WO2013171939A1 - 燃料電池及びその製造方法 - Google Patents
燃料電池及びその製造方法 Download PDFInfo
- Publication number
- WO2013171939A1 WO2013171939A1 PCT/JP2013/001141 JP2013001141W WO2013171939A1 WO 2013171939 A1 WO2013171939 A1 WO 2013171939A1 JP 2013001141 W JP2013001141 W JP 2013001141W WO 2013171939 A1 WO2013171939 A1 WO 2013171939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seal member
- diffusion layer
- fuel cell
- gas diffusion
- frame
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0284—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0286—Processes for forming seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0239—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0243—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a fuel cell used as a driving source for a mobile body such as an automobile, a distributed power generation system, a household cogeneration system, and the like.
- a fuel cell for example, a polymer electrolyte fuel cell
- a fuel cell is an apparatus that generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air. It is.
- Patent Document 1 Japanese Patent Laid-Open No. 2004-47230
- Patent Document 2 Japanese Patent Laid-Open No. 2007-280751
- the fuel cell of Patent Document 1 is configured by sandwiching a membrane electrode assembly 101 (hereinafter referred to as MEA: Membrane-Electrode-Assembly) between a pair of plate-like conductive separators 102 and 102. ing.
- MEA Membrane-Electrode-Assembly
- the MEA 101 includes a polymer electrolyte membrane 111 and a pair of electrode layers 112 and 112 formed on both surfaces of the electrolyte membrane 111.
- the electrode layer 112 includes a catalyst layer 113 formed on the surface of the polymer electrolyte membrane 111 and a gas diffusion layer 114 formed on the catalyst layer 113.
- the MEA 101 is held by a frame body 115 whose peripheral portion (also referred to as an outer peripheral region) is formed in a frame shape in order to improve handling properties.
- the inner edge portion of the frame 115 is located between the catalyst layer 113 and the gas diffusion layer 114.
- the gas diffusion layer 114 is configured to run on the frame 115.
- the MEA 101 including the frame 115 is referred to as an electrode-membrane-frame assembly 103.
- a reaction gas channel 121 to which a reaction gas (fuel gas or oxidant gas) is supplied is formed.
- the fuel gas is supplied to the reaction gas channel 121 of one separator 102 and the oxidant gas is supplied to the reaction gas channel 121 of the other separator 102, thereby causing an electrochemical reaction in the MEA 101, and And heat is generated.
- a resin-made seal member 122 is provided at a position facing the frame body 115 of the separator 102 in order to block or suppress leakage of the reaction gas to the outside.
- Patent Document 2 discloses that power generation performance is improved by closing a gap formed between a step provided in the separator and an outer edge of the gas diffusion layer with a large number of dam-like seals. Yes.
- an object of the present invention is to provide a fuel cell and a method for manufacturing the same that can further improve power generation performance.
- the present invention is configured as follows.
- a polymer electrolyte membrane A catalyst layer provided on the polymer electrolyte membrane;
- a frame provided on an outer peripheral region of the polymer electrolyte membrane;
- a gas diffusion layer provided on the catalyst layer and the frame body such that the outer edge thereof is located outside the inner edge of the frame body as viewed from the thickness direction of the polymer electrolyte membrane;
- a separator provided on the gas diffusion layer;
- a resin seal member provided so as to contact both the separator and the frame; With At least one of the seal member and the outer peripheral portion of the gas diffusion layer is crushed by the other in the thickness direction, A fuel cell is provided.
- a polymer electrolyte membrane a polymer electrolyte membrane, a catalyst layer provided on the polymer electrolyte membrane, a frame provided on an outer peripheral region of the polymer electrolyte membrane, and the polymer electrolyte membrane
- An electrode-membrane-frame assembly including the catalyst layer and a gas diffusion layer provided on the frame so that an outer edge of the frame is positioned outside an inner edge of the frame.
- the manufacturing method of a fuel cell including this is provided.
- FIG. 1 is a cross-sectional view schematically showing a basic structure of a fuel cell according to a first embodiment of the present invention.
- FIG. 2 is a partially enlarged sectional view of the fuel cell of FIG. 3 is a partially enlarged cross-sectional view showing a state before the electrode-membrane-frame assembly and the separator are fastened in the fuel cell of FIG.
- FIG. 4 is a partially enlarged cross-sectional view showing a first modification of the fuel cell of FIG.
- FIG. 5 is a partially enlarged cross-sectional view showing a second modification of the fuel cell of FIG.
- FIG. 6 is a partially enlarged cross-sectional view showing a third modification of the fuel cell of FIG.
- FIG. 7 is a partially enlarged sectional view showing a fourth modification of the fuel cell of FIG.
- FIG. 8 is an exploded perspective view showing a basic structure of a fuel cell stack in which a plurality of the fuel cells of FIG. 1 are connected
- FIG. 9 is a partially enlarged cross-sectional view schematically showing the configuration of the fuel cell according to the second embodiment of the present invention.
- FIG. 10 is a partially enlarged cross-sectional view showing the state of the fuel cell of FIG. 9 before fastening the membrane electrode assembly and the separator, FIG.
- FIG. 11 is a plan view schematically showing a state in which the seal member is provided in a part of the gap between the second seal member and the gas diffusion layer
- FIG. 12 is a cross-sectional view showing a state of the conventional fuel cell before the electrode-membrane-frame assembly and the separator are fastened.
- a conventional fuel cell is manufactured by sandwiching an electrode-membrane-frame assembly 103 between a pair of separators 102 and 102 from the state shown in FIG.
- Each component of the fuel cell is designed such that the outer edge 114a of the gas diffusion layer 114 and the inner edge 122a of the seal member 122 are in contact with each other without a gap.
- a gap may occur between the outer edge 114a of the gas diffusion layer 114 and the inner edge 122a of the seal member 122 due to misalignment or tolerance (about ⁇ 0.5 mm) at the time of fastening. obtain. If a gap is generated between the outer edge 114a and the inner edge 122a, the reaction gas supplied to the inside of the fuel cell may not be passed through the reaction gas flow path 121 and may be discharged to the outside of the fuel cell through the gap. obtain.
- this phenomenon is referred to as a gas wraparound phenomenon. When this wraparound phenomenon occurs, the utilization efficiency of the reaction gas decreases, and the power generation performance of the fuel cell decreases.
- the present inventors have intensively studied, and according to the configuration of the polymer fuel cell disclosed in Patent Document 2, it is possible to suppress the gas wraparound phenomenon, but the power generation performance is not sufficient. I found. That is, in the polymer electrolyte fuel cell of Patent Document 2, a part of the gap formed by the step provided in the separator and the outer edge of the gas diffusion layer is in contact with the polymer electrolyte membrane or the catalyst layer. For this reason, the polymer electrolyte membrane or the catalyst layer and the reactive gas are in direct contact with each other, and the direct contact portion is deteriorated, resulting in a decrease in power generation performance.
- the present inventors have caused the above-described misalignment and tolerance by causing at least one of the seal member 122 and the gas diffusion layer 114 to be crushed in the thickness direction by the other.
- the present inventors have found that the gap can be filled with the crushed and deformed portion without increasing the volume of the seal member 122.
- a gap is formed between the outer edge of the gas diffusion layer and the frame by providing a frame on the outer peripheral region of the polymer electrolyte membrane and providing a seal member on the frame so as to run over the gas diffusion layer.
- a polymer electrolyte membrane comprising: A catalyst layer provided on the polymer electrolyte membrane; A frame provided on an outer peripheral region of the polymer electrolyte membrane; A gas diffusion layer provided on the catalyst layer and the frame body such that the outer edge thereof is located outside the inner edge of the frame body as viewed from the thickness direction of the polymer electrolyte membrane; A separator provided on the gas diffusion layer; A resin seal member provided so as to contact both the separator and the frame; With At least one of the seal member and the outer peripheral portion of the gas diffusion layer is crushed by the other in the thickness direction, A fuel cell is provided.
- the fuel cell according to the first aspect wherein the contact pressure between the seal member and the outer peripheral portion of the gas diffusion layer is smaller than the contact pressure between the seal member and the frame.
- the fuel cell according to the first or second aspect wherein both the sealing member and the gas diffusion layer are crushed.
- the fuel cell according to any one of the first to third aspects, wherein the seal member is formed on a surface of the separator.
- the seal member is formed on the surface of the separator by injection molding.
- an annular second seal member provided between the separator and the frame is provided,
- the second seal member is disposed with a gap with respect to an outer edge of the gas diffusion layer,
- the fuel cell according to any one of the first to fifth aspects, wherein the seal member is provided so as to close a part of the gap.
- the seal member and the second seal member are integrally formed of the same resin material.
- the gas diffusion layer is composed of a porous member mainly composed of conductive particles and a polymer resin.
- a fuel cell is provided.
- a polymer electrolyte membrane a polymer electrolyte membrane, a catalyst layer provided on the polymer electrolyte membrane, a frame provided on an outer peripheral region of the polymer electrolyte membrane, and the polymer
- An electrode-membrane-frame comprising the catalyst layer and a gas diffusion layer provided on the frame so that the outer edge of the electrolyte membrane is positioned outside the inner edge of the frame as viewed from the thickness direction of the electrolyte membrane
- Prepare a joined body Prepare a separator with a sealing member on the surface, The electrode-membrane-frame assembly and the sealing member are in contact with the frame, and at least one of the sealing member and the outer peripheral portion of the gas diffusion layer is crushed in the thickness direction by the other. Fastening the separator, The manufacturing method of a fuel cell including this is provided.
- the distance between the seal member and the frame is the distance between the seal member and the gas diffusion layer.
- the outer peripheral portion of the gas diffusion layer is formed so as to be inclined following the shape of the seal member.
- the method for manufacturing a fuel cell according to any one of the ninth to eleventh aspects, wherein the seal member is formed on a surface of the separator by injection molding.
- the gas diffusion layer is composed of a porous member mainly composed of conductive particles and a polymer resin.
- a fuel cell manufacturing method is provided.
- FIG. 1 is a sectional view schematically showing a basic structure of a fuel cell according to a first embodiment of the present invention
- FIG. 2 is a partially enlarged sectional view thereof.
- the fuel cell according to the first embodiment includes a polymer electrolyte that generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air.
- This is a fuel cell.
- the present invention is not limited to the polymer electrolyte fuel cell, but can be applied to various fuel cells.
- the fuel cell 1 includes an electrode-membrane-frame assembly 2 and a pair of separators 30 and 40 arranged with the electrode-membrane-frame assembly 2 interposed therebetween. It has.
- the electrode-membrane-frame assembly 2 includes an MEA (membrane electrode assembly) 10 and a frame-like frame body 20 provided on the outer peripheral area (peripheral portion) of the MEA 10.
- the MEA 10 includes a polymer electrolyte membrane 11 and a pair of electrode layers 12 and 12 formed on both surfaces of the polymer electrolyte membrane 11.
- One of the pair of electrode layers 12 is an anode electrode, and the other is a cathode electrode.
- the electrode layer 12 includes a catalyst layer 13 and a gas diffusion layer 14.
- the catalyst layer 13 is formed on the surface of the polymer electrolyte membrane 11, and the gas diffusion layer 14 is formed on the catalyst layer 13.
- the polymer electrolyte membrane 11 is larger in size than the catalyst layer 13 and the gas diffusion layer 14, and the outer peripheral region is provided so as to protrude from the catalyst layer 13 and the gas diffusion layer 14.
- a frame 20 is provided on the outer peripheral region (peripheral portion) of the polymer electrolyte membrane 11.
- the inner edge 20 a of the frame body 20 is located between the catalyst layer 13 and the gas diffusion layer 14.
- the gas diffusion layer 14 is configured to run on the frame body 20.
- the gas diffusion layer 14 is a catalyst layer such that the outer edge 14a is located outside the inner edge 20a of the frame 20 when viewed from the thickness direction of the polymer electrolyte membrane 11 (vertical direction in FIG. 1). 13 and the frame 20 are provided.
- the separator 30 is provided on one gas diffusion layer 14.
- the separator 40 is provided on the other gas diffusion layer 14. Between the separator 30 and the frame body 20 and between the separator 40 and the frame body 20, resin-made seal members 21 are respectively provided.
- the seal member 21 is formed in an annular shape and is provided so as to contact both the separator 30 and the frame body 20 or both the separator 40 and the frame body 20.
- the contact pressure between the seal member 21 and the frame body 20 is higher than the pressure at which the reaction gas supplied to the inside of the fuel cell 1 tends to flow to the outside. Thereby, leakage of the reaction gas to the outside is prevented.
- the seal member 21 is provided so as to come into contact with the outer peripheral portion 14 b of the gas diffusion layer 14 and to crush the outer peripheral portion 14 b in the thickness direction of the polymer electrolyte membrane 11. As a result, no gap is generated between the seal member 21 and the gas diffusion layer 14.
- the contact pressure between the seal member 21 and the outer peripheral portion 14 b of the gas diffusion layer 14 is smaller than the contact pressure between the seal member 21 and the frame body 20.
- the “contact pressure” refers to, for example, the maximum pressure (kg / cm 2 or kg / m) in the contact area.
- the seal member 21 is provided so as to contact the frame body 20 and to crush the outer peripheral portion 14b of the gas diffusion layer 14 in the thickness direction of the polymer electrolyte membrane 11. It has been. Thereby, the clearance gap between the sealing member 21 and the gas diffusion layer 14 can be eliminated, the gas wraparound phenomenon can be suppressed, and the power generation performance of the fuel cell can be further improved. Furthermore, when viewed from the thickness direction of the polymer electrolyte membrane 11, the outer peripheral portion 14 b of the gas diffusion layer 14 that does not overlap with the catalyst layer 13 can be crushed. Therefore, the reaction gas can be prevented from flowing through the outer peripheral portion 14 b of the gas diffusion layer 14. Thereby, it can suppress that the reactive gas which is not supplied to the catalyst layer 13 and does not contribute to an electric power generation reaction flows through the outer peripheral part 14b of a gas diffusion layer, and can use a reactive gas more effectively.
- the polymer electrolyte membrane 11 is preferably a polymer membrane having hydrogen ion conductivity.
- the polymer electrolyte membrane 11 is not particularly limited.
- a fluorine-based polymer electrolyte membrane made of perfluorocarbon sulfonic acid for example, Nafion (registered trademark) manufactured by DuPont, USA, manufactured by Asahi Kasei Corporation) Aciplex (registered trademark), Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd.
- the material of the polymer electrolyte membrane 11 may be any material that selectively moves hydrogen ions.
- the shape of the polymer electrolyte membrane 11 is not particularly limited, but is substantially rectangular in the first embodiment.
- the catalyst layer 13 is preferably a layer containing a catalyst for a redox reaction of hydrogen or oxygen.
- the catalyst layer 13 is preferably provided such that the outer edge 13 a is located on the inner side of the center portion of the seal member 21 when viewed from the thickness direction of the polymer electrolyte membrane 11. If the outer edge 13a of the catalyst layer 13 is outside the center of the seal member 21, the reaction gas that has passed through the porous catalyst layer 13 is likely to escape to the outside, and (external leakage) gas loss occurs.
- the catalyst layer 13 is not particularly limited.
- the catalyst layer 13 is composed of a porous member mainly composed of a carbon powder carrying a platinum-based metal catalyst and a polymer material having proton conductivity. Can do.
- the catalyst layer 13 only needs to have conductivity and have a catalytic ability for a redox reaction of hydrogen and oxygen.
- the shape of the catalyst layer 13 is not particularly limited, but is substantially rectangular in the first embodiment.
- the catalyst layer 13 can be formed by coating or spraying a catalyst layer forming ink on the surface of the polymer electrolyte membrane 11. Further, it may be produced by a general transfer method.
- the gas diffusion layer 14 is preferably composed of a so-called substrate-less gas diffusion layer configured without using carbon fiber as a substrate.
- the gas diffusion layer 14 is composed of a porous member mainly composed of conductive particles and a polymer resin.
- the “porous member mainly composed of conductive particles and polymer resin” means a structure (so-called self-supporting structure) that is supported only by conductive particles and polymer resin without using carbon fiber as a base material. It means a porous member having a support structure.
- a surfactant and a dispersion solvent are used.
- the surfactant and the dispersion solvent are removed by firing, but they may not be sufficiently removed and may remain in the porous member. Therefore, as long as the “porous member mainly composed of conductive particles and polymer resin” has a self-supporting structure in which carbon fiber is not used as a base material, the surfactant and the dispersion remaining in this manner are dispersed. It means that a solvent may be included in the porous member. In addition, if the self-supporting structure does not use carbon fibers as a base material, it means that other materials (for example, carbon fibers of short fibers) may be included in the porous member.
- the gas diffusion layer 14 can be manufactured by kneading, extruding, rolling, and firing a mixture containing a polymer resin and conductive particles. Specifically, carbon, which is conductive particles, a dispersion solvent, and a surfactant are introduced into a stirrer / kneader, and then kneaded, pulverized, and granulated to disperse the carbon in the dispersed solvent. Next, the fluororesin, which is a polymer resin, is further dropped into a stirrer / kneader and stirred and kneaded to disperse the carbon and the fluororesin. The obtained kneaded material is rolled to form a sheet and fired to remove the dispersion solvent and the surfactant. Thereby, the sheet-like gas diffusion layer 14 can be manufactured.
- Examples of the conductive particle material constituting the gas diffusion layer 14 include carbon materials such as graphite, carbon black, and activated carbon.
- Examples of the carbon black include acetylene black (AB), furnace black, ketjen black, vulcan, and the like. These materials may be used alone, or a plurality of materials may be used in combination.
- the raw material form of the carbon material may be any shape such as powder, fiber, and granule.
- PTFE polytetrafluoroethylene
- FEP tetrafluoroethylene / hexafluoropropylene copolymer
- PVDF polyvinylidene fluoride
- ETFE tetrafluoroethylene
- PCTFE polychlorotrifluoroethylene
- PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
- the polymer resin constituting the gas diffusion layer 14 functions as a binder that binds the conductive particles. Further, since the polymer resin has water repellency, it also has a function (water retention) for confining water in the system inside the fuel cell.
- the gas diffusion layer 14 may contain a trace amount of a surfactant, a dispersion solvent, and the like used at the time of manufacture in addition to the conductive particles and the polymer resin.
- a surfactant examples include water, alcohols such as methanol and ethanol, and glycols such as ethylene glycol.
- the surfactant examples include nonionic compounds such as polyoxyethylene alkyl ethers and zwitterionic compounds such as alkylamine oxides. What is necessary is just to set suitably the quantity of the dispersion solvent used at the time of manufacture, and the quantity of surfactant according to the kind of electroconductive particle, the kind of polymer resin, those compounding ratios, etc.
- the polymer resin and the conductive particles tend to be uniformly dispersed, but the fluidity increases and the sheet of the gas diffusion layer is increased. It tends to be difficult.
- the surfactant can be appropriately selected depending on the material of the conductive particles and the type of the dispersion solvent. Moreover, it is not necessary to use a surfactant.
- the gas diffusion layer 14 may be a gas diffusion layer having the same structure or a gas diffusion layer having a different structure on the cathode electrode side and the anode electrode side.
- a gas diffusion layer using carbon fiber as a base material may be used on either the cathode electrode side or the anode electrode side, and the above-described base material-less gas diffusion layer may be used on either side.
- the frame body 20 is a member provided for improving the handling property of the MEA 10.
- a material of the frame body 20 a general thermoplastic resin, a thermosetting resin, or the like can be used.
- the shape of the frame 20 is not particularly limited, but in the first embodiment, it is a substantially rectangular ring.
- the separators 30 and 40 are preferably members for mechanically fixing the MEA 10.
- the separators 30 and 40 are preferably made of a material containing carbon or a material containing metal.
- the separators 30 and 40 supply raw material powder in which carbon powder and a resin binder are mixed into the mold, and the raw material powder supplied into the mold Can be formed by applying pressure and heat.
- the separators 30 and 40 may be made of a metal plate. Further, as the separators 30 and 40, those obtained by performing gold plating on the surface of a plate made of titanium or stainless steel can be used.
- a gas flow path 31 for fuel gas is provided on a main surface (hereinafter also referred to as an electrode surface) of the separator 30 that is in contact with the gas diffusion layer 14.
- a gas flow path 41 for oxidant gas is provided on a main surface (hereinafter also referred to as an electrode surface) that contacts the gas diffusion layer 14 of the separator 40.
- the fuel gas is supplied to one electrode layer 12 through the gas flow path 31 and the oxidant gas is supplied to the other electrode layer 12 through the gas flow path 41, so that an electrochemical reaction occurs and electric power and heat are generated. To do.
- the seal member 21 is preferably made of a synthetic resin having appropriate mechanical strength and flexibility.
- a material constituting the sealing member 21 for example, a rubber material, a thermoplastic elastomer, an adhesive, or a compound such as an adhesive can be used.
- Specific examples of the sealing material constituting the sealing member 21 include fluorine rubber, silicone rubber, natural rubber, EPDM, butyl rubber, butyl rubber, butyl bromide rubber, butadiene rubber, styrene-butadiene copolymer, ethylene-vinyl acetate rubber, acrylic Rubber, polyisopropylene polymer, perfluorocarbon, polybenzimidazole, polystyrene-based, polyolefin-based, polyester-based and polyamide-based thermoplastic elastomers, or isoprene rubber and butadiene rubber latex-based adhesives, liquid polybutadiene,
- the adhesive include polyisoprene, polychloroprene, silicone rubber, fluor
- sealing material constituting the sealing member 21 specifically, Santoprene 8101-55, which is a polyolefin-based thermoplastic elastomer having polypropylene and EPDM, can be used.
- the shape of the seal member 21 is not particularly limited, but in the first embodiment, it is a substantially rectangular ring.
- an electrode-membrane-frame assembly 2 and separators 30 and 40 are prepared.
- the seal member 21 has a semi-elliptical cross section.
- the seal member 21 is formed on the surfaces of the separators 30 and 40.
- the inner peripheral portion 21b located on the inner side (the left side in FIG. 3) of the seal member 21 and the outer peripheral portion 14b of the gas diffusion layer 14 overlap each other. Align.
- the electrode-membrane-frame assembly 2 and the separators 30 and 40 are fastened.
- the inner peripheral portion 21 b of the seal member 21 crushes the outer peripheral portion 14 b of the gas diffusion layer 14 in the thickness direction of the polymer electrolyte membrane 11, and the top portion 21 a of the seal member 21 contacts the frame body 20.
- the outer peripheral portion 14 b of the gas diffusion layer 14 is deformed, so that no gap is generated between the seal member 21 and the gas diffusion layer 14.
- the fuel cell 1 shown in FIG. 2 is manufactured as described above.
- the seal member 21 contacts the frame body 20 and crushes the outer peripheral portion 14b of the gas diffusion layer 14 in the thickness direction of the polymer electrolyte membrane 11.
- the electrode-membrane-frame assembly 2 and the separators 30 and 40 are fastened.
- the clearance gap between the sealing member 21 and the gas diffusion layer 14 can be eliminated, the gas wraparound phenomenon can be suppressed, and the power generation performance can be further improved.
- the gas diffusion layer 14 is preferably composed of a porous member mainly composed of conductive particles and a polymer resin as described above.
- the porous member since the porous member has elasticity, it is more sure that a gap is generated between the seal member 21 and the gas diffusion layer 14 by elastic deformation when the porous member is crushed. Can be prevented.
- the seal member 21, the separators 30 and 40, and the frame body 20 are generated by a reaction force generated when the gas diffusion layer 14 and the seal member 21 come into contact with each other. May crack or chip. For this reason, it is preferable to comprise the gas diffusion layer 14 with a member with low rigidity.
- the outer peripheral portion 14b of the gas diffusion layer 14 is crushed, but the present invention is not limited to this.
- the inner peripheral portion 21b of the seal member 21 may be crushed.
- a highly rigid member can be used as the gas diffusion layer 14.
- both the outer peripheral portion 14b of the gas diffusion layer 14 and the inner peripheral portion 21b of the sealing member 21 may be crushed.
- the seal member 21 and the gas diffusion layer 14 are in close contact with each other, and it is possible to more reliably suppress the generation of a gap between the seal member 21 and the gas diffusion layer 14.
- the selection range of the material of the gas diffusion layer 14 and the sealing member 21 can be expanded.
- the seal member 21 is preferably formed on the surfaces of the separators 30 and 40.
- the separators 30 and 40 have higher dimensional accuracy and less warpage than the frame 20, there is an advantage that the yield is high.
- the separators 30 and 40 have an advantage that the injection molding is easy because the rigidity is high.
- the seal member 21 is formed on the frame 20 by injection molding, the polymer electrolyte membrane 11 may be deteriorated by heat generated during injection molding. In this case, the power generation performance is reduced.
- the seal member 21 is preferably formed such that the top 21 a is displaced in a direction away from the outer edge 14 a of the gas diffusion layer 14.
- the top portion 21a and the frame body 20 can be easily brought into contact with each other.
- the volume of the inner peripheral portion 21b of the seal member 21 can be reduced, the reaction force generated by compressing the outer peripheral portion 14b of the gas diffusion layer 14 can be reduced. As a result, it is possible to further avoid the occurrence of problems such as the polymer electrolyte membrane 11 being perforated and the durability and power generation performance of the polymer electrolyte membrane 11 being lowered.
- the seal member 21 may be formed in a rectangular shape as shown in FIG.
- the frame body 20 is preferably provided with a protrusion 20 b at a position facing the seal member 21. Thereby, it becomes easy to make the contact pressure between the seal member 21 and the outer peripheral portion 14 b of the gas diffusion layer 14 smaller than the contact pressure between the seal member 21 and the frame body 20.
- the seal member 21 is formed so that the distance h1 between the seal member 21 and the frame 20 is shorter than the distance h2 between the seal member 21 and the gas diffusion layer 14. It is preferred that Thereby, it becomes easy to make the contact pressure between the seal member 21 and the outer peripheral portion 14 b of the gas diffusion layer 14 smaller than the contact pressure between the seal member 21 and the frame body 20.
- the positions of the outer edges 14a and 14a of the gas diffusion layers 14 and 14 may be different between the cathode electrode side and the anode electrode side.
- the inner peripheral portion 21b of the seal member 21 and the outer peripheral portion 14b of the gas diffusion layer 14 are not considered without excessively considering the position of the outer edge 14a. Can be contacted.
- the outer peripheral portion 14b of the gas diffusion layer 14 is inclined following the shape of the seal member 21 as shown in FIG. Thereby, the top part 21a of the sealing member 21 and the frame body 20 can be easily brought into contact with each other, and the reaction force generated when the outer peripheral part 14b of the gas diffusion layer 14 is compressed can be reduced. Therefore, it is possible to further avoid the occurrence of problems such as a hole in the polymer electrolyte membrane 11 and a decrease in durability and power generation performance of the polymer electrolyte membrane 11.
- separators 30 and 40 are not limited to those having steps as shown in FIGS. 1 to 6, but may be flat plates as shown in FIG.
- FIG. 8 is an exploded perspective view showing a basic structure of a fuel cell stack 3 in which a plurality of fuel cells 1 are connected.
- a pipe for supplying the reaction gas is provided with a separator 30. , 40, and manifolds that branch to the gas flow paths 31 and 41 are required.
- fuel gas manifold holes 22, 32 which are a pair of through holes for supplying fuel gas to the frame 20 and the pair of separators 30, 40, respectively. 42 is provided.
- the frame 20 and the pair of separators 30 and 40 are provided with oxidant gas manifold holes 23, 33, and 43, which are a pair of through holes through which the oxidant gas flows.
- the fuel gas manifold holes 22, 32 and 42 are connected to form a fuel gas manifold.
- the oxidant gas manifold holes 23, 33 and 43 are connected to form an oxidant gas manifold.
- the frame body 20 and the pair of separators 30 and 40 are provided with cooling medium manifold holes 24, 34, and 44, which are two pairs of through holes, respectively, through which a cooling medium (for example, pure water or ethylene glycol) flows. Yes.
- a cooling medium for example, pure water or ethylene glycol
- the frame body 20 and the pair of separators 30 and 40 are provided with four bolt holes 50 in the vicinity of each corner. Fastening bolts are inserted into the respective bolt holes 50, and a plurality of fuel cells 1 are fastened by coupling nuts to the fastening bolts.
- the gas flow path 31 is provided so as to connect the pair of fuel gas manifolds 32, 32.
- the gas flow path 41 is provided so as to connect the pair of oxidant gas manifolds 43, 43.
- the gas flow paths 31 and 41 were shown as a serpentine type flow path, the flow path of another form (for example, linear type) may be sufficient.
- a cooling medium flow path is preferably formed on each of the main surface opposite to the electrode surface of the separator 30 and the main surface opposite to the electrode surface of the separator 40.
- the cooling medium flow path is formed so as to connect the two pairs of cooling medium manifold holes 34 and 44. That is, the cooling medium is configured to branch from the cooling medium manifold on the supply side to the cooling medium flow path and to flow to the cooling medium manifold on the discharge side.
- the fuel cell 1 is kept at a predetermined temperature suitable for the electrochemical reaction by utilizing the heat transfer capability of the cooling medium.
- the manifolds for the fuel gas, the oxidant gas, and the cooling water are provided in the separators 30 and 40, and the supply manifolds for the fuel gas, the oxidant gas, and the cooling water are formed when they are stacked.
- the so-called internal manifold type fuel cell configured as described above has been described as an example, but the present invention is not limited to this.
- a so-called external manifold type fuel cell in which supply manifolds of fuel gas, oxidant gas, and cooling water are provided on the side surface of the fuel cell stack 3 may be used. Even in this case, the same effect can be obtained.
- the separators 30 and 40 are formed of a porous conductive material, and cooling is performed so that the pressure of the cooling water flowing through the cooling medium flow path is higher than the pressure of the reaction gas flowing through the gas flow paths 31 and 41.
- a so-called internal humidification type fuel cell in which a part of water is allowed to pass through the separators 30 and 40 to the electrode surface side to wet the polymer electrolyte membrane 11 may be used.
- the gas flow paths 31 and 41 are provided in the separators 30 and 40.
- the present invention is not limited to this.
- the gas flow path 31 may be provided in one gas diffusion layer 14 and the gas flow path 41 may be provided in the other gas diffusion layer 14.
- the gas flow path 31 may be formed in both the separator 30 and the one gas diffusion layer 14.
- the gas flow path 41 may be formed in both the separator 40 and the other gas diffusion layer 14.
- FIG. 9 is a partially enlarged cross-sectional view schematically showing the configuration of the fuel cell according to the second embodiment of the present invention.
- the fuel cell of the second embodiment is different from the fuel cell of the first embodiment in that a second seal member 60 is provided between the separators 30 and 40 and the frame body 20.
- the second seal member 60 is formed in an annular shape and is provided in contact with both the separator 30 and the frame body 20 or both the separator 40 and the frame body 20.
- the second seal member 60 is provided so as to be adjacent to the seal member 21 on the outside.
- the contact pressure between the seal member 21 and the frame body 20 is higher than the pressure at which the reaction gas supplied to the inside of the fuel cell 1 tends to flow to the outside.
- the gap between the separators 30 and 40 and the frame body 20 can be sufficiently sealed by the second seal member 60. .
- leakage of the reaction gas to the outside can be prevented more reliably.
- the outer peripheral portion 14 b of the gas diffusion layer 14 that does not overlap the catalyst layer 13 can be crushed by the seal member 21. Therefore, the reaction gas can be prevented from flowing through the outer peripheral portion 14 b of the gas diffusion layer 14.
- the seal member 21 is provided so as to close the entire gap C ⁇ b> 1 between the second seal member 60 and the gas diffusion layer 14, the separators 30 and 40 and the frame body 20 are formed by the seal member 21 and the second seal member 60. Can be double sealed. Thereby, leakage of the reaction gas to the outside can be further prevented.
- the sealing member 21 may not prevent the reaction gas from leaking to the outside. It is sufficient if the gap between the two seal members 60 can be filled. For this reason, as shown in FIG. 10, before the separators 30 and 40 and the electrode-membrane-frame assembly 2 are joined, the seal member 21 has the top portion 21a lower than the top portion 60a of the second seal member 60. It may be formed as follows.
- the seal member 21 and the second seal member 60 may be made of different resin materials.
- the seal member 21 may be made of a softer resin material than the second seal member 60. In this case, since the seal member 21 is easily elastically deformed, the gap between the gas diffusion layer 14 and the second seal member 60 can be filled more reliably.
- sealing member 21 and the second sealing member 60 may be integrally formed of the same resin material. In this case, since the sealing member 21 and the second sealing member 60 can be formed at the same time, an increase in manufacturing steps can be suppressed.
- the sealing member 21 may be provided so as to block a part of the gap C1 instead of closing the entire gap C1 between the second sealing member 60 and the gas diffusion layer 14. Good. Even in this case, since the reaction gas can be prevented from being discharged to the outside of the fuel cell through the gap C1 (gas wraparound phenomenon), the power generation performance can be improved as compared with the conventional fuel cell.
- a part of the outer peripheral portion 14b of the gas diffusion layer 14, which is a portion not overlapping with the catalyst layer 13, can be crushed. By crushing a part of the outer peripheral portion 14 b of the gas diffusion layer 14, it is possible to suppress the reaction gas from flowing through the outer peripheral portion 14 b of the gas diffusion layer 14.
- the gap C1 formed by the outer edge of the gas diffusion layer 14 and the second seal member 60 does not contact the polymer electrolyte membrane 11 or the catalyst layer 13. . Therefore, it is possible to prevent deterioration caused by direct contact between the polymer electrolyte membrane 11 or the catalyst layer 11 and the reaction gas.
- the fuel cell is useful as a fuel cell used as a drive source for a mobile body such as an automobile, a distributed power generation system, a household cogeneration system, and the like. is there.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
本発明の燃料電池は、シール部材(21)が枠体(20)に接触するとともに、シール部材(21)とガス拡散層(14)の外周部分(14b)の少なくとも一方が他方により高分子電解質膜(11)の厚さ方向に押し潰されるように構成して、ガス拡散層(14)とシール部材(21)との間に隙間を生じないように構成されている。これにより、発電性能を一層向上させることができる。
Description
本発明は、例えば、自動車などの移動体、分散発電システム、家庭用のコージェネレーションシステムなどの駆動源として使用される燃料電池に関する。
燃料電池(例えば、高分子電解質形燃料電池)は、水素を含有する燃料ガスと空気など酸素を含有する酸化剤ガスとを電気化学的に反応させることにより、電力と熱とを同時に発生させる装置である。
従来、この種の燃料電池としては、例えば、特許文献1(特開2004-47230号公報)及び特許文献2(特開2007-280751号公報)に記載されたものが知られている。
図12に示すように、特許文献1の燃料電池は、膜電極接合体101(以下、MEA:Membrane-Electrode-Assemblyという)を一対の板状の導電性のセパレータ102,102で挟んで構成されている。
MEA101は、高分子電解質膜111と、当該電解質膜111の両面に形成された一対の電極層112,112とで構成されている。電極層112は、高分子電解質膜111の表面に形成された触媒層113と、当該触媒層113上に形成されたガス拡散層114とで構成されている。
MEA101は、ハンドリング性の向上のため、その周縁部(外周領域ともいう)を額縁状に形成された枠体115で保持されている。枠体115の内縁部は、触媒層113とガス拡散層114との間に位置している。言い換えれば、ガス拡散層114は、枠体115上に乗り上げるように構成されている。なお、ここでは、枠体115を備えるMEA101を電極-膜-枠接合体103という。
セパレータ102には、反応ガス(燃料ガス又は酸化剤ガス)が供給される反応ガス流路121が形成されている。一方のセパレータ102の反応ガス流路121に燃料ガスが供給されるとともに、他方のセパレータ102の反応ガス流路121に酸化剤ガスが供給されることにより、MEA101内で電気化学反応が起こり、電力と熱とが発生する。
セパレータ102の枠体115と対向する位置には、反応ガスの外部への漏出を遮断又は抑制するため、樹脂製のシール部材122が設けられている。
また、特許文献2には、セパレータに設けられた段差とガス拡散層の外縁との間に形成された隙間を多数の堰状シールで閉塞することで、発電性能を向上させることが開示されている。
特許文献1及び2のような従来の燃料電池においては、発電性能を一層向上させるという観点において、未だ改善の余地があった。
従って、本発明の目的は、発電性能を一層向上させることができる燃料電池及びその製造方法を提供することにある。
従って、本発明の目的は、発電性能を一層向上させることができる燃料電池及びその製造方法を提供することにある。
前記目的を達成するために、本発明は以下のように構成する。
本発明によれば、高分子電解質膜と、
前記高分子電解質膜上に設けられた触媒層と、
前記高分子電解質膜の外周領域上に設けられた枠体と、
前記高分子電解質膜の厚さ方向から見てその外縁が前記枠体の内縁よりも外側に位置するように、前記触媒層及び前記枠体上に設けられたガス拡散層と、
前記ガス拡散層上に設けられたセパレータと、
前記セパレータと前記枠体の両方に接触するように設けられた樹脂製のシール部材と、
を備え、
前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により前記厚さ方向に押し潰されている、
燃料電池を提供する。
本発明によれば、高分子電解質膜と、
前記高分子電解質膜上に設けられた触媒層と、
前記高分子電解質膜の外周領域上に設けられた枠体と、
前記高分子電解質膜の厚さ方向から見てその外縁が前記枠体の内縁よりも外側に位置するように、前記触媒層及び前記枠体上に設けられたガス拡散層と、
前記ガス拡散層上に設けられたセパレータと、
前記セパレータと前記枠体の両方に接触するように設けられた樹脂製のシール部材と、
を備え、
前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により前記厚さ方向に押し潰されている、
燃料電池を提供する。
また、本発明によれば、高分子電解質膜と、前記高分子電解質膜上に設けられた触媒層と、前記高分子電解質膜の外周領域上に設けられた枠体と、前記高分子電解質膜の厚さ方向から見てその外縁が前記枠体の内縁よりも外側に位置するように、前記触媒層及び前記枠体上に設けられたガス拡散層と、を備える電極-膜-枠接合体を用意し、
表面にシール部材が設けられたセパレータを用意し、
前記シール部材が前記枠体に接触するとともに、前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により押し潰されるように、前記電極-膜-枠接合体と前記セパレータとを締結する、
ことを含む、燃料電池の製造方法を提供する。
表面にシール部材が設けられたセパレータを用意し、
前記シール部材が前記枠体に接触するとともに、前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により押し潰されるように、前記電極-膜-枠接合体と前記セパレータとを締結する、
ことを含む、燃料電池の製造方法を提供する。
本発明にかかる燃料電池及びその製造方法によれば、発電性能を一層向上させることができるという効果を奏する。
本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施の形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の第1実施形態にかかる燃料電池の基本構造を模式的に示す断面図であり、
図2は、図1の燃料電池の一部拡大断面図であり、
図3は、図1の燃料電池の、電極-膜-枠接合体とセパレータとを締結する前の状態を示す一部拡大断面図であり、
図4は、図3の燃料電池の第1変形例を示す一部拡大断面図であり、
図5は、図3の燃料電池の第2変形例を示す一部拡大断面図であり、
図6は、図3の燃料電池の第3変形例を示す一部拡大断面図であり、
図7は、図3の燃料電池の第4変形例を示す一部拡大断面図であり、
図8は、図1の燃料電池を複数個連結した燃料電池スタックの基本構造を示す分解斜視図であり、
図9は、本発明の第2実施形態にかかる燃料電池の構成を模式的に示す一部拡大断面図であり、
図10は、図9の燃料電池の、膜電極接合体とセパレータとを締結する前の状態を示す一部拡大断面図であり、
図11は、第2シール部材とガス拡散層との隙間の一部にシール部材を設けた状態を模式的に示す平面図であり、
図12は、従来の燃料電池の、電極-膜-枠接合体とセパレータとを締結する前の状態を示す断面図である。
(本発明の基礎となった知見)
従来の燃料電池は、図12に示す状態から、電極-膜-枠接合体103を一対のセパレータ102,102で挟んで締結することにより製造される。燃料電池の各部品は、ガス拡散層114の外縁114aとシール部材122の内縁122aとが隙間無く接触するように設計されている。
従来の燃料電池は、図12に示す状態から、電極-膜-枠接合体103を一対のセパレータ102,102で挟んで締結することにより製造される。燃料電池の各部品は、ガス拡散層114の外縁114aとシール部材122の内縁122aとが隙間無く接触するように設計されている。
しかしながら、従来の燃料電池を量産すると、締結時の置きズレや公差(±0.5mm程度)により、ガス拡散層114の外縁114aとシール部材122の内縁122aとの間に隙間が生じることが起こり得る。外縁114aと内縁122aとの間に隙間が生じると、燃料電池の内部に供給された反応ガスが、反応ガス流路121を通らず、当該隙間を通じて燃料電池の外部に排出されてしまうことが起こり得る。以下、この現象をガスの回り込み現象という。この回り込み現象が発生すると、反応ガスの利用効率が低下し、燃料電池の発電性能が低下することになる。
ガスの回り込み現象を抑える方法として、シール部材122の体積を大きくすることが考えられる。この場合、締結時にシール部材122が圧縮されて弾性変形することで、前記隙間を埋められると考えられる。しかしながら、この場合、シール部材122の体積を大きくするので、当然ながらその分、コストアップにつながる。
また、本発明者らは鋭意検討したところ、特許文献2に開示されている高分子形燃料電池の構成によれば、確かにガスの回り込み現象を抑えることはできるものの、発電性能が十分でないことを見出した。すなわち、特許文献2の高分子電解質形燃料電池では、セパレータに設けられた段差とガス拡散層の外縁とにより形成される隙間の一部が、高分子電解質膜又は触媒層に接することになる。このため、高分子電解質膜又は触媒層と反応ガスとが直接接触することになり、当該直接接触する部分が劣化して、発電性能が低下することになる。
そこで、本発明者らは、鋭意検討した結果、シール部材122とガス拡散層114の少なくともいずれか一方が他方により厚さ方向に押し潰されるようにすることで、前記置きズレや公差が生じても、シール部材122の体積を大きくすることなく、当該押し潰されて変形した部分で前記隙間を埋めることができることを見出した。また、高分子電解質膜の外周領域上に枠体を設け、枠体の上にシール部材を、ガス拡散層を乗り上げるように設けることで、ガス拡散層の外縁と枠体とにより形成される隙間が高分子電解質膜又は触媒層に接することがなくなり、高分子電解質膜又は触媒層と反応ガスとが直接接触することにより生じる劣化を防ぐことができることを見出した。これらの知見に基づき、本発明者らは、以下の発明に至った。
本発明の第1態様によれば、高分子電解質膜と、
前記高分子電解質膜上に設けられた触媒層と、
前記高分子電解質膜の外周領域上に設けられた枠体と、
前記高分子電解質膜の厚さ方向から見てその外縁が前記枠体の内縁よりも外側に位置するように、前記触媒層及び前記枠体上に設けられたガス拡散層と、
前記ガス拡散層上に設けられたセパレータと、
前記セパレータと前記枠体の両方に接触するように設けられた樹脂製のシール部材と、
を備え、
前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により前記厚さ方向に押し潰されている、
燃料電池を提供する。
前記高分子電解質膜上に設けられた触媒層と、
前記高分子電解質膜の外周領域上に設けられた枠体と、
前記高分子電解質膜の厚さ方向から見てその外縁が前記枠体の内縁よりも外側に位置するように、前記触媒層及び前記枠体上に設けられたガス拡散層と、
前記ガス拡散層上に設けられたセパレータと、
前記セパレータと前記枠体の両方に接触するように設けられた樹脂製のシール部材と、
を備え、
前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により前記厚さ方向に押し潰されている、
燃料電池を提供する。
本発明の第2態様によれば、前記シール部材と前記ガス拡散層の外周部分との接触圧力は、前記シール部材と前記枠体との接触圧力よりも小さい、第1態様に記載の燃料電池を提供する。
本発明の第3態様によれば、前記シール部材と前記ガス拡散層の両方が押し潰されている、第1又は2態様に記載の燃料電池を提供する。
本発明の第4態様によれば、前記シール部材は、前記セパレータの表面に形成されている、第1~3態様のいずれか1つに記載の燃料電池を提供する。
本発明の第5態様によれば、前記シール部材は、射出成形により前記セパレータの表面に形成されている、第4態様に記載の燃料電池を提供する。
本発明の第6態様によれば、前記セパレータと前記枠体との間に設けられた環状の第2シール部材を備え、
前記第2シール部材は、前記ガス拡散層の外縁に対して隙間を空けて配置され、
前記シール部材は、前記隙間の一部を塞ぐように設けられている、第1~5態様のいずれか1つに記載の燃料電池を提供する。
前記第2シール部材は、前記ガス拡散層の外縁に対して隙間を空けて配置され、
前記シール部材は、前記隙間の一部を塞ぐように設けられている、第1~5態様のいずれか1つに記載の燃料電池を提供する。
本発明の第7態様によれば、前記シール部材と前記第2シール部材とは、同一の樹脂材料により一体に形成されている、第6態様に記載の燃料電池を提供する。
本発明の第8態様によれば、前記ガス拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されている、第1~7態様のいずれか1つに記載の燃料電池を提供する。
本発明の第9態様によれば、高分子電解質膜と、前記高分子電解質膜上に設けられた触媒層と、前記高分子電解質膜の外周領域上に設けられた枠体と、前記高分子電解質膜の厚さ方向から見てその外縁が前記枠体の内縁よりも外側に位置するように、前記触媒層及び前記枠体上に設けられたガス拡散層と、を備える電極-膜-枠接合体を用意し、
表面にシール部材が設けられたセパレータを用意し、
前記シール部材が前記枠体に接触するとともに、前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により前記厚さ方向に押し潰されるように、前記電極-膜-枠接合体と前記セパレータとを締結する、
ことを含む、燃料電池の製造方法を提供する。
表面にシール部材が設けられたセパレータを用意し、
前記シール部材が前記枠体に接触するとともに、前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により前記厚さ方向に押し潰されるように、前記電極-膜-枠接合体と前記セパレータとを締結する、
ことを含む、燃料電池の製造方法を提供する。
本発明の第10態様によれば、前記電極-膜-枠接合体と前記セパレータとを締結する前において、前記シール部材と前記枠体との距離が前記シール部材と前記ガス拡散層との距離よりも短くなるように、前記シール部材が形成されている、第9態様に記載の燃料電池の製造方法を提供する。
本発明の第11態様によれば、前記電極-膜-枠接合体と前記セパレータとを締結する前において、前記ガス拡散層の外周部分が前記シール部材の形状に倣って傾斜するように形成されている、第9又は10態様に記載の燃料電池の製造方法を提供する。
本発明の第12態様によれば、前記シール部材は、射出成形により前記セパレータの表面に形成されている、第9~11態様のいずれか1つに記載の燃料電池の製造方法を提供する。
本発明の第13態様によれば、前記ガス拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されている、第9~12態様のいずれか1つに記載の燃料電池の製造方法を提供する。
以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の全ての図において、同一又は相当部分には同一符号を付し、重複する説明は省略する。
《第1実施形態》
本発明の第1実施形態にかかる燃料電池について説明する。図1は、本発明の第1実施形態にかかる燃料電池の基本構造を模式的に示す断面図であり、図2は、その一部拡大断面図である。
本発明の第1実施形態にかかる燃料電池について説明する。図1は、本発明の第1実施形態にかかる燃料電池の基本構造を模式的に示す断面図であり、図2は、その一部拡大断面図である。
本第1実施形態にかかる燃料電池は、水素を含有する燃料ガスと、空気などの酸素を含む酸化剤ガスとを電気化学的に反応させることにより、電力と熱とを同時に発生させる高分子電解質形燃料電池である。なお、本発明は、高分子電解質形燃料電池に限定されるものではなく、種々の燃料電池に適用可能である。
図1に示すように、本第1実施形態にかかる燃料電池1は、電極-膜-枠接合体2と、電極-膜-枠接合体2を挟んで配置される一対のセパレータ30,40とを備えている。電極-膜-枠接合体2は、MEA(膜電極接合体)10と、MEA10の外周領域(周縁部)上に設けられた額縁状の枠体20とを備えている。
MEA10は、高分子電解質膜11と、当該高分子電解質膜11の両面に形成された一対の電極層12,12とを備えている。一対の電極層12の一方はアノード電極であり、他方はカソード電極である。電極層12は、触媒層13とガス拡散層14とを備えている。触媒層13は、高分子電解質膜11の表面に形成され、当該触媒層13上にガス拡散層14が形成されている。
高分子電解質膜11は、触媒層13及びガス拡散層14よりもサイズが多く、外周領域が触媒層13及びガス拡散層14からはみ出すように設けられている。この高分子電解質膜11の外周領域(周縁部)上に枠体20が設けられている。
枠体20の内縁20aは、触媒層13とガス拡散層14との間に位置している。言い換えれば、ガス拡散層14は、枠体20上に乗り上げるように構成されている。さらに言い換えれば、ガス拡散層14は、高分子電解質膜11の厚さ方向(図1の上下方向)から見てその外縁14aが枠体20の内縁20aよりも外側に位置するように、触媒層13及び枠体20上に設けられている。
セパレータ30は、一方のガス拡散層14上に設けられている。セパレータ40は、他方のガス拡散層14上に設けられている。セパレータ30と枠体20との間、及びセパレータ40と枠体20との間には、それぞれ樹脂製のシール部材21が設けられている。
シール部材21は、環状に形成され、セパレータ30と枠体20の両方、又はセパレータ40と枠体20の両方に接触するように設けられている。シール部材21と枠体20との接触圧力は、燃料電池1の内部に供給された反応ガスが外部へ流れようとする圧力よりも高くなっている。これにより、反応ガスの外部への漏出が防止される。
また、シール部材21は、ガス拡散層14の外周部分14bと接触し、当該外周部分14bを高分子電解質膜11の厚さ方向に押し潰すように設けられている。これにより、シール部材21とガス拡散層14との間には、隙間が生じないようになっている。
また、シール部材21とガス拡散層14の外周部分14bとの接触圧力は、シール部材21と枠体20との接触圧力よりも小さくなっている。これにより、ガス拡散層14の外周部分14bが圧縮されることにより生じる反力により、高分子電解質膜11に孔が空いて高分子電解質膜11の耐久性や発電性能が低下するなどの不具合が発生することを回避することができる。なお、「接触圧力」とは、例えば、接触領域内での最大圧力(kg/cm2又はkg/m)をいう。
本第1実施形態にかかる燃料電池によれば、シール部材21が、枠体20と接触するとともに、ガス拡散層14の外周部分14bを高分子電解質膜11の厚さ方向に押し潰すように設けられている。これにより、シール部材21とガス拡散層14との隙間を無くすことができ、ガスの回り込み現象を抑えて、燃料電池の発電性能を一層向上させることができる。さらに、高分子電解質膜11の厚さ方向から見て、触媒層13と重ならない部分であるガス拡散層14の外周部分14bを押し潰すことができる。そのため、ガス拡散層14の外周部分14bを反応ガスが通流することを抑制できる。これにより、触媒層13に供給されず、発電反応に寄与しない反応ガスがガス拡散層の外周部分14bを通流することを抑制でき、反応ガスをより有効に利用することができる。
次に、燃料電池1を構成する各部材についてより詳しく説明する。
高分子電解質膜11は、好ましくは、水素イオン伝導性を有する高分子膜である。高分子電解質膜11としては、特に限定されるものではないが、例えば、パーフルオロカーボンスルホン酸からなるフッ素系高分子電解質膜(例えば、米国DuPont社製のNafion(登録商標)、旭化成(株)製のAciplex(登録商標)、旭硝子(株)製のFlemion(登録商標)など)や各種炭化水素系電解質膜を使用することができる。高分子電解質膜11の材料は、水素イオンを選択的に移動させるものであればよい。高分子電解質膜11の形状は、特に限定されるものではないが、本第1実施形態では略矩形とする。
触媒層13は、好ましくは、水素又は酸素の酸化還元反応に対する触媒を含む層である。触媒層13は、好ましくは、外縁13aが、高分子電解質膜11の厚さ方向から見て、シール部材21の中心部よりも内側に位置するように設けられる。触媒層13の外縁13aがシール部材21の中心部よりも外側にあると、多孔質な触媒層13の内部を通過した反応ガスが外側に抜けやすくなり、(外部リーク)ガスロスが生じる。また、触媒層13は、特に限定されるものではないが、例えば、白金系金属触媒を坦持したカーボン粉末とプロトン導電性を有する高分子材料とを主成分とした多孔質部材により構成することができる。触媒層13は、導電性を有し、且つ水素及び酸素の酸化還元反応に対する触媒能を有するものであればよい。触媒層13の形状は、特に限定されるものではないが、本第1実施形態では略矩形とする。触媒層13は、高分子電解質膜11の表面に触媒層形成用インクを塗工又はスプレーするなどして形成することができる。また、一般的な転写法により作製しても良い。
ガス拡散層14は、好ましくは、炭素繊維を基材として用いずに構成したいわゆる基材レスガス拡散層で構成される。具体的には、ガス拡散層14は、導電性粒子と高分子樹脂とを主成分とした多孔質部材から構成される。ここで、「導電性粒子と高分子樹脂とを主成分とした多孔質部材」とは、炭素繊維を基材とすることなく、導電性粒子と高分子樹脂のみで支持される構造(いわゆる自己支持体構造)を持つ多孔質部材を意味する。導電性粒子と高分子樹脂とで多孔質部材を製造する場合、例えば、界面活性剤と分散溶媒とを用いる。この場合、製造工程中に、焼成により界面活性剤と分散溶媒とを除去するが、十分に除去できずにそれらが多孔質部材中に残留することが有り得る。従って、「導電性粒子と高分子樹脂とを主成分とした多孔質部材」とは、炭素繊維を基材として使用しない自己支持体構造である限り、そのようにして残留した界面活性剤と分散溶媒が多孔質部材に含まれてもよいことを意味する。また、炭素繊維を基材として基材として使用しない自己支持体構造であれば、他の材料(例えば、短繊維の炭素繊維など)が多孔質部材に含まれてもよいことも意味する。
ガス拡散層14は、高分子樹脂と導電性粒子とを含む混合物を混練して、押出し、圧延してから、焼成することにより製造することができる。具体的には、導電性粒子であるカーボンと分散溶媒、界面活性剤を攪拌・混錬機に投入後、混錬して粉砕・造粒して、カーボンを分散溶媒中に分散させる。次いで、高分子樹脂であるフッ素樹脂をさらに攪拌・混錬機に投下して、攪拌及び混錬して、カーボンとフッ素樹脂を分散する。得られた混錬物を圧延してシートを形成し、焼成して分散溶媒、界面活性剤を除去する。これにより、シート状のガス拡散層14を製造することができる。
ガス拡散層14を構成する導電性粒子の材料としては、例えば、グラファイト、カーボンブラック、活性炭などのカーボン材料が挙げられる。前記カーボンブラックとしては、アセチレンブラック(AB)、ファーネスブラック、ケッチェンブラック、バルカンなどが挙げられ、これらの材料を単独で使用してもよく、また、複数の材料を組み合わせて使用してもよい。また、カーボン材料の原料形態としては、粉末状、繊維状、粒状等のいずれの形状であってもよい。
ガス拡散層14を構成する高分子樹脂の材料としては、PTFE(ポリテトラフルオロエチレン)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PVDF(ポリビニリデンフルオライド)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)等が挙げられる。これらの中でも、高分子樹脂の材料としてPTFEが使用されることが、耐熱性、撥水性、耐薬品性の観点から好ましい。PTFEの原料形態としては、ディスパージョン、粉末状などがあげられる。それらの中でも、PTFEの原料形態としてディスパージョンが採用されることが、作業性の観点から好ましい。なお、ガス拡散層14を構成する高分子樹脂は、導電性粒子同士を結着するバインダとしての機能を有する。また、前記高分子樹脂は、撥水性を有するため、燃料電池の内部にて水を系内に閉じ込める機能(保水性)も有する。
また、ガス拡散層14には、上述したように、導電性粒子及び高分子樹脂以外に、製造時に使用する界面活性剤及び分散溶媒などが微量含まれていてもよい。分散溶媒としては、例えば、水、メタノール及びエタノール等のアルコール類、エチレングリコール等のグリコール類が挙げられる。界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテルなどのノニオン系、アルキルアミンオキシドなどの両性イオン系が挙げられる。製造時に使用する分散溶媒の量及び界面活性剤の量は、導電性粒子の種類、高分子樹脂の種類、それらの配合比率などに応じて適宜設定すればよい。なお、一般的には、分散溶媒の量、界面活性剤の量が多いほど、高分子樹脂と導電性粒子が均一分散しやすい傾向がある一方で、流動性が高くなり、ガス拡散層のシート化が難しくなる傾向がある。なお、界面活性剤は、導電性粒子の材料、分散溶媒の種類により適宜選択することができる。また、界面活性剤を使用しなくてもよい。
なお、ガス拡散層14は、カソード電極側及びアノード電極側において同じ構造のガス拡散層を用いても、異なる構造のガス拡散層を用いてもよい。例えば、カソード電極側及びアノード電極側のいずれか一方に炭素繊維を基材としたガス拡散層を用い、いずれか他方に前述した基材レスガス拡散層を用いてもよい。
枠体20は、MEA10のハンドリング性の向上のために設けられる部材である。枠体20の材料としては、一般的な熱可塑性樹脂、熱硬化性樹脂などを用いることができる。例えば、枠体20の材料として、シリコン樹脂、エポキシ樹脂、メラミン樹脂、ポリウレタン系樹脂、ポリイミド系樹脂、アクリル樹脂、ABS樹脂、ポリプロピレン、液晶性ポリマー、ポリフェニレンサルファイド樹脂、ポリスルホン、ガラス繊維強化樹脂などを用いることができる。枠体20の形状は、特に限定されるものではないが、本第1実施形態では略矩形環状とする。
セパレータ30,40は、好ましくはMEA10を機械的に固定するための部材である。セパレータ30,40は、好ましくは、カーボンを含む材質や金属を含む材質で構成される。セパレータ30,40がカーボンを含む材質で構成される場合、セパレータ30,40は、カーボン粉末と樹脂バインダとを混合した原料粉を金型内に供給し、当該金型内に供給された原料粉に圧力と熱を加えることによって形成することができる。セパレータ30,40が金属を含む材質で構成される場合、セパレータ30,40は、金属プレートからなるものであってもよい。また、セパレータ30,40として、チタンやステンレス鋼製の板の表面に金メッキを施したものを使用することができる。
