WO2013168429A1 - 溶接構造体 - Google Patents

溶接構造体 Download PDF

Info

Publication number
WO2013168429A1
WO2013168429A1 PCT/JP2013/002981 JP2013002981W WO2013168429A1 WO 2013168429 A1 WO2013168429 A1 WO 2013168429A1 JP 2013002981 W JP2013002981 W JP 2013002981W WO 2013168429 A1 WO2013168429 A1 WO 2013168429A1
Authority
WO
WIPO (PCT)
Prior art keywords
joined
welded
fillet
weld
charpy impact
Prior art date
Application number
PCT/JP2013/002981
Other languages
English (en)
French (fr)
Inventor
貞末 照輝
恒久 半田
聡 伊木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2013534520A priority Critical patent/JP5408396B1/ja
Priority to KR1020147028735A priority patent/KR101504242B1/ko
Priority to CN201380023607.5A priority patent/CN104271301B/zh
Priority to BR112014025358-7A priority patent/BR112014025358B1/pt
Publication of WO2013168429A1 publication Critical patent/WO2013168429A1/ja
Priority to PH12014501936A priority patent/PH12014501936A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0256Seam welding; Backing means; Inserts for rectilinear seams for welding ribs on plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a welded steel structure welded using a thick steel plate, such as a large container ship or a bulk carrier, in particular, the propagation of brittle cracks generated from a welded joint,
  • the present invention relates to a welded structure that is capable of being stopped before reaching a point and has excellent brittle crack propagation stopping performance.
  • Container ships and bulk carriers for example, have a structure that has few partition walls in the hold and a large opening at the top of the ship, for example, unlike tankers, in order to improve loading capacity and cargo handling efficiency. . Therefore, in container ships and bulk carriers, it is necessary to increase the strength or thickness of the hull skin, in particular. In recent years, container ships have increased in size, and large ships of 6,000 to 20,000 TEU have been built. TEU (Twenty feet Equivalent Unit) represents the number of containers converted into a 20-foot container and represents an indicator of the loading capacity of container ships. Along with such an increase in size of a ship, a steel plate having a plate thickness of 50 mm or more and a yield strength of 390 N / mm grade 2 or more tends to be used for the hull outer plate.
  • TEU wenty feet Equivalent Unit
  • Non-Patent Document 1 reports the results of an experimental study on the brittle crack propagation behavior of welds in steel plates for shipbuilding with a thickness of less than 50 mm.
  • the propagation path and propagation behavior of a brittle crack forcibly generated in a welded part are experimentally investigated.
  • a plurality of examples in which brittle cracks propagate along the welded part have been confirmed. This suggests that it cannot be said that there is no possibility that brittle fracture propagates straight along the weld.
  • Non-Patent Document 2 securing the safety of the hull structure using a thick high-strength steel plate with a thickness of 50 mm or more is a big problem.
  • Non-Patent Document 2 also points out that a thick steel plate having special brittle crack propagation stopping characteristics is required to stop the propagation of the generated brittle cracks.
  • Patent Document 1 in a welded structure that is preferably a hull outer plate having a thickness of 50 mm or more, an aggregate is arranged so as to intersect the butt weld, and this aggregate is used. A welded structure joined by fillet welding is described. In the technique described in Patent Document 1, this aggregate has a mean circle equivalent particle diameter of 0.5 to 5 ⁇ m over a thickness of 3 mm or more in the surface layer portion and the back layer portion, and is parallel to the plate thickness surface ( 100) A steel sheet having a microstructure in which the X-ray plane intensity ratio of crystal planes is 1.5 or more is used.
  • Patent Document 2 includes a fillet welded joint obtained by fillet welding a joining member (hereinafter also referred to as a web) to a member to be joined (hereinafter also referred to as a flange), and has excellent brittle crack propagation stop characteristics.
  • a welded structure is described.
  • an unwelded portion is left on the butt surface of the web in the fillet welded joint cross section with the flange.
  • X is a special relational expression with the brittle crack propagation stop toughness Kca of the member to be joined (flange)
  • the width of the unwelded part is adjusted so as to satisfy the above.
  • the aggregate as a reinforcing material used in the technique described in Patent Document 1 requires a complicated manufacturing process in order to obtain a steel sheet having a desired structure. For this reason, there has been a problem that productivity is lowered and it is difficult to stably secure a steel sheet having a desired structure.
  • the technique described in Patent Document 2 is a combination of the discontinuity of the structure and the brittle crack propagation stop characteristic of the joined member (flange), in the propagation of the brittle crack generated in the joining member (web). It is a technology that tries to prevent it.
  • Patent Document 2 In order to stop the propagation of brittle cracks generated in the members to be joined (flange) in the joining member (web), the technique described in Patent Document 2 is used to stop the propagation of brittle cracks in the joining member (web). Since the characteristics and the like are insufficient, it cannot be said that the technique is sufficient.
  • Patent Document 2 no consideration is given to the brittle crack propagation stop characteristic of the joining member (web). That is, the technique described in Patent Document 2 occurs on the strong deck (corresponding to a flange) of a large container ship, which is assumed in the “Brittle Crack Arrest Design Guidelines” (established in September 2009) of the NK class, for example. It cannot be said that it has sufficient crack propagation stop characteristics for the case where the brittle cracks propagated to the hatch side combing (corresponding to the web).
  • the present invention solves the problems of the prior art, and in addition to the propagation of the brittle cracks generated in the bonded member (flange) to the bonded member (web), the bonded member of the brittle crack generated in the bonded member (web).
  • An object of the present invention is to provide a welded structure excellent in brittle crack propagation stopping characteristics that can stop (prevent) propagation to (flange) before large-scale fracture.
  • both the joining member (web) and the member to be joined (flange) have a plate thickness of 50 mm or more and have a butt weld joint, and the butt welding of the joining member (web).
  • a welded structure comprising a fillet welded joint formed by butting the end surface of the welded portion of the joint to the surface of the welded portion of the butt welded joint of the member to be joined (flange) and joining the joined member and the member to be joined by fillet welding Is the body.
  • the present inventors butt the welded portion end surface of the butt welded joint portion of the joining member (web) to the welded portion surface of the butt welded joint portion of the joined member (flange) to join
  • the present inventors butt the welded portion end surface of the butt welded joint portion of the joining member (web) to the welded portion surface of the butt welded joint portion of the joined member (flange) to join
  • both the joining member (web) and the member to be joined (flange) have a butt weld joint, and the welded end surface of the butt weld joint of the joining member is butted against the welded part surface of the butt weld joint of the joined member.
  • the fillet weld toughness is set to the toughness that satisfies a predetermined relationship with the thickness t f (mm) of the member to be joined,
  • the toughness of the weld metal of the butt weld joint of the joined member and / or the joined member It has been found that the propagation of brittle cracks generated in a member to be joined having a thickness of 50 mm or more as described above, which has been difficult with the prior art, to the joining member can be prevented (stopped).
  • a large fillet welded joint was prepared by butt-welding to the weld surface of the butt welded joint and joining by fillet welding.
  • unwelded portion ratio Y (%) (width B of unwelded portion in fillet welded cross section) / (plate thickness t w of joining member) ⁇ 100), welding material, welding conditions, etc.
  • Y (%) (width B of unwelded portion in fillet welded cross section) / (plate thickness t w of joining member) ⁇ 100), welding material, welding conditions, etc.
  • a fillet welded joint with various changes in fillet weld metal toughness by adjusting the thickness was obtained.
  • at least one of the weld leg length or the weld width of the fillet weld was set to 16 mm or less.
  • Thick steel plates with a thickness of 50 mm or more are used for the members to be joined (flange), and shipbuilding D to E grade steel plates with a normal thickness of 50 mm or more that do not give any consideration to brittle crack propagation stop toughness Kca.
  • the butt welded joint for both the joined member and the joined member is a weld metal of the butt welded joint using one-pass high heat input electrogas arc welding (SEGARC or two-electrode SEGARC) or carbon dioxide arc welding (multilayer welding).
  • an ultra-large structural model test body shown in FIG. 3A was produced, and a brittle crack propagation stop test was performed.
  • the ultra-large-sized structural model test body welded the steel plate of the same board thickness as the to-be-joined member (flange) 2 by the tack welding 8 below the to-be-joined member (flange) 2 of the large-scale fillet welded joint 9.
  • the butt weld joint 11 of the member to be joined (flange) 2 and the butt weld joint 12 of the joint member (web) 1 are in the same line in cross section.
  • the mechanical notch 7 was hit to generate a brittle crack, and whether or not the propagation of the brittle crack stopped at the fillet weld was investigated. All tests were performed under the conditions of a stress of 257 N / mm 2 and a temperature of ⁇ 10 ° C.
  • the stress 257 N / mm 2 is a value corresponding to the maximum allowable stress of a yield strength 390 N / mm 2 grade steel plate applied to the hull.
  • Temperature: -10 ° C is the design temperature of the ship.
  • FIGS. 4 (a) and 4 (b) The obtained results are shown in FIGS. 4 (a) and 4 (b).
  • Figure 4 (a), (b), in the non-welded portion ratio Y is more than 95%, and the relationship between the thickness t f of the fillet weld metal toughness and the bonded member (flange) is a specific relationship If the load stress is 257 N / mm 2 , the brittle cracks generated in the joined member (flange) are not observed at the fillet welded part without giving any consideration to the Kca of the joined member (web). It can be seen that the propagation of the brittle crack to the joining member (web) can be stopped (stopped).
  • the unwelded portion ratio Y is the fillet welded by butting the end surface of the butt weld joint portion 12 of the joining member (web) to the weld portion surface of the butt weld joint portion 11 of the joined member (flange).
  • the ratio of the butt weld width B and the joining member of the unwelded part in the joint cross-section (web) thickness t w is a value defined by (B / t w) ⁇ 100 (%).
  • brittle crack is less likely to stop.
  • a welded structure (fillet welded joint) having a discontinuous portion with an unwelded portion ratio Y of 95% or more is used, the energy release rate at the brittle crack tip that has propagated decreases, and brittleness occurs. It has been found that the propagation of cracks tends to stop.
  • At least one of the weld leg length or the weld width of the fillet weld is set to 16 mm or less, and the joined member and / or the joined member It has also been found that by setting the low temperature toughness of the weld metal of the butt weld joint to a predetermined toughness, the propagation of brittle cracks can be prevented at the welded part (butt welded joint) of the joining member (web).
  • the gist of the present invention is as follows. 1.
  • At least one of the welding leg length or welding width formed by abutting the end face of the joining member having a thickness of 50 mm or more to the surface of the joining member having a thickness of 50 mm or more and joining the joining member and the joined member by fillet welding A welded structure with a fillet weld joint of 16 mm or less,
  • the joining member and the joined member are both members having a butt weld joint portion, and the weld metal of the joining member and / or the butt weld joint portion of the joined member is a fracture surface transition temperature vTrs-W of the Charpy impact test. ( ⁇ ° C.) ⁇ 65 ° C.
  • the heat affected zone of the butt weld joint of the joined member and / or the joined member has a Charpy impact test fracture surface transition temperature vTrs-H (° C.) of ⁇ 65 ° C. or lower and / or a Charpy impact at ⁇ 20 ° C. 2.
  • the steel plate constituting the joining member and / or the joined member has a Charpy impact test fracture surface transition temperature vTrs-B (° C.) of ⁇ 65 ° C. or less and / or Charpy impact test absorbed energy at ⁇ 20 ° C. vE ⁇ .
  • the welded structure according to 1 or 2 above which has a toughness of 140 J or more at 20 -B (J). 4).
  • the weld metal of the butt weld of the joining member and / or the joined member absorbs the Charpy impact test at a Charpy impact test fracture surface transition temperature vTrs-W (° C.) of ⁇ 85 ° C. or lower and / or ⁇ 20 ° C. 2.
  • the heat affected zone of the joint member and / or the butt weld joint of the member to be joined has a Charpy impact at a Charpy impact test fracture surface transition temperature vTrs-H (° C.) of ⁇ 85 ° C. or lower and / or ⁇ 20 ° C. 5.
  • the welded structure as described in 4 above which is a heat-affected zone having a toughness of 160 J or more with a test absorption energy vE -20 -H (J). 6).
  • the steel plate constituting the joining member and / or the joined member has a Charpy impact test fracture surface transition temperature vTrs-B (° C.) of ⁇ 85 ° C.
  • the welded structure according to 4 or 5 above which is a steel plate having a toughness of 20 J-B (J) or more than 160 J.
  • the propagation of brittle cracks to a member to be joined (flange) generated in a joining member (web) made of a thick steel plate having a thickness of 50 mm or more is stopped (blocked) before reaching a large-scale fracture. ) Also has the effect of being able to.
  • the dimensions of the unwelded part, the toughness of the fillet weld metal, the weld leg length or weld width of the fillet weld part, the weld metal of the joined member and / or the butt welded joint part of the joined member thermal effects
  • brittle crack propagation stop characteristics can be easily achieved without using special steel plates with excellent brittle crack propagation stop toughness and without sacrificing safety.
  • (A) shows a case where a brittle crack propagates from the member to be joined (flange) 2 to the joining member (web) 1, and (b) shows a brittle crack from the joining member (web) 1 to the member to be joined (flange) 2. It is a case of propagation. It is a graph which shows the influence of the relationship between the toughness of a fillet weld metal, and the flange plate thickness on the propagation stop of a brittle crack in the case of propagating from a member to be joined (flange) 2 to a joining member (web) 1.
  • the welded structure according to the present invention includes a joining member (web) having a thickness of 50 mm or more and a joined member (flange) having a thickness of 50 mm or more, both of which have a butt weld joint portion.
  • the welded structure is formed by butting the end surface of the welded portion with the surface of the welded portion of the butt-welded joint of the member to be joined and joining them by fillet welding.
  • An appearance of an example of a welded structure according to the present invention is shown in FIG.
  • This welded structure includes a fillet weld joint having a fillet weld metal 5 in which at least one of the weld leg length 3 and the weld width 13 is 16 mm or less.
  • FIG. 1B shows a case where the joining member (web) 1 is attached upright with respect to the joined member (flange) 2, but the present invention is not limited to this.
  • the joining member (web) 1 may be attached to the joined member (flange) 2 at an angle ⁇ .
  • the bonding member (web) thickness t w for use in determining the ratio Y (%) of the non-welded portion, the joint member (web) and the workpieces (flange) and the intersecting portion of the length of, ( t w ) / cos (90 ° - ⁇ ).
  • the welded structure according to the present invention is a non-welded portion in which the structure is discontinuous at the abutting surface between the joining member (web) 1 and the joined member (flange) 2 in the fillet welded joint. 4.
  • the butt surface between the joined member (web) 1 and the joined member (flange) 2 is Since it becomes a propagation surface of a brittle crack, in this invention, the unwelded part 4 exists in a butt
  • the energy release rate (crack propagation driving force) at the tip of the brittle crack that has propagated through the member to be joined (flange) 2 is reduced, and the brittle crack tends to stop at the butt surface. Even if a brittle crack is about to propagate to the joining member (web) 1 side, the present invention forms a fillet weld portion (fillet weld metal 5) that retains toughness of a predetermined level or more. It becomes easy to stop at the fillet weld (fillet weld metal 5).
  • both the joining member (web) 1 and the joined member (flange) 2 have the butt weld joints 12 and 11, and the butt weld joint portion 11 of the joined member (flange) 2 and the joining member (web) 1.
  • a fillet welded joint as shown in FIG. 1A in which the butt weld joint portion 12 is orthogonal, in order to prevent a brittle crack generated from the butt weld joint portion 11 from propagating to the joining member (web) 1.
  • the unwelded part 4 exists in the butt
  • the manufacturing method of a fillet welded joint is not particularly limited, and any of the manufacturing methods that are usually used can be applied.
  • the thick steel plates for flanges and the thick steel plates for webs can be butt-welded, and the obtained butt-welded joint can be welded to fillet.
  • the dimensions of the unwelded part 4 in a fillet welded joint section width B
  • the propagation suppression of brittle cracks and more than 95% of the web thickness t w.
  • the dimensions of the unwelded part 4 (width B) was limited to 95% or more of the bonding member (web) thickness t w. In addition, Preferably they are 96% or more and 100% or less.
  • the weld leg length 3 or the weld width 13 of the fillet weld joint is 16 mm or less.
  • the weld leg length or weld width of fillet welded joints is limited to 16 mm or less, which is easy to deform high tough fillet weld metal. Preferably it is 15 mm or less.
  • the weld leg length 3 and the weld width 13 are each preferably 4 mm or more.
  • the weld leg length should be increased after increasing the low temperature toughness of the fillet weld metal part to ensure strength. It is preferable to spread.
  • the fillet weld metal in the fillet weld joint satisfies the following formula (1) and / or the following formula (2) in relation to the plate thickness t f of the member (flange) 2 to be joined. Adjust to ensure toughness.
  • a welded structure having a plate thickness of a member to be joined (flange) of 50 mm or more can be a welded structure that ensures desired brittle crack propagation prevention characteristics. If the toughness of the fillet weld metal does not satisfy either of the above formulas (1) and (2), the fillet weld metal has insufficient toughness and is generated and propagated in the joined member (flange). The brittle crack cannot be prevented from propagating at the fillet weld metal.
  • the weld metal of the butt weld joint of the member to be joined 2 and / or the joint member 1 is ⁇ 65 ° C. at the fracture surface transition temperature vTrs-W (° C.) of the Charpy impact test. It is necessary to form the weld metal by adjusting the welding materials and welding conditions so that the toughness is 140J or more in the following and / or Charpy impact test absorbed energy vE -20 -W (J) at -20 ° C And
  • the weld metal of the butt weld of the joining member and / or the joined member is absorbed by the Charpy impact test at a Charpy impact test fracture surface transition temperature vTrs-W (° C) of -85 ° C or lower and / or -20 ° C. It is more preferable to use a weld metal having a toughness of 160 J or more with energy vE -20 -W (J).
  • the weld metal of the member to be joined 2 and / or the butt weld joint portion of the joining member 1 has the toughness described above, and the heat affected zone has the Charpy impact test fracture surface transition temperature vTrs-H.
  • the steel plate constituting the member to be joined 2 and / or the joining member 1 has a Charpy impact test at a Charpy impact test fracture surface transition temperature vTrs-B (° C.) of ⁇ 65 ° C. or lower and / or ⁇ 20 ° C. It is preferable to have a toughness of 140 J or more with absorbed energy vE -20 -B (J).
  • the brittle crack propagated from the welded part (flange) welded part or the brittle crack propagated from the welded part (web) welded part more easily becomes a fillet welded part or joined member ( It becomes possible to prevent at the welded portion of the web) or the welded portion of the member to be joined (flange).
  • the heat-affected zone of the butt-welded joint of the joined member and / or joined member has a toughness of ⁇ 85 ° C. or less at vTrs-H (° C.) and / or 160 J or more at vE ⁇ 20 -H (J). More preferably, the heat-affected zone has Further, the to-be-joined member and / or the steel plate constituting the joining member may have a toughness of ⁇ 85 ° C. or less at vTrs-B (° C.) and / or 160 J or more at vE ⁇ 20 -B (J). preferable.
  • a welded structure according to the present invention includes the above-described fillet welded joint and the above-described butt welded joint.
  • a hull structure having a ship hull outer plate as a flange and a bulkhead as a web, or a deck It can be applied to a hull structure having a flange as a flange and a web as a hatch.
  • this invention is demonstrated in detail.
  • the thick steel plates having the plate thicknesses shown in Tables 1 and 2 and the low temperature toughness were prepared by welding heat input shown in Tables 1 and 2, respectively.
  • the joining member 2 and the joining member 1 were used.
  • the butt welding was one-pass high heat input electrogas arc welding (SEGARC and two-electrode SEGARC) or multi-layer CO 2 welding of the welding heat input shown in Tables 1 and 2, and was performed by changing the welding material.
  • V-notch Charpy impact test piece (10 mm thick) was sampled from the weld metal center and heat affected zone (BOND).
  • the Charpy impact test was performed in accordance with the provisions of JIS Z 2242, and the fracture surface transition temperature vTrs (° C) and the Charpy impact absorption energy vE- 20 (J) at a test temperature of -20 ° C were determined.
  • the vE -20 (J) and the fracture surface transition temperature vTrs (° C) were similarly determined for the base material portions of the steel plates constituting the joining member and the joined members.
  • Tables 1 and 2 collectively show the low temperature toughness of the obtained steel plate base material and the low temperature toughness of the butt weld joint.
  • the joining member 1 and the joined member 2 are joined.
  • a fillet welded joint having an actual structure size as shown in FIGS. 3A and 3B.
  • Fillet welding changes the welding conditions such as welding material, welding heat input, shielding gas, etc. so that it becomes a fillet welded joint with various weld metal toughness, various weld leg lengths or weld widths shown in Tables 3 and 4 I went.
  • the unwelded portion 4 as shown in FIG. 1B or FIG. 2 is shown in Tables 3 and 4 on the surface where the joining member 1 and the member 2 are joined.
  • the ratio Y of the non-welded portion (were present by changing the width B / bonding member unwelded portion of the butt welded joint section and fillet welding (web) thickness t w ⁇ 100).
  • V-notch Charpy impact test specimens (10 mm thick) were collected from the fillet weld metal of the obtained large fillet welded joints or from butt welded joints manufactured under the same conditions as fillet welds.
  • the absorbed energy vE -20 (J) and the fracture surface transition temperature vTrs (° C) at the test temperature: -20 ° C were determined according to the regulations.
  • the low temperature toughness of the fillet weld metal 5 obtained is shown in Tables 3 and 4.
  • the ultra-large structural model test body shown in FIG. 3 (a) has a butt weld joint part 11 of the member to be joined (flange) 2 and a butt weld joint part 12 of the joint member (web) 1 orthogonal to each other, In this case, a brittle crack is propagated from the flange 2 to the joining member (web) 1, and the tip of the mechanical notch 7 is processed to be the BOND portion of the butt weld joint portion 11.
  • the ultra-large structural model test body shown in FIG. 3B has an auxiliary plate 6 having the same thickness as the joining member (web) 1 below the joined member (flange) 2 of the large fillet welded joint 9. Welding was performed by groove welding 10, and a steel plate having the same thickness as that of the joining member (web) 1 was welded by tack welding 8 below the auxiliary plate 6.
  • the brittle crack propagation stop test hits the mechanical notch 7 to generate a brittle crack, and the propagated brittle crack is a fillet welded part or a welded part of a joining member (including a heat affected part) (FIG. 3A). Or it investigated whether it stopped at the welding part (a heat affected part is included) (FIG.3 (b)) of a to-be-joined member. All tests were performed under the conditions of stress 100 to 283 N / mm 2 and temperature: ⁇ 10 ° C. The stress 100 N / mm 2 is an average value of stress that constantly acts on the hull.
  • the stress 257 N / mm 2 is a value corresponding to the maximum allowable stress of the yield strength 390 N / mm grade 2 steel plate applied to the hull.
  • the stress 283 N / mm 2 is a value corresponding to the maximum allowable stress of the yield strength 460 N / mm 2 grade steel plate applied to the hull.
  • Temperature: -10 ° C is the design temperature of the ship.
  • the brittle crack is caused by the fillet weld metal or the welded member (web) weld of the fillet weld. Stopped.
  • the brittle crack has a fillet weld metal in the fillet weld or a member to be joined (flange). Stopped at the weld.
  • the brittle crack is caused by the fillet welded part, the welded part of the joined member, or the joined member. Without stopping at the weld, it propagated to the joining member or to-be-joined member and could not prevent (stop) the propagation of the brittle crack. Further, in the comparative examples (test bodies No. 22 to No. 24, No. 27) in which the unwelded portion ratio Y is out of the range of the present invention, brittle cracks generated in the joined members propagate to the joined members, and the brittleness Crack propagation could not be stopped (stopped).
  • test bodies No. 26, No. 28 in which the low temperature toughness of the weld metal of the butt weld joint of the joined member and the joined member that plays a role in stopping the propagation of brittle cracks are outside the scope of the present invention, The brittle crack propagated from the joined member to the joined member, and the propagation of the brittle crack could not be prevented (stopped).
  • brittle cracks are to be joined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

 ともに板厚50mm以上で突合せ溶接継手部を有する接合部材と被接合部材とを、接合部材の突合せ溶接継手部の溶接部端面を被接合部材の突合せ溶接継手部の溶接部表面に突合せ、隅肉溶接により接合してなる、溶接脚長もしくは溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体とし、接合部材および/または被接合部材の突合せ溶接継手部における溶接金属をvTrs-W(℃)で-65℃以下、および/または、vE-20-W(J)で140J以上の靭性とし、突合せ面に隅肉溶接継手の突合せ溶接継手断面で接合部材の板厚tの95%以上の未溶着部を有し、隅肉溶接金属のvTrs(℃)および/またはvE-20(J)と被接合部材の板厚tfについて所定の関係を満足させることにより、大規模破壊に至る前に脆性亀裂の伝播を阻止する。

Description

溶接構造体
 本発明は、例えば、大型コンテナ船やバルクキャリアーなどの、厚鋼板を用いて溶接施工された溶接鋼構造物に係り、とくに溶接継手部から発生した脆性亀裂の伝播を、構造物の大規模破壊に至る前に停止させることができる、脆性亀裂伝播停止性能に優れる溶接構造体に関する。
 コンテナ船やバルクキャリアーは、積載能力の向上や荷役効率の向上等のため、例えば、タンカー等とは異なり船倉内に仕切り壁が少なく、船上部の開口部を大きくとった構造を有している。そのため、コンテナ船やバルクキャリアーでは、特に船体外板を、高強度化または厚肉化する必要がある。
 また、コンテナ船は、近年、大型化し、6,000~20,000 TEUといった大型船が建造されるようになってきている。なお、TEU(Twenty feet Equivalent Unit)は、長さ20フィートのコンテナに換算した個数を表し、コンテナ船の積載能力の指標を示している。このような船の大型化に伴い、船体外板は、板厚:50mm以上で、降伏強さ:390N/mm級以上の厚鋼板が使用される傾向となっている。
 船体外板となる鋼板は、近年、施工期間の短縮という観点から、例えばエレクトロガスアーク溶接等の大入熱溶接により突合せ溶接されることが多い。このような大入熱溶接では、溶接熱影響部において大幅な靭性低下が生じやすく、溶接継手部からの脆性亀裂発生の一つの原因となっていた。船体構造においては、従来より安全性という観点から、万一、脆性破壊が発生した場合でも、脆性亀裂の伝播を大規模破壊に至る前に停止させ、船体分離を防止することが必要であると考えられている。
 このような考え方を受けて、非特許文献1に、板厚50mm未満の造船用鋼板における溶接部の脆性亀裂伝播挙動についての実験的な検討結果が報告されている。
 非特許文献1では、溶接部で強制的に発生させた脆性亀裂の伝播経路、伝播挙動が実験的に調査されている。ここには、溶接部の破壊靱性がある程度確保されていれば、溶接残留応力の影響により脆性亀裂は溶接部から母材側に逸れてしまうことが多いという結果が記載されている。しかしその一方で溶接部に沿って脆性亀裂が伝播した例も複数例確認されている。このことは、脆性破壊が溶接部に沿って直進伝播する可能性が無いとは言い切れないことを示唆していることになる。
 しかしながら、非特許文献1で適用した溶接と同等の溶接を板厚50mm未満の鋼板に適用して建造された船舶が何ら問題なく就航しているという多くの実績があることに加え、靱性が良好な鋼板母材(造船E級鋼など)は脆性亀裂を停止する能力を十分に保持しているとの認識から、造船用鋼材溶接部の脆性亀裂伝播停止特性は船級規則等においてはとくに要求されてこなかった。
 しかし、近年の6,000 TEUを超える大型コンテナ船では、使用する鋼板の板厚は50mmを超え、板厚増大により破壊靱性が低下することになる。加えて、溶接入熱がより大きな大入熱溶接が採用され、溶接部の破壊靭性が一層低下する傾向にある。このような厚肉の大入熱溶接継手では、溶接部から発生した脆性亀裂が、母材側に逸れずに直進し、また骨材等の鋼板母材部でも停止しない可能性があることが示されている(例えば、非特許文献2)。それ故、板厚50mm以上の厚肉高強度鋼板を適用した船体構造の安全性確保が大きな問題となっている。また、非特許文献2には、発生した脆性亀裂の伝播停止のために、特別な脆性亀裂伝播停止特性を有する厚鋼板を必要とするとの指摘もある。
 このような問題に対し、例えば特許文献1には、好ましくは板厚50mm以上の船殻外板である溶接構造体において、突合せ溶接部に交差するように骨材を配置し、この骨材を隅肉溶接で接合した溶接構造体が記載されている。
 特許文献1に記載された技術では、この骨材に、表層部および裏層部で3mm以上の厚みにわたり0.5~5μmの平均円相当粒径を有し、さらに板厚面に平行な面で(100)結晶面のX線面強度比が1.5以上である、ミクロ組織を有する鋼板を用いるとしている。このようなミクロ組織を有する鋼板を補強材として隅肉溶接した構造とすることにより、突合せ溶接部に脆性亀裂が発生しても、補強材である骨材で脆性亀裂の伝播を停止でき、溶接構造体が破壊するような致命的な損傷を防止できるとしている。
 また、特許文献2には、接合部材(以下、ウェブともいう)を被接合部材(以下、フランジともいう)に隅肉溶接してなる隅肉溶接継手を備える、脆性亀裂伝播停止特性に優れた溶接構造体が記載されている。
 特許文献2に記載された溶接構造体では、隅肉溶接継手断面におけるウェブの、フランジとの突合せ面に未溶着部を残存させる。そして、その未溶着部の幅と、隅肉溶接部の左右の脚長とウェブ板厚との和との比、Xが、被接合部材(フランジ)の脆性亀裂伝播停止靭性Kcaと特別な関係式を満足するように、未溶着部の幅を調整する。これにより、被接合部材(フランジ)を板厚:50mm以上の厚物材としても、接合部材(ウェブ)で発生した脆性亀裂の伝播を、隅肉溶接部のウェブとフランジの突合せ面で停止させ、被接合部材(フランジ)への脆性亀裂の伝播を阻止することができるとしている。
特開2004-232052号公報 特開2007-326147号公報
日本造船研究協会第147研究部会:「船体用高張力鋼板大入熱継手の脆性破壊強度評価に関する研究」、第87号(1978年2月),p.35~53、日本造船研究協会 山口欣弥ら:「超大型コンテナ船の開発―新しい高強度極厚鋼板の実用―」、日本船舶海洋工学会誌、第3号(2005)、p.70~76、平成17年11月
 しかしながら、特許文献1に記載された技術で使用する、補強材である骨材は、所望の組織を有する鋼板とするために、複雑な製造工程を必要とする。このため、生産性が低下し、安定して所望の組織を有する鋼板を確保することが難しいという問題があった。
 また、特許文献2に記載された技術は、接合部材(ウェブ)で発生した脆性亀裂の伝播を、構造の不連続性と、被接合部材(フランジ)の脆性亀裂伝播停止特性との組合せで、阻止しようとする技術である。
 しかし、日本造船研究協会第169委員会報告(「船体構造の破壊管理制御設計に関する研究―報告書―」、(1979)、p.118~136、日本造船研究協会第169委員会)に示されるように、一般に、隅肉溶接継手の被接合部材(フランジ)で発生した脆性亀裂を接合部材(ウェブ)で伝播停止させることは、接合部材(ウェブ)で発生した脆性亀裂を被接合部材(フランジ)で伝播停止させることに比べて、難しいことが実験的に確認されている。
 この理由は明確には記載されていないが、一因として、T継手部に亀裂が突入するときの破壊駆動力(応力拡大係数)が、被接合部材(フランジ)に突入する場合よりも接合部材(ウェブ)に突入する場合のほうが大きくなることが要因として考えられる。
 このようなことから、被接合部材(フランジ)で発生した脆性亀裂を接合部材(ウェブ)で伝播停止させるには、特許文献2に記載された技術は、接合部材(ウェブ)の脆性亀裂伝播停止特性等が不十分であるため、十分な技術であるとは言えない。
 なお、特許文献2には、接合部材(ウェブ)の脆性亀裂伝播停止特性については何の配慮もなされていない。
 すなわち、特許文献2に記載された技術は、例えば、NK船級の「脆性亀裂アレスト設計指針」(2009年9月制定)で想定されている、大型コンテナ船の強力甲板(フランジに相当)で発生した脆性亀裂がハッチサイドコーミング(ウェブに相当)に伝播するようなケースに対して、十分な亀裂伝播停止特性を有しているとはいえない。
 さらに、特許文献2に記載された技術では、未溶着部の幅と、隅肉溶接部の左右の脚長とウェブの板厚との和との比、Xが小さくなるにつれて、特定式を満足させるために、フランジの脆性亀裂伝播停止靭性Kcaを増加させる必要がある。しかし、脆性亀裂伝播停止靭性Kcaの増加は、鋼板製造の際の圧延負荷の増大や生産能率の低下、製造コストの増加を招く。
 本発明は、かかる従来技術の問題を解決し、被接合部材(フランジ)に発生した脆性亀裂の接合部材(ウェブ)への伝播に加え、接合部材(ウェブ)に発生した脆性亀裂の被接合部材(フランジ)への伝播も、大規模破壊に至る前に、停止(阻止)できる、脆性亀裂伝播停止特性に優れた溶接構造体を提供することを目的とする。
 なお、本発明が対象とする溶接構造体は、接合部材(ウェブ)ならびに被接合部材(フランジ)がともに、板厚50mm以上で突合せ溶接継手部を有するものとし、接合部材(ウェブ)の突合せ溶接継手部の溶接部端面を被接合部材(フランジ)の突合せ溶接継手部の溶接部表面に突合せて、接合部材と被接合部材とを隅肉溶接により接合してなる隅肉溶接継手を備える溶接構造体である。
 本発明者らは、上記した目的を達成するために、接合部材(ウェブ)の突合せ溶接継手部の溶接部端面を被接合部材(フランジ)の突合せ溶接継手部の溶接部表面に突合せて、接合部材と被接合部材を隅肉溶接した隅肉溶接継手について、脆性亀裂伝播停止特性に及ぼす各種要因について鋭意研究した。
 その結果、このような厳しい条件の隅肉溶接継手において被接合部材(フランジ)から発生した脆性亀裂の伝播を阻止(停止)するには、接合部材(ウェブ)と被接合部材(フランジ)との突合せ面に不連続部を確保し、さらに脆性亀裂の伝播部を所定値以上の脆性亀裂伝播停止靭性Kcaを有する脆性亀裂伝播停止特性に優れた部材で構成しただけでは十分でないことに思い至った。
 とくに、被接合部材(フランジ)の板厚tf(mm)が大きくなると脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)が増加し、脆性亀裂が停止しにくくなることに鑑みて、被接合部材(フランジ)の板厚tf(mm)に関連した、隅肉溶接部の靭性向上が必須となることに想到した。
 また、隅肉溶接部の溶接脚長や溶着幅が長くなると、脆性亀裂の伝播が容易となるため、隅肉溶接部の溶接脚長もしくは溶着幅の少なくとも一方を16mm以下にする必要があることも知見した。
 加えて、被接合部材および/または接合部材の突合せ溶接継手部の溶接金属の靭性を一定値以上とすることにより、所望の脆性亀裂伝播停止特性を有する溶接構造体とすることが可能となることを知見した。
 すなわち、接合部材(ウェブ)および被接合部材(フランジ)がともに突合せ溶接継手部を有し、接合部材の突合せ溶接継手部の溶接部端面を被接合部材の突合せ溶接継手部の溶接部表面に突合せる隅肉溶接継手において、
 突合せ面に所定の長さ以上の未溶着部、すなわち不連続部を確保するとともに、
 隅肉溶接継手部の溶接脚長または溶着幅の少なくとも一方を16mm以下とし、
 さらに、隅肉溶接部靭性を被接合部材の板厚tf(mm)との関係で所定の関係を満足する靭性とし、
 加えて、接合部材および/または被接合部材の突合せ溶接継手部の溶接金属の靭性を高めることによりはじめて、
 従来の技術では困難であった、上記のような板厚50mm以上の厚肉の被接合部材で発生した脆性亀裂の接合部材への伝播を阻止(停止)できることを見出した。
 そしてさらに、上記の知見を活用することにより、接合部材から被接合部材に突入する脆性亀裂の伝播も、同様に、阻止できることも見出した。
 まず、本発明の基礎となった実験結果について説明する。
 ともに突合せ溶接継手部を有する、厚肉の接合部材(ウェブ)と厚肉の被接合部材(フランジ)とを、接合部材(ウェブ)の突合せ溶接継手部の溶接部端面を被接合部材(フランジ)の突合せ溶接継手部の溶接部表面に突合せ、隅肉溶接により接合して大型隅肉溶接継手を作製した。
 なお、未溶着部比率Y(%)(=(隅肉溶接した突合せ溶接継手断面における未溶着部の幅B)/(接合部材の板厚t)×100)と、溶接材料および溶接条件等の調整により隅肉溶接金属部靭性とを、種々変化させた隅肉溶接継手とした。また、隅肉溶接部の溶接脚長または溶接幅の少なくとも一方は16mm以下とした。
 なお、被接合部材(フランジ)は板厚:50mm以上の厚鋼板を用い、接合部材は脆性亀裂伝播停止靭性Kcaに何ら配慮していない通常の板厚50mm以上の造船D~E級鋼板を用いて構成した。そして、被接合部材、接合部材とも、突合せ溶接継手は、1パスの大入熱エレクトロガスアーク溶接(SEGARCまたは2電極SEGARC)若しくは炭酸ガスアーク溶接(多層盛)を用いて、突合せ溶接継手部の溶接金属が、シャルピー衝撃試験破面遷移温度で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーで140J以上の靭性を有するように、溶接材料および溶接条件等を調整して作製した。
 得られた大型隅肉溶接継手9を用いて、図3(a)に示す超大型構造モデル試験体を作製し、脆性亀裂伝播停止試験を実施した。なお、超大型構造モデル試験体は、大型隅肉溶接継手9の被接合部材(フランジ)2の下方に仮付け溶接8で、被接合部材(フランジ)2と同じ板厚の鋼板を溶接した。
 なお、図3(a)に示す超大型構造モデル試験体は、被接合部材(フランジ)2の突合せ溶接継手部11が接合部材(ウェブ)1の突合せ溶接継手部12と断面で同一線をなし、かつ、溶接線が直交するように作製した。また、機械ノッチ7の先端が、被接合部材(フランジ)2の突合せ溶接継手部11のBOND部となるように加工した。
 また、脆性亀裂伝播停止試験は、機械ノッチ7に打撃を与えて脆性亀裂を発生させ、その脆性亀裂の伝播が、隅肉溶接部で停止するか否かを調査した。いずれの試験も、応力257N/mm、温度:-10℃の条件で実施した。
 なお、応力257N/mmは、船体に適用されている降伏強度390N/mm級鋼板の最大許容応力相当の値である。また、温度:-10℃は船舶の設計温度である。
 得られた結果を、図4(a),(b)に示す。
 図4(a),(b)から、未溶着部比率Yが95%以上で、かつ隅肉溶接金属部の靭性と被接合部材(フランジ)の板厚tfとの関係が、特定の関係を満足する場合には、負荷応力が257N/mmの場合でも、接合部材(ウェブ)のKcaに何ら配慮を加えずに、被接合部材(フランジ)で発生した脆性亀裂を隅肉溶接部で停止でき、脆性亀裂の接合部材(ウェブ)への伝播を阻止(停止)できることがわかる。
 なお、図4(a)、(b)は、隅肉溶接部の溶接脚長または溶着幅の少なくとも一方が16mm以下で、かつ被接合部材および/または接合部材の突合せ溶接継手部の溶接金属が所定の靭性を満足する場合である。
 ここで、未溶着部比率Yは、接合部材(ウェブ)の突合せ溶接継手部12の溶接部端面を被接合部材(フランジ)の突合せ溶接継手部11の溶接部表面に突合わせて隅肉溶接した突合せ溶接継手断面における未溶着部の幅Bと接合部材(ウェブ)板厚tの比率、(B/tw)×100(%)で定義される値である。
 これらの結果から、隅肉溶接継手部の靭性と、被接合部材(フランジ)の板厚tfとの特定な関係としては、図4(a)から、
 vTrs(℃) ≦ -1.5tf(mm)+90 ‥‥(1)
が、図4(b)から、
 vE-20(J) ≧ 2.75tf(mm)-140 ‥‥(2)
が得られる。
 ただし、被接合部材(フランジ)の板厚tfが50≦tf(mm)≦53の範囲にある場合、(2)式はvE-20(J)≧ 5.75とする。
 また、被接合部材(フランジ)の板厚tf(mm)が大きくなると脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)が増加し、脆性亀裂が停止しにくくなる。しかしながら、この点については、未溶着部比率Yが95%以上の構造不連続部を有する溶接構造体(隅肉溶接継手)とすると、伝播してきた脆性亀裂先端のエネルギー解放率が低下し、脆性亀裂の伝播が停止しやすくなることが判った。
 そして、上記(1)、(2)式を満足するまでに、隅肉溶接金属の低温靭性を高めれば、板厚50mm以上の厚肉の被接合部材(フランジ)で発生した脆性亀裂を隅肉溶接部内で停止させることが、多くの場合で可能となることを見出した。
 さらに、上記した隅肉溶接部で脆性亀裂の伝播を阻止できなくても、隅肉溶接部の溶接脚長もしくは溶接幅の少なくとも一方を16mm以下とすること、ならびに被接合部材および/または接合部材の突合せ溶接継手部の溶接金属の低温靭性を所定の靭性とすることにより、接合部材(ウェブ)の溶接部(突合せ溶接継手部)で脆性亀裂の伝播を阻止できることも知見した。
 このようなことから、未溶着部の設定や、隅肉溶接部の低温靭性の向上、隅肉溶接部の溶接脚長もしくは溶接幅の調整、被接合部材および/または接合部材の突合せ溶接継手部の溶接金属の低温靭性の向上という対策を施すことにより、特別に脆性亀裂伝播停止靭性を考慮した厚鋼板を接合部材(ウェブ)に使用しなくても、被接合部材(フランジ)で発生した脆性亀裂の伝播を阻止することができるという結論を得た。
 また、上記と同様の対策を施すことにより、接合部材(ウェブ)から被接合部材(フランジ)に突入する脆性亀裂の伝播を、隅肉溶接部あるいは被接合部材(フランジ)の溶接部(突合せ溶接継手部)で阻止できることも知見した。
 さらに、被接合部材および/または接合部材の突合せ溶接継手部の溶接金属の靭性だけでなく、被接合部材および/または接合部材の突合せ溶接継手部の熱影響部の靭性やそれらを構成する鋼板の靭性を高めることが、脆性亀裂伝播停止特性の向上に有効であるという知見も得た。
 本発明は、かかる知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
1.板厚50mm以上の接合部材の端面を板厚50mm以上の被接合部材の表面に突合せ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長もしくは溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、
 前記接合部材および前記被接合部材をともに突合せ溶接継手部を有する部材とし、該接合部材および/または該被接合部材の突合せ溶接継手部の溶接金属が、シャルピー衝撃試験の破面遷移温度vTrs-W(℃)で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-W(J)で140J以上の靭性を有し、
 前記隅肉溶接継手における前記接合部材の前記突合せ溶接継手部の溶接部端面を、前記被接合部材の前記突合せ溶接継手部の溶接部表面に突合せ、該突合せた面に、前記隅肉溶接継手の突合せ溶接継手断面で該接合部材の板厚tの95%以上の未溶着部を有し、
 さらに前記隅肉溶接継手の隅肉溶接金属について、
 該隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と前記被接合部材の板厚tfとが下記(1)式の関係、および/または、
 該隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20(J)と前記被接合部材の板厚tfとが下記(2)式の関係を満足させる、
ことを特徴とする溶接構造体。
                記
vTrs ≦ -1.5tf+90                   ‥‥(1)
vE-20(J)≧ 5.75、(但し、50≦tf(mm)≦53)、
vE-20(J)≧ 2.75tf(mm)-140 、(但し、tf(mm)>53) ‥‥(2)
ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、
vE-20:試験温度:-20℃でのシャルピー衝撃試験吸収エネルギー(J)、
f:被接合部材の板厚(mm)
2.前記接合部材および/または前記被接合部材の突合せ溶接継手部の熱影響部が、シャルピー衝撃試験破面遷移温度vTrs-H(℃)で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-H(J)で140J以上の靭性を有することを特徴とする前記1に記載の溶接構造体。
3.前記接合部材および/または前記被接合部材を構成する鋼板が、シャルピー衝撃試験破面遷移温度vTrs-B(℃)で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-B(J)で140J以上の靭性を有することを特徴とする前記1または2に記載の溶接構造体。
4.前記接合部材および/または前記被接合部材の突合せ溶接部の溶接金属が、シャルピー衝撃試験破面遷移温度vTrs-W(℃)で-85℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-W(J)で160J以上の靭性を有することを特徴とする前記1に記載の溶接構造体。
5.前記接合部材および/または前記被接合部材の突合せ溶接継手部の熱影響部が、シャルピー衝撃試験破面遷移温度vTrs-H(℃)で-85℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-H(J)で160J以上の靭性を有する熱影響部であることを特徴とする前記4に記載の溶接構造体。
6.前記接合部材および/または前記被接合部材を構成する鋼板が、シャルピー衝撃試験破面遷移温度vTrs-B(℃)で-85℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-B(J)で160J以上の靭性を有する鋼板であることを特徴とする前記4または5に記載の溶接構造体。
 本発明によれば、従来困難であった板厚50mm以上の厚鋼板からなる被接合部材(フランジ)に発生した脆性亀裂の接合部材(ウェブ)への伝播を、大規模破壊に至る前に、停止(阻止)できる。これにより、鋼構造物、とくに、大型コンテナ船やバルクキャリアーなどの船体分離といった大規模な脆性破壊の危険性を回避でき、船体構造の安全性を確保するうえで大きな効果をもたらし、産業上格段の効果を奏する。また、本発明によれば、板厚50mm以上の厚鋼板からなる接合部材(ウェブ)に発生した脆性亀裂の被接合部材(フランジ)への伝播を、大規模破壊に至る前に、停止(阻止)できるという効果もある。
 また、施工時に、未溶着部の寸法、隅肉溶接金属の靭性、隅肉溶接部の溶接脚長もしくは溶接幅、さらには被接合部材および/または接合部材の突合せ溶接継手部の溶接金属、熱影響部、それらを構成する鋼板の低温靭性を調整することにより、脆性亀裂伝播停止靭性に優れた特殊な鋼板を使用することなく、また安全性を損ねることなしに、容易に、脆性亀裂伝播停止特性に優れた溶接構造体を製造できるという効果もある。
接合部材(ウェブ)1および被接合部材(フランジ)2がともに突合せ溶接継手部を有する隅肉溶接継手の構成を模式的に説明する説明図である。(a)は外観図、(b)は突合せ溶接継手部位置における隅肉溶接継手の断面構成を模式的に説明する断面図である。 隅肉溶接継手の断面構成の他の一例を模式的に示す説明図で、接合部材(ウェブ)1と被接合部材(フランジ)2が斜めに交差している場合である。 実施例で使用した、超大型構造モデル試験体の形状を模式的に示す説明図である。(a)は被接合部材(フランジ)2から接合部材(ウェブ)1へと脆性亀裂が伝播する場合、(b)は接合部材(ウェブ)1から被接合部材(フランジ)2へと脆性亀裂が伝播する場合である。 被接合部材(フランジ)2から接合部材(ウェブ)1へと伝播する場合の脆性亀裂の伝播停止に及ぼす隅肉溶接金属の靭性とフランジ板厚との関係の影響を示すグラフである。
 本発明になる溶接構造体は、ともに突合せ溶接継手部を有する、板厚50mm以上の接合部材(ウェブ)と板厚50mm以上の被接合部材(フランジ)とを、接合部材の突合せ溶接継手部の溶接部端面を被接合部材の突合せ溶接継手部の溶接部表面に突合せ、隅肉溶接により接合してなる溶接構造体である。本発明になる溶接構造体の一例の外観を図1(a)に示す。この溶接構造体は、溶接脚長3または溶着幅13の少なくとも一方が16mm以下の隅肉溶接金属5を有する隅肉溶接継手を備える。また、該隅肉溶接継手の接合部材(ウェブ)1と被接合部材(フランジ)2との突合わせ面には、構造不連続部となる、未溶着部4を存在させる。
 この状態を突合せ溶接継手部位置における隅肉継手断面で図1(b)に示す。なお、図1(b)は、接合部材(ウェブ)1を被接合部材(フランジ)2に対して直立して取り付けた場合を示すが、本発明ではこれに限定されることはない。例えば、図2に示すように、接合部材(ウェブ)1を被接合部材(フランジ)2に対して角度θだけ傾けて取り付けてもよい。この場合、未溶着部の比率Y(%)を求める際に使用する接合部材(ウェブ)板厚tは、接合部材(ウェブ)と被接合部材(フランジ)との交差部の長さ、(t)/cos(90°-θ)、を使用するものとする。
 本発明になる溶接構造体は、上記したように、隅肉溶接継手における接合部材(ウェブ)1と被接合部材(フランジ)2との突合わせ面で、構造が不連続となる、未溶着部4を有する。隅肉溶接継手において、脆性亀裂が被接合部材(フランジ)2から接合部材(ウェブ)1へと伝播する場合、接合部材(ウェブ)1と被接合部材(フランジ)2との突合わせ面は、脆性亀裂の伝播面となるので、本発明では、突合せ面に未溶着部4を存在させる。未溶着部4が存在することにより、被接合部材(フランジ)2を伝播してきた脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)が低下し、突合せ面において、脆性亀裂は停止しやすくなる。
 なお、たとえ、接合部材(ウェブ)1側に脆性亀裂が伝播しようとしても、本発明では、所定以上の靭性を保持する隅肉溶接部(隅肉溶接金属5)を形成するため、脆性亀裂は、隅肉溶接部(隅肉溶接金属5)で停止しやすくなる。
 なお、脆性亀裂は、欠陥の少ない鋼板母材部で発生することは極めて稀である。過去の脆性破壊事故の多くは、溶接部で発生している。そのため、接合部材(ウェブ)1および被接合部材(フランジ)2がともに、突合せ溶接継手12、11を有し、被接合部材(フランジ)2の突合せ溶接継手部11と接合部材(ウェブ)1の突合せ溶接継手部12とが直交する図1(a)に示すような隅肉溶接継手では、突合せ溶接継手部11から発生した脆性亀裂が接合部材(ウェブ)1へ伝播するのを阻止するためには、あるいは突合せ溶接継手部12から発生した脆性亀裂が被接合部材(フランジ)2へ伝播するのを阻止するためには、まず、構造の不連続を存在させることが重要となる。そのため、本発明では隅肉溶接部における接合部材1と被接合部材2との突合せ面に未溶着部4を存在させる。
 図1(b)に示すように、被接合部材(フランジ)2の突合せ溶接継手部11と接合部材(ウェブ)1の突合せ溶接継手部12とが直交する隅肉溶接継手では、突合せ溶接継手部11の溶接部表面と突合せ溶接継手部12の溶接部端面との突合せ面に未溶着部4が存在する。
 なお、隅肉溶接継手の製造方法はとくに限定する必要はなく、通常、用いられる製造方法がいずれも適用できる。例えば、フランジ用厚鋼板同士、ウェブ用厚鋼板同士をそれぞれ突合せ溶接し、得られた突合せ溶接継手を隅肉溶接して、製造できる。
 本発明では、突合せ溶接継手部位置での、隅肉溶接継手断面における未溶着部4の寸法(幅B)は、脆性亀裂の伝播抑制のため、ウェブ板厚tの95%以上とする。これにより、隅肉溶接金属が塑性変形しやすくなり、隅肉溶接金属に突入した脆性亀裂の亀裂先端近傍の応力緩和が生じ、接合部材(ウェブ)1側への脆性亀裂の伝播を抑制できる。このため、未溶着部4の寸法(幅B)は、接合部材(ウェブ)板厚tの95%以上に限定した。なお、好ましくは96%以上100%以下である。
 また、隅肉溶接継手の溶接脚長3もしくは溶着幅13の少なくとも一方は16mm以下とする。これにより、隅肉溶接金属の塑性変形を通じて、隅肉溶接金属に伝播した脆性亀裂の亀裂先端近傍の応力が緩和され、脆性亀裂の伝播が抑制される。このため、隅肉溶接継手の溶接脚長もしくは溶着幅は、高靭性の隅肉溶接金属が変形しやすい、16mm以下に限定した。好ましくは15mm以下である。溶接継手構造の剛性の観点から、溶接脚長3および溶着幅13はそれぞれ4mm以上とすることが好ましい。
 なお、被接合部材(フランジ)2や接合部材(ウェブ)1の板厚が80mmを超える場合には、強度確保のために、隅肉溶接金属部の低温靭性を高めたうえで、溶接脚長を広げることが好ましい。
 そして、本発明では、隅肉溶接継手における隅肉溶接金属は、被接合部材(フランジ)2の板厚tfと関連して、次(1)式および/または次(2)式を満足する靭性を確保できるように調整する。
  vTrs ≦ -1.5tf+90 ‥‥(1)
  vE-20 ≧ 5.75 (但し、50≦tf(mm)≦53)、
  vE-20 ≧ 2.75tf(mm)-140 (但し、tf(mm)>53)‥‥(2)
(ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、vE-20:試験温度:-20℃でのシャルピー衝撃試験吸収エネルギー(J)、tf:被接合部材(フランジ)の板厚(mm))
 隅肉溶接金属の靭性が、被接合部材(フランジ)の板厚tfと関連して、上記した(1)式および/または(2)式を満足することにより、図4に示すように、被接合部材(フランジ)の板厚が50mm以上である溶接構造体を、所望の脆性亀裂伝播阻止特性を確保した溶接構造体とすることができる。隅肉溶接金属の靭性が、上記した(1)式および(2)式のいずれも満足しない場合には、隅肉溶接金属の靭性が不足して、被接合部材(フランジ)で発生し伝播してきた脆性亀裂を、隅肉溶接金属部で伝播阻止させることができない。
 さらに、本発明では、被接合部材2および/または接合部材1の突合せ溶接継手部で、突合せ溶接継手部の溶接金属が、シャルピー衝撃試験の破面遷移温度vTrs-W(℃)で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-W(J)で140J以上という靭性を有するように、溶接材料、溶接条件を調整して溶接金属を形成することを必要とする。
 接合部材1の突合せ溶接継手部の溶接金属が、vTrs-W(℃)で-65℃超えで、かつvE-20-W(J)で140J未満では、被接合部材(フランジ)溶接部から伝播してきた脆性亀裂を隅肉溶接部あるいは接合部材(ウェブ)溶接部で阻止することができない。あるいは、被接合部材2の突合せ溶接継手部の溶接金属が、vTrs-W(℃)で-65℃超えで、かつvE-20-W(J)で140J未満では、接合部材の溶接部から伝播してきた脆性亀裂を隅肉溶接部あるいは被接合部材(フランジ)溶接部で阻止することができない。
 なお、接合部材および/または被接合部材の突合せ溶接部の溶接金属は、シャルピー衝撃試験破面遷移温度vTrs-W(℃)で-85℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-W(J)で160J以上の靭性を有する溶接金属とすることがより好ましい。
 また、本発明では、被接合部材2および/または接合部材1の突合せ溶接継手部の溶接金属が、上記した靭性を有し、さらに、熱影響部が、シャルピー衝撃試験破面遷移温度vTrs-H(℃)で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-H(J)で140J以上の靭性を有することが好ましい。さらに加えて、被接合部材2および/または接合部材1を構成する鋼板が、シャルピー衝撃試験破面遷移温度vTrs-B(℃)で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-B(J)で140J以上の靭性を有することが好ましい。これらの高靭性化により、より容易に、被接合部材(フランジ)溶接部から伝播してきた脆性亀裂、または接合部材(ウェブ)溶接部から伝播してきた脆性亀裂を、隅肉溶接部あるいは接合部材(ウェブ)の溶接部または被接合部材(フランジ)の溶接部で阻止することができるようになる。
 なお、接合部材および/または被接合部材の突合せ溶接継手部の熱影響部は、vTrs-H(℃)で-85℃以下、および/または、vE-20-H(J)で160J以上の靭性を有する熱影響部とすることがより好ましい。また、被接合部材および/または接合部材を構成する鋼板は、vTrs-B(℃)で-85℃以下、および/または、vE-20-B(J)で160J以上の靭性を有することがより好ましい。
 本発明になる溶接構造体は、上記した隅肉溶接継手と、上記した突合せ溶接継手とを備えるものであり、例えば、船舶の船体外板をフランジとし、隔壁をウェブとする船体構造、あるいはデッキをフランジとし、ハッチをウェブとする船体構造などに適用可能である。
 以下、実施例に基づき、本発明を詳細に説明する。
 表1および2に示す板厚と、低温靭性とを有する厚鋼板を、表1および2に示す溶接方法を用い、表1および2に示す溶接入熱で、突合せ溶接継手を作製し、それぞれ被接合部材2、接合部材1とした。なお、突合せ溶接は、表1および2に示す溶接入熱の、1パス大入熱エレクトロガスアーク溶接(SEGARCおよび2電極SEGARC)または多層CO2溶接とし、溶接材料を変化させて行った。
 得られた接合部材および被接合部材の突合せ溶接継手部から、試験片表面が表層下1mmまたは2mmで、試験片長手方向が溶接線と直角をなし、ノッチが溶接線と直角をなす向きとなるように、溶接金属中央部、熱影響部(BOND部)から、Vノッチシャルピー衝撃試験片(10mm厚)を採取した。シャルピー衝撃試験は、JIS Z 2242の規定に準拠して行い、破面遷移温度vTrs(℃)、および試験温度:-20℃でのシャルピー衝撃吸収エネルギーvE-20(J)を求めた。なお、接合部材および被接合部材を構成する鋼板の母材部についても同様に、vE-20(J)、破面遷移温度vTrs(℃)を求めた。
 得られた鋼板母材の低温靭性および突合せ溶接継手部の低温靭性を纏めて表1および2に示す。
 ついで、接合部材(ウェブ)1の突合せ溶接継手部12の溶接部端面を、被接合部材(フランジ)2の突合せ溶接継手部11の溶接部表面に突合せたのち、接合部材1と被接合部材2とを隅肉溶接し、図3(a)、(b)に示す形状の実構造サイズの大型隅肉溶接継手を作製した。隅肉溶接は、表3および4に示す種々の溶接金属靭性、種々の溶接脚長もしくは溶着幅を有する隅肉溶接継手となるように、溶接材料および溶接入熱、シールドガス等の溶接条件を変化させて行った。
 なお、作製した大型隅肉溶接継手では、接合部材1と被接合部材2とを突合せた面に、図1(b)あるいは図2に示すような未溶着部4を、表3および4に示すように未溶着部の比率Y(=(隅肉溶接した突合せ溶接継手断面の未溶着部の幅B/接合部材(ウェブ)板厚t×100)を変化させて存在させた。
 また、得られた大型隅肉溶接継手の隅肉溶接金属から、または隅肉溶接と同じ条件で作製した突合せ溶接継手から、Vノッチシャルピー衝撃試験片(10mm厚)を採取し、JIS Z 2242の規定に準拠して、試験温度:-20℃での吸収エネルギーvE-20(J)、破面遷移温度vTrs(℃)を求めた。得られた隅肉溶接金属5の低温靭性を表3および4に示す。
 ついで、得られた大型隅肉溶接継手を用いて、図3に示す超大型構造モデル試験体を作製し、脆性亀裂伝播停止試験を実施した。
 図3(a)に示す超大型構造モデル試験体は、被接合部材(フランジ)2の突合せ溶接継手部11と接合部材(ウェブ)1の突合せ溶接継手部12とを直交させ、被接合部材(フランジ)2から接合部材(ウェブ)1へと脆性亀裂を伝播させる場合であり、機械ノッチ7の先端が突合せ溶接継手部11のBOND部となるように加工した。
 図3(b)に示す超大型構造モデル試験体は、接合部材(ウェブ)1の突合せ溶接継手部12と被接合部材(フランジ)2の突合せ溶接継手部11とを直交させ、接合部材(ウェブ)1から被接合部材(フランジ)2へと脆性亀裂を伝播させる場合であり、機械ノッチ7の先端が突合せ溶接継手部12のBOND部となるように加工した。
 なお、図3(a)に示す超大型構造モデル試験体は、大型隅肉溶接継手9の被接合部材(フランジ)2の下方に仮付け溶接8で、被接合部材(フランジ)2と同じ板厚の鋼板を溶接した。また、図3(b)に示す超大型構造モデル試験体は、大型隅肉溶接継手9の被接合部材(フランジ)2の下方に接合部材(ウェブ)1と同一板厚の補助板6を部分開先溶接10で溶接し、さらに、補助板6の下方に仮付け溶接8で、接合部材(ウェブ)1と同じ板厚の鋼板を溶接した。
 脆性亀裂伝播停止試験は、機械ノッチ7に打撃を与え脆性亀裂を発生させ、伝播した脆性亀裂が、隅肉溶接部あるいは接合部材の溶接部(熱影響部を含む)(図3(a))あるいは被接合部材の溶接部(熱影響部を含む)(図3(b))で停止するか否かを調査した。
 いずれの試験も、応力100~283N/mm、温度:-10℃の条件で実施した。応力100N/mmは、船体に定常的に作用する応力の平均的な値である。また、応力257N/mmは、船体に適用されている降伏強度390N/mm級鋼板の最大許容応力相当の値である。さらに、応力283N/mmは、船体に適用されている降伏強度460N/mm級鋼板の最大許容応力相当の値である。温度:-10℃は船舶の設計温度である。
 得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 被接合部材(フランジ)から接合部材(ウェブ)へと脆性亀裂が伝播する場合、本発明例はいずれも、脆性亀裂が、隅肉溶接部の隅肉溶接金属あるいは接合部材(ウェブ)溶接部で停止した。また、接合部材(ウェブ)から被接合部材(フランジ)へと脆性亀裂が伝播する場合、本発明例はいずれも、脆性亀裂が、隅肉溶接部の隅肉溶接金属あるいは被接合部材(フランジ)溶接部で停止した。
 一方、溶接脚長、溶着幅の両方が本発明の範囲を外れる比較例(試験体No.19~No.21)は、脆性亀裂が隅肉溶接部や、接合部材の溶接部あるいは被接合部材の溶接部で停止することなく、接合部材あるいは被接合部材へと伝播し、脆性亀裂の伝播を阻止(停止)することができなかった。
 また、未溶着部比率Yが本発明の範囲を外れる比較例(試験体No.22~No.24、No.27)は、被接合部材で発生した脆性亀裂が接合部材へと伝播し、脆性亀裂の伝播を阻止(停止)することができなかった。
 さらに、脆性亀裂の伝播停止の役目を担う接合部材および被接合部材の突合せ溶接継手部の溶接金属の低温靱性が本発明の範囲を外れる比較例(試験体No.26、No.28)は、脆性亀裂が被接合部材から接合部材へと伝播し、脆性亀裂の伝播を阻止(停止)することができなかった。
 加えて、隅肉溶接金属の低温靱性が本発明の範囲を外れる比較例(試験体No.25,No.29,No.30,No.32,No.33)は、脆性亀裂が、被接合部材から接合部材へと、あるいは接合部材から被接合部材へと伝播し、脆性亀裂の伝播を阻止(停止)することができなかった。
 また、未溶着部比率Yおよび隅肉溶接部の低温靱性がともに、本発明の範囲を外れる比較例(試験体No.31)は、被接合部材で発生した脆性亀裂が接合部材へと伝播し、脆性亀裂の伝播を阻止(停止)することができなかった。
1  接合部材(ウェブ)
2  被接合部材(フランジ)
3  溶接脚長
4  未溶着部
5  隅肉溶接金属
6  補助板
7  機械ノッチ
8  仮付け溶接
9  大型隅肉溶接継手
10  部分開先溶接
11  被接合部材(フランジ)の突合せ溶接継手部
12  接合部材(ウェブ)の突合せ溶接継手部
13  溶着幅
θ  交差角

Claims (6)

  1.  板厚50mm以上の接合部材の端面を板厚50mm以上の被接合部材の表面に突合せ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長もしくは溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、
     前記接合部材および前記被接合部材をともに突合せ溶接継手部を有する部材とし、該接合部材および/または該被接合部材の突合せ溶接継手部の溶接金属が、シャルピー衝撃試験の破面遷移温度vTrs-W(℃)で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-W(J)で140J以上の靭性を有し、
     前記隅肉溶接継手における前記接合部材の前記突合せ溶接継手部の溶接部端面を、前記被接合部材の前記突合せ溶接継手部の溶接部表面に突合せ、該突合せた面に、前記隅肉溶接継手の突合せ溶接継手断面で該接合部材の板厚tの95%以上の未溶着部を有し、
     さらに前記隅肉溶接継手の隅肉溶接金属について、
     該隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と前記被接合部材の板厚tfとが下記(1)式の関係、および/または、
     該隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20(J)と前記被接合部材の板厚tfとが下記(2)式の関係を満足させる、
    ことを特徴とする溶接構造体。
                    記
    vTrs ≦ -1.5tf+90             ‥‥(1)
    vE-20(J)≧ 5.75、(但し、50≦tf(mm)≦53)、
    vE-20(J)≧ 2.75tf(mm)-140 、(但し、tf(mm)>53) ‥‥(2)
    ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、
    vE-20:試験温度:-20℃でのシャルピー衝撃試験吸収エネルギー(J)、
    f:被接合部材の板厚(mm)
  2.  前記接合部材および/または前記被接合部材の突合せ溶接継手部の熱影響部が、シャルピー衝撃試験破面遷移温度vTrs-H(℃)で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-H(J)で140J以上の靭性を有することを特徴とする請求項1に記載の溶接構造体。
  3.  前記接合部材および/または前記被接合部材を構成する鋼板が、シャルピー衝撃試験破面遷移温度vTrs-B(℃)で-65℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-B(J)で140J以上の靭性を有することを特徴とする請求項1または2に記載の溶接構造体。
  4.  前記接合部材および/または前記被接合部材の突合せ溶接部の溶接金属が、シャルピー衝撃試験破面遷移温度vTrs-W(℃)で-85℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-W(J)で160J以上の靭性を有することを特徴とする請求項1に記載の溶接構造体。
  5.  前記接合部材および/または前記被接合部材の突合せ溶接継手部の熱影響部が、シャルピー衝撃試験破面遷移温度vTrs-H(℃)で-85℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-H(J)で160J以上の靭性を有する熱影響部であることを特徴とする請求項4に記載の溶接構造体。
  6.  前記接合部材および/または前記被接合部材を構成する鋼板が、シャルピー衝撃試験破面遷移温度vTrs-B(℃)で-85℃以下、および/または、-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20-B(J)で160J以上の靭性を有する鋼板であることを特徴とする請求項4または5に記載の溶接構造体。
     
PCT/JP2013/002981 2012-05-10 2013-05-09 溶接構造体 WO2013168429A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013534520A JP5408396B1 (ja) 2012-05-10 2013-05-09 溶接構造体
KR1020147028735A KR101504242B1 (ko) 2012-05-10 2013-05-09 용접 구조체
CN201380023607.5A CN104271301B (zh) 2012-05-10 2013-05-09 焊接构造体
BR112014025358-7A BR112014025358B1 (pt) 2012-05-10 2013-05-09 estrutura soldada
PH12014501936A PH12014501936A1 (en) 2012-05-10 2014-08-28 Welded structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012108136 2012-05-10
JP2012-108136 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013168429A1 true WO2013168429A1 (ja) 2013-11-14

Family

ID=49550492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002981 WO2013168429A1 (ja) 2012-05-10 2013-05-09 溶接構造体

Country Status (6)

Country Link
JP (1) JP5408396B1 (ja)
KR (1) KR101504242B1 (ja)
CN (1) CN104271301B (ja)
BR (1) BR112014025358B1 (ja)
PH (1) PH12014501936A1 (ja)
WO (1) WO2013168429A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014205A (zh) * 2015-07-17 2015-11-04 江西洪都航空工业集团有限责任公司 拐角对接tig焊接方法
WO2023007860A1 (ja) * 2021-07-26 2023-02-02 日本製鉄株式会社 溶接構造体、ならびにその設計方法および施工方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101622676B1 (ko) * 2014-04-17 2016-05-20 대우조선해양 주식회사 수평 맞대기 이음 대용착 용접 장치 및 방법
WO2016143354A1 (ja) * 2015-03-12 2016-09-15 Jfeスチール株式会社 溶接構造体
KR102090914B1 (ko) * 2016-06-16 2020-03-18 제이에프이 스틸 가부시키가이샤 취성 균열 전파 정지 특성이 우수한 용접 구조체
WO2017217516A1 (ja) * 2016-06-16 2017-12-21 Jfeスチール株式会社 脆性亀裂伝播停止特性に優れる溶接構造体
CN111032266B (zh) * 2018-05-18 2020-11-24 日本制铁株式会社 焊接构造体
CN111315650B (zh) * 2018-12-26 2021-04-23 日本制铁株式会社 焊接构造体
WO2022265011A1 (ja) 2021-06-15 2022-12-22 Jfeスチール株式会社 溶接構造体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111501A (ja) * 2003-10-06 2005-04-28 Nippon Steel Corp 耐脆性破壊伝播特性に優れた溶接構造体
JP2005329461A (ja) * 2004-04-21 2005-12-02 Nippon Steel Corp 脆性き裂伝播停止特性に優れた溶接鋼構造物およびその製造方法
JP2007326147A (ja) * 2006-05-12 2007-12-20 Jfe Steel Kk 脆性亀裂伝播停止特性に優れる溶接構造体
JP2008023594A (ja) * 2006-06-23 2008-02-07 Ihi Marine United Inc 溶接構造体
JP2008156750A (ja) * 2006-11-30 2008-07-10 Jfe Steel Kk 板厚方向の脆性亀裂伝播停止特性に優れる板厚50mm以上の鋼板およびその製造方法
JP2008212992A (ja) * 2007-03-05 2008-09-18 Kobe Steel Ltd 耐脆性破壊亀裂伝播停止特性に優れたt型溶接継手構造
JP2009061482A (ja) * 2007-09-07 2009-03-26 Ihi Marine United Inc 溶接構造体
JP2011056571A (ja) * 2009-09-14 2011-03-24 Nippon Steel Corp 脆性き裂停止後の破壊発生防止特性に優れた溶接構造体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111501A (ja) * 2003-10-06 2005-04-28 Nippon Steel Corp 耐脆性破壊伝播特性に優れた溶接構造体
JP2005329461A (ja) * 2004-04-21 2005-12-02 Nippon Steel Corp 脆性き裂伝播停止特性に優れた溶接鋼構造物およびその製造方法
JP2007326147A (ja) * 2006-05-12 2007-12-20 Jfe Steel Kk 脆性亀裂伝播停止特性に優れる溶接構造体
JP2008023594A (ja) * 2006-06-23 2008-02-07 Ihi Marine United Inc 溶接構造体
JP2008156750A (ja) * 2006-11-30 2008-07-10 Jfe Steel Kk 板厚方向の脆性亀裂伝播停止特性に優れる板厚50mm以上の鋼板およびその製造方法
JP2008212992A (ja) * 2007-03-05 2008-09-18 Kobe Steel Ltd 耐脆性破壊亀裂伝播停止特性に優れたt型溶接継手構造
JP2009061482A (ja) * 2007-09-07 2009-03-26 Ihi Marine United Inc 溶接構造体
JP2011056571A (ja) * 2009-09-14 2011-03-24 Nippon Steel Corp 脆性き裂停止後の破壊発生防止特性に優れた溶接構造体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014205A (zh) * 2015-07-17 2015-11-04 江西洪都航空工业集团有限责任公司 拐角对接tig焊接方法
WO2023007860A1 (ja) * 2021-07-26 2023-02-02 日本製鉄株式会社 溶接構造体、ならびにその設計方法および施工方法
JP7299554B1 (ja) * 2021-07-26 2023-06-28 日本製鉄株式会社 溶接構造体、ならびにその設計方法および施工方法

Also Published As

Publication number Publication date
PH12014501936B1 (en) 2014-11-24
CN104271301A (zh) 2015-01-07
KR20140126778A (ko) 2014-10-31
CN104271301B (zh) 2015-10-14
PH12014501936A1 (en) 2014-11-24
JPWO2013168429A1 (ja) 2016-01-07
BR112014025358B1 (pt) 2019-01-15
JP5408396B1 (ja) 2014-02-05
KR101504242B1 (ko) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5408396B1 (ja) 溶接構造体
JP5144053B2 (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
JP6744274B2 (ja) 溶接構造体
JP5395985B2 (ja) 溶接構造体
JP5365761B2 (ja) 溶接構造体
JP6615215B2 (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
JP6720106B2 (ja) 溶接構造体
JP7293515B2 (ja) 溶接構造体
JP6251463B1 (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
WO2022265011A1 (ja) 溶接構造体
JP2022083554A (ja) 溶接構造体の脆性亀裂伝播停止性能の評価方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013534520

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788224

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12014501936

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20147028735

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014025358

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13788224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014025358

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141010