WO2013179553A1 - 金属水酸化物の製造方法及びitoスパッタリングターゲットの製造方法 - Google Patents

金属水酸化物の製造方法及びitoスパッタリングターゲットの製造方法 Download PDF

Info

Publication number
WO2013179553A1
WO2013179553A1 PCT/JP2013/002568 JP2013002568W WO2013179553A1 WO 2013179553 A1 WO2013179553 A1 WO 2013179553A1 JP 2013002568 W JP2013002568 W JP 2013002568W WO 2013179553 A1 WO2013179553 A1 WO 2013179553A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
electrolysis
indium
hydroxide
metal hydroxide
Prior art date
Application number
PCT/JP2013/002568
Other languages
English (en)
French (fr)
Inventor
藤丸 篤
寿文 三村
豊 門脇
克彦 虫明
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2014518242A priority Critical patent/JPWO2013179553A1/ja
Priority to US14/394,662 priority patent/US20150200082A1/en
Priority to KR1020147034107A priority patent/KR20150013244A/ko
Priority to CN201380026827.3A priority patent/CN104334771A/zh
Publication of WO2013179553A1 publication Critical patent/WO2013179553A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for producing a metal hydroxide and a method for producing an ITO sputtering target, and more particularly, to a method for producing a metal hydroxide used for producing an ITO target.
  • a transparent conductive film as an indium tin oxide (hereinafter referred to as “ITO”) film is used as an electrode.
  • ITO indium tin oxide
  • a sputtering apparatus is widely used in consideration of mass productivity, and as this kind of sputtering apparatus, there is an apparatus that forms an ITO film by applying high-frequency power to an ITO target (for example, , See Patent Document 1).
  • Patent Document 2 A method for producing such an ITO target is known from Patent Document 2, for example.
  • an electrolytic solution is stored in an electrolytic cell, indium as an anode and a cathode (for example, iron) are immersed in the electrolytic solution, and a voltage is applied between the electrodes to perform electrolysis.
  • Indium hydroxide is deposited.
  • the precipitated indium hydroxide is recovered, the recovered one is fired to obtain an indium oxide powder, the indium oxide powder is mixed with a tin oxide powder at a predetermined ratio, and the mixed powder is pulverized and granulated,
  • An ITO target is obtained by pressure molding and sintering the pressure molded material.
  • indium contained in the ITO target is a rare metal that is scarce and expensive in terms of resources, and it is important to reduce the manufacturing cost of the ITO target.
  • the electrolytic solution after use does not contain impurities and the composition thereof does not change.
  • ammonium nitrate is used as the electrolytic solution, it is necessary to maintain a constant concentration of nitrate ions and the like in the electrolytic solution before and after electrolysis.
  • the standard electrode potential (+0.01 V) of the nitrate ion reduction reaction (NO 3 ⁇ + 2H + + 2e ⁇ ⁇ NO 2 ⁇ + H 2 O) is the standard electrode potential of the water reduction reaction (+0.01 V). Therefore, in the cathode of the above conventional example, the reduction reaction of nitrate ions is more likely to occur than the reduction reaction of water, and the concentration of nitrate ions is reduced during electrolysis and the concentration of nitrite ions is reduced. To increase. For this reason, the composition of the electrolytic solution changes, and the electrolytic solution after electrolysis contains nitrite ions as impurities. Such electrolytic solution cannot be reused and waste liquid treatment is performed, which requires cost for waste liquid treatment and cannot reduce the manufacturing cost, and also requires replacement work of the electrolytic solution for mass production. There is a problem that the performance is significantly impaired.
  • the pH and temperature of the electrolytic solution become unstable.
  • the particle size of the metal hydroxide is easily affected by the pH and temperature of the electrolytic solution.
  • the pH of the electrolytic solution is low or the temperature is high, the particle size becomes large, and the metal hydroxide has a desired particle size. There is also a problem that it is difficult to obtain.
  • the present invention eliminates the need for waste solution treatment of an electrolytic solution, and provides a mass-productive metal hydroxide production method capable of obtaining a metal hydroxide having a desired particle size and It is an object of the present invention to provide a method for manufacturing an ITO sputtering target.
  • the metal hydroxide production method of the present invention includes a gas diffusion electrode configured by laminating a hydrophobic gas diffusion layer and a hydrophilic reaction layer in an electrolytic cell.
  • the electrolytic cell is partitioned, the electrolytic solution is stored in a portion facing the reaction layer of the partitioned electrolytic cell, a metal material or a conductive metal oxide is immersed in the electrolytic solution, and the gas diffusion electrode A cathode, a metal material or a conductive metal oxide is used as an anode, a voltage is applied between both electrodes, and oxygen is supplied to the portion facing the gas diffusion layer of the partitioned electrolytic cell for electrolysis, in the electrolyte solution. It is characterized by depositing a metal hydroxide.
  • the case where the metal material is indium, the electrolytic solution is ammonium nitrate, and indium hydroxide is deposited will be described as an example.
  • Indium ions (In 3+ ) are eluted from the anode during electrolysis, The ions react with the hydroxide ions in the electrolytic solution to deposit indium hydroxide.
  • oxygen is supplied to the reaction layer through the gas diffusion layer, and a gas-liquid interface between oxygen and the electrolyte is generated inside the reaction layer, and oxygen is reduced at this gas-liquid interface.
  • hydroxide ions are formed (O 2 + 2H 2 O + 4e ⁇ ⁇ 4OH ⁇ ).
  • the nitrate ion reduction reaction Since the standard electrode potential (+0.40 V) of this oxygen reduction reaction is higher than the standard electrode potential (+0.01 V) of nitrate ion reduction reaction, the nitrate ion reduction reaction hardly occurs at the cathode, and the electrolyte solution The composition does not change. For this reason, if the precipitated indium hydroxide is recovered, the electrolyte remaining after recovery can be reused for the next electrolysis, eliminating the need for waste solution treatment or replacement of the electrolyte after electrolysis. It can be reduced and high mass productivity can be achieved. In addition, since the hydroxide ions used for the synthesis of indium hydroxide are replenished from the cathode into the electrolyte, the composition of the electrolyte does not change.
  • the pH and temperature can be stabilized, and a metal hydroxide having a desired particle size can be obtained.
  • the standard electrode potential ( ⁇ 0.83 V) for the reduction reaction of water is further lower than the standard electrode potential for the reduction reaction of nitrate ions, hydrogen is not generated at the cathode due to the reduction of water.
  • oxygen is supplied to the portion facing the gas diffusion layer not only when the oxygen-containing gas is positively supplied to the portion through the gas supply pipe but also the gas diffusion layer of the gas diffusion electrode is exposed to the atmosphere.
  • oxygen is always supplied to the gas-liquid interface formed in the reaction layer upon exposure to water.
  • the present invention is suitable when indium is used as the metal material and ammonium nitrate is used as the electrolytic solution.
  • the manufacturing method of the ITO sputtering target of this invention manufactures an ITO sputtering target using the indium hydroxide obtained by the manufacturing method of the said metal hydroxide. According to this, a high-density ITO sputtering target can be produced.
  • the gas diffusion layer is preferably composed of hydrophobic carbon and a base material
  • the reaction layer is preferably composed of hydrophilic carbon carrying a catalyst, hydrophobic carbon and a base material.
  • FIG. 3A and FIG. 3B are graphs showing experimental results of the present invention.
  • EM is an electrolysis apparatus used in the present embodiment, and electrolysis apparatus EM includes an electrolytic cell 1.
  • the electrolytic cell 1 is composed of an air tank 10 and a precipitation tank 11.
  • the air tank 10 and the sedimentation tank 11 are open at the upper surface and one side surface, and flange portions 10a and 11a are formed around the one side surface.
  • Packings 10b and 11b are fitted in the concave grooves formed in the flange portions 10a and 11a so that the electrolytic solution can be sealed with the holding plate 21 described later.
  • a cathode 2 is installed in the electrolytic cell 1, and the inside of the electrolytic cell 1 is partitioned by the cathode 2.
  • the cathode 2 includes a gas diffusion electrode 20 and two titanium holding plates 21 that sandwich the gas diffusion electrode 20.
  • the holding plate 21 serves to efficiently energize the gas diffusion electrode 20.
  • the gas diffusion electrode 20 is formed by laminating a hydrophobic gas diffusion layer 20a and a hydrophilic reaction layer 20b.
  • the gas diffusion layer 20a is composed of hydrophobic carbon and PTFE (fluorine resin) as a base material
  • the reaction layer 20b is hydrophilic carbon and hydrophobic carbon carrying a catalyst made of platinum or silver.
  • PTFE as a base material can be used.
  • Each holding plate 21 is formed with a recess 21a having an outer shape substantially matching the contour of the gas diffusion electrode 20 and having a depth approximately half the thickness of the entire gas diffusion electrode 20.
  • the diffusion electrode 20 is fitted. Referring also to FIG. 2, through-holes 10 c formed in the flange portion 10 a of the air tank 10, the holding plate 21, and the flange portion 11 a of the sedimentation tank 11, with the gas diffusion electrode 20 held between both holding plates 21, The gas diffusion electrode 20 is positioned and held in the electrolytic cell 1 by aligning 21c and 11c, inserting bolts into these through holes 10c, 21c, and 11c and tightening them with nuts.
  • Each holding plate 21 is provided with an opening 21b that communicates with the recess 21a and is slightly smaller than the recess 21a.
  • the gas diffusion layer 20a faces the air tank 10 through each opening 21b
  • the reaction layer 20b faces the precipitation tank 11.
  • the tip of the gas supply pipe 3 is inserted into the air tank 10, and air (oxygen-containing gas) pressurized to a predetermined pressure can be introduced into the air tank 10, and this air is further introduced into the gas diffusion layer of the gas diffusion electrode 20. 20a can be supplied.
  • the electrolytic solution S is collected in the precipitation tank 11, and the metal material 4 as an anode is immersed in the electrolytic solution S.
  • the metal material 4 at least one metal selected from indium, tin, copper, gallium, zinc, aluminum, iron, nickel, manganese and lithium, or an alloy containing at least one selected from these metals is used. Can be used.
  • the electrolytic solution S at least one selected from ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium acetate, sodium sulfate, sodium chloride, potassium chloride, potassium nitrate, and potassium sulfate can be used.
  • the amount of impurities (nitrogen) contained in the deposited metal hydroxide can be reduced, and that the impurities can be easily removed by heat treatment at a relatively low temperature, it is possible to use ammonium nitrate.
  • the pH and temperature (electrolysis temperature) of the electrolytic solution S can be set as appropriate so that the metal hydroxide precipitates efficiently. If the electrolysis temperature is set to room temperature, the temperature control means for the electrolyte S is not necessary, which is preferable from the viewpoint of apparatus cost.
  • the electrolyzer EM further includes a DC power source 5 so that a predetermined voltage can be applied between the gas diffusion electrode 20 as a cathode and the metal material 4 as an anode.
  • the applied voltage can be appropriately set so as to have a predetermined current density (for example, 2.5 A / dm 2 ).
  • a predetermined current density for example, 2.5 A / dm 2 .
  • the applied voltage can be set within a range of 2.5 to 3.0V.
  • ammonium chloride or ammonium sulfate is used as the electrolyte S
  • the applied voltage can be set within the range of 1.5 to 2.0V.
  • ammonium acetate is used as the electrolyte solution S
  • the applied voltage can be set within the range of 4.5 to 5.0V.
  • the electrolytic device EM is used, the electrolytic solution S is ammonium nitrate, the metal material 4 is indium, and air is supplied from the gas supply pipe 3 into the air tank 10. An example in which indium hydroxide is precipitated by electrolysis will be described.
  • the gas diffusion electrode 20 is installed in the electrolytic cell 1 by assembling the air tank 10, the cathode 2, and the precipitation tank 11 using a plurality of bolts as described above.
  • the electrolytic solution S is accommodated in the precipitation tank 11 partitioned by the gas diffusion electrode 20 (cathode 2), and indium 4 is immersed in the electrolytic solution S.
  • the gas diffusion electrode 20 is a cathode and the indium 4 is a positive electrode, and a voltage is applied from the power source 5 between both electrodes, indium ions (In 3+ ) are eluted from the indium 4 into the electrolyte solution S.
  • the eluted indium ions react with hydroxide ions in the electrolytic solution S to deposit indium hydroxide (In (OH) 3 ), and the precipitated indium hydroxide precipitates at the bottom of the precipitation tank 11.
  • oxygen is supplied to the reaction layer 20b through the gas diffusion layer 20a by introducing air from the gas supply pipe 3 into the air tank 10.
  • a gas-liquid interface is formed inside the reaction layer 20 b, an oxygen reduction reaction occurs at the gas-liquid interface, and hydroxide ions are supplied into the electrolytic solution S.
  • the standard electrode potential of the oxygen reduction reaction is higher than the standard electrode potential of the nitrate ion reduction reaction, the nitrate ion reduction reaction hardly occurs at the cathode, so the composition of the electrolyte solution (nitrate ion or ammonium ion (Concentration) is substantially constant, and nitrite ions are not included as impurities.
  • the electrolyte remaining after recovery can be reused for the next electrolysis, eliminating the need for waste liquid treatment of used electrolyte and replacement of electrolyte. Cost can be reduced and high mass productivity can be achieved.
  • hydroxide ions are consumed by the synthesis of indium hydroxide, since the consumed hydroxide ions are replenished by the reduction reaction of oxygen, coupled with the fact that the composition does not change, The pH and temperature of the electrolytic solution S during electrolysis can be stabilized, and indium hydroxide having a desired particle size (for example, 100 nm) can be obtained.
  • the obtained indium hydroxide is used as a material, a high-density ITO sputtering target can be produced.
  • the indium hydroxide obtained above is baked to form indium oxide, this indium oxide is pulverized and mixed with the tin oxide powder, and the mixed powder is molded and then sintered, whereby an ITO sputtering target is manufactured.
  • various conditions such as firing, mixed molding, and sintering can be used, detailed description is omitted.
  • the following experiment was performed using the electrolyzer EM. That is, in the inventive experiment, a gas diffusion electrode (permelec electrode Co., Ltd.) having a size of 10 cm ⁇ 10 cm and a thickness of 0.5 mm was used as the cathode, and ammonium nitrate having a concentration of 1 mol / l and pH 5 was used as the electrolyte S.
  • the temperature of the electrolytic solution S is 20 ° C.
  • a voltage of 2.5 V is applied from the power source 5 (current density is 2.5 A / dm 2 at this time)
  • electrolysis is performed for 5 hours
  • indium hydroxide is used.
  • the concentrations of nitrate ion, nitrite ion, and ammonium ion contained in the electrolyte solution S were measured.
  • the measurement results are shown in FIG. “C” on the horizontal axis in FIG. 3A is current (A) ⁇ time (sec).
  • the concentration of each ion is substantially constant, the composition of the electrolytic solution S is not changed, and no nitrite ions that are impurities are generated, so that the electrolytic solution S after electrolysis can be reused.
  • the composition of the electrolytic solution S did not change even when the electrolytic solution S was reused 10 times of electrolysis (once for 5 hours).
  • the temperature of the electrolytic solution S is set to 25 ° C. and 30 ° C.
  • electrolysis is performed under the same conditions as described above, and the concentration of the ions is measured. As a result, there is no change in the composition of the electrolytic solution S. Was confirmed.
  • the present invention is not limited to the above embodiment.
  • the case where air is supplied from the gas supply pipe 3 to the air tank 10 has been described.
  • oxygen can be supplied to the reaction layer 20b of the gas diffusion electrode 20.
  • ammonium nitrate was used as the electrolyte solution S
  • the particle size of a metal hydroxide may be large, for example, ammonium chloride illustrated above, ammonium sulfate, ammonium acetate, etc. are used. Can be used.
  • chlorine, sulfur, carbon, etc. are mixed as impurities in the deposited metal hydroxide, and in order to remove these impurities, it is necessary to perform a heat treatment at a higher temperature than in the case of removing nitrogen.
  • the electrolyte solution can be reused.
  • the present invention can naturally be applied to the case where a metal or an alloy capable of forming the metal hydroxide exemplified above is used.
  • a conductive metal oxide was immersed in the electrolyte solution S, and this immersed conductive metal oxide was used as an anode. Also good.
  • a diaphragm may be provided between the anode and the cathode so that desired ions eluted from the conductive metal oxide can pass through the diaphragm to the cathode side.
  • ITO, IGZO, etc. can be used as a conductive metal oxide.
  • SYMBOLS 1 Electrolytic cell, 2 ... Cathode, 20 ... Gas diffusion electrode, 20a ... Gas diffusion layer, 20b ... Reaction layer, S ... Electrolyte solution, 4 ... Indium (anode, metal material).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 電解液の廃液処理を行う必要がなく、所望の粒径に揃った金属水酸化物を得ることが可能な量産性の高い金属水酸化物の製造方法及びITOターゲットの製造方法を提供する。 電解槽1内に、疎水性のガス拡散層20aと親水性の反応層20bとを積層して構成されるガス拡散電極20を設置してこの電解槽内を区画する。区画された電解槽の反応層に面する沈殿槽11内に電解液Sを収納し、電解液中にインジウム4を浸漬させる。ガス拡散電極を陰極、インジウムを陽極として両電極間に電圧を印加すると共に、区画された電解槽のガス拡散層に面する空気槽10内に酸素を供給して電解し、電解液中に水酸化インジウムを析出させる。

Description

金属水酸化物の製造方法及びITOスパッタリングターゲットの製造方法
 本発明は、金属水酸化物の製造方法及びITOスパッタリングターゲットの製造方法に関し、より詳しくは、ITOターゲットの作製に用いられる金属水酸化物を製造するものに関する。
 液晶ディスプレイやプラズマディスプレイ等のフラットパネルディスプレイにおいては、電極として酸化インジウムスズ(以下、「ITO」という)膜たる透明導電膜が用いられている。ITO膜の成膜には、量産性等を考慮してスパッタリング装置が広く利用され、この種のスパッタリング装置としては、ITOターゲットに高周波電力を投入してITO膜を成膜するものがある(例えば、特許文献1参照)。
 このようなITOターゲットの作製方法は例えば特許文献2で知られている。このものでは、先ず、電解槽内に電解液を収納し、この電解液中に陽極たるインジウムと陰極(例えば、鉄)とを浸漬させ、両電極間に電圧を印加して電解を行うことにより水酸化インジウムを析出させる。そして、析出した水酸化インジウムを回収し、回収したものを焼成して酸化インジウム粉末を得て、酸化インジウム粉末に所定の割合で酸化スズ粉末を混合し、混合粉末を粉砕、造粒した後、加圧成型し、この加圧成型したものを焼結することでITOターゲットが得られる。
 ここで、ITOターゲットに含まれるインジウムは、資源的に乏しく高価な希少金属であり、ITOターゲットの製造コストを如何に下げるかが重要である。製造コストの低減方法の1つとして、水酸化インジウムの製造に用いられる電解液を廃棄せずに再利用することが考えられる。電解液を再利用するには、使用後の電解液が不純物を含んでおらず、かつ、その組成が変化していないことが必要である。具体的には、電解液として硝酸アンモニウムを用いる場合、電解前後において、電解液中の硝酸イオン等の濃度を一定に維持する必要がある。
 然し、電解液として硝酸アンモニウムを用いる場合、硝酸イオンの還元反応(NO +2H+2e→NO +HO)の標準電極電位(+0.01V)が水の還元反応の標準電極電位(-0.83V)よりも高いため、上記従来例の陰極では、硝酸イオンの還元反応が水の還元反応に比べて起こり易く、電解中に硝酸イオンの濃度が減少して亜硝酸イオンの濃度が増加する。このため、電解液の組成が変化し、また、電解後の電解液には不純物としての亜硝酸イオンが含まれる。このような電解液は再利用することができず廃液処理が行われ、これでは、廃液処理の費用が必要となって製造コストを低減できず、しかも電解液の入れ替え作業が必要となって量産性を著しく損なうという問題がある。
 さらに、電解液の組成が変化すると、電解液のpHや温度が不安定になる。金属水酸化物の粒径は、電解液のpHや温度の影響を受け易く、電解液のpHが低かったり温度が高かったりすると粒径が大きくなり、所望の粒径に揃った金属水酸化物を得ることが困難となるという問題もある。
特開2009-138230号公報 特開平6-171937号公報
 本発明は、以上の点に鑑み、電解液の廃液処理を行う必要がなく、所望の粒径に揃った金属水酸化物を得ることが可能な量産性の高い金属水酸化物の製造方法及びITOスパッタリングターゲットの製造方法を提供することをその課題とする。
 上記課題を解決するために、本発明の金属水酸化物の製造方法は、電解槽内に、疎水性のガス拡散層と親水性の反応層とを積層して構成されるガス拡散電極を設置してこの電解槽内を区画し、この区画された電解槽の反応層に面する部分に電解液を収納し、この電解液中に金属材料又は導電性金属酸化物を浸漬し、ガス拡散電極を陰極、金属材料又は導電性金属酸化物を陽極として両電極間に電圧を印加すると共に、区画された電解槽のガス拡散層に面する部分に酸素を供給して電解し、電解液中に金属水酸化物を析出させることを特徴とする。
 本発明によれば、金属材料をインジウムとし、電解液を硝酸アンモニウムとし、水酸化インジウムを析出させる場合を例に説明すると、電解中、陽極からインジウムイオン(In3+)が溶出し、この溶出したインジウムイオンが電解液中の水酸化物イオンと反応して水酸化インジウムが析出する。このとき、陰極のガス拡散電極では、ガス拡散層を介して反応層に酸素が供給され、反応層の内部に酸素と電解液との気液界面が生じ、この気液界面で酸素が還元されて水酸化物イオンが生成する(O+2HO+4e→4OH)。この酸素の還元反応の標準電極電位(+0.40V)は、硝酸イオンの還元反応の標準電極電位(+0.01V)よりも高いので、陰極では硝酸イオンの還元反応が殆ど起こらず、電解液の組成は変化しない。このため、析出した水酸化インジウムを回収すれば、回収後に残った電解液を次回の電解に再利用でき、電解後に電解液の廃液処理や電解液の入れ替え作業を行う必要がなくなり、製造コストを低減できると共に高い量産性が達成できる。しかも、水酸化インジウムの合成に用いられた分の水酸化物イオンが陰極から電解液中に補充されるので、上記電解液の組成が変化しないことと相俟って、電解中の電解液のpHや温度を安定化することができ、所望の粒径に揃った金属水酸化物を得ることができる。また、水の還元反応の標準電極電位(-0.83V)は、硝酸イオンの還元反応の標準電極電位よりも更に低いため、陰極では水の還元により水素が発生することもない。
 尚、本発明において、ガス拡散層に面する部分に酸素を供給するとは、この部分にガス供給管を通じて酸素含有ガスを積極的に供給する場合だけでなく、ガス拡散電極のガス拡散層を大気に曝して反応層に形成される気液界面に常に酸素が供給される場合を含むものとする。
 本発明は、前記金属材料としてインジウムを用い、前記電解液として硝酸アンモニウムを用いる場合に適している。本発明のITOスパッタリングターゲットの製造方法は、上記金属水酸化物の製造方法により得られた水酸化インジウムを用いてITOスパッタリングターゲットを製造することを特徴とする。これによれば、高密度のITOスパッタリングターゲットを作製することができる。
 本発明において、前記ガス拡散層は疎水性カーボンと基材とで構成され、前記反応層は触媒を担持した親水性カーボンと疎水性カーボンと基材とで構成されることが好ましい。
本発明の実施形態の金属水酸化物の製造方法に用いられる電解装置を示す模式図。 図1に示す電解槽の分解斜視図。 図3(a)及び図3(b)は、本発明の実験結果を示すグラフ。
 図1を参照して、EMは、本実施形態で用いられる電解装置であり、電解装置EMは、電解槽1を備える。電解槽1は、空気槽10と沈殿槽11とで構成されている。これら空気槽10及び沈殿槽11は、上面と一側面とが開口となっており、この一側面の周囲にはフランジ部10a、11aが形成されている。このフランジ部10a、11aに形成された凹溝にはパッキン10b、11bが嵌め込まれており、後述する保持板21との間で電解液をシールできるようになっている。
 電解槽1内には陰極2が設置されており、この陰極2により電解槽1内が区画されている。陰極2は、ガス拡散電極20と、このガス拡散電極20を挟持する2枚のチタン製の保持板21とで構成される。保持板21は、ガス拡散電極20に効率よく通電する役割を果たす。ガス拡散電極20は、疎水性のガス拡散層20aと親水性の反応層20bとが積層されてなる。ガス拡散電極20としては、ガス拡散層20aが疎水性カーボンと基材たるPTFE(フッ素系樹脂)とで構成され、反応層20bが白金もしくは銀からなる触媒を担持した親水性カーボンと疎水性カーボンと基材たるPTFEとで構成されたものを用いることができる。各保持板21にはガス拡散電極20の輪郭と略一致する外形を有し、かつ、ガス拡散電極20全体の厚さの略半分の深さを有する凹部21aが形成され、この凹部21aにガス拡散電極20が嵌め込まれるようになっている。図2も参照して、両保持板21でガス拡散電極20を挟持した状態で、空気槽10のフランジ部10a、保持板21及び沈殿槽11のフランジ部11aに夫々形成された貫通孔10c、21c、11cの位置合わせをし、これらの貫通孔10c、21c、11cにボルトを挿通してナットで締めつけることにより、電解槽1内でガス拡散電極20が位置決め保持される。各保持板21には、凹部21aに通じ、凹部21aよりも一回り小さい開口21bが夫々開設されている。これにより、各開口21bを介してガス拡散層20aが空気槽10内に面すると共に、反応層20bが沈殿槽11内に面する。空気槽10内にはガス供給管3の先端が挿入され、空気槽10内に所定圧力に加圧した空気(酸素含有ガス)を導入でき、さらに、この空気をガス拡散電極20のガス拡散層20aに供給できるようになっている。沈殿槽11内には電解液Sが収能され、この電解液S中に陽極たる金属材料4を浸漬させている。
 金属材料4としては、インジウム、スズ、銅、ガリウム、亜鉛、アルミニウム、鉄、ニッケル、マンガン及びリチウムから選択された少なくとも1種の金属、又はこれらの金属から選択された少なくとも1種を含む合金を用いることができる。電解液Sとしては、硝酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、硫酸ナトリウム、塩化ナトリウム、塩化カリウム、硝酸カリウム及び硫酸カリウムから選択された少なくとも1種を用いることができる。ここで、析出する金属水酸化物に含まれる不純物(窒素)の量を少なくでき、しかも、その不純物を比較的低温での熱処理で容易に除去可能である点を考慮すると、硝酸アンモニウムを用いることが好適である。電解液SのpHや温度(電解温度)は、金属水酸化物が効率よく析出するように適宜設定できる。電解温度を室温に設定すれば、電解液Sの温度制御手段が不要となるため、装置コストの点から好ましい。
 電解装置EMは、直流電源5を更に備え、陰極たるガス拡散電極20と陽極たる金属材料4との間に所定の電圧を印加できるようになっている。印加電圧は、所定の電流密度(例えば、2.5A/dm)となるように適宜設定できる。例えば、電解液Sとして硝酸アンモニウムを用いる場合、印加電圧を2.5~3.0Vの範囲内で設定できる。電解液Sとして塩化アンモニウムや硫酸アンモニウムを用いる場合、印加電圧を1.5~2.0Vの範囲内で設定できる。また、電解液Sとして酢酸アンモニウムを用いる場合、印加電圧を4.5~5.0Vの範囲内で設定できる。以下、本実施形態の金属水酸化物の製造方法について、上記電解装置EMを用い、電解液Sを硝酸アンモニウムとし、金属材料4をインジウムとし、空気槽10内にガス供給管3から空気を供給して電解を行うことにより、水酸化インジウムを析出させる場合を例に説明する。
 先ず、上記の如く空気槽10、陰極2及び沈殿槽11を複数本のボルトを用いて組み付けることで、電解槽1内にガス拡散電極20が設置される。このガス拡散電極20(陰極2)により区画された沈殿槽11内に電解液Sを収納し、この電解液S中にインジウム4を浸漬させる。ガス拡散電極20を陰極、インジウム4を正極とし、これら両極間に電源5から電圧を印加すると、インジウム4から電解液S中にインジウムイオン(In3+)が溶出する。この溶出したインジウムイオンが電解液S中の水酸化物イオンと反応することで水酸化インジウム(In(OH))が析出し、析出した水酸化インジウムが沈殿槽11内の底部に沈殿する。
 このとき、空気槽10内にガス供給管3から空気を導入することで、ガス拡散層20aを介して反応層20bに酸素が供給される。これにより、反応層20bの内部に気液界面が形成され、この気液界面にて酸素の還元反応が起こり、電解液S中に水酸化物イオンが供給される。ここで、酸素の還元反応の標準電極電位は硝酸イオンの還元反応の標準電極電位よりも高いので、陰極では硝酸イオンの還元反応は殆ど起こらないため、電解液の組成(硝酸イオンやアンモニウムイオンの濃度)は略一定であり、しかも、亜硝酸イオンが不純物として含まれない。このため、上記析出した水酸化インジウムを回収すれば、回収後に残った電解液を次回の電解に再利用でき、使用済みの電解液の廃液処理や電解液の入れ替え作業を行う必要がなくなり、製造コストを低減でき、高い量産性が達成できる。しかも、水酸化インジウムの合成により水酸化物イオンが消費されるが、消費された分の水酸化物イオンが酸素の還元反応により補充されるので、上記組成が変化しないことと相俟って、電解中の電解液SのpHや温度を安定化でき、所望の粒径(例えば、100nm)に揃った水酸化インジウムを得ることができる。このため、上記得られた水酸化インジウムを材料として用いれば、高密度のITOスパッタリングターゲットを作製することができる。この場合、上記得られた水酸化インジウムを焼成して酸化インジウムとし、この酸化インジウムを粉末化して酸化スズの粉末と混合し、混合粉末を成形した後に焼結することによりITOスパッタリングターゲットが製造される。ここで、焼成、混合成形や焼結等の各条件は公知のものを用いることができるため、詳細な説明を省略する。
 尚、水の還元反応の標準電極電位は、硝酸イオンの還元反応の標準電極電位よりも更に低いため、陰極では水の還元により水素が発生することもない。また、亜硝酸イオンが殆ど生じないため、陽極にてNOxが発生することもない。これによれば、電解中に発生する水素やNOxを処理する設備が不要となるため、製造コストをより一層低減できる。
 以上の効果を確認するために、上記電解装置EMを用いて、次の実験を行った。即ち、発明実験では、陰極として、サイズが10cm×10cmで厚さが0.5mmのガス拡散電極(ペルメレック電極株式会社製)を用い、電解液Sとして、濃度が1mol/l、pH5の硝酸アンモニウムを用い、この電解液Sの温度を20℃とし、電源5から2.5Vの電圧を印加し(このときの電流密度は2.5A/dmである)、5時間電解を行って水酸化インジウムを得た。電解中、電解液Sに含まれる硝酸イオン、亜硝酸イオン、アンモニウムイオンの濃度を測定した。その測定結果を図3(a)に示す。図3(a)の横軸の“C”は、電流(A)×時間(sec)である。発明実験によれば、各イオンの濃度は略一定であり、電解液Sの組成に変化がなく、不純物となる亜硝酸イオンも生成していないことから、電解後の電解液Sを再利用できることが確認された。さらに、実験では、電解液Sを10回の電解(1回5時間)に再利用しても、電解液Sの組成に変化がないことが確認された。また、電解液Sの温度を25℃、30℃に設定する以外は、上記と同一の条件で電解を行い、上記イオンの濃度を測定した結果、同様に電解液Sの組成に変化がないことが確認された。
 上記発明実験に対する比較実験として、ガス拡散電極に代えて従来のSUSを陰極として用い、電解液は上記発明実験と同じものを用いて電解を行って水酸化インジウムを得た。上記発明実験と同様に、電解中のイオン濃度を測定し、その測定結果を図3(b)に示す。比較実験では、陰極で硝酸イオンの還元反応が起こり、硝酸イオンの濃度が減少して亜硝酸イオンの濃度が増加することが確認された。このことから、電解液Sの組成が変化し、電解液Sに不純物が含まれるため、電解後の電解液Sを再利用できないことが判った。
 なお、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、空気槽10にガス供給管3から空気を供給する場合について説明したが、ガス拡散電極20の反応層20bに酸素が供給できればよく、例えば送風手段により空気槽10内に空気を送り込む構成を採用してもよい。
 また、上記実施形態では、電解液Sとして硝酸アンモニウムを用いる場合について説明したが、金属水酸化物の粒径が大きくてもよい場合には、例えば、上記例示した塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム等を用いることができる。この場合、析出した金属水酸化物に塩素、硫黄、炭素等が不純物として混入し、これらの不純物を除去するには、窒素を除去する場合に比べてより高温の熱処理を行う必要があり、この熱処理中に粒径が大きくなるものの、電解液の再利用が可能となる。
 また、上記実施形態では、金属材料4としてインジウムを用いる場合について説明したが、上記例示した金属水酸化物を形成し得る金属や合金を用いる場合にも当然に本発明を適用することができる。
 また、上記実施形態では、電解液Sに浸漬した金属材料4を陽極とする場合について説明したが、電解液Sに導電性金属酸化物を浸漬し、この浸漬した導電性金属酸化物を陽極としてもよい。この場合、陽極と陰極との間に隔膜を設置して、導電性金属酸化物から溶出した所望のイオンを隔膜を陰極側に透過させるようにしてもよい。尚、導電性金属酸化物としては、ITO、IGZO等を用いることができる。
  1…電解槽、2…陰極、20…ガス拡散電極、20a…ガス拡散層、20b…反応層、S…電解液、4…インジウム(陽極、金属材料)。

Claims (3)

  1.  電解槽内に、疎水性のガス拡散層と親水性の反応層とを積層して構成されるガス拡散電極を設置してこの電解槽内を区画し、この区画された電解槽の反応層に面する部分に電解液を収納し、この電解液中に金属材料又は導電性金属酸化物を浸漬し、
     ガス拡散電極を陰極、金属材料又は導電性金属酸化物を陽極として両電極間に電圧を印加すると共に、区画された電解槽のガス拡散層に面する部分に酸素を供給して電解し、電解液中に金属水酸化物を析出させることを特徴とする金属水酸化物の製造方法。
  2.  前記金属材料としてインジウムを用い、前記電解液として硝酸アンモニウムを用いることを特徴とする請求項1記載の金属水酸化物の製造方法。
  3.  請求項2記載の金属水酸化物の製造方法により製造された水酸化インジウムを用いてITOスパッタリングターゲットを製造することを特徴とするITOスパッタリングターゲットの製造方法。
PCT/JP2013/002568 2012-05-31 2013-04-16 金属水酸化物の製造方法及びitoスパッタリングターゲットの製造方法 WO2013179553A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014518242A JPWO2013179553A1 (ja) 2012-05-31 2013-04-16 金属水酸化物の製造方法及びitoスパッタリングターゲットの製造方法
US14/394,662 US20150200082A1 (en) 2012-05-31 2013-04-16 Method of manufacturing metal hydroxides and method of manufacturing ito sputtering target
KR1020147034107A KR20150013244A (ko) 2012-05-31 2013-04-16 금속 수산화물의 제조방법 및 ito 스퍼터링 타깃의 제조방법
CN201380026827.3A CN104334771A (zh) 2012-05-31 2013-04-16 金属氢氧化物的制造方法及ito溅射靶的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-125364 2012-05-31
JP2012125364 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013179553A1 true WO2013179553A1 (ja) 2013-12-05

Family

ID=49672788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002568 WO2013179553A1 (ja) 2012-05-31 2013-04-16 金属水酸化物の製造方法及びitoスパッタリングターゲットの製造方法

Country Status (6)

Country Link
US (1) US20150200082A1 (ja)
JP (1) JPWO2013179553A1 (ja)
KR (1) KR20150013244A (ja)
CN (1) CN104334771A (ja)
TW (1) TWI507361B (ja)
WO (1) WO2013179553A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114886A1 (ja) * 2014-01-29 2015-08-06 住友金属鉱山株式会社 水酸化インジウム粉の製造方法及び陰極
JP2016113690A (ja) * 2014-12-17 2016-06-23 住友金属鉱山株式会社 電解装置、水酸化インジウム粉の製造方法、及びスパッタリングターゲットの製造方法
EP3042981A1 (en) * 2015-01-09 2016-07-13 Vito NV An electrochemical process for preparing a compound comprising a metal or metalloid and a peroxide, ionic or radical species
JP2020041209A (ja) * 2018-09-13 2020-03-19 株式会社アルバック 金属水酸化物の製造装置及び製造方法
JP2020059872A (ja) * 2018-10-05 2020-04-16 株式会社アルバック 金属水酸化物の製造装置及び製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786994B1 (ja) * 2014-03-11 2015-09-30 住友金属鉱山株式会社 水酸化インジウム粉および酸化インジウム粉
TWI625523B (zh) * 2017-04-13 2018-06-01 矽品精密工業股份有限公司 偵測系統
EP3674445B1 (en) * 2018-12-27 2024-04-17 Vito NV An electrochemical process for producing nanoparticlesof cuprate hydroxychlorides
EP3674444B1 (en) * 2018-12-27 2023-08-16 Vito NV An electrochemical process for producing magnetic iron oxide nanoparticles
EP3674446A1 (en) * 2018-12-28 2020-07-01 Vito NV A method for precipitating arsenic from a solution
CN109706467B (zh) * 2019-03-04 2020-08-28 河北恒博新材料科技股份有限公司 电解制备高活性氧化铟的方法
JP7250723B2 (ja) * 2020-03-31 2023-04-03 Jx金属株式会社 スパッタリングターゲット及びスパッタリングターゲットの製造方法
CN114045499B (zh) * 2021-12-16 2023-11-28 西北师范大学 一种三氧化二铟纳米粒子的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221326A (ja) * 1984-04-13 1985-11-06 Japan Metals & Chem Co Ltd 金属酸化物の製造法
JPH0692711A (ja) * 1992-09-10 1994-04-05 Tanaka Kikinzoku Kogyo Kk セラミックス体の製造方法
JPH10204669A (ja) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp 酸化インジウム粉末の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067788A (en) * 1976-09-20 1978-01-10 Electromedia, Inc. Electrochemical production of finely divided metal oxides, metal hydroxides and metals
US4597957A (en) * 1984-03-06 1986-07-01 Japan Metals And Chemicals Co., Ltd. Process for electrolytically producing metallic oxide for ferrite
US4615954A (en) * 1984-09-27 1986-10-07 Eltech Systems Corporation Fast response, high rate, gas diffusion electrode and method of making same
US5234768A (en) * 1988-02-10 1993-08-10 Tanaka Kikinzoku Kogyo K.K. Gas permeable member
US5246551A (en) * 1992-02-11 1993-09-21 Chemetics International Company Ltd. Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
JP2829556B2 (ja) * 1992-12-09 1998-11-25 株式会社ジャパンエナジー 酸化インジウム粉末の製造方法
US5417816A (en) * 1992-12-09 1995-05-23 Nikko Kyodo, Ltd. Process for preparation of indium oxide-tin oxide powder
JP2736498B2 (ja) * 1993-05-26 1998-04-02 株式会社ジャパンエナジー 酸化インジウム−酸化スズ粉末の製造方法
US6733639B2 (en) * 2000-11-13 2004-05-11 Akzo Nobel N.V. Electrode
JP2003145161A (ja) * 2001-06-25 2003-05-20 Kurita Water Ind Ltd 水処理装置及び水処理方法
JP5043027B2 (ja) * 2006-10-24 2012-10-10 Jx日鉱日石金属株式会社 Itoスクラップからの有価金属の回収方法
JP4210713B2 (ja) * 2007-02-16 2009-01-21 日鉱金属株式会社 導電性のある酸化物を含有するスクラップからの有価金属の回収方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221326A (ja) * 1984-04-13 1985-11-06 Japan Metals & Chem Co Ltd 金属酸化物の製造法
JPH0692711A (ja) * 1992-09-10 1994-04-05 Tanaka Kikinzoku Kogyo Kk セラミックス体の製造方法
JPH10204669A (ja) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp 酸化インジウム粉末の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114886A1 (ja) * 2014-01-29 2015-08-06 住友金属鉱山株式会社 水酸化インジウム粉の製造方法及び陰極
JP2016113690A (ja) * 2014-12-17 2016-06-23 住友金属鉱山株式会社 電解装置、水酸化インジウム粉の製造方法、及びスパッタリングターゲットの製造方法
EP3042981A1 (en) * 2015-01-09 2016-07-13 Vito NV An electrochemical process for preparing a compound comprising a metal or metalloid and a peroxide, ionic or radical species
WO2016110597A1 (en) * 2015-01-09 2016-07-14 Vito Nv An electrochemical process for preparing a compound comprising a metal or metalloid and a peroxide, ionic or radical species
CN107532309A (zh) * 2015-01-09 2018-01-02 威拓股份有限公司 用于制备含金属离子或准金属的化合物和过氧根、离子或自由基物质的电化学方法
JP2018508659A (ja) * 2015-01-09 2018-03-29 フィト エヌフェー 金属又は半金属及び過酸化物、イオン種又はラジカル種を含む化合物を調製するための電気化学的方法
JP2020041209A (ja) * 2018-09-13 2020-03-19 株式会社アルバック 金属水酸化物の製造装置及び製造方法
JP7152228B2 (ja) 2018-09-13 2022-10-12 株式会社アルバック 金属水酸化物の製造装置及び製造方法
JP2020059872A (ja) * 2018-10-05 2020-04-16 株式会社アルバック 金属水酸化物の製造装置及び製造方法
JP7128075B2 (ja) 2018-10-05 2022-08-30 株式会社アルバック 金属水酸化物の製造装置及び製造方法

Also Published As

Publication number Publication date
US20150200082A1 (en) 2015-07-16
CN104334771A (zh) 2015-02-04
TWI507361B (zh) 2015-11-11
JPWO2013179553A1 (ja) 2016-01-18
KR20150013244A (ko) 2015-02-04
TW201406660A (zh) 2014-02-16

Similar Documents

Publication Publication Date Title
WO2013179553A1 (ja) 金属水酸化物の製造方法及びitoスパッタリングターゲットの製造方法
Ijije et al. Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts
CN1650051B (zh) 在电解池中还原金属氧化物
KR101193142B1 (ko) 인산리튬 수용액의 전기분해에 의한 리튬 제조 방법
JP6194217B2 (ja) 金属水酸化物の製造方法及びスパッタリングターゲットの製造方法
EP2877613B1 (en) Selective reductive electrowinning method
Park et al. Three-dimensionally interconnected titanium foam anode for an energy-efficient zero gap-type chlor-alkali electrolyzer
CN107034483A (zh) 一种氯酸钠发生器电极的制备方法
CN114990603B (zh) 离子交换膜电解槽
WO2011102431A1 (ja) 電極基体およびそれを用いた水溶液電気分解用陰極、およびそれらの製造方法
CN102634812A (zh) 一种电解氧化还原铕的方法
KR101714601B1 (ko) 이산화탄소의 전기화학적 환원 방법 및 장치
KR20160038363A (ko) 이산화탄소의 전기화학적 환원 방법 및 장치
Luin et al. Electrolysis energy efficiency of highly concentrated FeCl2 solutions for power-to-solid energy storage technology
JP7152228B2 (ja) 金属水酸化物の製造装置及び製造方法
KR101234390B1 (ko) 희생양극을 이용한 음이온성 오염물질의 전기역학적 정화 장치
RU2505625C2 (ru) Способ получения графитовых электродов с покрытием предпочтительно из благородных металлов для электролитических процессов, особенно для электролитов соляной кислоты
JP2004099914A (ja) ペルオキソ二硫酸塩の製造方法
KR102435563B1 (ko) 리튬 박 형성용 전해액 및 리튬 박 제조방법
KR20150062687A (ko) 비수계 전해법에 의한 마그네슘의 전해정련방법
CN109306503B (zh) 一种锰电解液复配添加剂及其使用方法
JP2020059872A (ja) 金属水酸化物の製造装置及び製造方法
Kim et al. Self‐Converted Scaffold Enables Dendrite‐Free and Long‐Life Zn‐Ion Batteries
WO2022263482A1 (en) Method for oxidizing manganese species in a treatment device
WO2021002774A1 (ru) Способ получения мелкодисперсного порошка серебра в нитратном электролите

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518242

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14394662

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147034107

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13797185

Country of ref document: EP

Kind code of ref document: A1