セパレータ30のガス拡散層14と接触する主面(以下、電極面ともいう)には、燃料ガス用のガス流路31が設けられている。また、セパレータ40のガス拡散層14と接触する主面(以下、電極面ともいう)には、酸化剤ガス用のガス流路41が設けられている。ガス流路31を通じて一方の電極層12に燃料ガスが供給され、ガス流路41を通じて他方の電極層12に酸化剤ガスが供給されることで、電気化学反応が起こり、電力と熱とが発生する。
シール部材21は、好ましくは、適度な機械的強度と柔軟性を有する合成樹脂で構成される。シール部材21を構成する材料としては、例えば、ゴム材料や熱可塑性エラストマーや接着剤等の化合物を使用することができる。シール部材21を構成するシール材の具体例としては、フッ素ゴム、シリコーンゴム、天然ゴム、EPDM、ブチルゴム、塩化ブチルゴム、臭化ブチルゴム、ブタジエンゴム、スチレン-ブタジエン共重合体、エチレン-酢酸ビニルゴム、アクリルゴム、ポリイソプロピレンポリマー、パーフルオロカーボン、ポリベンゾイミダゾール、ポリスチレン系、ポリオレフィン系、ポリエステル系及びポリアミド系等の熱可塑性エラストマー、あるいはイソプレンゴム及びブタジエンゴム等のラテックスを用いた接着剤、液状のポリブタジエン、ポリイソプレン、ポリクロロプレン、シリコーンゴム、フッ素ゴム及びアクリロニトリル-ブタジエンゴム等を用いた接着剤等を挙げることができるが、これらの化合物に限定されない。また、これらの化合物を単体で用いても、あるいは2種類以上を混合もしくは複合して用いてもよい。また、シール部材21を構成するシール材として、具体的には、ポリプロピレン及びEPDMを有してなるポリオレフィン系熱可塑性エラストマーであるサントプレン8101-55等を用いることができる。シール部材21の形状は、特に限定されるものではないが、本第1実施形態では略矩形環状とする。
次に、本第1実施形態にかかる燃料電池1の製造方法について説明する。
まず、図3に示すように、電極-膜-枠接合体2とセパレータ30,40を用意する。本第1実施形態において、シール部材21は、断面が半楕円形に形成されている。また、シール部材21は、セパレータ30,40の表面に形成されている。
次いで、高分子電解質膜11の厚さ方向から見て、シール部材21の頂部21aよりも内側(図3の左側)にある内周部分21bとガス拡散層14の外周部分14bとが重なるように位置合わせする。
次いで、電極-膜-枠接合体2と各セパレータ30,40とを締結する。これにより、シール部材21の内周部分21bがガス拡散層14の外周部分14bを高分子電解質膜11の厚さ方向に押し潰すとともに、シール部材21の頂部21aが枠体20に接触する。このとき、ガス拡散層14の外周部分14bが変形することにより、シール部材21とガス拡散層14との間に隙間が発生しないようになっている。
以上のようにして、図2に示す燃料電池1が製造される。
本第1実施形態にかかる燃料電池の製造方法によれば、シール部材21が、枠体20に接触するとともに、ガス拡散層14の外周部分14bを高分子電解質膜11の厚さ方向に押し潰すように、電極-膜-枠接合体2とセパレータ30,40とを締結している。これにより、シール部材21とガス拡散層14との隙間を無くすことができ、ガスの回り込み現象を抑えて、発電性能を一層向上させることができる。
なお、ガス拡散層14は、前述したような、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成することが好ましい。この場合、当該多孔質部材が弾性を有するので、当該多孔質部材が押し潰された際に弾性変形して、シール部材21とガス拡散層14との間に隙間が発生することをより確実に防ぐことができる。
なお、ガス拡散層14として剛性の高い部材を用いた場合には、当該ガス拡散層14とシール部材21とが接触した際に生じる反力により、シール部材21やセパレータ30,40、枠体20に割れや欠けが生じるおそれがある。このため、ガス拡散層14は、剛性の低い部材で構成することが好ましい。
また、前記では、ガス拡散層14の外周部分14bが押し潰されるものとしたが、本発明はこれに限定されない。シール部材21の内周部分21bが押し潰されるようにしてもよい。この場合、ガス拡散層14として剛性の高い部材を用いることができる。また、ガス拡散層14の外周部分14bとシール部材21の内周部分21bの両方が押し潰されるようにしてもよい。この場合、シール部材21とガス拡散層14とが密着し、シール部材21とガス拡散層14との間に隙間が発生することをより確実に抑えることができる。また、ガス拡散層14及びシール部材21の材料の選択の幅を拡げることができる。
また、シール部材21は、前述したように、セパレータ30,40の表面に形成されることが好ましい。この場合、セパレータ30,40は、枠体20よりも寸法精度が高く、反りも少ないので、歩留まりが高いという利点がある。また、シール部材21を射出成形によりセパレータ30,40の表面に形成する場合、セパレータ30,40は剛性が高いため、当該射出成形が容易であるという利点がある。なお、シール部材21を射出成形により枠体20に形成した場合には、射出成形時に発生する熱により、高分子電解質膜11が劣化するおそれがある。この場合、発電性能が低下することになる。
また、シール部材21は、図4に示すように、頂部21aがガス拡散層14の外縁14aから離れる方向にずれるように形成されることが好ましい。この場合、頂部21aと枠体20とを容易に接触させることができる。また、シール部材21の内周部分21bの体積を少なくすることができるので、ガス拡散層14の外周部分14bが圧縮されることにより生じる反力を小さくすることができる。これにより、高分子電解質膜11に孔が空いて高分子電解質膜11の耐久性や発電性能が低下するなどの不具合が発生することをより一層回避することができる。
また、シール部材21は、図5に示すように、断面矩形に形成されてもよい。この場合、枠体20には、シール部材21と対向する位置に、突起部20bが設けられることが好ましい。これにより、シール部材21とガス拡散層14の外周部分14bとの接触圧力を、シール部材21と枠体20との接触圧力よりも小さくすることが容易になる。
また、シール部材21は、図5に示すように、シール部材21と枠体20との距離h1がシール部材21とガス拡散層14との距離h2よりも短くなるように、シール部材21が形成されることが好ましい。これにより、シール部材21とガス拡散層14の外周部分14bとの接触圧力を、シール部材21と枠体20との接触圧力よりも小さくすることが容易になる。
また、ガス拡散層14,14は、図6に示すように、カソード電極側とアノード電極側とで、外縁14a,14aの位置が異なることが有り得る。この場合、シール部材21の内周部分21bの長さL1を長くすることで、外縁14aの位置を過度に考慮することなく、シール部材21の内周部分21bとガス拡散層14の外周部分14bとを接触させることができる。
また、ガス拡散層14の外周部分14bは、図7に示すように、シール部材21の形状に倣って傾斜していることが好ましい。これにより、シール部材21の頂部21aと枠体20とを容易に接触させることができるとともに、ガス拡散層14の外周部分14bが圧縮されることにより生じる反力を小さくすることができる。従って、高分子電解質膜11に孔が空いて高分子電解質膜11の耐久性や発電性能が低下するなどの不具合が発生することをより一層回避することができる。
また、セパレータ30,40は、図1~図6に示すような段差を有する形状のものに限定されるものではなく、図7に示すような平板状のものであってもよい。
次に、図1に示す燃料電池(単電池)1を複数個直列に連結して、いわゆる燃料電池スタックとして使用する場合の構造について説明する。図8は、燃料電池1を複数個連結した燃料電池スタック3の基本構造を示す分解斜視図である。
複数個の燃料電池1を燃料電池スタック3として使用する場合、ガス流路31,41に反応ガス(燃料ガス又は酸化剤ガス)を供給するためには、反応ガスを供給する配管を、セパレータ30,40の枚数に対応する数に分岐し、それらの分岐先をガス流路31,41につなぐマニホールドが必要となる。
このため、本第1実施形態では、図8に示すように、枠体20及び一対のセパレータ30,40にそれぞれ、燃料ガスが供給される一対の貫通孔である燃料ガスマニホールド孔22,32,42が設けられている。また、枠体20及び一対のセパレータ30,40にはそれぞれ、酸化剤ガスが流通する一対の貫通孔である酸化剤ガスマニホールド孔23,33,43が設けられている。枠体20及び一対のセパレータ30,40が燃料電池1として連結された状態では、燃料ガスマニホールド孔22,32,42が連結され、燃料ガスマニホールドが形成される。同様に、枠体20及び一対のセパレータ30,40が燃料電池1として連結された状態では、酸化剤ガスマニホールド孔23,33,43が連結され、酸化剤ガスマニホールドが形成される。
また、枠体20及び一対のセパレータ30,40には、冷却媒体(例えば、純水やエチレングリコール)が流通するそれぞれ二対の貫通孔である冷却媒体マニホールド孔24,34,44が設けられている。枠体20及び一対のセパレータ30,40が燃料電池1として連結された状態では、冷却媒体マニホールド孔24,34,44が連結され、二対の冷却媒体マニホールドが形成される。
また、枠体20及び一対のセパレータ30,40には、それぞれの角部の近傍に4つのボルト孔50が設けられている。各ボルト孔50に締結ボルトが挿通され、当該締結ボルトにナットが結合することによって複数個の燃料電池1が締結される。
ガス流路31は、一対の燃料ガスマニホールド32,32間を結ぶように設けられている。ガス流路41は、一対の酸化剤ガスマニホールド43,43間を結ぶように設けられている。なお、図8では、ガス流路31,41をサーペンタイン型の流路として示したが、その他の形態(例えば直線型)の流路であってもよい。
また、セパレータ30の電極面とは反対側の主面及びセパレータ40の電極面とは反対側の主面には、図示していないが、好ましくは、それぞれ冷却媒体流路が形成される。冷却媒体流路は、二対の冷却媒体マニホールド孔34,44間を結ぶように形成される。すなわち、冷却媒体がそれぞれ供給側の冷却媒体マニホールドから冷却媒体流路に分岐して、それぞれ排出側の冷却媒体マニホールドに流通するように構成されている。これにより、冷却媒体の伝熱能力を利用して、燃料電池1を電気化学反応に適した所定の温度に保つようにしている。
なお、前記では、セパレータ30,40に燃料ガス、酸化剤ガス、及び冷却水の各マニホールド孔を設け、積層した際に燃料ガス、酸化剤ガス、及び冷却水の各供給マニホールドが形成されるように構成した、いわゆる内部マニホールド方式の燃料電池を例示して説明したが、本発明はこれに限定されない。例えば、燃料電池スタック3の側面に燃料ガス、酸化剤ガス、及び冷却水の各供給マニホールドを設けた、いわゆる外部マニホールド方式の燃料電池であってもよい。この場合でも、同様の効果を得ることができる。また、セパレータ30,40を多孔状の導電材にて形成し、冷却媒体流路を流れる冷却水の圧力が、ガス流路31,41を流れる反応ガスの圧力よりも高くなるようにして、冷却水の一部を電極面側にセパレータ30,40を透過させて、高分子電解質膜11を湿らせる、いわゆる内部加湿型の燃料電池であってもよい。
また、前記では、セパレータ30,40にガス流路31,41を設けるようにしたが、本発明はこれに限定されない。例えば、一方のガス拡散層14にガス流路31を設け、他方のガス拡散層14にガス流路41を設けるようにしてもよい。また、セパレータ30と一方のガス拡散層14の両方にガス流路31を形成するようにしてもよい。また、セパレータ40と他方のガス拡散層14の両方にガス流路41を形成するようにしてもよい。
《第2実施形態》
次に、本発明の第2実施形態にかかる燃料電池について説明する。図9は、本発明の第2実施形態にかかる燃料電池の構成を模式的に示す一部拡大断面図である。本第2実施形態の燃料電池が前記第1実施形態の燃料電池と異なる点は、セパレータ30,40と枠体20との間に第2シール部材60を備える点である。
次に、本発明の第2実施形態にかかる燃料電池について説明する。図9は、本発明の第2実施形態にかかる燃料電池の構成を模式的に示す一部拡大断面図である。本第2実施形態の燃料電池が前記第1実施形態の燃料電池と異なる点は、セパレータ30,40と枠体20との間に第2シール部材60を備える点である。
第2シール部材60は、環状に形成され、セパレータ30と枠体20の両方、又はセパレータ40と枠体20の両方に接触するように設けられている。また、第2シール部材60は、シール部材21に外側で隣接するように設けられている。シール部材21と枠体20との接触圧力は、燃料電池1の内部に供給された反応ガスが外部へ流れようとする圧力よりも高くなっている。
