WO2013179638A1 - 半導体モジュール及びその製造方法 - Google Patents

半導体モジュール及びその製造方法 Download PDF

Info

Publication number
WO2013179638A1
WO2013179638A1 PCT/JP2013/003332 JP2013003332W WO2013179638A1 WO 2013179638 A1 WO2013179638 A1 WO 2013179638A1 JP 2013003332 W JP2013003332 W JP 2013003332W WO 2013179638 A1 WO2013179638 A1 WO 2013179638A1
Authority
WO
WIPO (PCT)
Prior art keywords
source electrode
bare chip
copper connector
copper
semiconductor module
Prior art date
Application number
PCT/JP2013/003332
Other languages
English (en)
French (fr)
Inventor
崇 須永
昇 金子
修 三好
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2014518275A priority Critical patent/JP5871064B2/ja
Priority to CN201380003744.2A priority patent/CN103918067B/zh
Priority to EP13797985.2A priority patent/EP2858100B1/en
Priority to US14/127,187 priority patent/US9312234B2/en
Publication of WO2013179638A1 publication Critical patent/WO2013179638A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32238Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/35Manufacturing methods
    • H01L2224/352Mechanical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/35Manufacturing methods
    • H01L2224/358Post-treatment of the connector
    • H01L2224/3583Reworking
    • H01L2224/35847Reworking with a mechanical process, e.g. with flattening of the connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37012Cross-sectional shape
    • H01L2224/37013Cross-sectional shape being non uniform along the connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/40227Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40499Material of the auxiliary connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • H01L2224/4101Structure
    • H01L2224/4103Connectors having different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • H01L2224/411Disposition
    • H01L2224/4112Layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • H01L2224/411Disposition
    • H01L2224/4112Layout
    • H01L2224/41175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75272Oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/77Apparatus for connecting with strap connectors
    • H01L2224/7725Means for applying energy, e.g. heating means
    • H01L2224/77272Oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8321Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83417Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/83424Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8438Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/84399Material
    • H01L2224/844Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/84417Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/84424Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8438Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/84399Material
    • H01L2224/844Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/84438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/84447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • H01L2224/84815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/858Bonding techniques
    • H01L2224/85801Soldering or alloying
    • H01L2224/85815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9221Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/35Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/77Apparatus for connecting with strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15717Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400 C and less than 950 C
    • H01L2924/15724Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/37Effects of the manufacturing process
    • H01L2924/3701Effects of the manufacturing process increased through put
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/1031Surface mounted metallic connector elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10409Screws
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a semiconductor module such as a power module to be incorporated into an automotive electrical device and a method of manufacturing the same.
  • a motor drive unit is provided in a housing in which an electric motor involved in steering of a vehicle is accommodated, and the electronic apparatus is mounted on the motor drive unit.
  • the electronic device is incorporated into a motor drive as a power module.
  • the power module is equipped with power elements such as FET (Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), etc. that are suitable for controlling electric devices driven by relatively large currents such as electric power steering devices. It is configured as a so-called semiconductor module. Since this type of power module is mounted in a vehicle, it is also called an in-vehicle module.
  • FET Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • FIG. 14 is a schematic cross-sectional view of an example of a conventional semiconductor module.
  • the semiconductor module 100 shown in FIG. 14 includes a metal substrate 101, a resin 102 provided on a flat surface of the bottom of a recess of the substrate 101, and a plurality of copper foils (wiring patterns) 103a formed on the resin 102, And 103b, 103c, and 103d.
  • a groove 109 is formed between the copper foil 103a and the copper foil 103c and the copper foil 103d.
  • the heat buffer plates 104a and 104b are respectively formed on the copper foils 103a and 103b among the plurality of copper foils 103a, 103b, 103c and 103d, and the IGBTs 105a and 105b are formed on the heat buffer plates 104a and 104b. Each is formed.
  • Each IGBT 105a, 105b is a bare chip IGBT (bare chip transistor).
  • the emitter of the IGBT 105a and the copper foil 103b are connected by a wire 106a constituted by a wire, and the emitter of the IGBT 105b and the copper foil 103c are connected by a wire 106b similarly constituted by a wire.
  • the resin 102, the copper foils 103a, 103b and 103c, the thermal buffer plates 104a and 104b, the IGBTs 105a and 105b, and the wirings 106a and 106b are sealed by a gel 107. Further, a lid 108 covering the concave portion of the substrate 101 is fixed to the upper portion of the substrate 101.
  • FIG. 15 is a schematic plan view showing another example of the conventional semiconductor module.
  • a plurality of conductive pads 201 and 202 are formed on a substrate (not shown).
  • the MOS chip 203 is soldered on one of the plurality of conductive pads 201 and 202.
  • a plurality of source electrodes 205 and a single gate electrode 204 are formed on the top surface of the MOS chip 203, and a drain electrode (not shown) is formed on the bottom surface of the MOS chip 203.
  • the source electrode 205 of the MOS chip 203 and the other conductive pad 202 of the plurality of conductive pads 201 and 202 formed on the substrate are interconnected by the lead 210.
  • the lead 210 is formed by punching and bending a metal plate, and extends in the X direction and the Y direction with a rectangular flat source electrode connection portion 211 extending in the X direction and the Y direction (horizontal direction) shown in FIG.
  • a flat electrode connection portion 212 and a connection portion 213 which is inclined in the Z direction (vertical direction) and connects the source electrode connection portion 211 and the electrode connection portion 212 are provided.
  • the source electrode connection portion 211 is soldered to the source electrode 205 of the MOS chip 203, and the electrode connection portion 212 is soldered to the other conductive pad 202 of the plurality of conductive pads 201 and 202 on the substrate. It is supposed to be connected.
  • the width a of the source electrode connection portion 211 in the X direction is equal to or greater than the width b of the plurality of source electrodes 205 in the X direction.
  • the conventional semiconductor module 100 shown in FIG. 14 and the semiconductor module 200 shown in FIG. 15 have the following problems. That is, in the case of the semiconductor module 100 shown in FIG. 14, the connection between the emitter of the IGBT 105a and the copper foil 103b and the connection of the emitter of the IGBT 105b and the copper foil 103c are connected using the wires 106a and 106b formed of wires. ing. Since connection using this wire is performed using a wire bonding apparatus (not shown), the work of mounting the wires 106a and 106b is performed on the wiring pattern on the substrate with the IGBTs 105a and 105b and other surface mounted components.
  • the lead-out direction of the lead 210 connected to the source electrode 205 is only the Y direction shown in FIG. Not listed.
  • the lead-out direction of the lead 210 connected to the source electrode 205 is only one direction, there is no freedom in the arrangement of the MOS chip 203 mounted on the substrate, and no freedom in the design of the wiring on the substrate. .
  • the layout of the semiconductor module on the substrate can not be made compact because there is no design freedom of the wiring on the substrate.
  • the present invention has been made to solve the above-mentioned problems, and its object is to make the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate by the solder mounting operation. It is an object of the present invention to provide a semiconductor module that can be performed in the same process as a solder mounting operation performed when mounting other surface mounting components on a wiring pattern on a substrate, and a method of manufacturing the same.
  • Another object of the present invention is to provide flexibility in the arrangement of bare chip transistors mounted on a substrate and the design of wiring on the substrate, and to make the layout of the semiconductor module on the substrate compact. It is an object of the present invention to provide a semiconductor module and a method of manufacturing the same that can easily make the lengths of the paths of the three-phase motor on the substrate the same.
  • a semiconductor module comprises a metal substrate, an insulating layer formed on the substrate, and a plurality of wiring patterns formed on the insulating layer.
  • a bare chip transistor mounted via solder on one of the plurality of wiring patterns, an electrode formed on the upper surface of the bare chip transistor, and the other wiring pattern of the plurality of wiring patterns are soldered.
  • a copper connector composed of a copper plate for connection.
  • the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate can be performed by a solder mounting operation. Therefore, the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate can be performed in the same process as the solder mounting operation performed when mounting the bare chip transistor or other surface mounting components on the wiring pattern on the substrate. it can.
  • the manufacturing tact of the semiconductor module can be shortened, and no dedicated equipment for wire bonding becomes necessary, and the manufacturing cost of the semiconductor module can be reduced. That is, since the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate can also be performed by the facility for the solder mounting operation, the equipment investment can be suppressed. Furthermore, it is possible to simultaneously carry out the process of mounting bare chip transistors and other surface mounted components on the wiring patterns on the substrate and the process of connecting the electrodes of the bare chip transistors and the wiring patterns on the substrate.
  • the copper plate and the copper connector may be a plate-like member made of a material having the same electrical and mechanical properties as copper, or a connector having a material having the same electrical and mechanical properties as copper. It is preferable to use a copper plate or a copper connector since it is easy to obtain industrially stable quality at a relatively low cost.
  • the bare chip transistor is a bare chip FET having a source electrode and a gate electrode formed on the upper surface
  • the copper connector includes a copper connector for a source electrode and a copper connector for a gate electrode.
  • the source electrode on the FET and the other wiring pattern of the plurality of wiring patterns are connected via the solder with the copper connector for the source electrode, and the gate electrode on the bare chip FET and the plurality of wiring patterns are further connected. It is preferable to connect with the other wiring pattern top with the said copper connector for gate electrodes via solder.
  • the connection between the source electrode of the bare chip FET and the wiring pattern on the substrate is made using a copper connector for the source electrode, and the connection between the gate electrode of the bare chip FET and another wiring pattern on the substrate is made for the gate electrode
  • solder mounting can be performed. Therefore, the connection between the source electrode of the bare chip FET and the wiring pattern on the substrate and the connection between the gate electrode of the bare chip FET and another wiring pattern on the substrate are bare chip FET and others Can be performed in the same process as the solder mounting operation performed when mounting the surface mounting component on the wiring pattern on the substrate.
  • the copper connector for the gate electrode is of one type
  • the copper connector for the source electrode is a first copper connector for the source electrode in which the copper connector for the gate electrode is disposed 180 ° straight.
  • Two types of copper connectors for the second source electrode which are disposed 90 ° at right angles to the copper connector for the gate electrode, and in one bare chip FET, the copper connector for the one type of gate electrode and the two types It is good to use combining with the copper connector for any one of source electrodes selected from the copper connector for a 1st source electrode, and the copper connector for a 2nd source electrode.
  • this semiconductor module a degree of freedom is created in the arrangement of bare chip transistors mounted on the substrate, the degree of freedom in the design of the wiring on the substrate is increased, and the layout of the semiconductor module on the substrate can be made compact.
  • the gate electrode and the source electrode formed on the upper surface of the bare chip FET may be arranged in series in a straight manner, and the source electrode may be formed in a rectangular shape. Furthermore, in this semiconductor module, the copper connector for the first source electrode is drawn out along the direction in which the short side of the rectangular-shaped source electrode extends, and along the short side and the long side of the source electrode. It is preferable to provide a connection portion having a short side and a long side and having an area of a connection surface connected to the source electrode that is substantially the same as that of the source electrode.
  • the copper connector for the second source electrode is drawn out along the direction in which the long side of the rectangular shaped source electrode extends, and is along the long side and the short side of the source electrode. It is preferable to provide a connection portion having a long side and a short side and having an area of a connection surface connected to the source electrode that is substantially the same area as the source electrode. According to this semiconductor module, it is possible to ensure the connection reliability between the second source electrode copper connector disposed at 90 ° right angle to the gate electrode copper connector and the source electrode formed on the upper surface of the bare chip FET.
  • a step of forming an insulating layer on a metal substrate, a step of forming a plurality of wiring patterns on the insulating layer, and a plurality of wiring patterns A step of applying a solder paste thereon; a step of mounting a bare chip transistor on the solder paste applied on one of the plurality of wiring patterns; and an electrode formed on the upper surface of the bare chip transistor
  • a copper connector comprising a copper plate on the step of applying a solder paste, on the solder paste applied on the electrode of the bare chip transistor and on the other paste of the plurality of wiring patterns.
  • the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate can be performed by a solder mounting operation by using a copper connector composed of a copper plate. Therefore, the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate can be performed in the same process as the solder mounting operation performed when mounting the bare chip transistor or other surface mounted components on the wiring pattern on the substrate. . For this reason, while being able to shorten the manufacture tact of a semiconductor module, a dedicated facility for wire bonding becomes unnecessary, and the manufacturing cost of the semiconductor module can be reduced.
  • the bare chip transistor is a bare chip FET having a source electrode and a gate electrode formed on the upper surface
  • the copper connector includes a copper connector for source electrode and a copper connector for gate electrode.
  • connection between the source electrode of the bare chip FET and the wiring pattern on the substrate is performed using the copper connector for the source electrode, and the gate electrode of the bare chip FET and the substrate Since connection with another wiring pattern can be performed by a solder mounting operation by using a copper connector for gate electrode, the connection between the source electrode of the bare chip FET and the wiring pattern on the substrate and the gate electrode of the bare chip FET and another on the substrate.
  • the connection with the wiring pattern can be performed in the same process as the solder mounting operation performed when mounting a bare chip FET or other surface mounted components on the wiring pattern on the substrate.
  • the copper electrode connector for gate electrode is one type, and the copper connector for source electrode is disposed at a 180 ° straight arrangement with respect to the copper connector for gate electrode.
  • the copper connector for source electrode is disposed at a 180 ° straight arrangement with respect to the copper connector for gate electrode.
  • a semiconductor module like the above-described semiconductor module, freedom in the arrangement of bare chip transistors mounted on the substrate is created, and the freedom of wiring on the substrate is increased, and thus, on the substrate
  • the layout of the semiconductor module can be made compact, and the lengths of the paths of the respective phases of the three-phase motor on the substrate can be easily made the same. This makes it possible to easily match the phase characteristics of the three-phase motor, in particular the impedance characteristics of the respective phases, and to improve the ripple accuracy such as torque and speed.
  • the semiconductor module according to another aspect of the present invention is characterized in that the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate is performed in a solder mounting operation by using a copper connector formed of a copper plate. Do. In the semiconductor module according to still another aspect of the present invention, freedom in the arrangement of bare chip transistors mounted on the substrate is created, and the freedom of design of the wiring on the substrate is increased.
  • a copper connector for one type of gate electrode and a copper connector for first source electrode arranged in a 180 ° straight arrangement with respect to the copper connector for gate electrode; Any one selected from two types of copper connectors for the first source electrode and copper connectors for the second source electrode with the copper connector for the second source electrode arranged at 90 ° right angle to the copper connector for the gate electrode It is characterized in that it is used in combination with one of the copper connectors for source electrodes.
  • the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate can be performed by the solder mounting operation by using the copper connector made of copper plate.
  • the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate can be performed in the same process as the solder mounting operation performed when mounting the bare chip transistor and other surface mounted components on the wiring pattern on the substrate. For this reason, while being able to shorten the manufacture tact of a semiconductor module, a dedicated facility for wire bonding becomes unnecessary, and the manufacturing cost of the semiconductor module can be reduced.
  • one of a copper connector for a gate electrode, a copper connector for a first source electrode, and a copper connector for a second source electrode is selected.
  • the degree of freedom in the arrangement of bare chip transistors mounted on the substrate there is a degree of freedom in the arrangement of bare chip transistors mounted on the substrate, and the degree of freedom in the design of the wiring on the substrate is increased.
  • the layout of the semiconductor module on the substrate can be made compact, and the length of the path of each phase of the three-phase motor on the substrate can be easily made the same. This makes it possible to easily match the phase characteristics of the three-phase motor, in particular the impedance characteristics of the respective phases, and to improve the ripple accuracy such as torque and speed.
  • FIG. 6 is a schematic diagram for explaining a connection state of an electrode of a bare chip FET constituting a bare chip transistor and a wiring pattern on a substrate in the semiconductor module shown in FIGS.
  • the copper connector for gate electrodes is shown, (A) is a perspective view of the state which looked at the copper connector for gate electrodes from diagonally upward left side, (B) is the perspective view of the copper connector for gate electrodes seen from diagonally upper right side.
  • FIG. The copper connector for gate electrodes is shown, (A) is a top view, (B) is a front view, (C) is a right side view, (D) is a left side view. It is the perspective view of the state which looked at the copper connector for 1st source electrodes from diagonally upward left side.
  • the copper connector for 1st source electrodes is shown, (A) is a top view, (B) is a front view, (C) is a right side view, (D) is a left side view.
  • FIG. 1 It is the perspective view of the state which looked at the copper connector for 2nd source electrodes from diagonally upward left side.
  • the copper connector for 2nd source electrodes is shown, (A) is a top view, (B) is a front view, (C) is a right side view, (D) is a left side view.
  • FIG. 1 is a view showing the basic structure of an electric power steering apparatus in which a semiconductor module according to the present invention is used.
  • FIG. 2 is a block diagram showing a control system of a controller of the electric power steering apparatus shown in FIG.
  • FIG. 3 is an exploded perspective view of a controller including the semiconductor module of the electric power steering apparatus shown in FIG.
  • FIG. 4 is a plan view of the semiconductor module shown in FIG.
  • FIG. 5 is a schematic diagram for explaining the connection between the electrodes of the bare chip FET constituting the bare chip transistor and the wiring pattern on the substrate in the semiconductor module shown in FIGS. 3 and 4.
  • FIG. 1 is a view showing the basic structure of an electric power steering apparatus in which a semiconductor module according to the present invention is used.
  • FIG. 2 is a block diagram showing a control system of a controller of the electric power steering apparatus shown in FIG.
  • FIG. 3 is an exploded perspective view of a controller including the semiconductor module of the electric power steering apparatus shown in FIG.
  • FIG. 4
  • FIG. 6 is a plan view for explaining the connection state between the electrode of the bare chip FET and the copper connector.
  • FIG. 6 (A) shows that the gate electrode copper connector is connected to the gate electrode of the bare chip FET and (1) A plan view for explaining a state in which a copper connector for source electrode is connected, (B) is connected to a copper connector for gate electrode to the gate electrode of bare chip FET, and a copper connector for second source electrode to the source electrode. It is a top view for demonstrating the connected state.
  • FIG. 7 is a schematic plan view of the bare chip FET.
  • FIG. 1 shows the basic structure of an electric power steering apparatus in which the semiconductor module according to the present invention is used.
  • the column shaft 2 of the steering handle 1 is a reduction gear 3 and a universal joint 4A. And 4B, through the pinion rack mechanism 5, it is connected to the tight rod 6 of the steering wheel.
  • a torque sensor 7 for detecting the steering torque of the steering wheel 1 is provided on the column shaft 2, and an electric motor 8 assisting the steering force of the steering wheel 1 is connected to the column shaft 2 via the reduction gear 3. It is done.
  • Electric power is supplied from a battery (not shown) to the controller 10 for controlling the electric power steering apparatus, and an ignition key signal IGN (see FIG. 2) is input through an ignition key (not shown).
  • the controller 10 calculates a steering assist command value to be an assist (steering assist) command based on the steering torque Ts detected by the torque sensor 7 and the vehicle speed V detected by the vehicle speed sensor 9, and the calculated steering
  • the current supplied to the electric motor 8 is controlled based on the auxiliary command value.
  • the controller 10 is mainly composed of a microcomputer, and the mechanism and configuration of its control device are as shown in FIG.
  • the steering torque Ts detected by the torque sensor 7 and the vehicle speed V detected by the vehicle speed sensor 9 are input to the control arithmetic unit 11 as a control arithmetic unit, and the current command value calculated by the control arithmetic unit 11 is gate drive circuit 12 Enter in
  • the gate drive signal formed based on the current command value or the like in the gate drive circuit 12 is input to the motor drive unit 13 having a bridge configuration of FET, and the motor drive unit 13 passes through the interruption device 14 for emergency stop and three phases
  • An electric motor 8 configured of a brushless motor is driven.
  • the respective phase currents of the three-phase brushless motor are detected by the current detection circuit 15, and the detected three-phase motor currents ia to ic are inputted to the control arithmetic unit 11 as feedback currents.
  • a rotation sensor 16 such as a Hall sensor is attached to the three-phase brushless motor, the rotation signal RT from the rotation sensor 16 is input to the rotor position detection circuit 17, and the detected rotation position ⁇ is a control arithmetic device It is input to 11.
  • the ignition signal IGN from the ignition key is input to the ignition voltage monitor unit 18 and the power supply circuit unit 19, and the power supply voltage Vdd from the power supply circuit unit 19 is input to the control arithmetic device 11, and a reset signal for stopping the device. Rs is input to the control arithmetic device 11.
  • blocking apparatus 14 is comprised by the relay contacts 141 and 142 which interrupt
  • FET Tr1 and Tr2, FET Tr3 and Tr4, and FET Tr5 and Tr6 connected in series are connected in parallel to the power supply line 81.
  • the FET Tr1 and Tr2, FET Tr3 and Tr4, and FET Tr5 and Tr6 connected in parallel to the power supply line 81 are connected to the ground line 82.
  • the source electrode S of the FETTr1 and the drain electrode D of the FETTr2 are connected in series to form a c-phase arm of a three-phase motor, and a current is output through a c-phase output line 91c.
  • the source electrode S of the FETTr3 and the drain electrode D of the FETTr4 are connected in series to form an a-phase arm of a three-phase motor, and a current is output through an a-phase output line 91a.
  • the source electrode S of the FETTr5 and the drain electrode D of the FETTr6 are connected in series to form a b-phase arm of a three-phase motor, and a current is output through the b-phase output line 91b.
  • FIG. 3 is an exploded perspective view of the controller 10 including the semiconductor module of the electric power steering apparatus shown in FIG. 1.
  • the controller 10 is a semiconductor module 30 as a power module including the case 20 and the motor drive unit 13. And a control circuit board 40 including the heat dissipation sheet 39, the control arithmetic device 11 and the gate drive circuit 12, a power and signal connector 50, a three-phase output connector 60, and a cover 70.
  • the case 20 is formed in a substantially rectangular shape, and provided at the longitudinal direction end of the semiconductor module placement portion 21 for placing the semiconductor module 30 and the semiconductor module placement portion 21.
  • a plurality of screw holes 21 a into which mounting screws 38 for mounting the semiconductor module 30 are screwed are formed in the semiconductor module mounting portion 21. Further, a plurality of mounting posts 24 for mounting the control circuit board 40 are erected on the semiconductor module mounting portion 21 and the power and signal connector mounting portion 22, and the control circuit board 40 is mounted on each mounting post 24. A screw hole 24a into which a mounting screw 41 for mounting is screwed is formed. Furthermore, in the three-phase output connector mounting portion 23, a plurality of screw holes 23a into which mounting screws 61 for mounting the three-phase output connector 60 are screwed are formed.
  • the semiconductor module 30 has the circuit configuration of the motor drive unit 13 described above, and as shown in FIG. 4, six FETs Tr1 to Tr6 and a positive electrode terminal 81a connected to the power supply line 81 on the substrate 31; A negative terminal 82a connected to the ground line 82 is mounted.
  • the substrate 31 also includes an a-phase output terminal 92a connected to the a-phase output line 91a, a b-phase output terminal 92b connected to the b-phase output line 91b, and a c-phase output connected to the c phase output line 91c.
  • a three-phase output unit 90 including a terminal 92c is mounted.
  • other surface mounting components 37 including a capacitor are mounted on the substrate 31.
  • the substrate 31 of the semiconductor module 30 is provided with a plurality of through holes 31 a through which mounting screws 38 for mounting the semiconductor module 30 are inserted.
  • Each of the FETs Tr1 to Tr6 is configured by a bare chip FET (bare chip transistor) 35, and as shown in FIG. 7, a source electrode S and a gate electrode G are provided on the bare chip FET 35. It has an electrode.
  • the gate electrode G and the source electrode S formed on the upper surface of the bare chip FET 35 are arranged in series in the vertical direction in FIG. 7 as shown in FIG.
  • the gate electrode G is formed in a rectangular shape having a short side extending in the vertical direction in FIG. 7 and a long side orthogonal to the short side.
  • the source electrode S is formed in a rectangular shape having a short side extending in the vertical direction in FIG. 7 and a long side orthogonal to the short side.
  • the short side and the long side of the source electrode S are larger than the short side and the long side of the gate electrode G, and the area of the source electrode S is larger than the area of the gate electrode G.
  • the semiconductor module 30 includes a substrate 31 made of metal, and an insulating layer 32 is formed on the substrate 31.
  • the substrate 31 is made of metal such as aluminum.
  • a plurality of wiring patterns 33a to 33d are formed on the insulating layer 32.
  • Each of the wiring patterns 33a to 33d is made of a metal such as copper or aluminum or an alloy containing the metal.
  • a bare chip FET 35 constituting each of the FETs Tr1 to Tr6 is mounted on the wiring pattern 33a among the plurality of wiring patterns 33a to 33d via the solder 34a.
  • the drain electrode formed on the lower surface of the bare chip FET 35 is connected to the wiring pattern 33a via the solder 34a.
  • the source electrode S of the bare chip FET 35 and the other wiring pattern 33b among the plurality of wiring patterns 33a to 33d are connected to each other via the solder 34e and 34b by the copper connector 36a for the source electrode.
  • the gate electrode G of the bare chip FET 35 and the other wiring pattern 33c among the plurality of wiring patterns 33a to 33d are connected by the gate electrode copper connector 36b through the solder 34f and 34c, respectively.
  • the gate electrode copper connector 36b is of one type, and all the FETs Tr1 to Tr6 in FIG. 4 are drawn out and connected in the arrow A direction shown in FIG. This situation is shown in FIGS. 6 (A) and 6 (B).
  • the copper connector 36a for the source electrode is a first copper connector 36a1 for the source electrode, which is disposed 180 ° straight with respect to the copper connector 36b for the gate electrode, and FIG.
  • the first source electrode copper connector 36a1 is drawn out and connected in the direction of the arrow A ′ shown in FIG.
  • the second source electrode copper connector 36a2 is drawn out and connected in the direction of arrow B shown in FIG. 7 in the FETTr1 in FIG. 4, and drawn out in the direction of arrow B 'shown in FIG. 7 in the FETTr3 and Tr5 in FIG. Connected
  • the degree of freedom in the arrangement of the bare chip FET 35 mounted on the substrate 31 is created, the degree of freedom in the design of the wiring on the substrate 31 is increased, and the layout of the semiconductor module 30 on the substrate 31 can be made compact.
  • the lengths of the paths of the three-phase motor on the substrate 31 are made the same. You can do it easily. This makes it possible to easily match the phase characteristics of the three-phase motor, in particular, the impedance characteristics, and to improve the ripple accuracy such as torque and speed.
  • the gate electrode copper connector 36b is formed by punching and bending a copper plate, extends from the flat plate portion 36ba and one end of the flat plate portion 36ba, and is connected to the gate electrode G of the bare chip FET 35 through the solder 34f. And a connection portion 36bc extending from the other end of the flat portion 36ba and connected to the wiring pattern 33c via the solder 34c.
  • the flat plate portion ba of the copper connector 36b for gate electrode constitutes the suction surface of the suction device by air. For this reason, adsorption by air can be performed using the flat plate portion ba.
  • the connection portion 36bb of the gate electrode copper connector 36b is formed to extend outward at the lower end of the connection piece 36bd which extends obliquely downward from one end of the flat plate portion 36ba.
  • the connection portion 36 bb has short sides and long sides along the short sides and the long sides of the gate electrode G, and the area of the connection surface connected to the gate electrode G has substantially the same area as the area of the gate electrode G.
  • connection reliability between the gate electrode copper connector 36b and the gate electrode G can be secured.
  • connection portion 36bc of the gate electrode copper connector 36b is formed to extend outward at the lower end of the connection piece 36be extending obliquely downward from the other end of the flat plate portion 36ba.
  • the connection portion 36 bc is located below the connection portion 36 bb.
  • the area of the connection surface of the connection portion 36bc to the wiring pattern 33c is larger than the area of the connection surface of the connection portion 36bb to the gate electrode G.
  • the gate electrode copper connector 36b is substantially coplanar when viewed from the front having the flat plate portion 36ba, the connection piece 36bd, the connection portion 36bb, the connection piece 36be, and the connection portion 36bc. Since it is formed in the shape of a letter, it is possible to perform the reflow connection described later in the solder connection, and to effectively relieve the thermal stress when the semiconductor module 30 becomes high temperature due to heat generation.
  • the first source electrode copper connector 36a1 is formed by punching and bending a copper plate, extends from the flat plate portion 36aa and one end of the flat plate portion 36aa, and the source electrode S of the bare chip FET 35 via the solder 34e. And a connection portion 36 ac extending from the other end of the flat portion 36 aa and connected to the wiring pattern 33 b via the solder 34 b.
  • the flat plate portion 36aa of the first source electrode copper connector 36a1 constitutes the suction surface of the suction device using air. For this reason, adsorption by air can be performed using the flat plate portion aa.
  • an identification hole 36af for identifying the second source electrode copper connector 36a2 is formed in the flat plate portion 36aa.
  • the first source electrode copper connector 36a1 is drawn out along the direction (arrow A 'direction in FIG. 7) in which the short side of the source electrode S formed in a rectangular shape extends.
  • the contact portion 36ab of the first source electrode copper connector 36a1 is formed to extend outward at the lower end of the connection piece 36ad which extends obliquely downward from one end of the flat plate portion 36aa.
  • the contact portion 36ab has a short side and a long side along the short side and the long side of the source electrode S, and the area of the connection surface connected to the source electrode S has substantially the same area as the source electrode S. There is.
  • the first source is disposed 180 ° straight with respect to the gate electrode copper connector 36 b
  • the connection reliability between the electrode copper connector 36a1 and the source electrode S formed on the upper surface of the bare chip FET 35 can be secured.
  • connection portion 36ac of the first source electrode copper connector 36a1 is formed so as to extend outward at the lower end of the connection piece 36ae extending obliquely downward from the other end of the flat plate portion 36aa.
  • the connection portion 36ac is located below the connection portion 36ab.
  • the area of the connection surface of the connection portion 36ac to the wiring pattern 33b is substantially the same as the area of the connection surface of the connection portion 36ab to the source electrode S.
  • the first source electrode copper connector 36a1 has a flat portion 36aa, a connection piece 36ad, a connection portion 36ab, a connection piece 36ae, and a connection portion 36ac. Since it is formed in a substantially U-shape, it is possible to perform the reflow connection described later in the solder connection, and to effectively relieve the thermal stress when the semiconductor module 30 becomes high temperature due to heat generation.
  • the second source electrode copper connector 36a2 is formed by punching and bending a copper plate, and extends from the flat plate portion 36aa and one end of the flat plate portion 36aa, and the source electrode S of the bare chip FET 35 via the solder 34e. And a connection portion 36 ac extending from the other end of the flat portion 36 aa and connected to the wiring pattern 33 b via the solder 34 b.
  • the flat plate portion 36aa of the second source electrode copper connector 36a2 constitutes the suction surface of the suction device using air. For this reason, adsorption by air can be performed using the flat plate portion aa.
  • the second source electrode copper connector 36a2 is drawn along the direction in which the long side of the source electrode S formed in a rectangular shape extends (the arrow B or B direction in FIG. 7).
  • the connection portion 36ab of the second source electrode copper connector 36a2 is formed to extend outward at the lower end of the connection piece 36ad extending obliquely downward from one end of the flat plate portion 36aa.
  • the connection portion ab has a short side and a long side along the long side and the short side of the source electrode S, and the area of the connection surface connected to the source electrode S is substantially the same as the area of the source electrode S.
  • the second source is disposed at 90 ° perpendicular to the gate electrode copper connector 36 b
  • the connection reliability between the electrode copper connector 36a2 and the source electrode S formed on the top surface of the bare chip FET 35 can be secured.
  • connection portion 36ac of the second source electrode copper connector 36a2 is formed so as to extend outward at the lower end of the connection piece 36ae extending obliquely downward from the other end of the flat plate portion 36aa.
  • the connection portion 36ac is located below the connection portion 36ab.
  • the area of the connection surface of the connection portion 36ac to the wiring pattern 33b is substantially the same as the area of the connection surface of the connection portion 36ab to the source electrode S.
  • the second source electrode copper connector 36a2 has the flat portion 36aa, the connection piece 36ad, the connection portion 36ab, the connection piece 36ae, and the connection portion 36ac. Since it is formed in a substantially U-shape, it is possible to perform the reflow connection described later in the solder connection, and to effectively relieve the thermal stress when the semiconductor module 30 becomes high temperature due to heat generation.
  • another wiring pattern 33d of the plurality of wiring patterns 33a to 33d formed on the insulating layer 32 is another wiring pattern 33d via a solder 34d.
  • the surface mounting component 37 is mounted.
  • the semiconductor module 30 configured in this way is mounted on the semiconductor module mounting portion 21 of the case 20 by a plurality of mounting screws 38, as shown in FIG.
  • the substrate 31 of the semiconductor module 30 is formed with a plurality of through holes 31 a through which the mounting screws 38 are inserted.
  • the heat dissipation sheet 39 is mounted on the semiconductor module mounting portion 21, and the semiconductor module 30 is mounted on the heat dissipation sheet 39.
  • the heat generated by the semiconductor module 30 is dissipated to the case 20 through the heat dissipating sheet 39 by the heat dissipating sheet 39.
  • control circuit board 40 mounts a plurality of electronic components on the substrate to constitute a control circuit including the control arithmetic device 11 and the gate drive circuit 12.
  • the control circuit board 40 After mounting the semiconductor module 30 on the semiconductor module mounting portion 21, the control circuit board 40 is provided with a plurality of standing on the semiconductor module mounting portion 21 and the power and signal connector mounting portion 22 from above the semiconductor module 30.
  • a plurality of mounting screws 41 are mounted on the mounting post 24.
  • the control circuit board 40 is formed with a plurality of through holes 40 a through which the mounting screws 41 are inserted.
  • the power and signal connector 50 inputs DC power from a battery (not shown) to the semiconductor module 30 and various signals including signals from the torque sensor 12 and the vehicle speed sensor 9 to the control circuit board 40. Used.
  • the power and signal connector 50 is attached to the power and signal connector mounting portion 22 provided in the semiconductor module mounting portion 21 by a plurality of mounting screws 51.
  • the three-phase output connector 60 is used to output the current from the a-phase output terminal 92a, the b-phase output terminal 92b, and the c-phase output terminal 92c.
  • the three-phase connector 60 is attached to the three-phase output connector mounting portion 23 provided at the width direction end of the semiconductor module mounting portion 21 by a plurality of mounting screws 61.
  • the three-phase output connector 60 is formed with a plurality of through holes 60 a through which the mounting screws 61 are inserted.
  • the cover 70 covers the control circuit board 40 from above the control circuit board 40 with respect to the case 20 to which the semiconductor module 30, the control circuit board 40, the power and signal connector 50, and the three-phase output connector 60 are attached. Attached to cover the
  • the semiconductor module 30 First, the insulating layer 32 is formed on one main surface of the metal substrate 31 (insulating layer forming step). Next, a plurality of wiring patterns 33a to 33d are formed on the insulating layer 32 (wiring pattern formation step). Thereafter, solder paste (solders 34a to 34d) is applied onto the plurality of wiring patterns 33a to 33d, respectively (solder paste application step).
  • solder paste solders 34a to 34d
  • one of the bare chip FETs 35 is mounted on a solder paste (solder 33a) applied on one of the plurality of wiring patterns 33a to 33d (a bare chip FET mounting step), and another wiring pattern 33d is formed.
  • Other surface mounting components 37 are mounted on the solder paste (solder 34 d) applied on top.
  • the other bare chip FETs 35 are also mounted on the same or separate wiring pattern as the wiring pattern 33a.
  • solder paste (solder 34 e, 34 f) is applied onto the source electrode S and the gate electrode G formed on the upper surface of the bare chip FET 35 (solder paste application step). Thereafter, the solder paste (solder 34e) applied on the source electrode S of the bare chip FET 35 and the wiring pattern 33b other than the wiring pattern 33a on which the bare chip FET 35 is mounted among the plurality of wiring patterns 33a to 33d are applied.
  • the copper connector 36a for source electrode (the copper connector for source electrode selected from the copper connector 36a1 for the first source electrode and the copper connector 36a2 for the second source electrode) is mounted ( Process for mounting copper connector for source electrode).
  • the wiring pattern 33a on which the bare chip FET 35 is mounted and the copper connector 36a for the source electrode among the plurality of wiring patterns 33a to 33d are mounted on the solder paste (solder 34f) applied on the gate electrode G of the bare chip FET 35.
  • the copper connector 36b for gate electrode is mounted on the solder paste (solder 34c) applied on the other wiring pattern 33c other than the above wiring pattern 33b (mounting step of copper connector for gate electrode).
  • the semiconductor module intermediate assembly configured by the above steps is placed in a reflow furnace (not shown), and one of the plurality of wiring patterns 33a to 33d is soldered through the solder 34a of the wiring pattern 33a and the bare chip FET 35. Bonding, bonding between the wiring pattern 33 d and the other surface mounting component 37 via solder 34 d, and bonding between the source electrode S formed on the upper surface of the bare chip FET 35 and the copper connector 36 a for source electrode via solder 34 e.
  • the semiconductor module 30 is completed.
  • the connection between the source electrode S of the bare chip FET 35 and the wiring pattern 33b on the substrate 31 is performed using the copper connector 36a for the source electrode, and the connection between the gate electrode G of the bare chip FET 35 and another wiring pattern 33c on the substrate 31
  • the solder mounting operation can be performed.
  • connection between the source electrode S of the bare chip FET 35 and the wiring pattern 33b on the substrate 31 and the other electrode on the gate electrode G of the bare chip FET 35 and the substrate 31 The connection with the pattern 33 c can be performed in the same process as the solder mounting operation performed when mounting the bare chip FET 35 and the other surface mounted components 37 on the wiring patterns 33 a and 33 d on the substrate 31. Therefore, the manufacturing tact of the semiconductor module 30 can be shortened, and no dedicated equipment for wire bonding is required, and the manufacturing cost of the semiconductor module 30 can be reduced.
  • this invention can perform a various change and improvement, without being limited to this.
  • the bare chip FET 35 is used in the semiconductor module 30, the present invention is not limited to the bare chip FET 35, and another bare chip transistor such as a bare chip IGBT may be used.
  • copper connectors are used on the electrodes formed on the upper surface of the bare chip transistors and on other wiring patterns other than the wiring patterns to which the bare chip transistors are connected among the plurality of wiring patterns. It may be connected via solder. Thereby, the connection between the electrode of the bare chip transistor and the wiring pattern on the substrate can be performed in the same process as the solder mounting operation performed when mounting the bare chip transistor or other surface mounted components on the wiring pattern on the substrate it can.
  • a bare chip IGBT When a bare chip IGBT is used as a bare chip transistor, it is preferable to connect the emitter electrode and the gate electrode formed on the bare chip IGBT to the wiring pattern on the substrate using a copper connector via solder. As described above, when using the bare chip IGBT to connect the emitter electrode and the gate electrode formed on the bare chip IGBT to the wiring pattern on the substrate using the copper connector, the emitter of the bare chip IGBT is used. The connection between the electrode and the wiring pattern on the substrate and the connection between the gate electrode of the bare chip IGBT and another wiring pattern on the substrate are performed when mounting the bare chip IGBT or other surface mounted components on the wiring pattern on the substrate It can be performed in the same process as the solder mounting operation.
  • the source electrode S formed on the upper surface of the bare chip FET 35 is formed in a rectangular shape, it may be formed in a square shape.
  • the shapes of the first source electrode connector 36a1 and the second source electrode copper connector 36a2 connected to the source electrode S can be made identical and made common.
  • a common copper connector 36c is used as a jumper wire for the a-phase output line 91a, the b-phase output line 91b, and the c-phase output line 91c.
  • the lengths of the paths of the a-phase output line 91a, the b-phase output line 91b, and the c-phase output line 91c can be made the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Wire Bonding (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 ベアチップトランジスタの電極と基板上の配線パターンとの接続を半田実装作業で行うようにして、ベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する際に行われる半田実装作業と同一の工程で行うことを可能とする半導体モジュール及びその製造方法を提供する。半導体モジュール(30)は、絶縁層(32)上に形成された複数の配線パターン(33a)~(33d)と、複数の配線パターン(33a)~(33d)のうち一つの配線パターン(33a)上に半田(34a)を介して実装されるベアチップトランジスタ(35)と、ベアチップトランジスタ(35)の上面に形成された電極(S),(G)と複数の配線パターン(33a)~(33d)のうち他の配線パターン(33b),(33c)とを半田(34b),(34c)を介して接続するための、銅板で構成される銅コネクタ(36a),(36b)とを備えている。

Description

半導体モジュール及びその製造方法
 本発明は、自動車用電気機器に組み込まれるパワーモジュール等の半導体モジュール及びその製造方法に関する。
 昨今、自動車等の車両における種々の電気機器の制御に電子装置が導入されてきた。電子装置が組み込まれた電気機器の一例として電動パワーステアリング装置では、自動車の操舵に係る電動モータが収容される筐体にモータ駆動部が設けられ、このモータ駆動部に電子装置が搭載される。この電子装置は、パワーモジュールとして、モータ駆動部に組み込まれる。
 パワーモジュールは、電動パワーステアリング装置のような比較的大きな電流で駆動される電気機器の制御に適した、例えば、FET(Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等のパワー素子を搭載したいわゆる半導体モジュールとして構成される。この種のパワーモジュールは、車両に搭載されることから車載モジュール(In-vehicle Module)とも呼ばれる。
 従来、この種の半導体モジュールとして、例えば、図14に示すものが知られている(特許文献1参照)。図14は、従来の半導体モジュールの一例の断面模式図である。
 図14に示す半導体モジュール100は、金属製の基板101と、基板101の凹部の底部平坦面上に設けられた樹脂102と、樹脂102上に形成された複数の銅箔(配線パターン)103a,103b,103c,103dとを備えている。銅箔103a及び銅箔103cと銅箔103dとの間には、溝109が形成されている。そして、複数の銅箔103a,103b,103c,103dのうち銅箔103a,103bの上には、熱緩衝板104a,104bがそれぞれ形成され、熱緩衝板104a,104b上には、IGBT105a,105bがそれぞれ形成されている。各IGBT105a,105bは、ベアチップIGBT(ベアチップトランジスタ)である。
 そして、IGBT105aのエミッタと銅箔103bとがワイヤで構成される配線106aで接続され、また、IGBT105bのエミッタと銅箔103cとが同じくワイヤで構成される配線106bで接続されている。
 また、樹脂102、銅箔103a,103b,103c、熱緩衝板104a,104b、IGBT105a,105b、及び配線106a,106bは、ゲル107によって封入されている。また、基板101の凹部を覆う蓋108が基板101の上部に固定されている。
 また、従来の半導体モジュールの他の例として、例えば、図15に示すものも知られている(特許文献2参照)。図15は、従来の半導体モジュールの他の例を示す平面模式図である。
 図15に示す半導体モジュール200において、基板(図示せず)上には複数の導電パッド201,202が形成されている。そして、複数の導電パッド201,202のうちの一つの導電パッド201上にはMOSチップ203が半田接続されている。また、MOSチップ203の上面には、複数のソース電極205及び単一のゲート電極204が形成され、MOSチップ203の下面には図示しないドレイン電極が形成されている。
 そして、MOSチップ203のソース電極205と、基板上に形成された複数の導電パッド201,202のうちの他の導電パッド202とがリード210によって相互接続されている。リード210は、金属板を打抜き及び曲げ加工することによって形成され、図15に示すX方向及びY方向(水平方向)に延びる矩形平板状のソース電極接続部211と、X方向及びY方向に延びる平板状の電極接続部212と、ソース電極接続部211と電極接続部212とを繋ぐZ方向(上下方向)に傾斜した連結部213とを備えている。ここで、ソース電極接続部211は、MOSチップ203のソース電極205に半田接続され、また、電極接続部212は、基板上の複数の導電パッド201,202のうちの他の導電パッド202に半田接続されるようになっている。
 そして、ソース電極接続部211のX方向の幅aは複数のソース電極205のX方向の幅b以上になっている。これにより、ソース電極205における不均一なはんだ濡れと当該半田のリフローによる当該ソース電極205に対する位置ずれを防止することができる。
特開2004-335725号公報 特開2007-95984号公報
 しかしながら、これら従来の図14に示した半導体モジュール100及び図15に示した半導体モジュール200にあっては、以下の問題点があった。
 即ち、図14に示した半導体モジュール100の場合、IGBT105aのエミッタと銅箔103bとの接続及びIGBT105bのエミッタと銅箔103cとの接続につき、ワイヤで構成される配線106a,106bを用いて接続している。このワイヤを用いた接続は、ワイヤボンディング装置(図示せず)を使用して行われるため、配線106a,106bを実装する作業が、IGBT105a,105bやその他の表面実装部品を基板上の配線パターン上に実装する際に行われる半田実装作業と異なり、製造工程が別になってしまうという問題があった。ワイヤボンディングによる実装作業が、半田実装作業と異なり、別の製造工程を要すると、製造タクトが長くなるとともに、ワイヤボンディングの専用設備が必要になり、製造コストが高くなってしまうという問題があった。
 また、図15に示した半導体モジュール200の場合、ソース電極205に接続されたリード210の引き出し方向は、図15に示すY方向のみであり、一方、ゲート電極204に接続されるリードについては何ら記載されていない。ここで、ソース電極205に接続されたリード210の引き出し方向が一方向のみであると、基板上に実装されるMOSチップ203の配置の自由度がなく、基板上の配線の設計自由度がない。この基板上の配線の設計自由度がないことにより、基板上における半導体モジュールのレイアウトをコンパクトにすることができない、という問題があった。また、ソース電極205に接続されたリード210の引き出し方向が一方向のみであると、基板上における3相モータの各相の径路の長さを同一にすることが困難で、各相のインピーダンス特性が異なり、3相モータの各相特性を一致させることが困難となる、という問題があった。
 従って、本発明は上述の問題点を解決するためになされたものであり、その目的は、ベアチップトランジスタの電極と基板上の配線パターンとの接続を半田実装作業で行うようにして、ベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する際に行われる半田実装作業と同一の工程で行うことを可能とする半導体モジュール及びその製造方法を提供することにある。
 また、本発明の他の目的は、基板上に実装されるベアチップトランジスタの配置及び基板上の配線の設計に自由度を持たせ、基板上における半導体モジュールのレイアウトをコンパクトにすることができるとともに、基板上における3相モータの各相の径路の長さを同一にすることを容易に行える半導体モジュール及びその製造方法を提供することにある。
 上記課題を解決するため、本発明のある態様に係る半導体モジュールは、金属製の基板と、該基板の上に形成された絶縁層と、該絶縁層上に形成された複数の配線パターンと、該複数の配線パターンのうち一つの配線パターン上に半田を介して実装されるベアチップトランジスタと、該ベアチップトランジスタの上面に形成された電極と前記複数の配線パターンのうち他の配線パターンとを半田を介して接続するための、銅板で構成される銅コネクタとを備えたことを特徴としている。
 この半導体モジュールによれば、銅板で構成される銅コネクタを用いることにより、ベアチップトランジスタの電極と基板上の配線パターンとの接続を半田実装作業で行える。そのため、ベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する際に行われる半田実装作業と同一の工程で、ベアチップトランジスタの電極と基板上の配線パターンとの接続を行うことができる。これにより、半導体モジュールの製造タクトを短くすることができるとともに、ワイヤボンディングの専用設備が不要になり、半導体モジュールの製造コストを安価にすることができる。即ち、ベアチップトランジスタの電極と基板上の配線パターンとの接続も半田実装作業用の設備にて行うことが可能であるため、設備投資を抑制することができる。更に、ベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する工程と、ベアチップトランジスタの電極と基板上の配線パターンとの接続を行う工程とを同時に行うことも可能となる。
 なお、銅板及び銅コネクタは、それぞれ、銅と同様の電気的・機械的特性を有する材質の板状部材、銅と同様の電気的・機械的特性を有する材質のコネクタであってもよいが、工業的に安定した品質のものが比較的安価に得やすいため、銅板、銅コネクタを用いることが好ましい。
 また、この半導体モジュールにおいて、前記ベアチップトランジスタが、上面にソース電極及びゲート電極を形成したベアチップFETであり、前記銅コネクタが、ソース電極用銅コネクタと、ゲート電極用銅コネクタとを備え、前記ベアチップFETのソース電極上と前記複数の配線パターンのうち他の配線パターン上とを前記ソース電極用銅コネクタで半田を介して接続し、前記ベアチップFETのゲート電極上と前記複数の配線パターンのうち更に他の配線パターン上とを前記ゲート電極用銅コネクタで半田を介して接続することが好ましい。
 この半導体モジュールによれば、ベアチップFETのソース電極と基板上の配線パターンとの接続をソース電極用銅コネクタを用い、ベアチップFETのゲート電極と基板上の別の配線パターンとの接続をゲート電極用銅コネクタを用いることにより、半田実装作業で行えるので、ベアチップFETのソース電極と基板上の配線パターンとの接続及びベアチップFETのゲート電極と基板上の別の配線パターンとの接続をベアチップFETやその他の表面実装部品を基板上の配線パターン上に実装する際に行われるはんだ実装作業と同一の工程で行うことができる。
 また、この半導体モジュールにおいて、前記ゲート電極用銅コネクタは1種類であり、前記ソース電極用銅コネクタは、前記ゲート電極用銅コネクタに対して180°ストレート配置とする第1ソース電極用銅コネクタと、前記ゲート電極用銅コネクタに対して90°直角配置とする第2ソース電極用銅コネクタとの2種類であり、1つのベアチップFETにおいて、前記1種類のゲート電極用銅コネクタと前記2種類の第1ソース電極用銅コネクタ及び第2ソース電極用銅コネクタのうちから選択されたいずれか一方のソース電極用銅コネクタとを組み合わせて使用するとよい。
 この半導体モジュールによれば、基板上に実装されるベアチップトランジスタの配置に自由度が生まれ、基板上の配線の設計の自由度が増大し、基板上における半導体モジュールのレイアウトをコンパクトにすることができるとともに、基板上における3相モータの各相の径路の長さを同一にすることを容易に行うことができる。これにより、3相モータの各相特性、特に各相のインピーダンス特性を容易に一致させることができ、トルクや速度等のリップル精度を向上することが可能になる。
 また、この半導体モジュールにおいて、前記ベアチップFETの上面に形成された前記ゲート電極と前記ソース電極とが直列にストレート配置され、前記ソース電極は長方形状に形成されていてもよい。
 更に、この半導体モジュールにおいて、前記第1ソース電極用銅コネクタは、前記長方形状に形成されたソース電極の短辺が延びる方向に沿って引き出されるとともに、当該ソース電極の短辺及び長辺に沿う短辺及び長辺を有する、前記ソース電極に接続する接続面の面積が前記ソース電極とほぼ同一の面積である接続部を備えることが好ましい。
 この半導体モジュールによれば、ゲート電極用銅コネクタに対して180°ストレート配置とする第1ソース電極用銅コネクタとベアチップFETの上面に形成されたソース電極との接続信頼性を確保できる。
 また、この半導体モジュールにおいて、前記第2ソース電極用銅コネクタは、前記長方形状に形成されたソース電極の長辺が延びる方向に沿って引き出されるとともに、当該ソース電極の長辺及び短辺に沿う長辺及び短辺を有する、前記ソース電極に接続する接続面の面積が前記ソース電極とほぼ同一の面積である接続部を備えることが好ましい。
 この半導体モジュールによれば、ゲート電極用銅コネクタに対して90°直角配置とする第2ソース電極用銅コネクタとベアチップFETの上面に形成されたソース電極との接続信頼性を確保できる。
 更に、本発明のある態様に係る半導体モジュールの製造方法は、金属製の基板上に絶縁層を形成する工程と、該絶縁層上に複数の配線パターンを形成する工程と、該複数の配線パターン上に半田ペーストを塗布する工程と、前記複数の配線パターンのうち一つの配線パターン上に塗布された半田ペースト上にベアチップトランジスタを搭載する工程と、前記ベアチップトランジスタの上面に形成された電極上に半田ペーストを塗布する工程と、前記ベアチップトランジスタの電極上に塗布された半田ペースト上及び前記複数の配線パターンのうち他の配線パターン上に塗布された半田ペースト上に、銅板で構成される銅コネクタを搭載して半導体モジュール中間組立体を構成する工程と、該半導体モジュール中間組立体をリフロー炉に入れて、前記複数の配線パターンのうち一つの配線パターンと前記ベアチップトランジスタとの半田を介しての接合、前記ベアチップトランジスタの上面に形成された電極と前記銅コネクタとの半田を介しての接合、及び前記複数の配線パターンのうち他の配線パターンと前記銅コネクタとの半田を介しての接合を行う工程とを含むことを特徴としている。
 この半導体モジュールの製造方法によれば、前述の半導体モジュールと同様に、ベアチップトランジスタの電極と基板上の配線パターンとの接続を、銅板で構成される銅コネクタを用いることにより、半田実装作業で行えるので、ベアチップトランジスタの電極と基板上の配線パターンとの接続をベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する際に行われる半田実装作業と同一の工程で行うことができる。このため、半導体モジュールの製造タクトを短くすることができるとともに、ワイヤボンディングの専用設備が不要になり、半導体モジュールの製造コストを安価にすることができる。
 また、この半導体モジュールの製造方法において、前記ベアチップトランジスタが、上面にソース電極及びゲート電極を形成したベアチップFETであり、前記銅コネクタが、ソース電極用銅コネクタと、ゲート電極用銅コネクタとを備えており、金属製の前記基板上に前記絶縁層を形成する工程と、該絶縁層上に複数の配線パターンを形成する工程と、該複数の配線パターン上に半田ペーストを塗布する工程と、前記複数の配線パターンのうち一つの配線パターン上に塗布された半田ペースト上に前記ベアチップFETを搭載する工程と、前記ベアチップFETの上面に形成されたソース電極及びゲート電極上に半田ペーストを塗布する工程と、前記ベアチップFETのソース電極上に塗布された半田ペースト上及び前記複数の配線パターンのうち他の配線パターン上に塗布された半田ペースト上に、前記ソース電極用銅コネクタを搭載する工程と、前記ベアチップFETのゲート電極上に塗布された半田ペースト上及び前記複数の配線パターンのうち更に他の配線パターン上に塗布された半田ペースト上に、前記ゲート電極用銅コネクタを搭載して半導体モジュール中間組立体を構成する工程と、該半導体モジュール中間組立体をリフロー炉に入れて、前記複数の配線パターンのうち一つの配線パターンと前記ベアチップFETとの半田を介しての接合、前記ベアチップFETの上面に形成されたソース電極と前記ソース電極用銅コネクタとの半田を介しての接合、前記複数の配線パターンのうち他の配線パターンと前記ソース電極用銅コネクタとの半田を介しての接合、前記ベアチップFETの上面に形成されたゲート電極と前記ゲート電極用銅コネクタとの半田を介しての接合、及び前記複数の配線パターンのうち更に他の配線パターンと前記ゲート電極用銅コネクタとの半田を介しての接合を行う工程とを含むことが好ましい。
 この半導体モジュールの製造方法によれば、前述の半導体モジュールと同様に、ベアチップFETのソース電極と基板上の配線パターンとの接続をソース電極用銅コネクタを用い、ベアチップFETのゲート電極と基板上の別の配線パターンとの接続をゲート電極用銅コネクタを用いることにより、半田実装作業で行えるので、ベアチップFETのソース電極と基板上の配線パターンとの接続及びベアチップFETのゲート電極と基板上の別の配線パターンとの接続をベアチップFETやその他の表面実装部品を基板上の配線パターン上に実装する際に行われるはんだ実装作業と同一の工程で行うことができる。
 更に、この半導体モジュールの製造方法において、前記ゲート電極用銅コネクタは1種類であり、前記ソース電極用銅コネクタは、前記ゲート電極用銅コネクタに対して180°ストレート配置とする第1ソース電極用銅コネクタと、前記ゲート電極用銅コネクタに対して90°直角配置とする第2ソース電極用銅コネクタとの2種類であり、1つのベアチップFETにおいて、前記1種類のゲート電極用銅コネクタと前記2種類の第1ソース電極用銅コネクタ及び第2ソース電極用銅コネクタのうちから選択されたいずれか一方のソース電極用銅コネクタとを組み合わせて使用するとよい。
 この半導体モジュールの製造方法によれば、前述の半導体モジュールと同様に、基板上に実装されるベアチップトランジスタの配置に自由度が生まれ、基板上の配線の設計の自由度が増大し、基板上における半導体モジュールのレイアウトをコンパクトにすることができるとともに、基板上における3相モータの各相の径路の長さを同一にすることを容易に行うことができる。これにより、3相モータの各相特性、特に各相のインピーダンス特性を容易に一致させることができ、トルクや速度等のリップル精度を向上することが可能になる。
 また、本発明の別の態様に係る半導体モジュールは、ベアチップトランジスタの電極と基板上の配線パターンとの接続を、銅板で構成される銅コネクタを用いることにより、半田実装作業で行うことを特徴とする。
 また、本発明の更に別の態様に係る半導体モジュールは、基板上に実装されるベアチップトランジスタの配置に自由度が生まれ、基板上の配線の設計の自由度が増大し、基板上における半導体モジュールのレイアウトをコンパクトにすることができるように、1つのベアチップFETにおいて、1種類のゲート電極用銅コネクタと、ゲート電極用銅コネクタに対して180°ストレート配置とする第1ソース電極用銅コネクタと、前記ゲート電極用銅コネクタに対して90°直角配置とする第2ソース電極用銅コネクタとの2種類の第1ソース電極用銅コネクタ及び第2ソース電極用銅コネクタのうちから選択されたいずれか一方のソース電極用銅コネクタとを組み合わせて使用することを特徴とする。
 本発明に係る半導体モジュール及び半導体モジュールの製造方法によれば、ベアチップトランジスタの電極と基板上の配線パターンとの接続を、銅板で構成される銅コネクタを用いることにより、半田実装作業で行えるので、ベアチップトランジスタの電極と基板上の配線パターンとの接続をベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する際に行われる半田実装作業と同一の工程で行うことができる。このため、半導体モジュールの製造タクトを短くすることができるとともに、ワイヤボンディングの専用設備が不要になり、半導体モジュールの製造コストを安価にすることができる。
 また、この半導体モジュール及び半導体モジュールの製造方法において、1つのベアチップFETにおいて、1種類のゲート電極用銅コネクタと2種類の第1ソース電極用銅コネクタ及び第2ソース電極用銅コネクタのうちから選択されたいずれか一方のソース電極用銅コネクタとを組み合わせて使用した場合には、基板上に実装されるベアチップトランジスタの配置に自由度が生まれ、基板上の配線の設計の自由度が増大し、基板上における半導体モジュールのレイアウトをコンパクトにすることができるとともに、基板上における3相モータの各相の径路の長さを同一にすることを容易に行うことができる。これにより、3相モータの各相特性、特に各相のインピーダンス特性を容易に一致させることができ、トルクや速度等のリップル精度を向上することが可能になる。
本発明に係る半導体モジュールが用いられる電動パワーステアリング装置の基本構造を示す図である。 図1に示す電動パワーステアリング装置のコントローラの制御系を示すブロック図である。 図1に示す電動パワーステアリング装置の半導体モジュールを含むコントローラの分解斜視図である。 図3に示す半導体モジュールの平面図である。 図3及び図4に示す半導体モジュールにおいて、ベアチップトランジスタを構成するベアチップFETの電極と基板上の配線パターンとの接続状態を説明するための模式図である。 ベアチップFETの電極と銅コネクタとの接続状態を説明するための平面図であり、(A)は、ベアチップFETのゲート電極にゲート電極用銅コネクタを接続するとともに、ソース電極に第1ソース電極用銅コネクタを接続した状態を説明するための平面図、(B)は、ベアチップFETのゲート電極にゲート電極用銅コネクタを接続するとともに、ソース電極に第2ソース電極用銅コネクタを接続した状態を説明するための平面図である。 ベアチップFETの概略平面図である。 ゲート電極用銅コネクタを示し、(A)はゲート電極用銅コネクタを左側面斜め上方から見た状態の斜視図、(B)はゲート電極用銅コネクタを右側面斜め上方から見た状態の斜視図である。 ゲート電極用銅コネクタを示し、(A)は平面図、(B)は正面図、(C)は右側面図、(D)は左側面図である。 第1ソース電極用銅コネクタを左側面斜め上方から見た状態の斜視図である。 第1ソース電極用銅コネクタを示し、(A)は平面図、(B)は正面図、(C)は右側面図、(D)は左側面図である。 第2ソース電極用銅コネクタを左側面斜め上方から見た状態の斜視図である。 第2ソース電極用銅コネクタを示し、(A)は平面図、(B)は正面図、(C)は右側面図、(D)は左側面図である。 従来の半導体モジュールの一例の断面模式図である。 従来の半導体モジュールの他の例を示す平面模式図である。
 以下、本発明の実施の形態を図面を参照して説明する。図1は、本発明に係る半導体モジュールが用いられる電動パワーステアリング装置の基本構造を示す図である。図2は、図1に示す電動パワーステアリング装置のコントローラの制御系を示すブロック図である。図3は、図1に示す電動パワーステアリング装置の半導体モジュールを含むコントローラの分解斜視図である。図4は、図3に示す半導体モジュールの平面図である。図5は、図3及び図4に示す半導体モジュールにおいて、ベアチップトランジスタを構成するベアチップFETの電極と基板上の配線パターンとの接続状態を説明するための模式図である。図6は、ベアチップFETの電極と銅コネクタとの接続状態を説明するための平面図であり、(A)は、ベアチップFETのゲート電極にゲート電極用銅コネクタを接続するとともに、ソース電極に第1ソース電極用銅コネクタを接続した状態を説明するための平面図、(B)は、ベアチップFETのゲート電極にゲート電極用銅コネクタを接続するとともに、ソース電極に第2ソース電極用銅コネクタを接続した状態を説明するための平面図である。図7は、ベアチップFETの概略平面図である。
 図1には、本発明に係る半導体モジュールが用いられる電動パワーステアリング装置の基本構造が示されており、電動パワーステアリング装置において、操向ハンドル1のコラム軸2は、減速ギア3、ユニバーサルジョイント4A及び4B、ピニオンラック機構5を経て操向車輪のタイトロッド6に連結されている。コラム軸2には、操向ハンドル1の操舵トルクを検出するトルクセンサ7が設けられており、操向ハンドル1の操舵力を補助する電動モータ8が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントローラ10には、バッテリー(図示せず)から電力が供給されるとともに、イグニションキー(図示せず)を経てイグニションキー信号IGN(図2参照)が入力される。コントローラ10は、トルクセンサ7で検出された操舵トルクTsと車速センサ9で検出された車速Vとに基づいて、アシスト(操舵補助)指令となる操舵補助指令値の演算を行い、演算された操舵補助指令値に基づいて電動モータ8に供給する電流を制御する。
 コントローラ10は、主としてマイクロコンピュータで構成されるが、その制御装置の機構及び構成を示すと図2に示すようになる。
 トルクセンサ7で検出された操舵トルクTs及び車速センサ9で検出された車速Vは制御演算部としての制御演算装置11に入力され、制御演算装置11で演算された電流指令値をゲート駆動回路12に入力する。ゲート駆動回路12で、電流指令値等に基づいて形成されたゲート駆動信号はFETのブリッジ構成で成るモータ駆動部13に入力され、モータ駆動部13は非常停止用の遮断装置14を経て3相ブラシレスモータで構成される電動モータ8を駆動する。3相ブラシレスモータの各相電流は電流検出回路15で検出され、検出された3相のモータ電流ia~icは制御演算装置11にフィードバック電流として入力される。また、3相ブラシレスモータには、ホールセンサ等の回転センサ16が取り付けられており、回転センサ16からの回転信号RTがロータ位置検出回路17に入力され、検出された回転位置θが制御演算装置11に入力される。
 また、イグニションキーからのイグニション信号IGNはイグニション電圧モニタ部18及び電源回路部19に入力され、電源回路部19から電源電圧Vddが制御演算装置11に入力されるとともに、装置停止用となるリセット信号Rsが制御演算装置11に入力される。そして、遮断装置14は、2相を遮断するリレー接点141及び142で構成されている。
 また、モータ駆動部13の回路構成について説明すると、電源ライン81に対し、直列に接続されたFETTr1及びTr2、FETTr3及びTr4、及びFETTr5及びTr6が並列に接続されている。そして、電源ライン81に対して、並列に接続されたFETTr1及びTr2、FETTr3及びTr4、及びFETTr5及びTr6が接地ライン82に接続されている。これにより、インバータを構成する。ここで、FETTr1及びTr2は、FETTr1のソース電極SとFETTr2のドレイン電極Dとが直列に接続され、3相モータのc相アームを構成し、c相出力ライン91cにて電流が出力される。また、FETTr3及びTr4は、FETTr3のソース電極SとFETTr4のドレイン電極Dとが直列に接続され、3相モータのa相アームを構成し、a相出力ライン91aにて電流が出力される。更に、FETTr5及びTr6は、FETTr5のソース電極SとFETTr6のドレイン電極Dとが直列に接続され、3相モータのb相アームを構成し、b相出力ライン91bにて電流が出力される。
 次に、図3は、図1に示す電動パワーステアリング装置の半導体モジュールを含むコントローラ10の分解斜視図であり、コントローラ10は、ケース20と、モータ駆動部13を含むパワーモジュールとしての半導体モジュール30と、放熱用シート39と、制御演算装置11及びゲート駆動回路12を含む制御回路基板40と、電力及び信号用コネクタ50と、3相出力用コネクタ60と、カバー70とを備えている。
 ここで、ケース20は、略矩形状に形成され、半導体モジュール30を載置するための平板状の半導体モジュール載置部21と、半導体モジュール載置部21の長手方向端部に設けられた、電力及び信号用コネクタ50を実装するための電力及び信号用コネクタ実装部22と、半導体モジュール載置部21の幅方向端部に設けられた、3相出力用コネクタ60を実装するための3相出力用コネクタ実装部23とを備えている。
 そして、半導体モジュール載置部21には、半導体モジュール30を取り付けるための取付けねじ38がねじ込まれる複数のねじ孔21aが形成されている。また、半導体モジュール載置部21及び電力及び信号用コネクタ実装部22には、制御回路基板40を取り付けるための複数の取付けポスト24が立設され、各取付けポスト24には、制御回路基板40を取り付けるための取付けねじ41がねじ込まれるねじ孔24aが形成されている。更に、3相出力用コネクタ実装部23には、3相出力用コネクタ60を取り付けるための取付けねじ61がねじ込まれる複数のねじ孔23aが形成されている。
 また、半導体モジュール30は、前述したモータ駆動部13の回路構成を有し、図4に示すように、基板31に、6個のFETTr1~Tr6、電源ライン81に接続された正極端子81a、及び接地ライン82に接続された負極端子82aが実装されている。また、基板31には、a相出力ライン91aに接続されたa相出力端子92a、b相出力ライン91bに接続されたb相出力端子92b、及びc相出力ライン91cに接続されたc相出力端子92cを含む3相出力部90が実装されている。また、基板31上には、コンデンサを含むその他の表面実装部品37が実装されている。更に、半導体モジュール30の基板31には、半導体モジュール30を取り付けるための取付けねじ38が挿通する複数の貫通孔31aが設けられている。
 ここで、この半導体モジュール30において、6個のFETTr1~Tr6の基板31上への実装について説明する。各FETTr1~Tr6は、ベアチップFET(ベアチップトランジスタ)35で構成され、図7に示すように、ベアチップFET35上にソース電極Sとゲート電極Gとを備え、また、ベアチップFET35の下面には図示しないドレイン電極を備えている。
 このベアチップFET35の上面に形成されたゲート電極Gとソース電極Sとは、図7に示すように、図7における上下方向に沿って直列にストレート配置されている。ゲート電極Gは、図7における上下方向に沿って延びる短辺及びこの短辺と直交する長辺を有する長方形状に形成されている。また、ソース電極Sは、図7における上下方向に沿って延びる短辺及びこの短辺と直交する長辺を有する長方形状に形成されている。ソース電極Sの短辺及び長辺は、ゲート電極Gの短辺及び長辺よりも大きく、ソース電極Sの面積はゲート電極Gの面積よりも大きくなってる。
 半導体モジュール30は、図5に示すように、金属製の基板31を備え、基板31の上には、絶縁層32が形成されている。基板31は、アルミニウムなどの金属製である。また、この絶縁層32上には、複数の配線パターン33a~33dが形成されている。各配線パターン33a~33dは、銅やアルミニウムなどの金属、又はこの金属を含む合金で構成される。そして、複数の配線パターン33a~33dのうち一つの配線パターン33a上には半田34aを介して各FETTr1~Tr6を構成するベアチップFET35が実装されている。ベアチップFET35の下面に形成されたドレイン電極が半田34aを介して配線パターン33aに接続される。そして、ベアチップFET35のソース電極S上と複数の配線パターン33a~33dのうち他の配線パターン33b上とがソース電極用銅コネクタ36aでそれぞれ半田34e,34bを介して接続される。また、ベアチップFET35のゲート電極G上と複数の配線パターン33a~33dのうち更に他の配線パターン33c上とがゲート電極用銅コネクタ36bでそれぞれ半田34f,34cを介して接続される。
 ここで、ゲート電極用銅コネクタ36bは1種類であり、図4におけるFETTr1~Tr6のすべてにおいて図7に示す矢印A方向に引き出されて接続される。この様子は、図6(A),(B)に示される。
 また、ソース電極用銅コネクタ36aは、図6(A)に示すように、ゲート電極用銅コネクタ36bに対して180°ストレート配置とする第1ソース電極用銅コネクタ36a1と、図6(B)に示すようにゲート電極用銅コネクタ36bに対して90°直角配置とする第2ソース電極用銅コネクタ36a2との2種類ある。そして、第1ソース電極用銅コネクタ36a1は、図4におけるFETTr2、Tr4、及びTr6において図7に示す矢印A’方向に引き出されて接続される。また、第2ソース電極用銅コネクタ36a2は、図4におけるFETTr1において図7に示す矢印B方向に引き出されて接続され、図4におけるFETTr3及びTr5において図7に示す矢印B’方向に引き出されて接続される。
 このように、1つのベアチップFET35において、1種類のゲート電極用銅コネクタ36bと2種類の第1ソース電極用銅コネクタ36a1及び第2ソース電極用銅コネクタ36a2のうちから選択されたいずれか一方のソース電極用銅コネクタとが組み合わせて使用される。
 これにより、基板31上に実装されるベアチップFET35の配置に自由度が生まれ、基板31上の配線の設計の自由度が増大し、基板31上における半導体モジュール30のレイアウトをコンパクトにすることができる。また、基板31上における3相モータの各相の径路の長さ(a相出力ライン91aの長さ、b相出力ライン91bの長さ、及びc相出力ライン91cの長さ)を同一にすることを容易に行うことができる。これにより、3相モータの各相特性、特に、インピーダンス特性を容易に一致させることができ、トルクや速度等のリップル精度を向上することが可能になる。
 ここで、ゲート電極用銅コネクタ36bの形状について、図5、図8(A),(B)、及び図9(A),(B),(C),(D)を参照して具体的に説明する。
 ゲート電極用銅コネクタ36bは、銅板を打抜き及び曲げ加工することによって形成されるものであり、平板部36baと、平板部36baの一端から延び、半田34fを介してベアチップFET35のゲート電極Gに接続される接続部36bbと、平板部36baの他端から延び、半田34cを介して配線パターン33cに接続される接続部36bcとを備えている。
 ゲート電極用銅コネクタ36bの平板部baは、エアーによる吸着装置の吸着面を構成する。このため、平板部baを利用してエアーによる吸着を行うことができる。
 また、ゲート電極用銅コネクタ36bの接続部36bbは、平板部36baの一端から斜め下方に延びる連結片36bdの下端に外方に延びるように形成されている。この接続部36bbは、ゲート電極Gの短辺及び長辺に沿う短辺及び長辺を有し、ゲート電極Gに接続する接続面の面積がゲート電極Gの面積とほぼ同一の面積を有する。接続部36bbのゲート電極Gに接続する接続面の面積がゲート電極Gとほぼ同じとすることにより、ゲート電極用銅コネクタ36bとゲート電極Gとの接続信頼性を確保することができる。
 更に、ゲート電極用銅コネクタ36bの接続部36bcは、平板部36baの他端から斜め下方に延びる連結片36beの下端に外方に延びるように形成されている。接続部36bcは、接続部36bbよりも下方に位置する。接続部36bcの配線パターン33cに対する接続面の面積は、接続部36bbのゲート電極Gに対する接続面の面積よりも大きくなっている。
 このように、ゲート電極用銅コネクタ36bは、図9(B)に示すように、平板部36ba、連結片36bd、接続部36bb、連結片36be、及び接続部36bcを有する正面から見て略コ字形に形成されているため、半田接続の際に後に述べるリフロー接続を行い、また、半導体モジュール30が稼働した際に発熱により高温になった際に、熱応力を効果的に緩和できる。
 また、ソース電極用銅コネクタ36aのうち、ゲート電極用銅コネクタ36bに対して180°ストレート配置とする第1ソース電極用銅コネクタ36a1の形状について、図5、図10(A),(B)、及び図11(A),(B),(C),(D)を参照して具体的に説明する。
 第1ソース電極用銅コネクタ36a1は、銅板を打抜き及び曲げ加工することによって形成されるものであり、平板部36aaと、平板部36aaの一端から延び、半田34eを介してベアチップFET35のソース電極Sに接続される接続部36abと、平板部36aaの他端から延び、半田34bを介して配線パターン33bに接続される接続部36acとを備えている。
 第1ソース電極用銅コネクタ36a1の平板部36aaは、エアーによる吸着装置の吸着面を構成する。このため、平板部aaを利用してエアーによる吸着を行うことができる。この平板部36aaには、第2ソース電極用銅コネクタ36a2との識別のための識別用孔36afが形成されている。
 また、第1ソース電極用銅コネクタ36a1は、長方形状に形成されたソース電極Sの短辺が延びる方向(図7における矢印A’方向)に沿って引き出される。そして、第1ソース電極用銅コネクタ36a1の接点部36abは、平板部36aaの一端から斜め下方に延びる連結片36adの下端に外方に延びるように形成される。この接点部36abは当該ソース電極Sの短辺及び長辺に沿う短辺及び長辺を有し、ソース電極Sに接続する接続面の面積が、ソース電極Sとほぼ同一の面積を有している。接続部36abのソース電極Sに接続する接続面の面積を、長方形状のソース電極Sとほぼ同一の面積とすることにより、ゲート電極用銅コネクタ36bに対して180°ストレート配置とする第1ソース電極用銅コネクタ36a1とベアチップFET35の上面に形成されたソース電極Sとの接続信頼性を確保できる。
 更に、第1ソース電極用銅コネクタ36a1の接続部36acは、平板部36aaの他端から斜め下方に延びる連結片36aeの下端に外方に延びるように形成されている。接続部36acは、接続部36abよりも下方に位置する。接続部36acの配線パターン33bに対する接続面の面積は、接続部36abのソース電極Sに対する接続面の面積とほぼ同一となっている。
 このように、第1ソース電極用銅コネクタ36a1は、図11(B)に示すように、平板部36aa、連結片36ad、接続部36ab、連結片36ae、及び接続部36acを有する正面から見て略コ字形に形成されているため、半田接続の際に後に述べるリフロー接続を行い、また、半導体モジュール30が稼働した際に発熱により高温になった際に、熱応力を効果的に緩和できる。
 また、ソース電極用銅コネクタ36aのうち、ゲート電極用銅コネクタ36bに対して90°直角配置とする第2ソース電極用銅コネクタ36a2の形状について、図5、図12(A),(B)、及び図13(A),(B),(C),(D)を参照して具体的に説明する。
 第2ソース電極用銅コネクタ36a2は、銅板を打抜き及び曲げ加工することによって形成されるものであり、平板部36aaと、平板部36aaの一端から延び、半田34eを介してベアチップFET35のソース電極Sに接続される接続部36abと、平板部36aaの他端から延び、半田34bを介して配線パターン33bに接続される接続部36acとを備えている。
 第2ソース電極用銅コネクタ36a2の平板部36aaは、エアーによる吸着装置の吸着面を構成する。このため、平板部aaを利用してエアーによる吸着を行うことができる。
 また、第2ソース電極用銅コネクタ36a2は、長方形状に形成されたソース電極Sの長辺が延びる方向(図7における矢印BあるいはB‘方向)に沿って引き出される。そして、第2ソース電極用銅コネクタ36a2の接続部36abは、平板部36aaの一端から斜め下方に延びる連結片36adの下端に外方に延びるように形成される。この接続部abは、当該ソース電極Sの長辺及び短辺に沿う短辺及び長辺を有し、ソース電極Sに接続する接続面の面積がソース電極Sとほぼ同一の面積を有する。接続部36abのソース電極Sに接続する接続面の面積を、長方形状のソース電極Sとほぼ同一の面積とすることにより、ゲート電極用銅コネクタ36bに対して90°直角配置とする第2ソース電極用銅コネクタ36a2とベアチップFET35の上面に形成されたソース電極Sとの接続信頼性を確保できる。
 更に、第2ソース電極用銅コネクタ36a2の接続部36acは、平板部36aaの他端から斜め下方に延びる連結片36aeの下端に外方に延びるように形成されている。接続部36acは、接続部36abよりも下方に位置する。接続部36acの配線パターン33bに対する接続面の面積は、接続部36abのソース電極Sに対する接続面の面積とほぼ同一である。
 このように、第2ソース電極用銅コネクタ36a2は、図13(B)に示すように、平板部36aa、連結片36ad、接続部36ab、連結片36ae、及び接続部36acを有する正面から見て略コ字形に形成されているため、半田接続の際に後に述べるリフロー接続を行い、また、半導体モジュール30が稼働した際に発熱により高温になった際に、熱応力を効果的に緩和できる。
 なお、図5に示す半導体モジュール30において、絶縁層32上に形成された複数の配線パターン33a~33dのうち更にもう一つ他の配線パターン33d上には半田34dを介してコンデンサなどの他の表面実装部品37が実装される。
 このように構成された半導体モジュール30は、図3に示すように、ケース20の半導体モジュール載置部21上に複数の取付けねじ38により取り付けられる。半導体モジュール30の基板31には、取付けねじ38が挿通する複数の貫通孔31aが形成されている。
 なお、半導体モジュール30を半導体モジュール載置部21上に取り付けるに際しては、放熱用シート39を半導体モジュール載置部21上に取付け、その放熱用シート39の上から半導体モジュール30を取り付ける。この放熱用シート39により、半導体モジュール30で発生した熱が放熱用シート39を介してケース20に放熱される。
 また、制御回路基板40は、基板上に複数の電子部品を実装して制御演算装置11及びゲート駆動回路12を含む制御回路を構成するものである。制御回路基板40は、半導体モジュール30を半導体モジュール載置部21上に取り付けた後、半導体モジュール30の上方から半導体モジュール載置部21及び電力及び信号用コネクタ実装部22に立設された複数の取付けポスト24上に複数の取付けねじ41により取り付けられる。制御回路基板40には、取付けねじ41が挿通する複数の貫通孔40aが形成されている。
 また、電力及び信号用コネクタ50は、バッテリー(図示せず)からの直流電源を半導体モジュール30に、トルクセンサ12や車速センサ9からの信号を含む各種信号を制御回路基板40に入力するために用いられる。電力及び信号用コネクタ50は、半導体モジュール載置部21に設けられた電力及び信号用コネクタ実装部22に複数の取付けねじ51により取り付けられる。
 そして、3相出力用コネクタ60は、a相出力端子92a、b相出力端子92b、及びc相出力端子92cからの電流を出力するために用いられる。3相出用コネクタ60は、半導体モジュール載置部21の幅方向端部に設けられた3相出力用コネクタ実装部23に複数の取付けねじ61により取り付けられる。3相出力コネクタ60には、取付けねじ61が挿通する複数の貫通孔60aが形成されている。
 更に、カバー70は、半導体モジュール30、制御回路基板40、電力及び信号用コネクタ50、及び3相出力用コネクタ60が取り付けられたケース20に対し、制御回路基板40の上方から当該制御回路基板40を覆うように取り付けられる。
 次に、半導体モジュール30の製造方法について図5を参照して説明する。
 半導体モジュール30の製造に際し、先ず、金属製の基板31の一方の主面上に絶縁層32を形成する(絶縁層形成工程)。
 次いで、絶縁層32上に複数の配線パターン33a~33dを形成する(配線パターン形成工程)。
 その後、複数の配線パターン33a~33d上にそれぞれ半田ペースト(半田34a~34d)を塗布する(半田ペースト塗布工程)。
 そして、複数の配線パターン33a~33dのうち一つの配線パターン33a上に塗布された半田ペースト(半田33a)上にベアチップFET35の一つを搭載するとともに(ベアチップFET搭載工程)、他の配線パターン33d上に塗布された半田ペースト(半田34d)上にその他の表面実装部品37を搭載する。その他のベアチップFET35についても、配線パターン33aと同一あるいは別個の配線パターン上に搭載する。
 次いで、ベアチップFET35の上面に形成されたソース電極S及びゲート電極G上に半田ペースト(半田34e,34f)を塗布する(半田ペースト塗布工程)。
 その後、ベアチップFET35のソース電極S上に塗布された半田ペースト(半田34e)上及び複数の配線パターン33a~33dのうちベアチップFET35が搭載された配線パターン33a以外の他の配線パターン33b上に塗布された半田ペースト(半田34b)上に、ソース電極用銅コネクタ36a(第1ソース電極用銅コネクタ36a1及び第2ソース電極用銅コネクタ36a2のうちから選択されたソース電極用銅コネクタ)を搭載する(ソース電極用銅コネクタ搭載工程)。
 また、ベアチップFET35のゲート電極G上に塗布された半田ペースト(半田34f)上、及び複数の配線パターン33a~33dのうちベアチップFET35が搭載された配線パターン33a及びソース電極用銅コネクタ36aが搭載された配線パターン33b以外の更に他の配線パターン33c上に塗布された半田ペースト(半田34c)上に、ゲート電極用銅コネクタ36bを搭載する(ゲート電極用銅コネクタ搭載工程)。これにより、半導体モジュール中間組立体が構成される。
 そして、以上の工程により構成された半導体モジュール中間組立体をリフロー炉(図示せず)に入れて、複数の配線パターン33a~33dのうち一つの配線パターン33aとベアチップFET35との半田34aを介しての接合、配線パターン33dとその他の表面実装部品37との半田34dを介しての接合、ベアチップFET35の上面に形成されたソース電極Sとソース電極用銅コネクタ36aとの半田34eを介しての接合、複数の配線パターン33a~33dのうち他の配線パターン33bとソース電極用銅コネクタ36aとの接合、ベアチップFET35の上面に形成されたゲート電極Gとゲート電極用銅コネクタ36bとの半田34fを介しての接合、及び複数の配線パターン33a~33dのうち更に他の配線パターン33cとゲート電極用銅コネクタ26bとの半田34cを介しての接合を一括して行う(接合工程)。
 これにより、半導体モジュール30は完成する。
 ここで、ベアチップFET35のソース電極Sと基板31上の配線パターン33bとの接続をソース電極用銅コネクタ36aを用い、ベアチップFET35のゲート電極Gと基板31上の別の配線パターン33cとの接続をゲート電極用銅コネクタ36bを用いることにより、半田実装作業で行えるので、ベアチップFET35のソース電極Sと基板31上の配線パターン33bとの接続及びベアチップFET35のゲート電極Gと基板31上の別の配線パターン33cとの接続を、ベアチップFET35やその他の表面実装部品37を基板31上の配線パターン33a,33d上に実装する際に行われる半田実装作業と同一の工程で行うことができる。このため、半導体モジュール30の製造タクトを短くすることができるとともに、ワイヤボンディングの専用設備が不要になり、半導体モジュール30の製造コストを安価にすることができる。
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
 例えば、半導体モジュール30においてベアチップFET35を用いているが、ベアチップFET35に限らず、ベアチップIGBTなどの他のベアチップトランジスタを用いてもよい。そして、その他のベアチップトランジスタを用いる場合には、銅コネクタにより、ベアチップトランジスタの上面に形成された電極上と複数の配線パターンのうちベアチップトランジスタが接続された配線パターン以外の他の配線パターン上とを半田を介して接続すればよい。これにより、ベアチップトランジスタの電極と基板上の配線パターンとの接続をベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する際に行われる半田実装作業と同一の工程で行うことができる。
 そして、ベアチップトランジスタとしてベアチップIGBTを用いる場合、ベアチップIGBT上に形成されたエミッタ電極及びゲート電極を、それぞれ、銅コネクタを用いて基板上の配線パターンに半田を介して接続することが好ましい。
 このように、ベアチップIGBTを用い、ベアチップIGBT上に形成されたエミッタ電極及びゲート電極を、それぞれ、銅コネクタを用いて基板上の配線パターンに半田を介して接続する場合には、ベアチップIGBTのエミッタ電極と基板上の配線パターンとの接続及びベアチップIGBTのゲート電極と基板上の別の配線パターンとの接続をベアチップIGBTやその他の表面実装部品を基板上の配線パターン上に実装する際に行われる半田実装作業と同一の工程で行うことができる。
 また、ベアチップFET35の上面に形成されたソース電極Sは、長方形状に形成されているが、正方形状で形成してもよい。この場合、ソース電極Sに接続される第1ソース電極用コネクタ36a1及び第2ソース電極用銅コネクタ36a2の形状を同一にして共通化することができる。
 なお、図4に示す半導体モジュール30において、a相出力ライン91a、b相出力ライン91b、及びc相出力ライン91cには、ジャンパー線として共通の銅コネクタ36cが用いられている。これにより、a相出力ライン91a、b相出力ライン91b、及びc相出力ライン91cの径路の長さを同一にすることができる。
 1 操向ハンドル
 2 コラム軸
 3 減速ギア3
 4A,4B ユニバーサルジョイント
 5 ピニオンラック機構
 6 タイトロッド
 7 トルクセンサ
 8 電動モータ
 9 車速センサ
 10 コントローラ
 11 制御演算装置
 12 ゲート駆動回路
 13 モータ駆動部
 14 非常停止用の遮断装置
 15 電流検出回路
 16 回転センサ
 17 ロータ位置検出回路
 18 IGN電圧モニタ部
 19 電源回路部
 20 ケース
 21 半導体モジュール載置部
 21a ねじ孔
 22 電力及び信号用コネクタ実装部
 23 3相出力用コネクタ実装部
 23a ねじ孔
 24 取付けポスト
 24a ねじ孔
 30 半導体モジュール
 31 基板
 31a 貫通孔
 32 絶縁層
 33a~33d 配線パターン
 34a~34d 半田
 35 ベアチップFET(ベアチップトランジスタ)
 36a ソース電極用銅コネクタ
 36a1 第1ソース電極用銅コネクタ
 36a2 第2ソース電極用コネクタ
 36c 銅コネクタ
 36aa 平板部
 36ab 接続部
 36ac 接続部
 36ad 連結部
 36ae 連結部
 36af 識別用孔
 36b ゲート電極用銅コネクタ
 36ba 平板部
 36bb 接続部
 36bc 接続部
 36bd 連結部
 36be 連結部
 37 表面実装部品
 38 取付けねじ
 39 放熱用シート
 40 制御回路基板
 40a 貫通孔
 41 取付けねじ
 50 電力及び信号用コネクタ
 51 取付けねじ
 60 3相出力用コネクタ
 60a 貫通孔
 61 取付けねじ
 70 カバー
 81電源ライン
 81a 正極端子
 82 接地ライン
 82a 負極端子
 90 3相出力部
 91a a相出力ライン
 91b b相出力ライン
 91c c相出力ライン
 G ゲート電極(電極)
 S ソース電極(電極)

Claims (9)

  1.  金属製の基板と、該基板の上に形成された絶縁層と、該絶縁層上に形成された複数の配線パターンと、該複数の配線パターンのうち一つの配線パターン上に半田を介して実装されるベアチップトランジスタと、該ベアチップトランジスタの上面に形成された電極と前記複数の配線パターンのうち他の配線パターンとを半田を介して接続するための、銅板で構成される銅コネクタとを備えたことを特徴とする半導体モジュール。
  2.  前記ベアチップトランジスタが、上面にソース電極及びゲート電極を形成したベアチップFETであり、前記銅コネクタが、ソース電極用銅コネクタと、ゲート電極用銅コネクタとを備え、前記ベアチップFETのソース電極上と前記複数の配線パターンのうち他の配線パターン上とを前記ソース電極用銅コネクタで半田を介して接続し、前記ベアチップFETのゲート電極上と前記複数の配線パターンのうち更に他の配線パターン上とを前記ゲート電極用銅コネクタで半田を介して接続することを特徴とする請求項1記載の半導体モジュール。
  3.  前記ゲート電極用銅コネクタは1種類であり、前記ソース電極用銅コネクタは、前記ゲート電極用銅コネクタに対して180°ストレート配置とする第1ソース電極用銅コネクタと、前記ゲート電極用銅コネクタに対して90°直角配置とする第2ソース電極用銅コネクタとの2種類であり、1つのベアチップFETにおいて、前記1種類のゲート電極用銅コネクタと前記2種類の第1ソース電極用銅コネクタ及び第2ソース電極用銅コネクタのうちから選択されたいずれか一方のソース電極用銅コネクタとを組み合わせて使用することを特徴とする請求項2記載の半導体モジュール。
  4.  前記ベアチップFETの上面に形成された前記ゲート電極と前記ソース電極とが直列にストレート配置され、前記ソース電極は長方形状に形成されていることを特徴とする請求項3記載の半導体モジュール。
  5.  前記第1ソース電極用銅コネクタは、前記長方形状に形成されたソース電極の短辺が延びる方向に沿って引き出されるとともに、当該ソース電極の短辺及び長辺に沿う短辺及び長辺を有する、前記ソース電極に接続する接続面の面積が前記ソース電極とほぼ同一の面積である接続部を備えたことを特徴とする請求項4記載の半導体モジュール。
  6.  前記第2ソース電極用銅コネクタは、前記長方形状に形成されたソース電極の長辺が延びる方向に沿って引き出されるとともに、当該ソース電極の長辺及び短辺に沿う長辺及び短辺を有する、前記ソース電極に接続する接続面の面積が前記ソース電極とほぼ同一の面積である接続部を備えたことを特徴とする請求項4又は5記載の半導体モジュール。
  7.  金属製の基板上に絶縁層を形成する工程と、
     該絶縁層上に複数の配線パターンを形成する工程と、
     該複数の配線パターン上に半田ペーストを塗布する工程と、
     前記複数の配線パターンのうち一つの配線パターン上に塗布された半田ペースト上にベアチップトランジスタを搭載する工程と、
     前記ベアチップトランジスタの上面に形成された電極上に半田ペーストを塗布する工程と、
     前記ベアチップトランジスタの電極上に塗布された半田ペースト上及び前記複数の配線パターンのうち他の配線パターン上に塗布された半田ペースト上に、銅板で構成される銅コネクタを搭載して半導体モジュール中間組立体を構成する工程と、
     該半導体モジュール中間組立体をリフロー炉に入れて、前記複数の配線パターンのうち一つの配線パターンと前記ベアチップトランジスタとの半田を介しての接合、前記ベアチップトランジスタの上面に形成された電極と前記銅コネクタとの半田を介しての接合、及び前記複数の配線パターンのうち他の配線パターンと前記銅コネクタとの半田を介しての接合を行う工程とを含むことを特徴とする半導体モジュールの製造方法。
  8.  前記ベアチップトランジスタが、上面にソース電極及びゲート電極を形成したベアチップFETであり、前記銅コネクタが、ソース電極用銅コネクタと、ゲート電極用銅コネクタとを備えており、
     金属製の前記基板上に前記絶縁層を形成する工程と、
     該絶縁層上に複数の配線パターンを形成する工程と、
     該複数の配線パターン上に半田ペーストを塗布する工程と、
     前記複数の配線パターンのうち一つの配線パターン上に塗布された半田ペースト上に前記ベアチップFETを搭載する工程と、
     前記ベアチップFETの上面に形成されたソース電極及びゲート電極上に半田ペーストを塗布する工程と、
     前記ベアチップFETのソース電極上に塗布された半田ペースト上及び前記複数の配線パターンのうち他の配線パターン上に塗布された半田ペースト上に、前記ソース電極用銅コネクタを搭載する工程と、
     前記ベアチップFETのゲート電極上に塗布された半田ペースト上及び前記複数の配線パターンのうち更に他の配線パターン上に塗布された半田ペースト上に、前記ゲート電極用銅コネクタを搭載して半導体モジュール中間組立体を構成する工程と、
     該半導体モジュール中間組立体をリフロー炉に入れて、前記複数の配線パターンのうち一つの配線パターンと前記ベアチップFETとの半田を介しての接合、前記ベアチップFETの上面に形成されたソース電極と前記ソース電極用銅コネクタとの半田を介しての接合、前記複数の配線パターンのうち他の配線パターンと前記ソース電極用銅コネクタとの半田を介しての接合、前記ベアチップFETの上面に形成されたゲート電極と前記ゲート電極用銅コネクタとの半田を介しての接合、及び前記複数の配線パターンのうち更に他の配線パターンと前記ゲート電極用銅コネクタとの半田を介しての接合を行う工程とを含むことを特徴とする請求項7記載の半導体モジュールの製造方法。
  9.  前記ゲート電極用銅コネクタは1種類であり、前記ソース電極用銅コネクタは、前記ゲート電極用銅コネクタに対して180°ストレート配置とする第1ソース電極用銅コネクタと、前記ゲート電極用銅コネクタに対して90°直角配置とする第2ソース電極用銅コネクタとの2種類であり、1つのベアチップFETにおいて、前記1種類のゲート電極用銅コネクタと前記2種類の第1ソース電極用銅コネクタ及び第2ソース電極用銅コネクタのうちから選択されたいずれか一方のソース電極用銅コネクタとを組み合わせて使用することを特徴とする請求項8記載の半導体モジュールの製造方法。
PCT/JP2013/003332 2012-05-29 2013-05-27 半導体モジュール及びその製造方法 WO2013179638A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014518275A JP5871064B2 (ja) 2012-05-29 2013-05-27 電動パワーステアリング装置用の半導体モジュール
CN201380003744.2A CN103918067B (zh) 2012-05-29 2013-05-27 半导体模块及其制造方法
EP13797985.2A EP2858100B1 (en) 2012-05-29 2013-05-27 Semiconductor module and production method for same
US14/127,187 US9312234B2 (en) 2012-05-29 2013-05-27 Semiconductor module and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-122327 2012-05-29
JP2012122327 2012-05-29
JP2012-243682 2012-11-05
JP2012243682 2012-11-05

Publications (1)

Publication Number Publication Date
WO2013179638A1 true WO2013179638A1 (ja) 2013-12-05

Family

ID=49672856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003332 WO2013179638A1 (ja) 2012-05-29 2013-05-27 半導体モジュール及びその製造方法

Country Status (5)

Country Link
US (1) US9312234B2 (ja)
EP (1) EP2858100B1 (ja)
JP (2) JP5871064B2 (ja)
CN (1) CN103918067B (ja)
WO (1) WO2013179638A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216148A (ja) * 2014-05-08 2015-12-03 日本インター株式会社 パワー半導体モジュール
JP2019165051A (ja) * 2018-03-19 2019-09-26 京セラ株式会社 パワー半導体モジュール
WO2019215806A1 (ja) * 2018-05-08 2019-11-14 三菱電機株式会社 配線部材及びこれを備えた半導体モジュール

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332458B (zh) * 2014-11-05 2018-06-15 中国电子科技集团公司第四十三研究所 功率芯片互连结构及其互连方法
JP6809294B2 (ja) * 2017-03-02 2021-01-06 三菱電機株式会社 パワーモジュール
KR102669395B1 (ko) * 2018-10-04 2024-05-29 삼성디스플레이 주식회사 커넥터 어셈블리 및 이를 포함하는 표시 장치
CN111886695A (zh) * 2018-10-05 2020-11-03 富士电机株式会社 半导体装置、半导体模块及车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268027A (ja) * 1993-03-11 1994-09-22 Hitachi Ltd 半導体装置
JP2004335725A (ja) 2003-05-07 2004-11-25 Toyota Motor Corp 半導体モジュールの製造方法、半導体モジュール、それを用いた一体型モータおよび一体型モータを備える自動車
JP2007095984A (ja) 2005-09-29 2007-04-12 Hitachi Ltd 半導体モジュール

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS447543Y1 (ja) * 1966-04-04 1969-03-22
JP2735912B2 (ja) 1989-12-25 1998-04-02 三洋電機株式会社 インバータ装置
JP3448159B2 (ja) * 1996-06-20 2003-09-16 株式会社東芝 電力用半導体装置
US5872403A (en) * 1997-01-02 1999-02-16 Lucent Technologies, Inc. Package for a power semiconductor die and power supply employing the same
JP3439417B2 (ja) * 2000-03-23 2003-08-25 Necエレクトロニクス株式会社 半導体パッケージ用接続導体、半導体パッケージ、及び半導体パッケージの組立方法
JP4004715B2 (ja) * 2000-05-31 2007-11-07 三菱電機株式会社 パワーモジュール
JP4226200B2 (ja) * 2000-07-25 2009-02-18 三菱電機株式会社 半導体装置およびその製造方法
JP2002217416A (ja) * 2001-01-16 2002-08-02 Hitachi Ltd 半導体装置
JP2003023137A (ja) * 2001-07-09 2003-01-24 Sansha Electric Mfg Co Ltd 電力用半導体モジュール
JP4074991B2 (ja) * 2003-03-18 2008-04-16 富士電機ホールディングス株式会社 交流−交流電力変換装置
JP5152619B2 (ja) * 2006-02-09 2013-02-27 ダイヤモンド電機株式会社 半導体モジュール及びこれを備える半導体装置、並びに、半導体モジュールの製造方法
JP2007235004A (ja) * 2006-03-03 2007-09-13 Mitsubishi Electric Corp 半導体装置
US8786072B2 (en) * 2007-02-27 2014-07-22 International Rectifier Corporation Semiconductor package
JP5098440B2 (ja) * 2007-05-25 2012-12-12 三菱電機株式会社 電力半導体装置の製造方法
JP2009021395A (ja) * 2007-07-12 2009-01-29 Panasonic Corp 半導体装置
JP5029900B2 (ja) * 2007-11-20 2012-09-19 アイシン・エィ・ダブリュ株式会社 モータの制御装置
JP2009231805A (ja) * 2008-02-29 2009-10-08 Renesas Technology Corp 半導体装置
JP2010034350A (ja) * 2008-07-30 2010-02-12 Sanyo Electric Co Ltd 半導体装置
JP5285348B2 (ja) * 2008-07-30 2013-09-11 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 回路装置
JP5384913B2 (ja) * 2008-11-18 2014-01-08 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
DE102008054735A1 (de) * 2008-12-16 2010-06-17 Robert Bosch Gmbh Leadless-Gehäusepackung
JP5625242B2 (ja) 2009-02-25 2014-11-19 日本精工株式会社 電動パワーステアリング装置、制御ユニットおよび車両
JP5388661B2 (ja) * 2009-04-03 2014-01-15 三菱電機株式会社 半導体装置およびその製造方法
JP2011014890A (ja) * 2009-06-02 2011-01-20 Mitsubishi Chemicals Corp 金属基板及び光源装置
JP2011204886A (ja) * 2010-03-25 2011-10-13 Panasonic Corp 半導体装置及びその製造方法
JP5383621B2 (ja) * 2010-10-20 2014-01-08 三菱電機株式会社 パワー半導体装置
KR101204187B1 (ko) * 2010-11-02 2012-11-23 삼성전기주식회사 소성 접합을 이용한 파워 모듈 및 그 제조 방법
JP2012212713A (ja) * 2011-03-30 2012-11-01 Toshiba Corp 半導体装置の実装構造
JP6043049B2 (ja) * 2011-03-30 2016-12-14 株式会社東芝 半導体装置の実装構造及び半導体装置の実装方法
JP5388235B2 (ja) * 2011-04-08 2014-01-15 ルネサスエレクトロニクス株式会社 半導体装置
US8399997B2 (en) * 2011-06-10 2013-03-19 Shanghai Kalhong Electronic Company Limited Power package including multiple semiconductor devices
CN103918066B (zh) * 2012-11-05 2016-08-24 日本精工株式会社 半导体模块

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268027A (ja) * 1993-03-11 1994-09-22 Hitachi Ltd 半導体装置
JP2004335725A (ja) 2003-05-07 2004-11-25 Toyota Motor Corp 半導体モジュールの製造方法、半導体モジュール、それを用いた一体型モータおよび一体型モータを備える自動車
JP2007095984A (ja) 2005-09-29 2007-04-12 Hitachi Ltd 半導体モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858100A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216148A (ja) * 2014-05-08 2015-12-03 日本インター株式会社 パワー半導体モジュール
JP2019165051A (ja) * 2018-03-19 2019-09-26 京セラ株式会社 パワー半導体モジュール
WO2019215806A1 (ja) * 2018-05-08 2019-11-14 三菱電機株式会社 配線部材及びこれを備えた半導体モジュール
JPWO2019215806A1 (ja) * 2018-05-08 2021-02-12 三菱電機株式会社 配線部材及びこれを備えた半導体モジュール
JP7065953B2 (ja) 2018-05-08 2022-05-12 三菱電機株式会社 配線部材及びこれを備えた半導体モジュール
US11476224B2 (en) 2018-05-08 2022-10-18 Mitsubishi Electric Corporation Wiring member and semiconductor module including same

Also Published As

Publication number Publication date
JPWO2013179638A1 (ja) 2016-01-18
JP2016027677A (ja) 2016-02-18
EP2858100B1 (en) 2020-06-10
JP5871064B2 (ja) 2016-03-01
CN103918067B (zh) 2017-03-01
EP2858100A1 (en) 2015-04-08
US9312234B2 (en) 2016-04-12
US20150076570A1 (en) 2015-03-19
EP2858100A4 (en) 2016-04-13
JP6083461B2 (ja) 2017-02-22
CN103918067A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
JP6083461B2 (ja) 半導体モジュール
JP5807721B2 (ja) 半導体モジュール
JP5892250B2 (ja) 半導体モジュール
JP5741772B2 (ja) 半導体モジュール
JP5874869B2 (ja) 半導体モジュール
JP6337986B2 (ja) パワー半導体モジュール及びこれを用いた電動パワーステアリング装置。
JP2015080383A (ja) 半導体モジュール
JP2015069990A (ja) 半導体モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14127187

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518275

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013797985

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE