WO2013179337A1 - 焼結磁石及びその製造方法 - Google Patents

焼結磁石及びその製造方法 Download PDF

Info

Publication number
WO2013179337A1
WO2013179337A1 PCT/JP2012/003518 JP2012003518W WO2013179337A1 WO 2013179337 A1 WO2013179337 A1 WO 2013179337A1 JP 2012003518 W JP2012003518 W JP 2012003518W WO 2013179337 A1 WO2013179337 A1 WO 2013179337A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
sintered magnet
oxyfluoride
concentration
grain boundary
Prior art date
Application number
PCT/JP2012/003518
Other languages
English (en)
French (fr)
Inventor
小室 又洋
佐通 祐一
今川 尊雄
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2014518083A priority Critical patent/JP5868500B2/ja
Priority to EP12877886.7A priority patent/EP2858074A4/en
Priority to PCT/JP2012/003518 priority patent/WO2013179337A1/ja
Priority to CN201280073551.XA priority patent/CN104350554A/zh
Priority to US14/404,406 priority patent/US20150170809A1/en
Publication of WO2013179337A1 publication Critical patent/WO2013179337A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the present invention relates to a sintered magnet containing fluorine and a method for producing the same.
  • NdFeB-based sintered magnets are high-performance magnets mainly composed of Nd 2 Fe 14 B-based crystals, and are used in a wide range of products such as automobiles, industry, power generation equipment, home appliances, medical equipment, and electronic equipment. It has increased.
  • Nd which is a rare earth element
  • expensive heavy rare earth elements such as Dy and Tb are used for NdFeB-based sintered magnets in order to ensure heat resistance. This heavy rare earth element is scarce, and is soaring for resource uneven distribution and resource protection, and there is an increasing demand for reducing the amount of heavy rare earth element used.
  • Patent Document 1 discloses a sintered magnet that employs a technique of diffusing heavy rare earth elements from the surface of the sintered magnet using steam containing heavy rare earth elements.
  • Patent Document 3 discloses that the amount of heavy rare earth element used can be reduced even in a magnet in which a fluoride is applied and diffused on the surface of a sintered magnet, and an oxyfluoride is formed at the grain boundary of the sintered magnet.
  • Patent Document 4 discloses that the fluorination technique using xenon fluoride can be applied to fluorine intercalation type compounds such as SmFeF system in which fluorine is the main phase of the magnet material.
  • Patent Document 5 discloses the concentration of a halogen element in a magnet sintered by adding a fluoride.
  • Patent Document 6 describes a fluorination technique using fluorine (F 2 ) gas.
  • the rare earth element is diffused and unevenly distributed along the grain boundary using a material containing a heavy rare earth element from the surface of the NdFeB sintered magnet, and the NdFeB sintered ceramic that is the base material is used.
  • This is a method of adding heavy rare earth elements from the outside to the magnet.
  • Such conventional technology newly adds heavy rare earth elements by diffusion to improve the magnetic properties of sintered magnets, and it is not possible to realize improved magnetic properties of sintered magnets without using additional heavy rare earth elements. Have difficulty.
  • An object of the present invention is to improve the magnetic properties of a sintered magnet without adding heavy rare earth elements.
  • One of the means for producing the sintered magnet of the present invention employs a step of fluorinating the crystal grain boundary with a dissociative fluorinating agent, and the oxyfluoride or fluoride is introduced into the NdFeB crystal grain boundary or crystal grain at a low temperature. Is to change the texture of the sintered magnet.
  • the dissociative fluorinating agent can generate fluorine radicals at a temperature lower than the diffusion heat treatment temperature, and can fluorinate the magnet material at a low temperature of 50 to 400 ° C.
  • a typical example is xenon fluoride (Xe-F system), and fluorine can be easily introduced into a sintered magnet within the above temperature range. Although the dissociated fluorine is introduced into the sintered magnet, xenon is less reactive and hardly forms an element and a compound constituting the sintered magnet, and therefore hardly enters the sintered magnet.
  • the dissociated or decomposed active fluorine is mainly introduced along the grain boundaries where the rare earth element concentration and oxygen concentration are high, and bonds with various elements constituting the sintered magnet, so that it diffuses into the grain boundaries and grains, Various fluorine compounds (fluorides) are formed.
  • an oxyfluorine compound (oxyfluoride) or fluoride containing a rare earth element grows easily, and fluorine diffuses along the grain boundary.
  • the amount of fluorine to be introduced can be controlled by fluorination conditions, and an oxyfluoride containing fluorine at a concentration higher than the oxygen concentration of the oxyfluoride can be formed.
  • Such an oxyfluoride having a high fluorine concentration absorbs a part of the elements constituting the magnet and a small amount of additive elements that easily bind to fluorine, and the composition and structure near the grain boundary change.
  • the composition and structural changes due to the introduction of fluorine affect the magnetic properties in the vicinity of the fluoride and increase the coercive force.
  • fluorine introduction diffuses excess fluorine exceeding the energetically stable fluorine concentration into the sintered magnet, so that a metastable fluorine-excess compound is formed. Since the structure of metastable fluoride is easily changed by heat treatment, the coercive force is increased by controlling the conditions of diffusion after fluorination and aging heat treatment.
  • an oxyfluoride having a fluorine concentration higher than the oxygen concentration grows, and at least of the magnet constituent elements, additive elements, and impurity elements in the oxyfluoride or fluoride. A kind of element is recognized.
  • the supplied fluorine is unevenly distributed in the grain boundary phase rather than the main phase and diffuses to form an oxyfluoride containing fluorine having a concentration higher than the oxygen concentration.
  • the oxyfluoride is a metastable phase and becomes a stable phase when heated to a temperature of 900 ° C. or higher.
  • the above features can be realized only by adopting a technique capable of supplying an excessive amount of active fluorine to the sintered magnet material, and cannot be realized by a conventional fluorine introduction technique using a stable fluoride or oxyfluoride.
  • the magnetic properties of the sintered magnet can be improved without adding heavy rare earth elements.
  • Concentration distribution after fluorination treatment Concentration distribution after fluorination treatment. Concentration distribution after fluorination treatment. Cross-sectional structure of sintered magnet after fluorination treatment.
  • XeF 2 to introduce fluorine in the sintered body by fluorine decomposed Co is introduced from the surface of the sintered body by decomposition of the Co complex.
  • fluorine accumulates at the grain boundaries of (Nd, Dy) 2 Fe 14 B particles, and fluorine and Co diffuse through the grain boundaries having a high rare earth element concentration by aging heat treatment after fluorine introduction.
  • the average particle size of XeF 2 is in the range of 0.1 ⁇ m to 1000 ⁇ m. With XeF 2 of less than 0.1 ⁇ m, it is easy to sublimate and it becomes difficult to supply a sufficient amount of fluorine to the sintered magnet. On the other hand, if it exceeds 1000 ⁇ m, the fluorination reaction becomes non-uniform, and local heat generation and oxides or oxyfluorides containing residual oxygen grow, making it difficult to diffuse fluorine into the grain boundaries.
  • the demagnetization curve immediately after the introduction of fluorine is measured as a stepped demagnetization curve with a distribution of coercive force, but fluorine and main phase constituent elements diffuse due to aging heat treatment at 400 to 800 ° C. Components with low coercivity disappear.
  • the saturation magnetic flux density after the introduction of fluorine increases in the range of 0.01 to 20% than before the introduction of fluorine. An increase in the saturation magnetic flux density leads to an increase in the residual magnetic flux density, and the maximum energy product is increased compared with that before fluorine introduction. Unreacted fluorine released from the sintered magnet can be removed by aging heat treatment at 400 to 800 ° C.
  • fluorine is unevenly distributed in the grain boundaries after the introduction of fluorine, and 5 to 90% of the grain boundaries are fluorides or oxyfluorides, and the crystal structure is mainly cubic, monoclinic , Orthorhombic, hexagonal, rhombohedral, tetragonal or amorphous. Fluorine partially diffuses into main phase crystal grains and grain boundary triple points other than grain boundaries, and bcc or bct structure Fe or Fe alloy grows from some main phases.
  • the Fe alloy is Fe x M y alloy or Fe h M i F j alloy.
  • M is an element added to the raw material powder before sintering or at least one element diffused with the introduction of fluorine from the magnet surface after sintering, and x, y, h, i, j are positive numbers. Since the fluorine to diffuse into the main phase crystal grains is greater near the surface of the sintered magnet, bcc or Fe of bct structure, Fe x M y alloy or Fe h M i F j alloys near the surface than the sintered magnet center ( Increased on the outside of the sintered magnet). Some fluorine-containing Fe-based alloys have a lattice constant of 0.01 to 10% shorter than Fe (0.2866 nm), and a part of the fluorine-containing phase is also found inside the main phase crystal grains.
  • Fe of the bcc or bct structure single coercivity of Fe x M y alloy or Fe h M i F j alloy is 0.1 ⁇ 10 kOe, the saturation magnetic flux density is in the range of 1.6 ⁇ 2.4 T , (Nd, Dy) 2 Fe 14 B is smaller than the coercive force alone and the saturation magnetic flux density is large. Therefore, magnetization reversal is suppressed by magnetically coupling with (Nd, Dy) 2 Fe 14 B, and an inflection point is recognized in the second quadrant of the demagnetization curve immediately after the introduction of fluorine with a magnetic field of 80% or less of the coercive force. It becomes a monotonic demagnetization curve compared to the demagnetization curve.
  • Fe x M y alloy of hcp structures fluorine has entered and L10 structures, or Fe h M i F volume ratio of the j alloy from 0.1 to 50% of It is effective to grow in a range.
  • an ordered alloy into which fluorine has entered can be formed by fluorination treatment in a magnetic field, heat treatment in a magnetic field after fluorination, or plastic deformation after fluorination.
  • the residual magnetic flux density is variable by an external magnetic field
  • the sintered magnet having a maximum energy product of 40 MGOe or more and 70 MGOe or less has Nd 2 Fe 14 B phase and FeCo as main phases. It is a system phase.
  • a fluorine-containing phase is recognized in the main phase crystal grain boundary and the main phase, and the proportion of the FeCo-based phase which is one of the main phases and the fluorine-containing phase in the main phase approaches the surface from the center of the sintered magnet. A tendency to increase the ratio is shown.
  • the fluorine introduction method as in this embodiment can be applied to Mn-based magnetic materials, Cr-based magnetic materials, Ni-based magnetic materials, and Cu-based magnetic materials.
  • the order of fluorine atoms is ordered, or the atom pairs of fluorine and other light elements are ordered, and fluorine atoms with high electronegativity are formed.
  • anisotropy occurs in the distribution of the density of electronic states, and it becomes ferromagnetic or hard magnetized.
  • Fluoride material for introducing fluorine contains fluorine generated by using a chemical change of a compound of an inert gas element other than Xe and fluorine in addition to utilizing the decomposition reaction of the XeF compound of this example Radicals, fluorine-containing plasma, and fluorine-containing ions can be used and can be fluorinated by contacting or irradiating the surface of the sintered magnet.
  • the reaction can be made uniform by advancing these fluorination reactions in a solvent such as alcohol or mineral oil, but fluorine can be introduced even when no solvent is used.
  • a method for increasing the coercive force by subjecting a (Nd, Dy) 2 Fe 14 B sintered magnet containing 1 wt% Dy to fluorination treatment will be described in this embodiment. It is possible to selectively introduce only fluorine into the grain boundary without using a metal element for the fluorination treatment, and to increase the coercive force by low-temperature heat treatment, without using a rare metal element, a low temperature of less than 600 ° C. Magnetic properties can be improved in the process. A mixture of hexane (C 6 H 14 ) and XeF 2 (0.1 wt%) is used as the fluorinating agent.
  • XeF 2 is pulverized in advance in an inert gas atmosphere to an average particle size of 1000 ⁇ m or less and mixed with hexane.
  • a sintered magnet is inserted into this mixture, placed in a Ni container, and heated.
  • the heating temperature is 100 ° C., and fluorination proceeds at this temperature.
  • fluorine diffusion heat treatment is performed without exposure to the atmosphere.
  • the diffusion heat treatment temperature is set in a higher temperature range than the heating temperature. After holding at a diffusion heat treatment temperature of 500 ° C., it is cooled rapidly.
  • the coercive force is increased by the fluorination treatment and the diffusion heat treatment.
  • the results are shown in No. 1 and No. 2 of Table 1-1.
  • FIG. 1 shows the results of obtaining the F, Nd, Dy distribution of the cross section of the sintered magnet having a thickness of 4 mm prepared under the conditions of No. 2 in Table 1-1 by mass spectrometry.
  • the Nd and Dy concentrations are almost constant in the thickness direction, but the F concentration increases as it approaches the surface (2 mm).
  • the oxyfluoride is tetragonal and cubic, and the closer to the surface, the more tetragonal oxyfluoride is confirmed from the electron diffraction of the electron microscope.
  • FIG. 1 shows that the diffusion heat treatment temperature is 500 ° C., but when the diffusion heat treatment temperature is increased to 550 ° C. and 600 ° C., the fluorine concentration distribution changes as shown in FIGS. 2 and 3, respectively.
  • the coercive force is increased by 0.24 MA / m as compared with the untreated magnet.
  • the effect of increasing the coercive force is as small as less than 0.1 MA / m.
  • FIG. 4 shows a typical organization chart of a cross section of the sintered magnet after diffusion heat treatment at 500 ° C.
  • a fluorine-containing phase 2 in the main phase is recognized, the grain boundary phase 3 contains fluorine, and the grain boundary triple point fluorine-containing phase 4 is part of the grain boundary triple point.
  • the fluorine concentration of the fluorine-containing phase 4 at the grain boundary phase 3 or the grain boundary triple point is higher on the surface side than the inside of the sintered magnet, and within 100 ⁇ m in the depth direction from the outermost surface of the sintered magnet (main surface outermost surface).
  • the fluorine concentration of the oxyfluoride in the range is higher than the oxygen concentration.
  • Tables 1-1 to 1-5 show the results of applying the fluorination treatment to various materials to be processed, and the values of the magnetic properties before and after the fluorination treatment are shown. It can be seen that the coercive force increases from 2.00 MA / m to 2.10 MA / m under the above-described conditions.
  • the magnet material whose increase in coercive force has been confirmed by such fluorination treatment is mainly characterized by the following points.
  • a cubic structure oxyfluoride is formed in the rare earth-rich phase, and an oxyfluoride having a high fluorine concentration (fluorine concentration> 33 atomic%) grows near the magnet surface.
  • fluorine concentration is high, tetragonal NdO x F 3-2x (0 ⁇ x ⁇ 1) grows.
  • the fluorine concentration of oxyfluoride is distributed in the range of 10 to 70 atomic%, and the average fluorine concentration of oxyfluoride exceeds 33 atomic% on average in the vicinity of the surface within 100 ⁇ m from the outermost surface of the main phase crystal grains. This is a composition suitable for increasing the coercive force.
  • the fluorine concentration in the oxyfluoride exceeds 70 atomic%, the structure of the oxyfluoride becomes unstable and the coercive force also decreases. 2)
  • the fluorine concentration tends to decrease in the depth direction from the magnet surface to the inside. Since the processing temperature is low, the concentration gradient is higher than the concentration gradient other than fluorine.
  • 3) In the demagnetization curve of the magnet before the diffusion treatment a curve in which at least two types of demagnetization curves of the low coercivity layer and the high coercivity layer overlap is recognized, and the shape of the demagnetization curve after the diffusion heat treatment changes, and the low
  • the coercive force layer is integrated with the high coercive force layer.
  • the diffusion heat treatment temperature is desirably a temperature range higher than the fluorination treatment temperature and lower than 900 ° C., and a temperature range of 200 to 800 ° C. is suitable for the NdFeB system.
  • the fluorination treatment liquid is a mixture of various low-temperature dissociable fluorides and mineral oil, or a fluoride, mineral oil or alcohol capable of generating fluorine radicals, in addition to a mixed liquid of hexane and XeF 2 (slurry, colloid or pulverized powder-containing liquid).
  • System treatment liquid can be applied. It is also possible to add a metal fluoride to the low-temperature dissociable fluoride or fluorine radical generator to introduce and diffuse the unevenly distributed element from the surface during the fluorination treatment.
  • (Nd, Dy) 2 Fe 14 B sintered magnets contain not only oxyfluorides, fluorides, borides, and Nd 2 Fe 14 B compounds, but also carbides, oxides, nitrides, etc. after fluorination. May be. Further, fluorine may be substituted at the boron site of the (Nd, Dy) 2 Fe 14 B crystal, or disposed between the rare earth element and the iron atom, between the iron atom and the boron, or between the rare earth element and the boron. good.
  • the fluorination treatment using a dissociative fluorinating agent that is easily decomposed improves the magnetic characteristics without using additional rare earth elements.
  • the effect of improving the magnetic properties can be confirmed as in the results of No. 51 to No. 60 in Table 1-3 for Nd 2 Fe 14 B based sintered magnets in which Dy is diffused at the grain boundaries.
  • the temperature of the fluorination treatment is low as shown in the table, and the range of 50 to 400 ° C. is desirable for the Nd 2 Fe 14 B based sintered magnet. Since the dissociated fluorine is easily diffused and introduced into the rare earth-rich phase, it can be processed at a temperature lower than the conventional grain boundary diffusion processing temperature.
  • the fluorinated magnet of this example can be processed at a lower temperature than conventional Dy vapor grain boundary diffusion magnets and TbF-based grain boundary diffusion magnets, and the compositional structure change of the grain boundary portion due to the introduction of fluorine. Therefore, it is possible to increase the coercive force only by using a decomposable or dissociative fluorinating agent without using rare earth elements in the diffusion material added in the treatment.
  • Fluorine introduced by fluorination easily binds to oxygen and rare earth elements, and fluorides and oxyfluorides such as MF 2 , MF 3 , and MOF (M is an additive element other than rare earth elements, iron, boron, oxygen, and fluorine) are used. Adding an element that is easy to form leads to an improvement in magnetic properties.
  • a (Nd, Pr, Dy) 2 Fe 14 B sintered magnet is mixed with XeF 2 pulverized powder and held at 100 ° C.
  • the average diameter of the XeF 2 pulverized powder is 100 ⁇ m.
  • the XeF 2 pulverized powder sublimes, and fluorination proceeds from the surface of the (Nd, Pr, Dy) 2 Fe 14 B sintered magnet.
  • Fluorine is mainly introduced into grain boundaries having a high content of Nd, Pr, Dy, etc., and the oxide becomes an acid fluoride, and the composition and structure in the vicinity of the acid fluoride change. After holding at 100 ° C., holding at 450 ° C. and diffusing fluorine along the grain boundaries, the temperature range of 450 to 300 ° C.
  • the coercive force before treatment is 1.5 MA / m, but the coercive force after diffusion quenching is 2.1 MA / m.
  • the increase in the coercive force is due to the fluorine introduction process, and the coercive force can be increased without adding a metal element such as a heavy rare earth element.
  • a metal element such as a heavy rare earth element.
  • the grain boundary becomes an oxyfluoride or fluoride from the oxide or rare earth-rich phase in the vicinity of the surface of the sintered magnet.
  • the oxyfluoride is a metastable cubic crystal, and a part of the elements previously added to the sintered magnet is unevenly distributed in the vicinity of the grain boundaries of the oxyfluoride and (Nd, Pr, Dy) 2 Fe 14 B.
  • the oxygen concentration in the sintered magnet is preferably 3000 ppm or less, preferably in the range of 100 to 2000 ppm.
  • the oxygen concentration in the vicinity of the surface is desirably removed after exposure to a reducing atmosphere to remove oxygen, or in a reducing atmosphere. Proceeding the fluorination treatment is effective for increasing the coercive force.
  • XeF 2 mixed with (Nd, Pr, Dy) 2 Fe 14 B sintered magnet is sublimated at 20 ° C. and partly dissociated. Therefore, fluorination proceeds even at 100 ° C. or lower. Fluorine is introduced at a temperature lower than 50 ° C., but oxyfluoride is formed on the surface, and the ratio of fluorine deposited on the surface as oxyfluoride or fluoride is higher than fluorine diffusing along the grain boundary, and the fluorine It becomes difficult to diffuse fluorine into the sintered magnet by the diffusion treatment after the crystallization treatment. Therefore, it is desirable to proceed the fluorination treatment at 50 to 150 ° C. for a sintered magnet having a thickness of 1 to 5 mm.
  • the demagnetization curve of the sintered magnet immediately after the fluorination treatment showed an inflection point in the magnetic field of 10 to 80% of the coercive force before sintering, and the stepwise demagnetization curve or the low coercive force component overlapped. It becomes a demagnetization curve. This is because the grain boundary width is expanded by introducing fluorine, and a part of the surface of the main phase crystal grains is fluorinated.
  • Such a demagnetization curve is changed to a curve similar to the demagnetization curve before the fluorination treatment by changing the step-like demagnetization curve or the demagnetization curve with the low coercive force component by the following diffusion / aging heat treatment. Will increase.
  • Diffusion / aging heat treatment includes grain boundary (grain boundary triple point and two grain boundary) composition, main phase composition, grain size, additive type, content of impurities such as oxygen, orientation, grain shape, and grain spacing. It depends on the orientation relation between crystal grains and grain boundaries.
  • the diffusion heat treatment temperature after the fluorination treatment needs to be 800 ° C. or lower.
  • the temperature exceeds 800 ° C. the interface between the oxyfluoride / main phase decreases, and fluorine tends to concentrate at the grain boundary triple point. Interface increases, a part of the uneven distribution of the additive due to fluorine disappears, and the effect of increasing the coercive force decreases. Therefore, the maximum holding temperature of the diffusion heat treatment temperature is desirably 300 to 800 ° C.
  • the sintered magnet of this example has the following features compared to the conventional magnet. 1) An oxyfluoride in which the fluorine concentration at the grain boundary is higher than the oxygen concentration is formed, and a fluorine concentration gradient is recognized from the surface to the inside of the sintered magnet. 2) ReOF 1 + X (X is a positive number) having a higher fluorine concentration than ReOF (Re is a rare earth element, O is oxygen, and F is fluorine) is formed in a part of the grain boundary. 3)
  • the oxyfluoride mainly has a cubic structure, and in addition, amorphous, orthorhombic, rhombohedral, tetragonal and hexagonal crystals may be mixed.
  • a fluorine-containing phase is observed in a part of the main phase crystal grains, and the volume fraction of the fluorine-containing phase decreases from the surface of the sintered magnet to the inside.
  • Fluorine is introduced into the grain boundary, an element that easily binds to fluorine diffuses to the outer peripheral side of the main phase or the grain boundary, and the saturation magnetization of the main phase increases.
  • the method of increasing the coercive force while maintaining the residual magnetic flux density so that the coercive force of 1.5 MA / m becomes a coercive force of 2.1 MA / m after fluorination treatment and diffusion quenching treatment as in this embodiment is It can be achieved by introducing a halogen element other than crystallization, and an additive element that easily forms a halide can be selected, added element is added in advance in the melting step before sintering, and sintered, and can be unevenly distributed after the halogenation treatment.
  • the halogenation treatment can be performed on the temporary molded body after temporary forming in a magnetic field, and the coercive force can be increased by unevenly distributing the halogen element and the additive element in the vicinity of the liquid phase after sintering.
  • the solvent is changed to a mixed slurry of XeF 2 and alcohol without drying, and heated in a nitrogen atmosphere.
  • the average particle diameter of the nanoparticles is 30 nm.
  • the fluorination treatment temperature was 150 ° C.
  • the nanoparticles were inserted into a molding die in a magnetic field after fluorination, and compression molding was performed after applying a magnetic field of 0.1 MA / m. This molded body was heated in an NH 3 atmosphere and subjected to nitriding treatment.
  • the magnetic properties of the produced magnet are a residual magnetic flux density of 1.6 T and a coercive force of 1.5 MA / m.
  • Tetragonal structure Fe 16 (N, F) 2 grows on the Fe nanoparticles, and the coercive force increases when the fluorine concentration is higher than the nitrogen concentration / 2.
  • Anisotropy occurs in the distribution of the density of electronic states of iron atoms due to the introduction of fluorine, and the magnetocrystalline anisotropy increases as the magnetic moment and crystal field parameters change.
  • a metastable magnet material can be provided by securing lattice stability with nitrogen and increasing magnetic anisotropy with fluorine. When the nitrogen concentration is 4 atomic%, the coercive force increases to 0.5 MA / m or more at a fluorine concentration of 2 to 7 atomic%.
  • a regular lattice having a bct structure can be formed by introducing fluorine and nitrogen into the FeCo ordered lattice.
  • the c / a of this regular lattice is 1.03 to 1.2, and fluorine is regularly arranged in the c-axis direction.
  • vacancies are introduced from 0.0001 to 0.01 atomic%.
  • the FeCoFN-based bct structure crystal having an ordered structure including vacancies has a saturation magnetization of 250 Am 2 / kg and a coercive force of 1.8 MA / m, and a high performance magnet can be obtained by molding at a decomposition temperature or lower. Instead of vacancies, elements that are positively charged may be arranged.
  • the additive element and the rare earth element are added, the decomposition temperature can be increased to 500 ° C. or higher.
  • the FeMNF-based compound into which fluorine is introduced is a regular lattice having a bct structure as in this example, and is subjected to an appropriate heat treatment by introducing fluorine.
  • the degree increases and the coercive force also increases.
  • the degree of order is 1.0 on a perfectly ordered lattice, it can be formed in the range of 0.1 to 0.99.
  • the fluorine concentration is 2 to 7 atomic% and the coercive force is 0.5 MA / m or more, the degree of order is 0.
  • the range is from 0.3 to 0.99.
  • the bct structure there is no particular problem even if orthorhombic, hexagonal, rhombohedral and cubic crystals are mixed.
  • Nd 2 Fe 14 B sintered magnet having an average particle size of 1.5 ⁇ m in the main phase is immersed in an alcohol solution mixed with XeF 4 powder and heated to 120 ° C. at a heating rate of 10 ° C./min. During heating, the XeF 4 powder decomposes and the Nd 2 Fe 14 B sintered magnet is fluorinated. Xe does not react with the Nd 2 Fe 14 B sintered magnet, and only fluorine is mainly introduced into the Nd 2 Fe 14 B sintered magnet. The amount of fluorine introduced is 0.001 to 5 atomic%, and the amount introduced depends on the volume and surface state of the Nd 2 Fe 14 B sintered magnet and the fluorination treatment conditions.
  • the introduction of fluorine can be determined by confirmation of oxyfluoride and fluoride by structural analysis in addition to mass spectrometry and wavelength dispersion X-ray analysis. When the introduction amount is insufficient, it can be adjusted by increasing the processing time for reprocessing with the alcoholic solution.
  • the coercive force is increased by diffusing fluorine into the Nd 2 Fe 14 B sintered magnet by aging heat treatment. It can be confirmed that cubic oxyfluoride is formed by heating to 400 ° C. at 5 ° C./min, holding at 400 ° C. for 1 hour, and then rapidly cooling. It is desirable to cool the vicinity of the Curie temperature at a rapid cooling rate of 10 to 200 ° C./min.
  • the rare earth-rich phase or rare earth oxide at the grain boundary is fluorinated than the main phase, and the coercive force is larger than that of the untreated Nd 2 Fe 14 B sintered magnet by diffusion by aging heat treatment and the structure and composition distribution control of the grain boundary phase. To do.
  • the amount of increase is larger than when using rare earth fluoride or metal fluoride slurries or alcohol swelling solutions, or fluorination with fluorine-containing gases (such as F 2 and NHF 4 ), and a coercive force of 0.1 to 5 MA / m. An increase can be confirmed.
  • the amount of fluorine exceeds 5 atomic%, the main phase crystal is decomposed by fluorine that has penetrated into the main phase of the Nd 2 Fe 14 B sintered magnet to form a ferromagnetic phase with a small coercive force, and the residual magnetic flux density increases.
  • the temperature dependency of the coercive force is lowered and the squareness of the demagnetization curve is lowered. Therefore, the amount of fluorine introduced is desirably 5 atomic percent or less, and desirably 10 atomic percent or less in the portion from the surface to a depth of 100 ⁇ m.
  • the formed oxyfluoride is expressed as Re x O y F z (Re is a rare earth element, O is oxygen, F is fluorine, x, y, and z are positive numbers), and a compound of y ⁇ z satisfies y ⁇ z.
  • the volume ratio growing at the grain boundary is higher than that of the compound.
  • the fluorine content is higher than the oxygen content by local analysis.
  • oxygen is detected by local analysis even in fluorine compounds such as NdF 2 and NdF 3, but it is possible to analyze that the oxygen concentration is less than the fluorine concentration.
  • a layer having a higher oxygen concentration is formed.
  • Such a distribution of fluorine concentration differs between the surface and the center of the sintered magnet, and the fluorine concentration tends to decrease as the distance from the surface subjected to the fluorination treatment increases.
  • the composition analyzed with respect to the surface parallel to the surface of the sintered magnet was about 0.1 ⁇ 0.1 mm 2 at the depth of 0.1 mm and 1 mm (surface parallel to the surface).
  • the difference in the range of 0.1 x 0.1 mm 2 at a depth of 0.1 mm and 1 mm (surface parallel to the surface) is the local composition distribution around the grain boundary, the grain boundary triple point, and the heterogeneous phase in the grain. is there. That is, the composition distribution within 100 nm from the interface between the main phase and the different phase having a different crystal structure and composition from the main phase changes due to the fluorination treatment.
  • Nd-containing oxyfluorides are more stable than oxyfluorides of Dy and Tb due to differences in elemental free energy of fluoride and oxyfluoride due to fluorine introduction, and the composition of the grain boundary phase changes with the introduction of fluorine. To do.
  • the fluorinating agent for introducing fluorine is preferably a material containing an inert gas element and fluorine as in this embodiment, such as fluorination with fluorine (F 2 ) gas, ammonium fluoride (NH 4 F), rare earth fluoride, etc. Fluorine can be easily introduced at a lower temperature than the fluorides.
  • a slurry or colloidal solution in which an inert gas element and fluorine-containing material are mixed with alcohol or mineral oil, or a mixture of an inert gas element and fluorine-containing material with fluorine (F 2 ) gas, an inert gas element and A mixed dispersion solution, a mixed slurry, a mixed alcohol swelling liquid, a material containing fluorine and a material containing fluorine, such as a fluoride-containing material and ammonium fluoride (NH 4 F) or a fluoride such as rare earth fluoride, or an acid fluoride gel. It is possible to fluorinate a sintered magnet material at a low temperature using a solution made into a sol or sol.
  • the solvent is replaced with NH 3 and XeF 2 -containing alcohol without drying, and the mixture is heated and held at 120 ° C. By heating, fluorine (F) and nitrogen (N) diffuse into the nanoparticles, and Fe 4 (F, N) grows. After cooling to 20 ° C., it is molded in a magnetic field and bound using an organic or inorganic binder to form a magnet material.
  • the composition of the obtained Fe 4 (F, N) is Fe-5 atomic% F-15 atomic% N, and nitrogen and fluorine are ordered lattices arranged at the same atomic positions.
  • the easy magnetization direction is parallel to the direction in which there are many fluorine arrays, and it has uniaxial magnetocrystalline anisotropy.
  • the arrangement of fluorine is further promoted by applying a magnetic field during the reaction, and the introduction of a tetragonal structure or lattice distortion is observed.
  • Tetragonal Fe 4 (F, N) has a residual magnetic flux density of 1.5 T and a coercive force of 0.8 MA / m, and can be applied as a low-cost bonded magnet that does not use rare earth elements.
  • Such an effect of increasing magnetic anisotropy by fluorine utilizes the fact that fluorine has a high electronegativity, and the distribution of electronic state density around iron atoms differs depending on the property of fluorine attracting shared electrons and taking on partial charges. Adds directionality.
  • Such a partial charge effect can be realized by introducing fluorine into other iron-based crystals to regularize the fluorine atom positions and forming a direction in which the fluorine arrangement is large, oxygen such as perovskite, sulfur, arsenic, This can be achieved with a compound containing one of phosphorus and silicon.
  • the anisotropic arrangement of fluorine is an anisotropic arrangement of fluorine atoms in a layered compound such as intercalation or a spinodal decomposed polycrystalline material.
  • Anisotropy can be recognized, and magnetic anisotropy is also observed if the difference in fluorine concentration is 5% or more between the direction in which the number of fluorine atoms is arranged and the direction in which the number of fluorine atoms is small.
  • the iron-based material In order to set the anisotropic magnetic field to 1 MA / m or more, it is effective for the iron-based material to set the fluorine concentration difference to 10% or more, and preferably 10% to 99%. 99% or more is ideal in design, but it is difficult to realize because heat treatment with diffusion is 100 ° C. or more. Therefore, the difference depending on the direction of fluorine concentration due to the introduction of fluorine, or the difference in orientation of the charge bias, polarization, and ion binding can be made in the range of 10 to 99%. It is a suitable material.
  • the entire magnet material is 0.1. It is desirable to contain atomic% fluorine. If it exceeds 20 atomic%, stable fluoride or oxyfluoride grows and magnetization decreases, so the range of 0.1-20 atomic% is optimal. .
  • XeOF 4 in addition to XeF 2 as fluorinating agent, KrF 2, Kr 2 F 3 , ArF, KHF 2, SF 6, TeF 6, NF 3, CF 4, ClF, ClF 3, BrF, BrF 3, BrF 5, IF 5 , IF 7, etc. can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

 重希土類元素を追加することなく焼結磁石の磁気特性を向上する。 NdFeBの主相と、粒界相とで構成する焼結磁石において、前記粒界相に酸フッ化物を有し、前記酸フッ化物に含まれるフッ素の濃度は前記酸フッ化物に含まれる酸素の濃度よりも高く、前記酸フッ化物に含まれるフッ素の濃度は前記焼結磁石の表面から深さ方向に減少し、前記焼結磁石の飽和磁束密度は前記焼結磁石の表面から深さ方向に減少する。

Description

焼結磁石及びその製造方法
 本発明は、フッ素を含有する焼結磁石及びその製造方法に関する。
 焼結磁石は種々の磁気回路に適用されている。中でもNdFeB系焼結磁石はNd2Fe14B系結晶を主相とする高性能磁石であり、自動車や産業、発電機器、家電、医療、電子機器など広範囲の製品で使用され、その使用量が増加している。NdFeB系焼結磁石には希土類元素であるNd以外に耐熱性確保のためにDyやTbなどの高価な重希土類元素が使用されている。この重希土類元素は希少かつ資源の偏在、資源保護のため高騰しており、重希土類元素使用量の削減に対する要求が高まっている。
 重希土類元素使用量を削減できる手法として、従来、重希土類元素を含む材料を焼結磁石の表面に塗布後拡散させる粒界拡散法があり、この手法を適用した焼結磁石が特許文献1に開示されている。また重希土類元素を含む蒸気を使用して焼結磁石表面から重希土類元素を拡散させる手法を採用した焼結磁石が特許文献2に開示されている。
 焼結磁石表面にフッ化物を塗布拡散させた磁石においても重希土類元素使用量を削減でき、焼結磁石の粒界に酸フッ化物が形成されることが特許文献3に開示されている。
 フッ化キセノンを用いたフッ化手法はフッ素が磁石材料の主相となるSmFeF系などのフッ素侵入型化合物に適用できることが特許文献4に開示されている。
 フッ化物を添加して焼結した磁石においてハロゲン元素の濃度が特許文献5に記載されている。また、フッ素(F2)ガスを使用したフッ化手法が特許文献6に記載されている。
WO2009/513990号公報 特開2009-124150号公報 特開2008-147634号公報 特開2011-211106号公報 特開平03-188241号公報 特開平06-244011号公報
 上記特許文献1~3では、NdFeB系焼結磁石の表面から重希土類元素を含有する材料を用いて、粒界に沿って重希土類元素を拡散偏在化させており、母材であるNdFeB系焼結磁石に重希土類元素を外部から追加する手法である。このような従来技術は、焼結磁石の磁気特性向上のために新たに重希土類元素を拡散により加えており、重希土類元素を追加使用せずに焼結磁石の磁気特性向上を実現させることは困難である。
 本発明の目的は、重希土類元素を追加することなく焼結磁石の磁気特性を向上することにある。
 本発明の焼結磁石を作成する手段の一つは、結晶粒界を解離性フッ化剤によってフッ化する工程を採用し、NdFeB結晶粒界あるいは結晶粒内に酸フッ化物やフッ化物を低温で形成し、焼結磁石の組織を変えることである。
 上記解離性フッ化剤は、フッ素ラジカルを拡散熱処理温度よりも低温で発生可能であり、50~400℃の低温で磁石材料をフッ化可能なものである。その代表例がフッ化キセノン(Xe-F系)であり、上記温度範囲で容易にフッ素を焼結磁石内に導入できる。解離したフッ素は焼結磁石に導入されるが、キセノンは反応性に乏しく焼結磁石を構成する元素と化合物を形成しにくいため、焼結磁石内に入りにくい。
 解離あるいは分解した活性なフッ素は、希土類元素濃度及び酸素濃度が高い粒界に沿って主に導入され、焼結磁石を構成する種々の元素と結合するため、粒界や粒内に拡散し、種々のフッ素化合物(フッ化物)を形成する。希土類焼結磁石の場合には希土類元素を含有する酸フッ素化合物(酸フッ化物)やフッ化物が容易に成長し、粒界に沿ってフッ素が拡散する。導入するフッ素量はフッ化条件によって制御でき、酸フッ化物の酸素濃度よりも高濃度のフッ素を含有する酸フッ化物も形成可能となる。このような高フッ素濃度の酸フッ化物は、フッ素と結合し易い磁石構成元素や微量添加元素の一部の元素を吸収し、粒界近傍の組成や構造が変化する。
 上記のように焼結磁石にフッ素のみを導入することにより、次のような機構により磁気特性が大幅に向上する。1)粒界面のフッ素原子が電子を引き付け、隣接する結晶の電子状態密度に異方性を付加する。2)フッ素原子が負の電荷を有しているため、高濃度フッ素化合物近傍では希土類元素の電荷が正側に大きくなる。電荷の変化により界面磁気異方性が付加される。3)上記電子状態密度や電荷バランスの偏りの影響でフッ化物と隣接する結晶の界面や界面と接する結晶の原子配置が変わり、格子歪の発生、格子の対称性低下、空孔の導入が認められ、磁気異方性エネルギーが増加する。
 上記のフッ素導入による組成や構造変化はフッ化物近傍の磁気物性に影響し、保磁力が増加する。このようなフッ素導入は、エネルギー的に安定なフッ素濃度を超える過剰のフッ素を焼結磁石内に拡散させるため、準安定なフッ素過剰化合物が形成される。準安定フッ化物は熱処理により構造が変化し易いため、フッ化後の拡散、時効熱処理の条件も制御して保磁力を増大させている。
 本発明の具体的な手法は実施例に記載するが、磁気特性が向上した代表的な焼結磁石の特徴を以下に示す。1)解離したフッ素のみを焼結磁石の表面から拡散させており、焼結磁石の表面から内部にかけてフッ素の濃度が減少する。焼結磁石の表面から内部にかけてフッ素以外の元素の100μm2の分析面積での濃度勾配はフッ化処理前後で変わらないが、フッ化処理後の粒界近傍の組成分布が変化する。これはフッ素と結合し易いGa,Zr,Al,Tiなどの元素が粒界に導入された過剰フッ素によって粒内から粒界近傍に拡散移動するためである。2)フッ素のみの導入によるフッ化物または酸フッ化物の成長は焼結磁石の表面で著しく、内部でのフッ化物成長量は焼結磁石表面よりも小さい。主相の分解の程度、準安定な過剰にフッ素を含有したフッ化物や酸フッ化物の量、フッ素含有化合物に隣接する格子歪や電荷移動、主相結晶の分解、主相結晶へのフッ素置換、主相結晶へのフッ素侵入はいずれも焼結磁石表面で顕著であり、焼結磁石中心部で少ない。3)粒界が希土類元素と酸素を含有する場合、フッ素濃度が酸素濃度よりも高い酸フッ化物が成長し、酸フッ化物やフッ化物内に磁石構成元素や添加元素、不純物元素の中の少なくとも一種の元素が認められる。4)供給したフッ素は主相よりも粒界相に偏在して拡散し酸素濃度よりも高濃度のフッ素を含有する酸フッ化物が形成する。焼結磁石を構成する相は粒界相も含めると複数であり、最もフッ素と結合し易い粒界相が主にフッ化される。このようなフッ化の選択性を利用してフッ素のみを焼結磁石に導入できる。また前記酸フッ化物は準安定相であり、900℃以上の温度に加熱すると安定相となる。
 上記特徴は、焼結磁石材料に活性なフッ素を過剰に供給できる手法を採用することによって初めて実現でき、従来の安定なフッ化物や酸フッ化物を用いたフッ素導入手法では実現できない。
 本発明により重希土類元素を追加することなく焼結磁石の磁気特性を向上することができる。
フッ化処理後の濃度分布。 フッ化処理後の濃度分布。 フッ化処理後の濃度分布。 フッ化処理後の焼結磁石断面の組織。
 以下、本発明の実施例について、詳細に述べる。
 (Nd,Dy)2Fe14B焼結磁石には、焼結前の原料粉にCu,Ga,Al,Coがそれぞれ0.1~2原子%の濃度範囲で混合されており、(Nd,Dy)2Fe14Bよりも希土類元素の濃度が高い粉末とともに混合され、磁場中で仮成形した後1000℃で液相焼結する。この焼結体をXeF2及びCo錯体(βジケトン)が分散したスラリーまたはコロイド液に浸漬し、50℃から150℃の温度範囲でXeF2が分解したフッ素により焼結体にフッ素を導入すると共に、Co錯体の分解によりCoが焼結体表面から導入される。この温度範囲でフッ素は(Nd,Dy)2Fe14B粒子の粒界に堆積し、フッ素導入後の時効熱処理によりフッ素及びCoは希土類元素濃度が高い粒界を拡散する。
 XeF2の平均粒子径は0.1μmから1000μmの範囲である。0.1μm未満のXeF2では昇華し易く、焼結磁石に十分な量のフッ素を供給することが困難となる。また、1000μmを超えるとフッ素化反応が不均一になり、局所的な発熱と残留酸素を含有する酸化物や酸フッ化物が成長し、粒界にフッ素を拡散させることが困難となる。
 フッ素が粒界に拡散すると、粒界及び粒界近傍の組成や構造、界面構造などが大きく変化し、焼結磁石の磁気特性が向上する。フッ素導入前の一部の粒界相は(Nd,Dy)23-x(0<x<3)からフッ化処理により(Nd,Dy)xyz(x,y,zは正数)へと変化する。またフッ素導入後の酸フッ化物中のフッ素濃度は焼結磁石の厚さ方向で変化し、磁石表面でフッ素濃度が高く、酸フッ化物の酸素濃度よりもフッ素濃度が高くなる。
 フッ素導入直後の減磁曲線は、保磁力に分布がある階段状の減磁曲線として測定されるが、400~800℃の時効熱処理によりフッ素及び主相構成元素が拡散し、減磁曲線には保磁力の小さい成分は消失する。フッ素導入後の飽和磁束密度はフッ素導入前よりも0.01~20%の範囲で増加する。飽和磁束密度の増加は残留磁束密度の増加につながり、最大エネルギー積がフッ素導入前よりも増加する。400~800℃の時効熱処理により、焼結磁石から放出する未反応フッ素なども除去することが可能である。フッ素が粒界三重点に拡散して安定な酸フッ化物を形成し易くなることでフッ化処理後の保磁力がフッ化処理前の保磁力と同等になる。従ってフッ化処理後の時効熱処理温度は800℃よりも低温側とすることが望ましい。
 フッ素導入後の粒界には上記のようにフッ素が偏在し、粒界の5~90%はフッ化物または酸フッ化物となっており、その結晶構造は主に立方晶であり、単斜晶、斜方晶、六方晶、菱面体晶、正方晶または非晶質が認められる。フッ素は粒界以外の主相結晶粒や粒界三重点に一部拡散し、一部の主相からbccまたはbct構造のFeまたはFe合金が成長する。ここでFe合金とはFexy合金またはFehij合金である。Mは焼結前の原料粉に添加した元素または焼結後磁石表面からフッ素導入と共に拡散させた少なくとも一種の元素であり、x,y,h,i,jは正数である。主相結晶粒に拡散するフッ素は焼結磁石の表面近傍で多いため、bccまたはbct構造のFe、Fexy合金またはFehij合金も焼結磁石中心部よりも表面近傍(焼結磁石の外側)で多くなる。一部のフッ素含有Fe系合金は格子定数がFe(0.2866nm)よりも0.01~10%短く、フッ素含有相の一部は主相結晶粒内部にも認められる。
 前記bccまたはbct構造のFe、Fexy合金またはFehij合金の単体の保磁力は0.1~10kOeであり、飽和磁束密度は1.6~2.4Tの範囲であり、(Nd,Dy)2Fe14Bのみの保磁力よりも小さく、飽和磁束密度は大きい。そのため、(Nd,Dy)2Fe14Bと磁気的に結合することで磁化反転が抑制され、フッ素導入直後に減磁曲線の第二象限において保磁力の80%以下の磁界で編曲点が認められる減磁曲線であったのに対して単調な減磁曲線となる。
 残留磁束密度の外部磁界による変化を抑制するためには、フッ素が侵入したhcp構造やL10構造のFexy合金、またはFehij合金の体積率を0.1から50%の範囲で成長させることが有効となる。特にフッ素が侵入した規則合金は、磁場中フッ化処理あるいはフッ化後の磁場中熱処理またはフッ化後の塑性変形により形成できる。
 本実施例の作成条件下で作成した磁石において、残留磁束密度が外部磁場によって可変となり、最大エネルギー積が40MGOe以上70MGOe以下である焼結磁石は、主相がNd2Fe14B系相とFeCo系相である。これらの主相結晶粒界及び主相内部にフッ素含有相が認められ、主相の一つであるFeCo系相や主相内部のフッ素含有相の割合は焼結磁石の中心から表面に近づくに従って割合が多くなる傾向を示す。
 本実施例のようなフッ素導入手法は、(Nd,Dy)2Fe14B焼結磁石以外にも、Mn系磁性材料、Cr系磁性材料、Ni系磁性材料、Cu系磁性材料に適用できる。フッ素導入前に強磁性を示していない合金相にフッ素を導入することで、フッ素原子位置の規則化、あるいはフッ素と他の軽元素との原子対が規則化し、電気陰性度の高いフッ素原子が隣接する金属元素の電子状態が大きく変化することで電子状態密度の分布に異方性が生じ、強磁性化あるいは硬磁性化する。
 フッ素を導入するためのフッ化材料は、本実施例のXeF系化合物の分解反応を利用する以外にも、Xe以外の不活性ガス元素とフッ素の化合物の化学変化を利用して発生するフッ素含有ラジカル、フッ素含有プラズマ、フッ素含有イオンが利用でき、これらを焼結磁石表面に接触または照射することによりフッ化可能である。またこれらのフッ化反応をアルコールや鉱油などの溶媒中で進行させることで反応の均一化が図れるが、溶媒を使用しない場合においてもフッ素導入は可能である。
 Dyを1wt%含有する(Nd,Dy)2Fe14B焼結磁石にフッ化処理を施し、保磁力を増加させる手法を本実施例で説明する。フッ化処理には金属元素を使用せずフッ素のみ粒界に選択的に導入し、低温熱処理により保磁力を増加させることが可能であり、希少な金属元素を使用せず、600℃未満の低温工程で磁気特性を向上できる。フッ化剤としてヘキサン(C614)とXeF2(0.1wt%)の混合物を使用する。XeF2はあらかじめ不活性ガス雰囲気中で粉砕し、1000μm以下の平均粒子径とし、ヘキサンと混合する。この混合物中に焼結磁石を挿入し、Ni製容器に入れて加熱する。加熱温度は100℃であり、この温度でフッ化が進行する。フッ化後大気に曝すことなくフッ素の拡散熱処理を施す。拡散熱処理温度は前記加熱温度よりも高温域に設定する。拡散熱処理温度500℃で保持後急冷する。前記フッ化処理と拡散熱処理により、保磁力が増加する。結果を表1-1のNo.1及びNo.2に示す。
 表1-1のNo.2の条件で作成した厚さ4mmの焼結磁石について、質量分析によってその断面部のF,Nd,Dy分布を求めた結果を図1に示す。NdやDy濃度は厚さ方向でほぼ一定であるがF濃度は表面(2mm)に近づくほど高くなる。1.5~2mmの領域では酸フッ化物が正方晶及び立方晶であり、表面に近いほど正方晶の酸フッ化物が多くなることを電子顕微鏡の電子線回折から確認している。
 図1は拡散熱処理温度が500℃であるが、拡散熱処理温度を550℃、600℃と高温側にすることによりフッ素の濃度分布はそれぞれ図2、図3で示すように変化する。フッ素濃度に勾配が認められる図1、図2の場合には保磁力が未処理磁石よりも0.24MA/m増加する。これに対し、フッ素濃度の濃度勾配が認められない図3の場合には保磁力増大効果が0.1MA/m未満と小さい。
 500℃の拡散熱処理後、焼結磁石断面の典型的な組織図を図4に示す。主相結晶粒1の化粧粒内に、主相内フッ素含有相2が認められ粒界相3はフッ素を含有しており、粒界三重点フッ素含有相4が粒界三重点の一部に観察される。粒界相3あるいは粒界三重点のフッ素含有相4のフッ素濃度は焼結磁石の内部よりも表面側で高く、かつ焼結磁石最表面(主相最表面)から深さ方向に100μm以内の範囲における酸フッ化物のフッ素濃度は酸素濃度よりも高い。
 表1-1~表1-5は種々の被処理材に対してフッ化処理を適用した結果であり、フッ化処理前後の磁気特性の値が示されている。前記実施条件では保磁力が2.00MA/mから2.10MA/mに増加していることがわかる。このようなフッ化処理によって保磁力増大が確認できた磁石材料では主に以下の点に特徴がある。
 1)希土類リッチ相に立方晶構造の酸フッ化物が形成され、磁石表面付近にフッ素濃度が高い(フッ素濃度>33原子%)酸フッ化物が成長する。フッ素が高濃度になると正方晶のNdOx3-2x(0<x<1)が成長する。酸フッ化物のフッ素濃度は10~70原子%の範囲で分布し、酸フッ化物の平均フッ素濃度が主相結晶粒の最表面から100μm以内の表面近傍で平均して33原子%を超えていることが保磁力増大に適した組成となる。酸フッ化物中のフッ素濃度が70原子%を超えると酸フッ化物の構造が不安定となり保磁力も低下する。2)フッ素濃度は磁石表面から内部にかけての深さ方向に減少する傾向があり、処理温度が低温であるためその濃度勾配はフッ素以外の濃度勾配よりも高い。3)拡散処理前の磁石の減磁曲線には低保磁力層と高保磁力層の少なくとも二種類の減磁曲線が重なった曲線が認められ、拡散熱処理後減磁曲線の形が変化し、低保磁力層が高保磁力層と一体となる。4)拡散熱処理温度を900℃より高温側にするとフッ素は粒界三重点などに堆積して一部は安定な立方晶構造とは別の斜方晶や六方晶などの酸フッ化物となり、添加元素の偏在も緩和され保磁力は減少する。このため拡散熱処理温度は、フッ化処理温度以上、かつ900℃未満の温度範囲が望ましく、NdFeB系の場合は200~800℃の温度範囲が適している。
 フッ化処理液はヘキサンとXeF2の混合液(スラリーまたはコロイドあるいは粉砕粉含有液)以外にも種々の低温解離性フッ化物と鉱油の組み合わせ、あるいはフッ素ラジカルを発生可能なフッ化物と鉱油やアルコール系処理液が適用できる。低温解離性フッ化物あるいはフッ素ラジカル発生物に金属フッ化物を添加して偏在化元素をフッ化処理中に表面から導入拡散させることも可能である。
 本実施例において、一部のXeが焼結磁石内に取り込まれていても磁気特性は劣化しない。また、不可避的に含有する酸素、窒素、炭素、水素、硫黄、リンなどの元素が含有していても良い。(Nd,Dy)2Fe14B焼結磁石にはフッ化処理後、酸フッ化物、フッ化物、ホウ化物、Nd2Fe14B系化合物以外に、炭化物や酸化物、窒化物などが混在していても良い。また、フッ素が(Nd,Dy)2Fe14B結晶のホウ素サイトに置換したり希土類元素と鉄原子の間、鉄原子とホウ素の間、希土類元素とホウ素の間のいずれかに配置しても良い。
 表1-1~表1-5に示すように(Nd,Dy)2Fe14Bと同様に種々の磁性材料において保磁力の増大を確認している。保磁力増大は重希土類元素が添加されていない場合でも確認でき、酸フッ化物の成長と粒界近傍の格子歪みの導入による界面異方性の増大、フッ素による隣接原子の電子状態密度分布や電荷分布の変化に起因した異方性の増大、粒界組成の変化、粒界面の組成と原子配列の変化、希土類元素のイオン価数増加などにより、磁化反転サイトの一部が消失する。
 表1-1~表1-5に示すように分解し易い解離性フッ化剤を用いたフッ化処理により、希土類元素を追加使用せずに磁気特性が向上する。磁気特性向上効果は、Dyを粒界拡散させたNd2Fe14B系焼結磁石に対しても表1-3のNo.51~No.60の結果のように確認できる。フッ化処理の温度は表に示すように低温であり、Nd2Fe14B系焼結磁石では50~400℃の範囲が望ましい。解離したフッ素は容易に希土類リッチ相に拡散導入されるため、従来の粒界拡散処理温度よりも低温で処理できる。
 表2に示すように、従来のDy蒸気粒界拡散磁石やTbF系粒界拡散磁石と比較して本実施例のフッ化処理磁石は低温で処理でき、フッ素導入による粒界部の組成構造変化により保磁力などの磁気特性向上が実現できるため、処理で追加する拡散材料に希土類元素は使用せず、分解性あるいは解離性フッ化剤の使用のみで保磁力を増加させることが可能である。フッ化による導入フッ素は、酸素や希土類元素と結合し易く、MF2やMF3,MOF(Mは希土類元素、鉄、ホウ素、酸素、フッ素以外の添加元素)などのフッ化物や酸フッ化物を形成し易い元素を添加することが磁気特性向上に繋がる。
 (Nd,Pr,Dy)2Fe14B焼結磁石をXeF2粉砕粉と混合し100℃で保持する。XeF2粉砕粉の平均径は100μmである。XeF2粉砕粉は昇華し、(Nd,Pr,Dy)2Fe14B焼結磁石の表面からフッ化が進行する。フッ素はNd,Pr,Dyなどの含有量が高い粒界に主に導入され、酸化物は酸フッ化物となり、酸フッ化物近傍の組成や構造が変化する。100℃保持後450℃で保持し、フッ素を粒界に沿って拡散させた後、10℃/秒以上の冷却速度で450~300℃の温度範囲を急冷して保磁力を増大させる。処理前の保磁力は1.5MA/mだが、拡散急冷処理後の保磁力は2.1MA/mとなる。
 前記保磁力増大はフッ素導入工程によるものであり、重希土類元素など金属元素を添加しなくても保磁力は増大可能である。フッ素導入により、焼結磁石の表面近傍において、粒界が酸化物や希土類リッチ相から酸フッ化物やフッ化物となる。酸フッ化物は準安定な立方晶であり焼結磁石にあらかじめ添加してあった元素の一部が酸フッ化物と(Nd,Pr,Dy)2Fe14Bの粒界近傍に偏在化する。
 フッ素は容易に酸フッ化物を形成し、酸素濃度が高い場合には立方晶及び正方晶フッ化物以外の斜方晶や菱面体晶、六方晶、三斜晶、単斜晶などの酸フッ化物となり前記添加物の偏在化が顕著でなくなる。このことから、焼結磁石内の酸素濃度は3000ppm以下、望ましくは100~2000ppmの範囲であることが望ましく、表面近傍の酸素除去のために還元雰囲気に曝した後フッ化するかあるいは還元雰囲気で上記フッ化処理を進めることが保磁力増大には有効である。
 (Nd,Pr,Dy)2Fe14B焼結磁石と混合したXeF2は20℃で昇華が認められ一部は解離する。したがって100℃以下であってもフッ化は進行する。50℃よりも低温ではフッ素は導入されるが酸フッ化物が表面に形成され、粒界に沿って拡散するフッ素よりも酸フッ化物やフッ化物として表面に堆積するフッ素の割合が高くなり、フッ化処理後の拡散処理でフッ素を焼結磁石内部に拡散させることが困難となる。したがって厚さ1~5mmの焼結磁石においてはフッ化処理を50~150℃で進めることが望ましい。
 フッ化処理直後の焼結磁石の減磁曲線には焼結前の保磁力の10~80%の磁場で変曲点が認められ、通常階段状の減磁曲線あるいは低保磁力成分が重なった減磁曲線となる。これはフッ素導入により粒界幅が拡張され、主相結晶粒の表面の一部がフッ化したためである。このような減磁曲線は次の拡散・時効熱処理によって前記階段状の減磁曲線あるいは低保磁力成分が重なった減磁曲線がフッ化処理前の減磁曲線と類似の曲線に変わり、保磁力が増大する。拡散・時効熱処理は、粒界(粒界三重点及び二粒子粒界)組成、主相組成、粒径、添加物の種類、酸素などの不純物含有量、配向性、結晶粒形状、結晶粒間や結晶粒と粒界の方位関係に依存する。
 フッ化処理前の保磁力よりも大きな保磁力にするためには、フッ化処理後の拡散熱処理温度を800℃以下にする必要がある。800℃を超えると酸フッ化物/主相の界面が減少し、フッ素が粒界三重点に濃縮し易くなり、酸フッ化物/酸化物/主相のようなフッ素濃度が低い相と主相との界面が増え、フッ素による添加物偏在の一部が消失し、保磁力増大効果が小さくなる。したがって拡散熱処理温度の最高保持温度は300~800℃が望ましい。
 本実施例の焼結磁石は従来磁石と比較して以下のような特徴が認められる。1)粒界のフッ素濃度が酸素濃度よりも高い酸フッ化物が形成されており、焼結磁石の表面から内部にかけてフッ素の濃度勾配が認められる。2)ReOF(Reは希土類元素、Oは酸素、Fはフッ素)よりもフッ素濃度が高いReOF1+X(Xは正数)が粒界の一部に形成される。3)前記酸フッ化物は主に立方晶構造であり、他に非晶質や斜方晶、菱面体晶、正方晶、六方晶が混在しても良い。4)主相結晶粒内の一部にフッ素含有相が認められ、このフッ素含有相の体積率が焼結磁石表面から内部にかけて減少する。5)粒界にフッ素が導入され、フッ素と結合し易い元素が主相の外周側あるいは粒界に拡散し、主相の飽和磁化が増加する。
 本実施例のように1.5MA/mの保磁力がフッ化処理と拡散急冷処理後に2.1MA/mの保磁力となるように、残留磁束密度を維持して保磁力増大させる手法はフッ化以外のハロゲン元素導入により達成でき、ハロゲン化物を形成し易い添加元素を選択してあらかじめ焼結前の溶解工程で添加元素を加えて焼結させ、ハロゲン化処理後に偏在化させることができる。ハロゲン化処理は磁場中仮成形後の仮成形体に対して施し、焼結後液相近傍にハロゲン元素と添加元素を偏在化させて保磁力を増加させることも可能である。
 Feナノ粒子を湿式法で作成後、乾燥させずに溶媒をXeF2とアルコールの混合スラリーに変えて窒素雰囲気中で加熱する。ナノ粒子の平均粒子径は30nmである。フッ化処理温度は150℃とし、フッ化後磁場中成形用金型にナノ粒子を挿入し0.1MA/mの磁場印加後圧縮成形した。この成形体をNH3雰囲気で加熱し窒化処理を施した。
 作製した磁石の磁気特性は、残留磁束密度1.6T、保磁力1.5MA/mである。Feナノ粒子には正方晶構造のFe16(N,F)2が成長し、フッ素濃度が窒素濃度/2より高くなると保磁力が増大する。フッ素導入による鉄原子の電子状態密度の分布に異方性が生じ、磁気モーメントや結晶場パラメータが変化することにより結晶磁気異方性が増大する。窒素による格子安定性確保とフッ素による磁気異方性増大効果により準安定な磁石材料が提供できる。窒素濃度が4原子%の時、フッ素濃度2~7原子%で保磁力が0.5MA/m以上に増大する。
 前記条件でのフッ化及び窒化処理にFeCoナノ粒子を適用することによりFeCo規則格子にフッ素と窒素が導入されてbct構造となった規則格子が形成できる。この規則格子のc/aは1.03~1.2であり、c軸方向にフッ素が規則配列している。フッ素導入により電気陰性度の不均衡を是正するために空孔が0.0001~0.01原子%導入される。この空孔を含めた規則構造を有するFeCoFN系bct構造結晶は、飽和磁化が250Am2/kgで保磁力が1.8MA/mとなり、分解温度以下で成形することで高性能磁石が得られる。空孔の代わりに正電荷となる元素を配列させても良い。分解温度を高めるためにフッ化物及び窒化物形成元素となるAlやTi,Gaなどの少なくとも一種の元素を0.1から10原子%添加することにより分解温度が450℃となる。前記添加元素と希土類元素を添加すると分解温度は500℃以上に高温化できる。
 本実施例のようにフッ素が導入されたFeMNF系化合物(Feは鉄、Mは添加元素、Nは窒素、Fはフッ素)はbct構造の規則格子であり、フッ素導入により適切な熱処理を経て規則度が増加し、保磁力も増加する。規則度は完全規則格子で1.0の時、0.1~0.99の範囲で形成でき、フッ素濃度2~7原子%で保磁力が0.5MA/m以上の場合、規則度は0.3~0.99の範囲である。尚、前記bct構造以外に斜方晶や六方晶、菱面体晶、立方晶が混合していても特に問題ない。
 主相の平均粒子径が1.5μmのNd2Fe14B焼結磁石をXeF4粉が混合されたアルコール溶液に浸漬し120℃まで10℃/minの昇温速度で加熱保持する。加熱中にXeF4粉が分解しNd2Fe14B焼結磁石はフッ化される。XeはNd2Fe14B焼結磁石と反応せず主にフッ素のみがNd2Fe14B焼結磁石に導入される。導入されるフッ素の量は0.001~5原子%であり、導入量はNd2Fe14B焼結磁石の体積や表面状態、フッ化処理条件に依存する。フッ素の導入は、質量分析や波長分散型X線分析の他、構造解析による酸フッ化物やフッ化物の確認により判定できる。導入量が不足する場合、前記アルコール系溶液で再処理する処理時間を長時間にすることで調整できる。
 フッ素導入後、時効熱処理によりフッ素をNd2Fe14B焼結磁石内部まで拡散させ保磁力を増加させる。400℃まで5℃/分で加熱し400℃で1時間保持後急冷することで、立方晶の酸フッ化物が形成することが確認できる。急冷速度は10~200℃/分の冷却速度でキュリー温度近傍を冷却させることが望ましい。粒界の希土類リッチ相または希土類酸化物が主相よりもフッ化され、時効熱処理による拡散と粒界相の構造及び組成分布制御により保磁力が未処理Nd2Fe14B焼結磁石よりも増大する。その増大量は希土類フッ化物や金属フッ化物のスラリーやアルコール膨潤溶液を使用した場合やフッ素含有ガス(F2やNHF4など)によるフッ化よりも大きく、0.1~5MA/mの保磁力増大が確認できる。
 フッ素の量が5原子%を超えるとNd2Fe14B焼結磁石の主相に侵入したフッ素により主相の結晶が分解し保磁力の小さな強磁性相が形成され、残留磁束密度は増加するが保磁力の温度依存性の低下や減磁曲線の角型性低下につながる。したがってフッ素導入量は5原子%以下が望ましく、表面から100μm深さまでの部分で10原子%以下が望ましい。粒界相や粒界三重点のフッ素濃度は前記5%以上であっても問題なく、NdOF系酸フッ化物が形成された場合、フッ素濃度は酸素濃度よりも高い方がNd2Fe14B焼結磁石の保磁力増大が顕著になる。
 形成される酸フッ化物はRexyz(Reは希土類元素、Oは酸素、Fはフッ素、x,y,zは正数)と表記され、y<zの化合物がy≧zの化合物よりも粒界に成長している体積率が高い。例えばNdOFの結晶構造であっても局所分析により酸素含有量よりもフッ素含有量の方が高い。またNdF2やNdF3などのフッ素化合物でも局所分析により酸素が検出されるが、酸素濃度<フッ素濃度であることが分析可能であり、希土類リッチ組成の粒界相にはフッ化処理によりフッ素濃度が酸素濃度よりも高い層が形成される。このようなフッ素濃度の分布は焼結磁石の表面と中心部とでは異なり、フッ化処理した表面から離れているほどフッ素濃度が低下する傾向がある。
 焼結磁石の表面と平行な面に対して分析した組成は深さ0.1mmと1mmとで0.1×0.1mm2の範囲(表面と平行な面)でほぼ等しい組成であったのが、フッ化処理を施すとフッ素のみ組成が異なり、フッ素以外の元素濃度は、深さ0.1mmと1mmにおける0.1×0.1mm2の範囲(表面と平行な面)でほぼ等しかった。深さ0.1mmと1mmにおける0.1×0.1mm2の範囲(表面と平行な面)で異なるのは、粒界や粒界三重点、粒内の異相周辺の局所的な組成分布である。すなわち、主相とは結晶構造や組成が異なる異相と主相との界面と界面から100nm以内の組成分布がフッ化処理によって変化するのである。
 フッ化処理により、主相内に含有していた添加元素の一部がフッ化物や酸フッ化物の界面と界面近傍(100nm以内)に偏在化し、界面近傍の主相や界面、粒界相の磁気物性が変化する。フッ素と結合し易い元素、フッ化物や酸フッ化物を安定にする元素、フッ化による電気陰性度の不均衡を戻そうとする元素や空孔などが前記界面近傍に集まる結果、主相の局所的な磁気物性が変化し、保磁力増大につながる。
 さらにフッ素導入によるフッ化物や酸フッ化物の元素別自由エネルギーの差より、DyやTbの酸フッ化物よりもNd含有酸フッ化物の方が安定であり、粒界相の組成がフッ素導入により変化する。
 フッ素導入のためのフッ化剤は本実施例のような不活性ガス元素とフッ素を含む材料が望ましく、フッ素(F2)ガスによるフッ化やフッ化アンモニウム(NH4F)や希土類フッ化物などのフッ化物よりも低温でのフッ素導入が容易である。不活性ガス元素とフッ素を含む材料をアルコールや鉱油と混合したスラリーやコロイド溶液を使用するか、不活性ガス元素とフッ素を含む材料とフッ素(F2)ガスとの混合、不活性ガス元素とフッ素を含む材料とフッ化アンモニウム(NH4F)や希土類フッ化物などのフッ化物や酸フッ化物との混合分散溶液、混合スラリー、混合アルコール膨潤液、不活性ガス元素とフッ素を含む材料がゲル化あるいはゾル化した溶液を使用して低温で焼結磁石材料をフッ化させることが可能である。
 粒子径が約30nmのFeのナノ粒子を湿式法で作成後、乾燥させずに溶媒をNH3とXeF2含有アルコールに置換し、120℃に加熱保持する。加熱によりフッ素(F)及び窒素(N)がナノ粒子内に拡散し、Fe4(F,N)が成長する。20℃に冷却後磁場中成形し有機または無機バインダーを使用して結着させ磁石材料となる。
 得られたFe4(F,N)の組成はFe-5原子%F-15原子%Nであり、窒素やフッ素は同一原子位置に配置した規則格子となっている。フッ素の配列が多い方向に容易磁化方向が平行となり、一軸結晶磁気異方性を有する。フッ素の配列は反応中に磁場印加することでさらに助長され、正方晶構造あるいは格子歪みの導入が認められる。
 正方晶構造のFe4(F,N)は残留磁束密度1.5T、保磁力0.8MA/mであり、希土類元素を使用しない低コストボンド磁石として応用可能である。このようなフッ素による磁気異方性増大効果は、フッ素の電気陰性度が大きいことを利用しており、フッ素が共有電子を引きつけ部分電荷を帯びる性質により鉄原子周囲の電子状態密度の分布に異方性を付加するものである。このような部分電荷効果は、他の鉄系結晶にフッ素を導入してフッ素原子位置を規則化させかつフッ素の配列が多い方向を形成することで実現でき、ペロブスカイトなどの酸素や硫黄、ヒ素、リン、シリコンの中の一種を含む化合物で達成できる。
 フッ素の異方的配列は、本実施例のような規則格子におけるフッ素原子位置数の異方性差以外に、インターカレーションなど層状化合物でのフッ素原子の異方的配列やスピノーダル分解した多結晶材料での異方的配列で認めることができ、フッ素原子の配置が多い方向と少ない方向とでフッ素濃度の差が5%以上であれば磁気的な異方性も認められる。異方性磁界を1MA/m以上とするためにはフッ素濃度差を10%以上にすることが鉄系材料では有効であり、10%以上99%以下が望ましい。99%以上は設計上理想であるが、拡散を伴う熱処理が100℃以上であるため実現困難である。従ってフッ素導入によるフッ素濃度の方向による差、または電荷の偏りや分極、イオン結合性の方位差は10~99%の範囲で作成可能であり、この範囲で磁気異方性が認められ磁石材料に適した材料となる。
 フッ素は不純物として混入する炭素や酸素よりも高濃度であれば、フッ素の配列に依存してその効果が認められ、保磁力0.5MA/m以上とするためには磁石材料全体の0.1原子%のフッ素が含有していることが望ましく、20原子%を超えると安定なフッ化物や酸フッ化物が成長することで磁化が減少するので0.1~20原子%の範囲が最適である。
 フッ化剤としてXeF2以外にXeOF4,KrF2,Kr23,ArF,KHF2,SF6,TeF6,NF3,CF4,ClF,ClF3,BrF,BrF3,BrF5,IF5,IF7等が使用できる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
1 主相結晶粒
2 主相内フッ素含有相
3 粒界相
4 粒界三重点フッ素含有相

Claims (9)

  1.  NdFeBの主相と、粒界相とで構成する焼結磁石において、
     前記粒界相に酸フッ化物を有し、
     前記酸フッ化物に含まれるフッ素の濃度は前記酸フッ化物に含まれる酸素の濃度よりも高く、
     前記酸フッ化物に含まれるフッ素の濃度は前記焼結磁石の表面から深さ方向に減少し、
     前記焼結磁石の飽和磁束密度は前記焼結磁石の表面から深さ方向に減少することを特徴とする焼結磁石。
  2.  請求項1に記載の焼結磁石において、
     前記酸フッ化物の体積率は前記焼結磁石の表面から深さ方向に減少することを特徴とする焼結磁石。
  3.  請求項1または2に記載の焼結磁石において、
     前記酸フッ化物に含まれるフッ素の濃度は、前記焼結磁石の表面から深さ方向に100μmの範囲の領域における平均値で33原子%を超えていることを特徴とする焼結磁石。
  4.  請求項1乃至3のいずれかに記載の焼結磁石において、
     前記酸フッ化物は、立方晶または正方晶の結晶構造を含むことを特徴とする焼結磁石。
  5.  請求項1乃至4のいずれかに記載の焼結磁石において、
     前記焼結磁石全体のフッ素含有量は5原子%以下であることを特徴とする焼結磁石。
  6.  請求項1乃至5のいずれかに記載の焼結磁石において、
     前記焼結磁石全体の酸素濃度は3000ppm以下であることを特徴とする焼結磁石。
  7.  請求項1乃至6のいずれかに記載の焼結磁石において、
     前記主相に含まれる鉄または鉄合金はbccまたはbct構造であり、
     前記鉄または鉄合金は前記焼結磁石の表面から深さ方向に減少することを特徴とする焼結磁石。
  8.  請求項1乃至7のいずれかに記載の焼結磁石において、
     前記酸フッ化物は正方晶の結晶構造のNdOx3-2x(0<x<1)を含むことを特徴とする焼結磁石。
  9.  請求項1乃至8のいずれかに記載の焼結磁石を製造する工程において、
     解離性フッ化剤を使用することによりフッ素を導入することを特徴とする焼結磁石の製造方法。
PCT/JP2012/003518 2012-05-30 2012-05-30 焼結磁石及びその製造方法 WO2013179337A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014518083A JP5868500B2 (ja) 2012-05-30 2012-05-30 焼結磁石及びその製造方法
EP12877886.7A EP2858074A4 (en) 2012-05-30 2012-05-30 SINTER MAGNET AND METHOD FOR THE PRODUCTION THEREOF
PCT/JP2012/003518 WO2013179337A1 (ja) 2012-05-30 2012-05-30 焼結磁石及びその製造方法
CN201280073551.XA CN104350554A (zh) 2012-05-30 2012-05-30 烧结磁铁及其制造方法
US14/404,406 US20150170809A1 (en) 2012-05-30 2012-05-30 Sintered magnet and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003518 WO2013179337A1 (ja) 2012-05-30 2012-05-30 焼結磁石及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013179337A1 true WO2013179337A1 (ja) 2013-12-05

Family

ID=49672596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003518 WO2013179337A1 (ja) 2012-05-30 2012-05-30 焼結磁石及びその製造方法

Country Status (5)

Country Link
US (1) US20150170809A1 (ja)
EP (1) EP2858074A4 (ja)
JP (1) JP5868500B2 (ja)
CN (1) CN104350554A (ja)
WO (1) WO2013179337A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466555A (zh) * 2022-09-13 2022-12-13 浙江中杭新材料科技有限公司 一种钕铁硼磁体抗菌型表面功能膜层的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186864A1 (ja) * 2012-06-13 2013-12-19 株式会社 日立製作所 焼結磁石及びその製造方法
JP2019161183A (ja) * 2018-03-16 2019-09-19 株式会社東芝 複数の扁平磁性金属粒子、圧粉材料及び回転電機
JP7050720B2 (ja) 2019-05-22 2022-04-08 アイダエンジニアリング株式会社 プレス機械のプレス荷重測定装置及び方法
CN114999759B (zh) * 2022-07-06 2024-07-19 赣州鑫舟永磁材料有限公司 一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188241A (ja) 1989-12-15 1991-08-16 Sumitomo Special Metals Co Ltd 焼結永久磁石材料およびその製造方法
JPH06244011A (ja) 1992-12-26 1994-09-02 Sumitomo Special Metals Co Ltd 耐食性のすぐれた希土類磁石及びその製造方法
JP2006303197A (ja) * 2005-04-20 2006-11-02 Neomax Co Ltd R−t−b系焼結磁石の製造方法
JP2007116142A (ja) * 2005-09-26 2007-05-10 Hitachi Ltd 磁性材料,磁石及び回転機
JP2008147634A (ja) 2006-11-17 2008-06-26 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
JP2009513990A (ja) 2005-11-01 2009-04-02 ノースウエスタン ユニバーシティ マイクロチャネル分離用マトリックス、ダイナミックポリマーシステム及び組成物
JP2009124150A (ja) 2006-03-03 2009-06-04 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石
JP2011114247A (ja) * 2009-11-30 2011-06-09 Hitachi Ltd 強磁性化合物磁石
WO2011081170A1 (ja) * 2009-12-28 2011-07-07 日立金属株式会社 耐食性磁石およびその製造方法
JP2011211106A (ja) 2010-03-30 2011-10-20 Hitachi Ltd 磁性材料及びその磁性材料を用いたモータ
WO2012029738A1 (ja) * 2010-08-30 2012-03-08 株式会社日立製作所 焼結磁石

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417906B (zh) * 2005-03-23 2013-12-01 Shinetsu Chemical Co 機能分級式稀土族永久磁鐵
MY141999A (en) * 2005-03-23 2010-08-16 Shinetsu Chemical Co Functionally graded rare earth permanent magnet
TWI364765B (en) * 2005-03-23 2012-05-21 Shinetsu Chemical Co Rare earth permanent magnet
TWI413136B (zh) * 2005-03-23 2013-10-21 Shinetsu Chemical Co 稀土族永久磁體
US20080241513A1 (en) * 2007-03-29 2008-10-02 Matahiro Komuro Rare earth magnet and manufacturing method thereof
JP2010022147A (ja) * 2008-07-11 2010-01-28 Hitachi Ltd 焼結磁石モータ
JP2010034365A (ja) * 2008-07-30 2010-02-12 Hitachi Ltd 焼結磁石を備える回転機、および焼結磁石の製造方法
WO2010109760A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 焼結磁石及びそれを用いた回転電機
WO2013186864A1 (ja) * 2012-06-13 2013-12-19 株式会社 日立製作所 焼結磁石及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188241A (ja) 1989-12-15 1991-08-16 Sumitomo Special Metals Co Ltd 焼結永久磁石材料およびその製造方法
JPH06244011A (ja) 1992-12-26 1994-09-02 Sumitomo Special Metals Co Ltd 耐食性のすぐれた希土類磁石及びその製造方法
JP2006303197A (ja) * 2005-04-20 2006-11-02 Neomax Co Ltd R−t−b系焼結磁石の製造方法
JP2007116142A (ja) * 2005-09-26 2007-05-10 Hitachi Ltd 磁性材料,磁石及び回転機
JP2009513990A (ja) 2005-11-01 2009-04-02 ノースウエスタン ユニバーシティ マイクロチャネル分離用マトリックス、ダイナミックポリマーシステム及び組成物
JP2009124150A (ja) 2006-03-03 2009-06-04 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石
JP2008147634A (ja) 2006-11-17 2008-06-26 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
JP2011114247A (ja) * 2009-11-30 2011-06-09 Hitachi Ltd 強磁性化合物磁石
WO2011081170A1 (ja) * 2009-12-28 2011-07-07 日立金属株式会社 耐食性磁石およびその製造方法
JP2011211106A (ja) 2010-03-30 2011-10-20 Hitachi Ltd 磁性材料及びその磁性材料を用いたモータ
WO2012029738A1 (ja) * 2010-08-30 2012-03-08 株式会社日立製作所 焼結磁石

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858074A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466555A (zh) * 2022-09-13 2022-12-13 浙江中杭新材料科技有限公司 一种钕铁硼磁体抗菌型表面功能膜层的制备方法
CN115466555B (zh) * 2022-09-13 2023-06-30 浙江中杭新材料科技有限公司 一种钕铁硼磁体抗菌型表面功能膜层的制备方法

Also Published As

Publication number Publication date
EP2858074A4 (en) 2016-02-17
JPWO2013179337A1 (ja) 2016-01-14
US20150170809A1 (en) 2015-06-18
JP5868500B2 (ja) 2016-02-24
EP2858074A1 (en) 2015-04-08
CN104350554A (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
JP6426765B2 (ja) 窒化鉄永久磁石及び窒化鉄永久磁石を形成するための技術
JP5970548B2 (ja) 焼結磁石及びその製造方法
JP5130270B2 (ja) 磁性材料及びそれを用いたモータ
JP5868500B2 (ja) 焼結磁石及びその製造方法
JP2022164662A (ja) 窒化鉄磁性材料の印加磁場合成及び処理
CN109935432B (zh) R-t-b系永久磁铁
JP2013135542A (ja) 焼結磁石モータ
WO2012161189A1 (ja) 希土類-鉄-窒素系合金材、希土類-鉄-窒素系合金材の製造方法、希土類-鉄系合金材、及び希土類-鉄系合金材の製造方法
WO2012176655A1 (ja) 焼結磁石
AU2016211830A1 (en) Preservation of strain in iron nitride magnet
US20100194509A1 (en) Rare earth magnet
Rahimi et al. Magnetic properties and magnetization reversal mechanism of Nd-Fe-B nanoparticles synthesized by a sol-gel method
Rahimi et al. On the magnetic and structural properties of neodymium iron boron nanoparticles
Rahimi et al. Coercivity Mechanism in Nd-Fe-B Nanoparticles synthesized by reduction-diffusion process
JP2015128118A (ja) 希土類磁石の製造方法
WO2014054163A1 (ja) 焼結磁石及びその製造方法
JP6047328B2 (ja) 焼結磁石用塗布材料
KR101483319B1 (ko) 희토류금속 수소화물 제조 방법 및 이를 사용한 희토류금속-천이금속 합금 분말 제조 방법
CN111145972B (zh) RFeB系烧结磁体及其制造方法
KR102399418B1 (ko) 소결 자석 제조 방법 및 이에 따라 제조된 소결 자석
WO2017191790A1 (ja) 希土類永久磁石及びその製造方法
JP7401479B2 (ja) 希土類異方性磁石粉末およびその製造方法
WO2020184724A1 (ja) 準安定単結晶希土類磁石微粉及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518083

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14404406

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012877886

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE