging device having a low noise and a low resistance contact in a pixel region, and a manufacturing method thereof.
  • the present invention can be applied to a solid-state image pickup device in which a photodiode is formed on a semiconductor substrate, and a so-called organic solid-state image pickup device having a photoelectric conversion layer formed of an organic semiconductor material above the semiconductor substrate.
  • the diffusion region refers to a region where impurities are introduced and diffused into the semiconductor substrate, and includes a charge storage portion for reading and storing signal charges, a reading portion, and source / drain of a transistor.
  • the solid-state imaging device is intended for a solid-state imaging device having an imaging pixel region in which a plurality of imaging pixels are arranged on a substrate, and the imaging pixel includes a diffusion region formed on the substrate, a substrate A first gate electrode formed on the side of the upper diffusion region, a first insulating film formed on the diffusion region, and a semiconductor connected to the diffusion region through the first insulating film A first contact plug comprising: a first contact plug having a lower portion embedded in the first insulating film and an upper portion exposed from the first insulating film; Silicide is formed on the upper surface of the plug, and no silicide is formed on the diffusion region and the first gate electrode.
  • the first contact plug formed in the imaging pixel region is made of a semiconductor, an alloying reaction does not occur at the joint surface between the first contact plug and the diffusion region. Noise caused by crystal defects does not occur.
  • silicide is formed on the upper surface of the first contact plug made of a semiconductor, when the silicide is formed on the upper surface of the first contact plug, the diffusion region in the imaging pixel region and the first contact plug are formed. The gate electrode is protected by a first insulating film. For this reason, no silicide is formed in the diffusion region and the first gate electrode in the imaging pixel region. Therefore, metal contamination does not occur in the imaging pixel region, resulting in low noise.
  • the solid-state imaging device can reduce noise and resistance.
  • the upper part of the contact plug exposed from the first insulating film can be reliably silicided.
  • it can be connected to other upper contacts with low resistance and the area of the upper surface of the first contact plug can be increased, so that the tolerance for misalignment with other contacts can be increased. It becomes.
  • the imaging pixel includes a second insulating film formed on the gate electrode, and a second contact plug penetrating the second insulating film and connected to the first gate electrode.
  • the second contact plug is formed of the same material as the semiconductor constituting the first contact plug, the lower part is embedded in the second insulating film, and the upper part is the second insulating film Silicide may be formed on the upper surface of the second contact plug.
  • the first contact plug and the second contact plug made of semiconductor and having silicide formed on the upper surface are connected to the diffusion region and the gate electrode formed in the imaging pixel region, respectively. For this reason, noise and resistance can be further reduced.
  • the other contact on the upper side connected to the diffusion region and the gate electrode in the imaging pixel region is formed on the non-silicided region. In this state, the resistance becomes very high. Therefore, for miniaturization, it is necessary to devise and limit temperature conditions at the time of forming other contacts.
  • the other contact when forming another contact, can be formed on the first contact plug made of a semiconductor and having the upper surface silicided. Limitations on temperature conditions and the like when forming other contacts can be greatly relaxed compared to the conventional case.
  • the first insulating film and the second insulating film may be continuous insulating films having the same composition.
  • the first insulating film on the diffusion region and the second insulating film on the gate electrode can be formed in the same process. Further, an insulating film for forming the first contact plug and the second contact plug and an insulating film as a block layer for preventing silicidation of the diffusion region of the imaging pixel region and the gate electrode are formed in the same process. can do. Therefore, since the manufacturing process can be simplified, the manufacturing cost of the solid-state imaging device can be reduced.
  • the diffusion region may constitute a pMOS transistor.
  • the contact resistance in the non-silicided diffusion region is higher than that of the nMOS transistor. Therefore, by siliciding the upper surface of the first contact plug, the effect of reducing the resistance obtained is further increased.
  • the semiconductor may be boron-doped polysilicon.
  • the solid-state imaging device includes a sidewall formed on one side surface of the first gate electrode and a second side surface formed on the diffusion region from the other side surface located on the diffusion region side of the first gate electrode. 3, and the third insulating film is formed between the diffusion region and the first insulating film on the diffusion region, and the first contact plug includes the third insulating film. It may penetrate.
  • the third insulating film can be formed using the sidewall forming film.
  • the third insulating film on the diffusion region is not removed by etching or the like, there is no damage due to the etching when the sidewall is formed in the diffusion region. As a result, noise can be further reduced.
  • the sidewall is a laminated film in which at least two insulating films are laminated
  • the third insulating film may be one of a plurality of insulating films constituting the laminated film.
  • the contact diameter at the lower part of the first contact plug may be smaller than the contact diameter at the lower part of the second contact plug.
  • the central portion of the bottom surface of the first contact plug may be embedded in a recess formed in the diffusion region.
  • the solid-state imaging device includes a second gate electrode formed on the substrate and in a region opposite to the first gate electrode across the diffusion region, and a conductive material formed on the first contact plug. And a part of the side end portion of the upper part of the first contact plug is above the first gate electrode or above the side wall formed on the side of the first gate electrode. The other part of the side end portion at the top of the first contact plug is located above the second gate electrode or above the sidewall formed on the side of the second gate electrode, A recess may be formed in the upper portion of the diffusion region on the upper surface of the contact plug, and the contact may be connected to the recess on the upper surface of the first contact plug.
  • the contact area with the conductive contact connected on the first contact plug can be increased, so that the contact resistance can be further reduced.
  • the solid-state imaging device of the present invention includes the second contact plug, the first contact plug and the second contact plug may be integrally formed.
  • a contact plug whose upper surface is silicided is formed across both the diffusion region and each gate electrode.
  • the contact plug also has a function of wiring for connecting the diffusion region and each gate electrode. Furthermore, since the upper part of the contact plug is silicided, it can be connected with low resistance.
  • the solid-state imaging device of the present invention includes another diffusion region adjacent to the diffusion region, a first insulating film formed on the other diffusion region, and another diffusion region penetrating the first insulating film.
  • a third contact plug made of a semiconductor, and the third contact plug is made of the same material as that of the semiconductor constituting the first contact plug, and a lower portion of the third contact plug is formed on the first insulating film.
  • the embedded portion is exposed from the first insulating film, and silicide is formed on the upper surface of the third contact plug.
  • the first contact plug and the third contact plug are: It may be formed integrally.
  • a contact plug whose upper surface is silicided is formed across the diffusion region of the adjacent transistor.
  • the contact plug also has a function of wiring for connecting adjacent diffusion regions. Furthermore, since the upper part of the contact plug is silicided, it can be connected with low resistance.
  • the diffusion region is a charge storage unit, and may further include a photoelectric conversion layer formed above the charge storage unit.
  • the solid-state imaging device of the present invention further includes a conductive contact formed on the first contact plug, and the photoelectric conversion layer stores the charge via the first contact plug and the contact. It may be electrically connected to the part.
  • the other upper contact may be formed of a metal material such as tungsten (W) or titanium (Ti), and the contact resistance can be reliably reduced.
  • a manufacturing method of a solid-state imaging device is directed to a manufacturing method of a solid-state imaging device having an imaging pixel region in which a plurality of imaging pixels are arranged on a substrate.
  • a step of forming a diffusion region a step of forming an insulating film on the diffusion region, a step of forming a first hole exposing the diffusion region in the insulating film, a step of forming a first hole on the insulating film, Forming a semiconductor film so as to embed one hole, forming a first contact plug that embeds the first hole and exposes the insulating film from the semiconductor film, and a first exposed from the insulating film.
  • a step of forming silicide on the surface of the contact plug, the peripheral portion at the top of the first contact plug is formed so as to run over the insulating film, and no silicide is formed in the diffusion region.
  • a contact plug which is connected to the diffusion region and has a low resistance and only the upper surface is silicided.
  • the method for manufacturing a solid-state imaging device of the present invention further includes a step of forming a gate electrode on the side of the diffusion region on the substrate before the step of forming the insulating film, and the step of forming the first hole includes Forming a second hole that exposes the gate electrode, and the step of forming the first contact plug includes, from the semiconductor film, a second contact plug that fills the second hole and is exposed from the insulating film.
  • the step of forming silicide including the step of forming silicide, silicide is simultaneously formed on the surface of the second contact plug exposed from the insulating film, and the upper peripheral portion of the second contact plug runs over the insulating film. The silicide is not formed on the gate electrode.
  • the region of the insulating film where the first contact plug is not formed is at least part of the insulating film in the thickness direction of the insulating film. May be left.
  • a low-noise and low-resistance solid-state imaging device can be realized even when the number of pixels is increased and the size is reduced.
  • FIG. 1 is a schematic plan view showing a schematic configuration of a solid-state imaging device according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a part of an imaging pixel region in the solid-state imaging device according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing one step of the method of manufacturing the solid-state imaging device according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view showing one step of the method for manufacturing the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view showing one step of the method for manufacturing the solid-state imaging device according to the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing one step of the method for manufacturing the solid-state imaging device according to the first embodiment.
  • FIG. 7 is a schematic cross-sectional view showing one step of the method of manufacturing the solid-state imaging device according to the first embodiment.
  • FIG. 8 is a schematic cross-sectional view showing one step of the method of manufacturing the solid-state imaging device according to the first embodiment.
  • FIG. 9 is a schematic cross-sectional view showing a part of an imaging pixel region in the solid-state imaging device according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a part of the imaging pixel region in the solid-state imaging device according to the first modification of the first embodiment.
  • FIG. 11 is a schematic cross-sectional view showing a part of an imaging pixel region in a solid-state imaging device according to a second modification of the first embodiment.
  • FIG. 12A to 12D are cross-sectional views in order of steps showing a method for manufacturing the main part of the solid-state imaging device according to the third modification of the first embodiment.
  • FIG. 13 is a schematic cross-sectional view showing a part of an imaging pixel region in a solid-state imaging device according to a fourth modification of the first embodiment.
  • FIG. 14A is a schematic cross-sectional view showing a part of the imaging pixel region in the solid-state imaging device according to the fifth modification of the first embodiment.
  • FIG. 14B is a schematic cross-sectional view showing a part of the imaging pixel region in the solid-state imaging device according to the sixth modification of the first embodiment.
  • FIG. 15 is a graph showing the correlation between the contact diameter and the contact resistance in the contact on the diffusion region where silicide is not formed.
  • the solid-state imaging device can be manufactured by a manufacturing process of a known semiconductor integrated circuit or organic solid-state imaging device.
  • the outline includes pattern formation by lithography and etching, formation of diffusion regions by ion implantation, arrangement of element forming material by sputtering or chemical vapor deposition (CVD) method, removal of non-patterned portions, and necessary heat treatment, etc. By repetitive operation.
  • CVD chemical vapor deposition
  • organic solid-state imaging device using an organic semiconductor material or the like for the photoelectric conversion layer processes and operations for forming the organic photoelectric conversion layer and the transparent electrode are added.
  • the present invention can be applied to a solid-state imaging device in which a photodiode is formed inside a semiconductor substrate, and also to an organic solid-state imaging device in which a photoelectric conversion layer made of an organic semiconductor material is provided above the semiconductor substrate.
  • the solid-state imaging device includes regions and members such as a photoelectric conversion unit, a charge transfer unit, a reading unit, an electrode, a wiring, and a charge storage unit inside the semiconductor substrate or above the semiconductor substrate.
  • a semiconductor material having high charge mobility is used for the charge transfer section and the readout section.
  • silicon is preferable as the semiconductor material because of the progress of miniaturization technology and its low cost.
  • CMOS method or a CCD method is preferable. Furthermore, the CMOS method is more preferable than the CCD method in terms of high-speed reading, pixel addition, partial reading, and low power consumption.
  • Patent Document 3 In the case of an organic solid-state imaging device, the above-mentioned Patent Document 3, Patent Document 4, and Patent Document 5 can be referred to for each of charge accumulation, transfer, and readout areas.
  • charges are photogenerated in the photoelectric conversion unit by incident light, and when a voltage is applied to a predetermined electrode, the charge moves to the electrode by an electric field generated in the photoelectric conversion unit. To do. Furthermore, it moves to the charge storage part of the semiconductor substrate and charges are stored. The charge accumulated in the charge accumulation unit is transferred to the reading unit by switching of the MOS transistor, and is further read as an electric signal and output to an external circuit.
  • any metal can be used for the pixel electrode provided on the semiconductor substrate side among the electrodes in contact with the photoelectric conversion layer, and for the wiring connected to the pixel electrode.
  • Arbitrary metal can be used also about the counter electrode provided in the opposite side to a semiconductor substrate among the electrodes which contact a photoelectric converting layer, especially ITO (indium tin oxide) or IZO (indium oxide) with high light transmittance. Zinc) is preferred.
  • a color filter that divides incident light into RGB (red, green, blue), for example, and a micro that collects the incident light.
  • a member such as a lens is provided.
  • the solid-state imaging device includes a contact plug made of a semiconductor in the pixel region and having silicide selectively formed on the upper surface.
  • the material of the semiconductor constituting the contact plug is preferably a material containing polysilicon, germanium (Ge), or gallium arsenide (GaAs).
  • the semiconductor may be doped with impurities such as phosphorus (P) or boron (B).
  • impurities such as phosphorus (P) or boron (B).
  • P phosphorus
  • B boron
  • a diffusion region for forming a plurality of imaging pixels is formed.
  • a source / drain constituting a transistor is provided.
  • a photodiode is provided inside a semiconductor substrate
  • a photodiode, a charge storage unit, and a readout unit are provided inside the semiconductor substrate.
  • a charge storage unit and the like are provided.
  • a gate insulating film is formed on the main surface of the semiconductor substrate.
  • a gate electrode constituting a transistor for reading signal charges is formed.
  • Sidewalls are formed on the side surfaces of the gate electrode.
  • silicon oxide, silicon nitride, or a laminated film thereof is used for the sidewall.
  • an insulating film is formed on the diffusion region and the gate electrode on the semiconductor substrate.
  • the insulating film covering the diffusion region and the gate electrode may be composed of one layer, or may be a laminated film composed of a plurality of materials.
  • a hole exposing the diffusion region or the gate electrode is formed in the insulating film by dry etching or the like.
  • a semiconductor film is formed over the entire surface of the semiconductor substrate over the insulating film in which the holes are formed so as to embed the semiconductor film in the holes.
  • the semiconductor film for forming the contact plug is formed on the insulating film formed on the diffusion region and the gate electrode. Therefore, the insulating film has a function of protecting the diffusion region below the semiconductor film from etching damage when the semiconductor film is etched.
  • the insulating film provided between the diffusion region and the semiconductor film and between the gate electrode and the semiconductor film is left without being removed by etching, so that the remaining insulating film is used as a silicide block layer in the silicide process. be able to. Therefore, in the region where the silicide is not formed, the insulating film that becomes the silicide block layer is left, while in the peripheral circuit region that forms silicide in the gate electrode and the source / drain, the insulating film that becomes the silicide block layer is removed. Silicide can be formed only in a desired region.
  • the upper part of the contact plug made of a semiconductor is above the insulating film to be the silicide block layer, silicide is formed on the exposed surface portion in a self-aligned manner. Accordingly, it is possible to form a contact plug made of a semiconductor, the upper surface being silicided, and the lower portion embedded in the hole of the insulating film not being silicided.
  • the insulating film having the function of protecting the diffusion region of the semiconductor substrate from etching damage and the insulating film functioning as the silicide block layer can be formed in a single process. For this reason, since the film-forming process can be simplified, the manufacturing cost can be reduced accordingly.
  • the upper contact connected to the contact plug made of semiconductor may be a contact (metal contact) made of metal such as tungsten (W) or titanium (Ti).
  • the contact that is in direct contact with the diffusion region or the gate electrode is a metal contact.
  • the solid-state imaging device according to the present invention has a connection between the diffusion region or the gate electrode and the metal contact in the imaging pixel region.
  • a contact plug made of a semiconductor and having silicide formed on the upper surface is disposed therebetween. That is, the diffusion region or the gate electrode of the semiconductor substrate is electrically connected to the upper metal contact through the contact plug in which silicide is formed on the upper surface.
  • the solid-state imaging device 1 includes an imaging pixel region 1a in which a plurality of imaging pixels are arranged in an array, and each imaging pixel. And a peripheral circuit region 1b in which a logic circuit for processing an output signal is formed. More specifically, a signal is read from the imaging pixel region 1a to the peripheral circuit region 1b and output to the outside. As shown in the enlarged view of FIG. 1, a plurality of imaging pixels 10 are two-dimensionally arranged in the imaging pixel region 1 a of the solid-state imaging device 1. Each image pickup pixel 10 is provided with color filters R, G, and B of corresponding colors in a predetermined arrangement.
  • FIG. 2 shows a schematic cross-sectional configuration taken along line II that is a part of the imaging pixel region 1a in FIG.
  • an interlayer insulating layer 101, a photoelectric conversion layer 111, a counter electrode 108, a color filter 112, and a top lens (microlens) 114 are arranged on the substrate 100 in the Z-axis direction (normal line of the substrate surface). In the direction) from the substrate 100 side.
  • a charge storage unit 102 and a reading unit 104 which are diffusion regions spaced apart from each other in the X-axis direction, are formed.
  • a gate electrode 103 with a gate insulating film (not shown) interposed is provided in a region between the charge storage portion 102 and the readout portion 104 on the main surface of the substrate 100.
  • An insulating film 300 is formed on the charge storage portion 102 and the gate electrode 103 except for the contact regions with the contact plug 200 and the metal contact 106.
  • the contact plug 200 is made of a semiconductor and is formed so as to penetrate a hole 310 provided on the insulating film 300 above the charge storage portion 102. Therefore, the contact plug 200 is in contact with the charge storage unit 102.
  • the gate electrode 103 and the contact plug 200 are connected to a wiring 105 provided inside the interlayer insulating layer 101 via a metal contact 106, respectively.
  • the metal contact 106 directly connected to the gate electrode 103 is buried in a hole 320 formed in the insulating film 300 and is in contact with the gate electrode 103.
  • other diffusion regions such as a source and a drain constituting the transistor are formed in other portions of the upper portion of the substrate 100, and the insulating film 300 is also formed in these diffusion regions.
  • a metal contact 106 having a lower portion buried in the formed hole 320 is formed in contact therewith.
  • Silicide 210 is formed on the upper surface and side surface of the portion exposed from the insulating film 300 in the contact plug 200 made of semiconductor. In other words, no silicide is formed in the lower portion of the contact plug 200 embedded in the insulating film 300, and the silicide 210 is formed on the surface of the upper portion exposed from the insulating film 300.
  • cobalt (Co), nickel (Ni), platinum (Pt), or the like can be used as the material of the silicide 210.
  • the contact plug 200 illustrated in FIG. 2 includes the silicide 210. The same applies to the following description.
  • a pixel electrode 107 corresponding to each imaging pixel 10 is provided at a boundary portion between the interlayer insulating layer 101 and the photoelectric conversion layer 111.
  • Each pixel electrode 107 is connected to a wiring 105 inside the interlayer insulating layer 101 via an upper contact 109 provided below the pixel electrode 107.
  • the substrate 100 is preferably a semiconductor substrate made of silicon single crystal.
  • a voltage for reading signal charges is applied to the gate electrode 103.
  • the constituent material of the gate electrode 103 is preferably polysilicon (polycrystalline silicon). Further, boron (B) may be doped into the polysilicon.
  • a gate insulating film is formed between the substrate 100 and the gate electrode 103 in FIG. In addition, an insulating sidewall may be formed on the side surface of the gate electrode 103.
  • the charge storage portion 102 provided in the substrate 100 is a region for storing signal charges generated by the photoelectric conversion layer 111, and the reading portion 104 stores charges read by applying a voltage to the gate electrode 103. This is an area for reading to the peripheral circuit area 1b.
  • the charge storage unit 102 is formed by ion implantation or the like.
  • a p-type diffusion layer such as a well or an n-type diffusion layer is formed in addition to the charge storage portion 102.
  • a transistor, a contact, a wiring, and the like constituting a circuit for outputting the read signal charge (signal voltage) to the outside are formed.
  • the wiring 105, the metal contact 106, the upper contact 109, and the contact plug 200 function as a path for signal charge movement from the pixel electrode 107 to the charge storage unit 102, signal voltage transmission, and the like.
  • Tungsten (W) is preferable as the material of the metal contact 106 connected to the charge storage portion 102 and the gate electrode 103.
  • the material of the upper contact 109 connected to the pixel electrode 107 is preferably aluminum (Al).
  • the material of the contact plug 200 is preferably polysilicon, and the polysilicon may be doped with boron (B) or phosphorus (P).
  • the wiring 105 is not limited to a single layer configuration, and may be composed of two or more layers.
  • the number of wiring layers of the wiring 105 can be set as appropriate depending on the circuit.
  • Al aluminum
  • CMOS complementary metal-oxide-semiconductor
  • the photoelectric conversion layer 111 formed on the pixel electrode 107 is formed of a mixed layer of copper phthalocyanine and fullerene having broad absorption in the visible region by flash vapor deposition.
  • the photoelectric conversion layer 111 absorbs each light transmitted through the color filter 112, and charges are generated by photoelectric conversion.
  • the counter electrode 108 formed on the photoelectric conversion layer 111 is formed by a vacuum evaporation method or the like. Since incident light as a signal passes through the counter electrode 108 and enters the photoelectric conversion layer 111, it is preferable to use ITO having high light transmittance for the counter electrode 108.
  • the color filter 112 on the counter electrode 108 is a filter having a transmission wavelength corresponding to each imaging pixel 10.
  • a top lens 114 is formed on each color filter 112.
  • a gate insulating film (not shown) made of silicon oxide and a gate electrode 103 made of polysilicon are selectively formed. Thereafter, diffusion regions including the charge storage portion 102 and the readout portion 104 are formed on the substrate 100 by ion implantation using the desired resist pattern and the gate electrode 103 as a mask. Note that a sidewall may be formed on the side surface of the gate electrode 103. In this case, ion implantation is performed before, after, or before and after the formation of the sidewall in accordance with device characteristics and the like. Subsequently, an insulating film 300 made of, for example, silicon oxide is formed on the entire surface of the substrate 100 by CVD or the like so as to cover the charge storage portion 102, the gate electrode 103, and the readout portion 104.
  • the hole 310 exposing the charge storage portion 102 to the insulating film 300 is formed on the upper portion of the charge storage portion 102 in the formed insulating film 300 by a normal lithography process and etching process. To open.
  • a semiconductor film 200 ⁇ / b> A made of, for example, polysilicon is formed on the insulating film 300 in which the hole 310 is formed by a CVD method or the like so as to be embedded in the hole 310.
  • the contact plug 200 made of the semiconductor film 200 ⁇ / b> A is formed by performing dry etching or the like on the region of the semiconductor film 200 ⁇ / b> A except the portion where the contact plug 200 is formed.
  • the contact plug 200 is formed by a lower portion embedded in the hole 310 of the semiconductor film 200 ⁇ / b> A and an upper portion including a portion that rides on the upper side of the peripheral portion of the hole 310 in the insulating film 300.
  • the cross-sectional shape perpendicular to the substrate surface of the contact plug 200 is substantially T-shaped.
  • a lower portion of the insulating film 300 where the semiconductor film 200A is removed by etching that is, a region where the contact plug 200 is not formed in the insulating film 300 is at least partially removed in the thickness direction without being completely removed.
  • a region of the insulating film 300 where the semiconductor film 200A is etched has a thickness of about 20 nm to about 60 nm.
  • the insulating film 300 formed on the gate electrode, the source / drain, and the like where silicide is formed is silicided by etching or the like. Remove before doing.
  • a silicide 210 is selectively formed, that is, self-aligned in a portion exposed from the insulating film 300 of the contact plug 200 made of a semiconductor.
  • the insulating film 300 remains as a silicide block layer on the region excluding the connection portion of the charge storage portion 102 with the contact plug 200, the readout portion 104, and the gate electrode 103.
  • the silicide 210 is not formed in the charge storage unit 102, the readout unit 104, and the gate electrode 103.
  • silicide 210 is formed in the diffusion region such as the source / drain and the gate electrode disposed in the region where the insulating film 300 is removed.
  • the silicide 210 is formed on the surface of the portion located above the insulating film 300 of the contact plug 200 made of a semiconductor. Thereby, it is possible to reliably form the contact plug 200 made of a semiconductor and having the upper portion selectively silicided.
  • a metal contact 106 and a wiring 105 are formed in the interlayer insulating layer 101 and the interlayer insulating layer 101.
  • the upper contact 109 is sequentially formed.
  • a hole 320 in the insulating film 300 that becomes a connection portion between the gate electrode 103 and the metal contact 106 is opened simultaneously when forming holes for forming the metal contact 106 above the diffusion region 102 and above the gate electrode 103.
  • the interlayer insulating layer 101 includes, for example, silicon oxide as a main component, and a first layer in which a plurality of metal contacts 106 are formed, a second layer in which a plurality of wirings 105 are formed, and a plurality of upper contacts 109 are formed. It is comprised by the 3rd layer.
  • a plurality of insulating films may be laminated on each of the interlayer insulating layers of the first layer, the second layer, and the third layer.
  • the contact plug 200 made of a semiconductor and selectively silicided at the upper portion is provided only between the charge storage portion 102 and the metal plug 106.
  • the gate electrode 103 and the metal contact are provided.
  • a contact plug made of a semiconductor and selectively silicided on the upper portion may be provided between the contact plug 106 and the semiconductor device 106.
  • a contact plug made of a semiconductor and selectively silicided on the upper portion may be provided in the diffusion region other than the charge storage portion 102.
  • the solid-state imaging device 1 according to the first embodiment can be manufactured by the above manufacturing method.
  • the solid-state imaging device according to the second embodiment is a solid-state imaging device having a configuration in which a photodiode is formed on a semiconductor substrate. Furthermore, unlike the first embodiment, the solid-state imaging device according to the present embodiment includes not only the contact plug 200 in contact with the charge storage unit 102 in the imaging pixel region 1a in FIG.
  • the contact plug 200 made of a semiconductor and selectively silicided at the top is also used for the contact plug that contacts the drain and the gate electrode.
  • a solid-state imaging device according to the second embodiment will be described with reference to FIG. In FIG. 9, the same components as those of the solid-state imaging device according to the first embodiment shown in FIG.
  • a photodiode 501 that generates signal charges by photoelectric conversion, a reading unit 502 for reading signal charges from the photodiode 501, source / drain 504 that constitutes a transistor, and the like
  • a plurality of diffusion regions are formed.
  • a gate electrode 503 with a gate insulating film (not shown) interposed is provided in a region between the photodiode 501 and the reading unit 502 on the main surface of the substrate 100.
  • a source / drain 504 constituting the transistor is arranged with a predetermined distance from the photodiode 501.
  • An insulating film 300 is formed on the photodiode 501, the reading portion 502, the source / drain 504, and the gate electrode 503 except for the connection portion with the contact plug 200.
  • a plurality of contact plugs 200 made of a semiconductor connected through a hole 310 penetrating the insulating film 300 are formed on the readout portion 502, the source / drain 504 and the gate electrode 503.
  • each contact plug 200 has a substantially T-shaped cross section in which a lower portion thereof is buried in a hole 310 formed in the insulating film 300 and a side portion of the upper portion thereof rides on a peripheral portion of the hole 310. is doing.
  • a silicide 210 containing Co, Ni, or Pt is formed on a portion exposed from the insulating film 300 of the contact plug 200 made of a semiconductor, that is, on the upper surface of the contact plug 200. In other words, no silicide is formed in the lower portion of the contact plug 200 embedded in the insulating film 300, and the silicide 210 is formed on the surface of the upper portion exposed from the insulating film 300.
  • the semiconductor material forming the contact plug 200 is, for example, boron (B) doped polysilicon
  • the transistor including the source / drain 504 is, for example, a pMOS transistor.
  • a metal contact 106 In the interlayer insulating layer 101, in addition to the contact plug 200, a metal contact 106, a lower wiring 105, an upper contact 109, and an upper wiring 105 are formed.
  • the contact plug 200 is connected to a lower wiring 105 through a metal contact 106 connected to the upper part of the contact plug 200.
  • the lower layer wiring 105 is selectively connected to the upper layer wiring 105 through an upper contact 109 formed thereon.
  • FIG. 9 illustrates the case where the wiring 105 has two layers, but the wiring 105 is not limited to two layers and can be set as appropriate depending on a circuit.
  • a color filter 112 is formed on the interlayer insulating layer 101.
  • a top lens 114 is formed on each color filter 112. Incident light is collected by the top lens 114, passes through the color filter 112 and the interlayer insulating layer 101, and enters the photodiode 501.
  • the method of manufacturing the contact plug 200 made of a semiconductor and selectively silicided on the upper portion is provided with holes 310 in predetermined regions in the insulating film 300 formed on the readout portion 502, the gate electrode 503, and the source / drain 504, respectively. Form.
  • the subsequent steps are performed by the method described in the first embodiment.
  • the portion where the contact plug 200 made of a semiconductor and silicided is formed is limited to the charge storage unit 102, but in the second embodiment, the reading unit 502 is formed.
  • the contact plugs 200 are formed on desired regions of the source / drain 504 and the gate electrode 503, respectively.
  • a gate insulating film is formed between the substrate 100 and the gate electrode 503.
  • a sidewall may be formed on the side surface of the gate electrode 503.
  • CMOS process can be appropriately adjusted by a known process, a so-called CMOS process.
  • the solid-state imaging device according to the second embodiment can be manufactured by the above manufacturing method.
  • the solid-state imaging device includes a second insulating film 602 that covers the charge storage unit 102 as an insulating film that covers the charge storage unit 102 and an insulating film 300 (hereinafter referred to as an insulating film 300).
  • an insulating film 300 it is referred to as a first insulating film 300.
  • a sidewall 601 having the same composition and formed in the same process as the second insulating film 602 is provided on the side surface of the gate electrode 103 on the reading portion 104 side.
  • silicon oxide, silicon nitride, or the like can be used for the sidewall 601 and the second insulating film 602.
  • a gate insulating film (not shown) made of, for example, silicon oxide and a gate electrode 103 made of polysilicon are selectively formed on the main surface of the substrate 100. Thereafter, diffusion regions including the charge storage portion 102 and the readout portion 104 are formed on the substrate 100 by ion implantation using the desired resist pattern and the gate electrode 103 as a mask.
  • an insulating sidewall forming film is formed on the substrate 100 so as to cover the charge storage portion 102, the readout portion 104, and the gate electrode 103.
  • the upper portion of the charge storage portion 102 in the sidewall formation film is masked with a resist pattern by lithography.
  • etch back is performed by dry etching or the like to form a sidewall 601 that covers the side surface of the gate electrode 103 on the reading portion 104 side from the sidewall formation film.
  • a second insulating film 602 is formed from the sidewall formation film so as to cover the side surface of the gate electrode 103 on the charge storage portion 102 side and cover the charge storage portion 102.
  • the second insulating film 602 formed on the charge storage portion 102 which is a diffusion region is not removed, the charge storage portion 102 is not damaged by etching when the sidewall is formed. As a result, noise can be further reduced.
  • a first insulating film 300 is formed on the substrate 100 so as to cover the gate electrode 103 including the second insulating film 602, the reading portion 104, and the sidewalls 601. Thereafter, a hole 310 that exposes the charge storage portion 102 through the upper portion of the charge storage portion 102 in the first insulating film 300 and the second insulating film 602 is opened by lithography and dry etching. Subsequently, a semiconductor film made of polysilicon is formed on the entire surface of the substrate 100 so as to fill the hole 310 on the first insulating film 300.
  • the portion where the contact plug 200 is formed includes a portion embedded in the hole 310 of the semiconductor film and a portion including the upper side of the peripheral portion of the hole 310 in the first insulating film 300.
  • the contact plug 200 is formed such that the lower part thereof is buried in the first insulating film 300 and the second insulating film 602 and the upper side part thereof rides on the peripheral part of the hole 310.
  • the cross-sectional shape perpendicular to the substrate surface is substantially T-shaped.
  • a region of the first insulating film 300 where the semiconductor film is removed by etching that is, the region where the contact plug 200 is not formed in the first insulating film 300 is not completely removed, but in the thickness direction.
  • a region of the first insulating film 300 where the semiconductor film is etched has a thickness of about 20 nm to 60 nm.
  • the first insulating film 300 formed on the gate electrode, the source / drain, and the like where the silicide is formed is formed by etching or the like. Remove before silicidation.
  • the first insulating film 300 is used as a silicide block layer, and the silicide 210 is selectively applied to a portion exposed from the first insulating film 300 of the contact plug 200 made of a semiconductor.
  • the first insulating film 300 remains as a silicide block layer on the region other than the connection portion of the charge storage portion 102 with the contact plug 200, on the readout portion 104 and the gate electrode 103.
  • the silicide 210 is not formed in the charge storage unit 102, the readout unit 104, and the gate electrode 103.
  • silicide 210 is formed in the diffusion region such as the source / drain and the gate electrode disposed in the region where the first insulating film 300 is removed in the peripheral circuit region 1b shown in FIG. It is formed.
  • silicide is formed on the surface of the portion of the contact plug 200 made of semiconductor located above the first insulating film 300. Thereby, it is possible to reliably form the contact plug 200 made of a semiconductor and having the upper portion selectively silicided.
  • a contact plug 200 made of a semiconductor and having an upper portion selectively silicided an interlayer insulating layer 101, and a metal contact 106, a wiring 105 and an upper contact 109 are sequentially formed in the interlayer insulating layer 101.
  • a pixel electrode, a photoelectric conversion layer, a counter electrode, a color filter layer, and a top lens are sequentially formed as in the first embodiment.
  • the interlayer insulating layer 101, the first insulating film 300, and the second insulating film are formed by dry etching for forming the metal contact 106. 602 must pass through.
  • the interlayer insulating layer 101 is formed using an insulating material containing silicon oxide as a main component
  • the second insulating film 602 is formed using an insulating material containing silicon nitride as a main component
  • materials having different compositions must be etched. It becomes difficult.
  • the contact plug 200 made of a semiconductor is formed in advance as in the present invention, the electrical connection between the charge storage portion 102 and the metal contact 106 is made through the contact plug 200. Since the etching for forming the contact 106 only needs to penetrate the interlayer insulating layer 101, the process becomes easy.
  • the contact plug 200 from the main surface of the substrate 100 is provided in each imaging pixel 10.
  • the height up to the upper surface of the read portion 104 becomes higher than the height up to the upper surface of the readout portion 104 and the upper surface of the gate electrode 103. Therefore, when dry etching for forming the metal contact 106 is performed, the thickness of the interlayer insulating layer 101 is reduced in the upper portion of the contact plug 200, so that the etching amount of the interlayer insulating layer 101 is reduced. As a result, over-etching is applied to the contact plug 200 and the contact plug 200 may be penetrated.
  • a silicide 210 is formed on the surface of the contact plug 200, and the silicide generally formed of a metal such as cobalt (Co), nickel (Ni), or platinum (Pt) is an interlayer at the time of forming the metal contact 106. Since the etching selectivity with respect to the interlayer insulating layer 101 at the time of etching with respect to the insulating layer 101 is high, it is difficult to be removed.
  • a metal such as cobalt (Co), nickel (Ni), or platinum (Pt)
  • the solid-state imaging device according to the present modification can be manufactured by a simple process by forming the contact plug 200 made of a semiconductor and silicided.
  • the sidewall 601 and the second insulating film 602 are formed using a sidewall formation film having one composition by a single film formation process.
  • the sidewall forming film may be composed of at least two layers.
  • the number of layers constituting the second insulating film 602 may be less than the number of layers constituting the sidewall 601.
  • the plurality of layers forming the sidewall formation film are the first silicon oxide film, the second silicon oxide film, and the silicon nitride film from the gate electrode 103 side, and the layers forming the second insulating film 602 are It may be a first silicon oxide film.
  • the sidewall 601 and the second insulating film 602 cannot be formed by a single film formation step.
  • CMOS process can be appropriately adjusted by a known process, a so-called CMOS process. Further, the portions not shown in the figure can be appropriately adjusted by a known process, so-called CMOS process.
  • the solid-state imaging device according to the first modification can be manufactured.
  • the configuration according to this modification can also be applied to the solid-state imaging device according to the second embodiment.
  • FIG. 11 illustrates the main part of the solid-state imaging device extracted.
  • the solid-state imaging device according to the second modification example is made of a semiconductor and is selectively formed at the top, formed between the gate electrode 103 and the metal contact 106, as in the second embodiment.
  • the contact plug 201 is silicided. Furthermore, the contact diameter at the bottom of the contact plug 201 is larger than the contact diameter at the bottom of the contact plug 200 connected to the charge storage unit 102.
  • a gate insulating film (not shown) made of, for example, silicon oxide and a gate electrode 103 made of polysilicon are selectively formed on the main surface of the substrate 100. Thereafter, diffusion regions including the charge storage portion 102 and the readout portion 104 are formed on the substrate 100 by ion implantation using the desired resist pattern and the gate electrode 103 as a mask.
  • an insulating film 300 is formed on the substrate 100 so as to cover the reading portion 104, the gate electrode 103, and the charge storage portion 102. Thereafter, holes 310 that expose the charge storage portion 102 and the gate electrode 103 are opened through the upper portion of the charge storage portion 102 and the upper portion of the gate electrode 103 in the insulating film 300 by lithography and dry etching.
  • the opening diameter of the lower portion of the hole 310 formed on the gate electrode 103 is formed to be larger than the opening diameter of the lower portion of the hole 310 formed on the charge storage portion 102.
  • the opening area of the lower portion of the hole 310 formed on the gate electrode 103 is made larger than the opening area of the lower portion of the hole 310 formed on the charge storage portion 102.
  • a semiconductor film made of polysilicon is formed on the entire surface of the substrate 100 so as to fill the holes 310 on the insulating film 300.
  • the contact plugs 200 and 201 are each formed by a portion embedded in the hole 310 of the semiconductor film and a portion including the upper side of the peripheral edge of the hole 310 in the insulating film 300.
  • each of the contact plugs 200 and 201 is formed such that the lower part thereof is buried in the insulating film 300 and the upper side part of the contact plugs 200 and 201 rides on the peripheral part of the hole 310.
  • the shape is almost T-shaped.
  • a region of the insulating film 300 where the semiconductor film is removed by etching that is, a region where the contact plugs 200 and 201 are not formed in the insulating film 300 is at least one in the thickness direction without being completely removed. Leave a part.
  • a region of the insulating film 300 where the semiconductor film is etched has a thickness of about 20 nm to about 60 nm.
  • the insulating film 300 formed on the gate electrode and the source / drain, etc. where silicide is formed is silicided by etching or the like. Remove before doing.
  • the insulating film 300 is used as a silicide block layer, and the silicide 210 is selectively formed on the portions of the contact plugs 200 and 201 made of semiconductor exposed from the insulating film 300.
  • the insulating film 300 is formed as a silicide block layer on the region excluding the connection portion of the charge storage portion 102 with the contact plug 200 and the region excluding the connection portion of the readout portion 104 and the gate electrode 103 with the contact plug 201. Remaining. For this reason, the silicide 210 is not formed in the charge storage unit 102, the readout unit 104, and the gate electrode 103.
  • silicide 210 is formed in the diffusion region such as the source / drain and the gate electrode disposed in the region where the insulating film 300 is removed in the peripheral circuit region 1b shown in FIG. .
  • the silicide 210 is formed on the surface of the portion of the contact plugs 200, 201 made of semiconductor located above the insulating film 300, respectively. Thereby, the contact plugs 200 and 201 made of a semiconductor and selectively silicided on the upper portion can be reliably formed.
  • the interlayer insulating layer 101 and the metal contact 106, the wiring 105 and the upper contact 109 inside the interlayer insulating layer 101 are formed. Are sequentially formed.
  • a pixel electrode, a photoelectric conversion layer, a counter electrode, a color filter layer, and a top lens are sequentially formed as in the first embodiment.
  • the contact area of the gate electrode 103 and the contact plug 201 made of semiconductor is larger than the contact area of the charge storage portion 102 and contact plug 200 made of semiconductor. Thereby, the contact resistance of the gate electrode 103 and the contact plug 201 made of a semiconductor can be reduced.
  • CMOS process can be appropriately adjusted by a known process, a so-called CMOS process. Further, the portions not shown in the figure can be appropriately adjusted by a known process, so-called CMOS process.
  • the solid-state imaging device according to the second modification can be manufactured by the above manufacturing method.
  • the configuration according to this modification can also be applied to the solid-state imaging device according to the second embodiment.
  • FIGS. 12A to 12D A solid-state imaging device according to a third modification of the first embodiment will be described with reference to FIGS. 12 (a) to 12 (d).
  • FIGS. 12A to 12D the main part of the solid-state imaging device is extracted and drawn.
  • the solid-state imaging device according to the third modification is provided with a convex portion 200 a that protrudes downward at the central portion of the bottom of the contact plug 200 made of a semiconductor that contacts the charge storage portion 102. Yes.
  • a charge storage portion 102 that is a diffusion region is selectively formed on the substrate 100.
  • an insulating film 300 is formed on the charge storage portion 102, and then a hole 310 penetrating the insulating film 300 is opened by etching or the like.
  • the upper portion of the substrate 100 that is, the lower portion of the hole 310 in the charge storage portion 102 is dug to form the dug portion 102a.
  • the insulating film 300 is etched to increase the opening diameter of the hole 310 to form a new hole 310a.
  • the insulating film 300 is isotropically etched by wet etching using a cleaning chemical.
  • the hole 310 a having an enlarged opening diameter of the hole 310 can be formed, and the digging portion 102 a is positioned at the center of the lower surface of the hole 310.
  • a semiconductor film made of polysilicon is formed on the insulating film 300 in which the holes 310a are formed. Thereafter, dry etching or the like is performed on the region of the semiconductor film except for the portion where the contact plug 200 is formed, thereby forming the contact plug 200 made of a semiconductor.
  • the contact plug 200 is formed from a portion embedded in the hole 310a of the semiconductor film and the digging portion 102a of the charge storage region 102, and an upper portion of the peripheral portion of the hole 310a in the insulating film 300. . Accordingly, the contact plug 200 has a stepped shape with a step at the bottom.
  • a region of the insulating film 300 where the semiconductor film is removed by etching that is, a region where the contact plug 200 is not formed in the insulating film 300 is not completely removed but at least a part thereof in the thickness direction. Try to leave.
  • a region of the insulating film 300 where the semiconductor film is etched has a thickness of about 20 nm to about 60 nm.
  • the insulating film 300 is used as a silicide block layer, and a silicide 210 is selectively formed in a portion exposed from the insulating film 300 of the contact plug 200 made of a semiconductor.
  • the insulating film 300 remains as a silicide block layer on the region other than the connection portion of the charge storage portion 102 with the contact plug 200. For this reason, the silicide 210 is not formed in the charge storage portion 102.
  • silicide 210 is formed on the surface of the portion located above the insulating film 300 of the contact plug 200 made of semiconductor.
  • an interlayer insulating layer is formed as in the first embodiment, and a metal contact, a wiring, and an upper contact are formed in the interlayer insulating layer. Subsequently, a pixel electrode, a photoelectric conversion layer, a counter electrode, a color filter layer, and a top lens are sequentially formed on the interlayer insulating layer.
  • the diameter 20 of the digging portion 102a that affects the damage to the substrate 100 by dry etching that is, the charge accumulation portion 102 that is the diffusion region, has the hole 310a of the insulating film 300. Is smaller than the opening diameter 21. As a result, the damage to the charge storage unit 102 is reduced, so that noise can be suppressed.
  • the opening diameter 21 of the hole 310 a that determines the contact area between the charge storage portion 102 and the contact plug 200 is larger than the diameter 20 corresponding to the opening diameter of the initial hole 310. Therefore, the contact resistance between the charge storage portion 102 and the contact plug 200 can be reduced.
  • CMOS process can be appropriately adjusted by a known process, a so-called CMOS process. Further, the portions not shown in the figure can be appropriately adjusted by a known process, so-called CMOS process.
  • the solid-state imaging device according to the third modification can be manufactured.
  • the configuration according to this modification can also be applied to each solid-state imaging device according to the first embodiment, the first modification, the second modification, and the second embodiment.
  • a solid-state imaging device according to a fourth modification of the first embodiment will be described with reference to FIG. In FIG. 13, the main part of the solid-state imaging device is extracted and drawn.
  • the solid-state imaging device is between two gate electrodes 113 and 123 formed with a source / drain 701 that is a diffusion region of a transistor disposed in a pixel region interposed therebetween.
  • the contact plug 200 is formed so as to be in contact with the source / drain 701 and the upper side end portion of the contact plug 200 straddles the two gate electrodes 113 and 123.
  • a gate insulating film (not shown) made of silicon oxide and gate electrodes 113 and 123 made of polysilicon are selectively formed.
  • a source / drain 701 is selectively formed on the substrate 100 by ion implantation using the desired resist pattern and the gate electrodes 113 and 123 as a mask.
  • an insulating film 300 is formed on the substrate 100 so as to cover the source / drain 701 and the gate electrodes 113 and 123. Thereafter, a hole 310 that exposes the source / drain 701 is opened through the upper portion of the source / drain 701 in the insulating film 300 by lithography and dry etching. Subsequently, a semiconductor film made of polysilicon is formed on the entire surface of the substrate 100 so as to fill the hole 310 on the insulating film 300.
  • the concave portion 200b is formed in the central portion of the upper surface due to the shapes of the side surfaces and the upper surface of the two gate electrodes 113 and 123. That is, the upper part of the hole 310 sandwiched between the gate electrodes 113 and 123 on the upper surface of the contact plug 200 is recessed, while the upper part of each gate electrode 113 and 123 is raised.
  • the contact plug 200 has a lower portion embedded in the hole 310 of the insulating film 300 and an upper side portion on the upper portions of the gate electrodes 113 and 123 on the insulating film 300. It consists of the part that got on. As a result, the cross-sectional shape perpendicular to the substrate surface of the contact plug 200 is substantially Y-shaped.
  • the side portions on the source / drain 701 side can be used without the upper side portion of the contact plug 200 riding on the upper portions of the gate electrodes 113 and 123. It may be in a state where it rides only on the top of the wall. That is, if the upper part of the contact plug 200 rides on a stepped portion formed on both sides of the diffusion region such as the source / drain, the contact plug 200 can be made into a contact plug having a recessed upper surface.
  • the upper side portion of the contact plug 200 is not located on the gate electrodes 113 and 123, it is above the side wall on the source / drain 701 side formed on the side surfaces of the gate electrodes 113 and 123. May be located.
  • a region of the insulating film 300 where the semiconductor film is removed by etching that is, a region where the contact plug 200 is not formed in the insulating film 300 is not completely removed but at least a part thereof in the thickness direction. Try to leave.
  • a region of the insulating film 300 where the semiconductor film 200A is etched has a thickness of about 20 nm to about 60 nm.
  • the semiconductor material forming the contact plug 200 is boron-doped polysilicon.
  • the transistor including the source / drain 701 is a pMOS transistor.
  • the insulating film 300 formed on the silicide formation region in the peripheral circuit region 1b shown in FIG. 1 is removed by etching or the like before silicidation.
  • a silicide 210 is selectively formed in a portion exposed from the insulating film 300 of the contact plug 200 made of a semiconductor.
  • the insulating film 300 and the gate electrodes 113 and 123 are formed on the source / drain 701, and the insulating film 300 remains as a silicide block layer on the gate electrodes 113 and 123. Therefore, the silicide 210 is not formed on the source / drain 701 and the gate electrodes 113 and 123.
  • silicide 210 is formed in the diffusion region such as the source / drain and the gate electrode disposed in the region where the insulating film 300 is removed.
  • the silicide 210 is formed on the surface of the portion located above the insulating film 300 above the contact plug 200 made of semiconductor. This makes it possible to reliably form a contact plug made of a semiconductor and having an upper portion selectively silicided.
  • an interlayer insulating layer 101 and a metal contact 106, a wiring 105 and an upper contact 109 are sequentially formed in the interlayer insulating layer 101.
  • the lower part of the metal contact 106 is in contact with the concave part 200b of the contact plug 200 made of a semiconductor whose upper part is silicided.
  • the metal contact 106 is in contact with the concave portion 200b on the upper surface of the contact plug 200 whose cross section perpendicular to the substrate surface is Y-shaped. The contact area becomes larger than that in the case of contact with. As a result, the contact resistance between the metal contact 106 and the contact plug 200 can be reduced.
  • a charge storage unit a readout unit, a pixel electrode, a photoelectric conversion layer, a counter electrode, a color filter, and a top lens are formed as in the first embodiment.
  • a photodiode, a readout unit, a color filter, and a top lens are sequentially formed.
  • CMOS process can be appropriately adjusted by a known process, a so-called CMOS process. Further, the portions not shown in the figure can be appropriately adjusted by a known process, so-called CMOS process.
  • the solid-state imaging device according to the fourth modification can be manufactured by the above manufacturing method.
  • a solid-state imaging device according to a fifth modification of the first embodiment will be described with reference to FIG. 14A, the main part of the solid-state imaging device is extracted and drawn.
  • the solid-state imaging device has a channel 702 and a charge storage unit 102 which are diffusion regions formed on the substrate 100 at intervals from each other. Yes.
  • a gate electrode 133 is formed on the channel 702 with a gate insulating film (not shown) interposed therebetween.
  • An insulating film 300 is formed on the substrate 100 so as to cover the gate electrode 133 and the charge storage portion 102.
  • a contact plug 200 is formed on the insulating film 300. The contact plug 200 electrically connects the gate electrode 133 and the charge storage portion 102 to each other by a portion filled in the holes 310 b and 310 c that penetrate the insulating film 300.
  • Silicide 210 is formed on the upper and side surfaces of the contact plug 200 exposed from the insulating film 300.
  • a diffusion region including the charge storage portion 102 and the channel 702 is selectively formed on the substrate 100.
  • a gate electrode 133 is selectively formed on a channel 701 on the substrate 100 with a gate insulating film (not shown) interposed therebetween.
  • an insulating film 300 is formed on the substrate 100 so as to cover the gate electrode 133 and the charge storage portion 102. Thereafter, holes 310b and 310c that expose the upper portions of the gate electrode 133 and the charge storage portion 102 in the insulating film 300 are opened by lithography and dry etching. Subsequently, a semiconductor film made of polysilicon is formed on the entire surface of the substrate 100 so as to fill the holes 310 b and 310 c on the insulating film 300.
  • etching or the like is performed on the region of the semiconductor film excluding the portion where the contact plug 200 is formed to form the contact plug 200 made of semiconductor.
  • the contact plug 200 is formed so as to straddle the charge storage portion 102 from the upper surface of the gate electrode 133. Therefore, the contact plug connected to the charge storage portion 102 and the contact plug connected to the gate electrode 133 are integrally formed using one insulating film 300.
  • a lower portion of the insulating film 300 where the semiconductor film is removed by etching that is, a region where the contact plug 200 is not formed in the insulating film 300 is not completely removed but at least a part thereof in the thickness direction. Try to leave.
  • a region of the insulating film 300 where the semiconductor film is etched has a thickness of about 20 nm to about 60 nm.
  • the semiconductor material forming the contact plug 200 is boron-doped polysilicon
  • the transistor including the channel 702 is a pMOS transistor.
  • the insulating film 300 formed on the silicide formation region in the peripheral circuit region 1b shown in FIG. 1 is removed by etching or the like before silicidation.
  • a silicide 210 is selectively formed in a portion exposed from the insulating film 300 of the contact plug 200 made of a semiconductor.
  • the insulating film 300 remains as a silicide block layer on the gate electrode 133 and the charge storage portion 102. Therefore, the silicide 210 is not formed on the gate electrode 133 and the charge storage unit 102.
  • silicide 210 is formed in the diffusion region such as the source / drain and the gate electrode disposed in the region where the insulating film 300 is removed.
  • the silicide 210 is formed on the surface of the portion located above the insulating film 300 above the contact plug 200 made of semiconductor. This makes it possible to reliably form a contact plug made of a semiconductor and having an upper portion selectively silicided.
  • an interlayer insulating layer 101 and a metal contact 106, a wiring 105 and an upper contact 109 are sequentially formed in the interlayer insulating layer 101. To do.
  • a pixel electrode, a photoelectric conversion layer, a counter electrode, a color filter, and a top lens are formed as in the first embodiment.
  • the gate electrode 133 and the charge storage unit 102 are electrically connected by a contact plug 200 made of a semiconductor and silicided at the top.
  • a charge storage unit and a gate electrode of an amplification transistor are electrically connected.
  • the voltage of the charge storage unit changes depending on the stored signal charge.
  • the amplification transistor operates by changing the gate voltage in accordance with the change in the voltage of the charge storage unit.
  • the gate electrode 133 is a gate electrode of an amplification transistor
  • the charge storage unit 102 and the gate electrode 133 of the amplification transistor are directly connected by a contact plug 200 made of a semiconductor and silicided at the top. Therefore, the gate electrode 133 and the charge storage portion 102 can be connected with a low resistance by the contact plug 200 according to this modification.
  • the contact plug 200 that directly connects the gate electrode 133 and the adjacent charge storage portion 102 has been described above, but the present invention can also be applied to the contact plug 200 that directly connects adjacent diffusion regions. Below, it demonstrates as a 6th modification.
  • the gate electrode portion may be considered as a diffusion region in the method for manufacturing a contact plug that directly connects the gate electrode and the charge storage portion described in the fifth modification.
  • the solid-state imaging device is a source / drain region 801, 802, 803, and 804, which are diffusion regions formed on the substrate 100 at intervals.
  • a gate electrode 143 of the amplification transistor is formed through a gate insulating film (not shown).
  • a gate electrode 153 of the reset transistor is formed via a gate insulating film (not shown).
  • An insulating film 300 is formed on the substrate 100 so as to cover the gate electrodes 143 and 153 and the source / drain regions 801, 802, 803 and 804.
  • a contact plug 200 made of a semiconductor is formed on the insulating film 300.
  • the contact plug 200 electrically connects the drain 802 of the amplification transistor and the drain 803 of the reset transistor to each other by a portion filled in the holes 310 d and 310 e penetrating the insulating film 300.
  • Silicide 210 is formed on the upper and side surfaces of the contact plug 200 exposed from the insulating film 300.
  • An interlayer insulating layer 101 is formed above the contact plug 200 and the insulating film 300. Inside the interlayer insulating layer 101, a metal contact 106 connected to the silicided contact plug 200, the metal contact 106 A wiring 105 connected to the wiring 105 and an upper contact 109 connected to the wiring 105 are formed.
  • a pixel electrode, a photoelectric conversion layer, a counter electrode, a color filter, and a top lens are formed as in the first embodiment.
  • accumulated charges are discharged to the outside through a reset transistor. For this reason, the drain of the reset transistor and the drain of the amplification transistor are electrically connected.
  • the drain 802 of the amplification transistor and the drain 803 of the reset transistor are directly connected by a contact plug 200 made of a semiconductor and silicided at the top. Therefore, the contact plug 200 according to this modification can connect the drain 802 of the amplification transistor and the drain 803 of the reset transistor with low resistance.
  • CMOS process can be appropriately adjusted by a known process, a so-called CMOS process. Further, the portions not shown in the figure can be appropriately adjusted by a known process, so-called CMOS process.
  • the solid-state imaging device according to the fifth modification and the sixth modification can be manufactured.
  • the solid-state imaging device and the manufacturing method thereof according to the present invention are useful for a digital still camera or a digital movie camera equipped with a solid-state imaging device having low noise and low resistance performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 固体撮像素子が備える撮像画素は、基板(100)に形成された拡散領域である電荷蓄積部(102)と、基板上における電荷蓄積部の側方に形成されたゲート電極(103)と、電荷蓄積部の上に形成された絶縁膜(300)と、該絶縁膜を貫通して電荷蓄積部と接続された、半導体からなるコンタクトプラグ(200)とを有している。コンタクトプラグは、その下部が絶縁膜に埋め込まれ、且つその上部が絶縁膜から露出している。コンタクトプラグの上部の表面には、シリサイド(210)が形成されており、電荷蓄積部及びゲート電極には、シリサイドが形成されていない。

Description

固体撮像素子及びその製造方法
 本発明は、固体撮像素子及びその製造方法に関する。
 ディジタルスチルカメラ等に搭載されている固体撮像素子、例えば、CMOS(ComplementaryMetal-Oxide Semiconductor)センサ又はCCD(Charge-CoupledDevice)センサは、2次元配置された複数のフォトダイオードを有している。従来において、各フォトダイオードは、半導体基板中にPN接合を形成することにより構成されている。
 近年、多画素化及び微細化に伴って画素サイズが小さくなっており、フォトダイオード領域の面積も小さくなる傾向にある。フォトダイオード領域の面積が小さくなると、1画素当たりの飽和信号量の低下、又は開口率及び集光効率の低下等による感度の低下等、センサ特性が低下するという問題が生じてきている。
 さらに、飽和信号量及び感度特性が低下するのに伴い、ノイズの低減が重要となる。ノイズの要因の1つに、画素領域内の電荷蓄積部及び読み出し部等における結晶欠陥及び金属汚染がある。特に、画素領域のゲート電極及び拡散領域にシリサイドを形成した場合に、シリサイド形成用の金属が電荷蓄積部及び読み出し部等に拡散して、白きず等のノイズとして現れる。
 従って、このようなノイズの問題を解決するために、画素領域についてはシリサイドを形成しない固体撮像素子が一般的となっている(例えば、特許文献1等を参照。)。
 また、近年、光利用効率を上げるために基板の上方に有機光電変換層を積層した構造を採る固体撮像素子も開発されている(例えば、特許文献2等を参照。)。
特開2006-245540号公報 特開2009-130090号公報 特開昭58-103165号公報 特開昭58-103166号公報 特開2003-332551号公報
 しかしながら、画素領域にシリサイドを形成しない場合でも、半導体基板上に形成された電荷蓄積部、読み出し部及びソース・ドレイン等の拡散領域とそれぞれ接続されるコンタクトには、タングステン又はチタン等の金属材料が用いられる。このため、拡散領域と金属コンタクトとの接触面において合金化反応が起こり、結晶欠陥が生じる。
 半導体基板の画素領域に形成された拡散領域と金属コンタクトとの接触面積は比較的に小さい。しかし、微細化が進む固体撮像素子においては、この接触面で発生する結晶欠陥を起因とするノイズが無視できないレベルとなってきている。
 また、画素領域にシリサイドを形成しない構造を採ると、コンタクト抵抗が大きくなる。さらに、微細化によりコンタクト抵抗が増大し、高速動作性等のセンサ特性が低下するという問題が生じる。
 図15にシリサイドを形成していない拡散領域上のコンタクトにおけるコンタクト径とコンタクト抵抗との相関を示す。コンタクト径とコンタクト抵抗との相関はコンタクトの構成材料、基板表面の不純物濃度及び処理温度等の条件により変わるため、図15は一般的なコンタクト径とコンタクト抵抗との相関の一例を示している。従って、図15に示す数値は概略である。高速動作のための回路動作の観点から、画素領域におけるコンタクト抵抗には、キロオーム(kΩ)オーダの低抵抗のコンタクト抵抗が求められるが、画素領域にシリサイドを形成しない構造で微細化が進むと、図15から分かるように、コンタクト抵抗はメガオーム(MΩ)オーダの抵抗へと急激に増大する。
 また、有機固体撮像素子においては、半導体基板に形成された拡散領域である電荷蓄積部と金属コンタクトとの接触面における結晶欠陥を起因とするノイズは、特に問題となる。光電変換層によって光生成された信号電荷は、半導体基板に形成された電荷蓄積部に蓄積される。光電変換層と電荷蓄積部とを電気的に接続するには、電荷蓄積部の上に金属コンタクトが形成される。前述したように電荷蓄積部が形成された半導体基板と金属コンタクトとの接触面において、合金化反応による結晶欠陥が発生し、電荷蓄積部におけるノイズの要因となる。有機固体撮像素子の場合は、信号を発生させる光電変換層と電荷蓄積部とが電気的に接続されている。このため、電荷蓄積部におけるノイズは信号電荷と共に蓄積される結果、センサ特性に大きく影響するので、問題は大きい。
 本発明は、前記の問題を解決し、ノイズの発生を抑え且つ画素領域のコンタクト抵抗を低減できるようにすることを目的とする。
 前記の目的を達成するため、本発明は、画素領域に設けられるコンタクトプラグに半導体を用い、さらに、半導体からなるコンタクトプラグの下部は絶縁膜に埋め込み、該絶縁膜から露出する上部のみをシリサイド化する構成とする。
 すなわち、本発明は、画素領域にシリサイドを形成しない構造におけるコンタクト抵抗の増大、半導体基板に形成された電荷蓄積部、読み出し部及びソース・ドレイン等の拡散領域と金属コンタクトとの接触面における合金化反応によるノイズの発生及び金属汚染等の問題を解決すべくなされ、低ノイズで且つ画素領域に低抵抗なコンタクトを備えた固体撮像素子とその製造方法とを実現できるようにする。
 また、本発明は、半導体基板にフォトダイオードを形成した固体撮像素子にも、半導体基板の上方に有機半導体材料で形成した光電変換層を有する、いわゆる有機固体撮像素子にも適用可能である。
 ここで、拡散領域とは、半導体基板に不純物の導入拡散を行なった領域をいい、信号電荷の蓄積及び読み出しを行なうための電荷蓄積部、読み出し部及びトランジスタのソース・ドレイン等を含む。
 具体的に、本発明に係る固体撮像素子は、基板上に複数の撮像画素が配列された撮像画素領域を有する固体撮像素子を対象とし、撮像画素は、基板に形成された拡散領域と、基板上における拡散領域の側方に形成された第1のゲート電極と、拡散領域の上に形成された第1の絶縁膜と、第1の絶縁膜を貫通して拡散領域と接続された、半導体からなる第1のコンタクトプラグとを有し、第1のコンタクトプラグは、その下部が第1の絶縁膜に埋め込まれ、且つその上部が第1の絶縁膜から露出しており、第1のコンタクトプラグの上部の表面には、シリサイドが形成されており、拡散領域及び第1のゲート電極には、シリサイドが形成されていない。 
 本発明の固体撮像素子によると、撮像画素領域に形成される第1のコンタクトプラグは、半導体からなるため、第1のコンタクトプラグと拡散領域との接合面で合金化反応が起きず、その結果、結晶欠陥に起因するノイズが発生しない。さらに、半導体からなる第1のコンタクトプラグの上部の表面にはシリサイドが形成されるものの、第1のコンタクトプラグの上部の表面にシリサイドを形成する際に、撮像画素領域内の拡散領域及び第1のゲート電極は、第1の絶縁膜で保護されている。このため、撮像画素領域内の拡散領域及び第1のゲート電極にはシリサイドが形成されない。従って、撮像画素領域内では金属汚染が起こらず低ノイズとなる。また、第1のコンタクトプラグの上部の表面にシリサイドが形成されているため、該第1のコンタクトプラグの上に他のコンタクトを形成しても、第1のコンタクトプラグの上部と他のコンタクトの底部との接触面における抵抗が高抵抗とはならない。このため、本発明に係る固体撮像素子は、ノイズ及び抵抗を低減することができる。
 本発明の固体撮像素子において、第1のコンタクトプラグの上部の周縁部は、第1の絶縁膜の上に乗り上げるように形成されていてもよい。
 このようにすると、第1の絶縁膜から露出するコンタクトプラグの上部のみを確実にシリサイド化することができる。その上、上側の他のコンタクトと低抵抗で接続できると共に、第1のコンタクトプラグの上面の面積を大きくすることができるため、他のコンタクトとのアライメントのずれに対する許容量も大きくすることが可能となる。
 本発明の固体撮像素子において、撮像画素は、ゲート電極の上に形成された第2の絶縁膜と、第2の絶縁膜を貫通して第1のゲート電極と接続された第2のコンタクトプラグとを有し、第2のコンタクトプラグは、第1のコンタクトプラグを構成する半導体と同一の材料により形成され、その下部は第2の絶縁膜に埋め込まれ、且つその上部は第2の絶縁膜から露出しており、第2のコンタクトプラグの上部の表面には、シリサイドが形成されていてもよい。
 このようにすると、撮像画素領域に形成された拡散領域及びゲート電極には、半導体からなり且つ上部の表面にシリサイドが形成された第1のコンタクトプラグ及び第2のコンタクトプラグがそれぞれ接続される。このため、ノイズ及び抵抗をさらに低減することができる。なお、上面がシリサイド化されていないコンタクトプラグの場合は、撮像画素領域内の拡散領域及びゲート電極と接続される上側の他のコンタクトが、シリサイド化されていない領域の上に形成される。この状態では、抵抗が非常に高くなるため、微細化には他のコンタクトの形成時の温度条件等を工夫し且つ限定する必要がある。しかし、本発明の固体撮像素子においては、他のコンタクトを形成する場合に、半導体からなり上部の表面がシリサイド化された第1のコンタクトプラグの上に他のコンタクトを形成することができるので、他のコンタクトの形成時の温度条件等の制限が従来と比べて大幅に緩和できる。
 この場合に、第1の絶縁膜と第2の絶縁膜とは、同一組成の連続した絶縁膜であってもよい。
 このようにすると、拡散領域の上の第1の絶縁膜とゲート電極の上の第2の絶縁膜とを同一の工程で形成することができる。さらに、第1のコンタクトプラグ及び第2のコンタクトプラグを形成するための絶縁膜と、撮像画素領域の拡散領域及びゲート電極のシリサイド化を防ぐブロック層としての絶縁膜とを、同一の工程で形成することができる。従って、製造工程を簡略化できるので、固体撮像素子の製造コストを低減することができる。
 本発明の固体撮像素子において、拡散領域は、pMOSトランジスタを構成していてもよい。
 このように、撮像画素領域に形成されたトランジスタがpMOSトランジスタである場合は、nMOSトランジスタと比べて、シリサイド化されていない拡散領域におけるコンタクト抵抗がより高抵抗となる。従って、第1のコンタクトプラグの上部の表面をシリサイド化することにより、得られる低抵抗化の効果がより大きくなる。
 本発明の固体撮像素子において、半導体は、ボロンドープドポリシリコンであってもよい。
 このようにすると、低抵抗で且つ上部の表面がシリサイド化された第1のコンタクトプラグを得ることができる。
 本発明の固体撮像素子は、第1のゲート電極の一方の側面に形成されたサイドウォールと、第1のゲート電極の拡散領域側に位置する他方の側面から拡散領域の上に形成された第3の絶縁膜とをさらに備え、第3の絶縁膜は、拡散領域の上においては拡散領域と第1の絶縁膜との間に形成され、第1のコンタクトプラグは、第3の絶縁膜を貫通していてもよい。
 このようにすると、サイドウォール形成膜を用いて第3の絶縁膜とすることができる。この場合、エッチング等により、拡散領域の上の第3の絶縁膜を除去しないことから、拡散領域において、サイドウォール形成時のエッチングによるダメージがない。その結果、ノイズをより低減することができる。
 この場合に、サイドウォールは、少なくとも2層の絶縁膜が積層された積層膜であり、第3の絶縁膜は、該積層膜を構成する複数の絶縁膜のうちの1つであってもよい。
 このようにすると、拡散領域の上に残る第3の絶縁膜の膜厚を薄くすることができるので、半導体からなる第1のコンタクトプラグを形成するためのホールの形成が容易となる。
 本発明の固体撮像素子が第2のコンタクトプラグを備えている場合に、第1のコンタクトプラグの下部におけるコンタクト径は、第2のコンタクトプラグの下部におけるコンタクト径よりも小さくてもよい。
 このようにすると、拡散領域と半導体からなる第1のコンタクトプラグとの接触面積が小さくなる。このため、第1のコンタクトプラグを形成するために第1の絶縁膜にエッチング等によりホールを形成する際の拡散領域へのエッチングダメージが小さくなる。その結果、ノイズを低減することができる。さらに、第1のゲート電極と半導体からなる第2のコンタクトプラグとの接触面積が大きくなるため、第1のゲート電極と第2のコンタクトプラグとのコンタクト抵抗を低減することができる。なお、第1のゲート電極と第2のコンタクトプラグとの接触面積を大きくしても、第1の絶縁膜にエッチング等によりホールを形成する際の拡散領域へのダメージは増大しない。
 本発明の固体撮像素子において、第1のコンタクトプラグにおける下部の底面の中央部分は、拡散領域に形成された凹部に埋め込まれていてもよい。
 このようにすると、第1の絶縁膜のホールの形成時におけるダメージが大きいドライエッチングによって露出する拡散領域の面積を小さくすることができる。このため、拡散領域に対するダメージが低減できると共に、ダメージが小さいウエットエッチングによって拡散領域の表面の露出面積を拡大することができるので、低抵抗化をさらに促進することができる。
 本発明の固体撮像素子は、基板上で且つ拡散領域を挟んで第1のゲート電極と反対側の領域に形成された第2のゲート電極と、第1のコンタクトプラグの上に形成された導電性を有するコンタクトとをさらに備え、第1のコンタクトプラグの上部における側端部の一部は、第1のゲート電極の上方又は第1のゲート電極の側方に形成されたサイドウォールの上方に位置し、第1のコンタクトプラグの上部における側端部の他部は、第2のゲート電極の上方又は第2のゲート電極の側方に形成されたサイドウォールの上方に位置し、第1のコンタクトプラグの上面における拡散領域の上側部分には凹部が形成されており、コンタクトは、第1のコンタクトプラグの上面の凹部と接続されていてもよい。
 このようにすると、第1のコンタクトプラグの上に接続される導電性を有するコンタクトとの接触面積を拡大することができるので、接触抵抗をより低減することができる。
 本発明の固体撮像素子が第2のコンタクトプラグを備えている場合に、第1のコンタクトプラグと第2のコンタクトプラグとは、一体に形成されていてもよい。
 このようにすると、上部の表面がシリサイド化されたコンタクトプラグが、拡散領域及び各ゲート電極の両方に跨って形成される。これにより、コンタクトプラグは、拡散領域と各ゲート電極とを接続する配線の機能をも有する。さらに、コンタクトプラグの上部は、シリサイド化されていることにより、低抵抗で接続することができる。
 本発明の固体撮像素子は、拡散領域に隣接する他の拡散領域と、他の拡散領域の上に形成された第1の絶縁膜と、第1の絶縁膜を貫通して他の拡散領域と接続された、半導体からなる第3のコンタクトプラグとを有し、第3のコンタクトプラグは、第1のコンタクトプラグを構成する半導体と同一の材料により形成され、その下部は第1の絶縁膜に埋め込まれ、且つその上部が第1の絶縁膜から露出しており、第3コンタクトプラグの上部の表面には、シリサイドが形成されており、第1のコンタクトプラグと第3のコンタクトプラグとは、一体に形成されていてもよい。
 このようにすると、上部の表面がシリサイド化されたコンタクトプラグが、隣接するトランジスタの拡散領域に跨って形成される。これにより、コンタクトプラグは、隣接する拡散領域を接続する配線の機能をも有する。さらに、コンタクトプラグの上部は、シリサイド化されていることにより、低抵抗で接続することができる。
 本発明の固体撮像素子において、拡散領域は電荷蓄積部であり、電荷蓄積部の上方に形成された光電変換層をさらに備えていてもよい。
 このようにすると、有機固体撮像素子において、センサ特性に影響が大きい電荷蓄積部におけるノイズの発生を低減することができる。
 この場合に、本発明の固体撮像素子は、第1のコンタクトプラグの上に形成された導電性を有するコンタクトをさらに備え、光電変換層は、第1のコンタクトプラグとコンタクトとを介して電荷蓄積部と電気的に接続されていてもよい。
 このようにすると、導電性を有するコンタクトは、電荷蓄積部とは直接に接触しないため、合金化反応による結晶欠陥は発生しない。このため、上側の他のコンタクトをタングステン(W)又はチタン(Ti)等の金属材料によって形成してもよく、コンタクト抵抗を確実に低減することができる。
 本発明に係る固体撮像素子の製造方法は、基板上に複数の撮像画素が配列された撮像画素領域を有する固体撮像素子の製造方法を対象とし、基板上の撮像画素領域に、各撮像画素と対応して拡散領域を形成する工程と、拡散領域の上に絶縁膜を形成する工程と、絶縁膜に、拡散領域を露出する第1のホールを形成する工程と、絶縁膜の上に、第1のホールを埋め込むように半導体膜を形成する工程と、半導体膜から、第1のホールを埋め込み且つ絶縁膜から露出する第1のコンタクトプラグを形成する工程と、絶縁膜から露出する第1のコンタクトプラグの表面にシリサイドを形成する工程とを備え、第1のコンタクトプラグの上部の周縁部は、絶縁膜に乗り上げるように形成されており、拡散領域には、シリサイドが形成されていない。
 本発明の固体撮像素子の製造方法によると、拡散領域と接続され、低抵抗で且つ上部の表面のみがシリサイド化されたコンタクトプラグを形成することができる。
 本発明の固体撮像素子の製造方法は、絶縁膜を形成する工程よりも前に、基板上における拡散領域の側方にゲート電極を形成する工程をさらに備え、第1のホールを形成する工程は、ゲート電極を露出する第2のホールを形成する工程を含み、第1のコンタクトプラグを形成する工程は、半導体膜から、第2のホールを埋め込み且つ絶縁膜から露出する第2のコンタクトプラグを形成する工程を含み、シリサイドを形成する工程において、絶縁膜から露出する第2のコンタクトプラグの表面にも同時にシリサイドを形成し、第2のコンタクトプラグの上部の周縁部は絶縁膜に乗り上げており、ゲート電極には、シリサイドが形成されていない。
 このようにすると、ゲート電極と接続され、低抵抗で且つ上部の表面がシリサイド化されたコンタクトプラグを形成することができる。
 本発明の固体撮像素子の製造方法は、第1のコンタクトプラグを形成する工程において、絶縁膜における第1のコンタクトプラグを形成しない領域は、絶縁膜の厚さ方向に、絶縁膜の少なくとも一部を残してもよい。
 このようにすると、コンタクトプラグを形成しない領域の下方に位置するゲート電極や拡散領域の表面がシリサイド化されることを確実に防止することができる。
 本発明に係る固体撮像素子及びその製造方法によると、多画素化及び微細化しても低ノイズで且つ低抵抗な固体撮像素子を実現することができる。
図1は本発明に係る固体撮像素子の概略構成を示す模式的な平面図である。 図2は第1の実施形態に係る固体撮像素子における撮像画素領域の一部を示す模式的な断面図である。 図3は第1の実施形態に係る固体撮像素子の製造方法の一工程を示す模式的な断面図である。 図4は第1の実施形態に係る固体撮像素子の製造方法の一工程を示す模式的な断面図である。 図5は第1の実施形態に係る固体撮像素子の製造方法の一工程を示す模式的な断面図である。 図6は第1の実施形態に係る固体撮像素子の製造方法の一工程を示す模式的な断面図である。 図7は第1の実施形態に係る固体撮像素子の製造方法の一工程を示す模式的な断面図である。 図8は第1の実施形態に係る固体撮像素子の製造方法の一工程を示す模式的な断面図である。 図9は第2の実施形態に係る固体撮像素子における撮像画素領域の一部を示す模式的な断面図である。 図10は第1の実施形態の第1変形例に係る固体撮像素子における撮像画素領域の一部を示す模式的な断面図である。 図11は第1の実施形態の第2変形例に係る固体撮像素子における撮像画素領域の一部を示す模式的な断面図である。 図12(a)~図12(d)は第1の実施形態の第3変形例に係る固体撮像素子の要部の製造方法を示す工程順の断面図である。 図13は第1の実施形態の第4変形例に係る固体撮像素子における撮像画素領域の一部を示す模式的な断面図である。 図14(a)は第1の実施形態の第5変形例に係る固体撮像素子における撮像画素領域の一部を示す模式的な断面図である。図14(b)は第1の実施形態の第6変形例に係る固体撮像素子における撮像画素領域の一部を示す模式的な断面図である。 図15はシリサイドを形成していない拡散領域上のコンタクトにおけるコンタクト径とコンタクト抵抗との相関を示すグラフである。
 本発明に係る固体撮像素子は、公知の半導体集積回路又は有機固体撮像素子等の製造プロセスにより製造することができる。その概略は、リソグラフィ及びエッチングによるパターン形成、イオン注入による拡散領域の形成、スパッタ法又は化学的気相堆積(CVD)法による素子形成材料の配置、非パターン部の除去、及び必要な熱処理等の反復操作による。また、光電変換層に有機半導体材料等を用いた、いわゆる有機固体撮像素子の場合は、有機光電変換層及び透明電極を形成するプロセス及び操作等が加わる。
 本発明は、半導体基板の内部にフォトダイオードを形成した固体撮像素子にも、また、半導体基板の上方に有機半導体材料からなる光電変換層を設けた有機固体撮像素子にも適用することができる。
 固体撮像素子は、光電変換部、電荷転送部、読み出し部、電極、配線並びに電荷蓄積部等の各領域及び部材を、半導体基板の内部又は半導体基板の上方に備えている。
 電荷転送部及び読み出し部には、電荷の移動度が高い半導体材料を用いる。なかでも、微細化技術の進展とその低コスト性から、半導体材料はシリコンが好ましい。
 電荷の転送及び読み出し方式には、多くの種類があるが、いずれの方式でも構わない。好ましくは、CMOS方式又はCCD方式である。さらには、CCD方式よりもCMOS方式の方が高速読み出し、画素の加算、部分読み出し及び低消費電力等の点で好ましいことが多い。
 また、有機固体撮像素子の場合は、電荷の蓄積、転送及び読み出しの各領域については、上記の特許文献3、特許文献4及び特許文献5等を参考にすることができる。
 例えば、MOSトランジスタを用いた固体撮像素子の場合は、入射光により光電変換部で電荷が光生成され、所定の電極に電圧を印加することにより、光電変換部に生じる電界によって電荷が電極まで移動する。さらに、半導体基板の電荷蓄積部にまで移動して電荷が蓄積される。電荷蓄積部に蓄積された電荷は、MOSトランジスタのスイッチングにより読み出し部に転送され、さらに電気信号として読み出されて外部回路に出力される。
 また、有機固体撮像素子の場合は、光電変換層と接触する電極のうち半導体基板側に設けられる画素電極、さらに該画素電極と接続される配線には、任意の金属を用いることができる。なかでも、画素電極及び配線には、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)、クロム(Cr)若しくはタングステン(W)又はこれらの合金を用いることが好ましい。光電変換層と接触する電極のうち半導体基板と反対側に設けられる対向電極についても、任意の金属を用いることができ、特に、光の透過性が高いITO(酸化インジウム錫)又はIZO(酸化インジウム亜鉛)が好ましい。
 なお、半導体基板の内部にフォトダイオードを設ける固体撮像素子及び有機固体撮像素子のいずれの場合も、入射光を、例えばRGB(赤・緑・青)に分けるカラーフィルタ及び入射光を集光するマイクロレンズ等の部材を備えている。
 次に、本発明に係る固体撮像素子に設けるコンタクトプラグについて説明する。
 本発明に係る固体撮像素子は、画素領域に、半導体からなり、上部の表面にシリサイドが選択的に形成されたコンタクトプラグを備えている。コンタクトプラグを構成する半導体の材料としては、ポリシリコン、ゲルマニウム(Ge)又はヒ化ガリウム(GaAs)を含む材料が好ましい。また、該半導体には、リン(P)又はボロン(B)等の不純物がドープされていてもよい。シリサイドに用いる材料としては、コバルト(Co)、ニッケル(Ni)又は白金(Pt)等が好ましい。
 半導体基板における撮像画素領域には、複数の撮像画素を形成するための拡散領域が形成される。拡散領域には、トランジスタを構成するソース・ドレインが設けられる。さらに、半導体基板の内部にフォトダイオードを設ける固体撮像素子の場合は、半導体基板の内部にフォトダイオード、電荷蓄積部及び読み出し部が設けられる。また、有機固体撮像素子の場合は、電荷蓄積部等が設けられる。
 半導体基板の主面上にはゲート絶縁膜が形成され、ゲート絶縁膜の上には、例えば信号電荷を読み出すトランジスタを構成するゲート電極が形成される。ゲート電極の側面には、サイドウォールが形成される。サイドウォールには、シリコン酸化物若しくはシリコン窒化物又はこれらの積層膜等が用いられる。
 さらに、半導体基板上の拡散領域及びゲート電極の上には絶縁膜が形成される。拡散領域及びゲート電極を覆う絶縁膜は、1つの層からなっていてもよく、また、複数の材料からなる積層膜であってもよい。半導体からなるコンタクトプラグと拡散領域、又は該コンタクトプラグとゲート電極とを接触させるために、絶縁膜には、ドライエッチング等により拡散領域又はゲート電極を露出するホールを形成する。ホールが形成された絶縁膜の上に、半導体膜をホールに埋め込むように、半導体基板上の全面に形成する。形成された半導体膜をエッチング等によって所望の領域を残して除去することにより、半導体からなり、下部が絶縁膜に埋め込まれ、且つ上部が絶縁膜上におけるホールの周縁部に乗り上げた形状を持つコンタクトプラグが形成される。
 すなわち、本発明においては、コンタクトプラグ形成用の半導体膜が、拡散領域及びゲート電極の上に成膜された絶縁膜の上に形成されている。このため、該絶縁膜は、半導体膜をエッチングする際に、該半導体膜の下方にある拡散領域をエッチングダメージから保護する機能を有する。
 さらに、拡散領域と半導体膜及びゲート電極と半導体膜との間に設けられた絶縁膜は、エッチングによって除去せずに残す構造とすることにより、残った絶縁膜をシリサイド工程におけるシリサイドブロック層として用いることができる。従って、シリサイドを形成しない領域においては、シリサイドブロック層となる絶縁膜を残し、一方、ゲート電極及びソース・ドレインにシリサイドを形成する周辺回路領域等ではシリサイドブロック層となる絶縁膜を除去すれば、所望の領域にのみシリサイドを形成することができる。
 さらに、半導体からなるコンタクトプラグは、その上部がシリサイドブロック層となる絶縁膜より上方にあるため、露出した表面部分はシリサイドが自己整合的に形成される。従って、半導体からなり、上部の表面はシリサイド化され、絶縁膜のホールに埋め込まれた下部はシリサイド化されないコンタクトプラグを形成することができる。
 このように、半導体基板の拡散領域をエッチングダメージから保護する機能を有する絶縁膜とシリサイドブロック層として機能する絶縁膜とを、一回の工程で形成することができる。このため、成膜工程を簡略化できるので、その分の製造コストを低減することができる。
 半導体からなるコンタクトプラグと接続される上方のコンタクトは、タングステン(W)又はチタン(Ti)等の金属からなるコンタクト(金属コンタクト)であってもよい。従来の固体撮像素子は、拡散領域又はゲート電極と直接に接触するコンタクトは金属コンタクトであったが、本発明に係る固体撮像素子は、撮像画素領域における、拡散領域又はゲート電極と金属コンタクトとの間に、半導体からなり且つ上部の表面にシリサイドが形成されたコンタクトプラグが配置される構造を持つ。すなわち、半導体基板の拡散領域又はゲート電極は、上部の表面にシリサイドが形成されたコンタクトプラグを介して上側の金属コンタクトと電気的に接続されることとなる。
 以下では、本発明を実施するための形態について、図面を参照しながら説明する。なお、以下の各実施形態は、本発明の構成及びそこから奏される作用及び効果を分かり易く説明するために用いる一例であって、本発明は、本質的な特徴部分以外に何ら以下の形態に限定を受けるものではない。
 (第1の実施形態)
 第1の実施形態においては、本発明に係る固体撮像素子が有機固体撮像素子である場合について説明する。
 (1)固体撮像素子の概略構成
 図1に示すように、第1の実施形態に係る固体撮像素子1は、複数の撮像画素がアレイ状に配置された撮像画素領域1aと、各撮像画素から出力される信号を処理するロジック回路が形成された周辺回路領域1bとから構成される。より具体的には、撮像画素領域1aから周辺回路領域1bに信号が読み出されて、外部に出力される。図1の拡大図に示すように、固体撮像素子1の撮像画素領域1aには、複数の撮像画素10が2次元配列されている。各撮像画素10には、対応付けられた色のカラーフィルタR、G、Bがそれぞれ所定の配列により設けられている。
 (2)固体撮像素子における各撮像画素の構成
 図2は、図1における撮像画素領域1aの一部であるI-I線の模式的な断面構成を示している。
 図2に示すように、基板100の上には、層間絶縁層101、光電変換層111、対向電極108、カラーフィルタ112及びトップレンズ(マイクロレンズ)114が、Z軸方向(基板面の法線方向)に基板100側から順次積層されて形成されている。
 基板100の上部には、X軸方向に互いに間隔をおいた拡散領域である電荷蓄積部102及び読み出し部104がそれぞれ形成されている。基板100の主面上における電荷蓄積部102と読み出し部104との間の領域には、ゲート絶縁膜(図示せず)を介在させたゲート電極103が設けられている。
 電荷蓄積部102及びゲート電極103の上には、コンタクトプラグ200及び金属コンタクト106との各接触領域を除いて、絶縁膜300が形成されている。コンタクトプラグ200は、半導体からなり、絶縁膜300における電荷蓄積部102の上側に設けられたホール310を貫通するように形成されている。従って、コンタクトプラグ200は、電荷蓄積部102と接触している。
 ゲート電極103及びコンタクトプラグ200は、それぞれ金属コンタクト106を介して、層間絶縁層101の内部に設けられた配線105と接続されている。ゲート電極103と直接に接続される金属コンタクト106は、絶縁膜300に形成されたホール320に下部が埋め込まれて、ゲート電極103と接触している。また、図示はしていないが、基板100の上部の他の部分には、トランジスタを構成するソース・ドレイン等、他の拡散領域が形成されており、これらの拡散領域にも、絶縁膜300に形成されたホール320に下部が埋め込まれた金属コンタクト106が接触して形成されている。
 半導体からなるコンタクトプラグ200における絶縁膜300から露出する部分の上面及び側面には、シリサイド210が形成されている。言い換えれば、コンタクトプラグ200における絶縁膜300に埋め込まれた下部にはシリサイドが形成されておらず、絶縁膜300から露出する上部において、その表面にシリサイド210が形成されている。ここで、シリサイド210の材料には、コバルト(Co)、ニッケル(Ni)又は白金(Pt)等を用いることができる。なお、図2に示すコンタクトプラグ200は、シリサイド210をも含んだ構成とする。これは以下の記載についても同様である。
 層間絶縁層101と光電変換層111との境界部分には、各撮像画素10に対応して画素電極107が設けられている。各画素電極107は、該画素電極107の下側に設けられた上部コンタクト109を介して層間絶縁層101の内部の配線105とそれぞれ接続されている。
 基板100は、シリコン単結晶からなる半導体基板が好ましい。ゲート電極103には、信号電荷を読み出すための電圧が印加される。ゲート電極103の構成材料には、ポリシリコン(多結晶シリコン)が好ましい。また、ポリシリコンには、ボロン(B)がドープされていてもよい。なお、上述したように、図示を省略しているが、図2においては、基板100とゲート電極103との間にはゲート絶縁膜が形成されている。また、ゲート電極103の側面には絶縁性のサイドウォールが形成されていてもよい。
 基板100に設けられた電荷蓄積部102は、光電変換層111により光生成された信号電荷を蓄積する領域であり、読み出し部104は、ゲート電極103への電圧の印加により読み出された電荷を周辺回路領域1bに読み出すための領域である。各画素電極107から信号電荷(有機固体撮像素子の場合は、主に正孔)を取り出す場合には、イオン注入等により電荷蓄積部102を形成する。また、図2においては、図示を省略しているが、電荷蓄積部102以外にもウエル等のp型の拡散層層又はn型の拡散層が形成されている。さらに、読み出された信号電荷(信号電圧)を外部に出力する回路を構成するトランジスタ、コンタクト及び配線等が形成されている。
 配線105、金属コンタクト106、上部コンタクト109及びコンタクトプラグ200は、画素電極107から電荷蓄積部102への信号電荷の移動、並びに信号電圧の伝達等の経路として機能する。電荷蓄積部102及びゲート電極103と接続される金属コンタクト106の材料としては、タングステン(W)が好ましい。画素電極107と接続される上部コンタクト109の材料としては、アルミニウム(Al)が好ましい。また、コンタクトプラグ200の材料としては、ポリシリコンが好ましく、ポリシリコンには、ボロン(B)又はリン(P)がドープされていてもよい。
 配線105は、1層の構成に限られず、2層以上で構成されていてもよい。配線105の配線層の数は、回路によって適宜設定することができる。
 画素電極107には、アルミニウム(Al)を用いることが好ましい。例えば、層間絶縁層101の上に、スパッタリング法等によってアルミニウムを積層し、積層されたアルミニウムの上に所望の電極パターンを有するレジスト膜を形成する。その後、形成したレジスト膜をマスクとするドライエッチングによって、所望の画素電極107を形成できる。これらのプロセスは、公知のプロセス、いわゆるCMOSプロセスによって容易に調整できる。
 画素電極107の上に形成される光電変換層111は、フラッシュ蒸着により、銅フタロシアニンと可視領域においてブロードな吸収を有するフラーレンとの混合層等によって形成される。光電変換層111は、カラーフィルタ112を透過したそれぞれの光を吸収し、光電変換により電荷が生成される。光電変換層111の上に形成される対向電極108は、真空蒸着法等により形成される。信号となる入射光は、対向電極108を透過して光電変換層111に入射するため、対向電極108には光の透過性が高いITOを用いることが好ましい。
 対向電極108の上のカラーフィルタ112は、各撮像画素10と対応した透過波長を有するフィルタである。各カラーフィルタ112の上にはそれぞれトップレンズ114が形成されている。
 (3)固体撮像素子におけるコンタクトプラグの製造方法
 以下に、半導体からなり、上部にシリサイドが選択的に形成されたコンタクトプラグ200の製造プロセスの特徴となる工程について、図3から図8を参照しながら説明する。なお、図3から図8においては、コンタクトプラグ200の形成における要部となる部分を抽出して描いている。
 まず、図3に示すように、基板100の主面上に、例えば酸化シリコンからなるゲート絶縁膜(図示せず)及びポリシリコンからなるゲート電極103を選択的に形成する。その後、イオン注入法により、所望のレジストパターン及びゲート電極103をマスクとして、基板100の上部に電荷蓄積部102及び読み出し部104を含む拡散領域をそれぞれ形成する。なお、ゲート電極103の側面にはサイドウォールを形成してもよい。この場合のイオン注入は、デバイス特性等に合わせてサイドウォールの形成前若しくは形成後、又は形成前後の両方で行う。続いて、CVD法等により、例えば酸化シリコンからなる絶縁膜300を基板100の上の全面に、電荷蓄積部102、ゲート電極103及び読み出し部104を覆うように形成する。
 次に、図4に示すように、形成された絶縁膜300における電荷蓄積部102の上側部分に対して、通常のリソグラフィプロセス及びエッチングプロセスにより、絶縁膜300に電荷蓄積部102を露出するホール310を開口する。
 次に、図5に示すように、CVD法等により、ホール310を形成した絶縁膜300の上に、例えばポリシリコンからなる半導体膜200Aをホール310の内部に埋め込むように形成する。
 次に、図6に示すように、半導体膜200Aにおけるコンタクトプラグ200の形成部分を除く領域に対してドライエッチング等を行って、半導体膜200Aからなるコンタクトプラグ200を形成する。ここで、コンタクトプラグ200の形成部分は、半導体膜200Aのホール310に埋め込まれた下部と、絶縁膜300におけるホール310の周縁部の上側に乗り上げた部分を含む上部とから構成される。これにより、コンタクトプラグ200の基板面に垂直な断面形状がほぼT字状となる。なお、絶縁膜300における半導体膜200Aがエッチングにより除去される領域の下側部分、すなわち、絶縁膜300におけるコンタクトプラグ200が形成されない領域は、完全に除去せずに厚さ方向にその少なくとも一部を残すようにする。好ましくは、絶縁膜300における半導体膜200Aをエッチングする領域は、20nm以上且つ60nm以下程度の膜厚が残るようにする。
 続いて、図示はしていないが、図1に示す周辺回路領域1bにおいて、シリサイドが形成されるゲート電極及びソース・ドレイン等の上に成膜された絶縁膜300は、エッチング等によって、シリサイド化を行なう前に除去する。
 次に、図7に示すように、絶縁膜300をシリサイドブロック層として、半導体からなるコンタクトプラグ200の絶縁膜300から露出する部分にシリサイド210を選択的に、すなわち自己整合的に形成する。ここで、電荷蓄積部102のコンタクトプラグ200との接続部を除く領域、読み出し部104及びゲート電極103の上には、絶縁膜300がシリサイドブロック層として残っている。このため、電荷蓄積部102、読み出し部104及びゲート電極103にはシリサイド210は形成されない。また、図示はしていないが、図1に示す周辺回路領域1bにおいては、絶縁膜300が除去された領域に配置されているソース・ドレイン等の拡散領域及びゲート電極にはシリサイド210が形成される。
 このように、半導体からなるコンタクトプラグ200の絶縁膜300よりも上に位置する部分の表面には、シリサイド210が形成される。これにより、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200を確実に形成することができる。
 次に、図8に示すように、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200を形成した後、層間絶縁層101並びに該層間絶縁層101の内部に金属コンタクト106、配線105及び上部コンタクト109を順次形成する。ゲート電極103と金属コンタクト106との接続部となる絶縁膜300におけるホール320は、拡散領域102上方及びゲート電極103上方の金属コンタクト106を形成するためのホールを形成する際に同時に開口する。ここで、層間絶縁層101は、例えば酸化シリコンを主成分とし、複数の金属コンタクト106が形成される第1層、複数の配線105が形成される第2層及び複数の上部コンタクト109が形成される第3層により構成される。また、第1層、第2層及び第3層の各層間絶縁層は、それぞれ複数の絶縁膜が積層されていてもよい。
 また、本実施形態においては、電荷蓄積部102と金属プラグ106との間にのみ半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200を設ける構成としたが、ゲート電極103と金属コンタクト106との間にも、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグを設ける構成としてもよい。また、電荷蓄積部102以外の拡散領域にも、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグを設ける構成としてもよい。
 以上のプロセスは、公知のプロセス、いわゆるCMOSプロセスによって適宜調整することができる。図示を省略した部分についても、公知のプロセス、いわゆるCMOSプロセスによって適宜調整が可能である。また、光電変換層111は、フラッシュ蒸着等の真空蒸着法等により形成することができる。
 以上の製造方法により、第1の実施形態に係る固体撮像素子1を製造できる。
 (第2の実施形態)
 第2の実施形態に係る固体撮像素子は、半導体基板にフォトダイオードを形成する構成を持つ固体撮像素子である。さらに、本実施形態に係る固体撮像素子は、第1の実施形態とは異なり、図1における撮像画素領域1aにおいて、電荷蓄積部102と接触するコンタクトプラグ200だけでなく、例えば、読み出し部、ソース・ドレイン等及びゲート電極と接触するコンタクトプラグに対しても、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200としている。
 第2の実施形態に係る固体撮像素子について図9を参照しながら説明する。なお、図9において、図2に示す第1の実施形態に係る固体撮像素子と同一構成部材には、同一の符号を付すことにより説明を省略する。
 図9に示すように、基板100の上部には、光電変換により信号電荷を生成するフォトダイオード501、該フォトダイオード501から信号電荷を読み出すための読み出し部502及びトランジスタを構成するソース・ドレイン504等の複数の拡散領域が形成されている。基板100の主面上におけるフォトダイオード501と読み出し部502との間の領域には、ゲート絶縁膜(図示せず)を介在させたゲート電極503が設けられている。また、トランジスタを構成するソース・ドレイン504がフォトダイオード501と所定の間隔をおいて配置されている。フォトダイオード501、読み出し部502、ソース・ドレイン504及びゲート電極503の上には、コンタクトプラグ200との接続部を除いて、絶縁膜300が形成されている。読み出し部502、ソース・ドレイン504及びゲート電極503の上には、それぞれ絶縁膜300を貫通するホール310を通して接続された半導体からなる複数のコンタクトプラグ200が形成されている。ここで、各コンタクトプラグ200は、その下部が絶縁膜300に形成されたホール310に埋め込まれ、その上部の側部がホール310の周縁部の上に乗り上げた、ほぼT字状の断面を有している。
 半導体からなるコンタクトプラグ200の絶縁膜300から露出する部分、すなわちコンタクトプラグ200の上部の表面には、Co、Ni又はPtを含むシリサイド210が形成されている。言い換えれば、コンタクトプラグ200の絶縁膜300に埋め込まれた下部にはシリサイドが形成されておらず、絶縁膜300から露出する上部においては、その表面にシリサイド210が形成されている。
 ここで、コンタクトプラグ200を形成する半導体材料は、例えばボロン(B)ドープドポリシリコンであり、ソース・ドレイン504を含むトランジスタは、例えばpMOSトランジスタである。
 層間絶縁層101には、コンタクトプラグ200に加え、金属コンタクト106、下層の配線105、上部コンタクト109及び上層の配線105が形成されている。コンタクトプラグ200は、該コンタクトプラグ200の上部と接続される金属コンタクト106を介して下層の配線105と接続されている。下層の配線105は、その上に形成された上部コンタクト109を介して上層の配線105と選択的に接続されている。なお、図9は、配線105が2層の場合を示しているが、配線105は2層に限られず、回路により適宜設定することができる。層間絶縁層101の上には、カラーフィルタ112が形成されている。各カラーフィルタ112の上には、トップレンズ114がそれぞれ形成されている。入射光は、トップレンズ114によって集光され、カラーフィルタ112及び層間絶縁層101を透過して、フォトダイオード501にそれぞれ入射される。
 半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200の製造方法は、読み出し部502、ゲート電極503及びソース・ドレイン504の上に形成された絶縁膜300における所定の領域にそれぞれホール310を形成する。これ以降の工程は、第1の実施形態で説明した方法により実施される。
 但し、第1の実施形態においては、半導体からなり且つシリサイド化されたコンタクトプラグ200が形成される部位は、電荷蓄積部102の上に限られるが、第2の実施形態においては、読み出し部502、ソース・ドレイン504及びゲート電極503のうち所望の領域の上に、それぞれコンタクトプラグ200が形成される。
 なお、図9においても、図示はしていないが、基板100とゲート電極503との間にはゲート絶縁膜が形成されている。また、ゲート電極503の側面にはサイドウォールが形成されていてもよい。
 以上のプロセスは、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。
 以上の製造方法により、第2の実施形態に係る固体撮像素子を製造できる。
 (第1の実施形態の第1変形例)
 第1の実施形態の第1変形例に係る固体撮像素子について図10を参照しながら説明する。なお、図10は、固体撮像素子の要部を抽出して描いている。また、図2に示す第1の実施形態に係る固体撮像素子と同一構成部材には、同一の符号を付すことにより説明を省略する。これは、他の変形例においても同様である。
 図10に示すように、第1変形例に係る固体撮像素子は、電荷蓄積部102を覆う絶縁膜として、電荷蓄積部102を覆う第2の絶縁膜602と、その上の絶縁膜300(以下、本変形例においては、第1の絶縁膜300と呼ぶ。)とから構成される。また、ゲート電極103の読み出し部104側の側面には、第2の絶縁膜602と同一の工程で形成された同一の組成を有するサイドウォール601が設けられている。ここで、サイドウォール601及び第2の絶縁膜602には、酸化シリコン又は窒化シリコン等を用いることができる。
 以下、本変形例に係る固体撮像素子の要部を製造方法と共に説明する。
 まず、基板100の主面上に、例えば酸化シリコンからなるゲート絶縁膜(図示せず)及びポリシリコンからなるゲート電極103を選択的に形成する。その後、イオン注入法により、所望のレジストパターン及びゲート電極103をマスクとして、基板100の上部に電荷蓄積部102及び読み出し部104を含む拡散領域をそれぞれ形成する。
 次に、基板100の上に、電荷蓄積部102、読み出し部104及びゲート電極103を覆うように、絶縁性のサイドウォール形成膜を形成する。その後、リソグラフィにより、サイドウォール形成膜における電荷蓄積部102の上側部分をレジストパターンによってマスクする。続いて、レジストパターンをマスクとして、ドライエッチ等によりエッチバックを行って、サイドウォール形成膜からゲート電極103における読み出し部104側の側面を覆うサイドウォール601を形成する。これと同時に、サイドウォール形成膜から、ゲート電極103の電荷蓄積部102側の側面を覆うと共に電荷蓄積部102を覆う第2の絶縁膜602が形成される。このように、拡散領域である電荷蓄積部102の上に形成された第2の絶縁膜602を除去しないことから、電荷蓄積部102において、サイドウォール形成時のエッチングによるダメージがない。その結果、ノイズをより低減することができる。
 次に、基板100の上に、第2の絶縁膜602、読み出し部104及びサイドウォール601を含むゲート電極103を覆うように、第1の絶縁膜300を形成する。その後、リソグラフィ及びドライエッチングにより、第1の絶縁膜300及び第2の絶縁膜602における電荷蓄積部102の上側部分を貫通して電荷蓄積部102を露出するホール310を開口する。続いて、第1の絶縁膜300の上にホール310を埋め込むように、基板100の上の全面にポリシリコンからなる半導体膜を形成する。
 次に、半導体膜におけるコンタクトプラグ200の形成部分を除く領域に対して、ドライエッチング等を行って、半導体からなるコンタクトプラグ200を形成する。ここで、コンタクトプラグ200の形成部分は、半導体膜のホール310に埋め込まれた部分と、第1の絶縁膜300におけるホール310の周縁部の上側を含む部分とから構成される。このように、コンタクトプラグ200は、その下部が第1の絶縁膜300及び第2の絶縁膜602に埋め込まれ、その上部の側部がホール310の周縁部の上に乗り上げて形成される結果、基板面に垂直な断面形状がほぼT字状となる。なお、第1の絶縁膜300における半導体膜がエッチングにより除去される領域の下側部分、すなわち、第1の絶縁膜300におけるコンタクトプラグ200が形成されない領域は、完全に除去せずに厚さ方向にその少なくとも一部を残すようにする。好ましくは、第1の絶縁膜300における半導体膜をエッチングする領域は、20nm以上且つ60nm以下程度の膜厚が残るようにする。
 さらに、図示はしていないが、図1に示す周辺回路領域1bにおいて、シリサイドが形成されるゲート電極及びソース・ドレイン等の上に成膜された第1の絶縁膜300は、エッチング等によって、シリサイド化を行なう前に除去する。
 次に、図1に示す撮像画素領域1aにおいては、第1の絶縁膜300をシリサイドブロック層として、半導体からなるコンタクトプラグ200の第1の絶縁膜300から露出する部分にシリサイド210を選択的に形成する。ここで、電荷蓄積部102のコンタクトプラグ200との接続部を除く領域、読み出し部104及びゲート電極103の上には、第1の絶縁膜300がシリサイドブロック層として残っている。このため、電荷蓄積部102、読み出し部104及びゲート電極103にはシリサイド210は形成されない。また、図示はしていないが、図1に示す周辺回路領域1bにおいて、第1の絶縁膜300が除去された領域に配置されているソース・ドレイン等の拡散領域及びゲート電極にはシリサイド210が形成される。
 このように、半導体からなるコンタクトプラグ200の第1の絶縁膜300よりも上に位置する部分の表面には、シリサイドが形成される。これにより、半導体からなり且つ上部が選択的にシリサイドかされたコンタクトプラグ200を確実に形成することができる。
 次に、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200を形成した後、層間絶縁層101、並びに該層間絶縁層101の内部に金属コンタクト106、配線105及び上部コンタクト109を順次形成する。
 その後、図示はしていないが、第1の実施形態と同様に、画素電極、光電変換層、対向電極、カラーフィルタ層及びトップレンズを順次形成する。
 ところで、電荷蓄積部102とのコンタクトとして、金属コンタクト106のみを用いる場合は、該金属コンタクト106を形成するためのドライエッチングによって、層間絶縁層101、第1の絶縁膜300及び第2の絶縁膜602を貫通しなければならない。層間絶縁層101が酸化シリコンを主成分とし、第2の絶縁膜602が窒化シリコンを主成分とする絶縁性材料によって形成される場合は、異なる組成の材料をエッチングしなければならず、プロセスが困難となる。しかし、本発明のように、半導体からなるコンタクトプラグ200をあらかじめ形成しておけば、電荷蓄積部102と金属コンタクト106との電気的な接続はコンタクトプラグ200を介して行うことになるため、金属コンタクト106を形成するためのエッチングは、層間絶縁層101のみを貫通するだけでよくなるため、プロセスが容易となる。
 また、電荷蓄積部102の上には、第2の絶縁膜602、第1の絶縁膜300及びコンタクトプラグ200を設けているため、各撮像画素10において、基板100の主面からのコンタクトプラグ200の上面までの高さが、読み出し部104の上面及びゲート電極103の上面までの高さと比べて高くなる。従って、金属コンタクト106を形成するためのドライエッチングを行う際に、層間絶縁層101の厚さがコンタクトプラグ200の上側部分では薄くなるため、層間絶縁層101のエッチング量が少なくなる。これにより、コンタクトプラグ200にはオーバエッチングが加わってしまい、該コンタクトプラグ200を突き抜けるおそれがある。しかしながら、コンタクトプラグ200の表面にシリサイド210が形成されており、一般にコバルト(Co)、ニッケル(Ni)又は白金(Pt)等の金属により形成されるシリサイドは、金属コンタクト106を形成する際の層間絶縁層101に対するエッチング時の該層間絶縁層101に対するエッチング選択比が高いため、除去されにくくなる。
 従って、本変形例に係る固体撮像素子は、半導体からなり且つシリサイド化されたコンタクトプラグ200を形成することにより、容易なプロセスにより固体撮像素子の製造が可能となる。
 また、図10に示すように、本変形例においては、サイドウォール601及び第2の絶縁膜602は、一度の成膜工程による一の組成を持つサイドウォール形成膜を用いて形成したが、これに限られない。例えば、サイドウォール形成膜は、少なくとも2層から構成されていてもよい。また、この場合に、サイドウォール601を構成する複数の層よりも、第2の絶縁膜602を構成する層の方が少なく形成されていてもよい。例えば、サイドウォール形成膜を構成する複数の層が、ゲート電極103側から第1のシリコン酸化膜、第2のシリコン酸化膜及びシリコン窒化膜であり、第2の絶縁膜602を構成する層が第1のシリコン酸化膜であってもよい。この場合は、サイドウォール601と第2の絶縁膜602とは、1回の成膜工程では形成できない。
 以上のプロセスは、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。また、図示を省略している部分についても、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。
 以上の製造方法により、第1変形例に係る固体撮像素子を製造できる。
 また、本変形例に係る構成は、第2の実施形態に係る固体撮像素子にも適用できる。
 (第1の実施形態の第2変形例)
 第1の実施形態の第2変形例に係る固体撮像素子について図11を参照しながら説明する。なお、図11は、固体撮像素子の要部を抽出して描いている。
 図11に示すように、第2変形例に係る固体撮像素子は、第2の実施形態と同様に、ゲート電極103と金属コンタクト106との間に形成された、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ201を有している。さらにコンタクトプラグ201の底部のコンタクト径は、電荷蓄積部102と接続されるコンタクトプラグ200の底部のコンタクト径よりも大きい。
 以下、本変形例に係る固体撮像素子の要部を製造方法と共に説明する。
 まず、基板100の主面上に、例えば酸化シリコンからなるゲート絶縁膜(図示せず)及びポリシリコンからなるゲート電極103を選択的に形成する。その後、イオン注入法により、所望のレジストパターン及びゲート電極103をマスクとして、基板100の上部に電荷蓄積部102及び読み出し部104を含む拡散領域をそれぞれ形成する。
 次に、基板100の上に、読み出し部104、ゲート電極103及び電荷蓄積部102を覆うように、絶縁膜300を形成する。その後、リソグラフィ及びドライエッチングにより、絶縁膜300における電荷蓄積部102の上側部分及びゲート電極103の上側部分を貫通して、電荷蓄積部102及びゲート電極103をそれぞれ露出するホール310を開口する。ここで、ゲート電極103の上に形成したホール310の下部の開口径は、電荷蓄積部102の上に形成したホール310の下部の開口径よりも大きくなるように形成する。すなわち、ゲート電極103の上に形成したホール310の下部の開口面積を、電荷蓄積部102上に形成したホール310の下部の開口面積よりも大きくする。続いて、絶縁膜300の上に各ホール310を埋め込むように、基板100の上の全面にポリシリコンからなる半導体膜を形成する。
 次に、半導体膜における各コンタクトプラグ200、201の形成部分を除く領域に対して、ドライエッチング等を行って、半導体からなるコンタクトプラグ200、201をそれぞれ形成する。ここで、コンタクトプラグ200、201の形成部分は、それぞれ、半導体膜のホール310に埋め込まれた部分と、絶縁膜300におけるホール310の周縁部の上側を含む部分とから構成される。このように、コンタクトプラグ200、201は、それぞれ、その下部が絶縁膜300に埋め込まれ、その上部の側部がホール310の周縁部の上に乗り上げて形成される結果、基板面に垂直な断面形状がほぼT字状となる。
 また、絶縁膜300におけるゲート電極103上のホール310の開口径が、電荷蓄積部102上のホール310の開口径よりも大きいため、それぞれに形成されるコンタクトプラグ200、201の底面は、ゲート電極103上のコンタクトプラグ201の方が、電荷蓄積部102上のコンタクトプラグ200よりも大きくなる。なお、絶縁膜300における半導体膜がエッチングにより除去される領域の下側部分、すなわち、絶縁膜300におけるコンタクトプラグ200、201が形成されない領域は、完全に除去せずに厚さ方向にその少なくとも一部を残すようにする。好ましくは、絶縁膜300における半導体膜をエッチングする領域は、20nm以上且つ60nm以下程度の膜厚が残るようにする。
 さらに、図示はしていないが、図1に示す周辺回路領域1bにおいて、シリサイドが形成されるゲート電極及びソース・ドレイン等の上に成膜された絶縁膜300は、エッチング等によって、シリサイド化を行なう前に除去する。
 次に、図1に示す撮像画素領域1aにおいては、絶縁膜300をシリサイドブロック層として、半導体からなるコンタクトプラグ200、201の絶縁膜300から露出する部分にシリサイド210を選択的に形成する。ここで、電荷蓄積部102のコンタクトプラグ200との接続部を除く領域、読み出し部104及びゲート電極103のコンタクトプラグ201との接続部を除く領域の上には、絶縁膜300がシリサイドブロック層として残っている。このため、電荷蓄積部102、読み出し部104及びゲート電極103には、シリサイド210は形成されない。また、図示はしていないが、図1に示す周辺回路領域1bにおいて、絶縁膜300が除去された領域に配置されているソース・ドレイン等の拡散領域及びゲート電極にはシリサイド210が形成される。
 このように、半導体からなるコンタクトプラグ200、201の絶縁膜300よりも上に位置する部分の表面には、それぞれシリサイド210が形成される。これにより、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200、201を確実に形成することができる。
 次に、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200、201を形成した後、層間絶縁層101、並びに該層間絶縁層101の内部に金属コンタクト106、配線105及び上部コンタクト109を順次形成する。
 その後、図示はしていないが、第1の実施形態と同様に、画素電極、光電変換層、対向電極、カラーフィルタ層及びトップレンズを順次形成する。
 本変形例に係る固体撮像素子においては、電荷蓄積部102と半導体からなるコンタクトプラグ200の接触面積と比べて、ゲート電極103と半導体からなるコンタクトプラグ201の接触面積の方が大きい。これにより、ゲート電極103と半導体からなるコンタクトプラグ201のコンタクト抵抗を低抵抗化することができる。
 以上のプロセスは、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。また、図示を省略している部分についても、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。
 以上の製造方法により、第2変形例に係る固体撮像素子を製造できる。
 また、本変形例に係る構成は、第2の実施形態に係る固体撮像素子にも適用できる。
 (第1の実施形態の第3変形例)
 第1の実施形態の第3変形例に係る固体撮像素子について図12(a)~図12(d)を参照しながら説明する。なお、図12(a)~図12(d)は、固体撮像素子の要部を抽出して描いている。
 図12(d)に示すように、第3変形例に係る固体撮像素子は、電荷蓄積部102と接触する半導体からなるコンタクトプラグ200の底部の中央部分に、下方に突き出す凸部200aを設けている。
 以下、本変形例に係る固体撮像素子の要部を製造方法と共に説明する。
 まず、図12(a)に示すように、基板100の上部に、拡散領域である電荷蓄積部102を選択的に形成する。
 続いて、電荷蓄積部102の上に絶縁膜300を形成する、その後、エッチング等によって、絶縁膜300を貫通するホール310を開口する。このときのエッチングにより、基板100の上部、すなわち電荷蓄積部102におけるホール310の下側部分が掘り込まれて、掘り込み部102aが形成される。
 次に、図12(b)に示すように、絶縁膜300に対して、ホール310の開口径を拡げるエッチングを行って、新たなホール310aを形成する。例えば、この場合のエッチングには、洗浄薬液によるウェットエッチにより絶縁膜300を等方的にエッチングする。これにより、ホール310の開口径が拡大したホール310aを形成することができ、掘り込み部102aは、ホール310の下面の中央部に位置するようになる。
 次に、図12(c)に示すように、ホール310aが形成された絶縁膜300の上に、ポリシリコンからなる半導体膜を形成する。その後、半導体膜におけるコンタクトプラグ200の形成部分を除く領域に対して、ドライエッチング等を行って、半導体からなるコンタクトプラグ200を形成する。これにより、コンタクトプラグ200の形成部分は、半導体膜のホール310a及び電荷蓄積領域102の掘り込み部102aに埋め込まれた部分と、絶縁膜300におけるホール310aの周縁部の上側部分とから構成される。従って、コンタクトプラグ200は、その底部に段差を有する階段状となる。なお、絶縁膜300における半導体膜がエッチングにより除去される領域の下側部分、すなわち、絶縁膜300におけるコンタクトプラグ200が形成されない領域は、完全に除去せずに厚さ方向にその少なくとも一部を残すようにする。好ましくは、絶縁膜300における半導体膜をエッチングする領域は、20nm以上且つ60nm以下程度の膜厚が残るようにする。
 次に、図12(d)に示すように、絶縁膜300をシリサイドブロック層として、半導体からなるコンタクトプラグ200の絶縁膜300から露出する部分にシリサイド210を選択的に形成する。ここで、電荷蓄積部102のコンタクトプラグ200との接続部を除く領域の上には絶縁膜300がシリサイドブロック層として残っている。このため、電荷蓄積部102には、シリサイド210は形成されない。これに対し、半導体からなるコンタクトプラグ200の絶縁膜300よりも上に位置する部分の表面には、シリサイド210が形成される。
 このように、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200を確実に形成することができる。
 その後、図示はしていないが、第1の実施形態と同様に、層間絶縁層を形成し、該層間絶縁層には、金属コンタクト、配線及び上部コンタクトを形成する。続いて、層間絶縁層の上に、画素電極、光電変換層、対向電極、カラーフィルタ層及びトップレンズを順次形成する。
 このように、本変形例に係る固体撮像素子は、ドライエッチングによる基板100、すなわち拡散領域である電荷蓄積部102へのダメージに影響する掘り込み部102aの径20が、絶縁膜300のホール310aの開口径21よりも小さくなる。これにより、電荷蓄積部102へのダメージが低減される結果、ノイズを抑制することができる。
 逆に、電荷蓄積部102とコンタクトプラグ200との接触面積を決定するホール310aの開口径21は、初期のホール310の開口径に相当する径20よりも大きくなっている。従って、電荷蓄積部102とコンタクトプラグ200とのコンタクト抵抗を小さくすることができる。
 以上のプロセスは、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。また、図示を省略している部分についても、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。
 以上の製造方法により、第3変形例に係る固体撮像素子を製造できる。
 また、本変形例に係る構成は、第1の実施形態、その第1変形例及び第2変形例並びに第2の実施形態に係る各固体撮像素子にも適用することができる。
 (第1の実施形態の第4変形例)
 第1の実施形態の第4変形例に係る固体撮像素子について図13を参照しながら説明する。なお、図13は、固体撮像素子の要部を抽出して描いている。
 図13に示すように、第4変形例に係る固体撮像素子は、画素領域内に配置されたトランジスタの拡散領域であるソース・ドレイン701を挟んで形成された2つのゲート電極113、123の間に、該ソース・ドレイン701と接触し、且つ、コンタクトプラグ200の上部の側端部が2つのゲート電極113、123の上に跨るように形成されたコンタクトプラグ200を有している。
 以下、本変形例に係る固体撮像素子の要部を製造方法と共に説明する。
 まず、図13に示すように、基板100の主面上に、例えば酸化シリコンからなるゲート絶縁膜(図示せず)及びポリシリコンからなるゲート電極113、123を選択的に形成する。その後、イオン注入法により、所望のレジストパターン及びゲート電極113、123をマスクとして、基板100の上部にソース・ドレイン701を選択的に形成する。
 次に、基板100の上に、ソース・ドレイン701及びゲート電極113、123を覆うように、絶縁膜300を形成する。その後、リソグラフィ及びドライエッチングにより、絶縁膜300におけるソース・ドレイン701の上側部分を貫通してソース・ドレイン701を露出するホール310を開口する。続いて、絶縁膜300の上にホール310を埋め込むように、基板100の上の全面にポリシリコンからなる半導体膜を形成する。
 次に、半導体膜におけるコンタクトプラグ200の形成部分を除く領域に対して、ドライエッチング等を行って、半導体からなるコンタクトプラグ200を形成する。ここで、コンタクトプラグ200における基板面に垂直な方向の断面には、2つのゲート電極113、123の側面及び上面の形状に起因して、上面の中央部分に凹部200bが形成される。すなわち、コンタクトプラグ200の上面における、ゲート電極113、123に挟まれてなるホール310の上側部分は凹む一方、各ゲート電極113、123の上側部分は盛り上がる。このように、本変形例に係るコンタクトプラグ200は、その下部が絶縁膜300のホール310に埋め込まれた部分と、その上部の側部が絶縁膜300上のゲート電極113、123の上側部分に乗り上げた部分とから構成される。これにより、コンタクトプラグ200の基板面に垂直な断面形状がほぼY字状となる。
 また、ゲート電極113、123の側面にサイドウォールが形成されている場合は、コンタクトプラグ200の上部の側部はゲート電極113、123の上側部分に乗り上げなくても、ソース・ドレイン701側のサイドウォールの上部にのみ乗り上げた状態であっても構わない。すなわち、コンタクトプラグ200の上部がソース・ドレイン等の拡散領域の両側に形成された段差部分に乗り上げていれば、乗り上げることで上面が凹んだコンタクトプラグとすることができる。言い換えると、コンタクトプラグ200の上部の側部は、ゲート電極113、123の上に位置していなくても、該ゲート電極113、123の側面に形成されたソース・ドレイン701側のサイドウォールの上方に位置していてもよい。
 なお、絶縁膜300における半導体膜がエッチングにより除去される領域の下側部分、すなわち、絶縁膜300におけるコンタクトプラグ200が形成されない領域は、完全に除去せずに厚さ方向にその少なくとも一部を残すようにする。好ましくは、絶縁膜300における半導体膜200Aをエッチングする領域は、20nm以上且つ60nm以下程度の膜厚が残るようにする。
 ここで、コンタクトプラグ200を形成する半導体材料は、ボロンドープドポリシリコンである。また、ソース・ドレイン701を含むトランジスタは、pMOSトランジスタである。
 次に、図示していないが、図1に示す周辺回路領域1bにおいて、シリサイドが形成される領域の上に形成された絶縁膜300は、エッチング等によって、シリサイド化を行なう前に除去する。
 次に、絶縁膜300をシリサイドブロック層として、半導体からなるコンタクトプラグ200の絶縁膜300から露出する部分にシリサイド210を選択的に形成する。ここで、ソース・ドレイン701の上には、絶縁膜300及びゲート電極113、123が形成され、また、ゲート電極113、123の上には、絶縁膜300がシリサイドブロック層として残っている。このため、ソース・ドレイン701及びゲート電極113、123にはシリサイド210は形成されない。また、図示はしていないが、図1に示す周辺回路領域1bにおいては、絶縁膜300が除去された領域に配置されているソース・ドレイン等の拡散領域及びゲート電極にはシリサイド210が形成される。
 このように、半導体からなるコンタクトプラグ200の上部で且つ絶縁膜300よりも上に位置する部分の表面には、シリサイド210が形成される。これにより、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグを確実に形成することができる。
 次に、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200を形成した後、層間絶縁層101並びに該層間絶縁層101の内部に金属コンタクト106、配線105及び上部コンタクト109を順次形成する。ここで、金属コンタクト106の下部は、上部がシリサイド化された半導体からなるコンタクトプラグ200の凹部200bで接触している。このように、本変形例に係る固体撮像素子においては、金属コンタクト106が、基板面に垂直な断面がY字状となるコンタクトプラグ200の上面の凹部200bで接触しているため、平坦な部分で接触する場合よりも接触面積が大きくなる。その結果、金属コンタクト106とコンタクトプラグ200とのコンタクト抵抗を低抵抗化することができる。
 その後、図示はしていないが、第1の実施形態と同様に、電荷蓄積部、読み出し部、画素電極、光電変換層、対向電極、カラーフィルタ及びトップレンズを形成する。
 または、第2の実施形態と同様に、フォトダイオード、読み出し部、カラーフィルタ及びトップレンズを順次形成する。
 以上のプロセスは、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。また、図示を省略している部分についても、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。
 以上の製造方法により、第4変形例に係る固体撮像素子を製造できる。
 (第1の実施形態の第5変形例)
 第1の実施形態の第5変形例に係る固体撮像素子について図14(a)を参照しながら説明する。なお、図14(a)は、固体撮像素子の要部を抽出して描いている。
 図14(a)に示すように、第5変形例に係る固体撮像素子は、基板100の上部に互いに間隔をおいて形成された拡散領域である、チャネル702と電荷蓄積部102と有している。チャネル702の上には、ゲート絶縁膜(図示せず)を介在させたゲート電極133が形成されている。また、基板100の上には、ゲート電極133及び電荷蓄積部102を覆うように絶縁膜300が形成されている。絶縁膜300の上には、コンタクトプラグ200が形成されている。コンタクトプラグ200は、絶縁膜300を貫通するホール310b、310cに充填される部分によって、ゲート電極133と電荷蓄積部102とを互いに電気的に接続する。コンタクトプラグ200における絶縁膜300から露出する部分の上面及び側面には、シリサイド210が形成されている。
 以下、本変形例に係る固体撮像素子の要部を製造方法と共に説明する。
 まず、図14(a)に示すように、基板100の上部に、電荷蓄積部102及びチャネル702を含む拡散領域を選択的に形成する。続いて、基板100の上のチャネル701の上にゲート絶縁膜(図示せず)を介在させたゲート電極133を選択的に形成する。
 次に、基板100の上に、ゲート電極133及び電荷蓄積部102を覆うように、絶縁膜300を形成する。その後、リソグラフィ及びドライエッチングにより、絶縁膜300におけるゲート電極133及び電荷蓄積部102の上側部分をそれぞれ露出するホール310b、310cを開口する。続いて、絶縁膜300の上に各ホール310b、310cそれぞれを埋め込むように、基板100の上の全面にポリシリコンからなる半導体膜を形成する。
 次に、半導体膜におけるコンタクトプラグ200の形成部分を除く領域に対して、ドライエッチング等を行って、半導体からなるコンタクトプラグ200を形成する。これにより、コンタクトプラグ200は、ゲート電極133の上面から電荷蓄積部102の上に跨るように形成される。従って、電荷蓄積部102と接続されるコンタクトプラグと、ゲート電極133と接続されるコンタクトプラグとは、1つの絶縁膜300を用いて一体に形成される。なお、絶縁膜300における半導体膜がエッチングにより除去される領域の下側部分、すなわち、絶縁膜300におけるコンタクトプラグ200が形成されない領域は、完全に除去せずに厚さ方向にその少なくとも一部を残すようにする。好ましくは、絶縁膜300における半導体膜をエッチングする領域は、20nm以上且つ60nm以下程度の膜厚が残るようにする。
 ここで、コンタクトプラグ200を形成する半導体材料は、ボロンドープドポリシリコンであり、チャネル702を含むトランジスタは、pMOSトランジスタである。
 次に、図示していないが、図1に示す周辺回路領域1bにおいて、シリサイドが形成される領域の上に形成された絶縁膜300は、エッチング等によって、シリサイド化を行なう前に除去する。
 次に、絶縁膜300をシリサイドブロック層として、半導体からなるコンタクトプラグ200の絶縁膜300から露出する部分にシリサイド210を選択的に形成する。ここで、ゲート電極133及び電荷蓄積部102の上には、絶縁膜300がシリサイドブロック層として残っている。このため、ゲート電極133及び電荷蓄積部102にはシリサイド210は形成されない。また、図示はしていないが、図1に示す周辺回路領域1bにおいては、絶縁膜300が除去された領域に配置されているソース・ドレイン等の拡散領域及びゲート電極にはシリサイド210が形成される。
 このように、半導体からなるコンタクトプラグ200の上部で且つ絶縁膜300よりも上に位置する部分の表面には、シリサイド210が形成される。これにより、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグを確実に形成することができる。
 次に、半導体からなり且つ上部が選択的にシリサイド化されたコンタクトプラグ200を形成した後、層間絶縁層101並びに該層間絶縁層101の内部に金属コンタクト106、配線105及び上部コンタクト109を順次形成する。
 その後、図示はしていないが、第1の実施形態と同様に、画素電極、光電変換層、対向電極、カラーフィルタ及びトップレンズを形成する。
 本変形例に係る固体撮像素子は、ゲート電極133と電荷蓄積部102とが、半導体からなり且つ上部がシリサイド化されたコンタクトプラグ200によって電気的に接続されている。
 一般に、固体撮像素子においては、電荷蓄積部と増幅トランジスタのゲート電極とが電気的に接続されている。電荷蓄積部は、蓄積された信号電荷によりその電圧が変化する。増幅トランジスタは、電荷蓄積部の電圧の変化に応じてゲート電圧が変化し動作する。ゲート電極133が、増幅トランジスタのゲート電極である場合は、電荷蓄積部102と増幅トランジスタのゲート電極133とが、半導体からなり且つ上部がシリサイド化されたコンタクトプラグ200によって直接に接続される。従って、本変形例に係るコンタクトプラグ200によって、ゲート電極133と電荷蓄積部102とを低抵抗で接続することができる。
 以上、ゲート電極133と隣接する電荷蓄積部102とを直接に接続するコンタクトプラグ200について説明したが、隣接する拡散領域同士を直接に接続するコンタクトプラグ200についても適用することが可能である。以下に、第6変形例として説明する。
 (第1の実施形態の第6変形例)
 図14(b)を用いて、第1の実施形態の第6変形例に係る固体撮像素子が有する、隣接する拡散領域同士を直接接続するコンタクトプラグについてその構造を説明する。なお、製造方法については、第5変形例で説明したゲート電極と電荷蓄積部とを直接に接続するコンタクトプラグの製造方法において、ゲート電極部分を拡散領域として考えればよい。
 図14(b)に示すように、第6変形例に係る固体撮像素子は、基板100の上部に互いに間隔をおいて形成された拡散領域である、ソース・ドレイン領域801、802、803及び804有している。ソース・ドレイン領域801、802に挟まれた領域の基板100の上には、ゲート絶縁膜(図示せず)を介して増幅トランジスタのゲート電極143が形成されている。ソース・ドレイン領域803、804に挟まれた領域の基板100の上には、ゲート絶縁膜(図示せず)を介してリセットトランジスタのゲート電極153が形成されている。また、基板100の上には、ゲート電極143、153及びソース・ドレイン領域801、802、803及び804を覆うように絶縁膜300が形成されている。絶縁膜300の上には、半導体からなるコンタクトプラグ200が形成されている。コンタクトプラグ200は、絶縁膜300を貫通するホール310d、310eに充填される部分によって、増幅トランジスタのドレイン802とリセットトランジスタのドレイン803とを互いに電気的に接続する。コンタクトプラグ200における絶縁膜300から露出する部分の上面及び側面には、シリサイド210が形成されている。コンタクトプラグ200及び絶縁膜300の上方には層間絶縁層101が形成されており、該層間絶縁層101の内部には、シリサイド化されたコンタクトプラグ200と接続される金属コンタクト106、該金属コンタクト106と接続される配線105、及び該配線105と接続される上部コンタクト109が形成されている。図示はしていないが、第1の実施形態と同様に、画素電極、光電変換層、対向電極、カラーフィルタ及びトップレンズが形成されている。
 一般的な固体撮像素子においては、蓄積された電荷は、リセットトランジスタを介して外部に排出される。このため、リセットトランジスタのドレインと増幅トランジスタのドレインとは電気的に接続されている。
 本変形例においては、増幅トランジスタのドレイン802とリセットトランジスタのドレイン803とは、半導体からなり且つ上部がシリサイド化されたコンタクトプラグ200によって直接に接続される。従って、本変形例に係るコンタクトプラグ200によって、増幅トランジスタのドレイン802とリセットトランジスタのドレイン803とを低抵抗で接続することができる。
 以上のプロセスは、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。また、図示を省略している部分についても、公知のプロセス、いわゆるCMOSプロセスにより適宜調整することができる。
 以上の製造方法により、第5変形例及び第6変形例に係る固体撮像素子を製造できる。
 なお、上述した第1~第6の各変形例は、第1の実施形態の変形例として記載したが、各変形例は第1の実施形態又は第2の実施形態において、単独でも適用可能であるし、種々組み合わせて適用可能であることはいうまでもない。
 本発明に係る固体撮像素子及びその製造方法は、低ノイズで且つ低抵抗な性能を有する固体撮像素子を備えるディジタルスチルカメラ又はディジタルムービカメラ等に有用である。
1    固体撮像素子
1a   撮像画素領域
1b   周辺回路領域
10   撮像画素
20、21 ホール径
100  基板
101  層間絶縁層
102  電荷蓄積部
102a 掘り込み部
103、113、123、133、143、153 ゲート電極
104  読み出し部
105  配線
106  金属コンタクト
107  画素電極
108  対向電極
109  上部コンタクト
111  光電変換層
112  カラーフィルタ
114  トップレンズ
220A 半導体膜
200  コンタクトプラグ
200a 凸部
200b 凹部
201  コンタクトプラグ
210  シリサイド
300  (第1の)絶縁膜
310、310a、310b、310c、310d、310e ホール
320  ホール
501  フォトダイオード
502  読み出し部
503  ゲート電極
504  ソース・ドレイン
601  サイドウォール
602  第2の絶縁膜
701、801、802、803、804  ソース・ドレイン
702  チャネル

Claims (18)

  1.  基板上に複数の撮像画素が配列された撮像画素領域を有する固体撮像素子であって、
     前記撮像画素は、
     前記基板に形成された拡散領域と、
     前記基板上における前記拡散領域の側方に形成された第1のゲート電極と、
     前記拡散領域の上に形成された第1の絶縁膜と、
     前記第1の絶縁膜を貫通して前記拡散領域と接続された、半導体からなる第1のコンタクトプラグとを有し、
     前記第1のコンタクトプラグは、
     その下部が前記第1の絶縁膜に埋め込まれ、且つその上部が前記第1の絶縁膜から露出しており、
     前記第1のコンタクトプラグの上部の表面には、シリサイドが形成されており、
     前記拡散領域及び前記第1のゲート電極には、シリサイドが形成されていない、固体撮像素子。 
  2.  前記第1のコンタクトプラグの上部の周縁部は、前記第1の絶縁膜の上に乗り上げるように形成されている、請求項1に記載の固体撮像素子。
  3.  前記撮像画素は、
     前記ゲート電極の上に形成された第2の絶縁膜と、
     前記第2の絶縁膜を貫通して前記第1のゲート電極と接続された第2のコンタクトプラグとを有し、
     前記第2のコンタクトプラグは、
     前記第1のコンタクトプラグを構成する前記半導体と同一の材料により形成され、
     その下部は前記第2の絶縁膜に埋め込まれ、且つその上部は前記第2の絶縁膜から露出しており、
     前記第2のコンタクトプラグの上部の表面には、シリサイドが形成されている、請求項1又は2に記載の固体撮像素子。
  4.  前記第1の絶縁膜と前記第2の絶縁膜とは、同一組成の連続した絶縁膜である、請求項3に記載の固体撮像素子。
  5.  前記拡散領域は、pMOSトランジスタを構成する、請求項1~4のいずれか1項に記載の固体撮像素子。
  6.  前記半導体は、ボロンドープドポリシリコンである、請求項1~5のいずれか1項に記載の固体撮像素子。
  7.  前記第1のゲート電極の一方の側面に形成されたサイドウォールと、
     前記第1のゲート電極の前記拡散領域側に位置する他方の側面から前記拡散領域の上に形成された第3の絶縁膜とをさらに備え、
     前記第3の絶縁膜は、前記拡散領域の上においては前記拡散領域と前記第1の絶縁膜との間に形成され、
     前記第1のコンタクトプラグは、前記第3の絶縁膜を貫通している、請求項1~6のいずれか1項に記載の固体撮像素子。
  8.  前記サイドウォールは、少なくとも2層の絶縁膜が積層された積層膜であり、
     前記第3の絶縁膜は、前記積層膜を構成する複数の絶縁膜のうちの1つである、請求項7に記載の固体撮像素子。
  9.  前記第1のコンタクトプラグの下部におけるコンタクト径は、前記第2のコンタクトプラグの下部におけるコンタクト径よりも小さい、請求項3又は4に記載の固体撮像素子。
  10.  前記第1のコンタクトプラグにおける下部の底面の中央部分は、前記拡散領域に形成された凹部に埋め込まれている、請求項1~9のいずれか1項に記載の固体撮像素子。
  11.  前記基板上で且つ前記拡散領域を挟んで前記第1のゲート電極と反対側の領域に形成された第2のゲート電極と、
     前記第1のコンタクトプラグの上に形成された導電性を有するコンタクトとをさらに備え、
     前記第1のコンタクトプラグの上部における側端部の一部は、前記第1のゲート電極の上方又は前記第1のゲート電極の側方に形成されたサイドウォールの上方に位置し、
     前記第1のコンタクトプラグの上部における側端部の他部は、前記第2のゲート電極の上方又は前記第2ゲート電極の側方に形成されたサイドウォールの上方に位置し、
     前記第1のコンタクトプラグの上面における前記拡散領域の上側部分には凹部が形成されており、
     前記コンタクトは、前記第1のコンタクトプラグの上面の前記凹部と接続されている、請求項1~10のいずれか1項に記載の固体撮像素子。
  12.  前記第1のコンタクトプラグと前記第2のコンタクトプラグとは、一体に形成されている、請求項3又は4に記載の固体撮像素子。
  13.  前記拡散領域に隣接する他の拡散領域と、
     前記他の拡散領域の上に形成された前記第1の絶縁膜と、
     前記第1の絶縁膜を貫通して前記他の拡散領域と接続された、半導体からなる第3のコンタクトプラグとを有し、
     前記第3のコンタクトプラグは、
     前記第1のコンタクトプラグを構成する前記半導体と同一の材料により形成され、
     その下部は前記第1の絶縁膜に埋め込まれ、且つその上部が前記第1の絶縁膜から露出しており、
     前記第3コンタクトプラグの上部の表面には、シリサイドが形成されており、
    前記第1のコンタクトプラグと前記第3のコンタクトプラグとは、一体に形成されている、請求項1又は2に記載の固体撮像素子。
  14.  前記拡散領域は、電荷蓄積部であり、
     前記電荷蓄積部の上方に形成された光電変換層をさらに備えている、請求項1~4のいずれか1項に記載の固体撮像素子。
  15.  前記第1のコンタクトプラグの上に形成された導電性を有するコンタクトをさらに備え、
     前記光電変換層は、前記第1のコンタクトプラグと前記コンタクトとを介して、前記電荷蓄積部と電気的に接続されている、請求項14に記載の固体撮像素子。
  16.  基板上に複数の撮像画素が配列された撮像画素領域を有する固体撮像素子の製造方法であって、
     前記基板上の前記撮像画素領域に、前記各撮像画素と対応して拡散領域を形成する工程と、
     前記拡散領域の上に絶縁膜を形成する工程と、
     前記絶縁膜に、前記拡散領域を露出する第1のホールを形成する工程と、
     前記絶縁膜の上に、前記第1のホールを埋め込むように半導体膜を形成する工程と、
     前記半導体膜から、前記第1のホールを埋め込み且つ前記絶縁膜から露出する第1のコンタクトプラグを形成する工程と、
     前記絶縁膜から露出する前記第1のコンタクトプラグの表面にシリサイドを形成する工程とを備え、
     前記第1のコンタクトプラグの上部の周縁部は、前記絶縁膜に乗り上げるように形成されており、
     前記拡散領域には、シリサイドが形成されていない、固体撮像素子の製造方法。
  17.  前記絶縁膜を形成する工程よりも前に、
     前記基板上における前記拡散領域の側方にゲート電極を形成する工程をさらに備え、
     前記第1のホールを形成する工程は、前記ゲート電極を露出する第2のホールを形成する工程を含み、
     前記第1のコンタクトプラグを形成する工程は、前記半導体膜から、前記第2のホールを埋め込み且つ前記絶縁膜から露出する第2のコンタクトプラグを形成する工程を含み、
     前記シリサイドを形成する工程において、前記絶縁膜から露出する前記第2のコンタクトプラグの表面にも同時にシリサイドを形成し、
     前記第2のコンタクトプラグの上部の周縁部は前記絶縁膜に乗り上げており、
     前記ゲート電極には、シリサイドが形成されていない、請求項16に記載の固体撮像素子の製造方法。
  18.  前記第1のコンタクトプラグを形成する工程において、前記絶縁膜における前記第1のコンタクトプラグを形成しない領域は、前記絶縁膜の厚さ方向に、前記絶縁膜の少なくとも一部を残す、請求項16又は17に記載の固体撮像素子の製造方法。
PCT/JP2013/002750 2012-06-21 2013-04-23 固体撮像素子及びその製造方法 WO2013190759A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014520877A JPWO2013190759A1 (ja) 2012-06-21 2013-04-23 固体撮像素子及びその製造方法
US14/553,559 US9735204B2 (en) 2012-06-21 2014-11-25 Solid-state imaging device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012139899 2012-06-21
JP2012-139899 2012-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/553,559 Continuation US9735204B2 (en) 2012-06-21 2014-11-25 Solid-state imaging device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2013190759A1 true WO2013190759A1 (ja) 2013-12-27

Family

ID=49768374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002750 WO2013190759A1 (ja) 2012-06-21 2013-04-23 固体撮像素子及びその製造方法

Country Status (3)

Country Link
US (1) US9735204B2 (ja)
JP (2) JPWO2013190759A1 (ja)
WO (1) WO2013190759A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050035A (ja) * 2016-09-20 2018-03-29 パナソニックIpマネジメント株式会社 撮像装置およびその製造方法
WO2020170936A1 (ja) * 2019-02-20 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 撮像装置
WO2020170658A1 (ja) * 2019-02-22 2020-08-27 パナソニックIpマネジメント株式会社 撮像装置
WO2020235281A1 (ja) * 2019-05-23 2020-11-26 パナソニックIpマネジメント株式会社 撮像装置および撮像装置の製造方法
US11715748B2 (en) 2018-10-15 2023-08-01 Panasonic Intellectual Property Management Co., Ltd. Imaging device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088691A (ja) * 2013-11-01 2015-05-07 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
KR102282493B1 (ko) * 2014-08-12 2021-07-26 삼성전자주식회사 이미지 센서 및 이를 포함하는 전자 장치
US9287303B1 (en) * 2015-02-13 2016-03-15 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS image sensor structure
US10153351B2 (en) 2016-01-29 2018-12-11 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and a method for fabricating the same
CN108206194B (zh) * 2016-12-20 2020-08-25 中芯国际集成电路制造(上海)有限公司 图像传感器及其制造方法
CN108206193B (zh) * 2016-12-20 2020-11-13 中芯国际集成电路制造(上海)有限公司 图像传感器及其制造方法
CN108462843A (zh) * 2017-02-22 2018-08-28 松下知识产权经营株式会社 摄像装置及摄像模块
JP6689936B2 (ja) * 2018-10-15 2020-04-28 パナソニック株式会社 撮像装置の製造方法
CN111370430B (zh) * 2018-12-26 2023-07-11 联华电子股份有限公司 集成电路装置及形成集成电路的方法
CN112397531A (zh) * 2019-08-13 2021-02-23 联华电子股份有限公司 半导体元件及其制造方法
JP2021111692A (ja) * 2020-01-10 2021-08-02 パナソニックIpマネジメント株式会社 撮像装置および撮像装置の製造方法
CN113130516A (zh) 2020-01-15 2021-07-16 联华电子股份有限公司 半导体影像感测元件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095636A (ja) * 2002-08-29 2004-03-25 Fujitsu Ltd 半導体装置
JP2004119794A (ja) * 2002-09-27 2004-04-15 Fuji Film Microdevices Co Ltd 固体撮像素子の製造方法
JP2009259872A (ja) * 2008-04-11 2009-11-05 Rohm Co Ltd 光電変換装置およびその製造方法、および固体撮像装置
JP2012064815A (ja) * 2010-09-16 2012-03-29 Sharp Corp 固体撮像素子およびその製造方法、電子情報機器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103165A (ja) 1981-12-15 1983-06-20 Fuji Photo Film Co Ltd 3層4階構造の固体カラ−撮像デバイス
US4438455A (en) 1981-12-15 1984-03-20 Fuji Photo Film Co., Ltd. Solid-state color imager with three layer four story structure
US4443813A (en) 1981-12-15 1984-04-17 Fuji Photo Film Co., Ltd. Solid-state color imager with two layer three story structure
JPS58103166A (ja) 1981-12-15 1983-06-20 Fuji Photo Film Co Ltd 2層3階構造の固体カラ−撮像デバイス
JPS6362369A (ja) * 1986-09-03 1988-03-18 Nec Corp 半導体装置
JPH01266745A (ja) * 1988-04-18 1989-10-24 Fujitsu Ltd 半導体装置の製造方法
JPH02203526A (ja) * 1989-02-01 1990-08-13 Sony Corp 半導体装置
JPH0541378A (ja) * 1991-03-15 1993-02-19 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2995905B2 (ja) * 1991-05-21 1999-12-27 日本電気株式会社 半導体装置の製造方法
JPH0778783A (ja) * 1993-06-18 1995-03-20 Rohm Co Ltd 半導体装置
JP2729769B2 (ja) * 1995-03-06 1998-03-18 エルジイ・セミコン・カンパニイ・リミテッド 半導体装置の製造方法
JPH10284723A (ja) 1997-04-01 1998-10-23 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP3626058B2 (ja) * 2000-01-25 2005-03-02 Necエレクトロニクス株式会社 半導体装置の製造方法
US7129466B2 (en) 2002-05-08 2006-10-31 Canon Kabushiki Kaisha Color image pickup device and color light-receiving device
JP4817584B2 (ja) 2002-05-08 2011-11-16 キヤノン株式会社 カラー撮像素子
JP2005223085A (ja) * 2004-02-04 2005-08-18 Sony Corp 半導体装置及びその製造方法
TWI302754B (en) 2005-02-28 2008-11-01 Magnachip Semiconductor Ltd Complementary metal-oxide-semiconductor image sensor and method for fabricating the same
US8018015B2 (en) * 2005-06-29 2011-09-13 Micron Technology, Inc. Buried conductor for imagers
JP2008227357A (ja) * 2007-03-15 2008-09-25 Sony Corp 固体撮像装置及びその製造方法
JP2009130090A (ja) 2007-11-22 2009-06-11 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2011077072A (ja) * 2009-09-29 2011-04-14 Panasonic Corp 固体撮像素子及びその製造方法
JP5530839B2 (ja) * 2010-07-09 2014-06-25 パナソニック株式会社 固体撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095636A (ja) * 2002-08-29 2004-03-25 Fujitsu Ltd 半導体装置
JP2004119794A (ja) * 2002-09-27 2004-04-15 Fuji Film Microdevices Co Ltd 固体撮像素子の製造方法
JP2009259872A (ja) * 2008-04-11 2009-11-05 Rohm Co Ltd 光電変換装置およびその製造方法、および固体撮像装置
JP2012064815A (ja) * 2010-09-16 2012-03-29 Sharp Corp 固体撮像素子およびその製造方法、電子情報機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050035A (ja) * 2016-09-20 2018-03-29 パナソニックIpマネジメント株式会社 撮像装置およびその製造方法
US11715748B2 (en) 2018-10-15 2023-08-01 Panasonic Intellectual Property Management Co., Ltd. Imaging device
JP7411894B2 (ja) 2018-10-15 2024-01-12 パナソニックIpマネジメント株式会社 撮像装置
WO2020170936A1 (ja) * 2019-02-20 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 撮像装置
WO2020170658A1 (ja) * 2019-02-22 2020-08-27 パナソニックIpマネジメント株式会社 撮像装置
WO2020235281A1 (ja) * 2019-05-23 2020-11-26 パナソニックIpマネジメント株式会社 撮像装置および撮像装置の製造方法

Also Published As

Publication number Publication date
US9735204B2 (en) 2017-08-15
JPWO2013190759A1 (ja) 2016-02-08
US20150076500A1 (en) 2015-03-19
JP2018011059A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
WO2013190759A1 (ja) 固体撮像素子及びその製造方法
JP5558916B2 (ja) 光電変換装置の製造方法
TWI435443B (zh) 固態攝像裝置及其製造方法
US7345330B2 (en) Local interconnect structure and method for a CMOS image sensor
KR100695517B1 (ko) 씨모스 이미지 센서 및 그 제조방법
US11056530B2 (en) Semiconductor structure with metal connection layer
JP5963449B2 (ja) 光電変換装置の製造方法
JP6193695B2 (ja) 半導体装置およびその製造方法
US20080258188A1 (en) Metal oxide semiconductor device and method of fabricating the same
US11393854B2 (en) Image sensor with photoelectric part and transfer gate on opposite sides of the substrate
WO2012035696A1 (ja) 固体撮像装置およびその製造方法
JP2011155248A (ja) 固体撮像装置とその製造方法並びにカメラ
KR20200091254A (ko) 후면 조사형 이미지 센서 및 그 제조 방법
KR102581170B1 (ko) 후면 조사형 이미지 센서 및 그 제조 방법
KR102524998B1 (ko) 후면 조사형 이미지 센서 및 그 제조 방법
JPWO2010122657A1 (ja) 固体撮像装置およびその製造方法
KR20100079399A (ko) 이미지 센서 및 그 제조 방법
US7884400B2 (en) Image device and method of fabricating the same
JP2011204916A (ja) 固体撮像装置およびその製造方法
JP5890863B2 (ja) 光電変換装置の製造方法
JP6630392B2 (ja) 固体撮像装置の製造方法、固体撮像装置、および、カメラ
TWI824874B (zh) 影像感測器
JP2011151139A (ja) 固体撮像素子の製造方法および固体撮像素子
KR20070034292A (ko) 씨모스 이미지 센서 및 그 제조방법
KR20100079390A (ko) 이미지센서의 단위픽셀 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806954

Country of ref document: EP

Kind code of ref document: A1