DE102020213126A1 - Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit - Google Patents

Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit Download PDF

Info

Publication number
DE102020213126A1
DE102020213126A1 DE102020213126.0A DE102020213126A DE102020213126A1 DE 102020213126 A1 DE102020213126 A1 DE 102020213126A1 DE 102020213126 A DE102020213126 A DE 102020213126A DE 102020213126 A1 DE102020213126 A1 DE 102020213126A1
Authority
DE
Germany
Prior art keywords
electrode assembly
membrane
membrane electrode
frame structure
additional element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102020213126.0A
Other languages
English (en)
Inventor
Anton Ringel
Andreas Ringk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102020213126.0A priority Critical patent/DE102020213126A1/de
Priority to PCT/EP2021/077438 priority patent/WO2022084026A1/de
Publication of DE102020213126A1 publication Critical patent/DE102020213126A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Membran-Elektroden-Einheit (1) für eine elektrochemische Zelle (100), wobei die Membran-Elektroden-Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist. Die Rahmenstruktur (10) umfasst eine erste Folie (11) und eine zweite Folie (12). Zumindest eine der Folien (11, 12) ist mit einem versteifenden Zusatzelement (15) versehen.

Description

  • Stand der Technik
  • Eine Brennstoffzelle ist eine elektrochemische Zelle, wobei diese zwei Elektroden, welche mittels eines ionenleitenden Elektrolyten voneinander separiert sind, aufweist. Die Brennstoffzelle wandelt die Energie einer chemischen Reaktion eines Brennstoffes mit einem Oxidationsmittel direkt in Elektrizität um. Es existieren verschiedene Typen von Brennstoffzellen.
  • Ein spezieller Brennstoffzellentyp ist die Polymerelektrolytmembran-Brennstoffzelle (PEM-FC). In einem aktiven Bereich einer PEM-FC grenzen an eine Polymerelektrolytmembran (PEM) zwei poröse Elektroden mit einer Katalysatorschicht an. Weiter umfasst die PEM-FC im aktiven Bereich Gasdiffusionslagen (GDL), welche die Polymerelektrolytmembran (PEM) und die zwei porösen Elektroden mit einer Katalysatorschicht beidseitig begrenzen. Die PEM, die beiden Elektroden mit der Katalysatorschicht und optional auch die beiden GDL können eine sog. Membran-Elektroden-Einheit (MEA) in dem aktiven Bereich der PEM-FC bilden. Zwei sich gegenüberliegende Bipolarplatten(-hälften) wiederum begrenzen beidseitig die MEA. Ein Brennstoffzellenstapel ist aus abwechselnd übereinander angeordneten MEA und Bipolarplatten aufgebaut. Mit einer Anodenplatte einer Bipolarplatte findet eine Verteilung des Brennstoffes, insbesondere Wasserstoff, und mit einer Kathodenplatte der Bipolarplatte eine Verteilung des Oxidationsmittels, insbesondere Luft/Sauerstoff, statt. Zur elektrischen Isolierung benachbarter Bipolarplatten, zur Formstabilisierung der MEA und zum Verhindern von einem ungewollten Entweichen des Brennstoffes bzw. des Oxidationsmittels kann die MEA in einer rahmenartigen Öffnung zweier aneinander angeordneten Folien eingefasst werden. Üblicherweise sind die beiden Folien dieser Rahmenstruktur aus dem gleichen Werkstoff, bspw. Polyethylennaphthalat (PEN), gebildet. Die aus dem gleichen Werkstoff gebildeten, beiden Folien können verzichtbar redundante Eigenschaften, bspw. wie eine elektrische Isolierfähigkeit (elektrisch isolierend) und/oder eine Sauerstoffdichtigkeit jeder der beiden Folien, aufweisen.
  • In der DE 101 40 684 A1 ist eine Membran-Elektroden-Einheit für eine Brennstoffzelle, enthaltend eine Schichtanordnung aus einer Anoden-Elektrode, einer Kathoden-Elektrode und einer dazwischen angeordneten Membran, offenbart, wobei auf eine Ober- und Unterseite der Schichtanordnung ein Polymermaterial aufgebracht wird.
  • Die DE 10 2018 131 092 A1 weist eine Membran-Elektroden-Einheit mit einer Rahmenstruktur auf.
  • Aufgabe der vorliegenden Erfindung ist es die Stabilität der Rahmenstruktur zu erhöhen und eine definierte Höhe des Zellenstapels besser einstellen zu können.
  • Offenbarung der Erfindung
  • Dazu umfasst die Membran-Elektroden-Einheit eine Rahmenstruktur zur Aufnahme einer mit Elektroden beschichteten Membran. Die Rahmenstruktur weist eine erste Folie und eine zweite Folie auf. Zumindest eine der Folien ist mit einem versteifenden Zusatzelement versehen. Bevorzugt sind beide Folien mit dem versteifenden Zusatzelement versehen. In bevorzugten Ausführungen ist das Zusatzelement als Füllmaterial in die Folie bzw. in die Folien eingebettet.
  • Vorteilhafterweise ist dabei der Druckmodul des Zusatzelements mindestens 10 mal so hoch ist wie der Druckmodul eines Grundmaterials der zu versteifenden Folie. Das Zusatzelement wird unter der Verspannkraft des Zellenstapels also deutlich weniger gedehnt bzw. gestaucht als das Grundmaterial. Durch die Form und Geometrie des Zusatzelements bzw. des eingebetteten Füllmaterials kann also gegebenenfalls auch eine definierte minimale Dicke der beiden Folien eingestellt werden. Die Dicke der gesamten Rahmenstruktur im verpressten Zustand ist somit enger tolerierbar, Höhenschwankungen des Zellenstapels fallen geringer aus. Das Grundmaterial der zu versteifenden Folie ist dabei bevorzugt ein Polymer.
  • Besonders bevorzugte Zusatzelemente sind Glasfasern, Kohlefasern. Keramikfasern und Aluminiumoxid, welche auch kombiniert verwendet werden können. Glasfasern und besonders Kohlefasern zeichnen sich durch hohe Zugmodule, und damit quer zur Faserrichtung auch durch hohe Druckmodule aus. Dadurch ergibt sich eine besonders hohe Versteifung der Folien der Rahmenstruktur. Die Glasfasern sind dabei in der Regel kostengünstiger, die Kohlefasern und Keramikfasern jedoch steifer. Die Keramikfasern haben weiterhin den Vorteil, dass sie elektrisch nicht leitend sind, gegebenenfalls bleibt somit eine Isolationsfunktion der Folie bestehen.
  • Die Membran-Elektroden-Einheit kann eine Membran, insbesondere eine Polymerelektrolytmembran (PEM) umfassen. Die Membran-Elektroden-Einheit kann weiter zwei poröse Elektroden mit jeweils einer Katalysatorschicht umfassen, wobei diese insbesondere an die PEM angeordnet sind und beidseitig begrenzen. Man kann hier insbesondere von einer MEA-3 sprechen. Zusätzlich kann die Membran-Elektroden-Einheit zwei Gasdiffusionslagen umfassen. Diese können insbesondere die MEA-3 beidseitig begrenzen. Man kann hier insbesondere von einer MEA-5 sprechen.
  • Die elektrochemische Zelle kann beispielsweise eine Brennstoffzelle, eine Elektrolysezelle oder eine Batteriezelle sein. Die Brennstoffzelle ist insbesondere eine PEM-FC (Polymer-Elektrolyt-Membran Brennstoffzelle). Ein Zellenstapel umfasst insbesondere eine Vielzahl an übereinander angeordneten elektrochemischen Zellen.
  • Die Rahmenstruktur weist insbesondere eine Rahmenform auf. Die Rahmenstruktur ist vorzugsweise umlaufend ausgeführt. Somit können eine Membran und die beiden Elektroden besonders vorteilhaft in der Rahmenstruktur eingefasst sein. Des Weiteren ist die Rahmenstruktur im Querschnitt insbesondere U-förmig oder Y-förmig zur Aufnahme der Membran und der beiden Elektroden zwischen den Schenkeln der U-Form bzw. Y-Form ausgebildet.
  • Bevorzugt verbindet ein Klebemittel die beiden Folien miteinander, dichtet die Membran-Elektroden-Einheit nach außen ab und fixiert die Membran mit den beiden Elektroden in der Rahmenstruktur.
  • Das Klebemittel kann ferner vorzugsweise elektrisch isolierend sein. Somit kann die Rahmenstruktur besonders vorteilhaft elektrisch isolierend sein und ein ungewollter Stromfluss in einem inaktiven Bereich der elektrochemischen Zelle besonders vorteilhaft geringgehalten, insbesondere verhindert, werden.
  • Beim Verkleben der beiden Folien werden diese bevorzugt nur am Mittelschenkel der Y-Form verklebt, zwischen den beiden anderen Schenkeln ist die Membran angeordnet. Die Membran kann dabei auch mit beiden Folien verklebt sein.
  • Weitere, die Erfindung verbessernde Maßnahmen ergeben sich aus der nachfolgenden Beschreibung zu einigen Ausführungsbeispielen der Erfindung, welche in den Figuren schematisch dargestellt sind. Sämtliche aus den Ansprüchen, der Beschreibung oder den Zeichnungen hervorgehende Merkmale und/oder Vorteile, einschließlich konstruktiver Einzelheiten, räumliche Anordnungen und Verfahrensschritte, können sowohl für sich als auch in den verschiedenen Kombinationen erfindungswesentlich sein. Dabei ist zu beachten, dass die Figuren nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken.
  • Es zeigen schematisch:
    • 1 eine Membran-Elektroden-Einheit aus dem Stand der Technik, wobei nur die wesentlichen Bereiche dargestellt sind.
    • 2 eine erfindungsgemäße Membran-Elektroden-Einheit, wobei nur die wesentlichen Bereiche dargestellt sind.
  • 1 zeigt in einem Vertikalschnitt eine Membran-Elektroden-Einheit 1 einer elektrochemischen Zelle 100, insbesondere einer Brennstoffzelle, aus dem Stand der Technik, wobei nur die wesentlichen Bereiche dargestellt sind.
  • Die Membran-Elektroden-Einheit 1 weist eine Membran 2, beispielhaft eine Polymerelektrolytmembran (PEM), und zwei poröse Elektroden 3 bzw. 4 mit jeweils einer Katalysatorschicht auf, wobei die Elektroden 3 bzw. 4 jeweils an eine Seite der Membran 2 angeordnet sind. Weiter weist die elektrochemische Zelle 100 insbesondere zwei Gasdiffusionslagen 5 bzw. 6 auf, welche je nach Ausführung auch zur Membran-Elektroden-Einheit 1 gehören können.
  • Die Membran-Elektroden-Einheit 1 ist an ihrem Umfang von einer Rahmenstruktur 10 umgeben, hier spricht man auch von einem Subgasket. Die Rahmenstruktur 10 dient der Steifigkeit und der Dichtheit der Membran-Elektroden-Einheit 1 und ist ein nicht-aktiver Bereich der elektrochemischen Zelle 100.
  • Die Rahmenstruktur 10 ist im Schnitt insbesondere U-förmig bzw. Y-förmig ausgebildet, wobei ein erster Schenkel des U-förmigen Rahmenabschnitts durch eine erste Folie 11 aus einem ersten Werkstoff W1 gebildet ist und ein zweiter Schenkel des U-förmigen Rahmenabschnitts durch eine zweite Folie 12 aus einem zweiten Werkstoff W2 gebildet ist. Zusätzlich sind die erste Folie 11 und die zweite Folie 12 mittels eines Klebemittels 13 aus einem dritten Werkstoff W3 zusammengeklebt. Häufig sind der erste Werkstoff W1 und der zweite Werkstoff W2 identisch.
  • Die beiden Gasdiffusionslagen 5 bzw. 6 sind mittels eines weiteren Klebemittels 14 wiederum jeweils an einer Seite der Rahmenstruktur 10 angeordnet, üblicherweise so, dass sie über der aktiven Fläche der elektrochemischen Zelle 100 mit je einer Elektrode 3, 4 in Kontakt sind.
  • Die Verspannung mehrerer elektrochemischer Zellen 100 zu einem Zellenstapel erfolgt mit einer großen Verspannkraft, da zum einen die Dichtheit der Zellen 100 gewährleistet werden muss und zum anderen die elektrischen Übergangswiderstände minimiert werden müssen. Gerade bei dem in 1 gezeigten Aufbau einer elektrochemischen Zelle 100 wirken in dem Bereich, in welchem die beiden Folien 11, 12 über der Membran 2 mit den beiden Elektroden 3, 4 liegen und auch noch die beiden Gasdiffusionslagen 5, 6 über der jeweiligen Folie 11, 12 angeordnet sind, sehr hohe Kräfte auf die einzelnen Lagen; dieser Bereich in der Rahmenstruktur 10 weist also größere Kontaktdrücke auf als zum Beispiel die Bereiche über der aktiven Fläche, welche von der Rahmenstruktur 10 eingefasst ist.
  • Die Rahmenstruktur 10 muss also hohen Drücken standhalten und darf über die Lebenszeit nicht wegfließen bzw. kriechen; ein solches Kriechen könnte im ungünstigen Fall Undichtheiten verursachen, welche zu einem Totalausfall des Zellenstapels führen könnten. Erfindungsgemäß weist dazu zumindest eine der beiden Folien 11, 12, bevorzugt aber beide Folien 11, 12, ein versteifendes Zusatzelement 15 auf.
  • Dazu zeigt 2 zeigt in einem Vertikalschnitt die Membran-Elektroden-Einheit 1 der elektrochemischen Zelle 100 mit dem versteifenden Zusatzelement 15 in den beiden Folien 11, 12, wobei wieder nur die wesentlichen Bereiche dargestellt sind. Der weitere Aufbau der Rahmenstruktur 10 bzw. der Membran-Elektroden-Einheit 1 entspricht dem der 1.
  • Die Folien 11, 12 bestehen beispielweise aus einem Polymer wie PEN (Polyethylennaphthalat), welches nun mit dem Zusatzelement 15 versteift wird. In der Ausführung der 2 ist das Zusatzelement 15 als Füllmaterial in die beiden Folien 11, 12 eingebettet, das Zusatzelement 15 könnte aber alternativ beispielsweise auch auf eine Oberfläche der Folien 11, 12 aufgebracht sein. Das Zusatzelement bzw. das Füllmaterial 15 besteht dabei bevorzugt aus Glasfasern, Kohlefasern und/oder Keramikfasern, welche vergleichsweise hohe Zugmodule - und damit quer zur Faserrichtung, wie in der 2 gezeigt, auch hohe Druckmodule - aufweisen; bevorzugt ist der Druckmodul des Zusatzelements 15 mindestens 10x so hoch wie der Druckmodul eines Grundmaterials der Folien 11, 12. Die Form des Zusatzelements kann dabei auch anders als faserartig sein: beispielsweise in Form von Kugeln, Flakes, Scheiben. In alternativen vorteilhaften Ausführungen kann das Zusatzelement 15 jedoch auch Aluminiumoxid sein, das beispielsweise als partikelförmiges Füllmaterial in die Folie 11, 12 eingebettet ist.
  • Je nach Form und Art des Zusatzelements 15 lässt sich über den Durchmesser von Kugeln bzw. Fasern des Zusatzelements 15 eine minimale Dicke der Folien 11, 12 einstellen, da das Zusatzelement 15 zum Grundmaterial der Folien 11, 12 vergleichsweise sehr steif ist, also einen deutlich höheren Druckmodul aufweist, so dass es unter der Vorspannkraft des Zellenstapels nur unwesentlich gedehnt bzw. gestaucht wird, während das Grundmaterial viel stärker gestaucht wird. Durch die Gewährleistung einer minimalen Dicke der Folien 11, 12 kann auch ein zu starkes Verpressen oder Kriechen des Grundmaterials unterbunden werden, so dass auch die Dichtheitsfunktion der Rahmenstruktur 10 durch das Zusatzelement 15 robuster wird.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 10140684 A1 [0003]
    • DE 102018131092 A1 [0004]

Claims (8)

  1. Membran-Elektroden-Einheit (1) für eine elektrochemische Zelle (100), wobei die Membran-Elektroden-Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist, wobei die Rahmenstruktur (10) eine erste Folie (11) und eine zweite Folie (12) umfasst, dadurch gekennzeichnet, dass zumindest eine der Folien (11, 12) mit einem versteifenden Zusatzelement (15) versehen ist.
  2. Membran-Elektroden-Einheit (1) nach Anspruch 1, dadurch gekennzeichnet, dass die zu versteifende Folie (11, 12) als Grundmaterial aus einem Polymer besteht.
  3. Membran-Elektroden-Einheit (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Zusatzelement (15) aus Glasfasern besteht.
  4. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Zusatzelement (15) aus Kohlefasern besteht.
  5. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Zusatzelement (15) aus Keramikfasern besteht.
  6. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Zusatzelement (15) aus partikelförmigem Aluminiumoxid besteht.
  7. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Druckmodul des Zusatzelements (15) mindestens 10 mal so hoch ist wie der Druckmodul eines Grundmaterials der zu versteifenden Folie (11, 12).
  8. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Zusatzelement (15) als Füllmaterial in die zu versteifende Folie (11, 12) eingebettet ist.
DE102020213126.0A 2020-10-19 2020-10-19 Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit Pending DE102020213126A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102020213126.0A DE102020213126A1 (de) 2020-10-19 2020-10-19 Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
PCT/EP2021/077438 WO2022084026A1 (de) 2020-10-19 2021-10-05 Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020213126.0A DE102020213126A1 (de) 2020-10-19 2020-10-19 Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit

Publications (1)

Publication Number Publication Date
DE102020213126A1 true DE102020213126A1 (de) 2022-04-21

Family

ID=78080347

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102020213126.0A Pending DE102020213126A1 (de) 2020-10-19 2020-10-19 Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit

Country Status (2)

Country Link
DE (1) DE102020213126A1 (de)
WO (1) WO2022084026A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926026A1 (de) 1999-05-28 2000-11-30 Heliocentris Energiesysteme Membran-Elektroden-Einheit für Brennstoffzellen u. dgl.
DE10140684A1 (de) 2001-08-24 2003-03-06 Daimler Chrysler Ag Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus
US20140120452A1 (en) 2012-05-17 2014-05-01 Panasonic Corporation Fuel cell and manufacturing method thereof
DE102013225159A1 (de) 2013-12-06 2015-06-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung elektrochemischer Zellen
DE102018131092A1 (de) 2018-09-04 2020-03-05 Hyundai Motor Company Membranelektrodeneinrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1341251A1 (de) * 2002-02-28 2003-09-03 OMG AG & Co. KG PEM-Brennstoffzellenstapel
US8153316B2 (en) * 2002-11-15 2012-04-10 3M Innovative Properties Company Unitized fuel cell assembly and cooling apparatus
DE102011105072B3 (de) * 2011-06-21 2012-11-15 Daimler Ag Haltevorrichtung mit einer Membran einer Membran-Elektroden-Einheit für eine Brennstoffzelle und Verfahren zu deren Herstellung
WO2020065455A1 (en) * 2018-09-24 2020-04-02 3M Innovative Properties Company Porous electrode, membrane-electrode assembly, liquid flow battery and method of making a porous electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926026A1 (de) 1999-05-28 2000-11-30 Heliocentris Energiesysteme Membran-Elektroden-Einheit für Brennstoffzellen u. dgl.
DE10140684A1 (de) 2001-08-24 2003-03-06 Daimler Chrysler Ag Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus
US20140120452A1 (en) 2012-05-17 2014-05-01 Panasonic Corporation Fuel cell and manufacturing method thereof
DE102013225159A1 (de) 2013-12-06 2015-06-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung elektrochemischer Zellen
DE102018131092A1 (de) 2018-09-04 2020-03-05 Hyundai Motor Company Membranelektrodeneinrichtung

Also Published As

Publication number Publication date
WO2022084026A1 (de) 2022-04-28

Similar Documents

Publication Publication Date Title
DE102020209663A1 (de) Brennstoffzelleneinheit
DE102019209766A1 (de) Brennstoffzellenplatte, Bipolarplatte und Brennstoffzellenvorrichtung
WO2022128479A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
DE102015223040A1 (de) Brennstoffzelle sowie Brennstoffzellensystem mit einer solchen
WO2022084014A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
DE102011014154A1 (de) Selectively coated bipolar plates for water management and freeze start in pem fuel cells
DE102020213126A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
DE102010054305A1 (de) Brennstoffzellenstapel mit mehreren Brennstoffzellen
WO2022084028A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
EP3736894B1 (de) Bipolarplatte für brennstoffzellen, brennstoffzellenstapel mit solchen bipolarplatten sowie fahrzeug mit einem solchen brennstoffzellenstapel
EP4166691A1 (de) Rahmen für pem elektrolysezellen und pem elektrolysezellen stapel zur erzeugung von hochdruck-wasserstoff mittels differenzdruckelektrolyse
DE102021111842A1 (de) Brennstoffzellenstapel
DE102020215012A1 (de) Bipolarplatte für eine elektrochemische Zelle, elektrochemische Zelle und Verfahren zum Betrieb einer elektrochemischen Zelle
DE102020203048A1 (de) Brennstoffzelleneinheit
DE102020213140A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
DE102021211884A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zum Herstellen einer Membran-Elektroden-Einheit
DE102022113927A1 (de) Brennstoffzellenstapel, Brennstoffzellenvorrichtung sowie Brennstoffzellenfahrzeug
DE102021210509A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zum Herstellen einer elektrochemischen Zelle
DE102021212398A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle
DE102020215019A1 (de) Anordnung elektrochemischer Zellen und Verfahren zum Betrieb einer Anordnung elektrochemischer Zellen
DE102016116536A1 (de) Dichtungselement mit Einzelzellspannungs-Messeinrichtung für eine Brennstoffzelle
DE102020200058A1 (de) Brennstoffzellenanordnung mit Dichtungselement
DE102022202113A1 (de) Membranelektrodenanordnung, elektrochemische Zelle und Verfahren zur Herstellung von Membranelektrodenanordnungen
DE102016201707A1 (de) Bipolarplatte für Brennstoffzellen mit verbesserter Struktur, Brennstoffzellenstapel mit solchen Bipolarplatten sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
WO2021259568A1 (de) Bipolarplatte sowie brennstoffzellenstapel

Legal Events

Date Code Title Description
R163 Identified publications notified