WO2022084026A1 - Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit - Google Patents

Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit Download PDF

Info

Publication number
WO2022084026A1
WO2022084026A1 PCT/EP2021/077438 EP2021077438W WO2022084026A1 WO 2022084026 A1 WO2022084026 A1 WO 2022084026A1 EP 2021077438 W EP2021077438 W EP 2021077438W WO 2022084026 A1 WO2022084026 A1 WO 2022084026A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
electrode assembly
additional element
frame structure
electrode unit
Prior art date
Application number
PCT/EP2021/077438
Other languages
English (en)
French (fr)
Inventor
Anton Ringel
Andreas RINGK
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022084026A1 publication Critical patent/WO2022084026A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Membrane-electrode assembly for an electrochemical cell and method for producing a membrane-electrode assembly
  • a fuel cell is an electrochemical cell that has two electrodes that are separated from one another by means of an ion-conducting electrolyte.
  • the fuel cell converts the energy of a chemical reaction of a fuel with an oxidant directly into electricity.
  • a special type of fuel cell is the polymer electrolyte membrane fuel cell (PEM-FC).
  • PEM-FC polymer electrolyte membrane fuel cell
  • the PEM-FC also includes gas diffusion layers (GDL) in the active area, which delimit the polymer electrolyte membrane (PEM) and the two porous electrodes with a catalyst layer on both sides.
  • GDL gas diffusion layers
  • the PEM, the two electrodes with the catalyst layer and optionally also the two GDLs can form a so-called membrane-electrode unit (MEA) in the active area of the PEM-FC.
  • MEA membrane-electrode unit
  • Two opposing bipolar plates (halves) delimit the MEA on both sides.
  • a fuel cell stack is made up of MEA and bipolar plates arranged alternately one above the other.
  • the fuel in particular hydrogen, is distributed with an anode plate of a bipolar plate, and the oxidizing agent, in particular air/oxygen, is distributed with a cathode plate of the bipolar plate.
  • the MEA are enclosed in a frame-like opening of two foils arranged next to one another.
  • the two films of this frame structure are usually made of the same material, for example polyethylene naphthalate (PEN).
  • PEN polyethylene naphthalate
  • the two films formed from the same material can dispensably have redundant properties, for example electrical insulating ability (electrically insulating) and/or oxygen impermeability of each of the two films.
  • DE 101 40 684 A1 discloses a membrane-electrode unit for a fuel cell containing a layered arrangement of an anode electrode, a cathode electrode and a membrane arranged between them, with a polymer material on a top and bottom side of the layered arrangement is applied.
  • the object of the present invention is to increase the stability of the frame structure and to be able to set a defined height of the cell stack better.
  • the membrane-electrode assembly includes a frame structure for accommodating a membrane coated with electrodes.
  • the frame structure has a first foil and a second foil. At least one of the foils is provided with an additional stiffening element. Both foils are preferably provided with the additional stiffening element. In preferred embodiments, the additional element is embedded in the film or films as filling material.
  • the compression modulus of the additional element is at least 10 times as high as the compression modulus of a base material of the film to be stiffened.
  • the additional element is thus stretched or compressed significantly less than the base material under the clamping force of the cell stack. Due to the shape and geometry of the additional element or the embedded filling material that is, if necessary, a defined minimum thickness of the two films can also be set. The thickness of the entire frame structure in the pressed state can therefore be tolerated more closely, and there are fewer fluctuations in the height of the cell stack.
  • the base material of the film to be stiffened is preferably a polymer.
  • Particularly preferred additional elements are glass fibers and carbon fibers. Ceramic fibers and aluminum oxide, which can also be used in combination. Glass fibers and especially carbon fibers are characterized by high tensile moduli, and thus also by high compression moduli transverse to the fiber direction. This results in a particularly high degree of stiffening of the foils of the frame structure.
  • the glass fibers are usually cheaper, but the carbon fibers and ceramic fibers are stiffer.
  • the ceramic fibers also have the advantage that they are not electrically conductive, which means that the film may still have an insulating function.
  • the membrane-electrode unit can include a membrane, in particular a polymer electrolyte membrane (PEM).
  • PEM polymer electrolyte membrane
  • the membrane-electrode unit can further comprise two porous electrodes, each with a catalyst layer, these being arranged in particular on the PEM and delimiting it on both sides.
  • the membrane-electrode unit can comprise two gas diffusion layers. In particular, these can delimit the MEA-3 on both sides.
  • the electrochemical cell can be, for example, a fuel cell, an electrolytic cell or a battery cell.
  • the fuel cell is in particular a PEM-FC (polymer electrolyte membrane fuel cell).
  • a cell stack comprises, in particular, a multiplicity of electrochemical cells arranged one above the other.
  • the frame structure has a frame shape.
  • the frame structure is preferably designed to be circumferential. A membrane and the two electrodes can thus be enclosed in the frame structure in a particularly advantageous manner.
  • the frame structure is in cross section in particular U-shaped or Y-shaped to accommodate the membrane and the two electrodes between the legs of the U-shape or Y-shape.
  • An adhesive preferably connects the two films to one another, seals the membrane-electrode unit from the outside and fixes the membrane with the two electrodes in the frame structure.
  • the adhesive can also preferably be electrically insulating.
  • the frame structure can thus be particularly advantageously electrically insulating and an undesired flow of current in an inactive region of the electrochemical cell can be particularly advantageously kept low, in particular prevented.
  • gluing the two foils are preferably glued only to the middle leg of the Y-shape, with the membrane being arranged between the other two legs.
  • the membrane can also be glued to both films.
  • FIG. 1 shows a membrane-electrode unit from the prior art, only the essential areas being shown.
  • FIG. 1 shows a vertical section through a membrane-electrode unit 1 of an electrochemical cell 100, in particular a fuel cell, from the prior art, only the essential areas being shown.
  • the membrane-electrode unit 1 has a membrane 2, for example a polymer electrolyte membrane (PEM), and two porous electrodes 3 and 4, each with a catalyst layer, the electrodes 3 and 4 being arranged on one side of the membrane 2 in each case. Furthermore, the electrochemical cell 100 has, in particular, two gas diffusion layers 5 and 6, which can also belong to the membrane-electrode unit 1, depending on the design.
  • a membrane 2 for example a polymer electrolyte membrane (PEM)
  • PEM polymer electrolyte membrane
  • the electrochemical cell 100 has, in particular, two gas diffusion layers 5 and 6, which can also belong to the membrane-electrode unit 1, depending on the design.
  • the membrane electrode assembly 1 is surrounded on its periphery by a frame structure 10, which is also referred to as a subgasket.
  • the frame structure 10 is used for rigidity and tightness of the membrane-electrode unit 1 and is a non-active area of the electrochemical cell 100.
  • the frame structure 10 is particularly U-shaped or Y-shaped in section, with a first leg of the U-shaped frame section being formed by a first film 11 made of a first material W1 and a second leg of the U-shaped frame section being formed by a second Foil 12 is formed from a second material W2.
  • first film 11 and the second film 12 are glued together by means of an adhesive 13 made of a third material W3.
  • the first material W1 and the second material W2 are often identical.
  • the two gas diffusion layers 5 and 6 are in turn each arranged on one side of the frame structure 10 by means of a further adhesive 14, usually in such a way that they are in contact with one electrode 3, 4 each over the active surface of the electrochemical cell 100.
  • the bracing of several electrochemical cells 100 to form a cell stack takes place with a large bracing force, since on the one hand the tightness of the cells 100 has to be ensured and on the other hand the electrical ones Contact resistance must be minimized.
  • the two films 11, 12 over the membrane 2 with the two electrodes 3, 4 and also the two gas diffusion layers 5, 6 over the respective film act in the area 11, 12 are arranged, very high forces on the individual layers; this area in the frame structure 10 therefore has greater contact pressures than, for example, the areas above the active area which is bordered by the frame structure 10 .
  • the frame structure 10 must therefore withstand high pressures and must not flow away or creep over its lifetime; In the worst case, such creeping could cause leaks, which could lead to a total failure of the cell stack.
  • at least one of the two films 11, 12, but preferably both films 11, 12, has a stiffening additional element 15.
  • FIG. 2 shows a vertical section of the membrane-electrode unit 1 of the electrochemical cell 100 with the additional stiffening element 15 in the two foils 11, 12, with only the essential areas being shown again.
  • the further construction of the frame structure 10 or the membrane-electrode unit 1 corresponds to that of FIG.
  • the foils 11, 12 consist, for example, of a polymer such as PEN (polyethylene naphthalate), which is now reinforced with the additional element 15.
  • the additional element 15 is embedded in the two foils 11, 12 as filling material, but the additional element 15 could alternatively also be applied to a surface of the foils 11, 12, for example.
  • the additional element or the filling material 15 preferably consists of glass fibers, carbon fibers and/or ceramic fibers which have comparatively high tensile moduli--and thus transversely to the fiber direction, as shown in FIG. 2, also high compression moduli;
  • the compression modulus of the additional element 15 is preferably at least 10x as high as the compression modulus of a base material of the foils 11, 12.
  • the shape of the additional element can also be other than fibrous: for example in the form of balls, flakes, disks.
  • the additional element 15 can also Be aluminum oxide, which is embedded in the foil 11, 12, for example, as a particulate filler material.
  • a minimum thickness of the foils 11, 12 can be set via the diameter of balls or fibers of the additional element 15, since the additional element 15 is very stiff in comparison to the base material of the foils 11, 12, i.e. a significantly has a higher compressive modulus, so that it is only slightly stretched or compressed under the prestressing force of the cell stack, while the base material is compressed much more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Membran- Elektroden- Einheit (1) für eine elektrochemische Zelle (100), wobei die Membran- Elektroden- Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist. Die Rahmenstruktur (10) umfasst eine erste Folie (11) und eine zweite Folie (12). Zumindest eine der Folien (11, 12) ist mit einem versteifenden Zusatzelement (15) versehen.

Description

Beschreibung
Titel
Membran- Elektroden- Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
Stand der Technik
Eine Brennstoffzelle ist eine elektrochemische Zelle, wobei diese zwei Elektroden, welche mittels eines ionenleitenden Elektrolyten voneinander separiert sind, aufweist. Die Brennstoffzelle wandelt die Energie einer chemischen Reaktion eines Brennstoffes mit einem Oxidationsmittel direkt in Elektrizität um. Es existieren verschiedene Typen von Brennstoffzellen.
Ein spezieller Brennstoffzellentyp ist die Polymerelektrolytmembran- Brennstoffzelle (PEM-FC). In einem aktiven Bereich einer PEM-FC grenzen an eine Polymerelektrolytmembran (PEM) zwei poröse Elektroden mit einer Katalysatorschicht an. Weiter umfasst die PEM-FC im aktiven Bereich Gasdiffusionslagen (GDL), welche die Polymerelektrolytmembran (PEM) und die zwei porösen Elektroden mit einer Katalysatorschicht beidseitig begrenzen. Die PEM, die beiden Elektroden mit der Katalysatorschicht und optional auch die beiden GDL können eine sog. Membran-Elektroden-Einheit (MEA) in dem aktiven Bereich der PEM-FC bilden. Zwei sich gegenüberliegende Bipolarplatten(-hälften) wiederum begrenzen beidseitig die MEA. Ein Brennstoffzellenstapel ist aus abwechselnd übereinander angeordneten MEA und Bipolarplatten aufgebaut. Mit einer Anodenplatte einer Bipolarplatte findet eine Verteilung des Brennstoffes, insbesondere Wasserstoff, und mit einer Kathodenplatte der Bipolarplatte eine Verteilung des Oxidationsmittels, insbesondere Luft/Sauerstoff, statt. Zur elektrischen Isolierung benachbarter Bipolarplatten, zur Formstabilisierung der MEA und zum Verhindern von einem ungewollten Entweichen des Brennstoffes bzw. des Oxidationsmittels kann die MEA in einer rahmenartigen Öffnung zweier aneinander angeordneten Folien eingefasst werden. Üblicherweise sind die beiden Folien dieser Rahmenstruktur aus dem gleichen Werkstoff, bspw. Polyethylennaphthalat (PEN), gebildet. Die aus dem gleichen Werkstoff gebildeten, beiden Folien können verzichtbar redundante Eigenschaften, bspw. wie eine elektrische Isolierfähigkeit (elektrisch isolierend) und/oder eine Sauerstoffdichtigkeit jeder der beiden Folien, aufweisen.
In der DE 101 40 684 Al ist eine Membran- Elektroden- Einheit für eine Brennstoffzelle, enthaltend eine Schichtanordnung aus einer Anoden- Elektrode, einer Kathoden- Elektrode und einer dazwischen angeordneten Membran, offenbart, wobei auf eine Ober- und Unterseite der Schichtanordnung ein Polymermaterial aufgebracht wird.
Die DE 10 2018 131 092 Al weist eine Membran-Elektroden-Einheit mit einer Rahmenstruktur auf.
Aufgabe der vorliegenden Erfindung ist es die Stabilität der Rahmenstruktur zu erhöhen und eine definierte Höhe des Zellenstapels besser einstellen zu können.
Offenbarung der Erfindung
Dazu umfasst die Membran-Elektroden-Einheit eine Rahmenstruktur zur Aufnahme einer mit Elektroden beschichteten Membran. Die Rahmenstruktur weist eine erste Folie und eine zweite Folie auf. Zumindest eine der Folien ist mit einem versteifenden Zusatzelement versehen. Bevorzugt sind beide Folien mit dem versteifenden Zusatzelement versehen. In bevorzugten Ausführungen ist das Zusatzelement als Füllmaterial in die Folie bzw. in die Folien eingebettet.
Vorteilhafterweise ist dabei der Druckmodul des Zusatzelements mindestens 10 mal so hoch ist wie der Druckmodul eines Grundmaterials der zu versteifenden Folie. Das Zusatzelement wird unter der Verspannkraft des Zellenstapels also deutlich weniger gedehnt bzw. gestaucht als das Grundmaterial. Durch die Form und Geometrie des Zusatzelements bzw. des eingebetteten Füllmaterials kann also gegebenenfalls auch eine definierte minimale Dicke der beiden Folien eingestellt werden. Die Dicke der gesamten Rahmenstruktur im verpressten Zustand ist somit enger tolerierbar, Höhenschwankungen des Zellenstapels fallen geringer aus. Das Grundmaterial der zu versteifenden Folie ist dabei bevorzugt ein Polymer.
Besonders bevorzugte Zusatzelemente sind Glasfasern, Kohlefasern. Keramikfasern und Aluminiumoxid, welche auch kombiniert verwendet werden können. Glasfasern und besonders Kohlefasern zeichnen sich durch hohe Zugmodule, und damit quer zur Faserrichtung auch durch hohe Druckmodule aus. Dadurch ergibt sich eine besonders hohe Versteifung der Folien der Rahmenstruktur. Die Glasfasern sind dabei in der Regel kostengünstiger, die Kohlefasern und Keramikfasern jedoch steifer. Die Keramikfasern haben weiterhin den Vorteil, dass sie elektrisch nicht leitend sind, gegebenenfalls bleibt somit eine Isolationsfunktion der Folie bestehen.
Die Membran- Elektroden- Einheit kann eine Membran, insbesondere eine Polymerelektrolytmembran (PEM) umfassen. Die Membran- Elektroden- Einheit kann weiter zwei poröse Elektroden mit jeweils einer Katalysatorschicht umfassen, wobei diese insbesondere an die PEM angeordnet sind und beidseitig begrenzen. Man kann hier insbesondere von einer MEA-3 sprechen. Zusätzlich kann die Membran- Elektroden- Einheit zwei Gasdiffusionslagen umfassen. Diese können insbesondere die MEA-3 beidseitig begrenzen. Man kann hier insbesondere von einer MEA-5 sprechen.
Die elektrochemische Zelle kann beispielsweise eine Brennstoffzelle, eine Elektrolysezelle oder eine Batteriezelle sein. Die Brennstoffzelle ist insbesondere eine PEM-FC (Polymer- Elektrolyt- Membran Brennstoffzelle). Ein Zellenstapel umfasst insbesondere eine Vielzahl an übereinander angeordneten elektrochemischen Zellen.
Die Rahmenstruktur weist insbesondere eine Rahmenform auf. Die Rahmenstruktur ist vorzugsweise umlaufend ausgeführt. Somit können eine Membran und die beiden Elektroden besonders vorteilhaft in der Rahmenstruktur eingefasst sein. Des Weiteren ist die Rahmenstruktur im Querschnitt insbesondere U-förmig oder Y-förmig zur Aufnahme der Membran und der beiden Elektroden zwischen den Schenkeln der U-Form bzw. Y-Form ausgebildet.
Bevorzugt verbindet ein Klebemittel die beiden Folien miteinander, dichtet die Membran-Elektroden-Einheit nach außen ab und fixiert die Membran mit den beiden Elektroden in der Rahmenstruktur.
Das Klebemittel kann ferner vorzugsweise elektrisch isolierend sein. Somit kann die Rahmenstruktur besonders vorteilhaft elektrisch isolierend sein und ein ungewollter Stromfluss in einem inaktiven Bereich der elektrochemischen Zelle besonders vorteilhaft geringgehalten, insbesondere verhindert, werden.
Beim Verkleben der beiden Folien werden diese bevorzugt nur am Mittelschenkel der Y-Form verklebt, zwischen den beiden anderen Schenkeln ist die Membran angeordnet. Die Membran kann dabei auch mit beiden Folien verklebt sein.
Weitere, die Erfindung verbessernde Maßnahmen ergeben sich aus der nachfolgenden Beschreibung zu einigen Ausführungsbeispielen der Erfindung, welche in den Figuren schematisch dargestellt sind. Sämtliche aus den Ansprüchen, der Beschreibung oder den Zeichnungen hervorgehende Merkmale und/oder Vorteile, einschließlich konstruktiver Einzelheiten, räumliche Anordnungen und Verfahrensschritte, können sowohl für sich als auch in den verschiedenen Kombinationen erfindungswesentlich sein. Dabei ist zu beachten, dass die Figuren nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken.
Es zeigen schematisch:
Fig. 1 eine Membran-Elektroden-Einheit aus dem Stand der Technik, wobei nur die wesentlichen Bereiche dargestellt sind.
Fig. 2 eine erfindungsgemäße Membran-Elektroden-Einheit, wobei nur die wesentlichen Bereiche dargestellt sind. Figur 1 zeigt in einem Vertikalschnitt eine Membran- Elektroden- Einheit 1 einer elektrochemischen Zelle 100, insbesondere einer Brennstoffzelle, aus dem Stand der Technik, wobei nur die wesentlichen Bereiche dargestellt sind.
Die Membran-Elektroden-Einheit 1 weist eine Membran 2, beispielhaft eine Polymerelektrolytmembran (PEM), und zwei poröse Elektroden 3 bzw. 4 mit jeweils einer Katalysatorschicht auf, wobei die Elektroden 3 bzw. 4 jeweils an eine Seite der Membran 2 angeordnet sind. Weiter weist die elektrochemische Zelle 100 insbesondere zwei Gasdiffusionslagen 5 bzw. 6 auf, welche je nach Ausführung auch zur Membran-Elektroden-Einheit 1 gehören können.
Die Membran-Elektroden-Einheit 1 ist an ihrem Umfang von einer Rahmenstruktur 10 umgeben, hier spricht man auch von einem Subgasket. Die Rahmenstruktur 10 dient der Steifigkeit und der Dichtheit der Membran- Elektroden-Einheit 1 und ist ein nicht-aktiver Bereich der elektrochemischen Zelle 100.
Die Rahmenstruktur 10 ist im Schnitt insbesondere U-förmig bzw. Y-förmig ausgebildet, wobei ein erster Schenkel des U-förmigen Rahmenabschnitts durch eine erste Folie 11 aus einem ersten Werkstoff W1 gebildet ist und ein zweiter Schenkel des U-förmigen Rahmenabschnitts durch eine zweite Folie 12 aus einem zweiten Werkstoff W2 gebildet ist. Zusätzlich sind die erste Folie 11 und die zweite Folie 12 mittels eines Klebemittels 13 aus einem dritten Werkstoff W3 zusammengeklebt. Häufig sind der erste Werkstoff W1 und der zweite Werkstoff W2 identisch.
Die beiden Gasdiffusionslagen 5 bzw. 6 sind mittels eines weiteren Klebemittels 14 wiederum jeweils an einer Seite der Rahmenstruktur 10 angeordnet, üblicherweise so, dass sie über der aktiven Fläche der elektrochemischen Zelle 100 mit je einer Elektrode 3, 4 in Kontakt sind.
Die Verspannung mehrerer elektrochemischer Zellen 100 zu einem Zellenstapel erfolgt mit einer großen Verspannkraft, da zum einen die Dichtheit der Zellen 100 gewährleistet werden muss und zum anderen die elektrischen Übergangswiderstände minimiert werden müssen. Gerade bei dem in Figur 1 gezeigten Aufbau einer elektrochemischen Zelle 100 wirken in dem Bereich, in welchem die beiden Folien 11, 12 über der Membran 2 mit den beiden Elektroden 3, 4 liegen und auch noch die beiden Gasdiffusionslagen 5, 6 über der jeweiligen Folie 11, 12 angeordnet sind, sehr hohe Kräfte auf die einzelnen Lagen; dieser Bereich in der Rahmenstruktur 10 weist also größere Kontaktdrücke auf als zum Beispiel die Bereiche über der aktiven Fläche, welche von der Rahmenstruktur 10 eingefasst ist.
Die Rahmenstruktur 10 muss also hohen Drücken standhalten und darf über die Lebenszeit nicht wegfließen bzw. kriechen; ein solches Kriechen könnte im ungünstigen Fall Undichtheiten verursachen, welche zu einem Totalausfall des Zellenstapels führen könnten. Erfindungsgemäß weist dazu zumindest eine der beiden Folien 11, 12, bevorzugt aber beide Folien 11, 12, ein versteifendes Zusatzelement 15 auf.
Dazu zeigt Figur 2 zeigt in einem Vertikalschnitt die Membran- Elektroden- Einheit 1 der elektrochemischen Zelle 100 mit dem versteifenden Zusatzelement 15 in den beiden Folien 11, 12, wobei wieder nur die wesentlichen Bereiche dargestellt sind. Der weitere Aufbau der Rahmenstruktur 10 bzw. der Membran- Elektroden- Einheit 1 entspricht dem der Figur 1.
Die Folien 11, 12 bestehen beispielweise aus einem Polymer wie PEN (Polyethylennaphthalat), welches nun mit dem Zusatzelement 15 versteift wird. In der Ausführung der Figur 2 ist das Zusatzelement 15 als Füllmaterial in die beiden Folien 11, 12 eingebettet, das Zusatzelement 15 könnte aber alternativ beispielsweise auch auf eine Oberfläche der Folien 11, 12 aufgebracht sein. Das Zusatzelement bzw. das Füllmaterial 15 besteht dabei bevorzugt aus Glasfasern, Kohlefasern und/oder Keramikfasern, welche vergleichsweise hohe Zugmodule - und damit quer zur Faserrichtung, wie in der Figur 2 gezeigt, auch hohe Druckmodule - aufweisen; bevorzugt ist der Druckmodul des Zusatzelements 15 mindestens lOx so hoch wie der Druckmodul eines Grundmaterials der Folien 11, 12. Die Form des Zusatzelements kann dabei auch anders als faserartig sein: beispielsweise in Form von Kugeln, Flakes, Scheiben. In alternativen vorteilhaften Ausführungen kann das Zusatzelement 15 jedoch auch Aluminiumoxid sein, das beispielsweise als partikelförmiges Füllmaterial in die Folie 11, 12 eingebettet ist.
Je nach Form und Art des Zusatzelements 15 lässt sich über den Durchmesser von Kugeln bzw. Fasern des Zusatzelements 15 eine minimale Dicke der Folien 11, 12 einstellen, da das Zusatzelement 15 zum Grundmaterial der Folien 11, 12 vergleichsweise sehr steif ist, also einen deutlich höheren Druckmodul aufweist, so dass es unter der Vorspannkraft des Zellenstapels nur unwesentlich gedehnt bzw. gestaucht wird, während das Grundmaterial viel stärker gestaucht wird.
Durch die Gewährleistung einer minimalen Dicke der Folien 11, 12 kann auch ein zu starkes Verpressen oder Kriechen des Grundmaterials unterbunden werden, so dass auch die Dichtheitsfunktion der Rahmenstruktur 10 durch das Zusatzelement 15 robuster wird.

Claims

- 8 - Ansprüche
1. Membran-Elektroden-Einheit (1) für eine elektrochemische Zelle (100), wobei die Membran-Elektroden-Einheit (1) eine Rahmenstruktur (10) zur Aufnahme einer mit Elektroden (3, 4) beschichteten Membran (2) aufweist, wobei die Rahmenstruktur (10) eine erste Folie (11) und eine zweite Folie (12) umfasst, dadurch gekennzeichnet, dass zumindest eine der Folien (11, 12) mit einem versteifenden Zusatzelement (15) versehen ist.
2. Membran-Elektroden-Einheit (1) nach Anspruch 1, dadurch gekennzeichnet, dass die zu versteifende Folie (11, 12) als Grundmaterial aus einem Polymer besteht.
3. Membran-Elektroden-Einheit (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Zusatzelement (15) aus Glasfasern besteht.
4. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Zusatzelement (15) aus Kohlefasern besteht.
5. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Zusatzelement (15) aus Keramikfasern besteht.
6. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Zusatzelement (15) aus partikelförmigem Aluminiumoxid besteht.
7. Membran-Elektroden-Einheit (1) nach einem der Ansprüche 1 bis 6, - 9 - dadurch gekennzeichnet, dass der Druckmodul des Zusatzelements (15) mindestens 10 mal so hoch ist wie der Druckmodul eines Grundmaterials der zu versteifenden Folie (11, 12). Membran- Elektroden- Einheit (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Zusatzelement (15) als Füllmaterial in die zu versteifende Folie (11, 12) eingebettet ist.
PCT/EP2021/077438 2020-10-19 2021-10-05 Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit WO2022084026A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020213126.0 2020-10-19
DE102020213126.0A DE102020213126A1 (de) 2020-10-19 2020-10-19 Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit

Publications (1)

Publication Number Publication Date
WO2022084026A1 true WO2022084026A1 (de) 2022-04-28

Family

ID=78080347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/077438 WO2022084026A1 (de) 2020-10-19 2021-10-05 Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit

Country Status (2)

Country Link
DE (1) DE102020213126A1 (de)
WO (1) WO2022084026A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140684A1 (de) 2001-08-24 2003-03-06 Daimler Chrysler Ag Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus
US20030175575A1 (en) * 2002-02-28 2003-09-18 Omg Ag & Co. Kg PEM fuel cell stack and method of making same
US20040096716A1 (en) * 2002-11-15 2004-05-20 Pierpont Daniel M. Unitized fuel cell assembly and cooling apparatus
DE102011105072B3 (de) * 2011-06-21 2012-11-15 Daimler Ag Haltevorrichtung mit einer Membran einer Membran-Elektroden-Einheit für eine Brennstoffzelle und Verfahren zu deren Herstellung
DE102018131092A1 (de) 2018-09-04 2020-03-05 Hyundai Motor Company Membranelektrodeneinrichtung
WO2020065455A1 (en) * 2018-09-24 2020-04-02 3M Innovative Properties Company Porous electrode, membrane-electrode assembly, liquid flow battery and method of making a porous electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926026A1 (de) 1999-05-28 2000-11-30 Heliocentris Energiesysteme Membran-Elektroden-Einheit für Brennstoffzellen u. dgl.
WO2013171939A1 (ja) 2012-05-17 2013-11-21 パナソニック株式会社 燃料電池及びその製造方法
DE102013225159B4 (de) 2013-12-06 2016-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung elektrochemischer Zellen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140684A1 (de) 2001-08-24 2003-03-06 Daimler Chrysler Ag Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus
US20030175575A1 (en) * 2002-02-28 2003-09-18 Omg Ag & Co. Kg PEM fuel cell stack and method of making same
US20040096716A1 (en) * 2002-11-15 2004-05-20 Pierpont Daniel M. Unitized fuel cell assembly and cooling apparatus
DE102011105072B3 (de) * 2011-06-21 2012-11-15 Daimler Ag Haltevorrichtung mit einer Membran einer Membran-Elektroden-Einheit für eine Brennstoffzelle und Verfahren zu deren Herstellung
DE102018131092A1 (de) 2018-09-04 2020-03-05 Hyundai Motor Company Membranelektrodeneinrichtung
WO2020065455A1 (en) * 2018-09-24 2020-04-02 3M Innovative Properties Company Porous electrode, membrane-electrode assembly, liquid flow battery and method of making a porous electrode

Also Published As

Publication number Publication date
DE102020213126A1 (de) 2022-04-21

Similar Documents

Publication Publication Date Title
EP2912711A1 (de) Membran-elektroden-anordnung sowie brennstoffzelle mit einer solchen
WO2022128479A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
DE102019209766A1 (de) Brennstoffzellenplatte, Bipolarplatte und Brennstoffzellenvorrichtung
DE102020209663A1 (de) Brennstoffzelleneinheit
DE102015223040A1 (de) Brennstoffzelle sowie Brennstoffzellensystem mit einer solchen
DE102011014154A1 (de) Selectively coated bipolar plates for water management and freeze start in pem fuel cells
WO2022084014A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
WO2022084026A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
WO2022084028A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
DE102010054305A1 (de) Brennstoffzellenstapel mit mehreren Brennstoffzellen
EP3736894B1 (de) Bipolarplatte für brennstoffzellen, brennstoffzellenstapel mit solchen bipolarplatten sowie fahrzeug mit einem solchen brennstoffzellenstapel
DE102014213990A1 (de) Protonenaustauschmembran für eine elektrochemische Zelle
WO2021116034A1 (de) Brennstoffzelleneinheit
DE102020203048A1 (de) Brennstoffzelleneinheit
DE102021211884A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zum Herstellen einer Membran-Elektroden-Einheit
DE102020213140A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
DE102016116536A1 (de) Dichtungselement mit Einzelzellspannungs-Messeinrichtung für eine Brennstoffzelle
DE102016201707A1 (de) Bipolarplatte für Brennstoffzellen mit verbesserter Struktur, Brennstoffzellenstapel mit solchen Bipolarplatten sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE102022113927A1 (de) Brennstoffzellenstapel, Brennstoffzellenvorrichtung sowie Brennstoffzellenfahrzeug
DE102020215019A1 (de) Anordnung elektrochemischer Zellen und Verfahren zum Betrieb einer Anordnung elektrochemischer Zellen
DE102021210509A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zum Herstellen einer elektrochemischen Zelle
DE102021212398A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle
WO2021259568A1 (de) Bipolarplatte sowie brennstoffzellenstapel
DE102020128557A1 (de) Brennstoffzellenstapel mit Gussmaterial und Verfahren zum Herstellen eines Brennstoffzellenstapels
DE102022202113A1 (de) Membranelektrodenanordnung, elektrochemische Zelle und Verfahren zur Herstellung von Membranelektrodenanordnungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21786947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21786947

Country of ref document: EP

Kind code of ref document: A1