WO2013187161A1 - 二次電池の製造方法および製造装置 - Google Patents

二次電池の製造方法および製造装置 Download PDF

Info

Publication number
WO2013187161A1
WO2013187161A1 PCT/JP2013/063262 JP2013063262W WO2013187161A1 WO 2013187161 A1 WO2013187161 A1 WO 2013187161A1 JP 2013063262 W JP2013063262 W JP 2013063262W WO 2013187161 A1 WO2013187161 A1 WO 2013187161A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas vent
power generation
generation element
vent hole
secondary battery
Prior art date
Application number
PCT/JP2013/063262
Other languages
English (en)
French (fr)
Inventor
伸明 阿久津
正明 塚野
明 岡畠
Original Assignee
日産自動車株式会社
オートモーティブエナジーサプライ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, オートモーティブエナジーサプライ株式会社 filed Critical 日産自動車株式会社
Priority to EP13804649.5A priority Critical patent/EP2860809B1/en
Priority to KR1020147034118A priority patent/KR101627061B1/ko
Priority to JP2014521026A priority patent/JP5899316B2/ja
Priority to US14/405,628 priority patent/US9722274B2/en
Priority to CN201380030818.1A priority patent/CN104380514B/zh
Publication of WO2013187161A1 publication Critical patent/WO2013187161A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a secondary battery having an exterior body formed of a thin and lightweight exterior film such as a laminate film, and in particular, prevents liquid leakage when venting a gas generated in a conditioning process or the like.
  • the present invention relates to a method and apparatus for manufacturing a secondary battery.
  • the thickness of the unjoined part is regulated when the internal pressure of the exterior body is high.
  • the degassing holes are formed in the unjoined portion while restricting the swelling due to the internal pressure.
  • the electrolyte remaining in the unjoined part jumps out together with the gas through the opened gas vent hole, and the built-in amount of the electrolyte is reduced. there were.
  • jumped out adhered to the surface of an exterior body the wiping process was needed and there existed a malfunction which raised production cost.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a manufacturing method and a manufacturing apparatus for a secondary battery suitable for preventing liquid leakage at the time of degassing.
  • a method of manufacturing a secondary battery includes a step of storing a power generation element in an exterior body configured by superposing exterior films and sealing the exterior body in a first sealing portion.
  • the power generation element includes a first sealing step that is arranged at a distance from at least a part of the first sealing portion, a conditioning step that performs conditioning of the power generation element, and the first sealing portion.
  • the opening step is a pressing step of pressing the portions of the exterior body where the gas vent holes are formed so that the exterior body films superimposed from both sides of the exterior body are in close contact with each other before opening the vent holes in the exterior body. It is characterized by including.
  • FIG. 1 is a schematic plan view of a secondary battery to which a secondary battery manufacturing method and manufacturing apparatus according to an embodiment of the present invention are applied.
  • FIG. 2 is a process diagram for explaining a method of manufacturing a secondary battery according to the present embodiment.
  • FIG. 3 is a side view of the opening device.
  • FIG. 4 is a plan view of the hole opening device.
  • FIG. 5 is a side view for explaining the operating state of the opening device.
  • FIG. 6 is an explanatory diagram for explaining the opening step.
  • FIG. 7 is a graph showing experimental results comparing the amount of decrease in the electrolyte when using the opening device of the present embodiment with a comparative example not using the opening device.
  • FIG. 1 is a schematic plan view of a secondary battery to which a secondary battery manufacturing method and manufacturing apparatus according to an embodiment of the present invention are applied.
  • FIG. 2 is a process diagram for explaining a method of manufacturing a secondary battery according to the present embodiment.
  • FIG. 3 is a side view of the opening
  • FIG. 8A is an explanatory view for explaining the shape of the cutter blade forming the gas vent hole of the present embodiment.
  • FIG. 8B is an explanatory diagram illustrating the shape of the cutter blade that forms the gas vent holes of the present embodiment.
  • FIG. 9 is an explanatory diagram for explaining a hole making process by the hole opening device of the second embodiment.
  • FIG. 10 is a side view for explaining the operating state of the opening device in the method and apparatus for manufacturing a secondary battery according to the second embodiment of the present invention.
  • FIG. 11A is an explanatory view illustrating a state before processing of the vent hole in the comparative example.
  • FIG. 11B is an explanatory diagram illustrating a state after processing of the vent hole in the comparative example.
  • FIG. 11C is an explanatory view illustrating the state of adhesion of the electrolytic solution after degassing in a comparative example.
  • a secondary battery to which the method for producing a secondary battery of the present invention is applied is a battery including an exterior body made of a thin and lightweight exterior film.
  • the thin and lightweight exterior film is, for example, a polymer-metal composite laminate film having a three-layer structure, and includes a metal layer and a polymer resin layer disposed on both surfaces of the metal layer.
  • a metal layer is comprised from metal foil, such as aluminum, stainless steel, nickel, copper, for example.
  • the polymer resin layer is composed of, for example, a heat-welding resin film such as polyethylene, polypropylene, modified polyethylene, modified polypropylene, ionomer, and ethylene vinyl acetate. It is desirable that the exterior film can be easily bonded by heat welding or ultrasonic welding, and has excellent airtightness and moisture impermeability.
  • the exterior film is formed in a bag shape by joining the three peripheral edges thereof to the “U-shape” by the fusion part A in a state in which the power generation element 2 of the secondary battery is accommodated.
  • the exterior body 1 is configured by joining the bag-shaped opening B by thermal welding in a state where the electrolytic solution is injected into the bag-shaped interior.
  • the bonding by the thermal welding of the opening B is the first sealing portion C by the first sealing step, the second sealing portion D by the second sealing step and the main sealing step, and the main sealing portion.
  • Each of the three stages of E is performed.
  • the outline of the power generation element 2 of the secondary battery will be described using a lithium ion secondary battery as an example.
  • the power generation element 2 of the lithium ion secondary battery is obtained by superposing a positive electrode and a negative electrode via a separator. That is, the power generation element 2 is configured by laminating a positive electrode plate made of a current collector coated with a positive electrode active material layer and a negative electrode plate made of a current collector coated with a negative electrode active material layer via a separator. Is formed.
  • the lithium ion secondary battery is a non-aqueous battery, and gas is generated by the reaction of moisture mixed during manufacture. Further, gas is generated due to evaporation of an organic solvent contained in the electrolytic solution and electrode reaction in conditioning after manufacturing the battery.
  • the positive electrode plate includes, for example, a current collector made of an aluminum foil, and a positive electrode active material layer formed in a double-sided region excluding the tab region of the current collector. In FIG. 1, only the tab region 2 ⁇ / b> A is illustrated in a state of being drawn out of the power generation element 2.
  • the positive electrode active material layer includes, for example, a positive electrode active material made of a lithium-transition metal composite oxide such as LiMn 2 O 4, a conductive additive, a binder, and the like.
  • the negative electrode plate includes, for example, a current collector made of copper foil, and a negative electrode active material layer formed in a double-sided region excluding the tab region of the current collector. In FIG. 1, only the tab region 2 ⁇ / b> B is illustrated in a state of being drawn out of the power generation element 2.
  • the negative electrode active material layer includes a negative electrode active material, a conductive additive, a binder, and the like.
  • the negative electrode active material is, for example, hard carbon (non-graphitizable carbon material), graphite-based carbon material, or lithium-transition metal composite oxide.
  • the separator is made of, for example, polyolefin such as polyethylene or polypropylene, polyamide, or polyimide.
  • the liquid electrolyte contains an organic solvent, a supporting salt, and the like.
  • the organic solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as dimethyl carbonate, and ethers such as tetrahydrofuran.
  • the supporting salt is an inorganic acid anion salt such as lithium salt (LiPF6), or an organic acid anion salt such as LiCF 3 SO 3 .
  • the tab regions 2A and 2B that are the same polarity of the current collector plates of the plurality of positive plates and the negative plates are connected to each other in order to draw a current from the power generation element 2.
  • the positive electrode terminal 3 ⁇ / b> A and the negative electrode terminal 3 ⁇ / b> B are drawn out of the exterior body 1 through the fusion part A of the exterior body 1.
  • FIG. 2 is a process diagram for explaining the manufacturing method of the secondary battery according to the present embodiment.
  • the manufacturing method of the secondary battery of the present embodiment includes a sealing process, a conditioning process, a degassing process, a main sealing / trimming process, and other processes that are performed as necessary.
  • a sealing process a conditioning process, a degassing process, a main sealing / trimming process, and other processes that are performed as necessary.
  • the rectangular power generation element 2 is disposed between two substantially rectangular exterior films.
  • the positive electrode terminal 3A and the negative electrode terminal 3B of the power generation element 2 are positioned so as to be exposed from the exterior film.
  • the outer peripheral film is joined to the “U-shape” by the fusion part A, leaving one side, and a bag body in which the one side becomes the opening B is formed.
  • the electrolytic solution injection step the electrolytic solution is injected into the bag body via the opening B.
