WO2013172256A1 - 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法 - Google Patents

集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法 Download PDF

Info

Publication number
WO2013172256A1
WO2013172256A1 PCT/JP2013/063129 JP2013063129W WO2013172256A1 WO 2013172256 A1 WO2013172256 A1 WO 2013172256A1 JP 2013063129 W JP2013063129 W JP 2013063129W WO 2013172256 A1 WO2013172256 A1 WO 2013172256A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
thermoplastic resin
conductive agent
current collector
layer
Prior art date
Application number
PCT/JP2013/063129
Other languages
English (en)
French (fr)
Inventor
加藤 治
聡平 斉藤
幸翁 本川
和佐本 充幸
片岡 次雄
郷史 山部
Original Assignee
古河スカイ株式会社
日本製箔株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河スカイ株式会社, 日本製箔株式会社 filed Critical 古河スカイ株式会社
Priority to US14/397,115 priority Critical patent/US9508994B2/en
Priority to EP13791238.2A priority patent/EP2851982A4/en
Priority to JP2014515592A priority patent/JPWO2013172256A1/ja
Priority to KR1020147035116A priority patent/KR20150015503A/ko
Priority to CN201380021616.0A priority patent/CN104254940B/zh
Publication of WO2013172256A1 publication Critical patent/WO2013172256A1/ja
Priority to HK15105152.6A priority patent/HK1204711A1/xx