本第2実施形態にかかる燃料電池によれば、第2シール部材60を更に備えることにより、第2シール部材60で、セパレータ30,40と枠体20との隙間を十分にシールすることができる。これにより、反応ガスの外部への漏出をより確実に防ぐことができる。さらに、高分子電解質膜11の厚さ方向から見て、触媒層13と重ならない部分であるガス拡散層14の外周部分14bをシール部材21で押し潰すことができる。そのため、ガス拡散層14の外周部分14bを反応ガスが通流することを抑制できる。これにより、触媒層13に供給されず、発電反応に寄与しない反応ガスがガス拡散層の外周部分14bを通流することを抑制でき、反応ガスをより有効に利用することができる。なお、シール部材21を第2シール部材60とガス拡散層14との隙間C1の全部を塞ぐように設ける場合は、シール部材21と第2シール部材60とで、セパレータ30,40と枠体20との隙間を二重にシールすることができる。これにより、反応ガスの外部への漏出をより一層防ぐことができる。
なお、第2シール部材60により、反応ガスの外部への漏出を防ぐことができるので、シール部材21は、反応ガスの外部への漏出を防ぐものでなくてもよく、ガス拡散層14と第2シール部材60との隙間を埋められるものであればよい。このため、図10に示すように、セパレータ30,40と電極-膜-枠接合体2とを接合する前において、シール部材21は、頂部21aが第2シール部材60の頂部60aよりも低くなるように形成されてもよい。
また、シール部材21と第2シール部材60とは、異なる樹脂材料で構成されてもよい。例えば、シール部材21は、第2シール部材60よりも柔らかい樹脂材料で構成されてもよい。この場合、シール部材21が弾性変形し易くなるため、ガス拡散層14と第2シール部材60との隙間をより確実に埋めることができる。
また、シール部材21と第2シール部材60とは、同一の樹脂材料により一体に形成されてもよい。この場合、シール部材21と第2シール部材60とを同時に形成することができるので、製造工程の増加を抑えることができる。
また、シール部材21は、図11に示すように、第2シール部材60とガス拡散層14との隙間C1の全部を塞ぐのではなく、当該隙間C1の一部を塞ぐように設けられてもよい。この場合でも、反応ガスが隙間C1を通じて燃料電池の外部に排出されること(ガスの回り込み現象)を抑えることができるので、従来の燃料電池よりも発電性能を向上させることができる。高分子電解質膜11の厚さ方向から見て、触媒層13と重ならない部分であるガス拡散層14の外周部分14bの一部を押し潰すことができる。ガス拡散層14の外周部分14bの一部を押し潰すことによって、ガス拡散層14の外周部分14bを反応ガスが通流することを抑制できる。これにより、触媒層13に供給されず、発電反応に寄与しない反応ガスがガス拡散層の外周部分14bを通流することを抑制でき、反応ガスをより有効に利用することができる。また、シール部材21を配置する面積を少なくすることで、電極-膜-枠接合体2とセパレータ30,40とを締結する際に、当該シール部材21を押し潰すために必要な締結荷重が増加することを抑えることができる。これにより、セパレータ30,40に強度の低い部材を用いることができ、コストを抑えることができる。
また、本発明の第2実施形態にかかる燃料電池によれば、ガス拡散層14の外縁と第2シール部材60とにより形成される隙間C1は、高分子電解質膜11又は触媒層13に接しない。従って、高分子電解質膜11又は触媒層11と反応ガスとが直接接触することにより生じる劣化を防ぐことができる。
なお、図11では、複数のシール部材21が隙間C1に設けられる例を示したが、本発明はこれに限定されない。隙間C1にシール部材21を1つ設けた場合でも、ガスの回り込み現象を抑えることができ、従来の燃料電池よりも発電性能を向上させることができる。
また、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
2012年5月17日に出願された日本国特許出願No.2012-113661号の明細書、図面、および特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
本発明にかかる燃料電池は、発電性能を一層向上させることができるので、例えば、自動車などの移動体、分散発電システム、家庭用のコージェネレーションシステムなどの駆動源として使用される燃料電池として有用である。
1 燃料電池
2 電極-膜-枠接合体
3 燃料電池スタック
10 MEA(膜電極接合体)
11 高分子電解質膜
12 電極層
13 触媒層
13a 外縁
14 ガス拡散層
14a 外縁
14b 外周部分
20 枠体
20a 内縁
20b 突起部
21 シール部材
21a 頂部
21b 内周部分
30,40 セパレータ
31,41 ガス流路
60 第2シール部材
60a 頂部
C1 隙間
2 電極-膜-枠接合体
3 燃料電池スタック
10 MEA(膜電極接合体)
11 高分子電解質膜
12 電極層
13 触媒層
13a 外縁
14 ガス拡散層
14a 外縁
14b 外周部分
20 枠体
20a 内縁
20b 突起部
21 シール部材
21a 頂部
21b 内周部分
30,40 セパレータ
31,41 ガス流路
60 第2シール部材
60a 頂部
C1 隙間
Claims (13)
- 高分子電解質膜と、
前記高分子電解質膜上に設けられた触媒層と、
前記高分子電解質膜の外周領域上に設けられた枠体と、
前記高分子電解質膜の厚さ方向から見てその外縁が前記枠体の内縁よりも外側に位置するように、前記触媒層及び前記枠体上に設けられたガス拡散層と、
前記ガス拡散層上に設けられたセパレータと、
前記セパレータと前記枠体の両方に接触するように設けられた樹脂製のシール部材と、
を備え、
前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により前記厚さ方向に押し潰されている、燃料電池。 - 前記シール部材と前記ガス拡散層の外周部分との接触圧力は、前記シール部材と前記枠体との接触圧力よりも小さい、請求項1に記載の燃料電池。
- 前記シール部材と前記ガス拡散層の両方が押し潰されている、請求項1又は2に記載の燃料電池。
- 前記シール部材は、前記セパレータの表面に形成されている、請求項1~3のいずれか1つに記載の燃料電池。
- 前記シール部材は、射出成形により前記セパレータの表面に形成されている、請求項4に記載の燃料電池。
- 前記セパレータと前記枠体との間に設けられた環状で樹脂製の第2シール部材を備え、
前記第2シール部材は、前記ガス拡散層の外縁に対して隙間を空けて配置され、
前記シール部材は、前記隙間の一部を塞ぐように設けられている、請求項1~5のいずれか1つに記載の燃料電池。 - 前記シール部材と前記第2シール部材とは、同一の樹脂材料により一体に形成されている、請求項6記載の燃料電池。
- 前記ガス拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されている、請求項1~7のいずれか1つに記載の燃料電池。
- 高分子電解質膜と、前記高分子電解質膜上に設けられた触媒層と、前記高分子電解質膜の外周領域上に設けられた枠体と、前記高分子電解質膜の厚さ方向から見てその外縁が前記枠体の内縁よりも外側に位置するように、前記触媒層及び前記枠体上に設けられたガス拡散層と、を備える電極-膜-枠接合体を用意し、
表面にシール部材が設けられたセパレータを用意し、
前記シール部材が前記枠体に接触するとともに、前記シール部材と前記ガス拡散層の外周部分の少なくとも一方が他方により前記厚さ方向に押し潰されるように、前記電極-膜-枠接合体と前記セパレータとを締結する、
ことを含む、燃料電池の製造方法。 - 前記電極-膜-枠接合体と前記セパレータとを締結する前において、前記シール部材と前記枠体との距離が前記シール部材と前記ガス拡散層との距離よりも短くなるように、前記シール部材が形成されている、請求項9に記載の燃料電池の製造方法。
- 前記電極-膜-枠接合体と前記セパレータとを締結する前において、前記ガス拡散層の外周部分が前記シール部材の形状に倣って傾斜するように形成されている、請求項9又は10に記載の燃料電池の製造方法。
- 前記シール部材は、射出成形により前記セパレータの表面に形成されている、請求項9~11のいずれか1つに記載の燃料電池の製造方法。
- 前記ガス拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されている、請求項9~12のいずれか1つに記載の燃料電池の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13791003.0A EP2851986B1 (en) | 2012-05-17 | 2013-02-27 | Fuel cell and method for producing same |
JP2013553707A JP5979562B2 (ja) | 2012-05-17 | 2013-02-27 | 燃料電池及びその製造方法 |
US14/126,984 US20140120452A1 (en) | 2012-05-17 | 2013-02-27 | Fuel cell and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012113661 | 2012-05-17 | ||
JP2012-113661 | 2012-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013171939A1 true WO2013171939A1 (ja) | 2013-11-21 |
Family
ID=49583372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/001141 WO2013171939A1 (ja) | 2012-05-17 | 2013-02-27 | 燃料電池及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140120452A1 (ja) |
EP (1) | EP2851986B1 (ja) |
JP (1) | JP5979562B2 (ja) |
WO (1) | WO2013171939A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014518584A (ja) * | 2012-04-27 | 2014-07-31 | パナソニック株式会社 | 固体高分子電解質型燃料電池、および電解質膜−電極−枠接合体 |
JP2015170398A (ja) * | 2014-03-05 | 2015-09-28 | パナソニックIpマネジメント株式会社 | 固体高分子電解質型燃料電池 |
JP2017168230A (ja) * | 2016-03-15 | 2017-09-21 | パナソニックIpマネジメント株式会社 | ガスケット−セパレータ部材接合体とその製造方法およびガスケット−セパレータ部材接合体を用いた燃料電池 |
JP2018085334A (ja) * | 2016-11-17 | 2018-05-31 | 本田技研工業株式会社 | 燃料電池及びその運転方法 |
JP2018133327A (ja) * | 2017-02-16 | 2018-08-23 | パナソニックIpマネジメント株式会社 | 高分子電解質型燃料電池とその製造方法 |
JP2019140028A (ja) * | 2018-02-14 | 2019-08-22 | Nok株式会社 | ガス拡散層一体ガスケット及び燃料電池セル用部材 |
JP2022151929A (ja) * | 2021-03-29 | 2022-10-12 | 本田技研工業株式会社 | 発電セル及び樹脂枠付き電解質膜・電極構造体 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10326150B2 (en) * | 2014-08-26 | 2019-06-18 | Panasonic Intellectual Property Management Co., Ltd. | Fuel cell module, fuel cell stack, and method for producing fuel cell module |
GB2542803B (en) * | 2015-09-30 | 2022-01-12 | Intelligent Energy Ltd | Fuel cell sub-assembly |
US10202696B2 (en) * | 2016-06-06 | 2019-02-12 | Panasonic Intellectual Property Management Co., Ltd. | Electrochemical hydrogen pump |
JP7188365B2 (ja) | 2019-11-27 | 2022-12-13 | トヨタ自動車株式会社 | 燃料電池およびその製造方法 |
JP7408446B2 (ja) * | 2020-03-18 | 2024-01-05 | 本田技研工業株式会社 | 樹脂枠付き電解質膜・電極構造体及び燃料電池用樹脂枠部材の製造方法 |
DE102020213126A1 (de) | 2020-10-19 | 2022-04-21 | Robert Bosch Gesellschaft mit beschränkter Haftung | Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit |
DK181150B1 (en) | 2021-05-27 | 2023-03-01 | Blue World Technologies Holding ApS | Fuel cell stack, assembly of a bipolar plate and a gasket, and method of providing a sealing around a bipolar plate |
