WO2013183580A1 - 耐環境被覆されたセラミックス基複合材料部品及びその製造方法 - Google Patents

耐環境被覆されたセラミックス基複合材料部品及びその製造方法 Download PDF

Info

Publication number
WO2013183580A1
WO2013183580A1 PCT/JP2013/065331 JP2013065331W WO2013183580A1 WO 2013183580 A1 WO2013183580 A1 WO 2013183580A1 JP 2013065331 W JP2013065331 W JP 2013065331W WO 2013183580 A1 WO2013183580 A1 WO 2013183580A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite material
ceramic matrix
matrix composite
silicon
Prior art date
Application number
PCT/JP2013/065331
Other languages
English (en)
French (fr)
Inventor
幸宏 中田
村田 裕茂
渡辺 健一郎
康智 田中
中村 武志
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP13800750.5A priority Critical patent/EP2857193B1/en
Priority to CN201380027664.0A priority patent/CN104379345B/zh
Priority to RU2014151560/05A priority patent/RU2579592C1/ru
Priority to CA2874419A priority patent/CA2874419C/en
Publication of WO2013183580A1 publication Critical patent/WO2013183580A1/ja
Priority to US14/551,139 priority patent/US20150079371A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the present invention relates to an environment-resistant coated ceramic matrix composite material and a method for producing the same, and more particularly, to a ceramic matrix composite material used for a high temperature component such as a jet engine or a rocket engine used in a high temperature gas environment containing water vapor.
  • the present invention relates to a component and a manufacturing method thereof.
  • CMC Ceramic Matrix Composite
  • Patent Document 1 discloses a combustor for a gas turbine engine including a base material made of a silicon-containing material, an environmental barrier layer overlapping the base material, a transition layer overlapping the environmental barrier layer, and a top coat overlapping the transition layer. Parts etc. are described.
  • high-temperature parts such as a turbine part of a jet engine have a high temperature (for example, a component surface temperature of 1200 ° C. to 1400 ° C.) in a high-temperature gas environment containing water vapor (for example, a partial pressure of water vapor contained in combustion gas is 30 to 140 kPa).
  • a high temperature for example, a component surface temperature of 1200 ° C. to 1400 ° C.
  • a high-temperature gas environment containing water vapor for example, a partial pressure of water vapor contained in combustion gas is 30 to 140 kPa.
  • ° C a partial pressure of water vapor contained in combustion gas is 30 to 140 kPa
  • low temperature for example, the component surface temperature is 600 ° C or lower.
  • an object of the present invention is to provide an environment-resistant ceramic-based composite material part with improved oxidation resistance and water vapor resistance even when exposed to a thermal cycle in a high-temperature gas environment containing water vapor and its It is to provide a manufacturing method.
  • a ceramic matrix composite material component according to the present invention is an environmentally coated ceramic matrix composite material component, and is laminated on a surface of a substrate formed of a ceramic matrix composite material containing silicide.
  • the ytterbium silicate is preferably Yb 2 SiO 5 or Yb 2 Si 2 O 7 .
  • the silicon carbide layer has a thickness of 10 ⁇ m or more and 50 ⁇ m or less, the silicon layer has a thickness of 50 ⁇ m or more and 140 ⁇ m or less, and the mixed layer has a thickness of It is preferable that it is 75 micrometers or more and 225 micrometers or less.
  • the thickness of the silicon layer is preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • the oxide layer is selected from the group consisting of hafnium oxide, hafnium silicate, lutetium silicate, ytterbium silicate, titanium oxide, zirconium oxide, aluminum titanate, aluminum silicate, and lutetium hafnium oxide. It is preferably formed of an oxide containing at least one selected as a main component.
  • the oxide layer is preferably formed of monoclinic hafnium oxide.
  • the silicon carbide layer is formed by a chemical vapor deposition film, and the silicon layer and the mixed layer are formed by a thermal spray coating by a low pressure spraying method, and the oxidation
  • the physical layer is preferably formed of a thermal spray coating by an atmospheric spraying method.
  • the base material is preferably formed of a ceramic matrix composite material in which a silicon carbide matrix is combined with silicon carbide fibers.
  • the ceramic matrix composite part according to the present invention is preferably used in an environment where the part surface temperature is 1200 ° C. to 1400 ° C. and the water vapor partial pressure is 30 kPa to 140 kPa.
  • a method for producing a ceramic matrix composite material according to the present invention is a method for producing an environment-resistant coated ceramic matrix composite material, wherein the substrate is formed with a ceramic matrix composite material including silicide.
  • the silicon carbide layer stacking step stacks the silicon carbide layer with a film thickness of 10 ⁇ m or more and 50 ⁇ m or less, and the silicon layer stacking step includes stacking the silicon layer with a thickness of 50 ⁇ m. It is preferable that the layers are stacked with a thickness of 140 ⁇ m or less, and in the mixed layer stacking step, the mixed layer is stacked with a thickness of 75 ⁇ m or more and 225 ⁇ m or less.
  • the silicon layer stacking step stacks the silicon layer with a film thickness of 50 ⁇ m or more and 100 ⁇ m or less.
  • a silicon carbide layer, a silicon layer, and mullite are formed on the surface of the substrate formed of the ceramic matrix composite material including silicide.
  • the adhesion between each layer is enhanced and the thermal expansion coefficient of each layer is inclined from the substrate to the oxide layer. Since the thermal stress due to thermal cycling is relieved, even if the ceramic matrix composite parts are exposed to the thermal cycle in a high-temperature gas environment containing water vapor, the film peeling is suppressed, and the oxidation resistance and water vapor resistance are suppressed. Can be further improved.
  • FIG. 1 it is sectional drawing which shows the structure of the ceramic matrix composite material components by which environment-proof coating was carried out.
  • it is a flowchart which shows the manufacturing method of the ceramic matrix composite material components by which environmental protection coating was carried out.
  • FIG. it is a photograph which shows the external appearance after the water vapor
  • FIG. 1 it is a figure which shows the outline of a burner rig test. In embodiment of this invention, it is a photograph which shows the burner rig test result after 4000 cycles in the test body of Example 1. In embodiment of this invention, it is a photograph which shows the burner rig test result after 1000 cycles in the test body of Example 2.
  • FIG. 1 it is a figure which shows the outline of a burner rig test. In embodiment of this invention, it is a photograph which shows the burner rig test result after 4000 cycles in the test body of Example 1. In embodiment of this invention, it is a photograph which shows the burner rig test result after 1000 cycles in the test body of Example 2.
  • FIG. 1 is a cross-sectional view showing the configuration of a ceramic matrix composite material part 10 which is environmentally coated.
  • the ceramic-based composite material component 10 includes a silicon carbide layer 14, a silicon layer 16, a mixed layer 18 in which mullite and ytterbium silicate are mixed, and an oxide layer 20, which are sequentially stacked on the surface of the base 12. Has been.
  • the base material 12 is formed of a ceramic matrix composite material including silicide.
  • the ceramic matrix composite material is composed of reinforcing fibers and a ceramic matrix.
  • the reinforcing fibers for example, long fibers such as silicon carbide fibers (SiC fibers), silicon nitride fibers (Si 3 N 4 fibers), carbon fibers, and graphite fibers, short fibers, and whiskers are used.
  • the preform includes, for example, a fiber woven fabric having a three-dimensional structure obtained by bundling hundreds to thousands of reinforcing fiber filaments into a fiber bundle, and then weaving the fiber bundle in the XYZ directions, A woven fabric having a two-dimensional structure such as a satin weave, a unidirectional material (UD material), or the like is used.
  • silicon carbide, silicon nitride or the like is used for the ceramic matrix.
  • At least one of the reinforcing fiber and the ceramic matrix may be formed of silicide, and both the reinforcing fiber and the ceramic matrix may be formed of silicide. Further, the reinforcing fiber and the ceramic matrix may be made of the same material or different materials.
  • the silicide includes not only silicon compounds such as silicon carbide and silicon nitride, but also silicon.
  • Ceramic based composite materials include, for example, SiC / SiC composite materials composed of silicon carbide fibers and silicon carbide matrix, SiC / Si 3 N 4 composite materials composed of silicon carbide fibers and silicon nitride matrix, silicon nitride fibers and silicon nitride matrix.
  • a Si 3 N 4 / Si 3 N 4 composite material or the like is used.
  • the thermal expansion coefficient of the SiC / SiC composite material is 3.0 ⁇ 10 ⁇ 6 / ° C. to 4.0 ⁇ 10 ⁇ 6 / ° C.
  • the silicon carbide layer 14 is laminated on the surface of the substrate 12. Since silicon carbide is excellent in oxidation resistance, the oxidation resistance of the substrate 12 can be improved by coating the surface of the substrate 12 with the silicon carbide layer 14. Moreover, since the silicon carbide layer 14 has high chemical affinity with the base material 12 containing silicide, the adhesive force between the base material 12 and the silicon carbide layer 14 is enhanced.
  • base material 12 is formed of a SiC / SiC composite material
  • the thermal expansion difference between base material 12 and silicon carbide layer 14 can be reduced, so that the thermal stress is further relaxed, and silicon carbide layer 14 Generation of cracks is suppressed.
  • the thermal expansion coefficient of silicon carbide is 3.0 ⁇ 10 ⁇ 6 / ° C. to 4.0 ⁇ 10 ⁇ 6 / ° C.
  • the film thickness of the silicon carbide layer 14 is preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 20 ⁇ m or more and 40 ⁇ m or less. The reason for this is that when the film thickness of the silicon carbide layer 14 is smaller than 10 ⁇ m, the permeation of oxygen, water vapor and the like is increased and the oxidation resistance and water vapor resistance are lowered, and the film thickness of the silicon carbide layer 14 is smaller than 50 ⁇ m. This is because when the size is increased, silicon carbide is a brittle material, so that the silicon carbide layer 14 is easily cracked. Further, by setting the film thickness of silicon carbide layer 14 to 20 ⁇ m or more and 40 ⁇ m or less, it is possible to suppress the most permeation of oxygen, water vapor, and the like and to suppress cracking of silicon carbide layer 14.
  • the silicon carbide layer 14 is preferably formed of a chemical vapor deposition film formed by a chemical vapor deposition method (CVD method: Chemical Vapor Deposition). Since the chemical vapor deposition film is a denser film than a sprayed coating or the like, permeation of oxygen, water vapor, and the like in the silicon carbide layer 14 is suppressed, and oxidation of the base material 12 and water vapor thinning are further suppressed.
  • CVD method Chemical Vapor Deposition
  • Silicon layer 16 is laminated on the surface of silicon carbide layer 14.
  • the silicon layer 16 has a function as a bond coat that improves adhesion between the silicon carbide layer 14 made of non-oxide and the mixed layer 18 in which mullite made of oxide and ytterbium silicate are mixed.
  • the thermal expansion coefficient of silicon and the thermal expansion coefficient of silicon carbide are close to each other, the occurrence of cracks due to thermal stress due to the thermal expansion difference between the silicon carbide layer 14 and the silicon layer 16 can be suppressed.
  • the thermal expansion coefficient of silicon is 2.0 ⁇ 10 ⁇ 6 / ° C. to 3.0 ⁇ 10 ⁇ 6 / ° C.
  • the film thickness of the silicon layer 16 is preferably 50 ⁇ m or more and 140 ⁇ m or less, more preferably 50 ⁇ m or more and 100 ⁇ m or less, and most preferably 70 ⁇ m or more and 80 ⁇ m or less.
  • the adhesion between the silicon carbide layer 14 and the mixed layer 18 decreases when the thickness of the silicon layer 16 is smaller than 50 ⁇ m.
  • the thickness of the silicon layer 16 is greater than 140 ⁇ m, the silicon This is because the silicon layer 16 may be cracked because it is a brittle material.
  • the film thickness of the silicon layer 16 100 ⁇ m or less, the generation of cracks in the silicon layer 16 can be further suppressed. Further, by setting the film thickness of the silicon layer 16 to 70 ⁇ m or more and 80 ⁇ m or less, the adhesion between the silicon carbide layer 14 and the mixed layer 18 can be enhanced most, and the generation of cracks in the silicon layer 16 can be suppressed. It becomes.
  • the silicon layer 16 is preferably formed by a sprayed coating by a low pressure spraying method. According to the thermal spray coating by the low pressure spraying method, the adhesion to the silicon carbide layer 14 can be further improved, and since the thermal spray coating is denser than the thermal spray coating by the atmospheric spraying method, the transmission of oxygen and water vapor is suppressed.
  • a mixed layer 18 in which mullite and ytterbium silicate are mixed is laminated on the surface of the silicon layer 16.
  • Mixed layer 18 enhances adhesion between mixed layer 18 and oxide layer 20 and relieves thermal stress due to a difference in thermal expansion between silicon carbide layer 14 and silicon layer 16 and oxide layer 20. It has a function as a stress relaxation layer.
  • the mullite contained in the mixed layer 18 has a function of improving the adhesion between the mixed layer 18 and the oxide layer 20. Then, by mixing ytterbium silicate with mullite, the thermal expansion coefficient of the mixture of mullite and ytterbium silicate is such that the thermal expansion coefficient of silicon carbide and silicon, and the thermal expansion coefficient of the oxide (5.0 ⁇ 10 ⁇ 6). / ° C to 10.0 ⁇ 10 ⁇ 6 / ° C.), the thermal stress due to the difference in thermal expansion between the silicon carbide layer 14 and the silicon layer 16 and the oxide layer 20 is relieved. .
  • the thermal expansion coefficient of the mixed layer 18 in which the mixing ratio of mullite and ytterbium silicate is 1: 1 by volume is 3.5 ⁇ 10 ⁇ 6 / ° C. to 4.5 ⁇ 10 ⁇ 6 / ° C.
  • the water vapor resistance of the mixed layer 18 can be improved rather than a mullite single-piece
  • the ytterbium silicate for example, ytterbium monosilicate (Yb 2 SiO 5 ) or ytterbium disilicate (Yb 2 Si 2 O 7 ) is used, and the mixed layer 18 includes mullite (3Al 2 O 3 .2SiO 2 ) and monosilicate. It is formed from a mixture of ytterbium (Yb 2 SiO 5 ) or a mixture of mullite (3Al 2 O 3 .2SiO 2 ) and ytterbium disilicate (Yb 2 Si 2 O 7 ).
  • the film thickness of the mixed layer 18 is preferably 75 ⁇ m or more and 225 ⁇ m or less, and more preferably 75 ⁇ m or more and 150 ⁇ m or less.
  • the thickness of the mixed layer 18 is smaller than 75 ⁇ m, the thickness of the mixed layer 18 is reduced, so that the function as a stress relaxation layer is reduced.
  • the thickness of the mixed layer 18 is larger than 225 ⁇ m, This is because cracks are likely to occur in the mixed layer 18 because mullite and ytterbium silicate constituting the mixed layer 18 are brittle materials.
  • the film thickness of the mixed layer 18 is set to 75 ⁇ m or more and 150 ⁇ m or less, the function as the stress relaxation layer is most enhanced and the cracking of the mixed layer 18 can be suppressed.
  • the mixed layer 18 is preferably formed of a thermal spray coating by a reduced pressure thermal spraying method. According to the thermal spray coating by the low pressure spraying method, the adhesion with the silicon layer 16 can be further improved, and since the thermal spray coating is denser than the thermal spray coating by the atmospheric spraying method, the transmission of oxygen and water vapor is suppressed.
  • the oxide layer 20 is laminated on the surface of the mixed layer 18. Since the oxide is generally excellent in oxidation resistance, water vapor resistance and low thermal conductivity, the oxide layer 20 has a function as a gas barrier layer against oxygen, water vapor and the like, and from a combustion gas or the like. It has a function as a thermal barrier layer against heat conduction.
  • the oxide layer 20 includes hafnium oxide (monoclinic HfO 2 , cubic HfO 2 , stabilized HfO 2 by yttria, etc.), hafnium silicate (HfSiO 4, etc.), lutetium silicate (Lu 2 SiO 5 , Lu 2 Si 2).
  • ytterbium silicate Yb 2 SiO 5 , Yb 2 Si 2 O 7 etc.
  • titanium oxide TiO 2 etc.
  • zirconium oxide monoclinic ZrO 2 , cubic ZrO 2 , yttria, etc., stabilized ZrO 2
  • aluminum titanate Al 2 TiO 5 etc.
  • aluminum silicate Al 6 Si 2 O 13 etc.
  • lutetium hafnium oxide Li 4 Hf 3 O 12 etc.
  • the oxide layer 20 is more preferably formed of monoclinic hafnium oxide.
  • Monoclinic hafnium oxide has better water vapor resistance than lutetium silicate, ytterbium silicate, titanium oxide, aluminum titanate, etc., and the thermal expansion coefficient of monoclinic hafnium oxide is stable in yttria, for example. This is because it is closer to the thermal expansion coefficient of a mixture of silicon carbide, silicon, mullite and ytterbium silicate than the thermal expansion coefficient of oxidized hafnium oxide or the like.
  • the thermal expansion coefficient of monoclinic hafnium oxide is 5.0 ⁇ 10 ⁇ 6 / ° C. to 6.0 ⁇ 10 ⁇ 6 / ° C.
  • the film thickness of the oxide layer 20 is preferably 10 ⁇ m or more and 300 ⁇ m or less, and more preferably 100 ⁇ m or more and 200 ⁇ m or less.
  • the reason for this is that when the thickness of the oxide layer 20 is smaller than 10 ⁇ m, the permeation of oxygen, water vapor, and the like is increased, and the oxidation resistance and water vapor resistance are lowered.
  • the thickness of the oxide layer 20 is smaller than 300 ⁇ m. This is because when the size is increased, the oxide layer 20 is easily brittle because the oxide is a brittle material.
  • the oxide layer 20 is preferably formed of a sprayed coating by an atmospheric spraying method. According to the sprayed coating by the atmospheric spraying method, since the number of pores is larger than that of the sprayed coating by the low pressure spraying method, the sintering of the oxide particles constituting the sprayed coating is suppressed when the ceramic matrix composite material part 10 is exposed to heat. As a result, cracking of the oxide layer 20 can be suppressed.
  • FIG. 2 is a flowchart showing a manufacturing method of the ceramic matrix composite material part 10 coated with environment resistance.
  • the manufacturing method of the environment-coated ceramic matrix composite material part 10 includes a base material forming step (S10), a silicon carbide layer laminating step (S12), a silicon layer laminating step (S14), and a mixed layer laminating step (S16). And an oxide layer stacking step (S18).
  • the base material forming step (S10) is a step of forming the base material 12 with a ceramic matrix composite material including silicide.
  • the base material 12 can be molded by a general ceramic matrix composite molding method.
  • the base material 12 is formed, for example, by forming a preform such as a three-dimensional fabric with silicon carbide fibers and the like, and then depositing a ceramic matrix such as silicon carbide in the preform by a chemical vapor deposition method (CVD method) or a CVI method (Chemical Vapor Infiltration). It is made to infiltrate with a composite and molded.
  • CVD method chemical vapor deposition method
  • CVI method Chemical Vapor Infiltration
  • the silicon carbide fiber for example, Tyranno fiber (manufactured by Ube Industries Co., Ltd.), Hainikalon fiber (manufactured by Nippon Carbon Co., Ltd.) or the like is used.
  • the base material 12 may be formed by impregnating a preform with an organometallic polymer (ceramic matrix precursor) such as polycarbosilane and firing it in an inert atmosphere after the impregnation.
  • an organometallic polymer such as polycarbosilane
  • the base material 12 As another method of forming the base material 12, after mixing reinforcing fibers such as silicon carbide fibers and raw material powder (for example, silicon powder or carbon powder) for forming a ceramic matrix such as silicon carbide, hot pressing is performed. Alternatively, they may be combined by reaction sintering with a hot isostatic press (HIP: Hot Isostatic Press).
  • HIP Hot Isostatic Press
  • a ceramic matrix composite material is impregnated with a slurry in which silicon carbide powder or the like is dispersed in an organic solvent such as ethanol, and pores on the surface of the ceramic matrix composite material are filled with silicon carbide powder or the like to smooth the surface of the substrate. Is preferable.
  • the silicon carbide layer laminating step (S12) is a step of laminating the silicon carbide layer 14 on the surface of the substrate 12.
  • the silicon carbide layer 14 can be formed by a thermal spraying method, a physical vapor deposition method such as sputtering or ion plating (PVD method: Physical Vapor Deposition), a chemical vapor deposition method (CVD method), or the like, but is denser than the thermal spraying method or the like. Since it can form a film, it is preferably formed by chemical vapor deposition.
  • PVD method Physical Vapor Deposition
  • CVD method chemical vapor deposition method
  • the silicon carbide layer 14 is formed by chemical vapor deposition, a general chemical vapor deposition method of silicon carbide can be used.
  • the silicon carbide layer 14 is formed on the surface of the base material 12 by setting the base material 12 in the reaction furnace and heating, and flowing methyltrichlorosilane (CH 3 SiCl 3 ) or the like as a reaction gas in the reaction furnace. can do.
  • the silicon layer stacking step (S14) is a step of stacking the silicon layer 16 on the surface of the silicon carbide layer.
  • the silicon layer 16 can be formed by a thermal spraying method, a physical vapor deposition method (PVD method), a chemical vapor deposition method (CVD method) or the like, but since a film having good adhesion can be formed, a thermal spraying method (atmospheric thermal spraying method, reduced pressure thermal spraying method). ).
  • a thermal spraying method atmospheric thermal spraying method, reduced pressure thermal spraying method.
  • a general plasma spraying method or the like is used as the spraying method.
  • the thermal spraying method since the oxidation of the silicon carbide layer 14 and the silicon powder of the thermal spray material can be suppressed and a finer thermal spray coating can be formed than the atmospheric thermal spraying method, it is more preferable to use the low pressure thermal spraying method. preferable.
  • the silicon layer 16 is formed by the low pressure spraying method, for example, the base material 12 covered with the silicon carbide layer 14 is set in the spraying chamber, and after evacuation is performed, a vacuum state or an argon gas or the like is not used. In a state where the active gas is introduced and the pressure is reduced, the silicon powder is sent to the spray gun to spray the surface of the silicon carbide layer 14.
  • silicon powder having a particle size of 10 ⁇ m to 40 ⁇ m is used as the thermal spray material.
  • the mixed layer stacking step (S16) is a step of stacking the mixed layer 18 in which mullite and ytterbium silicate are mixed on the surface of the silicon layer 16.
  • the mixed layer 18 can be formed by a thermal spraying method, a physical vapor deposition method (PVD method), a chemical vapor deposition method (CVD method), or the like, but since a film having good adhesion can be formed, a thermal spraying method (atmospheric spraying method, reduced pressure spraying method). ).
  • a thermal spraying method atmospheric spraying method, reduced pressure spraying method.
  • the thermal spraying method it is more preferable to use the low pressure spraying method because it suppresses the oxidation of the silicon layer 16 and can form a denser thermal spraying film than the atmospheric thermal spraying method.
  • a mixed powder in which mullite powder and ytterbium silicate powder are mixed in advance is used as a thermal spray material, and the mixed powder is sent to a thermal spray gun, and silicon in a vacuum state or a reduced pressure state.
  • the surface of the layer 16 may be sprayed, and the mullite powder and the ytterbium silicate powder are separately sent to the spray gun, and the mullite powder and the ytterbium silicate powder are melted or mixed in a state close thereto, and then the vacuum state or the reduced pressure is applied. You may spray in the state.
  • the thermal spray material for example, mullite powder having a particle size of 10 ⁇ m to 50 ⁇ m and ytterbium silicate powder are used.
  • the oxide layer stacking step (S18) is a step of stacking the oxide layer 20 on the surface of the mixed layer 18.
  • the oxide layer 20 can be formed by a thermal spraying method, a physical vapor deposition method (PVD method), a chemical vapor deposition method (CVD method), or the like, but since it can form a film having good adhesion, a thermal spraying method (atmospheric spraying method, low pressure spraying method). Method).
  • a thermal spraying method atmospheric spraying method, low pressure spraying method. Method.
  • the base material 12 whose surface is coated with the mixed layer 18 is set in a spraying chamber, and oxide powder as a spraying material is sent to a spraying gun.
  • Thermal spraying is performed on the surface of the mixed layer 18 under atmospheric pressure.
  • an oxide powder having a particle size of 10 ⁇ m to 50 ⁇ m is used as the thermal spray material. In this way, the manufacture of the ceramic matrix composite material part 10 that is environmentally coated is completed.
  • a silicon carbide layer, a silicon layer, a mixed layer in which mullite and ytterbium silicate are mixed, and an oxide layer on the surface of a base material formed of a ceramic matrix composite material including silicide By laminating and coating in order, the adhesion between each layer is enhanced, and the thermal expansion coefficient of each layer is inclined from the base material to the oxide layer to relieve repeated thermal stress due to the thermal cycle. Even when the ceramic matrix composite material part is exposed to a heat cycle in a high-temperature gas environment containing water vapor, it is possible to suppress peeling of the film and to further improve oxidation resistance and water vapor resistance.
  • the film thickness of each layer by adjusting the film thickness of each layer so that the silicon carbide layer has a thickness of 10 ⁇ m to 50 ⁇ m, the silicon layer has a thickness of 50 ⁇ m to 140 ⁇ m, and the mixed layer has a thickness of 75 ⁇ m to 225 ⁇ m.
  • a ceramic matrix composite material part is exposed for 100 hours under a high temperature environment (surface temperature 1300 ° C., water vapor partial pressure 150 kPa), or a ceramic matrix composite material part 1000 is subjected to a heat cycle (surface temperature 600 ° C. to 1300 ° C.). Even when subjected to cycle exposure, it is possible to suppress peeling of the film and to further improve oxidation resistance and water vapor resistance.
  • the film thickness of each layer by adjusting the film thickness of each layer so that the film thickness of the silicon carbide layer is 10 ⁇ m or more and 50 ⁇ m or less, the film thickness of the silicon layer is 50 ⁇ m or more and 100 ⁇ m or less, and the film thickness of the mixed layer is 75 ⁇ m or more and 225 ⁇ m or less.
  • a high temperature environment surface temperature 1300 ° C., water vapor partial pressure 150 kPa
  • a thermal cycle surface temperature 600 ° C. to 1300 ° C.
  • Specimens coated with environmental resistance were prepared and subjected to a water vapor exposure test and a burner rig test to evaluate water vapor characteristics and thermal cycle characteristics.
  • the base material of the specimens of Examples 1 and 2 was formed of a SiC / SiC composite material in which a SiC fiber and a SiC matrix were combined.
  • a SiC / SiC composite material a preform formed of SiC fibers was impregnated with silicon powder and carbon powder, and subjected to reaction sintering to form a SiC matrix to be composited.
  • the SiC fiber Tyranno fiber (manufactured by Ube Industries, Ltd.) was used.
  • a SiC / SiC composite material was impregnated with a slurry in which silicon carbide powder was dispersed in ethanol, and pores on the surface of the SiC / SiC composite material were filled with silicon carbide powder to smooth the surface of the substrate.
  • the shape of the substrate is a flat plate with a taper of 50 mm ⁇ 9 mm ⁇ 4 mmt for the water vapor exposure test, or a flat plate of 50 mm ⁇ 35 mm ⁇ 4 mmt, and the end side is R1.5 processed, and 50 mm for the burner rig test.
  • a flat plate shape of ⁇ 50 mm ⁇ 4 mmt was used.
  • the SiC layer was laminated
  • the substrate was set in the reaction furnace, heated (reaction temperature 900 ° C. to 1000 ° C.), and methyltrichlorosilane (CH 3 SiCl 3 ) was used as a reaction gas to coat the SiC layer on the surface of the substrate.
  • the specimens of Examples 1 and 2 were both set to 30 ⁇ m.
  • a Si layer was laminated on the surface of the SiC layer by a low pressure spraying method.
  • the substrate coated with the SiC layer was set in the thermal spraying chamber, and after evacuation, argon gas was introduced into the thermal spraying chamber, and the surface of the thermal spraying chamber was decompressed and melted on the surface of the SiC layer.
  • Si powder was sprayed. Si powder having a particle size of 20 ⁇ m to 40 ⁇ m was used.
  • the thickness of the Si layer was 75 ⁇ m for the specimen of Example 1 and 140 ⁇ m for the specimen of Example 2. The thickness of the Si layer was adjusted by changing the spraying time.
  • the surface of the Si layer, a mixed layer of 3Al 2 O 3 ⁇ 2SiO 2 and Yb 2 SiO 5 was laminated with a vacuum spraying method.
  • the mixed powder melted on the surface of the Si layer was sprayed while the inside of the spraying chamber was decompressed with argon gas.
  • the thickness of the mixed layer of 3Al 2 O 3 ⁇ 2SiO 2 and Yb 2 SiO 5, was 75 ⁇ m in both specimens of Examples 1 and 2.
  • the HfO 2 powder was sent to a spray gun, and the HfO 2 powder melted on the surface of the mixed layer of 3Al 2 O 3 .2SiO 2 and Yb 2 SiO 5 was sprayed at atmospheric pressure.
  • the HfO 2 powder were used HfO 2 powder monoclinic.
  • the thickness of the HfO 2 layer was 150 ⁇ m in both the specimens of Examples 1 and 2.
  • a test piece simulating the Si layer was produced by the low pressure spraying method, and thermal expansion measurement was performed according to the measurement method of JISZ2285.
  • the thermal expansion coefficient of the test piece simulating the Si layer was 2.0 ⁇ 10 ⁇ 6 / ° C. to 2.5 ⁇ 10 ⁇ 6 / ° C.
  • 3Al 2 O 3 ⁇ 2SiO 2 powder and mixed powder of Yb 2 SiO 5 powder using powder (volume ratio after thermally sprayed coating formation 1 1 and was adjusted powder mixture ratio so) as the spray material, vacuum was subjected to a thermal expansion measurement to prepare a mixed layer (simulating the test piece and 3Al 2 O 3 ⁇ 2SiO 2 and Yb 2 SiO 5 by thermal spraying. for comparison, 3Al 2 O 3 ⁇ 2SiO 2 Using powder as a thermal spray material, a test piece was prepared and thermal expansion measurement was performed.
  • FIG. 3 is a graph showing the thermal expansion characteristics of the thermal spray coating
  • FIG. 3 (a) is a graph showing the thermal expansion characteristics of the thermal spray coating made of 3Al 2 O 3 .2SiO 2
  • FIG. is a graph showing the thermal expansion characteristics of the thermal spray coating obtained by mixing and 3Al 2 O 3 ⁇ 2SiO 2 and Yb 2 SiO 5.
  • thermal expansion coefficient of 3Al 2 O 3 ⁇ 2SiO 2 and Yb 2 SiO 5 and the mixed layer simulation test specimens of was 4.5 ⁇ 10 -6 / °C from 3.5 ⁇ 10 -6 / °C.
  • a test piece simulating an HfO 2 layer was prepared by an atmospheric spraying method, and thermal expansion measurement was performed.
  • the thermal expansion coefficient of the test piece simulating the HfO 2 layer was 5.0 ⁇ 10 ⁇ 6 / ° C. to 6.0 ⁇ 10 ⁇ 6 / ° C.
  • the thermal expansion coefficient of 3Al 2 O 3 ⁇ 2SiO 2 and Yb 2 SiO 5 are mixed and the mixed layer, and the thermal expansion coefficient of the Si layer, HfO 2 layer It is located in the middle of the thermal expansion coefficient.
  • Water vapor exposure test A water vapor exposure test was performed on the specimens of Examples 1 and 2. Further, as a test sample of the comparative example, a water vapor exposure test was also performed on a base material that was not environmentally coated (only a base material formed of a SiC / SiC composite material).
  • the water vapor exposure test method will be described.
  • a water vapor exposure test apparatus manufactured by Toshin Kogyo Co., Ltd. was used.
  • the specifications of this water vapor exposure test apparatus are a maximum temperature of 1500 ° C. (ordinary use of 1400 ° C.) and a maximum pressure in the test chamber of 950 kPa (9.5 atm).
  • FIG. 4 is a schematic diagram showing the configuration of the water vapor exposure test apparatus 30.
  • a heater 34 made of MoSi 2 is provided in the test chamber 32.
  • a water vapor supply pipe 36 that supplies water vapor
  • an atmospheric gas supply pipe 38 that supplies atmospheric gas (air, nitrogen, oxygen, or carbon dioxide)
  • a mixed gas that discharges the mixed gas in the test chamber
  • a discharge pipe 40 and a thermocouple 42 for temperature control are provided.
  • the specimen 44 is disposed in the test chamber 32 so that the water vapor supplied from the water vapor supply pipe 36 flows along the surface of the specimen.
  • the test temperature is 1300 ° C.
  • the total pressure in the test chamber is 950 kPa (9.5 atm)
  • the partial pressure of water vapor is 150 kPa (1.5 atm)
  • the atmospheric gas O 2 + N 2 + CO 2
  • the pressure was 800 kPa (8 atm).
  • the evaluation of the water vapor exposure test was performed by appearance observation.
  • FIG. 5 is a photograph showing the external appearance of the specimen of Example 1 after the water vapor exposure test.
  • the specimen of Example 1 did not crack or peel even after the water vapor exposure time of 800 hours. It was.
  • the surface by the side of the water vapor supply pipe in a test body is made into the surface (specimen surface 44A in FIG. 4), and the surface on the opposite side to the surface of the test body was made into the back surface (in FIG. 4).
  • Specimen surface 44B the surface by the side of the water vapor supply pipe in a test body
  • FIG. 6 is a photograph showing the external appearance of the specimen of Example 2 after the water vapor exposure test. In the specimen of Example 2, although some cracks were observed at the end after 100 hours of water vapor exposure time, the film was not peeled off.
  • the specimen of the comparative example was corroded so that the shape could not be maintained by the water vapor exposure after the water vapor exposure time of 60 hours.
  • FIG. 7 is a diagram showing an outline of the burner rig test
  • FIG. 7 (a) is a schematic diagram showing a schematic configuration of the burner rig test apparatus 50
  • FIG. 7 (b) is a sample surface temperature per cycle. It is a figure which shows cycling conditions.
  • the burner rig test is performed by holding the specimen 54 on the holding jig 52 and injecting a flame from the nozzle 56 toward the specimen surface.
  • the surface temperature of the specimen 54 is measured with a radiation thermometer (not shown).
  • the measurement position of the surface temperature of the specimen 54 by the radiation thermometer is the center of the specimen 54.
  • the emissivity of the specimen 54 was adjusted by applying a black body paint to the specimen 54 in advance.
  • a camera capable of photographing the coating surface is installed, and the coating surface can be photographed and observed during the thermal cycle.
  • the specimen 54 is set on the holding jig 52, and as shown in FIG. 7B, the temperature rising time is 45 seconds (from 600 ° C. to 1250 ° C.) and the holding time is 45 seconds (1250 ° C. to 1300 ° C.).
  • the thermal cycle was loaded with a temperature drop time of 90 seconds (1300 ° C. to 600 ° C. or less) as one cycle.
  • Evaluation of the burner rig test was performed by external observation and cross-sectional observation.
  • a sample was cut out from the specimen after the burner rig test, and the sample was embedded in an embedded resin, polished, and observed with an optical microscope.
  • FIG. 8 is a photograph showing the burner rig test result after 4000 cycles in the specimen of Example 1
  • FIG. 8 (a) is a photograph showing the appearance observation result
  • FIG. 8 (b) is a cross-sectional observation result. It is a photograph which shows.
  • FIG. 9 is a photograph showing a burner rig test result after 1000 cycles in the specimen of Example 2
  • FIG. 9A is a photograph showing an appearance observation result
  • FIG. 9B is a cross-sectional observation result. It is a photograph which shows.
  • the present invention can suppress peeling of a film and improve oxidation resistance and water vapor resistance even when a ceramic matrix composite material part is exposed to a heat cycle in a high-temperature gas environment containing water vapor, a jet engine It is useful for high-temperature parts such as rocket engines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

耐環境被覆されたセラミックス基複合材料部品(10)は、珪化物を含むセラミックス基複合材料で形成される基材(12)と、基材(12)の表面に積層される炭化珪素層(14)と、炭化珪素層(14)の表面に積層される珪素層(16)と、珪素層(16)の表面に積層されるムライトと珪酸イッテルビウムとを混合した混合層(18)と、混合層(18)の表面に積層される酸化物層(20)とを備える。

Description

耐環境被覆されたセラミックス基複合材料部品及びその製造方法
 本発明は、耐環境被覆されたセラミックス基複合材料部品及びその製造方法に係り、特に、水蒸気を含む高温ガス環境下で使用されるジェットエンジンやロケットエンジン等の高温部品に用いられるセラミックス基複合材料部品及びその製造方法に関する。
 近年、水蒸気を含む高温ガス環境下で使用されるジェットエンジンのタービン部品やシュラウド部品、ロケットエンジンのスラスタや燃焼ガスチューブ等の高温部品として、ニッケル合金等の耐熱合金よりも耐熱性に優れかつ高温域での比強度の大きいセラミックス基複合材料(CMC:Ceramic Matrix Composite)が注目されている。
 一方、高温ガス中の水蒸気はSi含有材料の減肉反応を引き起こすことが知られており、高温部品の基材として珪化物を含むセラミックス基複合材料を選択する場合には、耐酸化性と耐水蒸気性とを確保する必要がある。
 特許文献1には、ケイ素含有材料からなる基材と、基材に重なる環境バリヤー層と、環境バリヤー層に重なる遷移層と、遷移層に重なるトップコートとから構成されるガスタービンエンジンの燃焼器部品等が記載されている。
特許第4901192号公報
 ところで、ジェットエンジンのタービン部品等の高温部品は、水蒸気を含む高温ガス環境下(例えば、燃焼ガスに含まれる水蒸気分圧が30kPaから140kPa)において、高温(例えば、部品表面温度が1200℃から1400℃)と、低温(例えば、部品表面温度が600℃以下)とを繰り返す熱サイクルに曝される。
 耐酸化性と耐水蒸気性とを高温部品に備えるために、珪化物を含むセラミックス基複合材料の表面に、例えば特許文献1に記載されているような多層被膜を被覆する場合には、各層間の密着性が低い場合や熱サイクルによる繰り返しの熱応力等により多層被膜が短時間で略全面剥離して、高温部品の耐酸化性と耐水蒸気性とを損なう可能性がある。
 そこで、本発明の目的は、水蒸気を含む高温ガス環境下で熱サイクルに曝される場合でも、耐酸化性と耐水蒸気性とをより向上させた耐環境被覆されたセラミックス基複合材料部品及びその製造方法を提供することである。
 本発明に係るセラミックス基複合材料部品は、耐環境被覆されたセラミックス基複合材料部品であって、珪化物を含むセラミックス基複合材料で形成される基材と、前記基材の表面に積層される炭化珪素層と、前記炭化珪素層の表面に積層される珪素層と、前記珪素層の表面に積層されるムライトと珪酸イッテルビウムとを混合した混合層と、前記混合層の表面に積層される酸化物層と、を備えることを特徴とする。
 本発明に係るセラミックス基複合材料部品において、前記珪酸イッテルビウムは、YbSiOまたはYbSiであることが好ましい。
 本発明に係るセラミックス基複合材料部品において、前記炭化珪素層の膜厚は、10μm以上50μm以下であり、前記珪素層の膜厚は、50μm以上140μm以下であり、前記混合層の膜厚は、75μm以上225μm以下であることが好ましい。
 本発明に係るセラミックス基複合材料部品において、前記珪素層の膜厚は、50μm以上100μm以下であることが好ましい。
 本発明に係るセラミックス基複合材料部品において、前記酸化物層は、酸化ハフニウム、珪酸ハフニウム、珪酸ルテチウム、珪酸イッテルビウム、酸化チタニウム、酸化ジルコニウム、チタン酸アルミニウム、珪酸アルミニウムおよびルテチウムハフニウム酸化物からなる群から選ばれる少なくとも1つを主成分とする酸化物で形成されることが好ましい。
 本発明に係るセラミックス基複合材料部品において、前記酸化物層は、単斜晶の酸化ハフニウムで形成されていることが好ましい。
 本発明に係るセラミックス基複合材料部品において、前記炭化珪素層は、化学蒸着膜で形成されており、前記珪素層と前記混合層とは、減圧溶射法による溶射皮膜で形成されており、前記酸化物層は、大気溶射法による溶射皮膜で形成されていることが好ましい。
 本発明に係るセラミックス基複合材料部品において、前記基材は、炭化珪素繊維に炭化珪素マトリックスを複合化したセラミックス基複合材料で形成されていることが好ましい。
 本発明に係るセラミックス基複合材料部品は、部品表面温度が1200℃から1400℃、水蒸気分圧が30kPaから140kPaの環境下で使用されることが好ましい。
 本発明に係るセラミックス基複合材料部品の製造方法は、耐環境被覆されたセラミックス基複合材料部品の製造方法であって、珪化物を含むセラミックス基複合材料で基材を形成する基材形成工程と、前記基材の表面に炭化珪素層を化学蒸着法で積層する炭化珪素層積層工程と、前記炭化珪素層の表面に珪素層を減圧溶射法で積層する珪素層積層工程と、前記珪素層の表面にムライトと珪酸イッテルビウムとを混合した混合層を減圧溶射法で積層する混合層積層工程と、前記混合層の表面に酸化物層を大気溶射法で積層する酸化物層積層工程と、を備えることを特徴とする。
 本発明に係るセラミックス基複合材料部品の製造方法において、前記炭化珪素層積層工程は、前記炭化珪素層を10μm以上50μm以下の膜厚で積層し、前記珪素層積層工程は、前記珪素層を50μm以上140μm以下の膜厚で積層し、前記混合層積層工程は、前記混合層を75μm以上225μm以下の膜厚で積層することが好ましい。
 本発明に係るセラミックス基複合材料部品の製造方法において、前記珪素層積層工程は、前記珪素層を50μm以上100μm以下の膜厚で積層することが好ましい。
 上記構成の耐環境被覆されたセラミックス基複合材料部品およびその製造方法によれば、珪化物を含むセラミックス基複合材料で形成される基材の表面に、炭化珪素層と、珪素層と、ムライトと珪酸イッテルビウムとを混合した混合層と、酸化物層とを順に積層して被覆することにより、各層間の密着性を高めると共に、基材から酸化物層に向けて各層の熱膨張係数を傾斜させて熱サイクルによる繰り返しの熱応力を緩和しているので、セラミックス基複合材料部品が水蒸気を含む高温ガス環境下で熱サイクルに曝される場合でも被膜の剥離を抑え、耐酸化性と耐水蒸気性とをより向上させることが可能となる。
本発明の実施の形態において、耐環境被覆されたセラミックス基複合材料部品の構成を示す断面図である。 本発明の実施の形態において、耐環境被覆されたセラミックス基複合材料部品の製造方法を示すフローチャートである。 本発明の実施の形態において、溶射皮膜の熱膨張特性を示すグラフである。 本発明の実施の形態において、水蒸気曝露試験装置の構成を示す模式図である。 本発明の実施の形態において、実施例1の供試体における水蒸気曝露試験後の外観を示す写真である。 本発明の実施の形態において、実施例2の供試体における水蒸気曝露試験後の外観を示す写真である。 本発明の実施の形態において、バーナーリグ試験の概略を示す図である。 本発明の実施の形態において、実施例1の供試体における4000サイクル後のバーナーリグ試験結果を示す写真である。 本発明の実施の形態において、実施例2の供試体における1000サイクル後のバーナーリグ試験結果を示す写真である。
 以下に、本発明の実施の形態について図面を用いて詳細に説明する。図1は、耐環境被覆されたセラミックス基複合材料部品10の構成を示す断面図である。セラミックス基複合材料部品10は、基材12の表面に、炭化珪素層14と、珪素層16と、ムライトと珪酸イッテルビウムとを混合した混合層18と、酸化物層20とが順に積層されて被覆されている。
 基材12は、珪化物を含むセラミックス基複合材料で形成されている。セラミックス基複合材料は、強化繊維と、セラミックスマトリックスとから構成される。
 強化繊維には、例えば、炭化珪素繊維(SiC繊維)、窒化珪素繊維(Si繊維)、炭素繊維、グラファイト繊維等の長繊維、短繊維、ウイスカが用いられる。プリフォームには、例えば、強化繊維のフィラメントを数百から数千本程度束ねて繊維束とした後、この繊維束をXYZ方向に織ることにより得られる3次元構造を備える繊維織物や、平織りや朱子織り等の2次元構造を備える織物や、一方向材(UD材)等が用いられる。また、セラミックスマトリックスには、例えば、炭化珪素、窒化珪素等が用いられる。
 強化繊維及びセラミックスマトリックスの少なくとも一方は、珪化物で形成されており、強化繊維及びセラミックスマトリックスの両方が珪化物で形成されていてもよい。また、強化繊維とセラミックスマトリックスとは、同じ材質であってもよく、異なる材質であってもよい。なお、珪化物には、炭化珪素や窒化珪素等の珪素化合物だけでなく、珪素も含まれる。
 セラミックス基複合材料には、例えば、炭化珪素繊維と炭化珪素マトリックスからなるSiC/SiC複合材料,炭化珪素繊維と窒化珪素マトリックスからなるSiC/Si複合材料,窒化珪素繊維と窒化珪素マトリックスからなるSi/Si複合材料等が用いられる。なお、SiC/SiC複合材料の熱膨張係数は、3.0×10-6/℃から4.0×10-6/℃である。
 炭化珪素層14は、基材12の表面に積層されている。炭化珪素は耐酸化性に優れていることから、基材12の表面を炭化珪素層14で被覆することにより、基材12の耐酸化性を向上させることができる。また、炭化珪素層14は、珪化物を含む基材12との化学的親和性が高いので、基材12と炭化珪素層14との密着力が高められる。
 更に、基材12がSiC/SiC複合材料で形成されている場合には、基材12と炭化珪素層14との熱膨張差を小さくできるので熱応力がより緩和されて、炭化珪素層14の割れの発生が抑制される。なお、炭化珪素の熱膨張係数は、3.0×10-6/℃から4.0×10-6/℃である。
 炭化珪素層14の膜厚は、10μm以上50μm以下であることが好ましく、20μm以上40μm以下であることがより好ましい。この理由は、炭化珪素層14の膜厚が10μmより小さくなると、酸素や水蒸気等の透過が大きくなり耐酸化性や耐水蒸気性が低下するからであり、炭化珪素層14の膜厚が50μmより大きくなると、炭化珪素が脆性材料であることから炭化珪素層14に割れが生じやすくなるからである。また、炭化珪素層14の膜厚を20μm以上40μm以下とすることにより、最も酸素や水蒸気等の透過が抑制されると共に、炭化珪素層14の割れを抑えることが可能となる。
 炭化珪素層14は、化学蒸着法(CVD法:Chemical Vapor Deposition)による化学蒸着膜で形成されることが好ましい。化学蒸着膜は溶射皮膜等よりも緻密な皮膜なので、炭化珪素層14中における酸素や水蒸気等の透過が抑制され、基材12の酸化や水蒸気減肉がより抑えられる。
 珪素層16は、炭化珪素層14の表面に積層されている。珪素層16は、非酸化物からなる炭化珪素層14と、酸化物からなるムライトと珪酸イッテルビウムとを混合した混合層18との間の密着性を高めるボンドコートとしての機能を有している。また、珪素の熱膨張係数と炭化珪素の熱膨張係数とは近い値であることから、炭化珪素層14と珪素層16との間の熱膨張差に起因する熱応力による割れの発生が抑えられる。なお、珪素の熱膨張係数は、2.0×10-6/℃から3.0×10-6/℃である。
 珪素層16の膜厚は、50μm以上140μm以下であることが好ましく、50μm以上100μm以下であることがより好ましく、70μm以上80μm以下であることが最も好ましい。
 この理由は、珪素層16の膜厚が50μmより小さいと炭化珪素層14と混合層18との間の密着性が低下するからであり、珪素層16の膜厚が140μmより大きいと、珪素が脆性材料であることから、珪素層16に割れが発生する場合があるからである。
 また、珪素層16の膜厚を100μm以下とすることにより、珪素層16の割れの発生を更に抑えられる。そして、珪素層16の膜厚を70μm以上80μm以下とすることにより、最も炭化珪素層14と混合層18との間の密着性が高められると共に、珪素層16の割れの発生を抑えることが可能となる。
 珪素層16は、減圧溶射法による溶射皮膜で形成されることが好ましい。減圧溶射法による溶射皮膜によれば、炭化珪素層14との密着性をより高めることができると共に、大気溶射法による溶射皮膜より緻密な溶射皮膜なので酸素や水蒸気の透過が抑制される。
 ムライトと珪酸イッテルビウムとを混合した混合層18は、珪素層16の表面に積層されている。混合層18は、混合層18と酸化物層20との間の密着性を高めると共に、炭化珪素層14及び珪素層16と、酸化物層20との間の熱膨張差による熱応力を緩和する応力緩和層としての機能を備えている。
 混合層18に含まれるムライトは、混合層18と酸化物層20との間の密着性を高める機能を有している。そいて、ムライトに珪酸イッテルビウムを混合することにより、ムライトと珪酸イッテルビウムとの混合物の熱膨張係数が、炭化珪素及び珪素の熱膨張係数と、酸化物の熱膨張係数(5.0×10-6/℃から10.0×10-6/℃)との略中間に位置するので、炭化珪素層14及び珪素層16と、酸化物層20との間の熱膨張差による熱応力が緩和される。例えば、ムライトと珪酸イッテルビウムとの混合比が体積比で1:1からなる混合層18の熱膨張係数は、3.5×10-6/℃から4.5×10-6/℃である。また、珪酸イッテルビウムは耐水蒸気性に優れているので、ムライト単体よりも混合層18の耐水蒸気性を高めることができる。
 珪酸イッテルビウムには、例えば、一珪酸イッテルビウム(YbSiO)または二珪酸イッテルビウム(YbSi)が用いられ、混合層18は、ムライト(3Al・2SiO)と一珪酸イッテルビウム(YbSiO)との混合物またはムライト(3Al・2SiO)と二珪酸イッテルビウム(YbSi)との混合物から形成される。
 混合層18の膜厚は、75μm以上225μm以下であることが好ましく、75μm以上150μm以下であることがより好ましい。
 この理由は、混合層18の膜厚が75μmより小さくなると、混合層18の厚みが薄くなるので応力緩和層としての機能が低下するからであり、混合層18の膜厚が225μmより大きくなると、混合層18を構成するムライトと珪酸イッテルビウムとが脆性材料であることから混合層18に割れが生じやすくなるからである。また、混合層18の膜厚を75μm以上150μm以下とすることにより、最も応力緩和層としての機能が高くなると共に、混合層18の割れを抑えることができる。
 混合層18は、減圧溶射法による溶射皮膜で形成されることが好ましい。減圧溶射法による溶射皮膜によれば、珪素層16との密着性をより高めることができると共に、大気溶射法による溶射皮膜より緻密な溶射皮膜なので酸素及び水蒸気の透過が抑制される。
 酸化物層20は、混合層18の表面に積層されている。酸化物は、一般的に、耐酸化性、耐水蒸気性及び低熱伝導性に優れていることから、酸化物層20は、酸素や水蒸気等に対するガスバリア層としての機能を有すると共に、燃焼ガス等からの熱伝導に対する熱バリア層としての機能を備えている。
 酸化物層20は、酸化ハフニウム(単斜晶HfO、立方晶HfO、イットリア等による安定化HfO等)、珪酸ハフニウム(HfSiO等)、珪酸ルテチウム(LuSiO、LuSi等)、珪酸イッテルビウム(YbSiO、YbSi等)、酸化チタニウム(TiO等)、酸化ジルコニウム(単斜晶ZrO、立方晶ZrO、イットリア等による安定化ZrO等)、チタン酸アルミニウム(AlTiO等)、珪酸アルミニウム(AlSi13等)およびルテチウムハフニウム酸化物(LuHf12等)からなる群から選ばれる少なくとも1つを主成分とする酸化物で形成されることが好ましい。これらの酸化物は、耐熱性、耐酸化性、耐水蒸気性、低熱伝導性に優れているからである。
 酸化物層20は、単斜晶の酸化ハフニウムで形成されることがより好ましい。単斜晶の酸化ハフニウムは、珪酸ルテチウム、珪酸イッテルビウム、酸化チタニウム、チタン酸アルミニウム等よりも耐水蒸気性に優れていると共に、単斜晶の酸化ハフニウムの熱膨張係数は、例えば、イットリア等で安定化させた酸化ハフニウム等の熱膨張係数よりも炭化珪素、珪素、ムライトと珪酸イッテルビウムとの混合物の熱膨張係数に近い値であるからである。なお、単斜晶の酸化ハフニウムの熱膨張係数は、5.0×10-6/℃から6.0×10-6/℃である。
 酸化物層20の膜厚は、10μm以上300μm以下であることが好ましく、100μm以上200μm以下であることがより好ましい。
 この理由は、酸化物層20の膜厚が10μmより小さくなると、酸素や水蒸気等の透過が大きくなり耐酸化性及び耐水蒸気性が低下するからであり、酸化物層20の膜厚が300μmより大きくなると、酸化物が脆性材料であることから酸化物層20に割れが生じやすくなるからである。酸化物層20の膜厚を100μm以上200μm以下とすることにより、最も耐酸化性及び耐水蒸気性を向上させると共に、酸化物層20の割れの発生を抑えることができる。
 酸化物層20は、大気溶射法による溶射皮膜で形成されることが好ましい。大気溶射法による溶射皮膜によれば、減圧溶射法による溶射皮膜よりも気孔が多くなるので、セラミックス基複合材料部品10が熱曝露されたときに溶射皮膜を構成する酸化物粒子の焼結が抑制されて、酸化物層20の割れを抑えることが可能となる。
 次に、耐環境被覆されたセラミックス基複合材料部品10の製造方法について説明する。
 図2は、耐環境被覆されたセラミックス基複合材料部品10の製造方法を示すフローチャートである。耐環境被覆されたセラミックス基複合材料部品10の製造方法は、基材形成工程(S10)と、炭化珪素層積層工程(S12)と、珪素層積層工程(S14)と、混合層積層工程(S16)と、酸化物層積層工程(S18)と、を備えている。
 基材形成工程(S10)は、珪化物を含むセラミックス基複合材料で基材12を形成する工程である。
 基材12は、一般的なセラミックス基複合材料の成形方法で成形することができる。基材12は、例えば、炭化珪素繊維等で3次元織物等のプリフォームを形成した後、プリフォーム内に炭化珪素等のセラミックスマトリックスを化学蒸着法(CVD法)やCVI法(Chemical Vapor Infiltration)で浸透させて複合化させて成形される。炭化珪素繊維には、例えば、チラノ繊維(宇部興産株式会社製)、ハイニカロン繊維(日本カーボン株式会社製)等が用いられる。
 また、ポリカルボシラン等の有機金属ポリマ(セラミックスマトリックスの前駆体)をプリフォームに含浸し、含浸後に不活性雰囲気で焼成して基材12を成形してもよい。
 他の基材12の成形方法としては、炭化珪素繊維等の強化繊維と、炭化珪素等のセラミックスマトリックスを形成するための原料粉末(例えば、珪素粉末やカーボン粉末)とを混合した後に、ホットプレスや熱間静水圧プレス装置(HIP:Hot Isostatic Press)で反応焼結させて複合化してもよい。
 また、セラミックス基複合材料に、炭化珪素粉末等をエタノール等の有機溶媒に分散させたスラリーを含浸し、セラミックス基複合材料の表面の気孔を炭化珪素粉末等で充填して基材の表面を平滑化することが好ましい。
 炭化珪素層積層工程(S12)は、基材12の表面に炭化珪素層14を積層する工程である。
 炭化珪素層14は、溶射法、スパッタリングやイオンプレーティング等の物理蒸着法(PVD法:Physical Vapor Deposition)、化学蒸着法(CVD法)等で形成可能であるが、溶射法等よりも緻密な皮膜を形成できることから化学蒸着法で形成されることが好ましい。
 炭化珪素層14を化学蒸着法で形成する場合には、一般的な炭化珪素の化学蒸着法を用いることができる。例えば、反応炉内に基材12をセットして加熱し、反応炉内に反応ガスとしてメチルトリクロロシラン(CHSiCl)等を流すことにより、基材12の表面に炭化珪素層14を形成することができる。
 珪素層積層工程(S14)は、炭化珪素層14の表面に珪素層16を積層する工程である。
 珪素層16は、溶射法、物理蒸着法(PVD法)、化学蒸着法(CVD法)等で形成可能であるが、密着性が良い皮膜を形成できることから溶射法(大気溶射法、減圧溶射法)で形成されることが好ましい。溶射法には、一般的なプラズマ溶射法等が用いられる。
 溶射法には、炭化珪素層14の酸化や、溶射材料の珪素粉末の酸化を抑えると共に、大気溶射法よりも緻密な溶射皮膜の形成が可能であることから、減圧溶射法を用いることがより好ましい。珪素層16を減圧溶射法で形成する場合には、例えば、炭化珪素層14が被覆された基材12を溶射チャンバ内にセットし、真空引きを行った後、真空状態またはアルゴンガス等の不活性ガスを導入して減圧した状態で、珪素粉末を溶射ガンへ送り、炭化珪素層14の表面に溶射を行う。溶射材料には、例えば、粒径10μmから40μmの珪素粉末が用いられる。
 混合層積層工程(S16)は、珪素層16の表面にムライトと珪酸イッテルビウムとを混合した混合層18を積層する工程である。
 混合層18は、溶射法、物理蒸着法(PVD法)、化学蒸着法(CVD法)等で形成可能であるが、密着性が良い皮膜を形成できることから溶射法(大気溶射法、減圧溶射法)で形成されることが好ましい。溶射法には、珪素層16の酸化を抑えると共に、大気溶射法よりも緻密な溶射皮膜の形成が可能であることから減圧溶射法を用いることがより好ましい。
 混合層18を減圧溶射法で形成する場合には、予めムライト粉末と珪酸イッテルビウム粉末とを混合した混合粉末を溶射材料として用い、混合粉末を溶射ガンへ送り、真空状態または減圧された状態で珪素層16の表面に溶射してもよいし、ムライト粉末と珪酸イッテルビウム粉末とを別々に溶射ガンへ送り、ムライト粉末と珪酸イッテルビウム粉末とを溶融またはそれに近い状態で混合させて、真空状態または減圧された状態で溶射してもよい。溶射材料には、例えば、粒径10μmから50μmのムライト粉末と珪酸イッテルビウム粉末とが用いられる。
 酸化物層積層工程(S18)は、混合層18の表面に酸化物層20を積層する工程である。
 酸化物層20は、溶射法、物理蒸着法(PVD法)、化学蒸着法(CVD法)等で形成可能であるが、密着性のよい皮膜を形成できることから溶射法(大気溶射法、減圧溶射法)で形成されることが好ましい。溶射法には、溶射皮膜を構成する酸化物粒子の焼結を抑えるために、減圧溶射法よりも大気溶射法を用いることがより好ましい。
 酸化物層20を大気溶射法で形成する場合には、例えば、表面に混合層18が被覆された基材12を溶射チャンバにセットし、溶射材料である酸化物粉末を溶射ガンへ送り、大気圧状態で混合層18の表面に溶射を行う。溶射材料には、例えば、粒径10μmから50μmの酸化物粉末が用いられる。以上により、耐環境被覆されたセラミックス基複合材料部品10の製造が完了する。
 上記構成によれば、珪化物を含むセラミックス基複合材料で形成される基材の表面に、炭化珪素層と、珪素層と、ムライトと珪酸イッテルビウムとを混合した混合層と、酸化物層と、順に積層して被覆することにより、各層間の密着力を高めると共に、基材から酸化物層に向けて各層の熱膨張係数を傾斜させて熱サイクルによる繰り返しの熱応力を緩和しているので、セラミックス基複合材料部品が水蒸気を含む高温ガス環境下で熱サイクルに曝される場合でも被膜の剥離を抑え、耐酸化性と耐水蒸気性とをより向上させることが可能となる。
 また、炭化珪素層の膜厚を10μm以上50μm以下とし、珪素層の膜厚を50μm以上140μm以下とし、混合層の膜厚を75μm以上225μm以下として各層の膜厚を調整することにより、水蒸気を含む高温環境下(表面温度1300℃、水蒸気分圧150kPa)でセラミックス基複合材料部品が100時間曝された場合や、熱サイクル(表面温度600℃以下~1300℃)にセラミックス基複合材料部品が1000サイクル曝された場合でも、被膜の剥離を抑え、耐酸化性と耐水蒸気性とをより向上させることが可能となる。
 更に、炭化珪素層の膜厚を10μm以上50μm以下とし、珪素層の膜厚を50μm以上100μm以下とし、混合層の膜厚を75μm以上225μm以下として各層の膜厚を調整することにより、水蒸気を含む高温環境下(表面温度1300℃、水蒸気分圧150kPa)でセラミックス基複合材料部品が800時間曝された場合や、熱サイクル(表面温度600℃以下~1300℃)にセラミックス基複合材料部品が4000サイクル曝された場合でも、被膜の剥離や割れを抑え、耐酸化性と耐水蒸気性とを更に向上させることが可能となる。
 耐環境被覆した供試体を作製して水蒸気曝露試験とバーナーリグ試験とを行い、水蒸気特性及び熱サイクル特性について評価した。
(供試体の作製)
 まず、実施例1、2の供試体の作製方法について説明する。なお、実施例1、2の供試体では、Si層の膜厚が相違しており、その他の構成は同じとした。
 実施例1、2の供試体の基材を、SiC繊維とSiCマトリックスとを複合化したSiC/SiC複合材料で形成した。SiC/SiC複合材料の成形については、SiC繊維で形成したプリフォームに珪素粉末と炭素粉末とを含浸し、反応焼結させてSiCマトリックスを形成して複合化した。SiC繊維には、チラノ繊維(宇部興産株式会社製)を使用した。また、SiC/SiC複合材料に、炭化珪素粉末をエタノールに分散させたスラリーを含浸し、SiC/SiC複合材料の表面の気孔に炭化珪素粉末を充填して基材の表面を平滑化した。基材の形状は、水蒸気曝露試験用では50mm×9mm×4mmtのテーパーが付いた平板状、もしくは50mm×35mm×4mmtの平板状で端辺をR1.5加工したものとし、バーナーリグ試験用では50mm×50mm×4mmtの平板状とした。
 次に、基材の表面にSiC層をCVD法で積層した。反応炉内に基材をセットして加熱(反応温度900℃から1000℃)し、反応ガスとしてメチルトリクロロシラン(CHSiCl)を用いることにより、基材の表面にSiC層を被覆した。SiC層の膜厚については、実施例1、2の供試体ともに30μmとした。
 次に、SiC層の表面にSi層を減圧溶射法で積層した。SiC層が被覆された基材を溶射チャンバ内にセットし、真空引きを行った後、アルゴンガスを溶射チャンバ内に導入し、溶射チャンバ内が減圧された状態でSiC層の表面に溶融させたSi粉末を溶射した。Si粉末には、粒径が20μmから40μmのものを使用した。Si層の厚みについては、実施例1の供試体では75μmとし、実施例2の供試体では140μmとした。なお、Si層の厚みは、溶射時間を変えて調整した。
 次に、Si層の表面に、3Al・2SiOとYbSiOとの混合層を減圧溶射法で積層した。減圧溶射法では、3Al・2SiO粉末とYbSiO粉末との混合粉末(溶射皮膜形成後の体積比が1:1となるように混合比を調整した粉末)を溶射材料として用い、溶射チャンバ内がアルゴンガスで減圧された状態でSi層の表面に溶融させた混合粉末を溶射した。3Al・2SiOとYbSiOとの混合層の厚みについては、実施例1、2の供試体ともに75μmとした。
 次に、3Al・2SiOとYbSiOとの混合層の表面に、HfO層を大気溶射法で積層した。HfO粉末を溶射ガンへ送り、大気圧状態で3Al・2SiOとYbSiOとの混合層の表面に溶融させたHfO粉末を溶射した。HfO粉末には、単斜晶のHfO粉末を用いた。HfO層の厚みについては、実施例1、2の供試体ともに150μmとした。
 上記の実施例1、2の供試体について、HfO層を被覆した後に外観観察した結果、被膜の割れや剥離は認められなかった。
 (熱膨張測定)
 Si層と、3Al・2SiOとYbSiOとの混合層と、HfO層とを模擬した試験片を作製し、室温から1200℃の温度範囲で熱膨張測定を行った。
 Si粉末を溶射材料として用い、減圧溶射法によってSi層を模擬した試験片を作製して、JISZ2285の測定方法に従い熱膨張測定を行った。その結果、Si層を模擬した試験片の熱膨張係数は、2.0×10-6/℃から2.5×10-6/℃であった。
 3Al・2SiO粉末とYbSiO粉末との混合粉末(溶射皮膜形成後の体積比が1:1となるように混合比を調整した粉末)の粉末を溶射材料として用い、減圧溶射法によって3Al・2SiOとYbSiOとの混合層(を模擬した試験片を作製して熱膨張測定を行った。また、比較のために、3Al・2SiO粉末を溶射材料として用い、試験片を作製して熱膨張測定を行った。
 図3は、溶射皮膜の熱膨張特性を示すグラフであり、図3(a)は、3Al・2SiOからなる溶射皮膜の熱膨張特性を示すグラフであり、図3(b)は、3Al・2SiOとYbSiOとを混合させた溶射皮膜の熱膨張特性を示すグラフである。
 図3(a)に示すように、3Al・2SiOからなる溶射皮膜の場合には、900℃を超えると溶射皮膜を構成する3Al・2SiO粒子の焼結にともなう体積収縮が生じて熱膨張率が大きく低下する。
 これに対して、図3(b)に示すように、3Al・2SiOとYbSiOとを混合させた溶射皮膜では、900℃を超える温度域において、溶射皮膜中の3Al・2SiO粒子の焼結にともなう体積収縮が抑えられており、熱膨張率の低下が抑制されている。
 このように、ムライトと珪酸イッテルビウムとを混合した混合層とすることにより、ムライト単体よりも900℃を超える温度域において熱膨張率の大きな低下を抑制できる。3Al・2SiOとYbSiOとの混合層を模擬した試験片の熱膨張係数は、3.5×10-6/℃から4.5×10-6/℃であった。
 単斜晶のHfO粉末を溶射材料として用い、大気溶射法によってHfO層を模擬した試験片を作製し、熱膨張測定を行った。その結果、HfO層を模擬した試験片の熱膨張係数は、5.0×10-6/℃から6.0×10-6/℃であった。
 以上のように、実施例1、2の供試体では、3Al・2SiOとYbSiOとが混合した混合層の熱膨張係数は、Si層の熱膨張係数と、HfO層の熱膨張係数との中間に位置している。
(水蒸気曝露試験)
 実施例1、2の供試体について水蒸気曝露試験を実施した。また比較例の供試体として、耐環境被覆していない基材(SiC/SiC複合材料で形成した基材のみのもの)についても水蒸気曝露試験を実施した。
 まず、水蒸気曝露試験方法について説明する。水蒸気曝露試験には、東伸工業株式会社製の水蒸気曝露試験装置を使用した。この水蒸気曝露試験装置の仕様は、最高温度1500℃(常用1400℃)、試験チャンバ内の最大圧力950kPa(9.5atm)である。
 図4は、水蒸気曝露試験装置30の構成を示す模式図である。アルミナ製の試験チャンバ32の周りには、MoSi製ヒータ34が設けられている。試験チャンバ32内には、水蒸気を供給する水蒸気供給管36と、雰囲気ガス(空気、窒素、酸素または炭酸ガス)を供給する雰囲気ガス供給管38と、試験チャンバ内の混合ガスを排出する混合ガス排出管40と、温度制御用の熱電対42とが設けられている。また、供試体44は、水蒸気供給管36から供給される水蒸気が供試体表面に沿って流れるように試験チャンバ32内に配置される。
 水蒸気曝露試験の試験条件については、試験温度1300℃、試験チャンバ内の全圧力950kPa(9.5atm)、水蒸気の分圧150kPa(1.5atm)、雰囲気ガス(O+N+CO)の分圧800kPa(8atm)とした。水蒸気曝露試験の評価については、外観観察により行った。
 図5は実施例1の供試体における水蒸気曝露試験後の外観を示す写真である。水蒸気曝露時間が270時間経過後、500時間経過後、800時間経過後について外観観察した結果、実施例1の供試体では、水蒸気曝露時間が800時間経過後においても被膜の割れや剥離が生じなかった。なお、供試体の表面と裏面については、供試体における水蒸気供給管側の面を表面とし(図4における供試体面44A)、供試体の表面と反対側の面を裏面とした(図4における供試体面44B)。
 図6は、実施例2の供試体における水蒸気曝露試験後の外観を示す写真である。実施例2の供試体では、水蒸気曝露時間が100時間経過後において端部に割れが若干認められたものの、被膜の剥離には至らなかった。
 なお、比較例の供試体については、水蒸気曝露時間が60時間経過後において、水蒸気曝露により形状が維持できないほど腐食していた。
(バーナーリグ試験)
 実施例1、2の供試体についてバーナーリグ試験を実施した。まず、バーナーリグ試験方法について説明する。図7は、バーナーリグ試験の概略を示す図であり、図7(a)は、バーナーリグ試験装置50の概略構成を示す模式図であり、図7(b)は、1サイクルあたりの供試体表面温度サイクル条件を示す図である。
 図7(a)に示すように、バーナーリグ試験では、保持治具52に供試体54を保持し、ノズル56から火炎を供試体表面に向けて噴射させて行われる。供試体54の表面温度は、放射温度計(図示せず)で測定される。放射温度計による供試体54の表面温度の測定位置は、供試体54の中心部である。放射温度計による供試体表面温度の校正については、予め供試体54に黒体塗料を塗布して供試体54の放射率を調整した。また、被膜表面を撮影できるカメラが設置されており、熱サイクル中に被膜表面を撮影して観察することができる。
 そして、保持治具52に供試体54をセットし、図7(b)に示すように、昇温時間45秒(600℃以下から1250℃まで)、保持時間45秒(1250℃から1300℃)、降温時間90秒(1300℃から600℃以下)を1サイクルとして熱サイクルを負荷した。
 バーナーリグ試験の評価については、外観観察と断面観察とにより行った。なお、断面観察については、バーナーリグ試験後の供試体から試料を切り出し、試料を埋込樹脂に埋め込んだ後に研磨して光学顕微鏡で観察した。
 図8は、実施例1の供試体における4000サイクル後のバーナーリグ試験結果を示す写真であり、図8(a)は、外観観察結果を示す写真であり、図8(b)は、断面観察結果を示す写真である。
 実施例1の供試体では、図8(a)に示す外観観察結果では、4000サイクル後においても被膜の割れや剥離が認められなかった。また、図8(b)に示す断面観察結果では、HfO層と、3Al・2SiOとYbSiOとの混合層とに各層の厚み方向にマイクロクラックが認められたが、Si層やSiC層にはマイクロクラックの発生が認められなかった。なお、図8(a)の外観観察結果を示す写真において、供試体表面の黒い部分は、黒体塗料を塗布した部分である。
 図9は、実施例2の供試体における1000サイクル後のバーナーリグ試験結果を示す写真であり、図9(a)は、外観観察結果を示す写真であり、図9(b)は、断面観察結果を示す写真である。
 実施例2の供試体では、図9(a)に示す外観観察結果では、1000サイクル後において端部に被膜の割れが若干認められたものの被膜の剥離には至らなかった。図9(b)に示す断面観察結果では、HfO層と、3Al・2SiOとYbSiOとの混合層とにおいて各層の厚み方向にマイクロクラックが認められ、Si層の水平方向(面方向)にマイクロクラックの発生が認められた。また、SiC層には、マイクロクラックの発生は認められなかった。
 本発明は、セラミックス基複合材料部品が水蒸気を含む高温ガス環境下で熱サイクルに曝される場合でも被膜の剥離を抑え、耐酸化性と耐水蒸気性とを向上させることができることから、ジェットエンジンやロケットエンジン等の高温部品に有用なものである。

Claims (12)

  1.  耐環境被覆されたセラミックス基複合材料部品であって、
     珪化物を含むセラミックス基複合材料で形成される基材と、
     前記基材の表面に積層される炭化珪素層と、
     前記炭化珪素層の表面に積層される珪素層と、
     前記珪素層の表面に積層されるムライトと珪酸イッテルビウムとを混合した混合層と、
     前記混合層の表面に積層される酸化物層と、
     を備えることを特徴とするセラミックス基複合材料部品。
  2.  請求項1に記載のセラミックス基複合材料部品であって、
     前記珪酸イッテルビウムは、YbSiOまたはYbSiであることを特徴とするセラミックス基複合材料部品。
  3.  請求項1または2に記載のセラミックス基複合材料部品であって、
     前記炭化珪素層の膜厚は、10μm以上50μm以下であり、
     前記珪素層の膜厚は、50μm以上140μm以下であり、
     前記混合層の膜厚は、75μm以上225μm以下であることを特徴とするセラミックス基複合材料部品。
  4.  請求項3に記載のセラミックス基複合材料部品であって、
     前記珪素層の膜厚は、50μm以上100μm以下であることを特徴とするセラミックス基複合材料部品。
  5.  請求項1または2に記載のセラミックス基複合材料部品であって、
     前記酸化物層は、酸化ハフニウム、珪酸ハフニウム、珪酸ルテチウム、珪酸イッテルビウム、酸化チタニウム、酸化ジルコニウム、チタン酸アルミニウム、珪酸アルミニウムおよびルテチウムハフニウム酸化物からなる群から選ばれる少なくとも1つを主成分とする酸化物で形成されることを特徴とするセラミックス基複合材料部品。
  6.  請求項5に記載のセラミックス基複合材料部品であって、
     前記酸化物層は、単斜晶の酸化ハフニウムで形成されていることを特徴とするセラミックス基複合材料部品。
  7.  請求項1または2に記載のセラミックス基複合材料部品であって、
     前記炭化珪素層は、化学蒸着膜で形成されており、
     前記珪素層と前記混合層とは、減圧溶射法による溶射皮膜で形成されており、
     前記酸化物層は、大気溶射法による溶射皮膜で形成されていることを特徴とするセラミックス基複合材料部品。
  8.  請求項1または2に記載のセラミックス基複合材料部品であって、
     前記基材は、炭化珪素繊維に炭化珪素マトリックスを複合化したセラミックス基複合材料で形成されていることを特徴とするセラミックス基複合材料部品。
  9.  請求項1または2に記載のセラミックス基複合材料部品であって、
     前記セラミックス基複合材料部品は、部品表面温度が1200℃から1400℃、水蒸気分圧が30kPaから140kPaの環境下で使用されることを特徴とするセラミックス基複合材料部品。
  10.  耐環境被覆されたセラミックス基複合材料部品の製造方法であって、
     珪化物を含むセラミックス基複合材料で基材を形成する基材形成工程と、
     前記基材の表面に炭化珪素層を化学蒸着法で積層する炭化珪素層積層工程と、
     前記炭化珪素層の表面に珪素層を減圧溶射法で積層する珪素層積層工程と、
     前記珪素層の表面にムライトと珪酸イッテルビウムとを混合した混合層を減圧溶射法で積層する混合層積層工程と、
     前記混合層の表面に酸化物層を大気溶射法で積層する酸化物層積層工程と、
     を備えることを特徴とするセラミックス基複合材料の製造方法。
  11.  請求項10に記載のセラミックス基複合材料の製造方法であって、
     前記炭化珪素層積層工程は、前記炭化珪素層を10μm以上50μm以下の膜厚で積層し、
     前記珪素層積層工程は、前記珪素層を50μm以上140μm以下の膜厚で積層し、
     前記混合層積層工程は、前記混合層を75μm以上225μm以下の膜厚で積層することを特徴とするセラミックス基複合材料の製造方法。
  12.  請求項11に記載のセラミックス基複合材料の製造方法であって、
     前記珪素層積層工程は、前記珪素層を50μm以上100μm以下の膜厚で積層することを特徴とするセラミックス基複合材料の製造方法。
PCT/JP2013/065331 2012-06-04 2013-06-03 耐環境被覆されたセラミックス基複合材料部品及びその製造方法 WO2013183580A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13800750.5A EP2857193B1 (en) 2012-06-04 2013-06-03 Ceramic matrix composite component coated with environmental barrier coatings and method of manufacturing the same
CN201380027664.0A CN104379345B (zh) 2012-06-04 2013-06-03 进行了耐环境包覆的陶瓷基复合材料构件及其制造方法
RU2014151560/05A RU2579592C1 (ru) 2012-06-04 2013-06-03 Керамический матричный композитный компонент, покрытый барьерными для окружающей среды покрытиями, и способ его производства
CA2874419A CA2874419C (en) 2012-06-04 2013-06-03 Ceramic matrix composite component coated with environmental barrier coatings and method of manufacturing the same
US14/551,139 US20150079371A1 (en) 2012-06-04 2014-11-24 Ceramic matrix composite component coated with environmental barrier coatings and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-126867 2012-06-04
JP2012126867A JP5953947B2 (ja) 2012-06-04 2012-06-04 耐環境被覆されたセラミックス基複合材料部品及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/551,139 Continuation US20150079371A1 (en) 2012-06-04 2014-11-24 Ceramic matrix composite component coated with environmental barrier coatings and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2013183580A1 true WO2013183580A1 (ja) 2013-12-12

Family

ID=49711972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065331 WO2013183580A1 (ja) 2012-06-04 2013-06-03 耐環境被覆されたセラミックス基複合材料部品及びその製造方法

Country Status (7)

Country Link
US (1) US20150079371A1 (ja)
EP (1) EP2857193B1 (ja)
JP (1) JP5953947B2 (ja)
CN (1) CN104379345B (ja)
CA (1) CA2874419C (ja)
RU (1) RU2579592C1 (ja)
WO (1) WO2013183580A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138108A1 (en) * 2013-03-05 2014-09-12 General Electric Company High temperature tolerant ceramic matrix composites and environmental barrier coatings
WO2018034024A1 (ja) * 2016-08-18 2018-02-22 株式会社Ihi 耐環境性に優れたセラミックス基複合材の製造方法
JP2019214750A (ja) * 2018-06-12 2019-12-19 三菱重工業株式会社 耐環境コーティング、それを備える耐環境部品、及び耐環境コーティングの製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6598432B2 (ja) * 2014-06-24 2019-10-30 キヤノン株式会社 画像処理装置、その制御方法およびプログラム
RU2675638C1 (ru) 2015-03-02 2018-12-21 АйЭйчАй КОРПОРЕЙШН Защищающее от окружающей среды покрытие
JP6649115B2 (ja) * 2015-03-03 2020-02-19 一般財団法人ファインセラミックスセンター 積層構造
CN105384467B (zh) * 2015-12-14 2017-08-25 中国航空工业集团公司北京航空制造工程研究所 一种用于陶瓷基复合材料基体的环境障碍涂层及制备方法
CN105777207B (zh) * 2016-01-29 2018-02-09 陕西科技大学 碳/碳复合材料Yb2Si2O7晶须增韧Yb2SiO5复合涂层的制备方法
JP6696802B2 (ja) 2016-03-11 2020-05-20 一般財団法人ファインセラミックスセンター 耐環境コーティング部材
CN109071364A (zh) 2016-06-13 2018-12-21 株式会社Ihi 陶瓷基复合材料部件及其制备方法
JP6735164B2 (ja) * 2016-06-27 2020-08-05 一般財団法人ファインセラミックスセンター 積層構造
FR3057580A1 (fr) * 2016-10-18 2018-04-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de revetement d'une surface d'un substrat solide par une couche comprenant un compose ceramique, et substrat revetu ainsi obtenu
FR3061710B1 (fr) 2017-01-06 2019-05-31 Safran Ceramics Piece comprenant un substrat et une barriere environnementale
FR3061711B1 (fr) 2017-01-06 2019-05-31 Safran Ceramics Piece comprenant un substrat et une barriere environnementale
CN107759210B (zh) * 2017-10-11 2020-12-29 中国航发北京航空材料研究院 一种Yb2SiO5喷涂粉体的制备方法
CN110396004A (zh) * 2018-04-25 2019-11-01 中国科学院上海硅酸盐研究所 一种抗热震与抗高温水蒸气腐蚀的硅酸镱复合涂层及其制备方法和应用
CN109065856B (zh) * 2018-07-16 2021-05-14 合肥国轩高科动力能源有限公司 一种锂离子电池钛酸锂负极材料的改性方法
CN109336647B (zh) * 2018-11-06 2020-12-29 航天特种材料及工艺技术研究所 一种用于陶瓷基复合材料的热/环境障涂层及其制备方法
US11479515B2 (en) * 2018-12-21 2022-10-25 General Electric Company EBC with mullite bondcoat that includes an oxygen getter phase
WO2020166565A1 (ja) * 2019-02-14 2020-08-20 日本碍子株式会社 焼成治具
US20210332709A1 (en) * 2020-04-27 2021-10-28 Raytheon Technologies Corporation Environmental barrier coating and method of applying an environmental barrier coating
KR102356029B1 (ko) * 2021-05-26 2022-02-08 주식회사 그린리소스 실리케이트 코팅재의 제조 방법
WO2023111091A1 (en) * 2021-12-15 2023-06-22 Jt International Sa Heating chamber assembly for an aerosol generation device
US20230366318A1 (en) * 2022-05-13 2023-11-16 Raytheon Technologies Corporation Cmc arc segment interface gap flow blocker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201894A (ja) * 1996-01-26 1997-08-05 Kawasaki Heavy Ind Ltd 耐熱・耐酸化性炭素繊維強化炭素複合材料
JP2006028015A (ja) * 2004-07-15 2006-02-02 General Electric Co <Ge> 環境障壁被覆膜系を含む物品、及びその製造方法
JP2008247722A (ja) * 2007-03-30 2008-10-16 Ihi Corp セラミックス基複合部材およびセラミックス基複合部材の製造方法
JP2011032165A (ja) * 2009-07-31 2011-02-17 General Electric Co <Ge> 高温セラミック部品用の耐環境コーティング
JP2011046598A (ja) * 2009-07-31 2011-03-10 General Electric Co <Ge> 高温セラミック部品用の溶剤系耐環境コーティング
JP4901192B2 (ja) 2005-01-21 2012-03-21 ゼネラル・エレクトリック・カンパニイ ケイ素含有材料用の、遷移層を有する熱/環境バリヤーコーティング

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840221A (en) * 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
US7708851B2 (en) * 2005-10-25 2010-05-04 General Electric Company Process of producing a ceramic matrix composite article and article formed thereby
US9221720B2 (en) * 2006-03-01 2015-12-29 United Technologies Corporation Dense protective coatings, methods for their preparation and coated articles
RU2007100157A (ru) * 2007-01-09 2008-07-20 Юнайтид Текнолоджиз Копэрейшн (US) Способ нанесения защитного покрытия на основу, изделие с покрытием и кроющий состав
US20090186237A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. CMAS-Resistant Thermal Barrier Coatings
US20090184280A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
CN102137950A (zh) * 2008-03-21 2011-07-27 株式会社Ihi 涂层构造及表面处理方法
FR2940278B1 (fr) * 2008-12-24 2011-05-06 Snecma Propulsion Solide Barriere environnementale pour substrat refractaire contenant du silicium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201894A (ja) * 1996-01-26 1997-08-05 Kawasaki Heavy Ind Ltd 耐熱・耐酸化性炭素繊維強化炭素複合材料
JP2006028015A (ja) * 2004-07-15 2006-02-02 General Electric Co <Ge> 環境障壁被覆膜系を含む物品、及びその製造方法
JP4901192B2 (ja) 2005-01-21 2012-03-21 ゼネラル・エレクトリック・カンパニイ ケイ素含有材料用の、遷移層を有する熱/環境バリヤーコーティング
JP2008247722A (ja) * 2007-03-30 2008-10-16 Ihi Corp セラミックス基複合部材およびセラミックス基複合部材の製造方法
JP2011032165A (ja) * 2009-07-31 2011-02-17 General Electric Co <Ge> 高温セラミック部品用の耐環境コーティング
JP2011046598A (ja) * 2009-07-31 2011-03-10 General Electric Co <Ge> 高温セラミック部品用の溶剤系耐環境コーティング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857193A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138108A1 (en) * 2013-03-05 2014-09-12 General Electric Company High temperature tolerant ceramic matrix composites and environmental barrier coatings
JP2016528131A (ja) * 2013-03-05 2016-09-15 ゼネラル・エレクトリック・カンパニイ 高温耐性セラミックマトリックス複合材及び耐環境保護コーティング
US10822998B2 (en) 2013-03-05 2020-11-03 General Electric Company High temperature tolerant ceramic matrix composites and environmental barrier coatings
WO2018034024A1 (ja) * 2016-08-18 2018-02-22 株式会社Ihi 耐環境性に優れたセラミックス基複合材の製造方法
JP2019214750A (ja) * 2018-06-12 2019-12-19 三菱重工業株式会社 耐環境コーティング、それを備える耐環境部品、及び耐環境コーティングの製造方法

Also Published As

Publication number Publication date
JP5953947B2 (ja) 2016-07-20
EP2857193A1 (en) 2015-04-08
JP2013248852A (ja) 2013-12-12
CN104379345A (zh) 2015-02-25
US20150079371A1 (en) 2015-03-19
RU2579592C1 (ru) 2016-04-10
EP2857193A4 (en) 2016-01-20
EP2857193B1 (en) 2019-02-20
CA2874419C (en) 2016-12-06
CN104379345B (zh) 2017-03-08
CA2874419A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5953947B2 (ja) 耐環境被覆されたセラミックス基複合材料部品及びその製造方法
CN101503305B (zh) 一种自愈合碳化硅陶瓷基复合材料的制备方法
EP2970016B1 (en) Ceramic matrix composite and method of manufacture
JP6002769B2 (ja) 湿潤環境において安定な超耐熱材料及びその製造方法
EP2210868B1 (en) Composite material
JP2018177635A (ja) 保護セラミックコーティングを有するセラミックス基複合材料(cmc)の処理方法
CN104529498A (zh) 放电等离子烧结一步制备多层环境障碍涂层的方法
JPWO2018212139A1 (ja) 炭化ケイ素セラミックス
RU2754893C2 (ru) Деталь, содержащая подложку и внешний барьер
CN108947588A (zh) 一种C/SiC复合材料和用于该材料的抗氧化涂层及其制备方法
US10829418B2 (en) Method of densifying a ceramic matrix composite using a filled tackifier
US20210053882A1 (en) Method of densifying a ceramic matrix composite using a filled tackifier
CN115244217A (zh) 用环境屏障涂覆陶瓷基质复合材料零件的方法
JP5920788B2 (ja) 酸化物基複合材料
JP2004175605A (ja) 耐酸化性c/c複合材及びその製造方法
US20230036697A1 (en) Cvd functionalized particles for cmc applications
CN117836257A (zh) 用于制备涂层基材的方法、涂层基材和其用途
JP2976368B2 (ja) 耐熱・耐酸化性炭素繊維強化炭素複合材料
CN101544496A (zh) 一种硼化物-氮化物复相陶瓷及其制备工艺
US11267763B2 (en) Rapid processing of laminar composite components
JP2976369B2 (ja) 耐酸化性炭素繊維強化炭素複合材料
JPH11314985A (ja) 耐熱・耐酸化性炭素繊維強化炭素材料
JP5870652B2 (ja) 被膜付きセラミックス基複合材料およびその製造方法
JP2017178702A (ja) 高温下で使用される部材を保護するためのコーティングとその製造方法
Kravetskii et al. Increase in the refractoriness of carbon composite materials with use of heat-resistant ceramic coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2874419

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013800750

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014151560

Country of ref document: RU

Kind code of ref document: A