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a current collector, an electrode structure, a nonaqueous electrolyte battery, a power storage component (such as an electric double layer capacitor and a lithium ion capacitor) excellent in safety, and a manufacturing method thereof.
  • a power storage component such as an electric double layer capacitor and a lithium ion capacitor
  • Lithium ion batteries used in vehicles are required to be provided with a so-called shutdown function that stops charging and discharging spontaneously and safely in the event of an accident such as a failure.
  • the separator is normally designed to stop at an abnormal heat generation by melting at about 110 to 140 ° C. to close the micropores and blocking Li ions.
  • the shutdown by the separator is incomplete and the temperature further rises above the melting point of the separator, or due to an increase in the external temperature, the separator melts and an internal short circuit occurs. In such a case, the shutdown function of the separator can no longer be expected, and the battery will go into thermal runaway.
  • a technique for forming a positive temperature coefficient resistor on a current collector has been proposed.
  • Patent Document 1 discloses that the surface of the current collector has a crystalline thermal function having a function of a positive temperature coefficient resistor whose resistance value increases as the temperature rises.
  • a technique for coating with a conductive layer containing a plastic resin, a conductive agent, and a binder is disclosed. According to this technology, when the internal temperature of the battery reaches the melting point of the crystalline thermoplastic resin due to the heat generated when the battery is overcharged, the resistance of the conductive layer increases rapidly, blocking the flow of electricity through the current collector. By doing so, the shutdown function is exhibited.
  • Patent Document 2 discloses a technique in which a PTC powder whose resistance value increases as the temperature rises is disposed in a positive electrode material layer, and a conductive filler is included therein.
  • Patent Document 3 discloses a technique in which a thermally expandable microcapsule is disposed between electrodes and the conductive path is cut off by the expansion of the microcapsule to function as a fuse.
  • Patent Document 4 a microcapsule containing a substance that inhibits battery reaction is attached to the electrode surface, the microcapsule melts as the temperature rises, and the internal substance is released. A technique for realizing the function is disclosed.
  • Patent Document 1 exhibits a certain degree of shutdown function, but is insufficient for practical use, and further enhancement of the shutdown function is desired.
  • Patent Document 4 The technique described in Patent Document 4 is practically inconvenient because the microcapsules once melted cannot be reused.
  • the present invention has been made in view of such circumstances, and provides a current collector, an electrode structure, a non-aqueous electrolyte battery, a power storage component, and a method of manufacturing a current collector that have a shutdown function with excellent safety. It is to provide.
  • a current collector having a resin layer on at least one surface of a conductive base material, wherein the resin layer is a thermoplastic resin containing a conductive agent in a thermosetting resin base material.
  • the value of (average thickness of the conductive agent) / (average thickness of the thermoplastic resin) is 0.5 to 3
  • the conductive agent is blended so that the volume% value of (the conductive agent) / (the conductive agent + the thermoplastic resin) is 10 to 50%,
  • a current collector having a thermoplastic resin ratio of 10 to 65% is provided.
  • the inventors of the present invention conducted extensive studies to exhibit a shutdown function of a non-aqueous electrolyte battery and the like, and sufficient performance could not be obtained by any of the conventional techniques. Therefore, in pursuit of the cause, in each of the various conventional techniques described above, since the conductive agent is uniformly dispersed in the resin layer, the conductive path is partially blocked by the thermal expansion of the microcapsules. However, it has been found that the cause is that the shutdown function is not properly exhibited by energizing through a conductive path that is not interrupted. In such a situation, the present inventors configure the resin layer with a thermosetting resin base material and a thermoplastic resin dispersed therein, and confine the conductive agent in the thermoplastic resin. I came up with the structure.
  • thermoplastic resin expanded as the temperature rose, thereby making the thermoplastic It was found that the conductive agent was divided in the resin, the insulation was ensured, and the shutdown function was reliably exhibited, and the present invention was completed.
  • the thermoplastic resin has a melting point of 50 ° C. or higher and 200 ° C. or lower.
  • the value of (average thickness of the thermoplastic resin) / (average thickness of the curable resin base material) is 0.9 to 3.5.
  • the thermoplastic resin comprises at least one selected from polyethylene resins, polypropylene resins, polyvinylidene fluoride resins, polyvinyl butyral resins, or modified products thereof.
  • the conductive agent is made of carbon black.
  • the thermosetting resin base material is formed from a composition containing a thermosetting resin and a curing agent, and the thermosetting resin is a polyacrylic acid resin, a nitrified cotton resin, or a chitosan resin. It consists of a mixture or copolymer containing 1 or more types of these.
  • an electrode structure including an active material layer or an electrode material layer on the resin layer of the current collector described above, and a non-water including such an electrode structure
  • An electrolyte battery or a power storage component is provided.
  • the method includes a step of applying a resin layer material to at least one surface of a conductive substrate and baking at 120 to 230 ° C., wherein the resin layer material includes a thermoplastic resin and A method for producing a current collector, wherein a thermoplastic resin liquid in which a conductive agent is dispersed or dissolved in an organic solvent is emulsified in a thermosetting resin liquid in which a thermosetting resin and a curing agent are dispersed or dissolved in water.
  • the current collector 1 of the present invention is a current collector 1 having a conductive resin layer (current collector resin layer) 5 on at least one surface of a conductive substrate 3. Yes, the resin layer 5 is formed by dispersing a thermoplastic resin 9 containing a conductive agent 11 in a thermosetting resin base material 7.
  • an active material layer or an electrode material layer 15 is formed on the resin layer 5 of the current collector 1 of the present invention, so that it can be used for a non-aqueous electrolyte battery such as a lithium ion battery.
  • An electrode structure 17 suitable for a double layer capacitor or a lithium ion capacitor can be formed.
  • Conductive base material As the conductive base material of the present invention, various metal foils for non-aqueous electrolyte batteries, electric double layer capacitors, or lithium ion capacitors can be used. Specifically, various metal foils for positive electrode and negative electrode can be used, and for example, aluminum, aluminum alloy, copper, stainless steel, nickel and the like can be used. Among these, aluminum, an aluminum alloy, and copper are preferable from the balance between high conductivity and cost.
  • the thickness of the conductive substrate is not particularly limited, but is preferably 5 ⁇ m or more and 50 ⁇ m or less. If the thickness is less than 5 ⁇ m, the strength of the foil is insufficient and it may be difficult to form a resin layer or the like.
  • the resin layer 5 is formed on the conductive substrate 3.
  • the resin layer 5 of the present invention is preferably configured separately from the active material layer, and not only improves the adhesion between the conductive substrate and the active material layer, but also has a shutdown function. And can be suitably used for the production of non-aqueous electrolyte batteries, power storage components and the like having excellent safety.
  • the resin layer 5 of the present invention is obtained by dispersing a thermoplastic resin 9 including a conductive agent 11 in a thermosetting resin base material 7.
  • the thickness of the resin layer 5 is not particularly limited, but is preferably 0.3 to 20 ⁇ m. If the thickness is less than 0.3 ⁇ m, the resistance is not sufficiently lowered during abnormal heat generation, and the shutdown function is not exhibited. When it exceeds 20 ⁇ m, the resistance at the normal time becomes high and the performance at the high rate is lowered.
  • the thickness of the resin layer 5 is, for example, 0.3, 0.5, 1, 2, 5, 10, 15, 20 ⁇ m, and may be within a range between any two of the numerical values exemplified here. Good.
  • the thermosetting resin base material 7 can be formed by heating and curing a composition containing a thermosetting resin and a curing agent.
  • the thermosetting resin is not particularly limited as long as it is cured when reacted with a curing agent.
  • a mixture containing at least one of polyacrylic acid resin, nitrified cotton resin, and chitosan resin is used.
  • a copolymer for example, a polyacrylic acid-polyacrylate ester copolymer.
  • the polyacrylic acid-based resin is a resin formed from a monomer mainly composed of acrylic acid or methacrylic acid, or a derivative thereof. Specifically, polyacrylic acid, polyacrylic ester, It is a mixture or copolymer containing at least one of methacrylic acid and polymethacrylic acid ester.
  • the nitrified cotton-based resin is a resin containing nitrified cotton as a resin component, and may be composed only of nitrified cotton or may contain nitrified cotton and another resin.
  • Nitrified cotton is a kind of cellulose which is a polysaccharide, but is characterized by having a nitro group.
  • Nitrified cotton is a cellulose having a nitro group, but it is not known as a use for an electrode as compared with other celluloses such as CMC, and is conventionally used as a raw material for resin films and paints.
  • the nitrogen concentration of the nitrified cotton used in the present invention is preferably 10 to 13%, particularly preferably 10.5 to 12.5%.
  • the nitrogen concentration is too low, it may not be sufficiently dispersed depending on the type of the conductive material. If the nitrogen concentration is too high, the nitrified cotton becomes chemically unstable and is dangerous for use in a battery. Since the nitrogen concentration depends on the number of nitro groups, the nitrogen concentration can be adjusted by adjusting the number of nitro groups.
  • the viscosity of the above nitrified cotton is usually 1 to 6.5 seconds, particularly 1.0 to 6 seconds, and the acid content is 0.006% or less, particularly 0.005% or less, as measured according to JIS K-6703. It is recommended that When deviating from these ranges, the dispersibility of the conductive material and the battery characteristics may deteriorate.
  • the chitosan resin is a resin containing a chitosan derivative as a resin component.
  • a chitosan derivative as a resin component.
  • the chitosan derivative is, for example, hydroxyalkyl chitosan. Specifically, hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxybutyl chitosan, glycerylated chitosan is preferable, and glycerylated chitosan is particularly preferable.
  • the chitosan resin preferably contains an organic acid.
  • organic acids include pyromellitic acid and terephthalic acid.
  • the addition amount of the organic acid is preferably 20 to 300% by mass, more preferably 50 to 150% by mass with respect to 100% by mass of the chitosan derivative. This is because if the addition amount of the organic acid is too small, the chitosan derivative is not sufficiently cured, and if the addition amount of the organic acid is too large, the flexibility of the resin layer is lowered.
  • the curing agent is not particularly limited as long as the thermosetting resin is crosslinked and cured, and examples thereof include melamine or a derivative thereof and blocked urea.
  • Melamine derivatives can be obtained by, for example, condensing melamine and formaldehyde to methylolate melamine (optionally further polynuclearized by addition reaction), and then alkylate methylol group with alcohol (eg, methyl alcohol or butyl alcohol) as necessary. Or can be manufactured.
  • Derivatives of melamine include fully alkyl type in which the methylol group is almost completely alkylated, imino type in which many non-methylol hydrogen groups remain, and methylol type in which the proportion of non-alkylated methylol groups is large.
  • Fully alkylated melamine has no methylol group or imino group, has a methylol group that is completely etherified with a monohydric alcohol having usually 1 to 4 carbon atoms, such as methanol, n-butanol, and isobutanol.
  • the degree of condensation usually means 2 or less.
  • melamine derivatives are trimethoxymethylated melamine and hexamethoxymethylated melamine.
  • Blocked urea can be produced by reacting urea and methylol obtained by condensation reaction of urea and formaldehyde with a blocking agent such as alcohol (eg, methyl alcohol or butyl alcohol).
  • the thermoplastic resin 9 contains a conductive agent 11 and is dispersed in the thermosetting resin base material 7. At normal temperature, as shown in FIG. 2, in the thermoplastic resin 9 penetrating the resin layer 5, the particles of the conductive agent 11 come into contact with each other, so that conduction between both main surfaces of the resin layer 5 is ensured, and the resistance value thereof. Is low.
  • the conductive agent 11 is not dispersed throughout the resin layer 5 but is substantially dispersed only in the thermoplastic resin 9. Therefore, the conductive path is limited as compared with the prior art in which the conductive agent 11 is dispersed throughout the resin layer.
  • the thermoplastic resin 9 is thermally expanded and the volume is increased.
  • the conductive agent 11 made of carbon black or the like usually does not substantially expand, the expansion of the thermoplastic resin 9 increases the distance between the particles of the conductive agent 11 in the thermoplastic resin 9, and as a result, the conductive agent 11. Particles are not in contact with each other, and the conductive path is blocked. In the prior art, a great number of conductive paths exist. However, in the present invention, the conductive agent 11 is dispersed only in the thermoplastic resin 9 and is conducted only through a limited conductive path. Substantially all the conductive paths are blocked by the thermal expansion of the plastic resin, and the shutdown function is effectively exhibited.
  • the size of the thermoplastic resin 9 is not particularly limited, but the value of (average thickness of the thermoplastic resin 9) / (average thickness of the thermosetting resin base material 7) is 0.9 to 3.5. It is preferable. If this value is too small, the thermoplastic resin 9 containing the conductive agent 11 is buried in the thermosetting resin base material 7, so that the original electrical resistance increases and is not suitable. If this value is too large, the thermoplastic resin is not suitable. This is because it is difficult to hold 9 with the thermosetting resin base material 7 and problems such as falling off during application of the active material paste are likely to occur. Specifically, this value is, for example, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and any two of the numerical values exemplified here It may be within the range between.
  • the ratio of the thermoplastic resin is defined by (volume of thermoplastic resin + volume of conductive agent) / (volume of thermoplastic resin + volume of conductive agent + volume of thermosetting resin + volume of curing agent) ⁇ 100. ⁇ 65%. If this ratio is too small, the number of conductive paths is reduced, and the electrical resistance at normal temperature is increased.If this ratio is too large, the area of the thermosetting resin portion is reduced, and the coating film adhesion becomes insufficient. Solvent resistance decreases. This ratio is, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65%, and is within a range between any two of the numerical values exemplified here. Also good.
  • thermoplastic resin 9 of the present invention is not particularly limited as long as it can exhibit a shutdown function by thermal expansion according to the above principle, and is not limited to polyethylene resin, polypropylene resin, polyvinylidene fluoride resin, polyvinyl butyral resin, It consists of 1 or more types chosen from those modified products.
  • the melting point of the thermoplastic resin 9 is not particularly limited, but is preferably 50 ° C. or higher and 200 ° C. or lower.
  • the conductive agent 11 is not retained in the thermoplastic resin 9 when the composition containing the thermosetting resin and the curing agent is cured by heating to form the thermosetting resin base material 7, and the heat This is because it spreads to the curable resin base material 7, and as a result, the shutdown function is hardly exhibited.
  • the thermoplastic resin 9 and the conductive agent 11 do not fuse, and are simply adjacent to each other and dispersed in the thermosetting resin base material 7. This is because the agent 11 is not separated and the shutdown function may not be exhibited.
  • the melting point of the thermoplastic resin 9 is, for example, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200 ° C. It may be within a range between any two of the numerical values exemplified in.
  • the conductive agent 11 used in the present invention known carbon powder, metal powder, and the like can be used. Among them, carbon black such as furnace black, acetylene black, and ketjen black is preferable.
  • the average thickness of the conductive agent 11 is not particularly limited, but the value of (average thickness of conductive agent 11) / (average thickness of thermoplastic resin 9) is 0.5 to 3. When this value is too small, it becomes difficult for the particles of the conductive agent 11 to come into contact with each other in the thermoplastic resin 9, and the resistance of the resin layer 5 at room temperature increases.
  • the average thickness of the conductive agent 11 is based on the resin layer surface of the conductive agent 11 continuously aggregated from the conductive base material to the surface of the resin layer 5 in the image obtained by SEM observation of the cross section of the resin layer 5. This means the average length obtained by obtaining 10 vertical lengths.
  • the blending amount of the conductive agent 11 is not particularly limited, but the conductive agent 11 is blended so that the volume% value of (the conductive agent) / (the conductive agent + the thermoplastic resin) is 10 to 50%. .
  • the volume% value of (the conductive agent) / (the conductive agent + the thermoplastic resin) is 10 to 50%.
  • the contact between the electrically conductive agents 11 will be maintained also at the time of temperature rising, and it will become difficult to exhibit a shutdown function.
  • This value is, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50%, and may be within a range between any two of the numerical values exemplified here.
  • the method for producing a current collector of the present invention comprises a step of applying a resin layer material to at least one surface of the conductive substrate 3 and baking at 120 to 230 ° C.
  • a thermoplastic resin liquid in which a thermoplastic resin and a conductive agent are dispersed or dissolved in an organic solvent is emulsified in a thermosetting resin liquid in which a thermosetting resin and a curing agent are dispersed or dissolved in water.
  • thermoplastic resin liquid is prepared by dispersing or dissolving a thermoplastic resin and a conductive agent in an organic solvent.
  • the obtained thermoplastic resin liquid is added to an aqueous solution containing a surfactant and stirred.
  • the thermoplastic resin liquid is dispersed in the aqueous solution in the form of an emulsion.
  • the conductive agent is held in the thermoplastic resin liquid and is not released into the aqueous solution.
  • the organic solvent is not particularly limited as long as it can be emulsified.
  • hydrocarbons such as cyclohexane, methylcyclohexane, ethylcyclohexane, pentane, hexane, heptane, octane, toluene, xylene, tetralin, decalin, Chloroform, methyl ethyl ketone, methyl propyl ketone, diisobutyl ketone, methyl-n-hexyl ketone, ketones such as cyclohexanone, esters such as isobutyl acetate and carbitol acetate, ethers such as n-butyl ether and diisopropyl ether, or one of these
  • the mixed solvent consisting of more than seeds is raised.
  • thermosetting resin and a curing agent may be dispersed or dissolved in advance, or these may be dispersed or dissolved after emulsification.
  • a thermoplastic resin liquid in which a thermoplastic resin and a conductive agent are dispersed or dissolved in an organic solvent is emulsified in a thermosetting resin liquid in which a thermosetting resin and a curing agent are dispersed or dissolved in water. Resin layer material is obtained.
  • the resin layer material is applied onto a conductive substrate and baked at 120 to 230 ° C.
  • the baking temperature is, for example, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230 ° C., and is within a range between any two of the numerical values exemplified here. Also good.
  • the temperature difference defined by (melting point of resin) ⁇ (baking temperature) is preferably ⁇ 120 ° C. to 50 ° C.
  • the conductive agent will be dispersed in the thermosetting resin matrix before the thermosetting resin is cured when the resin layer is baked, and the shutdown function will be adequately exhibited. If the melting point of the resin is too high compared to the baking temperature, the thermoplastic resin and the conductive agent are not fused even after baking, and are simply dispersed next to each other in the thermosetting resin base material, This is because the shutdown function may not be properly performed.
  • the temperature difference is specifically, for example, ⁇ 120, ⁇ 110, ⁇ 100, ⁇ 90, ⁇ 80, ⁇ 70, ⁇ 60, ⁇ 50, ⁇ 40, ⁇ 30, ⁇ 20, ⁇ 10, 0 10, 20, 30, 40, and 50 ° C., and may be within a range between any two of the numerical values exemplified here.
  • the conductive agent is fused with the thermoplastic resin and encapsulated in the thermoplastic resin, so that the shutdown function is appropriately exhibited.
  • a roll coater As a coating method, a roll coater, a gravure coater, a slit die coater or the like can be used, but is not particularly limited.
  • the baking time is not particularly limited, but is, for example, 60 to 240 seconds.
  • the method of changing the value of (average thickness of thermoplastic resin 9) / (average thickness of thermosetting resin base material 7) described above is not particularly limited, but the concentration of the thermoplastic resin liquid, the thermosetting resin is not limited. It can be adjusted by changing the concentration of the liquid and the mixing ratio of the thermoplastic resin liquid and the thermosetting resin liquid. For example, by increasing the concentration of the thermosetting resin liquid, the average thickness of the thermosetting resin base material 7 increases, and the above value decreases.
