JP6816696B2 - 負極、およびそれを備える非水電解質二次電池 - Google Patents

負極、およびそれを備える非水電解質二次電池 Download PDF

Info

Publication number
JP6816696B2
JP6816696B2 JP2017199512A JP2017199512A JP6816696B2 JP 6816696 B2 JP6816696 B2 JP 6816696B2 JP 2017199512 A JP2017199512 A JP 2017199512A JP 2017199512 A JP2017199512 A JP 2017199512A JP 6816696 B2 JP6816696 B2 JP 6816696B2
Authority
JP
Japan
Prior art keywords
negative electrode
heat
active material
silicon oxide
microcapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017199512A
Other languages
English (en)
Other versions
JP2019075239A (ja
Inventor
武田 和久
和久 武田
友嗣 横山
友嗣 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017199512A priority Critical patent/JP6816696B2/ja
Priority to US16/101,652 priority patent/US10763498B2/en
Priority to CN201811188710.6A priority patent/CN109671909B/zh
Publication of JP2019075239A publication Critical patent/JP2019075239A/ja
Application granted granted Critical
Publication of JP6816696B2 publication Critical patent/JP6816696B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は、負極、およびそれを備える非水電解質二次電池に関する。
特開2016−046033号公報(特許文献1)には、負極活物質として酸化ケイ素などのシリコンを含む粒子を備えたリチウム二次電池用の負極活物質が開示されている。
なお、特開平10−270084号公報(特許文献2)には、温度上昇によりカプセルが破れて内包物が放出される感熱性マイクロカプセルを電極合材の表面に塗布し、それにより電池内部の反応を阻害することが記載されています。
特開2016−046033号公報 特開平10−270084号公報
酸化ケイ素は、黒鉛等の炭素系負極活物質よりも高容量であり、二次電池の高容量化の観点から、負極活物質の材料として注目されている。しかし、酸化ケイ素は、炭素系負極活物質よりも充放電時の膨張率および収縮率が大きい。
したがって、図3を参照して、釘5による釘さし等により、セパレータ30による絶縁が破壊されると、正極(正極集電体11および正極合材層12)と釘5と負極(負極集電体21および負極合材層22)との間で、図3に示される矢印方向の短絡電流が生じて、内部短絡が生じる。これにより、短絡部(釘5)の近傍が発熱する。
ここで、図2(a)および(b)を参照して、負極活物質が酸化ケイ素3を含む場合、急速な放電により酸化ケイ素3が大きく収縮する。そのため、負極合材層に空隙が生じ、そこに電解液1が流れ込む(図2(a)に示される状態から図2(b)に示される状態となる)。ここで、内部短絡による発熱で電池内の温度は上昇しているため、電解液1が負極活物質(炭素系負極活物質2および酸化ケイ素3)と反応して、それにより更なる温度上昇(熱暴走)が生じる虞があった。
したがって、本開示の課題は、負極合材層中に酸化ケイ素を含有する非水電解質二次電池用の負極、およびそれを備える非水電解質二次電池において、内部短絡等による発熱時に、電解液と負極活物質との反応による更なる温度上昇を抑制することである。
〔1〕 本開示の非水電解質二次電池用の負極は、負極集電体と、負極集電体の表面に形成された負極合材層と、を備える。
負極合材層は、酸化ケイ素を含む負極活物質と、熱膨張型マイクロカプセルと、を含有する。
負極活物質の総量に対する酸化ケイ素の割合は、30質量%以下である。
負極活物質の総量に対する熱膨張型マイクロカプセルの配合率は、0.5質量%以上である。
負極合材層に含まれる熱膨張型マイクロカプセルのうち、酸化ケイ素と接触している熱膨張型マイクロカプセルの割合は、70質量%以上である。
本開示によれば、負極合材層中に熱膨張型マイクロカプセルを含有することにより、負極合材層中に酸化ケイ素を含有する非水電解質二次電池用の負極、およびそれを備える非水電解質二次電池において、内部短絡等による発熱時に、電解液と負極活物質との反応による更なる温度上昇を抑制することができる。その理由は、以下のように考えられる。
図1(a)および(b)に示されるように、内部短絡(釘差し)等による発熱時には、酸化ケイ素3が急速な放電により大きく収縮する。しかしながら、本開示においては、発熱によって熱膨張型マイクロカプセル4が膨張することで、酸化ケイ素3の収縮による空隙が埋められる。それにより、負極合材層への電解液1の流れ込みが抑制され、電解液1と負極活物質(炭素系負極活物質2および酸化ケイ素3)との接触が抑制される。このため、電解液と負極活物質との反応による更なる温度上昇(熱暴走)が抑制される。
なお、本発明者らの検討により、下記(i)〜(iii)の条件を満たすことにより、内部短絡等による発熱時に、酸化ケイ素の収縮によって生じる空隙を熱膨張型マイクロカプセルによってより確実に埋めることができるため、電解液と負極活物質との反応による更なる温度上昇を確実に抑制することができることが見出された。
(i) 負極活物質の総量に対する酸化ケイ素の割合は、30質量%以下である。
(ii) 負極活物質の総量に対する熱膨張型マイクロカプセルの配合率は、0.5質量%以上である。
(iii) 負極合材層に含まれる熱膨張型マイクロカプセルのうち、酸化ケイ素と接触している熱膨張型マイクロカプセルの割合は、70質量%以上である。
〔2〕 熱膨張型マイクロカプセルは、熱可塑性樹脂からなるシェルと、該シェル内に収容された熱膨張剤と、を含むことが好ましい。この場合、内部短絡等による発熱時に、熱膨張剤の気化、昇華等により熱膨張型マイクロカプセルが瞬時に膨張するため、電解液と負極活物質との反応による更なる温度上昇をより確実に抑制することができる。
〔3〕 本開示は、上記〔1〕または〔2〕に記載の負極を備える、非水電解質二次電池にも関する。上記の負極を備えることにより、内部短絡等による発熱時に、電解液と負極活物質との反応による更なる温度上昇を抑制することができる。
図1は、実施形態の負極の釘差し前後の状態を説明するための概念図である。 図2は、従来の負極の釘差し前後の状態を説明するための概念図である。 図3は、従来の負極の釘差し時の電流の流れと発熱部を説明するための概念図である。 図4は、実施形態の非水電解質二次電池の構成の一例を示す概略図である。 図5は、実施形態の電極群の構成の一例を示す概略図である。 図6は、実施形態の正極の構成の一例を示す概略図である。 図7は、実施形態の負極の構成の一例を示す概略図である。
以下、本開示の実施形態(以下「本実施形態」と記される)が説明される。ただし、以下の説明は、本開示の範囲を限定するものではない。
<非水電解質二次電池>
本明細書の「非水電解質二次電池」は、電解質に水を含まない電池を示す。以下、非水電解質二次電池が「電池」と略記される場合がある。
図4は、本実施形態の非水電解質二次電池の構成の一例を示す概略図である。電池100は、電池ケース80を含む。電池ケース80は、角形(扁平直方体形)である。ただし、本実施形態の電池ケースは、円筒形であってもよい。電池ケース80は、Al合金、ステンレス(SUS)、鉄(Fe)等の金属材料、あるいは樹脂材料により構成され得る。電池ケース80は、金属材料と樹脂材料との複合材料(例えば、アルミラミネートフィルム製の袋等)によって構成されていてもよい。
電池ケース80は密閉されている。電池ケース80には、端子81が設けられている。電池ケース80は、図示しない電流遮断機構(CID)、ガス排出弁、注液孔等を備えていてもよい。電池ケース80は、電極群50および電解液を収納している。電極群50は、端子81と電気的に接続されている。
図5は、本実施形態の電極群の構成の一例を示す概略図である。電極群50は、巻回型である。すなわち電極群50は、正極10、セパレータ30、負極20およびセパレータ30がこの順序で積層され、さらにこれらが渦巻状に巻回されることにより構成されている。電極群50は、扁平状に成形されていてもよい。ただし、本実施形態の電極群は、積層型であってもよい。積層型の電極群は、正極と負極との間にセパレータが挟まれつつ、正極と負極とが交互に積層されることにより構成される。
《正極》
図6は、本実施形態の正極の構成の一例を示す概略図である。正極10は、帯状のシートである。正極10は、正極集電体11と、正極合材層12とを含む。正極合材層12は、正極集電体11の表面に担持されている。正極合材層12は、正極活物質を含む。正極10は、端子81との接続位置として、正極集電体11が正極合材層12から露出した部分を有していてもよい。
〔正極集電体〕
正極集電体11は、正極集電体11は、導電性を有する電極基材である。正極集電体11は、例えば5μm以上50μ以下の厚さを有してもよい。正極集電体11は、例えば、純Al箔、Al合金箔等であってもよい。
〔正極合材層〕
正極合材層12は、正極集電体11の表面(表裏両面または一方の表面)に形成されている。正極合材層12は、例えば、10〜200μmの厚さを有してもよいし、100〜200μmの厚さを有してもよい。正極合材層12は、例えば、80〜98質量%の正極活物質と、1〜15質量%の導電材と、その残部のバインダとを含み得る。
《負極》
図7は、本実施形態の負極の構成の一例を示す概略図である。負極20は、帯状のシートである。負極20は、負極集電体21と、負極集電体21の表面に形成された負極合材層22と、を備える。負極合材層22は、例えば、負極集電体21の表面に担持されている。負極20は、端子81との接続位置として、負極集電体21が負極合材層22から露出した部分を有していてもよい。
〔負極集電体〕
負極集電体21は、例えば、5〜30μmの厚さを有してもよい。負極集電体21は、例えば、Cu箔であってもよい。Cu箔は、純Cu箔であってもよいし、Cu合金箔であってもよい。
〔負極合材層〕
負極合材層22は、負極集電体21の表面(表裏両面または一方の表面)に形成されている。負極合材層22は、例えば、10〜200μmの厚さを有してもよいし、50〜150μmの厚さを有してもよい。
負極合材層22は、酸化ケイ素を含む負極活物質と、熱膨張性マイクロカプセルと、を含有する。また、負極合材層22は、さらに他の添加剤(バインダ、増粘材等)を含んでもよい。
(負極活物質)
本実施形態における負極活物質は、酸化ケイ素を含有する。酸化ケイ素は、一般式「SiOx」(ただし0.01≦x<2である)で表される化合物である。該一般式において、好ましくは0.1≦x≦1.5であり、より好ましくは0.5≦x≦1.5であり、さらに好ましくは0.5≦x≦1.0である。なお、このような酸化ケイ素が、以下、単に「SiO」と略記される場合がある。なお、SiOは、炭素系負極活物質よりも高容量であるため、負極合材層がSiOを含むことにより、二次電池の容量を向上させることが可能である。
負極活物質は、酸化ケイ素以外の炭素系負極活物質などの他の活物質を含んでいてもよい。「炭素系負極活物質」とは、炭素を備え、Liイオンの吸蔵、放出が可能な物質を示す。炭素系負極活物質は、例えば、黒鉛、不定型炭素コート黒鉛、易黒鉛化性炭素(ソフトカーボン)および難黒鉛化性炭素(ハードカーボン)からなる群より選択される少なくとも1種であってもよい。負極合材層が炭素系負極活物質を含むことにより、容量、出力特性およびサイクル特性などのバランスが向上する可能性もある。
本実施形態において、負極活物質の総量(酸化ケイ素および炭素系負極活物質の総量)に対する酸化ケイ素の割合は、30質量%以下である。30質量%を超える場合は、内部短絡等による発熱時に更なる温度上昇を十分に抑制することが難しくなる傾向がある。負極活物質の総量に対する酸化ケイ素の割合は、好ましくは1質量%以上30質量%以下であり、より好ましくは5質量%以上25質量%以下である。
(熱膨張型マイクロカプセル)
本実施形態の熱膨張型マイクロカプセルは、加熱により膨張する性質を有する微小構造体である。
熱膨張型マイクロカプセルは、例えば、熱可塑性樹脂からなるシェル(外殻)と、該シェル内に封入された熱膨張剤と、を含む。このような熱膨張型マイクロカプセルにおいては、加熱により、シェル(熱可塑性樹脂)が軟化すると共に、シェル内部の熱膨張剤が気化または昇華して内圧が上昇することで、迅速に熱膨張型マイクロカプセルが膨張する。
熱膨張型マイクロカプセルの膨張率は、例えば、体積比率で2〜100倍程度である。この場合、負極合材層中に含浸された状態で、酸化ケイ素(SiO)粒子の収縮分の容積を埋めるのに十分な程度まで膨張することが可能である。
したがって、熱膨張型マイクロカプセルを多数含有させておくことにより、温度上昇時に膨張した熱膨張型マイクロカプセルによって、負極合材層に侵入した電解液を押し出すことができる。このため、負極活物質の総量に対する熱膨張型マイクロカプセルの配合率は、0.5質量%以上であることが好ましい。一方で、熱膨張性マイクロカプセルの含有量が多くなると、電池の抵抗が上昇する傾向がある。このため、負極活物質の総量に対する熱膨張型マイクロカプセルの配合率は、25質量%以下であることが好ましく、20質量%以下であることがより好ましい。
シェル(熱可塑性樹脂)の軟化開始温度、および、内包物(熱膨張剤)の膨張(気化または昇華)開始温度は、電池の通常の動作温度(例えば、室温〜80℃程度)より高いことが好ましく、電池の内部短絡等による発熱時に熱暴走が開始される温度(例えば、80〜180℃)よりも低いことが好ましく、具体的には、例えば、100℃〜160℃程度である。これにより、電池が内部短絡等によって発熱したときにのみ、熱膨張性マイクロカプセルが膨張することになるため、電池の通常使用時において、熱膨張性マイクロカプセルの膨張による電池の破損等が防止される。なお、シェルが破裂しないように、熱膨張剤の膨張が開始される前にシェルが軟化していることが望ましいため、シェルの軟化開始温度は、熱膨張剤の膨張開始温度よりも低いことが好ましい。
シェルを構成する熱可塑性樹脂は、電解液に対する耐性に優れ、且つガスバリヤー性に優れることが好ましい。このような熱可塑性樹脂としては、例えば、塩化ビニリデンを含む(共)重合体、(メタ)アクリロニトリルを含む(共)重合体などが挙げられる。なお、熱膨張性マイクロカプセルの発泡特性、耐熱性等を改良するため、熱膨張性マイクロカプセルの調製時に、熱可塑性樹脂に架橋性単量体を配合してもよい。
シェル中に封入される熱膨張剤としては、例えば、揮発性の炭化水素などの有機化合物が挙げられる。例えば、100℃以下の沸点を有する揮発性の炭化水素としては、プロパン、プロピレン、n−ブタン、イソブタン、ブテン、イソブテン、イソペンタン、ネオペンタン、n−ペンタン、n−ヘキサン、イソヘキサン、ヘプタン、石油エーテルなどが挙げられる。また、電池内部での安定性を考慮して、塩化メチル、メチレンクロライド、フロロトリクロロメタン、ジフロロジクロロメタン、クロロトリフロロメタン等のハロゲン化炭化水素やクロロフロロカーボン類等の不燃性または難燃性の化合物を熱膨張剤として用いてもよい。これらは、それぞれ単独で、あるいは2種以上を組合せて使用することができる。
熱膨張型マイクロカプセルは、種々公知の方法によって製造することができ、例えば、水系分散媒体中で、少なくとも熱膨張剤と、シェルを構成する熱可塑性樹脂を得るための重合性単量体と、を含有する重合性混合物を懸濁重合する方法などにより製造することができる。具体的には、例えば、特公昭42−26524号公報、特開昭62−286534号公報、特開平4−292643号公報、特開平11−209504号公報等に開示される熱膨張型マイクロカプセルの製造方法を適用することができる。なお、マイクロカプセル化の懸濁重合においては、これら熱膨張剤は、シェルを構成する熱可塑性樹脂を与える重合性単量体(架橋性単量体を含む)100重量部に対し、例えばは、5〜100重量部程度の割合で使用すればよい。
熱膨張型マイクロカプセルの市販品としては、例えば、松本油脂製薬株式会社製のマツモトマイクロスフィアー(登録商標)FN−100SS(膨張開始温度:120℃)、マツモトマイクロスフィアーFN−80GS(膨張開始温度:100℃)、マツモトマイクロスフィアーF−48(膨張開始温度:90℃)、マツモトマイクロスフィアーF−65(膨張開始温度:110℃)などが挙げられる。
熱膨張型マイクロカプセルの平均粒径は、好ましくは5〜30μmである。なお、本明細書において、「平均粒径」は、レーザ回折散乱法によって測定される体積基準の粒度分布において、微粒側から累積50%の粒径を意味する。また、熱膨張型マイクロカプセルは、粒径分布がシャープであることが好ましい。この場合、個々の熱膨張性マイクロカプセルの膨張開始温度のバラツキが少なく、所定の温度に達したときに迅速に全ての熱膨張性マイクロカプセルが膨張するため、SiOの収縮によって生じる空隙を迅速に埋めることが可能になると考えられる。
熱膨張性マイクロカプセルの平均粒径および粒径分布は、この分野で一般に使用されている方法により制御できる。例えば、熱膨張性マイクロカプセルを調製する際の懸濁重合において、分散安定剤の種類や量、乳化分散手段と乳化条件などを選択することによって制御できる。
熱膨張型マイクロカプセルは、従来公知の方法によって負極合材層中に含有させることができる。例えば、負極活物質、熱膨張型マイクロカプセル、バインダ、溶媒等を含む負極合材スラリーを負極集電体上に塗布し、乾燥することにより、負極合材層を形成することで、負極合材層中に熱膨張型マイクロカプセルを含有させることができる。
負極合材層に含まれる熱膨張型マイクロカプセルのうち、酸化ケイ素と接触している熱膨張型マイクロカプセルの割合は、70質量%以上である。この場合、内部短絡等による発熱時に、熱膨張型マイクロカプセルが酸化ケイ素の近傍にあるため、酸化ケイ素の収縮による空隙を膨張した熱膨張型マイクロカプセルによって確実に埋めることができる。これにより、電解液と負極活物質との反応による更なる温度上昇をより確実に抑制することができる。なお、上記の酸化ケイ素と接触している熱膨張型マイクロカプセルの割合の上限は、特に限定されず、100質量%であってもよい。
酸化ケイ素と接触している熱膨張型マイクロカプセルの割合を高める方法としては、例えば、負極合材ペーストを負極集電体の表面に塗布し、乾燥することにより負極を製造する場合、予めSiO粒子と熱膨張型マイクロカプセルとを混合し、その混合物を負極合材層の他の成分および溶媒と混合することにより、負極合材ペーストを調製する方法が挙げられる。なお、例えば、電極合材層に用いられるSiO粒子および熱膨張性マイクロカプセルの全量に対して、予め混合するSiO粒子および熱膨張性マイクロカプセルの割合を変更することで、酸化ケイ素と接触している熱膨張型マイクロカプセルの割合を調整することができる。
(他の成分)
負極合材層は、上記以外の成分として、バインダ、増粘材、導電材等を含んでいてもよい。バインダとしては、例えば、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、ポリテトラフルオロエチレン(PTFE)等が挙げられる。増粘材としては、カルボキシメチルセルロース(CMC)、アルギン酸、ヒドロキシプロピルメチルセルロース(HPMC)、ポリエチレンオキシド(PEO)、ポリアクリル酸(PAA)、増粘多糖類などが挙げられる。
《セパレータ》
セパレータ30は、帯状のシートである。セパレータ30は、正極10と負極20との間に介在している。セパレータ30は、電気絶縁性の多孔質膜である。セパレータ30は、例えば、10〜50μmの厚さを有してもよい。セパレータ30は、例えば、ポリエチレン(PE)製、ポリプロピレン(PP)製等であり得る。セパレータ30は、多層構造を有してもよい。セパレータ30は、例えば、PP製の多孔質膜、PE製の多孔質膜、およびPP製の多孔質膜がこの順序で積層されることにより、構成されていてもよい。
《電解液(非水電解質)》
電解液は、電極群50に含浸されている。電解液の一部は、電池ケース80の底部に貯留されている。なお、図4中の一点鎖線は、電解液の液面を示している。
電解液は、リチウム(Li)塩および溶媒を少なくとも含む。電解液は、たとえば0.5mоl/l以上2mоl/l以下のLi塩を含んでもよい。Li塩は支持電解質である。Li塩は溶媒に溶解している。Li塩は、たとえば、LiPF6、LiBF4、Li[N(FSO22]、Li[N(CF3SO22]等であってもよい。1種のLi塩が単独で使用されてもよい。2種以上のLi塩が組み合わされて使用されてもよい。
溶媒は非プロトン性である。すなわち本実施形態の電解液は非水電解質である。溶媒は、たとえば環状カーボネートおよび鎖状カーボネートの混合物であってもよい。混合比は、たとえば「環状カーボネート:鎖状カーボネート=1:9〜5:5(体積比)」であってもよい。
環状カーボネートは、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、フルオロエチレンカーボネート(FEC)等であってもよい。1種の環状カーボネートが単独で使用されてもよい。2種以上の環状カーボネートが組み合わされて使用されてもよい。
鎖状カーボネートは、たとえば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等であってもよい。1種の鎖状カーボネートが単独で使用されてもよい。2種以上の鎖状カーボネートが組み合わされて使用されてもよい。
溶媒は、たとえば、ラクトン、環状エーテル、鎖状エーテル、カルボン酸エステル等を含んでもよい。ラクトンは、たとえば、γ−ブチロラクトン(GBL)、δ−バレロラクトン等であってもよい。環状エーテルは、たとえば、テトラヒドロフラン(THF)、1,3−ジオキソラン、1,4−ジオキサン等であってもよい。鎖状エーテルは、1,2−ジメトキシエタン(DME)等であってもよい。カルボン酸エステルは、たとえば、メチルホルメート(MF)、メチルアセテート(MA)、メチルプロピオネート(MP)等であってもよい。
<用途>
本実施形態の負極は、例えば、リチウムイオン二次電池(非水電解質二次電池)などの二次電池用の負極として用いることができる。その二次電池は、例えば、ハイブリッド自動車(HV)、電気自動車(EV)、プラグインハイブリッド車(PHV)等の電源として用いることができる。ただし、本開示の製造方法によって得られる負極は、このような用途に限られず、あらゆる二次電池に適用可能である。
以下、実施例が説明される。ただし以下の例は、本開示の範囲を限定するものではない。以下、二次電池が「電池」と略記される場合がある。
<比較例1〜4>
《負極の製造》
以下の材料が準備された。
負極活物質: 黒鉛(炭素系負極活物質) (平均粒径:20μm)
酸化ケイ素(平均粒径:20μm)
バインダ: SBR
増粘材: CMC
溶媒: 水
負極集電体: 銅箔(厚さ:10μm)
〔尚、比較例1〜4では、黒鉛と酸化ケイ素との総量(100%)に対する黒鉛および酸化ケイ素の各々の比率を表1の「活物質組成比率」欄に示すように変化させた。〕
10質量部の負極活物質(黒鉛および酸化ケイ素)、1質量部のバインダ、および、1質量部の増粘材が混合された。混合物に、さらに溶媒が加えられ、それらが混練されることにより、負極合材ペースト(スラリー)が調製された。なお、溶媒の添加量は、得られる負極合材ペーストの不揮発分率が50質量%となるように調整された。「不揮発分率」とは、溶媒を含む全ての原材料の質量合計に対する、溶媒以外の成分(不揮発成分)の質量比率を意味する。
調製された負極合材スラリーが、ダイコータを用いて、負極集電体の表面(表裏両面)に塗工され、乾燥された。これにより、負極集電体の両面に負極合材層が形成されてなる負極(負極シート)が得られた。該負極シートの厚みは80μmであり、負極合材層の幅は100mmであった。得られた負極(負極シート)は、所定の長さ(3300mm)に切断された。このようにして、比較例1〜4の負極が製造された。
<比較例5、実施例1〜4>
比較例5および実施例1〜4では、負極合材中に、さらに熱膨張型マイクロカプセルが配合された。熱膨張型マイクロカプセルとしては、松本油脂製薬株式会社製のマツモトマイクロスフィアー(登録商標)FN−100SS(平均粒径:6〜11μm、熱膨張開始温度:120℃)が用いられ、そのシェルはアクリロニトリル系樹脂から構成され、シェル内に熱膨張剤である炭化水素が収容されていた。なお、予め熱膨張性マイクロカプセルの全量と酸化ケイ素とを粉体状態で混合しておき、その混合物を負極合材層の他の材料および溶媒と混合することで、負極合材ペーストを調製した。粉体状態での混合は、ハイスピードミキサーにて1000rpm、5分間行った。また、比較例5および実施例1〜4では、負極活物質の総量に対する熱膨張性マイクロカプセルの配合率を、表1に示されるように変化させた。以上の点以外は、比較例2と同様にして、比較例5および実施例1〜4の負極が製造された。
<実施例5、実施例6、比較例6>
黒鉛と酸化ケイ素との総量(100%)に対する黒鉛および酸化ケイ素の各々の比率を表1の「活物質組成比率」欄に示すように変化させた点以外は、実施例2と同様にして、実施例5、実施例6および比較例6の負極が製造された。
<実施例7>
熱膨張性マイクロカプセルの半量についてのみ酸化ケイ素との粉体混合を行なった点以外は、実施例2と同様にして、実施例7の負極が製造された。
<比較例7>
熱膨張性マイクロカプセルと酸化ケイ素との粉体混合を行なわなかった点以外は、実施例2と同様にして、比較例7の負極が製造された。
<比較例9,10>
熱膨張型マイクロカプセルに代えて、放出型(内包物放出型)マイクロカプセルを用いた点以外は、比較例5および実施例1と同様にして、比較例9および10の電池を製造した。放出型マイクロカプセルとしては、特開平10−270084号公報(特許文献2)の[0029]に記載のマイクロカプセルと同じものを作製し使用した。なお、この放出型マイクロカプセルは、具体的には、シェルであるヘキサメチレンジイソシアネートと、該シェルの内包物(重合ポリマー)であるトリメチロールプロパントリアクリレートと、からなるマイクロカプセルである。
<SiOと接触しているマイクロカプセルの割合の測定>
上記実施例および比較例の各負極の負極合材層について、SiOと接触しているマイクロカプセルの割合(マイクロカプセルの全量に対する割合)を、電極の断面SEM観察を行い、その視野範囲内のSiOと接触しているマイクロカプセルの個数と、視野全体のマイクロカプセルの個数を観察することによって測定した。測定結果を表1に示す。
<二次電池の製造>
上記実施例および比較例の負極を用いて、非水電解質二次電池(リチウムイオン二次電池)が製造された。
《正極の製造》
以下の材料が準備された。
正極活物質: リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/32
導電材: アセチレンブラック(AB)
バインダ: ポリフッ化ビニリデン(PVDF)
溶媒: N−メチル−2−ピロリドン(NMP)
正極集電体: アルミニウム箔(厚さ:20μm)
100質量部の正極活物質、10質量部の導電材、および、3質量部のバインダが、溶媒中で混合された。これにより正極合材ペーストが調製された。ダイコータにより、正極合材ペーストが正極集電体の表面(両面)に塗工され、乾燥されることにより、正極合材層(厚み:50μm、幅:94mm、未塗工幅:20mm)が形成された。これにより正極が製造された。正極は、さらにロールプレス機によって圧縮され、帯状に裁断された。得られた正極の厚みは70μmであり、長さは3000mmであった。また、正極合材層の幅は94mmであり、正極合材の非塗工部の幅は20mmであった。
《セパレータ》
帯状のセパレータ(多孔質膜)が準備された。このセパレータは20μmの厚さを有する。このセパレータは、3層構造を有する。3層構造は、ポリプロピレンの多孔質層、ポリエチレンの多孔質層およびポリプロピレンの多孔質層がこの順序で積層されることにより構成されている。このセパレータの片面に耐熱層を形成したものが、電極群の製造に用いられた。
《電極群の製造》
正極、セパレータ、負極およびセパレータが、正極と負極との間にセパレータが介在するように積層され、さらに扁平状に巻回されることにより、巻回型の電極群が作製された。アルミニウム製の角型の外装ケースが準備された。電極群の芯材端部に端子を接合し、電極群が外装ケース内に収納された。
エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびエチルメチルカーボネート(EMC)が混合されることにより電解液溶媒が調製された。電解液溶媒にLiPF6が分散、溶解されることにより、以下の組成を備える電解液が調製された。
電解液溶媒: [EC:DMC:EMC=1:1:1(体積比)]
LiPF6: 1.0mоl/L
所定量の電解液が外装ケース内に注入された。外装ケースが密閉された。以上より、非水電解質二次電池が製造された。この電池の理論容量は、4Ahであった。
<電池性能評価>
〔常温抵抗の測定〕
上記実施例および比較例の各電池を3.7Vまで充電した後、25℃環境下で、40A(10C)の電流レートで10秒間放電し、このときの電圧降下量と電流レートとの関係から電池の抵抗(常温抵抗)を求めた。なお「C」は電流レートの単位である。「1C」は、1時間の充電により、充電率(SOC)が0%から100%に到達する電流レートを示す。測定結果を表1に示す。
〔釘差し試験〕
釘差し試験が行われた。具体的には、電池が、4A(1C)の電流レートにより4.1Vまで充電された。その後、電池に直径3.0mmの釘が1.0mm/秒の速度で差し込まれた。
釘差し試験20秒後(釘差し試験の終了時から20秒経過後)の電池の側面中央部の温度が、その部分に設けられた熱電対によって測定された。測定結果を表1に示す。
さらに、釘差し試験2分後(釘差し試験の終了時から2分経過後)の電池の状態(発煙の有無)を目視で観察した。観察結果を表1に示す。
Figure 0006816696
<結果>
表1に示される結果について、まず、比較例1〜4の結果から、負極活物質としてSiOが含まれる場合、釘刺し試験後(内部短絡等による発熱時)の温度が高く、発煙に至り易いと考えられる。なお、この傾向は、SiOの比率が増えるほど顕著であることが分かる。これは、釘刺し時に内部短絡による放電でSiOが大幅に収縮し、それによってできた負極合材層の空隙に電解液が流れ込み、電解液が負極活物質と反応して、更なる温度上昇(熱暴走)が起きたためであると考えられる。
比較例5および実施例1〜4の結果から、熱膨張性マイクロカプセルの配合量が0.5質量%未満である場合、釘差し試験後に発煙に至り、熱暴走の抑制効果が得られないことが分かる。これは、負極合材内の空隙を十分に埋めることができず、電解液を十分に押し出せないため、電解液と負極の発熱反応が起こったためであると考えられる。したがって、熱膨張性マイクロカプセルの配合量が0.5質量%以上である場合、内部短絡等による発熱時の温度上昇を十分に抑制することができると考えられる。
また、熱膨張性マイクロカプセルの配合量が多くなると、電池抵抗(常温抵抗)が増加することが分かる。これは、熱膨張性マイクロカプセルが絶縁性であるためであると考えられる。電池抵抗の増加を抑制する観点からは、負極活物質の総量に対する熱膨張性マイクロカプセルの配合率は、好ましくは25質量%以下であり、より好ましくは20質量%以下である。
実施例5および6の結果から、負極活物質中のSiOの比率を変化させても、釘刺し試験後の温度の低減効果が得られることが分かる。なお、比較例6(SiO:100質量%)では、釘刺し試験後の温度を十分に低減できず、発煙が生じた。このことから、負極活物質(炭素系負極活物質および酸化ケイ素)の総量に対するSiOの配合割合が多すぎると、釘刺し試験後(内部短絡等による発熱時)の温度上昇を十分に抑制することが難しくなり、発煙が生じやすくなる傾向があると考えられる。そして、負極活物質の総量に対するSiOの割合が30質量%以下である場合には、内部短絡等による発熱時の温度上昇を十分に抑制することができると考えられる。
実施例2、7および比較例7の結果から、熱膨張型マイクロカプセル(全量または半量)をSiOと予め粉体混合した場合、すなわち、負極合材層に含まれる熱膨張型マイクロカプセルのうち、酸化ケイ素(SiO)と接触している熱膨張型マイクロカプセルの割合が、70質量%以上である場合に、電解液と負極活物質との反応による更なる温度上昇を確実に抑制することができることが分かる。これは、内部短絡等による発熱時に、熱膨張型マイクロカプセルが酸化ケイ素の近傍にあれば、酸化ケイ素の収縮によって生じる空隙を熱膨張型マイクロカプセルによって確実に埋めることができるためであると考えられる。
比較例8、9の結果から、特許文献2に開示される放出型マイクロカプセルを負極合材層中に配合した従来の電池においては、膨張性マイクロカプセルを配合した実施例よりも温度上昇の抑制効果は小さいことが分かる。これは、SiOの収縮によって生じる負極合材層の空隙への電解液の流れ込み量や速度が、放出型マイクロカプセルの内包物の放出による電池内部の反応阻害の量や速度より、大きくなっているためであると考えられる。尚、比較例8と9とを比較すると、マイクロカプセルとSiOを予め混合しても釘差し試験後の温度上昇の抑制効果は向上しないことが分かる。
今回開示された実施形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は、上記の説明ではなくて、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電解液、2 黒鉛、3 酸化ケイ素(SiO)、4 熱膨張型マイクロカプセル、5 釘、10 正極、11 正極集電体、12 正極合材層、20 負極、21 負極集電体、22 負極合材層、30 セパレータ、50 電極群、80 電池ケース、81 端子、100 電池(非水電解質二次電池)。

Claims (3)

  1. 負極集電体と、前記負極集電体の表面に形成された負極合材層と、を備える、非水電解質二次電池用の負極であって、
    前記負極合材層は、酸化ケイ素を含む負極活物質と、熱膨張型マイクロカプセルと、を含有し、
    前記負極活物質の総量に対する前記酸化ケイ素の割合は、30質量%以下であり、
    前記負極活物質の総量に対する前記熱膨張型マイクロカプセルの配合率は、0.5質量%以上である、
    前記負極合材層に含まれる前記熱膨張型マイクロカプセルのうち、前記酸化ケイ素と接触している前記熱膨張型マイクロカプセルの割合は、70質量%以上である、負極。
  2. 前記熱膨張型マイクロカプセルは、熱可塑性樹脂からなるシェルと、該シェル内に収容された熱膨張剤と、を含む、請求項1に記載の負極。
  3. 請求項1または2に記載の負極を備える、非水電解質二次電池。
JP2017199512A 2017-10-13 2017-10-13 負極、およびそれを備える非水電解質二次電池 Active JP6816696B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017199512A JP6816696B2 (ja) 2017-10-13 2017-10-13 負極、およびそれを備える非水電解質二次電池
US16/101,652 US10763498B2 (en) 2017-10-13 2018-08-13 Negative electrode and non-aqueous electrolyte secondary battery including the same
CN201811188710.6A CN109671909B (zh) 2017-10-13 2018-10-12 负极和具备该负极的非水电解质二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017199512A JP6816696B2 (ja) 2017-10-13 2017-10-13 負極、およびそれを備える非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2019075239A JP2019075239A (ja) 2019-05-16
JP6816696B2 true JP6816696B2 (ja) 2021-01-20

Family

ID=66096102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017199512A Active JP6816696B2 (ja) 2017-10-13 2017-10-13 負極、およびそれを備える非水電解質二次電池

Country Status (3)

Country Link
US (1) US10763498B2 (ja)
JP (1) JP6816696B2 (ja)
CN (1) CN109671909B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016711B1 (ko) * 2017-12-21 2019-09-02 주식회사 엘지화학 이차 전지
CN117480640A (zh) * 2021-07-27 2024-01-30 日本瑞翁株式会社 电化学元件用黏结剂组合物、电化学元件电极用浆料组合物、电化学元件用电极以及电化学元件
CN116014077B (zh) * 2023-03-27 2023-07-07 江苏正力新能电池技术有限公司 一种锂离子电池负极极片以及一种锂离子电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270084A (ja) 1997-03-27 1998-10-09 Seiko Instr Inc 非水電解質二次電池
JP3609612B2 (ja) * 1998-04-28 2005-01-12 三洋電機株式会社 リチウム二次電池用負極及びそれを用いたリチウム二次電池
JP2010108945A (ja) * 1998-05-13 2010-05-13 Ube Ind Ltd 非水二次電池
JP4727021B2 (ja) * 2000-05-22 2011-07-20 株式会社クレハ 電極及びそれを用いた非水系電池
KR100635737B1 (ko) * 2005-03-24 2006-10-17 삼성에스디아이 주식회사 리튬 이차 전지
JP2007273127A (ja) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd 非水系二次電池
BR112012012049B1 (pt) * 2009-11-20 2021-11-23 Nissan Motor Co., Ltd Coletor de corrente para bateria secundária bipolar, eletrodo para bateria secundária bipolar e bateria secundária bipolar
US8999561B2 (en) * 2010-05-12 2015-04-07 Uchicago Argonne, Llc Materials for electrochemical device safety
CN103688395A (zh) * 2011-07-29 2014-03-26 三洋电机株式会社 非水电解质二次电池用活性物质及其制造方法以及使用其的负极
JPWO2013172256A1 (ja) * 2012-05-15 2016-01-12 株式会社Uacj 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法
KR20160065106A (ko) * 2013-09-30 2016-06-08 도판 인사츠 가부시키가이샤 리튬 이온 이차 전지용 전극 및 리튬 이온 이차 전지
JP6144780B2 (ja) * 2013-12-26 2017-06-07 松本油脂製薬株式会社 熱膨張性微小球の製造方法およびその利用
JP2016046033A (ja) 2014-08-21 2016-04-04 トヨタ自動車株式会社 リチウム二次電池用負極活物質
CN104466186B (zh) * 2014-11-17 2017-02-22 深圳市振华新材料股份有限公司 电池用微胶囊和正极材料及其制法和应用

Also Published As

Publication number Publication date
CN109671909A (zh) 2019-04-23
CN109671909B (zh) 2022-07-26
JP2019075239A (ja) 2019-05-16
US20190115592A1 (en) 2019-04-18
US10763498B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP6538689B2 (ja) 電気絶縁層及び電池デバイス
JP4541324B2 (ja) 非水電解質二次電池
JP6884269B2 (ja) マイクロカプセルを含む負極及びこれを備えたリチウムイオン二次電池
JP6960526B2 (ja) マイクロカプセルを含むアンダーコート層を備えた正極及びリチウムイオン二次電池
JP5668993B2 (ja) 密閉型非水電解質二次電池及びその製造方法
JP6499427B2 (ja) リチウムイオン二次電池
WO2013080946A1 (ja) 非水電解液電池用セパレータおよびそれを用いた非水電解液電池
JP6881171B2 (ja) 負極およびリチウムイオン二次電池
JP6911700B2 (ja) 電極群
JP6816696B2 (ja) 負極、およびそれを備える非水電解質二次電池
JP5664932B2 (ja) 二次電池
JP2003031208A (ja) 非水電解液二次電池
JP6897507B2 (ja) 非水電解質二次電池およびその製造方法
KR102133768B1 (ko) 비수전해질 이차 전지 및 그 제조 방법
CN110970595A (zh) 负极、电池和负极的制造方法
JP6585088B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP5893811B1 (ja) 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池
JP6167943B2 (ja) 非水電解質二次電池
JP2005100804A (ja) リチウム二次電池用電極構造体およびリチウム二次電池
JP6801561B2 (ja) 非水電解質二次電池
JP6953991B2 (ja) セパレータ、非水電解質二次電池、およびセパレータの製造方法
JP2016062832A (ja) 二次電池の製造方法
JP2017016945A (ja) リチウムイオン二次電池
JP6879289B2 (ja) 非水電解質二次電池
JP2024064853A (ja) 二次電池負極用組成物、負極合材層、二次電池用負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R151 Written notification of patent or utility model registration

Ref document number: 6816696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250