US12009559B2 (en) * | 2021-06-01 | 2024-06-11 | Plug Power Inc. | Fuel cell stack |
DE202023104081U1 (de) * | 2022-07-29 | 2023-08-25 | Kamax Holding Gmbh & Co. Kg | Brennstoffzelle |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002001658A1 (fr) * | 2000-06-29 | 2002-01-03 | Nok Corporation | Composant destine a une pile a combustible |
JP2004047230A (ja) | 2002-07-10 | 2004-02-12 | Asahi Glass Co Ltd | 固体高分子型燃料電池 |
JP2007280751A (ja) | 2006-04-06 | 2007-10-25 | Nok Corp | 燃料電池およびセパレータならびにこれらの製造方法 |
WO2008129840A1 (ja) * | 2007-03-30 | 2008-10-30 | Panasonic Corporation | 高分子電解質型燃料電池および電極-膜-枠接合体の製造方法 |
JP2008305674A (ja) * | 2007-06-07 | 2008-12-18 | Toyota Motor Corp | 燃料電池 |
WO2009072291A1 (ja) * | 2007-12-06 | 2009-06-11 | Panasonic Corporation | 電極-膜-枠接合体の製造方法 |
JP2009181951A (ja) * | 2008-02-01 | 2009-08-13 | Japan Gore Tex Inc | 膜電極組立体の製造方法およびそれにより製造された膜電極組立体 |
JP2009252627A (ja) * | 2008-04-09 | 2009-10-29 | Toyota Motor Corp | ガスケット付セパレータおよびその製造方法、積層部材ガスケット一体型セパレータおよびその製造方法 |
WO2010100906A1 (ja) * | 2009-03-04 | 2010-09-10 | パナソニック株式会社 | 高分子電解質型燃料電池用ガスケット |
WO2011019093A1 (ja) * | 2009-08-12 | 2011-02-17 | ジャパンゴアテックス株式会社 | 補強された膜電極組立体の製造方法および補強された膜電極組立体 |
JP2012113661A (ja) | 2010-11-26 | 2012-06-14 | Fujitsu Ltd | 情報処理装置、および価格設定方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4844039B2 (ja) * | 2005-08-05 | 2011-12-21 | トヨタ自動車株式会社 | 燃料電池 |
JP5095190B2 (ja) * | 2006-12-07 | 2012-12-12 | パナソニック株式会社 | 膜−電極接合体、及びこれを備えた高分子電解質形燃料電池 |
CN102763262B (zh) * | 2010-03-01 | 2014-12-10 | 本田技研工业株式会社 | 燃料电池 |
DE112010005884T8 (de) * | 2010-09-16 | 2013-08-14 | Toyota Jidosha Kabushiki Kaisha | Membranelektrodenanordnung, Brennstoffzelle dieselbe verwendend und Herstellungsverfahren der Membranelektrodenanordnung |
-
2013
- 2013-02-27 WO PCT/JP2013/001141 patent/WO2013171939A1/ja active Application Filing
- 2013-02-27 JP JP2013553707A patent/JP5979562B2/ja active Active
- 2013-02-27 EP EP13791003.0A patent/EP2851986B1/en active Active
- 2013-02-27 US US14/126,984 patent/US20140120452A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002001658A1 (fr) * | 2000-06-29 | 2002-01-03 | Nok Corporation | Composant destine a une pile a combustible |
JP2004047230A (ja) | 2002-07-10 | 2004-02-12 | Asahi Glass Co Ltd | 固体高分子型燃料電池 |
JP2007280751A (ja) | 2006-04-06 | 2007-10-25 | Nok Corp | 燃料電池およびセパレータならびにこれらの製造方法 |
WO2008129840A1 (ja) * | 2007-03-30 | 2008-10-30 | Panasonic Corporation | 高分子電解質型燃料電池および電極-膜-枠接合体の製造方法 |
JP2008305674A (ja) * | 2007-06-07 | 2008-12-18 | Toyota Motor Corp | 燃料電池 |
WO2009072291A1 (ja) * | 2007-12-06 | 2009-06-11 | Panasonic Corporation | 電極-膜-枠接合体の製造方法 |
JP2009181951A (ja) * | 2008-02-01 | 2009-08-13 | Japan Gore Tex Inc | 膜電極組立体の製造方法およびそれにより製造された膜電極組立体 |
JP2009252627A (ja) * | 2008-04-09 | 2009-10-29 | Toyota Motor Corp | ガスケット付セパレータおよびその製造方法、積層部材ガスケット一体型セパレータおよびその製造方法 |
WO2010100906A1 (ja) * | 2009-03-04 | 2010-09-10 | パナソニック株式会社 | 高分子電解質型燃料電池用ガスケット |
WO2011019093A1 (ja) * | 2009-08-12 | 2011-02-17 | ジャパンゴアテックス株式会社 | 補強された膜電極組立体の製造方法および補強された膜電極組立体 |
JP2012113661A (ja) | 2010-11-26 | 2012-06-14 | Fujitsu Ltd | 情報処理装置、および価格設定方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014518584A (ja) * | 2012-04-27 | 2014-07-31 | パナソニック株式会社 | 固体高分子電解質型燃料電池、および電解質膜−電極−枠接合体 |
JP2015170398A (ja) * | 2014-03-05 | 2015-09-28 | パナソニックIpマネジメント株式会社 | 固体高分子電解質型燃料電池 |
JP2017168230A (ja) * | 2016-03-15 | 2017-09-21 | パナソニックIpマネジメント株式会社 | ガスケット−セパレータ部材接合体とその製造方法およびガスケット−セパレータ部材接合体を用いた燃料電池 |
JP2018085334A (ja) * | 2016-11-17 | 2018-05-31 | 本田技研工業株式会社 | 燃料電池及びその運転方法 |
JP2018133327A (ja) * | 2017-02-16 | 2018-08-23 | パナソニックIpマネジメント株式会社 | 高分子電解質型燃料電池とその製造方法 |
JP7018580B2 (ja) | 2017-02-16 | 2022-02-14 | パナソニックIpマネジメント株式会社 | 高分子電解質型燃料電池とその製造方法 |
JP2019140028A (ja) * | 2018-02-14 | 2019-08-22 | Nok株式会社 | ガス拡散層一体ガスケット及び燃料電池セル用部材 |
JP7053298B2 (ja) | 2018-02-14 | 2022-04-12 | Nok株式会社 | ガス拡散層一体ガスケット及び燃料電池セル用部材 |
JP2022151929A (ja) * | 2021-03-29 | 2022-10-12 | 本田技研工業株式会社 | 発電セル及び樹脂枠付き電解質膜・電極構造体 |
JP7183328B2 (ja) | 2021-03-29 | 2022-12-05 | 本田技研工業株式会社 | 発電セル及び樹脂枠付き電解質膜・電極構造体 |
US11735748B2 (en) | 2021-03-29 | 2023-08-22 | Honda Motor Co., Ltd. | Power generation cell and resin-framed membrane electrode assembly |
Also Published As
Publication number | Publication date |
---|---|
EP2851986A1 (en) | 2015-03-25 |
JP5979562B2 (ja) | 2016-08-24 |
US20140120452A1 (en) | 2014-05-01 |
EP2851986A4 (en) | 2015-07-01 |
EP2851986B1 (en) | 2018-08-08 |
JPWO2013171939A1 (ja) | 2016-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5979562B2 (ja) | 燃料電池及びその製造方法 | |
US8551671B2 (en) | Fuel cell fluid sealing structure | |
US8846269B2 (en) | Polymer electrolyte fuel cell and fuel cell stack comprising the same | |
US9225032B2 (en) | Fuel cell | |
JP5302481B2 (ja) | 燃料電池 | |
US8999599B2 (en) | Method of fabricating membrane electrode assembly and gas diffusion layer | |
US8980500B2 (en) | Polymer electrolyte fuel cell comprising reactant gas channels overlapping a peripheral portion of an electrode | |
JP2014179252A (ja) | 燃料電池及びその製造方法 | |
JP2015170398A (ja) | 固体高分子電解質型燃料電池 | |
JP5178968B2 (ja) | 高分子電解質形燃料電池およびその製造方法 | |
JP2013258096A (ja) | 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法 | |
US20130101916A1 (en) | Fuel cell | |
JP4122047B2 (ja) | 燃料電池 | |
JP2015156334A (ja) | 高分子電解質形燃料電池 | |
US9178236B2 (en) | Polymer electrolyte fuel cell | |
JP2013037932A (ja) | 電極−膜−枠接合体の製造方法及び燃料電池の製造方法 | |
JP2011258428A (ja) | 高分子電解質形燃料電池及びそれを備える燃料電池スタック | |
JP2017091632A (ja) | 燃料電池 | |
JP2013062049A (ja) | 電極−膜−枠接合体の製造方法及び燃料電池の製造方法 | |
JP2012221666A (ja) | 高分子電解質形燃料電池 | |
JP2013016411A (ja) | 高分子電解質形燃料電池 | |
JP2014120279A (ja) | 燃料電池用シール部材及びその製造方法、並びに、燃料電池及びその製造方法 | |
JP2006269264A (ja) | 固体高分子電解質形燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013553707 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14126984 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13791003 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |