WO2013172334A1 - 導電性組成物 - Google Patents

導電性組成物 Download PDF

Info

Publication number
WO2013172334A1
WO2013172334A1 PCT/JP2013/063403 JP2013063403W WO2013172334A1 WO 2013172334 A1 WO2013172334 A1 WO 2013172334A1 JP 2013063403 W JP2013063403 W JP 2013063403W WO 2013172334 A1 WO2013172334 A1 WO 2013172334A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
expanded graphite
composition
weight
fluororubber
Prior art date
Application number
PCT/JP2013/063403
Other languages
English (en)
French (fr)
Inventor
勉 長宗
真宏 重田
ホアン・テ・バン
貢 上島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US14/400,886 priority Critical patent/US10283231B2/en
Priority to EP13790914.9A priority patent/EP2851398B1/en
Priority to CN201380025508.0A priority patent/CN104302707B/zh
Priority to JP2014515631A priority patent/JPWO2013172334A1/ja
Priority to KR1020147032253A priority patent/KR20150011811A/ko
Publication of WO2013172334A1 publication Critical patent/WO2013172334A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Definitions

  • the present invention relates to a conductive composition.
  • Patent Document 1 describes a conductive resin molding used for a separator of a fuel cell.
  • Patent Document 2 describes a conductive resin composition containing graphite fine particles.
  • Patent Document 3 describes a heat conductive pressure-sensitive adhesive composition.
  • an object of the present invention is to provide a conductive composition having excellent flexibility and conductivity.
  • the conductive composition according to the present invention includes expanded graphite, carbon nanotubes, and a polymer compound, and the total amount of the expanded graphite and the polymer compound is 100 parts by weight.
  • the expanded graphite content is 30 parts by weight or more and 70 parts by weight or less
  • the carbon nanotube content is 0.5 parts by weight or more and 10 parts by weight or less.
  • the conductive composition according to the present invention includes expanded graphite, carbon nanotubes, and a polymer compound, and the content of the expanded graphite when the total amount of the expanded graphite and the polymer compound is 100 parts by weight. Is 30 parts by weight or more and 70 parts by weight or less, and the content of carbon nanotubes is 0.5 parts by weight or more and 10 parts by weight or less.
  • Expanded graphite is expanded graphite (also referred to as expandable graphite) obtained by chemically treating flaky graphite, which is expanded by heat treatment and then refined.
  • the expanded graphite can be appropriately selected from conventionally known expanded graphite.
  • Commercially expanded graphite may be used. Examples of commercially available expanded graphite include EC1500, EC1000, EC500, EC300, EC100, and EC50 (all are trade names) manufactured by Ito Graphite Industries.
  • the amount of expanded graphite contained in the conductive fluororubber composition according to the present invention is 30 parts by weight or more and 70 parts by weight or less when the total amount of expanded graphite and polymer compound is 100 parts by weight. I just need it. With this amount, excellent conductivity can be obtained while maintaining the excellent flexibility of the fluororubber. Further, the more preferable content of the expanded graphite is 35 parts by weight or more and 50 parts by weight or less.
  • the average particle diameter of the expanded graphite is not particularly limited, but is more preferably in the range of 20 ⁇ m to 300 ⁇ m, for example. If it is this range, when compared with the electroconductive fluororubber composition which consists of an expanded graphite outside a range, it is preferable from electrical conductivity becoming higher.
  • the average particle diameter is defined as the effective diameter calculated by adapting the theoretical laser diffraction pattern obtained by assuming the expanded graphite powder to be spherical and the measured laser diffraction pattern as the particle diameter.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction scattering method particle size distribution measuring apparatus.
  • the conductive fluororubber composition according to the present invention contains the product obtained by the following method.
  • the acid-treated graphite is obtained by heat treatment at 500 ° C. or more and 1200 ° C. or less to expand it to 100 ml / g or more and 300 ml / g or less, and then pulverize it.
  • Acid treatment refers to bringing graphite into contact with acid. For example, it is more preferable to collect graphite after immersing it in acid for 10 minutes or more and 30 minutes or less.
  • the acid include sulfuric acid or a mixture of sulfuric acid and hydrogen peroxide solution.
  • the heat treatment is performed at 500 ° C. or more and 1200 ° C. or less. If it is this range, graphite will expand
  • graphite expanded to 100 ml / g or more and 300 ml / g or less is preferable.
  • 100 ml / g or more since the density of the graphite particles is small, compared to the case of using expanded graphite powder having the same average particle diameter and low expansion, it is possible to prepare a composition having the same conductivity. May be added in a small amount.
  • the degree of expansion of the acid-treated graphite is 300 ml / g or less, it is easy to produce industrially, which is preferable from an economical viewpoint.
  • the pulverization may be performed using a conventionally known pulverizer such as a Henschel mixer, a homomixer, a hand mixer, a hammer mill, a ball mill, a bead mill, or a jet mill.
  • a conventionally known pulverizer such as a Henschel mixer, a homomixer, a hand mixer, a hammer mill, a ball mill, a bead mill, or a jet mill.
  • the pulverized expanded graphite powder may be classified by a known method such as an air classifier, a wet centrifugal classifier, or a sieve.
  • the carbon nanotubes contained in the conductive composition according to the present invention may be conventionally known carbon nanotubes. However, since the average outer diameter is 2 nm or more and 50 nm or less, excellent conductivity can be obtained. Preferably, single-walled carbon nanotubes having a BET specific surface area of 600 m 2 / g or more are more preferable because more excellent conductivity can be obtained. In addition, an average outer diameter is calculated
  • the content of the carbon nanotube is 0.5 parts by weight or more and 10 parts by weight or less when the total amount of the expanded graphite and the polymer compound is 100 parts by weight. Within this range, excellent conductivity can be obtained.
  • Carbon nanotubes may be obtained by a conventionally known method, but single-walled carbon nanotubes having a BET specific surface area of 600 m 2 / g or more can be easily obtained by the super-growth method.
  • a method for producing carbon nanotubes by the super growth method is described in, for example, Japanese Patent No. 4621896.
  • the single-walled carbon nanotube refers to a structure in which a large number of CNTs grown from a base material are oriented in a specific direction.
  • the specific surface area of the single-walled carbon nanotube is preferably 600 m 2 / g or more. Further, when the CNT is mainly unopened, it is preferably 600 m 2 / g or more, and when the CNT is mainly opened, it is preferably 1300 m 2 / g or more. In the case of an unopened one having a specific surface area of 600 m 2 / g or more, or an open one having an opening of 1300 m 2 / g or more, impurities such as metals or carbon impurities can be kept lower than several tens percent (about 40%) of the weight. It is preferable because it is possible.
  • the weight density of the single-walled carbon nanotube is more preferably 0.002 g / cm 3 to 0.2 g / cm 3 . If the weight density is 0.2 g / cm 3 or less, the CNTs constituting the single-walled CNTs are weakly bonded to each other. Therefore, when the single-walled carbon nanotubes are stirred in a solvent or the like, they can be easily dispersed uniformly. Become. That is, when the weight density is 0.2 g / cm 3 or less, it is easy to obtain a homogeneous dispersion. The weight density is 0.00 If it is 2 g / cm 3 or more, the integrity of the single-walled carbon nanotubes can be improved and the loosening can be suppressed, so that handling becomes easy.
  • polymer compound Specific examples of the polymer compound contained in the conductive composition according to the present invention are not particularly limited, and may be appropriately selected according to the use of the conductive composition.
  • Thermoplastic resin, rubber, and thermoplastic elastomer More preferably, it is at least one selected from the group consisting of:
  • the polymer compound may be only one kind or a plurality of kinds may be mixed.
  • thermoplastic resin examples include polystyrene, polymethyl methacrylate, polycarbonate, polyethylene, polypropylene, fluororesin, polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, and polyvinyl acetate.
  • Examples of rubber include natural rubber, chloroprene rubber, styrene / butadiene rubber, ethylene / propylene rubber, butyl rubber, acrylonitrile / butadiene rubber, silicon rubber, urethane rubber, fluoro rubber, halogenated butyl rubber, chlorosulfonated polyethylene rubber, and epichloro And hydrin rubber.
  • thermoplastic elastomer examples include poly (styrene-butadiene) diblock copolymer and its hydride, poly (styrene-butadiene-styrene) triblock copolymer, and its hydride, poly (styrene- Isoprene) diblock copolymer and its hydride, poly (styrene-isoprene-styrene) triblock copolymer, its hydride, and the like.
  • Method for producing conductive composition for example, a polymer compound, expanded graphite, and carbon nanotubes may be mixed or kneaded so as to have the above-described content.
  • a polymer compound and an organic solvent or a solvent that does not dissolve the polymer compound is placed in a single container, and appropriately mixed.
  • carbon nanotubes are added, and the carbon nanotubes are dispersed in a solvent containing a polymer compound using an ultrasonic homogenizer or a wet jet mill, and then expanded graphite is added.
  • the polymer compound is added and mixed as appropriate to dissolve or disperse the polymer compound, and then expanded graphite is added. You may implement the method of stirring and mixing.
  • Stirring may be performed using a conventionally known stirrer such as a stirring blade, a magnetic stirrer, or a planetary mill.
  • the stirring time is more preferably 10 minutes or longer and 24 hours or shorter.
  • About removal of a solvent, what is necessary is just to evaporate a solvent using a dryer etc., for example.
  • examples of the kneading method include the following methods.
  • the resin is kneaded in a molten state with a mixer, a single-screw kneader, a twin-screw kneader, a roll, a Brabender, an extruder, or the like.
  • the method (1) is more preferable because the dispersibility of the carbon nanotubes and the expanded graphite can be further improved.
  • a cross-linking agent may be mixed with the electroconductive composition according to the present invention and cross-linked at the time of molding to obtain a molded body having improved strength.
  • the molding method a method according to the shape of the molded body can be adopted, and it can be applied to general production methods such as press molding, blow molding, injection molding and the like.
  • crosslinking agent for example, a peroxide crosslinking agent; a polyol crosslinking agent; a polyamine crosslinking agent; a thiocyanate crosslinking agent;
  • composition according to the present invention may optionally contain an antioxidant.
  • antioxidants examples include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like.
  • phenolic antioxidants particularly alkyl-substituted phenolic antioxidants are preferable. By blending these antioxidants, it is possible to prevent a decrease in strength and conductivity of the composition due to oxidative degradation during molding.
  • phenolic antioxidant conventionally known ones can be used, for example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate, etc., Japanese Patent Publication “JP-A 63-179953” And acrylate compounds described in Japanese Patent Application Publication No.
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, and tris (2,4-diphenyl).
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • sulfur antioxidant examples include dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3-thiodipro Pionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thio-propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane It is done.
  • antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. For example, 0.001 to 5 parts by weight, preferably 0.01 to 1 part by weight per 100 parts by weight.
  • the average outer diameter of the carbon nanotube is more preferably 2 nm or more and 50 nm or less.
  • the polymer compound is more preferably at least one selected from the group consisting of a thermoplastic resin, rubber, and thermoplastic elastomer.
  • the carbon nanotubes are more preferably single-walled carbon nanotubes having a BET specific surface area of 600 m 2 / g or more.
  • the expanded graphite is pulverized after the acid-treated graphite is expanded to 100 ml / g or more and 300 ml / g or less by heat-treating the acid-treated graphite at 500 ° C. or more and 1200 ° C. or less. It is more preferable that it is obtained.
  • a sample of 450 mg was sandwiched between two stainless steel plates that had been mirror-finished by 150 mm ⁇ 150 mm ⁇ 0.5 mm electropolishing, and was placed in a vacuum press molding machine (product name “IMC-19E4”, manufactured by Imoto Seisakusho). Installed with stainless steel sheet. Thereafter, in order to obtain a thin film circular composition molded body, vacuum press molding was performed under the conditions of a temperature of 120 ° C., a pressure of 0.4 MPa, and a pressurization time of 5 minutes.
  • the obtained molded body is thin in the shape of a thin film and has no crack defect, and if the thickness is 500 ⁇ m or less, “Yes”, the thickness is not less than 500 ⁇ m, the molded body has a crack defect, or the shape of the molded body itself is changed. In the case of not making it, it was set as “impossible”.
  • the carbon nanotube average outer diameter used in each example and each comparative example was measured as follows.
  • Carbon nanotube (CNT) 0.1 mg and ethanol 3 mL were weighed into a 10 mL screw tube bottle, and with an ultrasonic cleaner (BRANSON, product name “5510J-DTH”), vibration output 180 W, temperature 10 ° C.-
  • BRANSON product name “5510J-DTH”
  • vibration output 180 W temperature 10 ° C.-
  • the screw tube bottle was subjected to ultrasonic treatment at 40 ° C. for 30 minutes to uniformly disperse CNTs in ethanol.
  • the microgrid was placed on a transmission electron microscope (product name “EM-002B” manufactured by Topcon Technohouse Co., Ltd.), and CNTs were observed at a magnification of 1.5 million times.
  • the average value of the measured outer diameters of 50 CNTs was defined as the CNT average outer diameter.
  • BET specific surface area measurement The BET specific surface area of the CNT used in each example and each comparative example was measured as follows.
  • a dedicated cell for a BET specific surface area measuring apparatus (product name “HMmodel-1210”, manufactured by Mountech Co., Ltd.) was sufficiently dried by heat treatment at 110 ° C. for 5 hours or more, and 20 mg of CNT was weighed and placed in the cell.
  • the cell was provided at a predetermined position of the measuring apparatus, and the BET specific surface area was measured by automatic operation.
  • the measurement principle of this apparatus follows the method of measuring the adsorption / desorption isotherm of liquid nitrogen at 77K, and measuring the specific surface area by the Brunauer, Emmett, Teller method from this adsorption / desorption isotherm curve.
  • CNT collected measurement platinum container and correction empty measurement platinum container were installed in the measuring instrument, and measured under the conditions of air flow 10 ml, temperature range 50-800 ° C., temperature increase rate 20 ° C./min, Carbon purity was measured from the weight loss rate (%) at the end of measurement when the measurement start time was zero.
  • the electric conductivity of the composition in each example and each comparative example was determined by using a low resistivity meter (product name “Lorentz (registered trademark) -GP MCP-T610” manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Measurement was carried out as follows in accordance with a method conforming to K7194. First, 450 mg of a sample was vacuum press-molded under vacuum at a temperature of 120 ° C., a pressure of 0.4 MPa, and a pressurization time of 5 minutes to form a thin film circular shape with an area of about 40 to 60 mm ⁇ and a thickness of 100 to 500 ⁇ m. After that, four square test pieces of 10 mm ⁇ 10 mm were cut out and used as measurement samples.
  • a low resistivity meter product name “Lorentz (registered trademark) -GP MCP-T610” manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • a PSP probe was selected as the four-end needle probe of Lorenz GP.
  • the measurement sample was fixed on an insulating board, the probe was pressed against the center position of the measurement sample (position of 5 mm in length and 5 mm in width), and a voltage of 10 V was applied to measure the conductivity.
  • the conductivity of the four measurement sample specimens was measured, and the average value was taken as the conductivity of the sample.
  • Fluoro rubber product name: KYNAR FLEX (registered trademark) 2500
  • 5 g is added to 95 g of 4-methyl-2-pentanone and stirred at 25 ° C. for 24 hours or more to prepare 100 g of 5% fluoro rubber solution. did.
  • Single wall carbon nanotube (SWCNT-1) (single wall carbon nanotube obtained by the method described in Example 1 of Japanese Patent No. 4621896) 15 mg and 5% fluororubber solution 5 g are placed in a 20 cc screw tube bottle. The mixture was stirred for 1 hour or more at 25 ° C. to pre-disperse the CNTs.
  • SWCNT-1 had an average outer diameter of 3.0 nm, a BET specific surface area of 1020 m 2 / g, and a carbon purity of 99.9%.
  • the screw tube containing the 5% fluororubber solution in which SWCNT-1 is dispersed is taken out of the ultrasonic cleaner, and a stirrer is inserted. While stirring at 25 ° C., expanded graphite having an average particle diameter of 25 ⁇ m (manufactured by Ito Graphite Industries, Ltd.) , 250 mg of product name “EC500”) was gradually added, and after the addition, stirring was continued for 1 hour or more to prepare a mixed solution of expanded graphite / CNT / fluororubber.
  • the expanded graphite / SWCNT-1 / fluororubber composition is taken out from n-hexane by suction filtration, and dried in a vacuum dryer at 40 ° C. for 24 hours or more to obtain expanded graphite (50 parts) / SWCNT. -1 (3 parts) / fluororubber (50 parts) composition was obtained.
  • the molded product obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 58.5 S / cm.
  • Example 2 A composition of expanded graphite (50 parts) / SWCNT-1 (5 parts) / fluororubber (50 parts) was prepared in the same manner as in Example 1 except that 25 mg of single-walled carbon nanotubes (SWCNT-1) was used. 512 mg was obtained.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 65.7 S / cm.
  • Example 3 A composition of expanded graphite (50 parts) / SWCNT-1 (1 part) / fluororubber (50 parts) was prepared in the same manner as in Example 1 except that 5 mg of single-walled carbon nanotubes (SWCNT-1) was used. 500 mg was obtained.
  • the molded product obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 43.6 S / cm.
  • Example 4 A composition of expanded graphite (50 parts) / SWCNT-1 (10 parts) / fluororubber (50 parts) was prepared in the same manner as in Example 1 except that 50 mg of single-walled carbon nanotubes (SWCNT-1) was used. 500 mg was obtained.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 102.1 S / cm.
  • Example 5 instead of SWCNT-1, multi-walled carbon nanotube (MWCNT-1) (manufactured by Nanocyl, product name “NC7000”) was operated in the same manner as in Example 1 except that expanded graphite (50 parts) / 502 mg of a composition of MWCNT-1 (3 parts) / fluororubber (50 parts) was obtained.
  • MWCNT-1 manufactured by Nanocyl, product name “NC7000”
  • the average outer diameter of MWCNT-1 was 7.5 nm (the published value described in the catalog on which the product was published was 5 to 10 nm), the BET specific surface area was 300 m 2 / g, and the carbon purity was 96.8%.
  • the molded product obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 47.9 S / cm.
  • Example 6 In place of SWCNT-1, multi-walled carbon nanotube (MWCNT-2) (manufactured by CNT. Co., Ltd., product name “CTube100”) was operated in the same manner as in Example 1 except that the expanded graphite was expanded. 509 mg of a composition of (50 parts) / MWCNT-2 (3 parts) / fluororubber (50 parts) was obtained.
  • MWCNT-2 manufactured by CNT. Co., Ltd., product name “CTube100”
  • the average outer diameter of MWCNT-2 was 23 nm (published value 10 to 50 nm described in the catalog on which the product was published), the BET specific surface area was 330 m 2 / g, and the carbon purity was 95.5%.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 43.1 S / cm.
  • Example 7 In place of expanded graphite having an average particle size of 25 ⁇ m, expanded graphite having an average particle size of 250 ⁇ m (product name “EC50”, manufactured by Ito Graphite Industries Co., Ltd.) was changed to 250 mg, and the same procedure as in Example 1 was performed to expand the expanded graphite. 508 mg of a composition of graphitized graphite (50 parts) / SWCNT-1 (3 parts) / fluororubber (50 parts) was obtained.
  • EC50 manufactured by Ito Graphite Industries Co., Ltd.
  • the molded product obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 55.0 S / cm.
  • Example 8 In place of the expanded graphite having an average particle size of 25 ⁇ m, the expanded graphite having an average particle size of 7 ⁇ m (product name “EC1500” manufactured by Ito Graphite Industries Co., Ltd.) was changed to 250 mg, and the same procedure was followed as in Example 1 to expand. 510 mg of a composition of graphitized graphite (50 parts) / SWCNT-1 (3 parts) / fluororubber (50 parts) was obtained.
  • EC1500 manufactured by Ito Graphite Industries Co., Ltd.
  • the molded product obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 45.7 S / cm.
  • Example 9 The same procedure as in Example 1 was followed except that expanded graphite with an average particle size of 25 ⁇ m was changed to 150 mg, 7.0% 5% fluororubber solution, and 25 mg single-walled carbon nanotubes (SWCNT-1). Part) / SWCNT-1 (5 parts) / fluororubber (70 parts).
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its electrical conductivity was 41.9 S / cm.
  • Example 10 Except for 350 mg of expanded graphite having an average particle size of 25 ⁇ m and 3 g of 5% fluororubber solution, the same operation as in Example 1 was carried out, and expanded graphite (70 parts) / SWCNT-1 (3 parts) / fluororubber 499 mg of (30 parts) of composition was obtained.
  • the molded product obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 100.0 S / cm.
  • Example 11 instead of SWCNT-1, single-walled carbon nanotubes (SWCNT-2) (manufactured by NanoIntegris, product name “HiPco SuperPure”) were used in the same manner as in Example 1, except that expanded graphite (50 parts) ) / SWCNT-2 (3 parts) / fluororubber (50 parts).
  • SWCNT-2 manufactured by NanoIntegris, product name “HiPco SuperPure”
  • the average outer diameter of SWCNT-2 is 1.0 nm (the published value described in the catalog on which the product is published is 0.8 to 1.2 nm), the BET specific surface area is 450 m 2 / g, and the carbon purity is 99.1%. Met.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 33.6 S / cm.
  • a stirrer is placed in a screw tube containing a 5% fluororubber solution, and 250 mg of expanded graphite having an average particle size of 25 ⁇ m (product name “EC500”, manufactured by Ito Graphite Industries Co., Ltd.) is gradually added while stirring at 25 ° C. After the addition, stirring was continued for 1 hour or more to prepare a mixed solution of expanded graphite / fluororubber.
  • expanded graphite having an average particle size of 25 ⁇ m
  • the expanded graphite / fluororubber composition is taken out from n-hexane by suction filtration, and vacuum-dried in a vacuum dryer at 40 ° C. for 24 hours or more to obtain expanded graphite (50 parts) / fluororubber (50 parts). ) Mg of the composition was obtained.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 31.5 S / cm.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 15.0 S / cm.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its electrical conductivity was 16.5 S / cm.
  • a 10-fold amount of n-hexane and a stirrer were placed in a 200 cc beaker with respect to the SWCNT-1 / fluororubber mixed solution to prepare n-hexane in a stirred state.
  • the crumb-like SWCNT-1 / fluororubber composition was coagulated in n-hexane by gradually adding a mixed solution of SWCNT-1 / fluororubber there.
  • the SWCNT-1 / fluororubber composition is taken out from n-hexane by suction filtration, and dried in a vacuum dryer at 40 ° C. for 24 hours or more to obtain SWCNT-1 (3 parts) / fluororubber (100 parts). ) Of 499 mg of the composition was obtained.
  • the molded product obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 7.5 S / cm.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 28.6 S / cm.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its electrical conductivity was 8.1 S / cm.
  • Ketjen black (50 parts) was operated in the same manner as in Example 1 except that 250 mg of ketjen black (product name “Carbon ECP600JD” manufactured by Lion Corporation) was used instead of expanded graphite having an average particle size of 25 ⁇ m. 498 mg of a composition of / SWCNT-1 (3 parts) / fluororubber (50 parts) was obtained.
  • the composition was very hard and was difficult to form by a vacuum press and could not be formed into a thin film, so that the conductivity could not be measured.
  • Ketjen black (16 parts) was operated in the same manner as in Example 8 except that 80 mg of ketjen black (manufactured by Lion Corporation, product name “Carbon ECP600JD”) was used instead of expanded graphite having an average particle size of 25 ⁇ m. 485 mg of a composition of / SWCNT-1 (3 parts) / fluororubber (84 parts) was obtained.
  • the molded product obtained by molding the composition into a thin film disk was a flexible rubber-like substance, but Ketjen Black bleeded out on the surface of the molded product, so that the hand became dirty only by touching it. there were. Its conductivity was 8.0 S / cm.
  • Ketjen black product name “Carbon ECP600JD” manufactured by Lion Corporation
  • the amount was 15 mg
  • the same operation as in Example 1 was carried out to expand expanded graphite (50 parts) / Ketjen black ( 499 mg of a composition of 3 parts) / fluororubber (50 parts) was obtained.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 32.0 S / cm.
  • the molded body obtained by molding the composition into a thin film disk was a flexible rubber-like substance, and its conductivity was 8.0 S / cm.
  • the composition was moldable but not mechanically resistant, and when a force such as bending or tension was applied, only a molded body that would break immediately was obtained, and the conductivity could not be measured.
  • the conductive composition according to the present invention is based on the electrical conductivity of the composition comprising only expanded graphite or only CNT in addition to the polymer compound. Unusually high electrical conductivity was developed. That is, it became a composition having a very high electrical conductivity of 40 S / cm or more while maintaining the performance required for the composition of flexibility, moldability, and non-bleed out property (non-contaminating property).
  • the expanded graphite deviated from the concentration range of 30 parts by weight or more and 70 parts by weight or less when the total amount of the expanded graphite and the polymer compound was 100 parts by weight.
  • the concentration is lower than 30 parts by weight, the composition does not have a very high conductivity of 40 S / cm or more, and when the concentration is higher than 70 parts by weight, there is a problem that the mechanical strength of the molded composition is significantly reduced. It turned out to be undesirable.
  • Example 11 when carbon nanotubes having an average outer diameter outside the range of 2.0 nm or more and 50 nm or less were used, the development of conductivity as in Examples 1 to 10 was not observed. From this, it was found that carbon nanotubes having an average outer diameter of 2.0 nm or more and 50 nm or less are more preferable.
  • expanded graphite exhibits the effect of adding carbon nanotubes regardless of the average particle diameter, but when the average particle diameter is less than 10 ⁇ m, the conductivity of the entire composition is attenuated. Because of this tendency, it has been found that the average particle size of the expanded graphite powder is more preferably in the range of 10 ⁇ m to 300 ⁇ m.
  • the present invention can be used in various fields that use conductive materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明に係る導電性組成物は、膨張化黒鉛と、カーボンナノチューブと、高分子化合物とを含み、膨張化黒鉛及び高分子化合物の総量を100重量部としたときに、膨張化黒鉛の含有量が30重量部以上、70重量部以下であり、カーボンナノチューブの含有量が0.5重量部以上、10重量部以下である。

