CN104379345A - 进行了耐环境包覆的陶瓷基复合材料构件及其制造方法 - Google Patents

进行了耐环境包覆的陶瓷基复合材料构件及其制造方法 Download PDF

Info

Publication number
CN104379345A
CN104379345A CN201380027664.0A CN201380027664A CN104379345A CN 104379345 A CN104379345 A CN 104379345A CN 201380027664 A CN201380027664 A CN 201380027664A CN 104379345 A CN104379345 A CN 104379345A
Authority
CN
China
Prior art keywords
layer
aforementioned
silicon carbide
composite material
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380027664.0A
Other languages
English (en)
Other versions
CN104379345B (zh
Inventor
中田幸宏
村田裕茂
渡边健一郎
田中康智
中村武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of CN104379345A publication Critical patent/CN104379345A/zh
Application granted granted Critical
Publication of CN104379345B publication Critical patent/CN104379345B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

进行了耐环境包覆的陶瓷基复合材料构件(10)具备:由含有硅化物的陶瓷基复合材料形成的基材(12)、层叠在基材(12)的表面的碳化硅层(14)、层叠在碳化硅层(14)的表面的硅层(16)、层叠在硅层(16)的表面的由富铝红柱石和硅酸镱混合而成的混合层(18)、和层叠在混合层(18)的表面的氧化物层(20)。

Description

进行了耐环境包覆的陶瓷基复合材料构件及其制造方法
技术领域
本发明涉及进行了耐环境包覆的陶瓷基复合材料构件及其制造方法,特别是涉及用于在含水蒸汽的高温气体环境下使用的喷气式发动机、火箭发动机(rocket engine)等的高温构件的陶瓷基复合材料构件及其制造方法。
背景技术
近年来,作为在含水蒸汽的高温气体环境下使用的喷气式发动机的涡轮机(turbine)构件、护罩(shroud)构件、火箭发动机的推进器、燃气管(combustiongas tube)等高温构件,耐热性比镍合金等耐热合金更优异且高温区域内的比强度大的陶瓷基复合材料(CMC:Ceramic Matrix Composite)引人注目。
另一方面,已知高温气体中的水蒸汽会引起含Si材料的减薄反应,在选择含有硅化物的陶瓷基复合材料作为高温构件的基材时,必须确保耐氧化性和耐水蒸汽性。
专利文献1中记载了一种气体涡轮发动机的燃烧器构件等,所述构件由以含硅材料形成的基材、重叠在基材上的环境阻隔层、重叠在环境阻隔层上的迁移层、和重叠在迁移层上的顶涂层构成。
现有技术文献
专利文献
专利文献1:日本专利第4901192号公报
发明内容
发明要解决的课题
然而,喷气式发动机的涡轮机构件等高温构件在含水蒸汽的高温气体环境下(例如燃烧气体中所含的水蒸汽的分压为30kPa~140kPa)暴露于高温(例如构件表面温度为1200℃~1400℃)、低温(例如构件表面温度为600℃以下)不断反复的热循环中。
在为了使高温构件具备耐氧化性和耐水蒸汽性而在含有硅化物的陶瓷基复合材料的表面包覆例如专利文献1所述那样的多层被膜时,在各层间的密合性低时、在热循环带来的不断反复的热应力等作用下,存在多层被膜在短时间内几乎整面剥离,损害高温构件的耐氧化性和耐水蒸汽性的可能性。
因此,本发明的目的在于提供一种进行了耐环境包覆的陶瓷基复合材料构件及其制造方法,所述构件即使在含水蒸汽的高温气体环境下暴露于热循环时也能够进一步提高耐氧化性和耐水蒸汽性。
用于解决课题的手段
本发明的陶瓷基复合材料构件,其特征在于,其为进行了耐环境包覆的陶瓷基复合材料构件,具备:由含有硅化物的陶瓷基复合材料形成的基材、层叠在前述基材的表面的碳化硅层、层叠在前述碳化硅层的表面的硅层、层叠在前述硅层的表面的由富铝红柱石和硅酸镱混合而成的混合层、和层叠在前述混合层的表面的氧化物层。
本发明的陶瓷基复合材料构件中,前述硅酸镱优选为Yb2SiO5或Yb2Si2O7
本发明的陶瓷基复合材料构件中,优选的是:前述碳化硅层的膜厚为10μm以上且50μm以下,前述硅层的膜厚为50μm以上且140μm以下,前述混合层的膜厚为75μm以上且225μm以下。
本发明的陶瓷基复合材料构件中,前述硅层的膜厚优选为50μm以上且100μm以下。
本发明的陶瓷基复合材料构件中,前述氧化物层优选由以选自氧化铪、硅酸铪、硅酸镥、硅酸镱、氧化钛、氧化锆、钛酸铝、硅酸铝和镥铪氧化物组成的组中的至少1种作为主成分的氧化物形成。
本发明的陶瓷基复合材料构件中,前述氧化物层优选由单斜晶的氧化铪形成。
本发明的陶瓷基复合材料构件中,优选的是:前述碳化硅层由化学蒸镀膜形成,前述硅层和前述混合层由利用减压喷镀法得到的喷镀覆膜形成,前述氧化物层由利用大气喷镀法得到的喷镀覆膜形成。
本发明的陶瓷基复合材料构件中,前述基材优选由使碳化硅基体与碳化硅纤维复合化而得到的陶瓷基复合材料形成。
本发明的陶瓷基复合材料构件优选在构件表面温度为1200℃~1400℃、水蒸汽分压为30kPa~140kPa的环境下使用。
本发明的陶瓷基复合材料构件的制造方法,其特征在于,其为进行了耐环境包覆的陶瓷基复合材料构件的制造方法,具备:用含有硅化物的陶瓷基复合材料形成基材的基材形成工序、通过化学蒸镀法在前述基材的表面层叠碳化硅层的碳化硅层层叠工序、通过减压喷镀法在前述碳化硅层的表面层叠硅层的硅层层叠工序、通过减压喷镀法在前述硅层的表面层叠由富铝红柱石和硅酸镱混合而成的混合层的混合层层叠工序、和通过大气喷镀法在前述混合层的表面层叠氧化物层的氧化物层层叠工序。
本发明的陶瓷基复合材料构件的制造方法中,优选的是,前述碳化硅层层叠工序以10μm以上且50μm以下的膜厚层叠前述碳化硅层,前述硅层层叠工序以50μm以上且140μm以下的膜厚层叠前述硅层,前述混合层层叠工序以75μm以上且225μm以下的膜厚层叠前述混合层。
本发明的陶瓷基复合材料构件的制造方法中,前述硅层层叠工序优选以50μm以上且100μm以下的膜厚层叠前述硅层。
发明的效果
根据具有上述构成的进行了耐环境包覆的陶瓷基复合材料构件和其制造方法,通过在由含有硅化物的陶瓷基复合材料形成的基材的表面依次层叠包覆碳化硅层、硅层、由富铝红柱石和硅酸镱混合而成的混合层、以及氧化物层,提高了各层间的密合性,并且使各层的热膨胀系数由基材向着氧化物层倾斜而使热循环带来的不断反复的热应力得以缓和,因此陶瓷基复合材料构件即使在含水蒸汽的高温气体环境下暴露于热循环时,也能够抑制被膜的剥离,进一步提高耐氧化性和耐水蒸汽性。
附图说明
图1是表示本发明的实施方式中进行了耐环境包覆的陶瓷基复合材料构件的构成的剖面图。
图2是表示本发明的实施方式中进行了耐环境包覆的陶瓷基复合材料构件的制造方法的流程图。
图3是表示本发明的实施方式中喷镀覆膜的热膨胀特性的图。
图4是表示本发明的实施方式中水蒸汽暴露试验装置的构成的示意图。
图5是表示本发明的实施方式中实施例1的试样的水蒸汽暴露试验后的外观的照片。
图6是表示本发明的实施方式中实施例2的试样的水蒸汽暴露试验后的外观的照片。
图7是表示本发明的实施方式中燃烧室试验(burner rig test)的概要的图。
图8是表示本发明的实施方式中实施例1的试样的4000个循环后的燃烧室试验结果的照片。
图9是表示本发明的实施方式中实施例2的试样的1000个循环后的燃烧室试验结果的照片。
具体实施方式
以下用附图详细说明本发明的实施方式。图1是表示进行了耐环境包覆的陶瓷基复合材料构件10的构成的剖面图。陶瓷基复合材料构件10的基材12的表面依次层叠包覆有碳化硅层14、硅层16、由富铝红柱石和硅酸镱混合而成的混合层18、和氧化物层20。
基材12由含有硅化物的陶瓷基复合材料形成。陶瓷基复合材料由强化纤维、陶瓷基体构成。
强化纤维使用例如碳化硅纤维(SiC纤维)、氮化硅纤维(Si3N4纤维)、碳纤维、石墨纤维等的长纤维、短纤维、晶须。预制件使用的是例如将数百~数千根左右强化纤维的纤丝捆扎成纤维束后将该纤维束在XYZ方向编织而得的具有3维结构的纤维织物、具有平织或缎纹组织等2维结构的织物、单向材料(UD材料)等。此外,陶瓷基体使用例如碳化硅、氮化硅等。
强化纤维及陶瓷基体中的至少一者由硅化物形成,强化纤维及陶瓷基体两者均由硅化物形成也无妨。此外,强化纤维和陶瓷基体可以为相同材质,也可以为不同材质。另外,硅化物不仅包括碳化硅、氮化硅等含硅化合物,也包括硅。
陶瓷基复合材料使用例如由碳化硅纤维和碳化硅基体形成的SiC/SiC复合材料、由碳化硅纤维和氮化硅基体构成的SiC/Si3N4复合材料、由氮化硅纤维和氮化硅基体构成的Si3N4/Si3N4复合材料等。另外,SiC/SiC复合材料的热膨胀系数为3.0×10-6/℃~4.0×10-6/℃。
碳化硅层14层叠在基材12的表面。碳化硅耐氧化性优异,因此通过用碳化硅层14包覆基材12的表面可以提高基材12的耐氧化性。此外,碳化硅层14由于与含有硅化物的基材12的化学亲和性好,因此基材12和碳化硅层14的密合力得以提高。
进而,在基材12由SiC/SiC复合材料形成时,可以减小基材12和碳化硅层14的热膨胀差异,因此热应力进一步被缓和,碳化硅层14的裂纹的产生受到抑制。另外,碳化硅的热膨胀系数为3.0×10-6/℃~4.0×10-6/℃。
碳化硅层14的膜厚优选为10μm以上且50μm以下,更优选为20μm以上且40μm以下。其理由在于,当碳化硅层14的膜厚小于10μm时,氧气、水蒸汽等的透过加剧,耐氧化性和耐水蒸汽性下降,当碳化硅层14的膜厚大于50μm时,由于碳化硅为脆性材料,因此碳化硅层14容易产生裂纹。此外,通过将碳化硅层14的膜厚设为20μm以上且40μm以下,能够最大限度地抑制氧气和水蒸汽等的透过且能够抑制碳化硅层14的裂纹。
碳化硅层14优选由利用化学蒸镀法(CVD法:Chemical Vapor Deposition)得到的化学蒸镀膜形成。化学蒸镀膜为比喷镀覆膜等更致密的覆膜,因此,能够抑制碳化硅层14中的氧气和水蒸汽等的透过、进一步抑制基材12的氧化和水蒸汽减薄。
硅层16层叠在碳化硅层14的表面。硅层16具有作为提高由非氧化物形成的碳化硅层14与由氧化物形成的由富铝红柱石和硅酸镱混合而成的混合层18之间的密合性的粘合层的作用。此外,优于硅的热膨胀系数和碳化硅的热膨胀系数的值接近,因此抑制了碳化硅层14和硅层16之间的热膨胀差异带来的热应力所导致的裂纹的产生。另外,硅的热膨胀系数为2.0×10-6/℃~3.0×10-6/℃。
硅层16的膜厚优选为50μm以上且140μm以下,更优选为50μm以上且100μm以下,最优选为70μm以上且80μm以下。
其理由在于,当硅层16的膜厚小于50μm时,碳化硅层14和混合层18之间的密合性降低;当硅层16的膜厚大于140μm时,由于硅为脆性材料,因此硅层16有时会产生裂纹。
此外,通过将硅层16的膜厚设为100μm以下,进一步抑制了硅层16的裂纹的产生。并且,通过将硅层16的膜厚设为70μm以上且80μm以下,最大限度地提高了碳化硅层14和混合层18之间的密合性且能够抑制硅层16的裂纹的产生。
硅层16优选由利用减压喷镀法得到的喷镀覆膜形成。通过利用减压喷镀法得到的喷镀覆膜,可以进一步提高与碳化硅层14的密合性,并且由于是比利用大气喷镀法得到的喷镀覆膜更致密的喷镀覆膜,因此能够抑制氧气水蒸汽的透过。
由富铝红柱石和硅酸镱混合而成的混合层18层叠在硅层16的表面。混合层18提高混合层18和氧化物层20之间的密合性且具有缓和碳化硅层14及硅层16与氧化物层20之间的热膨胀差异所引起的热应力的应力缓和层作用。
混合层18中所含的富铝红柱石具有提高混合层18和氧化物层20之间的密合性的作用。并且,通过在富铝红柱石中混合硅酸镱,富铝红柱石和硅酸镱的混合物的热膨胀系数位于碳化硅及硅的热膨胀系数和氧化物的热膨胀系数(5.0×10-6/℃~10.0×10-6/℃)的大致中间位置,因此碳化硅层14及硅层16与氧化物层20之间的热膨胀差异所引起的热应力得以缓和。例如,富铝红柱石和硅酸镱的混合比以体积比计为1:1时所形成的混合层18的热膨胀系数为3.5×10-6/℃~4.5×10-6/℃。此外,硅酸镱的耐水蒸汽性优异,因此可以比富铝红柱石单独时更加提高混合层18的耐水蒸汽性。
硅酸镱使用例如一硅酸镱(Yb2SiO5)或二硅酸镱(Yb2Si2O7),混合层18由富铝红柱石(3Al2O3·2SiO2)和一硅酸镱(Yb2SiO5)的混合物形成或由富铝红柱石(3Al2O3·2SiO2)和二硅酸镱(Yb2Si2O7)的混合物形成。
混合层18的膜厚优选为75μm以上且225μm以下,更优选为75μm以上且150μm以下。
其理由在于,当混合层18的膜厚小于75μm时,混合层18的厚度变薄,因此作为应力缓和层的作用降低;当混合层18的膜厚大于225μm时,由于构成混合层18的富铝红柱石和硅酸镱为脆性材料,因此混合层18容易产生裂纹。此外,通过将混合层18的膜厚设为75μm以上且150μm以下,可以最大限度地提高作为应力缓和层的作用且抑制混合层18的裂纹。
混合层18优选由利用减压喷镀法得到的喷镀覆膜形成。通过利用减压喷镀法得到的喷镀覆膜,可以进一步提高与硅层16的密合性,并且因为是比利用大气喷镀法得到的喷镀覆膜更致密的喷镀覆膜,因此能够抑制氧及水蒸汽的透过。
氧化物层20层叠在混合层18的表面。氧化物通常耐氧化性、耐水蒸汽性及低热传导性优异,因此氧化物层20具有作为阻隔氧气和水蒸汽等的气体阻隔层的作用,且具有作为阻隔来自燃烧气体等的热传导的热阻隔层的作用。
氧化物层20优选由选自氧化铪(单斜晶HfO2、立方晶HfO2、利用三氧化二钇等稳定化的HfO2等)、硅酸铪(HfSiO4等)、硅酸镥(Lu2SiO5、Lu2Si2O7等)、硅酸镱(Yb2SiO5、Yb2Si2O7等)、氧化钛(TiO2等)、氧化锆(单斜晶ZrO2、立方晶ZrO2、利用三氧化二钇等稳定化的ZrO2等)、钛酸铝(Al2TiO5等)、硅酸铝(Al6Si2O13等)和镥铪氧化物(Lu4Hf3O12等)组成的组中的至少1种作为主成分的氧化物形成。这是由于,这些氧化物的耐热性、耐氧化性、耐水蒸汽性、低热传导性优异。
氧化物层20更优选由单斜晶的氧化铪形成。单斜晶的氧化铪的耐水蒸汽性比硅酸镥、硅酸镱、氧化钛、钛酸铝等优异,且与例如通过三氧化二钇等稳定化的氧化铪等的热膨胀系数相比,单斜晶的氧化铪的热膨胀系数的值更接近碳化硅、硅、富铝红柱石和硅酸镱的混合物的热膨胀系数。另外,单斜晶的氧化铪的热膨胀系数为5.0×10-6/℃~6.0×10-6/℃。
氧化物层20的膜厚优选为10μm以上且300μm以下,更优选为100μm以上且200μm以下。
其理由在于,当氧化物层20的膜厚小于10μm时,氧气和水蒸汽等的透过加剧,耐氧化性及耐水蒸汽性降低;当氧化物层20的膜厚大于300μm时,由于氧化物为脆性材料,因此氧化物层20容易产生裂纹。通过将氧化物层20的膜厚设为100μm以上且200μm以下,可以最大限度地提高耐氧化性及耐水蒸汽性且抑制氧化物层20的裂纹的产生。
氧化物层20优选由利用大气喷镀法得到的喷镀覆膜形成。利用大气喷镀法得到的喷镀覆膜的气孔比利用减压喷镀法得到的喷镀覆膜多,因此陶瓷基复合材料构件10被暴露于热时构成喷镀覆膜的氧化物粒子的烧结得到抑制,能够抑制氧化物层20的裂纹。
接着,对进行了耐环境包覆的陶瓷基复合材料构件10的制造方法进行说明。
图2为表示进行了耐环境包覆的陶瓷基复合材料构件10的制造方法的流程图。进行了耐环境包覆的陶瓷基复合材料构件10的制造方法具备:基材形成工序(S10)、碳化硅层层叠工序(S12)、硅层层叠工序(S14)、混合层层叠工序(S16)、和氧化物层层叠工序(S18)。
基材形成工序(S10)为用含有硅化物的陶瓷基复合材料形成基材12的工序。
基材12可以通过常规的陶瓷基复合材料的成形方法进行成形。基材12例如可以如下成形:用碳化硅纤维等形成3维织物等预制件后,用化学蒸镀法(CVD法)、CVI法(Chemical Vapor Infiltration)使碳化硅等陶瓷基体渗透到预制件内进行复合化而成形。碳化硅纤维使用例如TYRANNO纤维(宇部兴产株式会社制)、HI-NICALON纤维(Nippon Carbon Co.,Ltd制)等。
此外,也可以使聚碳硅烷等有机金属聚合物(陶瓷基体的前体)浸渗到预制件中并在浸渗后在非活性气氛中烧成而将基材12成形。
作为其它的基材12的成形方法,可以将碳化硅纤维等强化纤维与用于形成碳化硅等陶瓷基体的原料粉末(例如硅粉末、碳粉末)混合后,通过热压、热等静压加压装置(HIP:Hot Isostatic Press)进行反应烧结而复合化。
此外,优选使在乙醇等有机溶剂中分散有碳化硅粉末等的浆料浸渗在陶瓷基复合材料中,用碳化硅粉末等填充陶瓷基复合材料的表面的气孔,使基材的表面平滑化。
碳化硅层层叠工序(S12)为在基材12的表面层叠碳化硅层14的工序。
碳化硅层14能够用喷镀法、溅射、离子镀等物理蒸镀法(PVD法:PhysicalVapor Deposition)、化学蒸镀法(CVD法)等形成,由于利用化学蒸镀法可以形成比喷镀法等更致密的覆膜,因此优选由化学蒸镀法形成。
在用化学蒸镀法形成碳化硅层14时,可以使用常规的碳化硅的化学蒸镀法。例如,可以在反应炉内安放基材12并加热,使作为反应气体的甲基三氯硅烷(CH3SiCl3)等在反应炉内流通而在基材12的表面形成碳化硅层14。
硅层层叠工序(S14)为在碳化硅层14的表面层叠硅层16的工序。
硅层16能够用喷镀法、物理蒸镀法(PVD法)、化学蒸镀法(CVD法)等形成,但由于喷镀法(大气喷镀法、减压喷镀法)可以形成密合性良好的覆膜,因此优选用喷镀法(大气喷镀法、减压喷镀法)法形成。喷镀法可以使用常规的等离子体喷镀法等。
喷镀法中,减压喷镀法由于能够抑制碳化硅层14的氧化、喷镀材料中的硅粉末的氧化且与大气喷镀法相比能够形成更致密的喷镀覆膜,因此更优选使用减压喷镀法。在用减压喷镀法形成硅层16时,例如,将包覆有碳化硅层14的基材12安放在喷镀室内,抽真空后在真空状态或导入氩气等非活性气体的减压状态下将硅粉末送入喷镀枪,对碳化硅层14的表面进行喷镀。喷镀材料使用例如粒径10μm~40μm的硅粉末。
混合层层叠工序(S16)为在硅层16的表面层叠由富铝红柱石和硅酸镱混合而成的混合层18的工序。
混合层18能够用喷镀法、物理蒸镀法(PVD法)、化学蒸镀法(CVD法)等形成,但由于喷镀法(大气喷镀法、减压喷镀法)可以形成密合性良好的覆膜,因此优选用喷镀法(大气喷镀法、减压喷镀法)法形成。喷镀法中,减压喷镀法由于能够抑制硅层16的氧化且与大气喷镀法相比能够形成更致密的喷镀覆膜,因此更优选使用。
在用减压喷镀法形成混合层18时,使用预先将富铝红柱石粉末和硅酸镱粉末混合而成的混合粉末作为喷镀材料,将混合粉末送入喷镀枪,在真空状态或减压状态下对硅层16的表面进行喷镀,也可以将富铝红柱石粉末和硅酸镱粉末分别送入喷镀枪,在富铝红柱石粉末和硅酸镱粉末熔融或接近熔融的状态下将其混合,在真空状态或减压状态下进行喷镀。喷镀材料使用例如粒径10μm~50μm的富铝红柱石粉末和硅酸镱粉末。
氧化物层层叠工序(S18)是在混合层18的表面层叠氧化物层20的工序。
氧化物层20能够用喷镀法、物理蒸镀法(PVD法)、化学蒸镀法(CVD法)等形成,但由于喷镀法(大气喷镀法、减压喷镀法)可以形成密合性良好的覆膜,因此优选用喷镀法(大气喷镀法、减压喷镀法)法形成。喷镀法中,由于大气喷镀法与减压喷镀法相比更能抑制构成喷镀覆膜的氧化物粒子的烧结,因此优选使用。
在用大气喷镀法形成氧化物层20时,例如,将表面包覆有混合层18的基材12安放在喷镀室,将作为喷镀材料的氧化物粉末送入喷镀枪,在大气压状态下对混合层18的表面进行喷镀。喷镀材料使用例如粒径10μm~50μm的氧化物粉末。通过以上工序完成了进行了耐环境包覆的陶瓷基复合材料构件10的制造。
根据上述构成,在由含有硅化物的陶瓷基复合材料形成的基材的表面依次层叠包覆碳化硅层、硅层、由富铝红柱石和硅酸镱混合而成的混合层、和氧化物层,从而提高各层间的密合力且使各层的热膨胀系数由基材向氧化物层倾斜,使热循环带来的不断反复的热应力得以缓和,陶瓷基复合材料构件即使在含水蒸汽的高温气体环境下暴露于热循环时,也能够抑制被膜的剥离、进一步提高耐氧化性和耐水蒸汽性。
此外,通过将碳化硅层的膜厚设为10μm以上且50μm以下、将硅层的膜厚设为50μm以上且140μm以下、将混合层的膜厚设为75μm以上且225μm以下地调整各层的膜厚,从而陶瓷基复合材料构件在含水蒸汽的高温环境下(表面温度1300℃、水蒸汽分压150kPa)暴露100小时时、陶瓷基复合材料构件在热循环(表面温度600℃以下~1300℃)下暴露1000个循环时,也能够抑制被膜的剥离、进一步提高耐氧化性和耐水蒸汽性。
进而,通过将碳化硅层的膜厚设为10μm以上且50μm以下、将硅层的膜厚设为50μm以上且100μm以下、将混合层的膜厚设为75μm以上且225μm以下地调整各层的膜厚,从而陶瓷基复合材料构件在含水蒸汽的高温环境下(表面温度1300℃、水蒸汽分压150kPa)暴露800小时时、陶瓷基复合材料构件在热循环(表面温度600℃以下~1300℃)下暴露4000个循环时,也能够抑制被膜的剥离、裂纹,进一步提高耐氧化性和耐水蒸汽性。
实施例
制作进行了耐环境包覆的试样,对其进行水蒸汽暴露试验和燃烧室试验,评价水蒸汽特性及热循环特性。
(试样的制作)
首先对实施例1、2的试样的制作方法进行说明。另外,实施例1、2的试样的Si层的膜厚不同,其他构成相同。
用使SiC纤维和SiC基体复合化而成的SiC/SiC复合材料形成实施例1、2的试样的基材。关于SiC/SiC复合材料的成形,使硅粉末和碳粉末浸渗到用SiC纤维形成的预制件中,进行反应烧结形成SiC基体从而复合化。SiC纤维使用了TYRANNO纤维(宇部兴产株式会社制)。此外,使在乙醇中分散有碳化硅粉末的浆料浸渗到SiC/SiC复合材料中,在SiC/SiC复合材料的表面的气孔中填充碳化硅粉末而使基材的表面平滑化。关于基材的形状,水蒸汽暴露试验用途中设为50mm×9mm×4mmt的有锥度的平板状或为50mm×35mm×4mmt的平板状且端部进行了R1.5加工的形状;在燃烧室试验用途中设为50mm×50mm×4mmt的平板状。
然后,用CVD法在基材的表面层叠SiC层。在反应炉内安放基材并加热(反应温度900℃~1000℃),使用作为反应气体的甲基三氯硅烷(CH3SiCl3),从而在基材的表面包覆SiC层。关于SiC层的膜厚,实施例1、2的试样均设为30μm。
然后,用减压喷镀法在SiC层的表面层叠Si层。将包覆有SiC层的基材安放在喷镀室内,抽真空后向喷镀室内导入氩气,在喷镀室内为减压的状态下对SiC层的表面喷镀熔融的Si粉末。Si粉末使用粒径为20μm~40μm的粉末。关于Si层的厚度,实施例1的试样设为75μm、实施例2的试样设为140μm。另外,Si层的厚度通过改变喷镀时间而调整。
然后,用减压喷镀法在Si层的表面层叠3Al2O3·2SiO2和Yb2SiO5的混合层。减压喷镀法中,使用3Al2O3·2SiO2粉末和Yb2SiO5粉末的混合粉末(将混合比调整为喷镀覆膜形成后的体积比为1:1的粉末)作为喷镀材料,在用氩气使喷镀室内为减压的状态下在Si层的表面喷镀熔融的混合粉末。关于3Al2O3·2SiO2和Yb2SiO5的混合层的厚度,实施例1、2的试样均设为75μm。
然后,用大气喷镀法在3Al2O3·2SiO2和Yb2SiO5的混合层的表面层叠HfO2层。将HfO2粉末送入喷镀枪,在大气压状态下在3Al2O3·2SiO2和Yb2SiO5的混合层的表面喷镀熔融的HfO2粉末。HfO2粉末使用单斜晶的HfO2粉末。关于HfO2层的厚度,实施例1、2的试样均设为150μm。
对于上述实施例1、2的试样,在包覆HfO2层后进行外观观察,结果未看到被膜的裂纹和剥离。
(热膨胀测定)
制作模拟Si层、3Al2O3·2SiO2和Yb2SiO5的混合层、和HfO2层的试验片,在室温~1200℃的温度范围进行热膨胀测定。
使用Si粉末作为喷镀材料,通过减压喷镀法制作模拟Si层的试验片,基于JISZ2285的测定方法进行热膨胀测定。其结果是,模拟Si层的试验片的热膨胀系数为2.0×10-6/℃~2.5×10-6/℃。
使用3Al2O3·2SiO2粉末和Yb2SiO5粉末的混合粉末(将混合比调整为喷镀覆膜形成后的体积比为1:1的粉末)的粉末作为喷镀材料,通过减压喷镀法制作模拟3Al2O3·2SiO2和Yb2SiO5的混合层(的试验片,进行热膨胀测定。此外,为了进行比较,使用3Al2O3·2SiO2粉末作为喷镀材料制作试验片并进行热膨胀测定。
图3为表示喷镀覆膜的热膨胀特性的图,图3的(a)为表示由3Al2O3·2SiO2形成的喷镀覆膜的热膨胀特性的图,图3的(b)为表示使3Al2O3·2SiO2和Yb2SiO5混合的喷镀覆膜的热膨胀特性的图。
如图3的(a)所示,由3Al2O3·2SiO2形成的喷镀覆膜的情况下,超过900℃时,随着构成喷镀覆膜的3Al2O3·2SiO2粒子的烧结而产生体积收缩,热膨胀率大幅降低。
与此相对,如图3的(b)所示,使3Al2O3·2SiO2和Yb2SiO5混合的喷镀覆膜的情况下,在超过900℃的温度区域,随着喷镀覆膜中的3Al2O3·2SiO2粒子的烧结而发生的体积收缩受到抑制,热膨胀率的降低受到抑制。
由此,与富铝红柱石单独时相比,通过设置由富铝红柱石和硅酸镱混合而成的混合层,抑制了在超过900℃的温度区域热膨胀率的大幅降低。模拟3Al2O3·2SiO2和Yb2SiO5的混合层的试验片的热膨胀系数为3.5×10-6/℃~4.5×10-6/℃。
使用单斜晶的HfO2粉末作为喷镀材料通过大气喷镀法制作模拟HfO2层的试验片,进行热膨胀测定。其结果是,模拟HfO2层的试验片的热膨胀系数为5.0×10-6/℃~6.0×10-6/℃。
如上所述,实施例1、2的试样的情况下,3Al2O3·2SiO2和Yb2SiO5混合而成的混合层的热膨胀系数位于Si层的热膨胀系数与HfO2层的热膨胀系数的中间位置。
(水蒸汽暴露试验)
对于实施例1、2的试样实施水蒸汽暴露试验。此外,对于作为比较例的试样的未进行耐环境包覆的基材(仅是用SiC/SiC复合材料形成的基材)也实施水蒸汽暴露试验。
首先,对水蒸汽暴露试验方法进行说明。水蒸汽暴露试验使用东伸工业株式会社制的水蒸汽暴露试验装置。该水蒸汽暴露试验装置的规格为最高温度1500℃(常用1400℃)、试验室内的最大压力950kPa(9.5atm)。
图4为表示水蒸汽暴露试验装置30的构成的示意图。在氧化铝制的试验室32的周边设有MoSi2制加热器34。在试验室32内设有供给水蒸汽的水蒸汽供给管36、供给气氛气体(空气、氮气、氧气或二氧化碳气体)的气氛气体供给管38、排出试验室内的混合气体的混合气体排出管40、和温度控制用的热电偶42。此外,在试验室32内配置试样44,以使由水蒸汽供给管36供给的水蒸汽沿着试样表面流动。
关于水蒸汽暴露试验的试验条件,试验温度设为1300℃、试验室内的总压力设为950kPa(9.5atm)、水蒸汽的分压设为150kPa(1.5atm)、气氛气体(O2+N2+CO2)的分压设为800kPa(8atm)。水蒸汽暴露试验的评价通过外观观察来进行。
图5为显示实施例1的试样的水蒸汽暴露试验后的外观的照片。在水蒸汽暴露时间经过270小时后、经过500小时后、经过800小时后进行外观观察的结果是:实施例1的试样在水蒸汽暴露时间经过800小时后也没有发生被膜的裂纹和剥离。另外,关于试样的表面和背面,将试样的水蒸汽供给管侧的面作为表面(图4中的试样面44A)、将与试样的表面相反侧的面作为背面(图4中的试样面44B)。
图6为显示实施例2的试样的水蒸汽暴露试验后的外观的照片。实施例2的试样虽然在水蒸汽暴露时间经过100小时后在端部可见若干裂纹,但没有达到被膜剥离程度。
另外,比较例的试样在水蒸汽暴露时间经过60小时后,由于水蒸汽暴露而发生腐蚀,以致无法维持形状。
(燃烧室试验)
对于实施例1、2的试样实施燃烧室试验。首先对燃烧室试验的方法进行说明。图7为表示燃烧室试验的概要的图,图7的(a)为表示燃烧室试验装置50的概要构成的示意图,图7的(b)为表示每1个循环的试样表面温度循环条件的图。
如图7的(a)所示,将试样54保持于保持夹具52,由喷嘴56向试样表面喷射火炎,从而进行燃烧室试验。试样54的表面温度用辐射温度计(未图示)测定。利用辐射温度计测定试样54的表面温度的测定位置为试样54的中心部。关于利用辐射温度计测定的试样表面温度的校正,预先在试样54上涂布黑色涂料来调整试样54的辐射率。此外,可以设置能够拍摄被膜表面的相机,在热循环中拍摄被膜表面进行观察。
然后将试样54安放在保持夹具52上,如图7的(b)所示那样将升温时间设为45秒(600℃以下~1250℃)、保持时间设为45秒(1250℃~1300℃)、降温时间设为90秒(1300℃~600℃以下),以此为1个循环施以热循环。
关于燃烧室试验的评价,通过外观观察和剖面观察来进行。另外,剖面观察时,由燃烧室试验后的试样切除样品,将样品掩埋在掩埋树脂中后进行研磨并用光学显微镜进行观察。
图8为表示实施例1的试样的4000个循环后的燃烧室试验结果的照片,图8的(a)为表示外观观察结果的照片,图8的(b)为表示剖面观察结果的照片。
关于实施例1的试样,在图8的(a)所示的外观观察结果中,在4000个循环后也没有见到被膜的裂纹和剥离。此外,在图8的(b)所示的剖面观察结果中,HfO2层、3Al2O3·2SiO2和Yb2SiO5的混合层在各层的厚度方向可见微裂缝,但在Si层、SiC层未见到微裂缝的产生。另外,在图8(a)的表示外观观察结果的照片中,试样表面的黑色部分为涂布了黑色涂料的部分。
图9为表示实施例2的试样的1000个循环后的燃烧室试验结果的照片,图9的(a)为表示外观观察结果的照片,图9(b)为表示剖面观察结果的照片。
关于实施例2的试样,在图9的(a)所示的外观观察结果中虽然在1000个循环后在端部可见若干被膜裂纹,但未达到被膜剥离的程度。在图9的(b)所示的剖面观察结果中,HfO2层、3Al2O3·2SiO2和Yb2SiO5的混合层在各层的厚度方向可见微裂缝,在Si层的水平方向(面方向)可见微裂缝的产生。此外,SiC层中未见到微裂缝的产生。
产业上的利用可能性
本发明可以抑制陶瓷基复合材料构件在含水蒸汽的高温气体环境下暴露于热循环时被膜的剥离、提高耐氧化性和耐水蒸汽性,因此在喷气式发动机、火箭发动机等高温构件中有用。

Claims (12)

1.一种陶瓷基复合材料构件,其特征在于,其为进行了耐环境包覆的陶瓷基复合材料构件,具备:
由含有硅化物的陶瓷基复合材料形成的基材、
层叠在前述基材的表面的碳化硅层、
层叠在前述碳化硅层的表面的硅层、
层叠在前述硅层的表面的由富铝红柱石和硅酸镱混合而成的混合层、和
层叠在前述混合层的表面的氧化物层。
2.根据权利要求1所述的陶瓷基复合材料构件,其特征在于,
前述硅酸镱为Yb2SiO5或Yb2Si2O7
3.根据权利要求1或2所述的陶瓷基复合材料构件,其特征在于,
前述碳化硅层的膜厚为10μm以上且50μm以下,
前述硅层的膜厚为50μm以上且140μm以下,
前述混合层的膜厚为75μm以上且225μm以下。
4.根据权利要求3所述的陶瓷基复合材料构件,其特征在于,
前述硅层的膜厚为50μm以上且100μm以下。
5.根据权利要求1或2所述的陶瓷基复合材料构件,其特征在于,
前述氧化物层由氧化物形成,所述氧化物以选自氧化铪、硅酸铪、硅酸镥、硅酸镱、氧化钛、氧化锆、钛酸铝、硅酸铝和镥铪氧化物组成的组中的至少1种作为主成分。
6.根据权利要求5所述的陶瓷基复合材料构件,其特征在于,
前述氧化物层由单斜晶的氧化铪形成。
7.根据权利要求1或2所述的陶瓷基复合材料构件,其特征在于,
前述碳化硅层由化学蒸镀膜形成,
前述硅层和前述混合层由利用减压喷镀法得到的喷镀覆膜形成,前述氧化物层由利用大气喷镀法得到的喷镀覆膜形成。
8.根据权利要求1或2所述的陶瓷基复合材料构件,其特征在于,
前述基材由使碳化硅基体与碳化硅纤维复合化而得到的陶瓷基复合材料形成。
9.根据权利要求1或2所述的陶瓷基复合材料构件,其特征在于,
前述陶瓷基复合材料构件在构件表面温度为1200℃~1400℃、水蒸汽分压为30kPa~140kPa的环境下使用。
10.一种陶瓷基复合材料的制造方法,其特征在于,其为进行了耐环境包覆的陶瓷基复合材料构件的制造方法,具备:
用含有硅化物的陶瓷基复合材料形成基材的基材形成工序、
通过化学蒸镀法在前述基材的表面层叠碳化硅层的碳化硅层层叠工序、
通过减压喷镀法在前述碳化硅层的表面层叠硅层的硅层层叠工序、
通过减压喷镀法在前述硅层的表面层叠由富铝红柱石和硅酸镱混合而成的混合层的混合层层叠工序、和
通过大气喷镀法在前述混合层的表面层叠氧化物层的氧化物层层叠工序。
11.根据权利要求10所述的陶瓷基复合材料的制造方法,其特征在于,
前述碳化硅层层叠工序以10μm以上且50μm以下的膜厚层叠前述碳化硅层,
前述硅层层叠工序以50μm以上且140μm以下的膜厚层叠前述硅层,
前述混合层层叠工序以75μm以上且225μm以下的膜厚层叠前述混合层。
12.根据权利要求11所述的陶瓷基复合材料的制造方法,其特征在于,
前述硅层层叠工序以50μm以上且100μm以下的膜厚层叠前述硅层。
CN201380027664.0A 2012-06-04 2013-06-03 进行了耐环境包覆的陶瓷基复合材料构件及其制造方法 Expired - Fee Related CN104379345B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-126867 2012-06-04
JP2012126867A JP5953947B2 (ja) 2012-06-04 2012-06-04 耐環境被覆されたセラミックス基複合材料部品及びその製造方法
PCT/JP2013/065331 WO2013183580A1 (ja) 2012-06-04 2013-06-03 耐環境被覆されたセラミックス基複合材料部品及びその製造方法

Publications (2)

Publication Number Publication Date
CN104379345A true CN104379345A (zh) 2015-02-25
CN104379345B CN104379345B (zh) 2017-03-08

Family

ID=49711972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380027664.0A Expired - Fee Related CN104379345B (zh) 2012-06-04 2013-06-03 进行了耐环境包覆的陶瓷基复合材料构件及其制造方法

Country Status (7)

Country Link
US (1) US20150079371A1 (zh)
EP (1) EP2857193B1 (zh)
JP (1) JP5953947B2 (zh)
CN (1) CN104379345B (zh)
CA (1) CA2874419C (zh)
RU (1) RU2579592C1 (zh)
WO (1) WO2013183580A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384467A (zh) * 2015-12-14 2016-03-09 中国航空工业集团公司北京航空制造工程研究所 一种用于陶瓷基复合材料基体的环境障碍涂层及制备方法
CN109336647A (zh) * 2018-11-06 2019-02-15 航天特种材料及工艺技术研究所 一种用于陶瓷基复合材料的热/环境障涂层及其制备方法
CN110396004A (zh) * 2018-04-25 2019-11-01 中国科学院上海硅酸盐研究所 一种抗热震与抗高温水蒸气腐蚀的硅酸镱复合涂层及其制备方法和应用
CN113383204A (zh) * 2019-02-14 2021-09-10 日本碍子株式会社 烧成用夹具

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339324A (zh) * 2013-03-05 2016-02-17 通用电气公司 耐高温陶瓷基质复合材料及环境障碍涂层
JP6598432B2 (ja) * 2014-06-24 2019-10-30 キヤノン株式会社 画像処理装置、その制御方法およびプログラム
RU2675638C1 (ru) * 2015-03-02 2018-12-21 АйЭйчАй КОРПОРЕЙШН Защищающее от окружающей среды покрытие
JP6649115B2 (ja) * 2015-03-03 2020-02-19 一般財団法人ファインセラミックスセンター 積層構造
CN105777207B (zh) * 2016-01-29 2018-02-09 陕西科技大学 碳/碳复合材料Yb2Si2O7晶须增韧Yb2SiO5复合涂层的制备方法
JP6696802B2 (ja) 2016-03-11 2020-05-20 一般財団法人ファインセラミックスセンター 耐環境コーティング部材
JP6750678B2 (ja) 2016-06-13 2020-09-02 株式会社Ihi セラミックス基複合材料部品及びその製造方法
JP6735164B2 (ja) * 2016-06-27 2020-08-05 一般財団法人ファインセラミックスセンター 積層構造
WO2018034024A1 (ja) * 2016-08-18 2018-02-22 株式会社Ihi 耐環境性に優れたセラミックス基複合材の製造方法
FR3057580A1 (fr) * 2016-10-18 2018-04-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de revetement d'une surface d'un substrat solide par une couche comprenant un compose ceramique, et substrat revetu ainsi obtenu
FR3061711B1 (fr) 2017-01-06 2019-05-31 Safran Ceramics Piece comprenant un substrat et une barriere environnementale
FR3061710B1 (fr) 2017-01-06 2019-05-31 Safran Ceramics Piece comprenant un substrat et une barriere environnementale
CN107759210B (zh) * 2017-10-11 2020-12-29 中国航发北京航空材料研究院 一种Yb2SiO5喷涂粉体的制备方法
JP2019214750A (ja) * 2018-06-12 2019-12-19 三菱重工業株式会社 耐環境コーティング、それを備える耐環境部品、及び耐環境コーティングの製造方法
CN109065856B (zh) * 2018-07-16 2021-05-14 合肥国轩高科动力能源有限公司 一种锂离子电池钛酸锂负极材料的改性方法
US11479515B2 (en) * 2018-12-21 2022-10-25 General Electric Company EBC with mullite bondcoat that includes an oxygen getter phase
US20210332709A1 (en) * 2020-04-27 2021-10-28 Raytheon Technologies Corporation Environmental barrier coating and method of applying an environmental barrier coating
KR102356029B1 (ko) * 2021-05-26 2022-02-08 주식회사 그린리소스 실리케이트 코팅재의 제조 방법
WO2023111091A1 (en) * 2021-12-15 2023-06-22 Jt International Sa Heating chamber assembly for an aerosol generation device
US20230366318A1 (en) * 2022-05-13 2023-11-16 Raytheon Technologies Corporation Cmc arc segment interface gap flow blocker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769043A (zh) * 2004-07-15 2006-05-10 通用电气公司 含环境隔离涂层体系的制品及其制造方法
CN102137950A (zh) * 2008-03-21 2011-07-27 株式会社Ihi 涂层构造及表面处理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2976368B2 (ja) * 1996-01-26 1999-11-10 川崎重工業株式会社 耐熱・耐酸化性炭素繊維強化炭素複合材料
US5840221A (en) * 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
US7115326B2 (en) * 2005-01-21 2006-10-03 General Electric Company Thermal/environmental barrier coating with transition layer for silicon-comprising materials
US7708851B2 (en) * 2005-10-25 2010-05-04 General Electric Company Process of producing a ceramic matrix composite article and article formed thereby
US9221720B2 (en) * 2006-03-01 2015-12-29 United Technologies Corporation Dense protective coatings, methods for their preparation and coated articles
RU2007100157A (ru) * 2007-01-09 2008-07-20 Юнайтид Текнолоджиз Копэрейшн (US) Способ нанесения защитного покрытия на основу, изделие с покрытием и кроющий состав
JP5070910B2 (ja) * 2007-03-30 2012-11-14 株式会社Ihi セラミックス基複合部材およびセラミックス基複合部材の製造方法
US20090186237A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. CMAS-Resistant Thermal Barrier Coatings
US20090184280A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
FR2940278B1 (fr) * 2008-12-24 2011-05-06 Snecma Propulsion Solide Barriere environnementale pour substrat refractaire contenant du silicium
US9212100B2 (en) * 2009-07-31 2015-12-15 General Electric Company Environmental barrier coatings for high temperature ceramic components
US20110027557A1 (en) * 2009-07-31 2011-02-03 Glen Harold Kirby Solvent based environmental barrier coatings for high temperature ceramic components

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769043A (zh) * 2004-07-15 2006-05-10 通用电气公司 含环境隔离涂层体系的制品及其制造方法
CN102137950A (zh) * 2008-03-21 2011-07-27 株式会社Ihi 涂层构造及表面处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘万辉等: "《复合材料》", 31 August 2011, article "复合材料" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384467A (zh) * 2015-12-14 2016-03-09 中国航空工业集团公司北京航空制造工程研究所 一种用于陶瓷基复合材料基体的环境障碍涂层及制备方法
CN110396004A (zh) * 2018-04-25 2019-11-01 中国科学院上海硅酸盐研究所 一种抗热震与抗高温水蒸气腐蚀的硅酸镱复合涂层及其制备方法和应用
CN109336647A (zh) * 2018-11-06 2019-02-15 航天特种材料及工艺技术研究所 一种用于陶瓷基复合材料的热/环境障涂层及其制备方法
CN109336647B (zh) * 2018-11-06 2020-12-29 航天特种材料及工艺技术研究所 一种用于陶瓷基复合材料的热/环境障涂层及其制备方法
CN113383204A (zh) * 2019-02-14 2021-09-10 日本碍子株式会社 烧成用夹具
CN113383204B (zh) * 2019-02-14 2023-04-14 日本碍子株式会社 烧成用夹具
TWI816975B (zh) * 2019-02-14 2023-10-01 日商日本碍子股份有限公司 燒成夾具

Also Published As

Publication number Publication date
CA2874419C (en) 2016-12-06
JP5953947B2 (ja) 2016-07-20
CN104379345B (zh) 2017-03-08
JP2013248852A (ja) 2013-12-12
CA2874419A1 (en) 2013-12-12
RU2579592C1 (ru) 2016-04-10
EP2857193B1 (en) 2019-02-20
EP2857193A4 (en) 2016-01-20
US20150079371A1 (en) 2015-03-19
EP2857193A1 (en) 2015-04-08
WO2013183580A1 (ja) 2013-12-12

Similar Documents

Publication Publication Date Title
CN104379345A (zh) 进行了耐环境包覆的陶瓷基复合材料构件及其制造方法
Feng et al. Ablation resistance of HfC-TaC/HfC-SiC alternate coating for SiC-coated carbon/carbon composites under cyclic ablation
Feng et al. Ablation behavior of single and alternate multilayered ZrC-SiC coatings under oxyacetylene torch
CN107540400A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料
Zhang et al. Oxidation behavior of SiC-HfB2-Si coating on C/C composites prepared by slurry dipping combined with gaseous Si infiltration
Wang et al. Gradient HfB2-SiC multilayer oxidation resistant coating for C/C composites
Wang et al. Oxidation behavior and microstructural evolution of plasma sprayed La2O3-MoSi2-SiC coating on carbon/carbon composites
Feng et al. Mechanical properties and ablation resistance of La2O3-modified HfC-SiC coating for SiC-coated C/C composites
Zhuang et al. Effect of pre-oxidation treatment on the bonding strength and thermal shock resistance of SiC coating for C/C–ZrC–SiC composites
CN104529498A (zh) 放电等离子烧结一步制备多层环境障碍涂层的方法
Tang et al. Interfacial modification and cyclic ablation behaviors of a SiC/ZrB2-SiC/SiC triple-layer coating for C/SiC composites at above 2000° C
Feng et al. An optimized strategy toward multilayer ablation coating for SiC-coated carbon/carbon composites based on experiment and simulation
Wang et al. Oxidation protective ZrB2–SiC coatings with ferrocene addition on SiC coated graphite
CN104213099A (zh) 一种碳化硅纤维表面氧化物陶瓷涂层的制备方法
Wang et al. Preparation and ablation properties of ZrB2–SiC protective laminae for carbon/carbon composites
Chen et al. Microstructure and oxidation behavior of a novel bilayer (c-AlPO4–SiCw–mullite)/SiC coating for carbon fiber reinforced CMCs
Darthout et al. Thermal cycling and high-temperature corrosion tests of rare earth silicate environmental barrier coatings
RU2754893C2 (ru) Деталь, содержащая подложку и внешний барьер
Zhou et al. A novel oxidation protective SiC-ZrB2-ZrSi2 coating with mosaic structure for carbon/carbon composites
Zhang et al. A thick SiC-Si coating prepared by one-step pack cementation for long-term protection of carbon/carbon composites against oxidation at 1773 K
Liu et al. Study on water corrosion behavior of ZrSiO 4 materials
Tang et al. A novel approach for preparing a SiC coating on a C/C-SiC composite by slurry painting and chemical vapor reaction
Hu et al. Grain growth limitation in the monolayer ZrB2–SiC coating above 1700° C
CN109735788A (zh) 一种用于碳纤维增强复合材料表面的耐高温复合梯度涂层及制备方法
Zhang et al. Cyclic oxidation performances of new environmental barrier coatings of HfO2-SiO2/Yb2Si2O7 coated SiC at 1375° C and 1475° C in the air environment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170308

CF01 Termination of patent right due to non-payment of annual fee