  • Electrode Structure The electrode structure of the present invention can be obtained by forming an active material layer or an electrode material layer on at least one surface of the current collector of the present invention.
  • the electrode structure for an electrical storage component in which the electrode material layer is formed will be described later.
  • an electrode structure (battery component) for a non-aqueous electrolyte battery for example, a lithium ion secondary battery, using the electrode structure, a separator, a non-aqueous electrolyte solution, etc.
  • a battery component for a non-aqueous electrolyte battery, for example, a lithium ion secondary battery
  • a member other than the current collector can be a known nonaqueous battery member.
  • the active material layer formed as an electrode structure in the present invention may be conventionally proposed for non-aqueous electrolyte batteries.
  • the current collector of the present invention using aluminum as the positive electrode, LiCoO 2 , LiMnO 2 , LiNiO 2 or the like as the active material, carbon black such as acetylene black as the conductive agent, and PVDF as a binder
  • the positive electrode structure of the present invention can be obtained by applying and drying a paste dispersed in water-dispersed PTFE.
  • the negative electrode structure for example, graphite, graphite, mesocarbon microbeads or the like are used as the active material for the current collector of the present invention using copper as the conductive base material, and these are used as a thickener CMC. After the dispersion, the paste mixed with SBR as a binder is applied and dried as an active material layer forming material, whereby the negative electrode structure of the present invention can be obtained.
  • Nonaqueous electrolyte battery The present invention may be a nonaqueous electrolyte battery.
  • the non-aqueous electrolyte battery of the present invention is sandwiched between separators impregnated with an electrolyte for a non-aqueous electrolyte battery having a non-aqueous electrolyte between the positive electrode structure and the negative electrode structure having the current collector of the present invention as a constituent element.
  • a water electrolyte battery can be constructed.
  • the nonaqueous electrolyte and the separator those used for known nonaqueous electrolyte batteries can be used.
  • carbonates or lactones can be used as a solvent.
  • a solution obtained by dissolving LiPF 6 or LiBF 4 as an electrolyte in a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) is used.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the separator for example, a film having a microporous made of polyolefin can be used.
  • Power storage components (electric double layer capacitors, lithium ion capacitors, etc.)
  • an electric double layer capacitor or the like is safer than a secondary battery, but the current collector of the present invention can be applied for the purpose of improving high rate characteristics.
  • the electric double layer capacitor, lithium ion capacitor, etc. of the present invention can also be applied to power storage components such as electric double layer capacitors and lithium ion capacitors that require high-speed charge / discharge at a large current density. is there.
  • the electrode structure for a power storage component of the present invention is obtained by forming an electrode material layer on the current collector of the present invention. By using this electrode structure and a separator, an electrolytic solution, etc., an electric double layer capacitor, a lithium ion capacitor, etc. A power storage component can be manufactured.
  • members other than the current collector can be members for known electric double layer capacitors or lithium ion capacitors.
  • the electrode material layer can be made of an electrode material, a conductive agent, and a binder for both the positive electrode and the negative electrode.
  • an electricity storage component can be obtained after forming the electrode material layer on at least one side of the current collector of the present invention to form an electrode structure.
  • the electrode material those conventionally used as electrode materials for electric double layer capacitors and lithium ion capacitors can be used.
  • carbon powder or carbon fiber such as activated carbon or graphite can be used.
  • the conductive agent carbon black such as acetylene black can be used.
  • the binder for example, PVDF (polyvinylidene fluoride), SBR (styrene butadiene rubber), water-dispersed PTFE, or the like can be used.
  • the electric storage component of the present invention can constitute an electric double layer capacitor or a lithium ion capacitor by fixing the electrode structure of the present invention with a separator interposed therebetween and allowing the electrolyte to penetrate into the separator.
  • the separator for example, a polyolefin microporous film, an electric double layer capacitor nonwoven fabric, or the like can be used.
  • carbonates and lactones can be used as the solvent in the electrolyte, and the electrolyte includes tetraethylammonium salt and triethylmethylammonium salt as the cation, and hexafluorophosphate and tetrafluoroborate as the anion.
  • a lithium ion capacitor is a combination of a negative electrode of a lithium ion battery and a positive electrode of an electric double layer capacitor.
  • thermoplastic resin liquid in which conductive agent is dispersed (paraffin or polyethylene)> While stirring the melt obtained by heating and melting paraffin or polyethylene at 3000 rpm with a dispaper, acetylene black was added thereto at a rate of about 0.1 g / min to disperse the conductive agent.
  • Thermoplastic containing a conductive agent by preparing a melt and then extruding it from a hole with a diameter of 0.1 ⁇ m to 1 L of an organic solvent (toluene) stirred at 3000 rpm with a dispaper at a rate of 1 g / min. A resin solution was prepared.
  • thermoplastic resin liquid in which conductive agent is dispersed (other than paraffin and polyethylene)> While stirring 1 L of an organic solvent (toluene) solution of various resins other than paraffin and polyethylene at 3000 rpm with a dispaper, acetylene black was added thereto at a rate of about 1 g / min, and a thermoplastic resin solution was added. Created.
  • the average thickness of the conductive agent is the length in the direction perpendicular to the resin layer surface of the conductive agent aggregated continuously from the aluminum foil to the surface of the resin layer in the image obtained by SEM observation of the cross section of the resin layer. was obtained from the average value.
  • the thickness of the resin layer was measured by observing the cross section of the resin layer with an FE-SEM.
  • the average thickness of the thermosetting resin base material was determined from the average value of the film thickness of 20 points in the portion where no thermoplastic resin was present.
  • the average thickness of the thermoplastic resin was determined from the average value of 30 points in the resin layer thickness direction (direction perpendicular to the aluminum foil surface).
  • Arrows A to C in FIG. 5 indicate the thicknesses of the thermosetting resin base material, the thermoplastic resin, and the conductive agent, respectively.
  • ⁇ Electric resistance of resin layer> While heating the sample in steps of 20 ° C. to 10 ° C., the sample was sandwiched between electrodes plated with gold at the top and bottom, and the amount of direct current flowing at a constant voltage was measured to determine the resistance at each electrode temperature. The lowest temperature at which the resistance starts to rise is defined as the resistance increase start temperature. Moreover, the value which divided the maximum resistance value by the resistance value in 20 degreeC was made into resistance ratio.
  • the electrical resistance was small at room temperature, the electrical resistance increased with increasing temperature, and the shutdown function was appropriately exhibited. Moreover, adhesiveness and solvent resistance were also favorable.
  • Comparative Example 1 since the thermoplastic resin has a very low melting point, the conductive agent is dispersed in the thermosetting resin base material before the thermosetting resin is cured during the baking of the resin layer. It was not properly demonstrated.
  • Comparative Example 2 since the baking temperature is considerably lower than the melting point of the thermoplastic resin, the thermoplastic resin and the conductive agent do not fuse and are simply dispersed adjacent to each other in the thermosetting resin base material. , Even if the thermoplastic expands, the conductive agent is not separated and the shutdown function is not properly exhibited.
  • Comparative Example 3 since the baking temperature of the resin layer was extremely high, the thermosetting resin base material was decomposed, and the resin layer adhesion and solvent resistance were reduced.
  • Comparative Example 4 since the thermosetting resin liquid was prepared using the organic solvent, the thermoplastic resin and the conductive agent were dispersed in the thermosetting resin base material, and the electrical conductivity was maintained even at the time of temperature increase. The shutdown function did not work properly.
  • Comparative Example 5 since the curing agent is not included in the thermosetting resin liquid, all becomes a resin layer based on a thermoplastic resin, and easily swells with the solvent in the active material paste, resulting in a decrease in adhesion and a decrease in solvent resistance. Occurred.
  • Comparative Example 6 since the blending amount of the conductive agent was excessive, contact between the conductive agents was maintained even when the temperature was raised, and the shutdown function was not properly exhibited. In Comparative Example 7, the blending amount of the conductive agent was too small, so the number of contact points between the conductive agents was small, and the electrical resistance at normal temperature was high. In Comparative Example 8, since the amount of the thermoplastic resin with respect to the thermosetting resin is excessive and the thickness of the thermoplastic resin with respect to the thickness of the thermosetting resin is large, the thermosetting resin cannot hold the thermoplastic resin, and thus the resistance. Solvent property was poor.
  • Comparative Example 9 since the thickness of the thermoplastic resin with respect to the thermosetting resin is thin, the thermoplastic resin is embedded in the thermosetting resin, and the conductive material is less likely to contact the active material and the normal temperature. The electrical resistance at the time was high.
  • Comparative Example 10 since the blending amount of the thermoplastic resin with respect to the conductive agent was large, the thickness of the conductive agent was thin, and the electrical resistance at normal temperature was high. Moreover, since the blending amount of the thermoplastic resin with respect to the thermosetting resin was excessive and the thermoplastic resin was thick, it was easy to drop off and the solvent resistance was poor. In Comparative Example 11, since the blending amount of the thermoplastic resin was too small, there were few conductive paths and the electrical resistance at normal temperature was high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

優れたシャットダウン機能を付与可能な集電体、電極構造体、非水電解質電池、及び蓄電部品を提供する。本発明によれば、導電性基材の少なくとも片面に樹脂層を有する集電体であって、前記樹脂層は、熱硬化性樹脂母材中に、導電剤を内包した熱可塑性樹脂が分散されてなり、(前記導電剤の平均厚さ)/(前記熱可塑性樹脂の平均厚さ)の値が0.5~3であり、前記導電剤は、(前記導電剤)/(前記導電剤+前記熱可塑性樹脂)の体積%の値が10~50%となるように配合され、熱可塑性樹脂割合が10~65%である、集電体が提供される。

Description

集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法
 本発明は、安全性に優れた集電体、電極構造体、非水電解質電池、及び蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)、及びその製造方法に関する。
 車載等に用いられるリチウムイオン電池には、故障等の不慮の事故の際、自発的かつ安全に充放電を停止する所謂シャットダウン機能の付与が求められており、電池内部ではセパレータにその機能が付与されている。セパレータは通常、110~140℃程度で溶融して微細孔が閉塞し、Liイオンを遮断することによって異常発熱時に電極反応を止めるように設計されている。しかし、セパレータによるシャットダウンが不完全でセパレータ融点よりさらに温度が上昇する場合や、外部温度の上昇により、セパレータが融解して内部短絡が発生する場合もある。このような場合、セパレータのシャットダウン機能はもはや期待できず、電池は熱暴走に至る。このような事態に対応するため、集電体に正温度係数抵抗体を形成する技術が提案されている。
 集電体に正温度係数抵抗体を形成する技術として、例えば、特許文献1には、集電体の表面を、温度上昇と共に抵抗値が増加する正温度係数抵抗体の機能を有する結晶性熱可塑性樹脂、導電剤及び結着剤を含む導電層にて被覆する技術が開示されている。この技術によれば、電池を過充電した時の発熱により電池内部温度が結晶性熱可塑性樹脂の融点に達すると、導電層の抵抗が急上昇し、集電体を通っていた電気の流れを遮断することにより、シャットダウン機能が発揮される。
 また、特許文献2には、温度上昇に伴って抵抗値が増大するPTC粉末を正極物質層中に配置し、この中に導電性充填材を内包させる技術が開示されている。
 また、特許文献3には、電極間に熱膨張性マイクロカプセルを配置し、このマイクロカプセルの膨張によって導電経路を断って、ヒューズとして機能させる技術が開示されている。
 また、特許文献4には、電池反応を阻害する物質を内包したマイクロカプセルを電極表面に付着させ、温度上昇に伴ってこのマイクロカプセルが溶融して、内部の物質が放出されることによって、ヒューズ機能を実現する技術が開示されている。
特開2001-357854号公報 特開2005-123185号公報 特開平7-6684号公報 特開平10-270084号公報
 特許文献1に記載の技術は、ある程度のシャットダウン機能を発揮するが、実用化には不十分であり、シャットダウン機能をさらに高めることが要望されている
 特許文献2に記載の技術では、導電剤を含む母材中にPTC粉末を配置しているので、温度上昇に伴ってPTC粉末の抵抗値が高まっても導電経路が完全に遮断されない場合があると考えられる。
 特許文献3に記載の技術では、導電剤を含む母材中にマイクロカプセルを配置しているので、温度上昇に伴ってマイクロカプセルが膨張しても導電経路が完全に遮断されない場合があると考えられる。
 特許文献4に記載の技術では、マイクロカプセルが一旦溶融されてしまうと、再利用は不可能であるので、実用上、不便である。
 本発明は、このような事情に鑑みてなされたものであり、安全性に優れたシャットダウン機能を備える集電体、電極構造体、非水電解質電池、蓄電部品、及び集電体の製造方法を提供するものである。
 以下のような集電体を用いることにより、優れたシャットダウン機能を備える非水電解質電池や蓄電部品を得ることができる。
 すなわち、本発明によれば、導電性基材の少なくとも片面に樹脂層を有する集電体であって、前記樹脂層は、熱硬化性樹脂母材中に、導電剤を内包した熱可塑性樹脂が分散されてなり、
(前記導電剤の平均厚さ)/(前記熱可塑性樹脂の平均厚さ)の値が0.5~3であり、
前記導電剤は、(前記導電剤)/(前記導電剤+前記熱可塑性樹脂)の体積%の値が10~50%となるように配合され、
熱可塑性樹脂割合が10~65%である、集電体が提供される。
 本発明者らは、非水電解質電池等のシャットダウン機能を発揮させるべく鋭意検討を行なったところ、従来技術の何れによっても十分な性能が得られなかった。そこで、その原因を追求したところ、上記の種々の従来技術は、何れも樹脂層中に導電剤が均一に分散しているので、マイクロカプセルの熱膨張などで導電経路が部分的に遮断されたとしても、遮断されていない導電経路を通じて通電して、シャットダウン機能が適切に発揮されないことが原因であると分かった。そして、このような状況において、本発明者らは、樹脂層を、熱硬化性樹脂母材と、その中に分散された熱可塑性樹脂とで構成し、この熱可塑性樹脂中に導電剤を閉じ込めるという構成を思い付いた。そして、このような構成を実際に試してみたところ、導電剤及び熱可塑性樹脂の厚さや配合量を適正化した場合には、温度上昇に伴って熱可塑性樹脂が膨張し、それによって、熱可塑性樹脂内において導電剤が分断されて、絶縁性が確保され、シャットダウン機能が確実に発揮されることが分かり、本発明の完成に到った。
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、前記熱可塑性樹脂は、融点が50℃以上200℃以下である。
 好ましくは、(前記熱可塑性樹脂の平均厚さ)/(前記硬化性樹脂母材の平均厚さ)の値が0.9~3.5である。
 好ましくは、前記熱可塑性樹脂が,ポリエチレン系樹脂,ポリプロピレン系樹脂,ポリフッ化ビニリデン系樹脂,ポリビニルブチラール系樹脂またはそれらの変性物中から選ばれる1種以上からなる。
 好ましくは、前記導電剤は、カーボンブラックからなる。
 好ましくは、前記熱硬化性樹脂母材は、熱硬化性樹脂と硬化剤を含む組成物から形成され、前記熱硬化性樹脂は、ポリアクリル酸系樹脂、硝化綿系樹脂、キトサン系樹脂の中の1種以上を含む混合物又は共重合体からなる。
 また、本発明の別の観点によれば、上記記載の集電体の前記樹脂層上に活物質層又は電極材層を備える、電極構造体、及びこのような電極構造体を備える、非水電解質電池又は蓄電部品が提供される。
 また、本発明のさらに別の観点によれば、導電性基材の少なくとも片面に樹脂層材料を塗布し、120~230℃で焼き付けを行う工程を備え、前記樹脂層材料は、熱可塑性樹脂と導電剤が有機溶剤中に分散又は溶解した熱可塑性樹脂液が、熱硬化性樹脂と硬化剤が水中に分散又は溶解した熱硬化性樹脂液中でエマルション化されている、集電体の製造方法が提供される。
本発明の一実施形態の集電体の構造を示す断面図である。 本発明の一実施形態の集電体の常温時の樹脂層の詳細な構造を示す断面図である。 本発明の一実施形態の集電体を用いて形成された電極構造体の構造を示す断面図である。 本発明の一実施形態の集電体の昇温時の樹脂層の詳細な構造を示す断面図である。 本発明の実施例での熱硬化性樹脂母材、熱可塑性樹脂、及び導電剤の厚さの測定方法を説明するための断面図である。
1.集電体
 以下、図1~図4を用いて、本発明の一実施形態の集電体について説明する。
 図1~図2に示すように、本発明の集電体1は、導電性基材3の少なくとも片面に導電性を有する樹脂層(集電体用樹脂層)5を有する集電体1であり、樹脂層5は、熱硬化性樹脂母材7に、導電剤11を内包した熱可塑性樹脂9が分散されてなる。
 また、図3に示すように、本発明の集電体1の樹脂層5上には、活物質層又は電極材層15を形成することによって、リチウムイオン電池等の非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用として好適な電極構造体17を形成することができる。
 以下、各構成要素について詳細に説明する。
(1)導電性基材
 本発明の導電性基材としては、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の各種金属箔が使用可能である。具体的には、正極用、負極用の種々の金属箔を使用することができ、例えば、アルミニウム、アルミニウム合金、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、アルミニウム合金、銅が好ましい。導電性基材の厚さとしては、特に制限されるものではないが、5μm以上、50μm以下であることが好ましい。厚さが5μmより薄いと箔の強度が不足して樹脂層等の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層あるいは電極材層を薄くせざるを得ず、特に非水電解質電池や、電気二重層キャパシタ又はリチウムイオンキャパシタ等の蓄電部品とした場合、活物質層の厚さを薄くせざるを得ず必要十分な容量が得られなくなる場合がある。
(2)樹脂層
 本発明では導電性基材3の上に、樹脂層5を形成する。本発明の樹脂層5は、正極用として使用する場合、特に活物質層とは別に構成されることが好ましく、導電性基材と活物質層との密着性を向上させるだけでなく、シャットダウン機能を備えることができ、安全性に優れた非水電解質電池、蓄電部品等の製造に好適に使用することができる。
 本発明の樹脂層5は、熱硬化性樹脂母材7に、導電剤11を内包した熱可塑性樹脂9が分散されてなる。
 樹脂層5の厚さは、特に限定されないが、0.3~20μmであることが好ましい。0.3μm未満では異常発熱時十分に抵抗が下がらず、シャットダウン機能が発揮されない。20μmを超えると、正常時の抵抗が高くなり、ハイレート時の性能が低下する。樹脂層5の厚さは、例えば、0.3、0.5、1、2、5、10、15、20μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<熱硬化性樹脂母材>
 熱硬化性樹脂母材7は、熱硬化性樹脂と硬化剤を含む組成物を加熱して硬化させることによって形成することができる。熱硬化性樹脂は、硬化剤と反応させたときに硬化するものであれば特に限定されず、例えば、ポリアクリル酸系樹脂、硝化綿系樹脂、キトサン系樹脂の中の1種以上を含む混合物又は共重合体からなり、例えば、ポリアクリル酸-ポリアクリル酸エステル共重合体である。
 本発明において、ポリアクリル酸系樹脂は、アクリル酸若しくはメタクリル酸、又はこれらの誘導体を主成分とするモノマから形成された樹脂であり、具体的には、ポリアクリル酸,ポリアクリル酸エステル,ポリメタクリル酸,ポリメタクリル酸エステルの中の1種以上を含む混合物又は共重合体である。
 本発明において、硝化綿系樹脂は、樹脂成分として硝化綿を含む樹脂であり、硝化綿のみからなるものであってもよく、硝化綿と別の樹脂とを含有するものであってもよい。硝化綿は多糖類であるセルロースの1種であるが、ニトロ基を有する点に特徴がある。硝化綿はニトロ基を有するセルロースであるが、CMC等の他のセルロースと比較して、電極に使用する用途としては知られておらず、従来、樹脂フィルムや塗料の原料として用いられている。本発明に用いる硝化綿の窒素濃度は10~13%、特に10.5~12.5%が好ましい。窒素濃度が低すぎると、導電材の種類によっては十分分散できない場合があり、窒素濃度が高すぎると、硝化綿が化学的に不安定になり、電池に用いるには危険だからである。窒素濃度はニトロ基の数に依存するため、窒素濃度の調整はニトロ基数を調整することによって行うことができる。また、上記硝化綿の粘度は、JIS K-6703に基づく測定値が、通常1~6.5秒、特に1.0~6秒、酸分は0.006%以下、特に0.005%以下であることが推奨される。これらの範囲を逸脱すると、導電材の分散性、電池特性が低下する場合がある。
 本発明において、キトサン系樹脂は、樹脂成分としてキトサン誘導体を含む樹脂である。キトサン系樹脂は、キトサン誘導体が100質量%であるものを使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくともキトサン誘導体を全樹脂成分に対して50質量%以上、特に80質量%以上含むことが好ましい。キトサン誘導体は、例えばヒドロキシアルキルキトサンであり、具体的には、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、グリセリル化キトサンが好ましく、特にグリセリル化キトサンである。キトサン系樹脂は、好ましくは、有機酸を含む。有機酸としては、ピロメリット酸、テレフタル酸などが挙げられる。有機酸の添加量は、キトサン誘導体100質量%に対して20~300質量%が好ましく、50~150質量%がさらに好ましい。有機酸の添加量が少なすぎるとキトサン誘導体の硬化が不十分になり、有機酸の添加量が多すぎると樹脂層の可撓性が低下するからである。
 硬化剤は、上記熱硬化性樹脂を架橋して硬化させるものであれば特に限定されず、例えば、メラミン又はその誘導体、ブロック化ユリア等が挙げられる。メラミンの誘導体は、例えば、メラミンとホルムアルデヒドを縮合反応させてメラミンをメチロール化したり(場合によりさらに付加反応により多核化したり)、必要により次いでメチロール基をアルコール(例、メチルアルコールまたはブチルアルコール)でアルキル化したりすることにより製造可能である。メラミンの誘導体としては、メチロール基がほぼ完全にアルキル化された完全アルキル型、メチロール化されていない水素基が多く残ったイミノ型、アルキル化されていないメチロール基の割合が多いメチロール型などが挙げられる。本発明では、完全アルキル化メラミンを用いることが好ましい。完全アルキル化メラミンは、メチロール基やイミノ基を含まず、炭素数が通常1~4の一価アルコール、例えばメタノール、n-ブタノール、イソブタノールなどで完全エーテル化されたメチロール基を有し、平均縮合度が通常2以下のものを意味する。完全アルキル化メラミンを用いると、樹脂層5の柔軟性が向上し、プレス後、活物質層との密着性が向上する。メラミンの誘導体の具体例は、トリメトキシメチル化メラミンやヘキサメトキシメチル化メラミンである。ブロック化ユリアは、尿素とホルムアルデヒドを縮合反応させて尿素をメチロール化したものをアルコール(例、メチルアルコールまたはブチルアルコール)などのブロック剤と反応させることによって製造することができる。
<熱可塑性樹脂>
 熱可塑性樹脂9は、導電剤11を内包しており、熱硬化性樹脂母材7中に分散されている。常温時には、図2に示すように、樹脂層5を貫く熱可塑性樹脂9において導電剤11の粒子同士が接触することによって、樹脂層5の両主面間での導通が確保され、その抵抗値が低くなっている。導電剤11は、樹脂層5の全体に分散しているのではなく、実質的に熱可塑性樹脂9中にのみ分散している。そのため、導電剤11が樹脂層全体に分散している従来技術と比較すると、導電経路が限定されている。昇温時には、図4に示すように、熱可塑性樹脂9が熱膨張して体積が増加する。カーボンブラックなどからなる導電剤11は、通常、ほとんど膨張しないので、熱可塑性樹脂9の膨張によって、熱可塑性樹脂9中での導電剤11の粒子間の距離が増大し、その結果、導電剤11の粒子同士が接触しなくなり、導電経路が遮断される。従来技術では、非常に多くの導電経路が存在しているが、本発明では、導電剤11が熱可塑性樹脂9中にのみ分散していて限られた導電経路でのみ導通しているので、熱可塑性樹脂の熱膨張によって実質的に全ての導電経路が遮断され、シャットダウン機能が効果的に発揮される。
 熱可塑性樹脂9のサイズは、特に限定されないが、(熱可塑性樹脂9の平均厚さ)/(熱硬化性樹脂母材7の平均厚さ)の値は、0.9~3.5であることが好ましい。この値が小さすぎると、導電剤11を含む熱可塑性樹脂9が熱硬化性樹脂母材7に埋もれてしまうため,元々の電気抵抗が大きくなり不適であり、この値が大きすぎると熱可塑性樹脂9を熱硬化性樹脂母材7で保持し難く,活物質ペースト塗布時に脱落する等の不具合を起こしやすいからである。この値は、具体的には例えば、0.9、1.0、1.5、2.0、2.5、3.0、3.5であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 熱可塑性樹脂割合は、(熱可塑性樹脂の体積+導電剤の体積)/(熱可塑性樹脂の体積+導電剤の体積+熱硬化性樹脂の体積+硬化剤の体積)×100で定義され、10~65%である。この割合が小さすぎると、導電経路が少なくなり、常温時の電気抵抗が高くなり、この割合が大きすぎると、熱硬化性樹脂部分の面積が小さくなり、塗膜密着性が不十分になり、耐溶剤性が低下する。この割合は、例えば、10、15、20、25、30、35、40、45、50、55、60、65%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 本発明の熱可塑性樹脂9は、上記原理に従って、熱膨張によってシャットダウン機能を発揮できるものであれば、特に限定されず、ポリエチレン系樹脂,ポリプロピレン系樹脂,ポリフッ化ビニリデン系樹脂,ポリビニルブチラール系樹脂またはそれらの変性物中から選ばれる1種以上からなる。熱可塑性樹脂9の融点は、特に限定されないが、50℃以上200℃以下が好ましい。融点が低すぎると、熱硬化性樹脂と硬化剤を含む組成物を加熱硬化させて熱硬化性樹脂母材7を形成する際に、導電剤11が熱可塑性樹脂9中に保持されず、熱硬化性樹脂母材7にまで広がってしまい、その結果、シャットダウン機能が発揮されにくくなるからである。また、融点が高すぎると、熱可塑性樹脂9と導電剤11が融合せず,単に隣り合って熱硬化性樹脂母材7中に分散しているために,熱可塑性9が膨張しても導電剤11は分離せず、シャットダウン機能が発揮されない場合があるからである。熱可塑性樹脂9の融点は、具体的には例えば、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<導電剤>
 本発明に用いる導電剤11としては、公知の炭素粉末、金属粉末などが使用可能であるが、その中でもファーネスブラック,アセチレンブラック,ケッチェンブラック等のカーボンブラックが好ましい。導電剤11の平均厚さは、特に限定されないが、(導電剤11の平均厚さ)/(熱可塑性樹脂9の平均厚さ)の値が0.5~3である。この値が小さすぎると、熱可塑性樹脂9中において導電剤11の粒子同士が接触しにくくなり、常温での樹脂層5の抵抗が大きくなる。また、この値が大きすぎると、昇温時にも熱可塑性樹脂9中において導電剤11の粒子同士が離間しにくくなり、シャットダウン機能が発揮されにくくなる。この値は、例えば、0.5、1、1.5、2、2.5、3であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 導電剤11の平均厚さは、樹脂層5の断面をSEM観察して得られた画像において、導電性基材から樹脂層5の表面まで連続して凝集した導電剤11の樹脂層表面に対して垂直方向の長さを10点求め,平均した長さを意味する。
 導電剤11の配合量は、特に限定されないが、導電剤11は、(前記導電剤)/(前記導電剤+前記熱可塑性樹脂)の体積%の値が10~50%となるように配合する。導電剤11の配合量が少なすぎると、導電剤11同士の連絡点数が少なく、常温時の電気抵抗が高くなってしまう。導電剤11の配合量が多すぎると、昇温時にも導電剤11同士の接触が保たれ、シャットダウン機能が発揮されにくくなる。この値は、例えば10、15、20、25、30、35、40、45、50%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
2.集電体の製造方法
 本発明の集電体の製造方法は、導電性基材3の少なくとも片面に樹脂層材料を塗布し、120~230℃で焼き付けを行う工程を備え、前記樹脂層材料は、熱可塑性樹脂と導電剤が有機溶剤中に分散又は溶解した熱可塑性樹脂液が、熱硬化性樹脂と硬化剤が水中に分散又は溶解した熱硬化性樹脂液中でエマルション化されている。
 以下、詳細に説明する。
 まず、熱可塑性樹脂と導電剤が有機溶剤中に分散又は溶解させて熱可塑性樹脂液を作成する。次に、得られた熱可塑性樹脂液を界面活性剤を含む水溶液中に添加し、攪拌する。これによって、熱可塑性樹脂液が状で水溶液中に分散されて、エマルションとなる。導電剤は、熱可塑性樹脂液の中に保持され、水溶液中には放出されない。有機溶剤は、エマルション化が可能なものであれば特に限定されず、例えば、シクロヘキサン,メチルシクロヘキサン,エチルシクロヘキサン,ペンタン,ヘキサン,ヘプタン,オクタン,トルエン,キシレン,テトラリン,デカリンのような炭化水素類,クロロホルム,メチルエチルケトン,メチルプロピルケトン,ジイソブチルケトン,メチル-n-ヘキシルケトン,シクロヘキサノン等のケトン類,酢酸イソブチル,酢酸カルビトール等のエステル類,n-ブチルエーテル,ジイソプロピルエーテル等のエーテル類,あるいはこれらの1種以上からなる混合溶媒が上げられる。
 上記水溶液には、熱硬化性樹脂と硬化剤を予め分散又は溶解させておいてもよく、エマルション化の後にこれらを分散又は溶解させてもよい。何れにしても、熱可塑性樹脂と導電剤が有機溶剤中に分散又は溶解した熱可塑性樹脂液が、熱硬化性樹脂と硬化剤が水中に分散又は溶解した熱硬化性樹脂液中でエマルション化されている樹脂層材料が得られる。
 次に、上記樹脂層材料を導電性基材上に塗布し、120~230℃で焼き付けを行う。このような温度で焼き付けを行うことによって、水及び有機溶剤が揮発し、さらに、熱硬化性樹脂と硬化剤が反応して硬化し、図1~図2に示すような集電体が得られる。焼付温度は、例えば、120、130、140、150、160、170、180、190、200、210、220、230℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、(樹脂の融点)-(焼付温度)で定義される温度差が-120℃~50℃であることが好ましい。焼付温度に比べて樹脂の融点が低すぎると、樹脂層の焼付時に、熱硬化性樹脂が硬化する前に導電剤が熱硬化性樹脂母材中に分散されてしまい、シャットダウン機能が適切に発揮されない場合があり、焼付温度に比べて樹脂の融点が高すぎると、焼き付けを行なっても熱可塑性樹脂と導電剤が融合せずに単に隣り合って熱硬化性樹脂母材中に分散して、シャットダウン機能が適切に発揮されない場合があるからである。また、上記温度差は、具体的には例えば、-120、-110、-100、-90、-80、-70、-60、-50、-40、-30、-20、-10、0、10、20、30、40、50℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。一方、上記温度差が適切であれば、導電剤が熱可塑性樹脂と融合されて、熱可塑性樹脂中に内包されるため、シャットダウン機能が適切に発揮される。
 塗工方法としてはロールコーター、グラビアコーター、スリットダイコーター等が使用可能であるが、特に制限されるものではない。焼き付け時間は、特に限定されないが、例えば、60~240秒である。
 上述した(熱可塑性樹脂9の平均厚さ)/(熱硬化性樹脂母材7の平均厚さ)の値を変化させる方法は、特に限定されないが、熱可塑性樹脂液の濃度、熱硬化性樹脂液の濃度、熱可塑性樹脂液と熱硬化性樹脂液の混合割合を変化させることによって調整可能である。例えば、熱硬化性樹脂液の濃度を大きくすることにより、熱硬化性樹脂母材7の平均厚さが厚くなり、上記値が小さくなる。
3.電極構造体
 本発明の集電体の少なくとも片面に活物質層又は電極材層を形成することによって、本発明の電極構造体を得ることができる。電極材層を形成した蓄電部品用の電極構造体については後述する。まず、活物質層を形成した電極構造体の場合、この電極構造体とセパレータ、非水電解質溶液等を用いて非水電解質電池用、例えばリチウムイオン二次電池用の電極構造体(電池用部品を含む)を製造することができる。本発明の非水電解質電池用電極構造体および非水電解質電池において集電体以外の部材は、公知の非水電池用部材を用いることが可能である。
 ここで、本発明において電極構造体として形成される活物質層は、従来、非水電解質電池用として提案されているものでよい。例えば、正極としてはアルミニウムを用いた本発明の集電体に、活物質としてLiCoO、LiMnO、LiNiO等を用い、導電剤としてアセチレンブラック等のカーボンブラックを用い、これらをバインダであるPVDFや水分散型PTFEに分散したペーストを塗工・乾燥させることにより、本発明の正極構造体を得ることができる。
 負極の電極構造体とする場合に、導電性基材として銅を用いた本発明の集電体に活物質として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMCに分散後、バインダであるSBRと混合したペーストを活物質層形成用材料として塗工・乾燥させることにより、本発明の負極構造体を得ることができる。
4.非水電解質電池
 本発明は非水電解質電池であってもよい。この場合、本発明の集電体を使用する以外には特に制限されるものではない。例えば、本発明の集電体を構成要素とする前記正極構造体と負極構造体の間に非水電解質を有する非水電解質電池用電解液を含浸させたセパレータで挟むことにより、本発明の非水電解質電池を構成することができる。非水電解質およびセパレータは公知の非水電解質電池用として用いられているものを使用可能である。電解液は溶媒として、カーボネート類やラクトン類等を用いることができ、例えば、EC(エチレンカーボネイト)とEMC(エチルメチルカーボネイト)の混合液に電解質としてLiPFやLiBFを溶解したものを用いることができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜を用いることができる。
5.蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)
 一般に電気二重層キャパシタ等は二次電池に比較すると安全であるが、ハイレート特性向上などの目的から、本発明の集電体を適用することが可能である。本発明の電気二重層キャパシタ、リチウムイオンキャパシタ等は、本発明の集電体を大電流密度での高速の充放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本発明の蓄電部品用電極構造体は本発明の集電体に電極材層を形成することによって得られ、この電極構造体とセパレータ、電解液等によって、電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品を製造することができる。本発明の電極構造体および蓄電部品において集電体以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
 電極材層は正極、負極共、電極材、導電剤、バインダよりなるものとすることができる。本発明においては、本発明の集電体の少なくとも片側に前記電極材層を形成することによって電極構造体とした後、蓄電部品を得ることができる。ここで、電極材には従来、電気二重層キャパシタ用、リチウムイオンキャパシタ用電極材料として用いられているものが使用可能である。例えば、活性炭、黒鉛などの炭素粉末や炭素繊維を用いることができる。導電剤としてはアセチレンブラック等のカーボンブラックを用いることができる。バインダとしては、例えば、PVDF(ポリフッ化ビニリデン)、SBR(スチレンブタジエンゴム)、水分散型PTFE等を用いることができる。また、本発明の蓄電部品は、本発明の電極構造体にセパレータを挟んで固定し、セパレータに電解液を浸透させることによって、電気二重層キャパシタやリチウムイオンキャパシタを構成することができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜や電気二重層キャパシタ用不織布等を用いることができる。電解液は溶媒として例えばカーボネート類やラクトン類を用いることができ、電解質は陽イオンとしてはテトラエチルアンモニウム塩、トリエチルメチルアンモニウム塩等、陰イオンとしては六フッ化りん酸塩、四フッ化ほう酸塩等を用いることができる。リチウムイオンキャパシタはリチウムイオン電池の負極、電気二重層キャパシタの正極を組み合わせたものである。これらの製造方法は本発明の集電体を用いる以外は、公知の方法に従って行うことができ、特に制限されるものではない。
以下に、実施例により本発明を詳細に説明するが、以下に示す実施例は、例示に過ぎず、本発明は、これらの実施例に限定されるものではない。
 以下に示す方法に従って、実施例・比較例の集電体を製造し、種々の評価を行った。製造条件及び評価結果は、表1~表3にまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<導電剤が分散した熱可塑性樹脂液の作製(パラフィンまたはポリエチレン)>
 パラフィンまたはポリエチレンを加熱溶融して得られた溶融液をディスパにて回転数3000回転で攪拌しながら、この中にアセチレンブラックを約0.1g/分の速度で添加して、導電剤が分散した溶融液を作製し、次いで直径0.1μmの穴から、ディスパにて回転数3000回転で攪拌している有機溶剤(トルエン)1Lに、1g/分の速度で押し出し、導電剤を含有する熱可塑性樹脂液を作製した。
<導電剤が分散した熱可塑性樹脂液の作製(パラフィン、ポリエチレン以外)>
 パラフィン、ポリエチレン以外の各種樹脂の有機溶剤(トルエン)溶液1Lをディスパにて回転数3000回転で攪拌しながら、この中にアセチレンブラックを約1g/分の速度で添加して、熱可塑性樹脂液を作成した。
<樹脂層材料の作製>
 HLB 9.5の非イオン性界面活性剤3000ppm、熱硬化性樹脂、及び硬化剤を水中に溶解又は分散させた熱硬化性樹脂液をディスパにて3000回転で攪拌しながら、この中に前記熱可塑性樹脂液を0.1L/分の割合で添加・混合して、樹脂層材料を作製した。なお、比較例4では、水の代わりに有機溶剤(トルエン)を用いた。
<集電体の作製>
 上記の樹脂層材料導電剤を、厚さ20μmのアルミニウム箔(JIS A1085)の両面に厚さバーコーターにて塗布し、直ちに熱風炉で乾燥して焼き付けを行なって、集電体の試料を作製した。焼付は、大気雰囲気、風速1~3m/s、設定雰囲気温度160℃、在炉時間120秒で行った。
<導電剤の平均厚さ>
 導電剤の平均厚さは、樹脂層の断面をSEM観察して得られた画像において、アルミニウム箔から樹脂層の表面まで連続して凝集した導電剤の樹脂層表面に対して垂直方向の長さを10点求め,その平均値から求めた。
<樹脂層の平均厚さ、熱可塑性樹脂の平均厚さの測定>
 樹脂層の厚さは、樹脂層断面をFE-SEMにて観察して測定した。熱硬化性樹脂母材の平均厚さは、熱可塑性樹脂が存在しない部分の膜厚20点の平均値から求めた。また、熱可塑性樹脂の平均厚さは、樹脂層厚さ方向(アルミ箔表面に垂直な方向)の厚さ30点の平均値から求めた。図5中の矢印A~Cがそれぞれ、熱硬化性樹脂母材、熱可塑性樹脂、導電剤の厚さを示す。
<樹脂層の電気抵抗>
 試料を20℃から10℃刻みに加熱しながら、上下を金めっきした電極で試料を挟み、一定電圧で流れる直流電流量を測定することにより、電極各温度での抵抗を求めた。抵抗が上昇し始める最低温度を抵抗増加開始温度とした。また、20℃での抵抗値で最大抵抗値を割った値を抵抗比とした。
<密着性の測定>
 試料表面に電気絶縁用ポリエステルテープ(日東電工製NP-Tテープ)、幅10mmを貼り付け、手で押し付けて良く密着させた後、勢い良く剥がし、剥離面を観察した。
◎:変化無しの樹脂層
○:表層のみ剥離または引き剥がしたテープ面に導電剤が付着している樹脂層
×:一部または全てアルミ界面から剥離している樹脂層
<耐溶剤性の測定>
 NMP溶液に、室温で60秒浸漬し、取り出し後に表面に付着したNMPを手早く拭き取り、直ちにスクラッチ試験を行った。スクラッチ試験はガーゼを10枚重ねた2ポンドハンマーを往復させ、樹脂層に変化(脱色、剥離、樹脂層厚さ減少)が生じた回数を記録した。往復回数は最大20回とした。
<考察>
 全ての実施例では、常温時には電気抵抗が小さく、昇温に伴って電気抵抗が増大し、シャットダウン機能が適切に発揮された。また、密着性及び耐溶剤性も良好であった。
 比較例1では、熱可塑性樹脂が極めて低融点であるので、樹脂層の焼付時に、熱硬化性樹脂が硬化する前に導電剤が熱硬化性樹脂母材中に分散されてしまい、シャットダウン機能が適切に発揮されなかった。
 比較例2では、焼付温度が熱可塑性樹脂の融点よりかなり低い温度であるので、熱可塑性樹脂と導電剤が融合せず,単に隣り合って熱硬化性樹脂母材中に分散しているために,熱可塑性が膨張しても導電剤が分離せず、シャットダウン機能が適切に発揮されなかった。
 比較例3では、樹脂層の焼付温度が極めて高いので、熱硬化性樹脂母材が分解され、樹脂層密着性、耐溶剤性低下した。
 比較例4では、有機溶剤を用いて熱硬化性樹脂液を作製したので、熱可塑性樹脂及び導電剤が熱硬化性樹脂母材に分散してしまい、昇温時においても電気伝導性が保持され、シャットダウン機能が適切に発揮されなかった。
 比較例5では、熱硬化性樹脂液に硬化剤が含まれていないので、全てが熱可塑性樹脂ベースの樹脂層となり、活物質ペースト中の溶剤で膨潤しやすく、密着性低下、耐溶剤性低下が生じた。
 比較例6では、導電剤配合量が過剰であるので、昇温時にも導電剤同士の接触が保たれ、シャットダウン機能が適切に発揮されなかった。
 比較例7では、導電剤配合量が過少であるので、導電剤同士の連絡点数が少なく、常温時の電気抵抗が高かった。
 比較例8では、熱硬化性樹脂に対する熱可塑性樹脂の配合量が過剰で、熱硬化性樹脂の厚さに対する熱可塑性樹脂の厚みが厚いため、熱硬化性樹脂が熱可塑性樹脂を保持できないため耐溶剤性が劣った。
 比較例9では、熱硬化性樹脂に対する熱可塑性樹脂の厚みが薄いため、熱可塑性樹脂が熱硬化性樹脂に埋まってしまい、活物質と熱可塑性樹脂が接触しにくく導電経路が少なくなって、常温時の電気抵抗が高かった。
 比較例10では、導電剤に対する熱可塑性樹脂の配合量が多いため、導電剤の厚みが薄く、常温時の電気抵抗が高かった。また、熱硬化性樹脂に対する熱可塑性樹脂の配合量が過剰で熱可塑性樹脂が厚いため脱落しやすく耐溶剤性も劣った。
 比較例11では、熱可塑性樹脂の配合量が過少であるため、導電経路が少なく、常温時の電気抵抗が高かった。
1:集電体
3:導電性基材
5:樹脂層(集電体用樹脂層)
7:熱硬化性樹脂母材
9:熱可塑性樹脂
11:導電剤
15:活物質層又は電極材層
17:電極構造体

Claims (9)

  1. 導電性基材の少なくとも片面に樹脂層を有する集電体であって、前記樹脂層は、熱硬化性樹脂母材中に、導電剤を内包した熱可塑性樹脂が分散されてなり、
    (前記導電剤の平均厚さ)/(前記熱可塑性樹脂の平均厚さ)の値が0.5~3であり、
    前記導電剤は、(前記導電剤)/(前記導電剤+前記熱可塑性樹脂)の体積%の値が10~50%となるように配合され、
    熱可塑性樹脂割合が10~65%である、集電体。
  2. 前記熱可塑性樹脂は、融点が50℃以上200℃以下である請求項1に記載の集電体。
  3. (前記熱可塑性樹脂の平均厚さ)/(前記硬化性樹脂母材の平均厚さ)の値が0.9~3.5である請求項1又は2に記載の集電体。
  4. 前記熱可塑性樹脂が,ポリエチレン系樹脂,ポリプロピレン系樹脂,ポリフッ化ビニリデン系樹脂,ポリビニルブチラール系樹脂またはそれらの変性物中から選ばれる1種以上からなる請求項1~3の何れか1つに記載の集電体。
  5. 前記導電剤は、カーボンブラックからなる請求項1~4の何れか1つに記載の集電体。
  6. 前記熱硬化性樹脂母材は、熱硬化性樹脂と硬化剤を含む組成物から形成され、
    前記熱硬化性樹脂は、ポリアクリル酸系樹脂、硝化綿系樹脂、キトサン系樹脂の中の1種以上を含む混合物又は共重合体からなる請求項1~5の何れか1つに記載の集電体。
  7. 請求項1~6の何れか1つに記載の集電体の前記樹脂層上に活物質層又は電極材層を備える、電極構造体。
  8. 請求項7に記載の電極構造体を備える、非水電解質電池又は蓄電部品。
  9. 導電性基材の少なくとも片面に樹脂層材料を塗布し、120~230℃で焼き付けを行う工程を備え、
    前記樹脂層材料は、熱可塑性樹脂と導電剤が有機溶剤中に分散又は溶解した熱可塑性樹脂液が、熱硬化性樹脂と硬化剤が水中に分散又は溶解した熱硬化性樹脂液中でエマルション化されている、集電体の製造方法。
PCT/JP2013/063129 2012-05-15 2013-05-10 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法 WO2013172256A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/397,115 US9508994B2 (en) 2012-05-15 2013-05-10 Current collector, electrode structure, nonaqueous electrolyte battery and electrical storage device, and method for producing current collector
EP13791238.2A EP2851982A4 (en) 2012-05-15 2013-05-10 COLLECTOR, ELECTRODE STRUCTURE, NONAQUEOUS ELECTROLYTE BATTERY, AND ENERGY STORAGE COMPONENT, AND MANUFACTURER PRODUCTION METHOD
JP2014515592A JPWO2013172256A1 (ja) 2012-05-15 2013-05-10 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法
KR1020147035116A KR20150015503A (ko) 2012-05-15 2013-05-10 집전체, 전극 구조체, 비수전해질 전지 및 축전 부품, 집전체의 제조 방법
CN201380021616.0A CN104254940B (zh) 2012-05-15 2013-05-10 集电体、电极结构体、非水电解质电池及蓄电部件、集电体的制造方法
HK15105152.6A HK1204711A1 (en) 2012-05-15 2015-05-29 Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-111112 2012-05-15
JP2012111112 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013172256A1 true WO2013172256A1 (ja) 2013-11-21

Family

ID=49583662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063129 WO2013172256A1 (ja) 2012-05-15 2013-05-10 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法

Country Status (8)

Country Link
US (1) US9508994B2 (ja)
EP (1) EP2851982A4 (ja)
JP (1) JPWO2013172256A1 (ja)
KR (1) KR20150015503A (ja)
CN (1) CN104254940B (ja)
HK (1) HK1204711A1 (ja)
TW (1) TW201351766A (ja)
WO (1) WO2013172256A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023503695A (ja) * 2019-12-02 2023-01-31 ホーフェイ ゴション ハイテク パワー エナジー カンパニー リミテッド リチウムイオン電池用の異方性コレクタならびにその製造方法および使用
JP2023503694A (ja) * 2019-12-02 2023-01-31 ホーフェイ ゴション ハイテク パワー エナジー カンパニー リミテッド リチウムイオン電池に用いられる高配向性コレクタおよびその製造方法並びに使用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006589A (ja) * 2016-07-04 2018-01-11 太陽誘電株式会社 電気化学デバイス用電極、電気化学デバイス及び電気化学デバイス用電極の製造方法
US9893361B1 (en) 2016-09-19 2018-02-13 Marc Jaker Electrochemical cells and methods for making same
KR102443061B1 (ko) * 2017-03-15 2022-09-14 삼성전자주식회사 온도 변화에 따른 가변층을 포함하는 재충전가능한 배터리
US10790538B2 (en) 2017-08-11 2020-09-29 Industrial Technology Research Institute Negative electrode and lithium ion battery
JP6816696B2 (ja) * 2017-10-13 2021-01-20 トヨタ自動車株式会社 負極、およびそれを備える非水電解質二次電池
CN111200113B (zh) * 2018-11-16 2021-01-12 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN111454533B (zh) 2020-04-09 2023-01-31 立讯精密工业股份有限公司 一种导电塑胶及其应用
CN115425234A (zh) * 2022-08-29 2022-12-02 浙江柔震科技有限公司 复合集流体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076684A (ja) 1993-06-17 1995-01-10 Sony Chem Corp ヒューズ抵抗組成物及びヒューズ抵抗器
JPH10270084A (ja) 1997-03-27 1998-10-09 Seiko Instr Inc 非水電解質二次電池
JP2001357854A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2005123185A (ja) 2003-10-10 2005-05-12 Lg Cable Ltd Ptc粉末を含有したリチウムイオン二次電池及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3012479B2 (ja) * 1995-02-15 2000-02-21 東洋鋼鈑株式会社 電池ケース用被覆金属板、電池ケース及び電池
US20110305948A1 (en) * 2009-03-12 2011-12-15 Nissan Motor Co., Ltd. Bipolar battery current collector and bipolar battery
US8415004B2 (en) * 2009-11-12 2013-04-09 Taiflex Scientific Co., Ltd. Low thermal-impedance insulated metal substrate and method for manufacturing the same
BR112012012049B1 (pt) * 2009-11-20 2021-11-23 Nissan Motor Co., Ltd Coletor de corrente para bateria secundária bipolar, eletrodo para bateria secundária bipolar e bateria secundária bipolar
US20140065491A1 (en) * 2011-04-26 2014-03-06 Showa Denko K.K. Secondary battery
JP6125265B2 (ja) * 2012-05-07 2017-05-10 日東電工株式会社 積層型導電シート、その製造方法、集電体およびバイポーラ電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076684A (ja) 1993-06-17 1995-01-10 Sony Chem Corp ヒューズ抵抗組成物及びヒューズ抵抗器
JPH10270084A (ja) 1997-03-27 1998-10-09 Seiko Instr Inc 非水電解質二次電池
JP2001357854A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2005123185A (ja) 2003-10-10 2005-05-12 Lg Cable Ltd Ptc粉末を含有したリチウムイオン二次電池及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2851982A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023503695A (ja) * 2019-12-02 2023-01-31 ホーフェイ ゴション ハイテク パワー エナジー カンパニー リミテッド リチウムイオン電池用の異方性コレクタならびにその製造方法および使用
JP2023503694A (ja) * 2019-12-02 2023-01-31 ホーフェイ ゴション ハイテク パワー エナジー カンパニー リミテッド リチウムイオン電池に用いられる高配向性コレクタおよびその製造方法並びに使用

Also Published As

Publication number Publication date
US9508994B2 (en) 2016-11-29
US20150125757A1 (en) 2015-05-07
CN104254940A (zh) 2014-12-31
HK1204711A1 (en) 2015-11-27
EP2851982A1 (en) 2015-03-25
EP2851982A4 (en) 2016-01-13
JPWO2013172256A1 (ja) 2016-01-12
CN104254940B (zh) 2017-03-15
TW201351766A (zh) 2013-12-16
KR20150015503A (ko) 2015-02-10

Similar Documents

Publication Publication Date Title
WO2013172256A1 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法
TWI591889B (zh) Current Collector, Electrode Structure, Nonaqueous Electrolyte Battery, Conductivity Packing and storage components
WO2014157405A1 (ja) 集電体、電極構造体、電池およびキャパシタ
EP2922122A1 (en) Collector, electrode structure body, and electrical storage component
TW201431163A (zh) 集電體、電極、二次電池及電容
TWI578603B (zh) A current collector, an electrode structure, and a power storage unit
WO2013172257A1 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法
EP2835851A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
KR20150001816A (ko) 집전체, 전극 구조체, 비수전해질 전지 및 축전 부품
JP2017054682A (ja) 集電体、電極構造体および蓄電部品
JP2007265889A (ja) 非水電解液二次電池用電極板及びその製造方法並びに非水電解液二次電池
JP2013218925A (ja) セパレータ、及びそれを用いた非水系二次電池
EP2867940A1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
JP6879289B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791238

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397115

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014515592

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013791238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013791238

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147035116

Country of ref document: KR

Kind code of ref document: A