  • the method for injecting the electrolytic solution is not particularly limited, and it is possible to inject directly by inserting a tube or a nozzle into the opening B, or inject by immersing in an electrolyte.
  • the exterior body 1 is sealed by joining the opening B used for injecting the electrolyte and forming the first sealing part C.
  • the first sealing portion C is joined at a position close to the peripheral side of the exterior body 1. That is, the gas generating part 2 is joined at a position away from the power generation element 2, and the gas vent part 4 communicating with the power generation element 2 is formed between the joint and the power generation element 2.
  • an initial charging process and an aging process for stabilizing battery characteristics are performed.
  • Initial gas is generated from the power generation element 2 by the initial charging step.
  • aging process more gas is generated from the power generation element 2.
  • the conditioning process may be only one of the initial charging process and the aging process depending on the application.
  • a predetermined ratio of the battery capacity of the power generation element 2 is charged until the power generation element 2 generates a battery voltage obtained when, for example, the battery is fully charged.
  • the temperature of the initial charge is lower than 45 ° C., gas generation is insufficient, and when it is higher than 70 ° C., battery characteristics may be deteriorated. .
  • the predetermined ratio of the battery capacity is selected as necessary.
  • the power generation element 2 is held in a charged state.
  • the hole opening step is performed in an atmosphere of atmospheric pressure, and then the degassing step and the second sealing step are performed in a vacuum at a reduced pressure.
  • a slit-like gas vent hole 5 is formed in the gas vent portion 4 of the first sealing portion C, and the gas vent portion 4 is communicated with the outside.
  • the electrolyte solution that has jumped out of the exterior body 1 adheres to the surface of the exterior body 1 as shown in FIG. 11C.
  • the electrolytic solution adheres to the surface of the exterior body 1 in this way, a new wiping process is required, and there is a problem of increasing the production cost.
  • the electrolyte solution is wiped off, problems such as lowering the adhesive strength of the adhesive occur when the side surfaces of a plurality of secondary batteries are bonded to each other and used as a battery pack.
  • the opening device 10 of the first embodiment shown in FIGS. 3 and 4 is used.
  • the opening device 10 includes a restraining pad 11 that supports one side of the gas vent 4 of the exterior body 1, a clamping body 12 that swings and supports the roller 13 facing the other side of the gas vent 4, And a cutter 14 that forms a gas vent hole 5 by cutting the gas vent portion 4.
  • the gas vent 4 is slightly swollen due to an increase in internal pressure due to the gas in the outer package 1.
  • the restraint pad 11 and the sandwiching body 12 approach each other with the standby position away from the gas vent 4 of the exterior body 1 and the gas vent 4 disposed therebetween, and the gas vent 4 It is comprised so that movement is possible between the operation position which pinches
  • the restraint pad 11 contacts one surface of the gas vent 4 at the operating position.
  • the sandwiching body 12 brings the roller 13 into contact with the other surface of the gas vent 4 and sandwiches the gas vent 4 with the roller 13.
  • the roller 13 is swingably supported by the holding body 12 via the arm 15, and is attached so that the roller 13 is separated from the holding body 12 by rotating the arm 15 upward by a spring 16.
  • the arm 15 is brought into contact with the stopper 17 so that the roller 13 protrudes.
  • the roller 13 comes into contact with a portion of the gas vent 4 away from the power generation element 2, and the roller 13 is in contact with the front surface of the restraining pad 11.
  • the arm 15 swings downward in the figure against the spring 16 by the reaction force. As a result, as shown in FIG.
  • the roller 13 at the tip moves to the power generation element 2 side while rolling on the surface of the gas vent 4 of the exterior body 1, and accordingly, the exterior body 1 slightly swells.
  • the degassing part 4 is operated so as to be squeezed by the roller 13 toward the power generation element 2 side.
  • the cutter 14 is disposed behind the restraint pad 11 at the standby position, passes through a through hole 11A formed by a lateral slit provided in the restraint pad 11, and moves to an operating position where the cutting blade protrudes forward of the restraint pad 11. Is possible. Further, the cutter 14 is capable of moving the cutting blade laterally along the through hole 11A at the operating position. Thereby, the gas vent hole 5 can be formed in the gas vent portion 4 within the range supported by the restraint pad 11. In the cutter 14, the restraint pad 11 and the sandwiching body 12 move to the operating position to sandwich the gas vent 4 of the exterior body 1, and after squeezing by the roller 13, the cutting blade protrudes to the operating position and the exterior body. A cut is made in the gas vent 4 of 1.
  • the cutting blade moves laterally along the through hole 11 ⁇ / b> A of the restraining pad 11 to cut the gas vent 4 in the horizontal direction, and form the gas vent 5 by the cut in the gas vent 4.
  • the through-hole 11A has a width that does not accumulate the electrolyte
  • the cutter 14 has a thickness that passes through the through-hole 11A.
  • the gas vent holes 5 are formed in a state where the overlaid exterior body films are in close contact with each other.
  • FIG. 6 shows the process of opening work by the opening apparatus 10.
  • the electrolyte remains in the gas vent 4 due to an increase in internal pressure due to the gas.
  • the gas vent part 4 is slightly inflated due to the internal pressure in the exterior body 1, here, since it describes the process of opening work, in the following, it will be described in a state without swelling as shown in the figure. .
  • the opening device 10 moves the restraining pad 11 and the sandwiching body 12 to the operating position, and the restraining pad 11 and the sandwiching body 12 allow the gas vent 4 of the exterior body 1 to be moved. Hold it.
  • the roller 13 of the sandwiching body 12 descends toward the power generation element 2 while squeezing the degassing portion 4 by sandwiching the degassing portion 4 with the restraining pad 11.
  • the gas vent 4 is crushed by the restraint pad 11 and the roller 13, and the electrolyte remaining inside is returned to the power generation element 2.
  • the returned electrolytic solution is combined with the electrolytic solution around the power generation element 2 to promote gas-liquid separation between the gas and the electrolytic solution.
  • the cutting blade of the cutter 14 is pushed through the through hole 11 ⁇ / b> A of the restraining pad 11 and cuts into the gas vent 4 of the exterior body 1.
  • the cutting blade moves laterally along the through-hole 11A of the restraint pad 11 to cut the gas vent 4 in the lateral direction, and forms the gas vent hole 5 by cutting in the gas vent 4 and then the restraint pad. 11 moves backward to return to the standby position.
  • the restraint pad 11 and the sandwiching body 12 are returned to the standby position.
  • the cutter 14 is used to cut only the gas vent portion 4 to form the gas vent hole 5.
  • the cut is not limited to the gas vent portion 4 alone, but the extension You may make it cut
  • FIG. 7 shows a secondary battery according to the present embodiment using the opening device 10 and a secondary battery according to a comparative example that does not use the opening device 10 when the gas releasing hole 5 is formed in the gas releasing portion 4 by the cutter 14.
  • the amount of decrease in the electrolyte solution that decreases by scattering to the outside is shown in comparison.
  • the electrolyte solution pops out simultaneously with the formation of the gas vent hole 5, and the amount of decrease in the electrolyte solution There are relatively many results.
  • the gas vent hole 5 is formed in a state where the electrolyte remaining in the gas vent portion 4 is returned to the power generation element 2 side by the opening device 10, it jumps out simultaneously with the formation of the gas vent hole 5.
  • the electrolyte can be greatly reduced.
  • the cutting blade used in this opening step is provided only at the edge on one side from the sharp tip, and is moved along the through hole 11A of the restraining pad 11 Anything that advances 4 is acceptable.
  • FIG. 8B when the cutting blades are provided at both edges from the sharp tip, the cutting blades on both sides push the gas vent part 4 on both sides when projecting the cutting blade to the operating position. Therefore, the gas vent 4 can be cut more effectively.
  • the edges of the formed vent holes 5 are not turned up, and a well-formed vent hole 5 shape can be obtained.
  • the secondary battery is transferred into a vacuum chamber in an atmospheric pressure state, and a degassing step and a second sealing step are performed.
  • the atmosphere is reduced to a vacuum state with respect to the secondary battery in the state of FIG.
  • the dissolved gas can be separated from the electrolyte and quickly discharged outside.
  • bonding by thermal fusion is performed at a portion closer to the power generation element 2 than the first sealing portion C to form the second sealing portion D (first 2 sealing process).
  • the secondary battery that has undergone the second sealing step is taken out of the vacuum atmosphere, and is subjected to main sealing by bonding by thermal welding wider than the second sealing portion D (main sealing step, FIG. 1). (See sealing section E).
  • a trimming process for cutting an unnecessary region in the peripheral portion of the outer package 1 is performed, and a shipping adjustment process such as an inspection process and charge / discharge is performed, thereby completing the secondary battery.
  • FIG. 9 shows the opening process by the opening device 10 of the second embodiment.
  • the opening device 10 of the second embodiment is configured to support the roller 13 in a swinging manner in place of the constraining pad 11 disposed facing one of the gas vent portions 4 of the exterior body 1 in the opening device 10 of the first embodiment.
  • the sandwiching body 12 is used. That is, in this hole-opening device 10, a pair of sandwiching bodies 12 that swing and support the rollers 13 ⁇ / b> A and 13 ⁇ / b> B are faced on both sides of the gas vent portion 4 of the exterior body 1, and the gas vent portion 4 is cut. And a cutter 14 for forming the gas vent hole 5.
  • Other configurations are the same as those of the opening device 10 of the first embodiment.
  • the outer battery body 1 of the secondary battery generated by the conditioning process is in a state in which the electrolyte remains in the gas vent 4 due to an increase in internal pressure due to the gas.
  • the opening device 10 moves the pair of sandwiching bodies 12 to the operating position, and sandwiches the gas vent 4 of the exterior body 1 by the pair of sandwiching bodies 12. That is, as described above, the rollers 13A and 13B of each sandwiching body 12 are lowered toward the power generation element 2 while squeezing the degassing portion 4 by sandwiching the degassing portion 4 so that the exterior films are in close contact with each other.
  • the gas vent 4 is crushed by the pair of rollers 13, and the electrolyte remaining in the internal space is pushed down into the power generation element 2.
  • the pressed electrolyte is combined with the electrolyte around the power generation element 2 to promote gas-liquid separation between the gas and the electrolyte.
  • the cutting blade of the cutter 14 is pushed out, and a cut is made in the gas vent 4 of the outer package 1.
  • the cutting blade moves in the horizontal direction to cut the gas vent 4 in the horizontal direction to form a gas vent hole 5 by the cut in the gas vent 4, and then moves backward to return to the standby position.
  • the pair of sandwiching bodies 12 is returned to the standby position.
  • the area of the gas vent 4 is sucked away by the suction pad 18.
  • the portions of the gas vent holes 5 are separated from each other as shown in FIG.
  • the gas in the outer package 1 can be discharged to the outside mainly through the expanded degassing portion 4 and the expanded degassing hole 5 in a degassing step which will be described later.
  • the secondary battery is transferred into a vacuum chamber in an atmospheric pressure state, and a degassing step and a second sealing step are performed.
  • the degassing step the degassing portion 4 is opened by the degassing hole 5, and the secondary battery in the state of FIG. It can be discharged to the outside.
  • bonding by thermal fusion is performed at a portion closer to the power generation element 2 than the first sealing portion C to form the second sealing portion D (first 2 sealing process).
  • the secondary battery that has undergone the second sealing step is taken out of the vacuum atmosphere, and is subjected to main sealing by bonding by thermal welding wider than the second sealing portion D (main sealing step, FIG. 1). (See sealing section E).
  • a trimming process for cutting an unnecessary region in the peripheral portion of the outer package 1 is performed, and a shipping adjustment process such as an inspection process and charge / discharge is performed, thereby completing the secondary battery.
  • a secondary battery having an opening step for opening the gas vent hole 5 between the first sealing portion C and the power generation element 2 and a second sealing step for sealing the gas vent hole 5 is manufactured. The method is assumed.
  • the opening step before the gas vent hole 5 is opened in the outer package 1, the outer package film in which the portions for forming the gas vent holes 5 of the outer package 1 are overlapped from both sides of the outer package 1 are in close contact with each other. It includes a pressing step of pressing the That is, since the gas vent hole 5 is opened in a state where the electrolyte solution in the vicinity of the portion where the gas vent hole 5 of the outer package 1 is formed is moved, the electrolyte remaining in the vicinity of the gas vent hole 5 leaks out. Can be prevented. Furthermore, an increase in production cost due to adhering to the surface of the exterior body 1 can be suppressed.
  • the cutter 14 for opening the gas vent hole 5 is disposed behind the restraint pad 11, and the restraint pad 11 passes through the cutting blade of the cutter 14 and is introduced into a portion where the gas vent hole 5 is formed. Is provided. For this reason, the gas vent hole 5 can be formed in the range supported by the restraint pad 11 of the gas vent portion 4.
  • the cutting edge of the cutter 14 is formed as a double-edged blade that widens toward the both sides from the tip, and opens the gas vent hole 5 by expanding the cut end as it proceeds toward the portion where the gas vent hole 5 is formed. For this reason, only by projecting the cutter 14 toward the gas vent 4, a cut for the gas vent 5 can be formed in the gas vent 4, the cut can be smoothly enlarged, and the edge is not turned up. Further, the shape of the vent hole 5 can be obtained.
  • the exterior films in the vicinity of the pressed gas vent 4 are separated by the suction pad 18 so that the exterior films are in close contact with each other (the gas is difficult to escape). The gas can easily escape from the gas.
  • FIG. 10 is an explanatory diagram showing a hole opening process showing a second embodiment of a method and apparatus for manufacturing a secondary battery to which the present invention is applied.
  • the first embodiment has a configuration in which the remaining electrolyte is pushed back to the power generation element side by sandwiching the gas vent portion of the exterior body with an elastic pad having an inclined surface. It is added to.
  • the same devices as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the opening device 10 of the present embodiment faces an opposite side of the degassing portion 4 of the exterior body 1 and is an elastic body formed by inclining opposing surfaces, for example, sponge.
  • a pair of elastic pads 20, 20 formed of a body is provided.
  • the illustrated elastic pads 20, 20 are shown in a standby position.
  • the opposing surfaces of the opposing elastic pads 20, 20 are provided with inclined surfaces 20 A, 20 A that are close to each other on the tip side of the gas vent 4 and that are separated from each other on the base side of the gas vent 4.
  • Through holes 20B and 20B are formed in the center of the pair of elastic pads 20 by slits extending in the lateral direction.
  • the cutting blade of the cutter 14 passes through the gas through 20B and 20B.
  • a gas vent hole 5 can be formed by making a cut in a region facing the vent 4. Other configurations are the same as those in the first embodiment.
  • the cutting blade of the cutter 14 used in this opening step is provided only on one side from the tip, and gas is moved when moved along the through hole 20B of the elastic pad 20. What is necessary is just to cut through the extraction part 4.
  • the cutting blades on both sides cut the gas vent part 4 on both sides when projecting the cutting blades to the operating position. A cut can be effectively made in the gas vent 4.
  • the outer battery body 1 of the secondary battery generated by the conditioning process is in a state in which the electrolyte remains in the gas vent 4 due to an increase in internal pressure due to the gas.
  • the opening device 10 moves the pair of elastic pads 20 to the operating position, and sandwiches the gas vent 4 of the outer package 1 with the pair of elastic pads 20. Since the opposing surfaces of the pair of elastic pads 20 are inclined surfaces 20 ⁇ / b> A and 20 ⁇ / b> A, the leading end side of the gas venting portion 4 is sandwiched and the sandwiching range is sequentially expanded toward the root side of the gas venting portion 4. To go.
  • the width of the degassing portion 4 is narrowed from the front end side toward the base side, and the degassing portion 4 is narrowed and crushed and remains in the degassing portion 4.
  • the electrolyte solution pushed back is combined with the electrolyte solution around the power generation element 2 to promote gas-liquid separation between the gas and the electrolyte solution.
  • the cutting blade of the cutter 14 is pushed out, and a cut is made in the gas vent 4 of the outer package 1.
  • the cutting blade is moved in the horizontal direction to cut the gas vent 4 in the horizontal direction, and a gas vent hole 5 is formed in the gas vent 4 and then moved backward to return to the standby position.
  • the pair of elastic pads 20 are returned to the standby position.
  • the region where the power generation element 2 adjacent to the gas vent 4 of the exterior body 1 is accommodated is sucked away by the suction pad 18 as in the first embodiment.
  • a part (only the center part) of the exterior body 1 on the base side of the gas venting part 4 is separated from each other, and the gas venting part 4 that has been crushed along with this is expanded.
  • the adsorbed central portion of the outer package 1 is adsorbed and partially bulges away from the power generation element 2, but the outer package 1 portions on both sides of the portion do not bulge. There will be no impact of collapse. Thereby, the gas that is separated from the electrolyte solution in the outer package 1 can be discharged to the outside through the expanded gas vent 4 and the expanded gas vent 5.
  • the secondary battery is transferred into a vacuum chamber in an atmospheric pressure state, and a degassing step and a second sealing step are performed.
  • the atmosphere is reduced to a vacuum state with respect to the secondary battery in the state of FIG.
  • the dissolved gas can be separated from the electrolyte and quickly discharged outside.
  • bonding by thermal fusion is performed at a portion closer to the power generation element 2 than the first sealing portion C to form the second sealing portion D (first 2 sealing process).
  • electrolysis is performed by sandwiching a portion where the gas vent hole 5 is formed from both sides by the elastic pad 20 having the inclined surfaces 20A which are inclined to approach each other on the side far from the power generation element 2 and away from each other on the near side.
  • the liquid is moved to the power generation element 2 side. That is, since the gas vent 4 is crushed only by sandwiching the gas vent 4 with the elastic pad 20, the structure is simple and the cost can be reduced.
  • the gas vent hole 5 is formed in the gas vent section 4 while the gas vent section 4 is held from both sides, the position of the gas vent section 4 is stabilized, and the gas vent hole 5 is easily formed.
  • the cutter 14 that opens the gas vent hole 5 is disposed behind the elastic pad 20, and the elastic pad 20 passes through the cutting blade of the cutter 14 and introduces it into a portion where the gas vent hole 5 is formed.
  • a hole 20B is provided. For this reason, the degassing hole 5 can be formed within the support range of the degassing portion 4 by the elastic pad 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 本発明は、ガス抜き時における液漏れ防止に好適な二次電池の製造方法および製造装置を提供する。 本発明の二次電池の製造方法は、外装用フィルムが重ね合わされることで構成された外装体の内部に発電要素を格納し第1封止部において外装体を封止する工程であって、発電要素は、第1封止部の少なくとも一部との間に距離をおいて配置される第1封止工程と、発電要素のコンディショニングを行うコンディショニング工程と、第1封止部と発電要素との間にガス抜き孔を開ける開孔工程と、ガス抜き孔を封止する第2封止工程と、を有する二次電池の製造方法であって、開孔工程は、外装体にガス抜き孔を開ける前に、外装体のガス抜き孔を形成する部分を外装体の両側から重ね合わされた外装体フィルムが互いに密着するように押圧する押圧工程を含む。

Description

二次電池の製造方法および製造装置
 本発明は、ラミネートフィルム等の薄く軽量な外装用フィルムにより形成された外装体をもつ二次電池の製造方法および製造装置に関し、特に、コンディショニング工程等で発生するガスを抜く際の液漏れを防止するに好適な二次電池の製造方法および製造装置に関するものである。
 従来からラミネートフィルム等の薄く軽量な外装用フィルムにより形成される外装体をもつ二次電池のコンディショニング等に伴うガス抜きを確実に行え、ガス抜き後の密閉性を充分に担保できると記載された二次電池の製造方法が提案されている(JP2004-342520A参照)。
 これは、内部と連通し且つ外部から隔離されている未接合部を形成するように、外装用フィルムの開口部を接合して外装体の内部に発電要素を封入する封入工程と、未接合部の厚みを所定厚み以下に拘束しながら、ガス抜き孔を開けるガス抜き工程と、未接合部を接合して発電要素を封入する第2封止工程と、を有する。そして、未接合部の膨張を抑え且つ応力集中を緩和する方法として、外装体の内圧が高い場合に、未接合部の厚みを規制するようにしている。これにより、発生したガスによる内圧上昇で未接合部に大きな膨張や変形が生じ、未接合部を接合するときに元通りの形態に戻らないこと、そして、未接合部の膨張に伴い、未接合部の周辺で応力が集中することによって、接合部の一部が剥離すること防止するようにしている。
 上記従来例では、発生したガスを外部に放出するガス抜き工程において、内圧による膨らみを規制しつつ未接合部にガス抜き孔を開けるようにしている。しかしながら、未接合部に電解液が残留している場合には、開けたガス抜き孔を通して未接合部に残留している電解液がガスとともに外部に飛び出し、電解液の内蔵量が減少する不具合があった。また、飛び出した電解液が外装体の表面に付着した場合には、拭き取り工程が必要となり、生産コストを上昇させる不具合があった。
 そこで本発明は、上記問題点に鑑みてなされたもので、ガス抜き時における液漏れ防止に好適な二次電池の製造方法および製造装置を提供することを目的とする。
 本発明のある態様に係る二次電池の製造方法は、外装用フィルムが重ね合わされることで構成された外装体の内部に発電要素を格納し第1封止部において外装体を封止する工程であって、発電要素は、第1封止部の少なくとも一部との間に距離をおいて配置される第1封止工程と、発電要素のコンディショニングを行うコンディショニング工程と、第1封止部と発電要素との間にガス抜き孔を開ける開孔工程と、ガス抜き孔を封止する第2封止工程と、を有する二次電池の製造方法である。そして、開孔工程は、外装体にガス抜き孔を開ける前に、外装体のガス抜き孔を形成する部分を外装体の両側から重ね合わされた外装体フィルムが互いに密着するように押圧する押圧工程を含むことを特徴としている。
図1は本発明の一実施形態を示す二次電池の製造方法および製造装置を適用する二次電池の概略平面図。 図2は本実施形態に係る二次電池の製造方法を説明するための工程図。 図3は開孔装置の側面図である。 図4は、開孔装置の平面図である。 図5は開孔装置の作動状態を説明する側面図である。 図6は開孔工程を説明するための説明図である。 図7は本実施形態の開孔装置を使用した際の電解液減少量を、開孔装置を使用しない比較例と対比した実験結果を示すグラフである。 図8Aは本実施形態のガス抜き孔を形成するカッタの切り刃の形状を説明する説明図である。 図8Bは本実施形態のガス抜き孔を形成するカッタの切り刃の形状を説明する説明図である。 図9は第2実施例の開孔装置による開孔工程を説明するための説明図である。 図10は本発明の第2実施形態の二次電池の製造方法および製造装置における開孔装置の作動状態を説明する側面図である。 図11Aは比較例におけるガス抜き孔の加工前の状態を説明する説明図である。 図11Bは比較例におけるガス抜き孔の加工後の状態を説明する説明図である。 図11Cは比較例におけるガス抜き後の電解液の付着状態を説明する説明図である。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
 以下、本発明の二次電池の製造方法および製造装置を各実施形態に基づいて説明する。
 (第1実施形態)
 本発明の二次電池の製造方法を適用する二次電池は、薄く軽量な外装用フィルムからなる外装体を備える電池である。
 薄く軽量な外装用フィルムは、例えば三層構造を有する高分子-金属複合ラミネートフィルムであり、金属層および金属層の両面に配置される高分子樹脂層を有する。金属層は、例えば、アルミニウム、ステンレス、ニッケル、銅などの金属箔から構成される。高分子樹脂層は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレン、変性ポリプロピレン、アイオノマー、エチレンビニルアセテート等の熱溶着性樹脂フィルムから構成される。外装用フィルムは、熱溶着や超音波溶着により容易に接着できるとともに、気密性、水分非透過性に優れたものであることが望ましい。
 外装用フィルムは、図1に示すように、二次電池の発電要素2を収容した状態で、その周縁3カ所を「Uの字状」に融着部Aにより接合して袋状に形成し、袋状の内部に電解液を注液した状態で、袋状の開口部Bを熱溶着によって接合して外装体1を構成している。開口部Bの熱溶着による接合は、後述するように、第1封止工程による第1封止部C、第2封止工程及び本封止工程による第2封止部D及び本封止部Eの3段階でそれぞれ実施される。
 二次電池の発電要素2として、リチウムイオン二次電池を例として、その概略を説明する。リチウムイオン二次電池の発電要素2は、正極及び負極を、セパレータを介して重畳したものである。即ち、発電要素2は、正極活物質層が塗布された集電体からなる正極板と、負極活物質層が塗布された集電体からなる負極板とを、セパレータを介して積層することで、形成されている。リチウムイオン二次電池は、非水電池であり製造時に混入した水分が反応することでガスが発生する。また、電解液中に含まれる有機溶媒の蒸発や、電池製造後のコンディショニングにおける電極反応でガスが発生する。
 正極板は、例えば、アルミニウム箔よりなる集電体と、集電体のタブ領域を除いた両面領域に形成された正極活物質層と、を備える。図1では、タブ領域2Aのみが発電要素2の外側に引出された状態で図示されている。正極活物質層としては、例えば、LiMn2O4等のリチウム-遷移金属複合酸化物からなる正極活物質、導電助剤、バインダ等を含んでいる。
 負極板は、例えば、銅箔よりなる集電体と、集電体のタブ領域を除いた両面領域に形成された負極活物質層と、を備える。図1では、タブ領域2Bのみが発電要素2の外側に引出された状態で図示されている。負極活物質層は、負極活物質、導電助剤、バインダ等を含んでいる。負極活物質は、例えば、ハードカーボン(難黒鉛化炭素材料)、黒鉛系炭素材料や、リチウム-遷移金属複合酸化物である。
 セパレータは、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリイミドから形成される。
 液体電解質(電解液)は、有機溶媒、支持塩等を含んでいる。有機溶媒は、例えば、プロピレンカーボネート(PC)やエチレンカーボネート(EC)等の環状カーボネート類、ジメチルカーボネート等の鎖状カーボネート類、テトラヒドロフラン等のエーテル類である。支持塩は、リチウム塩(LiPF6)等の無機酸陰イオン塩、LiCF3SO3等の有機酸陰イオン塩である。
 複数の正極板及び負極板の集電板の同極となるタブ領域2A、2B同士は、図1に示すように、発電要素2から電流を引き出すために、それぞれ同極同士が接続されて、正極端子3A及び負極端子3Bに接続される。そして、当該正極端子3A及び負極端子3Bは外装体1の融着部Aを介して外装体1の外部に引出している。
 図2は、本実施形態に係る二次電池の製造方法を説明するための工程図である。本実施形態の二次電池の製造方法においては、封止工程と、コンディショニング工程と、ガス抜き工程と、本封止・トリミング工程と、必要に応じてなされるその他の工程とを有する。以下、図2に基づいて、本実施形態の二次電池の製造方法を説明する。
 封止工程では、まず、2枚の略矩形形状の外装用フィルムの間に、矩形形状の発電要素2が配置される。発電要素2の正極端子3A及び負極端子3Bは、外装用フィルムから露出するように、位置決めされる。その後、外装用フィルムの周縁が、図1に示すように、1辺を残して「Uの字状」に融着部Aにより接合され、当該1辺が開口部Bとなる袋体が形成される。
 電解液注入工程においては、開口部Bを経由し、袋体の内側に、電解液が注入される。電解液の注入方法は、特に限定されず、チューブやノズルを開口部Bに差し込んで直接注入したり、電解質へ浸漬することで注入したり、することも可能である。
 第1封止工程においては、電解液を注入するために使用した開口部Bを接合して、第1封止部Cを形成することで、外装体1が封止される。この第1封止部Cは、図1に示すように、外装体1の周縁側に寄せた位置で接合される。即ち、発電要素2との距離が遠ざかった位置で接合されて、当該接合部と発電要素2との間に、発電要素2に連通したガス抜き部4を形成している。
 コンディショニング工程では、初充電工程、及び、電池特性を安定化させるためのエージング工程が実施される。初充電工程により、発電要素2から初期ガスが発生される。また、エージング工程でも、発電要素2から更にガスが発生される。なお、コンディショニング工程は、用途に応じて初充電工程、エージング工程の一方だけでよい場合がある。
 初充電工程においては、発電要素2の有する電池容量の所定割合、例えば満充電まで充電した場合に得られる電池電圧を、発電要素2が発生させるまで、充電される。なお、初充電の温度は、45℃よりも低い場合には、ガスの発生が不十分となり、70℃よりも高い場合には、電池特性が劣化する虞があるため、45~70℃が好ましい。また、電池容量の所定割合は、必要に応じて選択される。
 エージング工程においては、発電要素2に充電した状態で、保持される。
 ガス抜き工程では、大気圧の雰囲気中において開孔工程が実施され、次いで、減圧した真空中においてガス抜き工程と第2封止工程が実施される。
 開孔工程では、第1封止部Cのガス抜き部4に、図1に示すように、切り込みによるスリット状のガス抜き孔5を形成して、ガス抜き部4を外部に連通させる。
 比較例では、図11Aに示すように、ガス抜き部4内に電解液が残留している場合に、図11Bに示すように、当該部位にカッタ14の切り刃を当ててガス抜き孔5を形成している。図示例では、ガス抜き部4がガスによる内圧上昇により若干膨らんだ状態となっている。このため、図11Bに示すように、残留している電解液も、当該ガス抜き孔5から外部へ飛び出すことがある。このように、電解液が外装体1の外部へ飛び出すと、外装体1内に残留する電解液の液量が減少し、電池の寿命を低下させることとなる。
 また、外装体1の外部に飛び出した電解液は、図11Cに示すように、外装体1の表面に付着する。このように外装体1の表面に電解液が付着すると、新たに拭き取り工程が必要となり、生産コストを増加させる不具合があった。また、電解液の拭き取り洩れが生じると、複数の二次電池の側面同士を接着して電池パックとして利用する場合に、接着剤の接着力を低下させる等の不具合も発生する。
 本実施形態においては、開孔工程における電解液の飛び出しを防止するために、図3、4に示す、第1実施例の開孔装置10が使用される。この開孔装置10は、外装体1のガス抜き部4の一方側を支持する拘束パッド11と、当該ガス抜き部4の他方側に臨んで、ローラ13を揺動支持する挟持体12と、ガス抜き部4に切込みを入れてガス抜き孔5を形成するカッタ14と、を備える。なお、ガス抜き部4は外装体1内のガスによる内圧上昇により若干膨らんだ状態となっている
 拘束パッド11及び挟持体12は、待機状態では外装体1のガス抜き部4から離れた待機位置と、ガス抜き部4が両者間に配置された状態で、互いに接近して、ガス抜き部4を挟み付ける作動位置と、の間で移動可能に構成している。拘束パッド11は、作動位置ではガス抜き部4の一方の面に接触する。
 挟持体12は、作動位置では、ガス抜き部4の他方の面にローラ13を接触させて、ローラ13によりガス抜き部4を挟み付ける。ローラ13は、図3に示すように、アーム15を介して挟持体12に揺動自在に支持され、ばね16によりアーム15を上方へ回動させてローラ13が挟持体12から離れるように付勢し、ストッパ17にアーム15を当接させてローラ13が突出させた状態としている。このため、挟持体12が作動位置に移動されると、ローラ13がガス抜き部4の発電要素2から離れた部分に当接して、ローラ13は拘束パッド11の前面との間で外装体1の若干膨らんだガス抜き部4を挟み、その反力によってアーム15はばね16に抗して図中の下方に揺動する。この結果、図5に示すように、先端のローラ13は、外装体1のガス抜き部4の表面を転動しつつ発電要素2側へ移動し、これに伴い、外装体1の若干膨らんだガス抜き部4をローラ13により発電要素2側へしごくように作動する。
 カッタ14は、待機位置で拘束パッド11の後方に配置され、拘束パッド11に設けた横方向のスリットによる貫通孔11Aを貫通して、切り刃を拘束パッド11の前方に突出させる作動位置に移動可能である。また、カッタ14は、作動位置では切り刃を貫通孔11Aに沿って横移動可能である。これにより、拘束パッド11により支持した範囲内において、ガス抜き部4にガス抜き孔5を形成することができる。カッタ14は、拘束パッド11と挟持体12とが作動位置に移動して外装体1のガス抜き部4を挟持し、ローラ13によりしごいた後に、作動位置に切り刃を突出させて外装体1のガス抜き部4に切り込みを入れる。次いで、切り刃は拘束パッド11の貫通孔11Aに沿って横方向に移動して、ガス抜き部4を横方向に切込み、ガス抜き部4に切り込みによるガス抜き孔5を形成する。ここで、貫通孔11Aは、電解液が溜まらない程度の幅とし、カッタ14の厚さは、貫通孔11Aを通過する厚さとする。これによって、重ね合わされた外装体フィルムが互いに密着された状態でガス抜き孔5が形成される。
 図6は、開孔装置10による開孔作業の過程を示すものである。図6(A)に示すように、コンディショニング工程によるガスが発生された二次電池の外装体1は、ガスによる内圧上昇によりガス抜き部4にも電解液が残留した状態となっている。なお、ガス抜き部4は外装体1内の内圧により若干膨らんでいるが、ここでは、開口作業の過程を説明するものであるため、以下では、図示のように、膨らみのない状態で説明する。開孔装置10は、図6(B)に示すように、拘束パッド11と挟持体12とを作動位置に移動させて、拘束パッド11と挟持体12とにより外装体1のガス抜き部4を挟持する。挟持体12のローラ13は、拘束パッド11との間でガス抜き部4を挟むことにより、前述したように、ガス抜き部4をしごきつつ発電要素2側へ下降する。これにより、ガス抜き部4は拘束パッド11とローラ13とにより押し潰され、内部に残留していた電解液は、発電要素2内に戻される。戻された電解液は、発電要素2周辺の電解液と合体して、ガスと電解液との気液分離が促進される。
 次いで、図6(C)に示すように、カッタ14の切り刃が拘束パッド11の貫通孔11Aを貫通して押出され、外装体1のガス抜き部4に切り込みを入れる。次いで、切り刃は拘束パッド11の貫通孔11Aに沿って横方向に移動してガス抜き部4を横方向に切込み、ガス抜き部4に切り込みによるガス抜き孔5を形成し、その後に拘束パッド11の後方に後退して待機位置に復帰する。次いで、拘束パッド11と挟持体12が待機位置に戻される。なお、上記構成では、カッタ14によってガス抜き部4のみに切り込みを入れてガス抜き孔5を形成するものについて説明しているが、切り込みを、ガス抜き部4のみに限定することなく、その延長部分も含めて切込むことにより、先端側を外装体1から切離すようにしてもよい。
 図7は、ガス抜き部4にカッタ14によりガス抜き孔5を形成した際に、開孔装置10による本実施形態の二次電池と、開孔装置10を使用しない比較例による二次電池とで、外部に飛散して減少する電解液の減少量を対比して示すものである。図7に示すように、ガス抜き部4に電解液が残留する状態でガス抜き孔5が形成される比較例においては、ガス抜き孔5の形成と同時に電解液が飛び出し、電解液の減少量が比較的多い結果となっている。これに対して、ガス抜き部4に残留する電解液を開孔装置10により発電要素2側へ戻した状態でガス抜き孔5を形成する本実施形態では、ガス抜き孔5の形成と同時に飛び出す電解液を、大幅に減少させることができる。
 図6(D)に示す状態では、ガス抜き部4には電解液が残留していない状態となっている。次いで、図6(E)に示すように、外装体1のガス抜き部4に隣接する発電要素2が収納された領域を吸着パッド18により互いに離れるように吸引する。この吸引によりガス抜き部4の根元側の外装体1の一部(中央部分のみ)が互いに引き離され、これに伴って押し潰されたガス抜き部4も拡げられ、ガス抜き孔5による開口を拡大させる。このとき、外装体1の吸着された中央部は吸着されて膨らみ発電要素2から部分的に離れるが、当該部分の両側の外装体1部分は膨らむことがないため、発電要素2の積層状態が崩れたりする影響は生じない。これにより、外装体1内の電解液から分離されて存在するガスは、拡げられたガス抜き部4及び拡がったガス抜き孔5を介して外部に排出可能となる。
 この開孔工程に使用する切り刃は、図8Aに示すように、その尖った先端から片側の縁にのみに設けて、拘束パッド11の貫通孔11Aに沿って移動される際にガス抜き部4を切り進むものであればよい。しかし、切り刃は、図8Bに示すように、その尖った先端から両側の縁に設けた場合には、作動位置に切り刃を突出させる際に、両側の切り刃がガス抜き部4を両側に切り進むため、より効果的にガス抜き部4に切り込みを入れることができる。しかも形成したガス抜き孔5の縁がめくれることがなく、整ったガス抜き孔5形状を得ることができる。
 次いで、二次電池は大気圧状態となっている真空チャンバ内に搬送されて、ガス抜き工程及び第2封止工程が実施される。ガス抜き工程では、ガス抜き部4がガス抜き孔5により開かれた、図6(E)の状態の二次電池に対して、雰囲気を減圧して真空状態とすることにより、電解液中に溶け込んでいるガスを電解液から分離させて、速やかに外部に排出させることができる。
 次いで、真空雰囲気中において、第1封止部Cよりも発電要素2に近接した部分に、図1に示すように、熱融着による接合を行って第2封止部Dを形成する(第2封止工程)。
 次いで、第2封止工程を経た二次電池は、真空雰囲気から取出されて、第2封止部Dより広めに熱溶着による接合による本封止が実施される(本封止工程、図1の封止部E参照)。次いで、外装体1の周縁部分の不要な領域を切断するトリミング工程が実施され、検査工程や充放電などの出荷調整工程が実施され、二次電池が完成される。
 図9は、第2実施例の開孔装置10による開孔過程を示すものである。第2実施例の開孔装置10は、第1実施例の開孔装置10における、外装体1のガス抜き部4の一方に臨んで配置した拘束パッド11に代えて、ローラ13を揺動支持する挟持体12を用いるものである。即ち、この開孔装置10においては、外装体1のガス抜き部4の両側にそれぞれ臨んで、ローラ13A、13Bを揺動支持する一対の挟持体12と、ガス抜き部4に切込みを入れてガス抜き孔5を形成するカッタ14と、を備えている。その他の構成は、第1実施例の開孔装置10と同様に構成している。
 図9(A)に示すように、コンディショニング工程によりガス発生された二次電池の外装体1は、ガスによる内圧上昇によりガス抜き部4にも電解液が残留した状態となっている。開孔装置10は、図9(B)に示すように、一対の挟持体12を作動位置に移動させて、一対の挟持体12により外装体1のガス抜き部4を挟持する。つまり、各挟持体12のローラ13A、13Bは、外装フィルム同士が密着するようにガス抜き部4を挟むことにより、前述したように、ガス抜き部4をしごきつつ発電要素2側に下降する。これにより、ガス抜き部4は一対のローラ13により押し潰され、内部空間に残留していた電解液は、発電要素2内に押下げられる。押下げられた電解液は、発電要素2周辺の電解液と合体して、ガスと電解液との気液分離が促進される。
 次いで、図9(C)に示すように、カッタ14の切り刃が押出され、外装体1のガス抜き部4に切り込みを入れる。次いで、切り刃は横方向に移動してガス抜き部4を横方向に切込み、ガス抜き部4に切り込みによるガス抜き孔5を形成し、その後に後方へ後退して待機位置に復帰する。次いで、一対の挟持体12が待機位置に戻される。
 この状態では、ガス抜き部4には電解液が残留していない状態と成っており、また、ガス抜き部4は押し潰された状態に維持されている。このため、カッタ14によりガス抜き部4にガス抜き孔5を形成しても、内部のガスは排出されにくく、また、内部の電解液が外部に飛び出すことも抑制できる。
 次いで、図9(D)に示すように、ガス抜き部4の領域を吸着パッド18により互いに離れるように吸引する。この吸引により、図9(E)に示すように、ガス抜き孔5の部分が互いに引き離される。これにより、主に後で説明するガス抜き工程において外装体1内のガスは、拡げられたガス抜き部4及び拡がったガス抜き孔5を介して外部に排出可能となる。
 次いで、二次電池は大気圧状態となっている真空チャンバ内に搬送されて、ガス抜き工程及び第2封止工程が実施される。ガス抜き工程では、ガス抜き部4がガス抜き孔5により開かれた、図9(E)の状態の二次電池に対して、雰囲気を減圧して真空状態とすることにより、ガスを速やかに外部に排出させることができる。
 次いで、真空雰囲気中において、第1封止部Cよりも発電要素2に近接した部分に、図1に示すように、熱融着による接合を行って第2封止部Dを形成する(第2封止工程)。次いで、第2封止工程を経た二次電池は、真空雰囲気から取出されて、第2封止部Dより広めに熱溶着による接合による本封止が実施される(本封止工程、図1の封止部E参照)。次いで、外装体1の周縁部分の不要な領域を切断するトリミング工程が実施され、検査工程や充放電などの出荷調整工程が実施され、二次電池が完成される。
 本実施形態においては、以下に記載する効果を奏することができる。
 (1)外装用フィルムが重ね合わされることで構成された外装体1の内部に発電要素2を格納し第1封止部Cにおいて外装体1を封止する工程であって、発電要素2は、第1封止部Cの少なくとも一部との間に距離をおいて配置される第1封止工程と、発電要素2のコンディショニングを行うコンディショニング工程と、を備える。続いて、第1封止部Cと発電要素2との間にガス抜き孔5を開ける開孔工程と、ガス抜き孔5を封止する第2封止工程と、を有する二次電池の製造方法を前提としている。そして、開孔工程は、外装体1にガス抜き孔5を開ける前に、外装体1のガス抜き孔5を形成する部分を外装体1の両側から重ね合わされた外装体フィルムが互いに密着するように押圧する押圧工程を含むことを特徴としている。即ち、外装体1のガス抜き孔5を形成する部位付近の電解液を移動させた状態でガス抜き孔5を開孔するため、ガス抜き孔5付近に残留していた電解液が漏れ出すことを防止できる。さらに、外装体1表面に付着することによる生産コスト上昇を抑制することができる。
 (2)押圧工程は、ガス抜き孔5を形成する部分の一方側を拘束パッド11で支持し、他方側の発電要素2から遠い側にローラ13を押し当て、当該ローラ13を発電要素2側に向かって転動させることにより、電解液を発電要素2側に移動させるものである。即ち、ガス抜き部4を拘束パッド11とローラ13とによりしごくため、ガス抜き部4に残留する電解液を確実に発電要素2側に戻すことができる。また、ガス抜き部4が拘束パッド11により支持されているため、カッタ14によりガス抜き部4にガス抜き孔5の形成が容易となる。
 (3)押圧工程は、ガス抜き孔5を形成する部分の発電要素2から遠い部分を一対のローラ13により挟み、当該一対のローラ13を発電要素2側に向かって転動させるものである。即ち、ガス抜き部4を一対のローラ13によりしごくため、ガス抜き部4に存在する電解液を確実に発電要素2側に移動させることができ、ガス抜き孔5形成時に電解液の液漏れを少なくすることができる。
 (4)ガス抜き孔5を開けるカッタ14は、拘束パッド11の後方に配置され、拘束パッド11は、カッタ14の切り刃を通過させてガス抜き孔5を形成する部分に導入する貫通孔11Aを備える。このため、ガス抜き部4の拘束パッド11による支持範囲内に、ガス抜き孔5を形成することができる。
 (5)カッタ14の刃先は、先端から両側に向かって末広がりする両刃に形成され、ガス抜き孔5を形成する部分に向かって進むにつれてその切り口を拡げてガス抜き孔5を開けるものである。このため、カッタ14をガス抜き部4に向かって突出すのみで、ガス抜き部4にガス抜き孔5のための切り口を形成でき且つその切り口を円滑に拡大でき、しかも縁がめくれることなく整ったガス抜き孔5形状を得ることができる。
 (6)ガス抜き孔5を形成した後、押圧されたガス抜き部4付近の外装用フィルム同士を、吸着パッド18により引き離すことで、外装用フィルム同士が密着した状態(ガスが抜けにくい状態)からガスが抜けやすい状態とすることができる。
 (第2実施形態)
 図10は、本発明を適用した二次電池の製造方法および製造装置の第2実施形態を示す開孔過程を示す説明図である。本実施形態の開孔装置においては、外装体のガス抜き部を傾斜した表面を備える弾性体パッドで挟むことにより、残留する電解液を発電要素側に押戻すようにした構成を第1実施形態に追加したものである。なお、第1実施形態と同一装置には同一符号を付してその説明を省略ないし簡略化する。
 本実施形態の開孔装置10は、図10(A)に示すように、外装体1のガス抜き部4の両側にそれぞれ臨んで、対向する表面を傾斜させて形成した弾性体、例えば、スポンジ体で形成した一対の弾性体パッド20、20を備える。図示された弾性体パッド20、20は、待機位置に位置した状態を示している。対向する弾性体パッド20、20の対向する表面は、ガス抜き部4の先端側で互いに近寄り、ガス抜き部4の根元側で互いに離れる傾斜面20A、20Aを備える。一対の弾性体パッド20の中央には、横方向に延びるスリットによる貫通孔20B、20Bが形成され、第1実施形態と同様に、この20B、20Bにはカッタ14の切り刃が貫通してガス抜き部4に臨む領域に切り込みを入れてガス抜き孔5を形成可能としている。その他の構成は、第1実施形態と同様に構成している。
 なお、この開孔工程に使用するカッタ14の切り刃は、図8Aに示すように、その先端から片側にのみに設けて、弾性体パッド20の貫通孔20Bに沿って移動される際にガス抜き部4を切り進むものであればよい。しかし、切り刃は、図8Bに示すように、その先端から両側に設ける場合には、作動位置に切り刃を突出させる際に、両側の切り刃がガス抜き部4を両側に切り込むため、より効果的にガス抜き部4に切り込みを入れることができる。
 図10(A)に示すように、コンディショニング工程によりガス発生された二次電池の外装体1は、ガスによる内圧上昇によりガス抜き部4にも電解液が残留した状態となっている。開孔装置10は、図10(B)に示すように、一対の弾性体パッド20を作動位置に移動させて、一対の弾性体パッド20により外装体1のガス抜き部4を挟持する。一対の弾性体パッド20は、対向する表面が傾斜面20A、20Aとなっているため、ガス抜き部4の先端側を挟持し、順次ガス抜き部4の根元側に向かって挟持範囲を拡大させていく。この挟持範囲の拡大に連れて、ガス抜き部4の先端側から根元側に向かってその幅寸法が狭められることとなり、ガス抜き部4が狭められて押し潰され、ガス抜き部4に残留していた電解液は、発電要素2内に押し戻される。押し戻された電解液は、発電要素2周辺の電解液と合体して、ガスと電解液との気液分離が促進される。
 次いで、図10(C)に示すように、カッタ14の切り刃が押出され、外装体1のガス抜き部4に切り込みを入れる。次いで、切り刃を横方向に移動してガス抜き部4を横方向に切込み、ガス抜き部4に切り込みによるガス抜き孔5を形成し、その後に後方へ後退して待機位置に復帰する。次いで、一対の弾性体パッド20が待機位置に戻される。
 この状態では、ガス抜き部4には電解液が残留していない状態と成っており、また、ガス抜き部4を押し潰された状態が維持されている。このため、内部の電解液が外部に飛び出すことを抑制できる。
 次いで、図10(D)に示すように、外装体1のガス抜き部4に隣接する発電要素2が収納された領域を、第1実施例と同様に、吸着パッド18により互いに離れるように吸引する。この吸引によりガス抜き部4の根元側の外装体1の一部(中央部分のみ)が互いに引き離され、これに伴って押し潰されたガス抜き部4も拡げられ、ガス抜き孔5による開口を拡大させる。このとき、外装体1の吸着された中央部は吸着されて膨らみ発電要素2から部分的に離れるが、当該部分の両側の外装体1部分は膨らむことがないため、発電要素2の積層状態が崩れたりする影響は生じない。これにより、外装体1内の電解液から分離されて存在するガスは、拡げられたガス抜き部4及び拡がったガス抜き孔5を介して外部に排出可能となる。
 次いで、第1実施形態と同様に、二次電池は大気圧状態となっている真空チャンバ内に搬送されて、ガス抜き工程及び第2封止工程が実施される。ガス抜き工程では、ガス抜き部4がガス抜き孔5により開かれた、図10(D)の状態の二次電池に対して、雰囲気を減圧して真空状態とすることにより、電解液中に溶け込んでいるガスを電解液から分離させて、速やかに外部に排出させることができる。
 次いで、真空雰囲気中において、第1封止部Cよりも発電要素2に近接した部分に、図1に示すように、熱融着による接合を行って第2封止部Dを形成する(第2封止工程)。
 本実施形態においては、第1実施形態における効果(1)、(5)に加えて以下に記載した効果を奏することができる。
 (7)押圧工程は、発電要素2から遠い側で互いに接近し近い側で互いに離れる傾斜した傾斜面20Aを備える弾性体パッド20によりガス抜き孔5を形成する部分を両側から挟むことにより、電解液を発電要素2側に移動させるものである。即ち、ガス抜き部4を弾性体パッド20により挟むことのみによりガス抜き部4を押し潰すものであるため、構造が簡単であり、低コストとできる。しかも、ガス抜き部4を両面から保持した状態で、ガス抜き部4にガス抜き孔5を形成するため、ガス抜き部4の位置が安定し、ガス抜き孔5を形成しやすい効果がある。
 (8)ガス抜き孔5を開けるカッタ14は、弾性体パッド20の後方に配置され、弾性体パッド20は、カッタ14の切り刃を通過させてガス抜き孔5を形成する部分に導入する貫通孔20Bを備える。このため、ガス抜き部4の弾性体パッド20による支持範囲内において、ガス抜き孔5を形成することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2012年6月11日に日本国特許庁に出願された特願2012-131878に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (12)

  1.  外装用フィルムが重ね合わされることで構成された外装体の内部に発電要素を格納し第1封止部において前記外装体を封止する工程であって、前記発電要素は、前記第1封止部の少なくとも一部との間に距離をおいて配置される第1封止工程と、
     前記発電要素のコンディショニングを行うコンディショニング工程と、
     前記第1封止部と前記発電要素との間にガス抜き孔を開ける開孔工程と、
     前記ガス抜き孔を封止する第2封止工程と、を有する二次電池の製造方法であって、
     前記開孔工程は、前記外装体に前記ガス抜き孔を開ける前に、前記外装体の前記ガス抜き孔を形成する部分を前記外装体の両側から前記重ね合わされた前記外装用フィルムが互いに密着するように押圧する押圧工程を含む。
  2.  請求項1に記載の二次電池の製造方法であって、
     前記押圧工程は、前記ガス抜き孔を形成する部分の一方側を拘束パッドで支持し、他方側の前記発電要素から遠い側にローラを押し当て、前記ローラを前記発電要素側に向かって転動させることにより、電解液を前記発電要素側に移動させる。
  3.  請求項1に記載の二次電池の製造方法であって、
     前記押圧工程は、前記ガス抜き孔を形成する部分の前記発電要素から遠い部分を一対のローラにより挟み、前記一対のローラを前記発電要素側に向かって転動させる。
  4.  請求項1に記載の二次電池の製造方法であって、
     前記押圧工程は、前記発電要素から遠い側で互いに接近し近い側で互いに離れる傾斜した傾斜面を備える弾性体パッドにより前記ガス抜き孔を形成する部分を両側から挟むことにより、電解液を前記発電要素側に移動させる。
  5.  請求項1から請求項4のいずれか一つに記載の二次電池の製造方法であって、
     前記開孔工程と前記第2封止工程の間に、前記ガス抜き孔付近の押圧された前記外装用フィルム同士を引き離す工程を含む。
  6.  外装用フィルムが重ね合わされることで構成された外装体の内部に発電要素を格納し、前記発電要素のコンディショニングを行うことで発生するガスがガス抜き孔から抜かれ、前記ガス抜き孔が封止された二次電池を製造する二次電池の製造装置であって、
     前記ガス抜き孔が形成される前記外装用フィルムが互いに密着するように、前記外装体の両側から前記外装用フィルムを押圧する押圧装置と、
     前記押圧装置によって密着させた前記外装用フィルムに前記ガス抜き孔を開ける開孔手段とを備える。
  7.  請求項6に記載の二次電池の製造装置であって、
     前記押圧装置は、前記ガス抜き孔を形成する部分の一方側を拘束パッドで支持し、他方側の前記発電要素から遠い側にローラを押し当て、前記ローラを前記発電要素側に向かって転動させることにより、電解液を前記発電要素側に移動させる。
  8.  請求項7に記載の二次電池の製造装置であって、
     前記開孔手段は、カッタであり、
     前記カッタは、前記拘束パッドの後方に配置され、
     前記拘束パッドは、前記カッタの切り刃を通過させて前記ガス抜き孔を形成する部分に前記カッタの切り刃を導入する貫通孔を備える。
  9.  請求項6に記載の二次電池の製造装置であって、
     前記押圧装置は、前記ガス抜き孔を形成する部分の前記発電要素から遠い部分を一対のローラにより挟み、前記一対のローラを前記発電要素側に向かって転動させる。
  10.  請求項6に記載の二次電池の製造装置であって、
     前記押圧装置は、前記発電要素から遠い側で互いに接近し、近い側で互いに離れる傾斜した傾斜面を備える弾性体パッドにより前記ガス抜き孔を形成する部分を両側から挟むことにより、電解液を前記発電要素側に移動させる。
  11.  請求項10に記載の二次電池の製造装置であって、
     前記開孔手段は、カッタであり、
     前記カッタは、前記弾性体パッドの後方に配置され、
     前記弾性体パッドは、前記カッタの切り刃を通過させて前記ガス抜き孔を形成する部分に前記カッタの切り刃を導入する貫通孔を備える。
  12.  請求項6から請求項11のいずれか一つに記載の二次電池の製造装置であって、
     前記開孔手段は、カッタであり、
     前記カッタの刃先は、先端から両側に向かって末広がりする両刃に形成され、前記ガス抜き孔を形成する部分に向かって進むにつれて切り口を拡げて前記ガス抜き孔を開ける。
PCT/JP2013/063262 2012-06-11 2013-05-13 二次電池の製造方法および製造装置 WO2013187161A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13804649.5A EP2860809B1 (en) 2012-06-11 2013-05-13 Manufacturing method and manufacturing device of secondary battery
KR1020147034118A KR101627061B1 (ko) 2012-06-11 2013-05-13 2차 전지의 제조 방법 및 제조 장치
JP2014521026A JP5899316B2 (ja) 2012-06-11 2013-05-13 二次電池の製造方法および製造装置
US14/405,628 US9722274B2 (en) 2012-06-11 2013-05-13 Manufacturing method and manufacturing device of secondary battery
CN201380030818.1A CN104380514B (zh) 2012-06-11 2013-05-13 二次电池的制造方法和制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-131878 2012-06-11
JP2012131878 2012-06-11

Publications (1)

Publication Number Publication Date
WO2013187161A1 true WO2013187161A1 (ja) 2013-12-19

Family

ID=49757993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063262 WO2013187161A1 (ja) 2012-06-11 2013-05-13 二次電池の製造方法および製造装置

Country Status (6)

Country Link
US (1) US9722274B2 (ja)
EP (1) EP2860809B1 (ja)
JP (1) JP5899316B2 (ja)
KR (1) KR101627061B1 (ja)
CN (1) CN104380514B (ja)
WO (1) WO2013187161A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019749A1 (ja) * 2013-08-09 2015-02-12 日産自動車株式会社 ラミネートフィルムの製造方法及び穿孔刃
WO2015087760A1 (ja) * 2013-12-11 2015-06-18 日産自動車株式会社 二次電池のガス抜き孔形成プロセスおよびガス抜き孔形成装置
CN104810539A (zh) * 2014-01-27 2015-07-29 三星Sdi株式会社 制造袋型电池单元的方法
KR20150107115A (ko) * 2014-03-13 2015-09-23 주식회사 엘지화학 활성화된 전지셀의 가스 제거 장치 및 전지셀 제조방법
KR20150113660A (ko) * 2014-03-31 2015-10-08 주식회사 엘지화학 배터리 셀 제조방법
JP2015220199A (ja) * 2014-05-21 2015-12-07 日産自動車株式会社 フィルム外装電池の製造方法
WO2016021066A1 (ja) * 2014-08-08 2016-02-11 日産自動車株式会社 電池の製造装置
CN105742714A (zh) * 2014-12-26 2016-07-06 昭和电工包装株式会社 电池的制造方法
JP2017041428A (ja) * 2015-08-21 2017-02-23 日産自動車株式会社 二次電池の製造装置および製造方法
KR20170022391A (ko) * 2015-08-20 2017-03-02 주식회사 엘지화학 진동을 이용한 전지셀 제조용 가스 트랩 제거 장치
KR101811474B1 (ko) 2013-12-19 2017-12-21 주식회사 엘지화학 배터리 셀의 디가싱 장치 및 이를 이용한 배터리 셀의 디가싱 방법
TWI686976B (zh) * 2014-12-24 2020-03-01 日商昭和電工包裝股份有限公司 電池的製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101613101B1 (ko) * 2013-04-30 2016-04-19 주식회사 엘지화학 이차전지의 제조 방법 및 이를 이용한 이차전지
JP6242199B2 (ja) * 2013-12-11 2017-12-06 日産自動車株式会社 二次電池の製造方法および製造装置
WO2015111665A1 (ja) * 2014-01-23 2015-07-30 株式会社豊田自動織機 蓄電装置の製造方法、製造装置、注液装置、及び注液方法
JP6807149B2 (ja) * 2015-10-06 2021-01-06 Fdk株式会社 ラミネート型蓄電素子
KR102092269B1 (ko) * 2016-12-01 2020-03-23 주식회사 엘지화학 배터리 셀 디가싱 장치
KR102252177B1 (ko) * 2017-02-14 2021-05-14 주식회사 엘지화학 전지셀의 실링 잉여부 가공 장치
TWI638478B (zh) * 2017-06-16 2018-10-11 有量科技股份有限公司 鋰電池芯的除氣方法
CN109148787B (zh) * 2017-06-28 2021-06-11 有量科技股份有限公司 锂电池芯的除气方法
KR102164254B1 (ko) * 2017-11-15 2020-10-12 주식회사 엘지화학 이차 전지 및 그의 제조 방법, 이차 전지용 파우치 및 그의 제조 방법
DE102017223231A1 (de) * 2017-12-19 2019-06-19 Thyssenkrupp Ag Entgasungs-Vorrichtung und Entgasungs-Verfahren für eine Batteriezelle
CN108550887B (zh) * 2018-03-14 2020-01-10 珠海格力电器股份有限公司 一种除液装置及电池封装机
CN108963342A (zh) * 2018-07-19 2018-12-07 力信(江苏)能源科技有限责任公司 一种增加软包电芯电解液含量的方法及应用该方法制得的锂电子电池
KR20210016775A (ko) 2019-08-05 2021-02-17 주식회사 엘지화학 이차전지의 가스 제거 장치 및 이를 이용한 가스 제거 방법
KR20210048228A (ko) * 2019-10-23 2021-05-03 주식회사 엘지화학 전극조립체의 변형을 억제하는 리튬 이차전지용 전지 케이스
KR102236453B1 (ko) 2020-04-25 2021-04-06 주식회사 이노메트리 각형 이차전지 셀 제조 장비에서 분리막의 접힘성을 향상시키기 위한 장치 및 방법
KR20210050748A (ko) * 2019-10-29 2021-05-10 에스케이이노베이션 주식회사 파우치형 이차전지
DE102021212617B3 (de) 2021-11-09 2023-01-26 Volkswagen Aktiengesellschaft Verfahren zur Fertigung einer Batteriepouchzelle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186823A (ja) * 1997-09-05 1999-03-30 Ricoh Co Ltd 非水系偏平型電池
JP2000353497A (ja) * 1999-06-08 2000-12-19 Tdk Corp シート型電池の製造方法
JP2001093580A (ja) * 1999-09-21 2001-04-06 Tdk Corp シート型電池の製造方法
JP2004342520A (ja) 2003-05-16 2004-12-02 Toyota Motor Corp 二次電池の製造方法
JP2007207438A (ja) * 2006-01-30 2007-08-16 Nissan Motor Co Ltd 2次電池の製造方法
JP2008166068A (ja) * 2006-12-27 2008-07-17 Nissan Motor Co Ltd 2次電池の製造方法
JP2011070983A (ja) * 2009-09-28 2011-04-07 Murata Mfg Co Ltd 二次電池の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682735B2 (en) * 2005-03-28 2010-03-23 Samsung Sdi Co., Ltd. Pouch type lithium secondary battery and method of fabricating the same
KR100709881B1 (ko) * 2005-09-28 2007-04-20 삼성에스디아이 주식회사 파우치형 리튬 이차 전지 및 이의 제조 방법
JP5358906B2 (ja) * 2006-12-08 2013-12-04 日産自動車株式会社 バイポーラ電池の製造方法
US8318333B2 (en) * 2007-10-15 2012-11-27 Sony Corporation Battery pack and method for producing the same
JP4378662B2 (ja) 2008-01-31 2009-12-09 トヨタ自動車株式会社 密閉型電池製造方法
JP5573474B2 (ja) 2010-08-06 2014-08-20 ソニー株式会社 電池の製造方法
KR101334623B1 (ko) * 2010-12-02 2013-11-29 주식회사 엘지화학 원심력을 이용한 이차전지의 탈기 방법
KR101304870B1 (ko) 2010-12-02 2013-09-06 주식회사 엘지화학 전지셀의 제조방법 및 이를 이용하여 생산되는 전지셀
CN102354768B (zh) * 2011-10-27 2013-11-20 超源精密电子设备(东莞)有限公司 真空抽气封口切边折边一体机及电池生产工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186823A (ja) * 1997-09-05 1999-03-30 Ricoh Co Ltd 非水系偏平型電池
JP2000353497A (ja) * 1999-06-08 2000-12-19 Tdk Corp シート型電池の製造方法
JP2001093580A (ja) * 1999-09-21 2001-04-06 Tdk Corp シート型電池の製造方法
JP2004342520A (ja) 2003-05-16 2004-12-02 Toyota Motor Corp 二次電池の製造方法
JP2007207438A (ja) * 2006-01-30 2007-08-16 Nissan Motor Co Ltd 2次電池の製造方法
JP2008166068A (ja) * 2006-12-27 2008-07-17 Nissan Motor Co Ltd 2次電池の製造方法
JP2011070983A (ja) * 2009-09-28 2011-04-07 Murata Mfg Co Ltd 二次電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860809A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019749A1 (ja) * 2013-08-09 2015-02-12 日産自動車株式会社 ラミネートフィルムの製造方法及び穿孔刃
JPWO2015019749A1 (ja) * 2013-08-09 2017-03-02 日産自動車株式会社 ラミネートフィルムの製造方法及び穿孔刃
WO2015087760A1 (ja) * 2013-12-11 2015-06-18 日産自動車株式会社 二次電池のガス抜き孔形成プロセスおよびガス抜き孔形成装置
US10121999B2 (en) 2013-12-11 2018-11-06 Nissan Motor Co., Ltd. Degassing hole formation process and degassing hole formation apparatus for secondary battery
KR101811474B1 (ko) 2013-12-19 2017-12-21 주식회사 엘지화학 배터리 셀의 디가싱 장치 및 이를 이용한 배터리 셀의 디가싱 방법
CN104810539A (zh) * 2014-01-27 2015-07-29 三星Sdi株式会社 制造袋型电池单元的方法
KR20150107115A (ko) * 2014-03-13 2015-09-23 주식회사 엘지화학 활성화된 전지셀의 가스 제거 장치 및 전지셀 제조방법
KR101713068B1 (ko) * 2014-03-13 2017-03-07 주식회사 엘지화학 활성화된 전지셀의 가스 제거 장치 및 전지셀 제조방법
KR101675012B1 (ko) 2014-03-31 2016-11-10 주식회사 엘지화학 배터리 셀 제조방법
KR20150113660A (ko) * 2014-03-31 2015-10-08 주식회사 엘지화학 배터리 셀 제조방법
JP2015220199A (ja) * 2014-05-21 2015-12-07 日産自動車株式会社 フィルム外装電池の製造方法
WO2016021066A1 (ja) * 2014-08-08 2016-02-11 日産自動車株式会社 電池の製造装置
TWI686976B (zh) * 2014-12-24 2020-03-01 日商昭和電工包裝股份有限公司 電池的製造方法
JP2016126826A (ja) * 2014-12-26 2016-07-11 昭和電工パッケージング株式会社 電池の製造方法
CN105742714A (zh) * 2014-12-26 2016-07-06 昭和电工包装株式会社 电池的制造方法
CN105742714B (zh) * 2014-12-26 2020-04-17 昭和电工包装株式会社 电池的制造方法
KR20170022391A (ko) * 2015-08-20 2017-03-02 주식회사 엘지화학 진동을 이용한 전지셀 제조용 가스 트랩 제거 장치
KR101942496B1 (ko) 2015-08-20 2019-01-25 주식회사 엘지화학 진동을 이용한 전지셀 제조용 가스 트랩 제거 장치
JP2017041428A (ja) * 2015-08-21 2017-02-23 日産自動車株式会社 二次電池の製造装置および製造方法

Also Published As

Publication number Publication date
KR20150013245A (ko) 2015-02-04
EP2860809A1 (en) 2015-04-15
CN104380514A (zh) 2015-02-25
US20150171461A1 (en) 2015-06-18
JP5899316B2 (ja) 2016-04-06
US9722274B2 (en) 2017-08-01
CN104380514B (zh) 2016-12-28
JPWO2013187161A1 (ja) 2016-02-04
KR101627061B1 (ko) 2016-06-03
EP2860809B1 (en) 2017-10-18
EP2860809A4 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5899316B2 (ja) 二次電池の製造方法および製造装置
JP6204497B2 (ja) 二次電池のガス抜き孔形成プロセスおよびガス抜き孔形成装置
JP6197581B2 (ja) 電池の製造方法および製造装置
TWI447988B (zh) 使用離心力將二次電池除氣之方法
JP3795713B2 (ja) シート型電池の製造方法
JP2008130360A (ja) 非水電解液二次電池
KR20130128033A (ko) 전지셀 가스 제거 장치
JP2013097931A (ja) 薄膜型電気化学素子の製造方法
JP4603857B2 (ja) リチウムイオン二次電池およびその製造方法
JP6242199B2 (ja) 二次電池の製造方法および製造装置
JP4155100B2 (ja) 二次電池の製造方法
JP6682203B2 (ja) 二次電池の製造方法
JP5769467B2 (ja) 薄膜型一次電池
JP2013062199A (ja) 密閉形電池
JP5334109B2 (ja) ラミネート形電池
KR101812973B1 (ko) 관통구를 포함하는 전지셀의 제조 방법
JP6683437B2 (ja) 二次電池の製造装置および製造方法
JP2010238861A (ja) ラミネート外装蓄電デバイス
JP6823702B2 (ja) 二次電池の製造装置および製造方法
JP2017041427A (ja) 二次電池の製造装置および製造方法
CN114725526A (zh) 非水电解液二次电池
CN114914518A (zh) 非水电解液二次电池
JP2015090804A (ja) ラミネート型二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147034118

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14405628

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014521026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013804649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013804649

Country of ref document: EP