Description

導電性組成物
 本発明は導電性組成物に関するものである。
 アセチレンブラック、ケッチェンブラック、カーボンナノチューブ等の導電性カーボン添加剤と、樹脂、ゴム等の高分子材料とを混合することにより、導電性を付与した複合材料の研究が行なわれている。
 また、NBR及びSBR等、広く使用されているゴムに対して、導電性処方を付与する技術がある。
 ところで、特許文献1には、燃料電池のセパレータに用いる導電性樹脂成形体が記載されている。
 特許文献2には、黒鉛微粒子を含む導電性の樹脂組成物が記載されている。
 特許文献3には、熱伝導性感圧接着剤組成物が記載されている。
国際公開第03/078528号パンフレット(2003年9月25日公開) 日本国公開特許公報「特開平6-100727号公報(1994年4月12日)」 国際公開第2007/116686号公報(2007年10月18日公開)
 しかしながら、導電性カーボン添加剤を高分子材料に混合して、ゴムのような柔軟性を保持したまま高い導電性を付与しようとすると、多量のカーボン剤の影響で柔軟性が損なわれ剛直化する場合、及び、成形加工できない場合がある。
 NBR等のゴムに対して導電性処方を付与する技術においても、導電性特性が十分でない場合があり、導電性部材として適応できない問題がある。
 特許文献1~3の導電性樹脂等においても十分な導電性を有するとはいえない。
 そこで本発明は、優れた柔軟性及び導電性を有する導電性組成物を提供することを目的とする。
 上記の問題を解決するために、本発明に係る導電性組成物は、膨張化黒鉛と、カーボンナノチューブと、高分子化合物とを含み、膨張化黒鉛及び高分子化合物の総量を100重量部としたときに、膨張化黒鉛の含有量が30重量部以上、70重量部以下であり、カーボンナノチューブの含有量が0.5重量部以上、10重量部以下である。
 本発明によれば、優れた柔軟性及び導電性を有する導電性組成物を提供できるという効果を奏する。
 <導電性組成物>
 本発明に係る導電性組成物は、膨張化黒鉛と、カーボンナノチューブと、高分子化合物とを含み、膨張化黒鉛及び高分子化合物の総量を100重量部としたときに、膨張化黒鉛の含有量が30重量部以上、70重量部以下であり、カーボンナノチューブの含有量が0.5重量部以上、10重量部以下である。
 〔膨張化黒鉛〕
 膨張化黒鉛とは、鱗片状黒鉛を化学処理した膨張黒鉛(膨張性黒鉛ともいう;Expandable Graphite)を、熱処理して膨張化させた後、微細化したものである。
 膨張化黒鉛としては、従来公知の膨張化黒鉛から適宜選択され得る。市販の膨張化黒鉛を用いてもよい。市販の膨張化黒鉛としては、例えば、伊藤黒鉛工業社製のEC1500、EC1000、EC500、EC300、EC100、EC50が挙げられる(いずれも商品名)。
 本発明に係る導電性フッ素ゴム組成物に含まれる膨張化黒鉛の量は、膨張化黒鉛及び高分子化合物の総量を100重量部としたときに、30重量部以上、70重量部以下の量であればよい。この量であれば、フッ素ゴムの優れた柔軟性を維持したまま、優れた導電性を得ることができる。また、膨張化黒鉛のより好ましい含有量としては、35重量部以上であり、また、50重量部以下である。
 膨張化黒鉛の平均粒径は、特に限定されないが、例えば20μm以上、300μm以下の範囲であることがより好ましい。この範囲であれば、範囲外の膨張化黒鉛からなる導電性フッ素ゴム組成物と比較したとき、導電率がより高くなることから好ましい。なお、平均粒径とは、膨張化黒鉛粉を球形と仮定して得られる理論的レーザー回折パターンと、実測のレーザー回折パターンとを適合させて算出した有効径を、粒子径として定義し、試料の体積基準粒度分布を測定することにより算出されるものであり、例えばレーザー回折散乱法粒度分布測定装置によって測定される。
 膨張化黒鉛としては、上述の通り市販の物を適宜用いることができるが、次の方法で得られたものを本発明に係る導電性フッ素ゴム組成物に含有させることがより好ましい。即ち、酸処理した黒鉛を500℃以上、1200℃以下で熱処理することにより100ml/g以上、300ml/g以下に膨張させた後に、粉砕して得られたものである。
 酸処理とは、黒鉛を酸に接触させることをいい、例えば、黒鉛を酸に、10分以上、30分以下、浸漬した上で回収することがより好ましい。酸としては例えば、硫酸、又は、硫酸と過酸化水素水の混合物、等が挙げられる。
 熱処理は、500℃以上、1200℃以下で行なうことがより好ましい。この範囲であれば、黒鉛が良好に100ml/g以上、300ml/g以下に膨張する。
 100ml/g以上、300ml/g以下に膨張した黒鉛が好ましい理由は次の通りである。100ml/g以上の場合、黒鉛粒子の密度が小さいため、平均粒子径が同等で膨張度の低い膨張化黒鉛粉末を使用する場合と比較して、同等の導電性をもつ組成物を作成するには、添加量が少なくてよい。また、酸処理黒鉛の膨張度が300ml/g以下であれば、工業的に製造することが容易であり、経済的な見地から好ましい。
 粉砕は、ヘンシェルミキサー、ホモミキサー、ハンドミキサー、ハンマーミル、ボールミル、ビーズミル、ジェットミル等の従来公知の粉砕装置を用いて行なえばよい。また、粉砕した膨張化黒鉛粉を、エア分級機、湿式遠心分級機、及び、ふるい等の公知の方法により分級してもよい。
 〔カーボンナノチューブ〕
 本発明に係る導電性組成物に含まれるカーボンナノチューブは、従来公知のカーボンナノチューブであればよいが、平均外径が2nm以上、50nm以下であることが、選り優れた導電性が得られるためより好ましく、BET比表面積が600m/g以上の単層カーボンナノチューブであることが、さらに優れた導電性が得られるため、さらに好ましい。なお、平均外径は後述の実施例に記載の方法で求められる。
 カーボンナノチューブの含有量は、膨張化黒鉛及び高分子化合物の総量を100重量部としたときに、0.5重量部以上、10重量部以下である。この範囲であれば優れた導電性を得ることができる。
 カーボンナノチューブは従来公知の方法で得ればよいが、BET比表面積が600m/g以上の単層カーボンナノチューブはスーパーグロース法により、容易に得ることができる。スーパーグロース法によるカーボンナノチューブの製造方法は、例えば、日本国特許第4621896号公報に記載されている。
 また、単層カーボンナノチューブとは、基材から成長した多数のCNTが特定の方向に配向した構造体をいう。
 また、単層カーボンナノチューブの比表面積は、600m/g以上であることが好ましい。また、CNTが主として未開口のものにあっては、600m/g以上であり、CNTが主として開口したものにあっては、1300m/g以上であることが好ましい。比表面積が600m/g以上の未開口のもの、若しくは1300m/g以上の開口したものは、金属などの不純物、若しくは炭素不純物を重量の数十パーセント(40%程度)より低く抑えることができるので好ましい。
 また、単層カーボンナノチューブの重量密度は、0.002g/cm~0.2g/cmであることがより好ましい。重量密度が0.2g/cm以下であれば、単層CNTを構成するCNT同士の結びつきが弱くなるので、単層カーボンナノチューブを溶媒などに攪拌した際に、均質に分散させることが容易になる。つまり、重量密度が0.2g/cm以下とすることで、均質な分散液を得ることが容易となる。また重量密度が0.00
2g/cm以上であれば、単層カーボンナノチューブの一体性を向上させ、バラけることを抑制できるため取り扱いが容易になる。
 〔高分子化合物〕
 本発明に係る導電性組成物に含まれる高分子化合物の具体例としては、特に限定されず、導電性組成物の用途に応じて適宜選択すればよいが、熱可塑性樹脂、ゴム及び熱可塑性エラストマーよりなる群から選ばれる少なくとも1種であることがより好ましい。高分子化合物は1種のみでもよく複数種を混合してもよい。
 熱可塑性樹脂としては、例えば、ポリスチレン、ポリメタクリル酸メチル、ポリカーボネート、ポリエチレン、ポリプロピレン、フッ素樹脂、ポリ塩化ビニル、ポリアクリロニトリル、ポリビニルアルコール、ポリ酢酸ビニル、等が挙げられる。
 ゴムとしては、例えば、天然ゴム、クロロプレンゴム、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ブチルゴム、アクリロニトリル・ブタジエンゴム、シリコンゴム、ウレタンゴム、フッ素ゴム、ハロゲン化ブチルゴム、クロロスルホン化ポリエチレンゴム、エピクロロヒドリンゴム、等が挙げられる。
 熱可塑性エラストマーとしては、例えば、ポリ(スチレン-ブタジエン)ジブロック共重合体、及び、その水素化物、ポリ(スチレン-ブタジエン-スチレン)トリブロック共重合体、及び、その水素化物、ポリ(スチレン-イソプレン)ジブロック共重合体、及び、その水素化物、ポリ(スチレン-イソプレン-スチレン)トリブロック共重合体、及び、その水素化物、等が挙げられる。
 〔導電性組成物の製造方法〕
 本発明に係る導電性組成物の製造方法としては、例えば、高分子化合物と、膨張化黒鉛と、カーボンナノチューブとを、上述した含有量となるように混合又は混練すればよい。
 混合する方法としては、例えば、以下の二つの方法が挙げられる。
 (1)高分子化合物を有機溶媒に溶解して、カーボンナノチューブを分散させて、さらに膨張化黒鉛を混合し、当該有機溶媒を除去する方法。
 (2)高分子化合物を、高分子化合物の溶解しない溶媒に分散して、さらにカーボンナノチューブを分散させた後に、膨張化黒鉛と混合し、凝固法、キャスト法、又は直接乾燥法により溶媒を除去する方法。
 上記(1)の方法及び(2)の方法のいずれにおいても具体的な混合方法としては、例えば、一つの容器に高分子化合物及び有機溶媒又は当該高分子化合物を溶解しない溶媒に入れて、適宜攪拌するなどして混合した後、カーボンナノチューブを入れて超音波ホモジナイザーや湿式ジェットミルなどで、カーボンナノチューブを、高分子化合物を含有した溶媒中に分散処理をした後、膨張化黒鉛を入れてさらに撹拌混合する方法や、予め当該溶媒中にカーボンナノチューブを分散処理した後、高分子化合物を添加し適宜混合することにより溶解、又は、高分子化合物を分散させた後、膨張化黒鉛を入れてさらに撹拌混合する方法を実施してもよい。撹拌は撹拌羽、磁気撹拌装置、遊星ミル、など、従来公知の撹拌機を用いればよい。撹拌時間は10分以上、24時間以下がより好ましい。溶媒の除去については、例えば乾燥機等を用いて溶媒を蒸散させるなどすればよい。
 また、混練する方法としては以下の方法が例示できる。
 (3)溶媒を用いずに、高分子化合物にカーボンナノチューブ及び膨張化黒鉛を混練する。例えば、ミキサー、一軸混練機、二軸混練機、ロール、ブラベンダー、押出機などで樹脂を溶融状態で混練する。
 上記(1)~(3)の方法の中では、カーボンナノチューブ、及び、膨張化黒鉛の分散性をより向上させることができることから(1)の方法がより好ましい。
 〔成形〕
 本発明に係る導電性組成物に架橋剤を混合し、成形時に架橋させ強度が向上した成形体を得ることもできる。成型方法は、成形体の形状に応じた方法を採用することができ、プレス成形、ブロー成形、射出成形など一般的な製法に適用できる。
 架橋剤としては、例えば、パーオキサイド系架橋剤;ポリオール系架橋剤;ポリアミン系架橋剤;チオシアナート系架橋剤;等、一般的に高分子化合物の架橋に用いられる架橋剤が好適に用いられる。
 本発明に係る組成物は、適宜、酸化防止剤を含んでもよい。
 酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤、特にアルキル置換フェノール系酸化防止剤が好ましい。これらの酸化防止剤を配合することにより、成形時の酸化劣化等による組成物の強度低下や導電率低下を防止できる。
 フェノール系酸化防止剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどの日本国公開特許公報「特開昭63-179953号公報」や日本国公開特許公報「特開平1-168643号公報」に記載されるアクリレート系化合物;オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニルプロピオネート)メタン[すなわち、ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート)]、トリエチレングリコール ビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどのモノホスファイト系化合物;4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4’イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。
 イオウ系酸化防止剤としては、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3’-チオジプロピピオネート、ジステアリル 3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。
 これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、導電性フッ素ゴム組成物100重量部に対して例えば0.001~5重量部、好ましくは0.01~1重量部である。
 以上のように本発明に係る導電性組成物では、前記カーボンナノチューブの平均外径が2nm以上、50nm以下であることがより好ましい。
 本発明に係る導電性組成物では、前記高分子化合物が、熱可塑性樹脂、ゴム及び熱可塑性エラストマーよりなる群から選ばれる少なくとも1種であることがより好ましい。
 本発明に係る導電性組成物では、前記カーボンナノチューブのBET比表面積が600m/g以上の単層カーボンナノチューブであることがより好ましい。
 本発明に係る導電性組成物では、前記膨張化黒鉛が、酸処理した黒鉛を500℃以上、1200℃以下で熱処理することにより100ml/g以上、300ml/g以下に膨張させた後に、粉砕して得られたものであることがより好ましい。
 以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の部及び%は、特に断りのない限り、重量基準である。各種の測定については、以下の方法に従って行なった。
 〔プレス成形の可否〕
 各実施例、各比較例における組成物のプレス成形の可否については、以下の方法で判定した。
 試料450mgを、150mm×150mm×0.5mmの電界研磨により鏡面仕上げを施したステンレス薄板2枚の中に挟み込みこみ、真空プレス成形機(井本製作所社製、製品名「IMC-19E4」)に、ステンレス薄板ごと設置した。その後、薄膜円径状の組成物成形体を得るために、真空下において、温度120℃、圧力0.4MPa、加圧時間5分の条件で真空プレス成形した。得られた成形体が薄膜円形状で割れ欠陥がなく、その厚みが500μm以下であれば「可」、厚みが500μm以下でなかったり、成形体に割れ欠陥があったり、成形体自体の形状を成さない場合であれば「不可」とした。
 〔柔軟性〕
 各実施例、各比較例における組成物の柔軟性については、プレス成形で得た薄膜円径状の組成物成形体を、10mm×10mmの正方形状試験片を切り出し、1つの対角線を折り曲げ線として、120度の角度で折り曲げたとき、断裂しなければ「有」、断裂すれば「無」とした。
 〔カーボンナノチューブ平均外径〕
 各実施例、各比較例で使用したカーボンナノチューブ平均外径は、以下のように測定した。
 カーボンナノチューブ(CNT)0.1mg、エタノール3mLを、10mLスクリュー管瓶中に秤量し、超音波洗浄器(BRANSON社製、製品名「5510J-DTH」)にて、振動出力180W、温度10℃~40℃、30分の条件で、スクリュー管瓶ごと超音波処理を行ない、CNTをエタノール中に均一分散させた。
 次にCNT分散液50μLを、透過型電子顕微鏡用のマイクログリッド(応研商事社販売、マイクログリッド タイプA STEM 150 Cuグリッド)に滴下した後、1時間以上静置して、さらに、25℃、5時間以上真空乾燥して、マイクログリッドにCNTを保持させた。
 マイクログリッドを透過型電子顕微鏡(トプコンテクノハウス社製、製品名「EM-002B」)に設置し、150万倍の倍率でCNTの観察を行なった。
 観察は、マイクログリッドのランダムな位置で、5か所行ない、1か所あたり10本のCNTをランダムに選択し各々の外径を計測した。
 計測した50本のCNTの外径の平均値を、CNT平均外径とした。
 〔BET比表面積測定〕
 各実施例、各比較例で使用したCNTのBET比表面積は、以下のように測定した。
 BET比表面積測定装置(マウンテック社製、製品名「HMmodel-1210」)専用のセルを、110℃、5時間以上の熱処理で十分乾燥させた後、CNT20mgを秤量し、セル内に入れた。
 その後、セルを測定装置の所定の位置に備え付け、自動操作によりBET比表面積を測定した。なお、この装置の測定原理は、液体窒素の77Kでの吸脱着等温線を測定し、この吸脱着等温曲線からBrunauer,Emmett,Teller法にて比表面積を測定する方法に従うものである。
 〔炭素純度測定〕
 各実施例、各比較例で使用したCNTの炭素純度は、以下のように測定した。
 示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー社製、製品名「TG/DTA7000」)の測定用白金容器に、CNT3mgを秤量採取した。CNT採取した測定用白金容器と、補正用の空の測定用白金容器を測定器に設置し、Air流量10ml、温度範囲50~800℃、昇温速度20℃/分の条件で測定して、測定開始時をゼロとした時の測定終了時の重量減少率(%)から、炭素純度を測定した。
 〔導電率測定〕
 各実施例、各比較例における組成物の電気伝導率は、低抵抗率計(三菱化学アナリテック社製、製品名「ローレンツ(登録商標)-GP MCP-T610」)を用い、JIS
 K 7194準拠の方法で以下のように測定した。まず、試料450mgを真空下において、温度120℃、圧力0.4MPa、加圧時間5分の条件で真空プレス成形し、面積が約40~60mmφ、厚さ100~500μmの薄膜円径状に成形した後、10mm×10mmの正方形状試験片を4個切り出し、測定サンプルとした。ローレンツGPの四端針プローブには、PSPプローブを選択した。測定サンプルを絶縁ボードの上に固定し、測定サンプルの中心位置(縦5mm横5mmの位置)にプローブを押し当て、10Vの電圧をかけ導電率を測定した。4個の測定サンプル試験片の導電率を測定し、その平均値を試料の導電率とした。
 〔実施例1〕
 4-メチル-2-ペンタノン95gに、フッ素ゴム(ALKEMA社製、製品名「KYNAR FLEX(登録商標)2500」5gを入れ、25℃で24時間以上撹拌して、5%フッ素ゴム溶液を100g作成した。
 単層カーボンナノチューブ(SWCNT-1)(日本国特許4621896号公報の実施例1に記載の手法で得られる単層カーボンナノチューブ)15mgと、5%フッ素ゴム溶液5gを20ccのスクリュー管瓶中に入れ、25℃、1hr以上撹拌し、CNTをプレ分散させた。
 なお、SWCNT-1の平均外径は3.0nm、BET比表面積は1020m/g、炭素純度は99.9%であった。
 次に、超音波洗浄器(BRANSON社製、製品名「5510J-DTH」)にて、振動出力180W、温度10℃~40℃、1時間の条件で、スクリュー管瓶ごと超音波処理を行ない、SWCNT-1を5%フッ素ゴム溶液中に分散させた。
 SWCNT-1が分散した5%フッ素ゴム溶液の入ったスクリュー管を超音波洗浄器から取り出し、撹拌子を入れ、25℃で撹拌しながら、平均粒径25μmの膨張化黒鉛(伊藤黒鉛工業社製、製品名「EC500」)250mgを徐々に添加し、添加後さらに1時間以上撹拌継続し、膨張化黒鉛/CNT/フッ素ゴムの混合溶液を作成した。
 膨張化黒鉛/SWCNT-1/フッ素ゴムの混合溶液に対して、10倍量のn-ヘキサン及び撹拌子を200ccビーカー中に入れ、撹拌状態にあるn-ヘキサンを準備した。そこに、膨張化黒鉛/SWCNT-1/フッ素ゴムの混合溶液を徐々に添加することにより、n-ヘキサン中に、クラム状の膨張化黒鉛/SWCNT-1/フッ素ゴム組成物を凝固させた。
 その後、吸引濾過によりn-ヘキサンから膨張化黒鉛/SWCNT-1/フッ素ゴム組成物を取り出し、真空乾燥機中で40℃、24時間以上真空乾燥することにより、膨張化黒鉛(50部)/SWCNT-1(3部)/フッ素ゴム(50部)の組成物を506mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、58.5S/cmであった。
 〔実施例2〕
 単層カーボンナノチューブ(SWCNT-1)25mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(50部)/SWCNT-1(5部)/フッ素ゴム(50部)の組成物を512mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、65.7S/cmであった。
 〔実施例3〕
 単層カーボンナノチューブ(SWCNT-1)5mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(50部)/SWCNT-1(1部)/フッ素ゴム(50部)の組成物を500mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、43.6S/cmであった。
 〔実施例4〕
 単層カーボンナノチューブ(SWCNT-1)50mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(50部)/SWCNT-1(10部)/フッ素ゴム(50部)の組成物を500mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、102.1S/cmであった。
 〔実施例5〕
 SWCNT-1の代わりに、多層カーボンナノチューブ(MWCNT-1)(Nanocyl社製、製品名「NC7000」)を15mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(50部)/MWCNT-1(3部)/フッ素ゴム(50部)の組成物を502mg得た。
 なお、MWCNT-1の平均外径は7.5nm(商品が掲載されたカタログに記載の公表値5~10nm)、BET比表面積は300m/g、炭素純度は96.8%であった。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、47.9S/cmであった。
 〔実施例6〕
 SWCNT-1の代わりに、多層カーボンナノチューブ(MWCNT-2)(CNT.Co.,Ltd社製、製品名「CTube100」)を15mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(50部)/MWCNT-2(3部)/フッ素ゴム(50部)の組成物を509mg得た。
 なお、MWCNT-2の平均外径は23nm(商品が掲載されたカタログに記載の公表値10~50nm)、BET比表面積は330m/g、炭素純度は95.5%であった。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、43.1S/cmであった。
 〔実施例7〕
 平均粒径25μmの膨張化黒鉛の代わりに、平均粒径250μmの膨張化黒鉛(伊藤黒鉛工業社製、製品名「EC50」)を250mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(50部)/SWCNT-1(3部)/フッ素ゴム(50部)の組成物を508mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、55.0S/cmであった。
 〔実施例8〕
 平均粒径25μmの膨張化黒鉛の代わりに、平均粒径7μmの膨張化黒鉛(伊藤黒鉛工業社製、製品名「EC1500」)を250mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(50部)/SWCNT-1(3部)/フッ素ゴム(50部)の組成物を510mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、45.7S/cmであった。
 〔実施例9〕
 平均粒径25μmの膨張化黒鉛を150mg、5%フッ素ゴム溶液を7.0g、単層カーボンナノチューブ(SWCNT-1)25mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(30部)/SWCNT-1(5部)/フッ素ゴム(70部)の組成物を501mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、41.9S/cmであった。
 〔実施例10〕
 平均粒径25μmの膨張化黒鉛を350mg、5%フッ素ゴム溶液を3gとした以外は、実施例1と同様に操作し、膨張化黒鉛(70部)/SWCNT-1(3部)/フッ素ゴム(30部)の組成物を499mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、100.0S/cmであった。
 〔実施例11〕
 SWCNT-1の代わりに、単層カーボンナノチューブ(SWCNT-2)(NanoIntegris社製、製品名「HiPco SuperPure」)を15mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(50部)/SWCNT-2(3部)/フッ素ゴム(50部)の組成物を489mg得た。
 なお、SWCNT-2の平均外径は1.0nm(商品が掲載されたカタログに記載の公表値0.8~1.2nm)、BET比表面積は450m/g、炭素純度は99.1%であった。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、33.6S/cmであった。
 〔比較例1〕
 4-メチル-2-ペンタノン95gに、フッ素ゴム(ALKEMA社製、製品名「KYNAR FLEX(登録商標)2500」5gを入れ、25℃で24時間以上撹拌し、5%フッ素ゴム溶液を100g作成し、その内5gを20ccのスクリュー管瓶中に入れた。
 5%フッ素ゴム溶液の入ったスクリュー管に撹拌子を入れ、25℃で撹拌しながら、平均粒径25μmの膨張化黒鉛(伊藤黒鉛工業社製、製品名「EC500」)250mgを徐々に添加し、添加後さらに1時間以上撹拌継続し、膨張化黒鉛/フッ素ゴムの混合溶液を作成した。
 膨張化黒鉛/フッ素ゴムの混合溶液に対して、10倍量のn-ヘキサン及び撹拌子を200ccビーカー中に入れ、撹拌状態にあるn-ヘキサンを準備した。そこに、膨張化黒鉛/フッ素ゴムの混合溶液を徐々に添加することにより、n-ヘキサン中に、クラム状の膨張化黒鉛/フッ素ゴム組成物を凝固させた。
 その後、吸引濾過によりn-ヘキサンから膨張化黒鉛/フッ素ゴム組成物を取り出し、真空乾燥機中で40℃、24時間以上真空乾燥することにより、膨張化黒鉛(50部)/フッ素ゴム(50部)の組成物を486mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、31.5S/cmであった。
 〔比較例2〕
 平均粒径25μmの膨張化黒鉛の代わりに、平均粒径250μmの膨張化黒鉛(伊藤黒鉛工業社製、製品名「EC50」)を250mgとした以外は、比較例1と同様に操作し、膨張化黒鉛(50部)/フッ素ゴム(50部)の組成物を489mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、15.0S/cmであった。
 〔比較例3〕
 平均粒径25μmの膨張化黒鉛の代わりに、平均粒径7μmの膨張化黒鉛(伊藤黒鉛工業社製、製品名「EC1500」)を250mgとした以外は、比較例1と同様に操作し、膨張化黒鉛(50部)/フッ素ゴム(50部)の組成物を488mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、16.5S/cmであった。
 〔比較例4〕
 4-メチル-2-ペンタノン95gに、フッ素ゴム(ALKEMA社製、製品名「KYNAR FLEX(登録商標)2500」5gを入れ、25℃で24時間以上撹拌し、5%フッ素ゴム溶液を100g作成した。
 単層カーボンナノチューブ(SWCNT-1)15mgと、5%フッ素ゴム溶液10gを20ccのスクリュー管瓶中に入れ、25℃、1時間以上撹拌し、SWCNT-1をプレ分散させた。
 次に、超音波洗浄器(BRANSON社製、製品名「5510J-DTH」)にて、振動出力180W、温度10℃~40℃、1時間の条件で、スクリュー管瓶ごと超音波処理を行ない、SWCNT-1を5%フッ素ゴム溶液中に分散させ、CNT/フッ素ゴムの混合溶液を作成した。
 SWCNT-1/フッ素ゴムの混合溶液に対して、10倍量のn-ヘキサン及び撹拌子を200ccビーカー中に入れ、撹拌状態にあるn-ヘキサンを準備した。そこに、SWCNT-1/フッ素ゴムの混合溶液を徐々に添加することにより、n-ヘキサン中に、クラム状のSWCNT-1/フッ素ゴム組成物を凝固させた。
 その後、吸引濾過によりn-ヘキサンからSWCNT-1/フッ素ゴム組成物を取り出し、真空乾燥機中で40℃、24時間以上真空乾燥することにより、SWCNT-1(3部)/フッ素ゴム(100部)の組成物を499mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、7.5S/cmであった。
 〔比較例5〕
 単層カーボンナノチューブ(SWCNT-1)50mgとした以外は、比較例4と同様に操作し、SWCNT-1(10部)/フッ素ゴム(100部)の組成物を522mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、28.6S/cmであった。
 〔比較例6〕
 平均粒径25μmの膨張化黒鉛の代わりに、平均粒径20μmの球形黒鉛(伊藤黒鉛工業社製、製品名「SG-BH」)を250mgとした以外は、実施例1と同様に操作し、ケッチェンブラック(50部)/SWCNT-1(3部)/フッ素ゴム(50部)の組成物を495mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、8.1S/cmであった。
 〔比較例7〕
 平均粒径25μmの膨張化黒鉛の代わりに、ケッチェンブラック(ライオン社製、製品名「カーボンECP600JD」)を250mgとした以外は、実施例1と同様に操作し、ケッチェンブラック(50部)/SWCNT-1(3部)/フッ素ゴム(50部)の組成物を498mg得た。
 その組成物は非常に硬質で、真空プレスによる成形が困難であり薄膜状に成形できなかったため、導電率の測定が不可能であった。
 〔比較例8〕
 平均粒径25μmの膨張化黒鉛の代わりに、ケッチェンブラック(ライオン社製、製品名「カーボンECP600JD」)を80mgとした以外は、実施例8と同様に操作し、ケッチェンブラック(16部)/SWCNT-1(3部)/フッ素ゴム(84部)の組成物を485mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であったが、成形体表面にケッチェンブラックがブリードアウトしており、触っただけで手が黒く汚れるほどであった。その導電率は、8.0S/cmであった。
 〔比較例9〕
 SWCNT-1の代わりに、ケッチェンブラック(ライオン社製、製品名「カーボンECP600JD」)を15mgとした以外は、実施例1と同様に操作し、膨張化黒鉛(50部)/ケッチェンブラック(3部)/フッ素ゴム(50部)の組成物を499mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、32.0S/cmであった。
 〔比較例10〕
 平均粒径25μmの膨張化黒鉛を50mg、5%フッ素ゴム溶液を9.0gとした以外は、実施例1と同様に操作し、膨張化黒鉛(10部)/SWCNT-1(3部)/フッ素ゴム(90部)の組成物を486mg得た。
 その組成物を薄膜円盤状に成形した成形体は、柔軟性があるゴム状物質であり、その導電率は、8.0S/cmであった。
 〔比較例11〕
 平均粒径25μmの膨張化黒鉛を400mg、5%フッ素ゴム溶液を2gとした以外は、実施例1と同様に操作し、膨張化黒鉛(80部)/SWCNT-1(3部)/フッ素ゴム(20部)の組成物を499mg得た。
 その組成物は、成形可能ではあるが力学耐性がなく、曲げ・引張などの力を加えると、すぐ破断するような成形体しか得られず、導電率の測定も不可能であった。
 以上の実施例及び比較例の結果を、表1から表4にまとめる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~8、比較例1~5の結果から、本発明に係る導電性組成物は、高分子化合物の他は膨張化黒鉛のみ、又は、CNTのみ、からなる組成物の導電率からは推測できないほど、特異に高い導電率を発現した。つまり、柔軟性、成形性、非ブリードアウト性(非汚染性)という組成物に求められる性能を維持したまま、40S/cm以上の非常に高い導電率を有する組成物となった。
 実施例及び比較例10~11の結果から、膨張化黒鉛が、膨張化黒鉛及び高分子化合物の総量を100重量部としたときに、30重量部以上、70重量部以下の濃度範囲を外れた場合、30重量部より低い濃度では40S/cm以上という非常に高い導電率を有する組成物とならず、70重量部より高い濃度では、組成物成形体の力学的強度が著しく低下する問題が発生し好ましくないことが分かった。
 実施例11の結果から、平均外径が2.0nm以上、50nm以下の範囲外のカーボンナノチューブを用いた場合、実施例1~10のような導電性の発現が見られなかった。このことから、平均外径が2.0nm以上、50nm以下のカーボンナノチューブがより好ましいことが分かった。
 比較例6~8の結果から、膨張化黒鉛を、別種の黒鉛や、その他の導電性カーボンに変えても、実施例のような導電性向上が発現しないことや、成形性、柔軟性及び非ブリードアウト性(非汚染性)といった組成物に求められる特性のいずれかを欠如することから、膨張化黒鉛が好適に選択されることが分かった。
 比較例9の結果から、カーボンナノチューブの代わりに他の導電性カーボン添加剤を使用した場合でも、実施例のような導電性の発現が見られず、好ましくないことが分かった。
 実施例1、5~6の結果から、平均外径が2nm以上、50nm以下の範囲のカーボンナノチューブの中でも、さらに、BET比表面積が600m/g以上のカーボンナノチューブを用いた場合、より高い導電率を発現していることが分かった。このことから、BET比表面積が800m/g以上のカーボンナノチューブがより好ましいことが分かった。
 実施例1、7~8の結果から、膨張化黒鉛は平均粒径によらずカーボンナノチューブの添加効果は発現しているが、平均粒径が10μmを下回ると、組成物全体の導電率が減衰傾向にあるため、膨張化黒鉛粉の平均粒径は10μm~300μmの範囲が、より好ましいことが分かった。
 本発明は、導電性材料を利用する様々な分野に利用することができる。

Claims (5)

  1.  膨張化黒鉛と、カーボンナノチューブと、高分子化合物とを含み、
     膨張化黒鉛及び高分子化合物の総量を100重量部としたときに、膨張化黒鉛の含有量が30重量部以上、70重量部以下であり、カーボンナノチューブの含有量が0.5重量部以上、10重量部以下である、導電性組成物。
  2.  前記カーボンナノチューブの平均外径が2nm以上、50nm以下である、請求項1に記載の導電性組成物。
  3.  前記高分子化合物が、熱可塑性樹脂、ゴム及び熱可塑性エラストマーよりなる群から選ばれる少なくとも1種である、請求項1又は2に記載の導電性組成物。
  4.  前記カーボンナノチューブのBET比表面積が600m/g以上の単層カーボンナノチューブである、請求項1~3のいずれか1項に記載の導電性組成物。
  5.  前記膨張化黒鉛が、酸処理した黒鉛を500℃以上、1200℃以下で熱処理することにより100ml/g以上、300ml/g以下に膨張させた後に、粉砕して得られたものである、請求項1~4のいずれか1項に記載の導電性組成物。
PCT/JP2013/063403 2012-05-15 2013-05-14 導電性組成物 WO2013172334A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/400,886 US10283231B2 (en) 2012-05-15 2013-05-14 Conductive composition
EP13790914.9A EP2851398B1 (en) 2012-05-15 2013-05-14 Conductive composition
CN201380025508.0A CN104302707B (zh) 2012-05-15 2013-05-14 导电性组合物
JP2014515631A JPWO2013172334A1 (ja) 2012-05-15 2013-05-14 導電性組成物
KR1020147032253A KR20150011811A (ko) 2012-05-15 2013-05-14 도전성 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012111949 2012-05-15
JP2012-111949 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013172334A1 true WO2013172334A1 (ja) 2013-11-21

Family

ID=49583739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063403 WO2013172334A1 (ja) 2012-05-15 2013-05-14 導電性組成物

Country Status (6)

Country Link
US (1) US10283231B2 (ja)
EP (1) EP2851398B1 (ja)
JP (2) JPWO2013172334A1 (ja)
KR (1) KR20150011811A (ja)
CN (1) CN104302707B (ja)
WO (1) WO2013172334A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022229A1 (ja) * 2015-07-31 2017-02-09 日本ゼオン株式会社 複合樹脂材料、スラリー、複合樹脂材料成形体、及びスラリーの製造方法
JPWO2015115670A1 (ja) * 2014-02-03 2017-03-23 日本ゼオン株式会社 カーボンナノチューブ繊維およびその製造方法
JP2017128721A (ja) * 2016-01-19 2017-07-27 ゼロックス コーポレイションXerox Corporation 導電性ポリマーコンポジット
WO2017175807A1 (ja) * 2016-04-07 2017-10-12 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
WO2019039124A1 (ja) * 2017-08-24 2019-02-28 株式会社デンソー シリコーンゴム複合材料および防振部材
WO2019039125A1 (ja) * 2017-08-24 2019-02-28 株式会社デンソー シリコーンゴム複合材料および防振部材
KR20200042920A (ko) * 2017-10-18 2020-04-24 다이킨 고교 가부시키가이샤 가교성 엘라스토머 조성물 및 불소 고무 성형품
WO2020195799A1 (ja) * 2019-03-28 2020-10-01 日本ゼオン株式会社 エラストマー組成物および成形体
US10839976B2 (en) 2015-02-27 2020-11-17 Zeon Corporation Silicone rubber composition and vulcanized product

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315576B1 (en) * 2015-06-26 2020-01-29 Zeon Corporation Composition for gas seal member, and gas seal member
US10418146B2 (en) 2016-01-19 2019-09-17 Xerox Corporation Conductive polymer composite
US10186344B2 (en) 2016-01-19 2019-01-22 Xerox Corporation Conductive polymer composite
US10796813B2 (en) 2016-02-16 2020-10-06 Xerox Corporation Conductive polymer composite
US10234342B2 (en) 2016-04-04 2019-03-19 Xerox Corporation 3D printed conductive compositions anticipating or indicating structural compromise
CN106496710A (zh) * 2016-09-26 2017-03-15 北京化工大学 一种膨胀石墨/碳纳米管导电双网络结构橡胶复合材料及其制备方法
DE102017007718A1 (de) * 2017-08-17 2019-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrisch leitfähige Kontaktplatte für elektrochemische Zellen, elektrochemische Zelle mit einer solchen Kontaktplatte sowie Verfahren zu deren Herstellung
US20200102697A1 (en) * 2017-09-28 2020-04-02 Zeon Corporation Sheet and method of manufacturing the same
WO2019065089A1 (ja) * 2017-09-29 2019-04-04 古河電気工業株式会社 異方導電性シートおよび異方導電性シートの製造方法
JP2019199003A (ja) 2018-05-15 2019-11-21 東芝機械株式会社 導電性複合材料の製造方法
WO2023162783A1 (ja) * 2022-02-24 2023-08-31 日本ゼオン株式会社 エラストマー組成物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179953A (ja) 1987-01-21 1988-07-23 Asahi Chem Ind Co Ltd 重合体組成物の製造方法
JPH01168643A (ja) 1987-12-23 1989-07-04 Sumitomo Chem Co Ltd フェノール系化合物およびこれを有効成分とするブタジエン系ポリマー用安定剤
JPH06100727A (ja) 1992-08-06 1994-04-12 Nippon Kasei Chem Co Ltd 導電性樹脂組成物及びその製造方法
WO2003078528A1 (fr) 2002-03-18 2003-09-25 Ntn Corporation Moule en résine conductrice
WO2007116686A1 (ja) 2006-03-28 2007-10-18 Zeon Corporation 熱伝導性感圧接着剤組成物および熱伝導性感圧接着性シート状成形体
JP2010123564A (ja) * 2008-11-21 2010-06-03 Hankook Tire Co Ltd 燃料電池セパレータ用成形材料
JP4621896B2 (ja) 2004-07-27 2011-01-26 独立行政法人産業技術総合研究所 単層カーボンナノチューブおよびその製造方法
JP2011228059A (ja) * 2010-04-16 2011-11-10 Sumitomo Electric Ind Ltd レドックスフロー電池用双極板
JP2012131855A (ja) * 2010-12-20 2012-07-12 Nippon Zeon Co Ltd 粉粒状組成物、熱伝導性感圧接着剤組成物、熱伝導性感圧接着性シート状成形体、これらの製造方法、及び電子部品
JP2012221775A (ja) * 2011-04-11 2012-11-12 Sumitomo Electric Ind Ltd レドックスフロー電池用双極板及びその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054348B2 (ja) 1981-01-22 1985-11-29 日本黒鉛工業株式会社 電極、導電体用に好適の高強度プラスチツク成形品の製造方法
US6746626B2 (en) * 1994-06-20 2004-06-08 Sgl Technic Inc. Graphite polymers and methods of use
EP2367176A3 (en) * 2002-06-24 2011-11-02 Mitsubishi Plastics, Inc. Conductive resin film, collector and manufacturing process therefor
US20040127621A1 (en) * 2002-09-12 2004-07-01 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom
TW200519150A (en) * 2003-12-05 2005-06-16 Showa Denko Kk Conductive resin composition and molded product thereof
US8178203B2 (en) 2004-07-27 2012-05-15 National Institute Of Advanced Industrial Science And Technology Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, and powdered aligned single-walled carbon nanotube aggregate
US20100062229A1 (en) 2004-07-27 2010-03-11 Kenji Hata Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, powdered aligned single-walled carbon nanotube aggregate, and production method thereof
JP4731884B2 (ja) * 2004-11-10 2011-07-27 ニチアス株式会社 導電性エポキシ樹脂組成物、エポキシ樹脂成形体及び燃料電池用セパレータの製造方法
EP1869120B1 (en) * 2005-04-04 2014-12-31 Showa Denko K.K. Electrically conducting curable resin composition, cured product thereof and molded article of the same
WO2008029502A1 (en) * 2006-08-29 2008-03-13 Unitika Ltd. Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode
JP4733008B2 (ja) 2006-12-18 2011-07-27 Ntn株式会社 導電性樹脂成形体およびその製造方法
TWI351039B (en) * 2007-05-08 2011-10-21 Ind Tech Res Inst High electrical conductive composite material
WO2009102077A1 (ja) 2008-02-11 2009-08-20 The University Of Tokyo カーボンナノチューブゴム組成物、配線、導電性ペースト、電子回路およびその製造方法
US20140134520A1 (en) 2008-11-21 2014-05-15 Hankook Tire Co., Ltd. Molding material for fuel cell separator
FR2938843B1 (fr) * 2008-11-27 2012-07-20 Arkema France Composition comportant un polymere thermoplastique et un graphite expanse
JP5856609B2 (ja) * 2010-05-28 2016-02-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウム硫黄電流生成セルの正極に使用される固体複合材料及びその製造方法並びにリチウム硫黄電流生成セル
CA2807691C (en) * 2010-08-11 2019-02-26 Timcal S.A. Ground expanded graphite agglomerates, methods of making, and applications of the same
JP2012046620A (ja) 2010-08-26 2012-03-08 Nippon Zeon Co Ltd 放熱塗料、放熱塗膜の製造方法、及び電子機器
CN102070830A (zh) * 2010-12-21 2011-05-25 上海林洋储能科技有限公司 一种高导电复合材料
CN102260406B (zh) * 2011-07-05 2013-01-30 南京理工大学 Mc尼龙纳米导电复合材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179953A (ja) 1987-01-21 1988-07-23 Asahi Chem Ind Co Ltd 重合体組成物の製造方法
JPH01168643A (ja) 1987-12-23 1989-07-04 Sumitomo Chem Co Ltd フェノール系化合物およびこれを有効成分とするブタジエン系ポリマー用安定剤
JPH06100727A (ja) 1992-08-06 1994-04-12 Nippon Kasei Chem Co Ltd 導電性樹脂組成物及びその製造方法
WO2003078528A1 (fr) 2002-03-18 2003-09-25 Ntn Corporation Moule en résine conductrice
JP4621896B2 (ja) 2004-07-27 2011-01-26 独立行政法人産業技術総合研究所 単層カーボンナノチューブおよびその製造方法
WO2007116686A1 (ja) 2006-03-28 2007-10-18 Zeon Corporation 熱伝導性感圧接着剤組成物および熱伝導性感圧接着性シート状成形体
JP2010123564A (ja) * 2008-11-21 2010-06-03 Hankook Tire Co Ltd 燃料電池セパレータ用成形材料
JP2011228059A (ja) * 2010-04-16 2011-11-10 Sumitomo Electric Ind Ltd レドックスフロー電池用双極板
JP2012131855A (ja) * 2010-12-20 2012-07-12 Nippon Zeon Co Ltd 粉粒状組成物、熱伝導性感圧接着剤組成物、熱伝導性感圧接着性シート状成形体、これらの製造方法、及び電子部品
JP2012221775A (ja) * 2011-04-11 2012-11-12 Sumitomo Electric Ind Ltd レドックスフロー電池用双極板及びその製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115670A1 (ja) * 2014-02-03 2017-03-23 日本ゼオン株式会社 カーボンナノチューブ繊維およびその製造方法
US10839976B2 (en) 2015-02-27 2020-11-17 Zeon Corporation Silicone rubber composition and vulcanized product
WO2017022229A1 (ja) * 2015-07-31 2017-02-09 日本ゼオン株式会社 複合樹脂材料、スラリー、複合樹脂材料成形体、及びスラリーの製造方法
JP2017128721A (ja) * 2016-01-19 2017-07-27 ゼロックス コーポレイションXerox Corporation 導電性ポリマーコンポジット
JP7005145B2 (ja) 2016-01-19 2022-01-21 ゼロックス コーポレイション 導電性ポリマーコンポジット
WO2017175807A1 (ja) * 2016-04-07 2017-10-12 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
KR20180133246A (ko) * 2016-04-07 2018-12-13 니폰 제온 가부시키가이샤 불소 함유 엘라스토머 조성물 및 성형체
JPWO2017175807A1 (ja) * 2016-04-07 2019-02-14 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
JP7056556B2 (ja) 2016-04-07 2022-04-19 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
KR102285902B1 (ko) * 2016-04-07 2021-08-03 니폰 제온 가부시키가이샤 불소 함유 엘라스토머 조성물 및 성형체
US10982083B2 (en) 2016-04-07 2021-04-20 Zeon Corporation Fluorinated elastomer composition and shaped article
JP2019038934A (ja) * 2017-08-24 2019-03-14 株式会社デンソー シリコーンゴム複合材料および防振部材
WO2019039125A1 (ja) * 2017-08-24 2019-02-28 株式会社デンソー シリコーンゴム複合材料および防振部材
WO2019039124A1 (ja) * 2017-08-24 2019-02-28 株式会社デンソー シリコーンゴム複合材料および防振部材
KR102240635B1 (ko) 2017-10-18 2021-04-15 다이킨 고교 가부시키가이샤 가교성 엘라스토머 조성물 및 불소 고무 성형품
KR20200042920A (ko) * 2017-10-18 2020-04-24 다이킨 고교 가부시키가이샤 가교성 엘라스토머 조성물 및 불소 고무 성형품
WO2020195799A1 (ja) * 2019-03-28 2020-10-01 日本ゼオン株式会社 エラストマー組成物および成形体

Also Published As

Publication number Publication date
EP2851398A4 (en) 2015-06-03
KR20150011811A (ko) 2015-02-02
JPWO2013172334A1 (ja) 2016-01-12
US10283231B2 (en) 2019-05-07
EP2851398B1 (en) 2021-06-23
JP6330950B2 (ja) 2018-05-30
EP2851398A1 (en) 2015-03-25
CN104302707A (zh) 2015-01-21
US20150123043A1 (en) 2015-05-07
CN104302707B (zh) 2018-08-28
JP2017133042A (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6330950B2 (ja) 導電性組成物
Bokobza et al. Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers
Ozbas et al. Multifunctional elastomer nanocomposites with functionalized graphene single sheets
CN103946316B (zh) 碳纳米管组合物的制造方法及碳纳米管组合物
Hu et al. Low percolation thresholds of electrical conductivity and rheology in poly (ethylene terephthalate) through the networks of multi-walled carbon nanotubes
Krause et al. A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing
US9006327B2 (en) Process for preparing precomposites based on nanotubes, particularly carbon nanotubes
Bokobza et al. On the use of carbon nanotubes as reinforcing fillers for elastomeric materials
Li et al. High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer
Chen et al. Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend
Grossiord et al. Isotactic polypropylene/carbon nanotube composites prepared by latex technology: Electrical conductivity study
Paszkiewicz et al. Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization
ES2709689T3 (es) Proceso para la preparación de artículos de composite que tienen propiedades eléctricas mejoradas
Puch et al. Morphology and tensile properties of unreinforced and short carbon fibre reinforced Nylon 6/multiwalled carbon nanotube-composites
JP6683190B2 (ja) シリコーンゴム組成物および加硫物
US10431347B2 (en) Masterbatches for preparing composite materials with enhanced conductivity properties, process and composite materials produced
JP2010043169A (ja) ポリマー組成物および導電性材料
JP2013201117A (ja) 導電性樹脂組成物の製造方法及び導電性樹脂組成物
Osazuwa et al. Characterization of non-covalently, non-specifically functionalized multi-wall carbon nanotubes and their melt compounded composites with an ethylene–octene copolymer
JP5417690B2 (ja) 疎水性の熱可塑性樹脂組成物
Xiang et al. Fabrication and properties of acid treated carbon nanotubes reinforced soy protein nanocomposites
JP6015117B2 (ja) 導電性フッ素ゴム組成物
Chakraborty et al. Influence of different carbon nanotubes on the electrical and mechanical properties of melt mixed poly (ether sulfone)-multi walled carbon nanotube composites
JP7155567B2 (ja) 成形体
JPWO2020067429A1 (ja) カーボンナノチューブ分散液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515631

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14400886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147032253

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013790914

Country of ref document: EP