WO2016143354A1 - 溶接構造体 - Google Patents

溶接構造体 Download PDF

Info

Publication number
WO2016143354A1
WO2016143354A1 PCT/JP2016/001359 JP2016001359W WO2016143354A1 WO 2016143354 A1 WO2016143354 A1 WO 2016143354A1 JP 2016001359 W JP2016001359 W JP 2016001359W WO 2016143354 A1 WO2016143354 A1 WO 2016143354A1
Authority
WO
WIPO (PCT)
Prior art keywords
fillet
joined
weld
welded
joining member
Prior art date
Application number
PCT/JP2016/001359
Other languages
English (en)
French (fr)
Inventor
恒久 半田
聡 伊木
大井 健次
昌信 豊田
昇 木治
盛太 渡辺
Original Assignee
Jfeスチール株式会社
ジャパンマリンユナイテッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, ジャパンマリンユナイテッド株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016546103A priority Critical patent/JP6509235B2/ja
Priority to KR1020177027629A priority patent/KR102001923B1/ko
Priority to CN201680014644.3A priority patent/CN107405713B/zh
Publication of WO2016143354A1 publication Critical patent/WO2016143354A1/ja
Priority to PH12017550088A priority patent/PH12017550088B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • B63B73/43Welding, e.g. laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups

Definitions

  • the present invention relates to a welded steel structure (welded structure) welded using a thick steel plate such as a large container ship or a bulk carrier.
  • the present invention is a welded structure excellent in brittle crack propagation stopping characteristics that can stop the propagation of brittle cracks generated from the base metal or welded joint of a thick steel plate before reaching the large-scale fracture of the structure.
  • Container ships and bulk carriers have a structure with a large opening at the top of the ship, for example, unlike tankers, in order to improve loading capacity and cargo handling efficiency. Therefore, in container ships and bulk carriers, it is necessary to increase the strength or thickness of the hull skin, in particular.
  • TEU wenty feet Equivalent Unit
  • Non-Patent Document 1 reports the results of an experimental study on the brittle crack propagation behavior of a weld in a steel plate for shipbuilding with a thickness of less than 50 mm.
  • Non-Patent Document 1 experimentally investigates the propagation path and propagation behavior of brittle cracks that are forcibly generated in welds.
  • brittle cracks often deviate from the weld to the base metal due to the effect of residual welding stress.
  • a plurality of examples in which a brittle crack propagated along the line have been confirmed. This suggests that it cannot be said that there is no possibility that brittle fracture propagates straight along the weld.
  • Non-Patent Document 2 a thick steel plate having special brittle crack propagation stop characteristics is required in order to stop the propagation of the generated brittle cracks.
  • Patent Document 1 in a welded structure that is preferably a hull outer plate having a thickness of 50 mm or more, an aggregate is arranged so as to intersect the butt weld, and fillet welding is performed. A joined welded structure is described.
  • the aggregate has a mean circular equivalent particle diameter of 0.5 to 5 ⁇ m over a thickness of 3 mm or more in the surface layer portion and the back layer portion, and is a surface parallel to the plate thickness surface (100).
  • a steel sheet having a microstructure with an X-ray plane intensity ratio of crystal planes of 1.5 or more is used.
  • Patent Document 2 includes a fillet welded joint obtained by fillet welding a joining member (hereinafter also referred to as a web) to a member to be joined (hereinafter also referred to as a flange), and has excellent brittle crack propagation stop characteristics.
  • a welded structure is described.
  • an unwelded portion is left on the butt surface of the web in the fillet welded joint cross section with the flange, the width of the unwelded portion, and the left and right leg lengths of the fillet welded portion.
  • the width of the unwelded portion is adjusted so that the ratio X of the web thickness and the web thickness X satisfies the special relational expression with the brittle crack propagation stopping performance Kca of the member to be joined (flange).
  • the member to be joined (flange) is made of a thick material with a plate thickness of 50 mm or more, the propagation of brittle cracks occurring in the joining member (web) is stopped at the butt surface of the fillet weld at the web and flange. The propagation of brittle cracks to the member to be joined (flange) can be prevented.
  • At least one of the weld leg length or welding width formed by abutting the end face of the joining member against the surface of the joined member having a plate thickness of 50 mm or more and joining the joined member and the joined member by fillet welding is 16 mm or less
  • the Charpy impact test fracture surface transition temperature vTrs of the fillet weld metal in the fillet welded joint is related to the plate thickness tf of the joined member, vTrs ⁇ ⁇ 1.5 tf + 70 and / or the Charpy impact test temperature of fillet weld metal: the absorbed energy vE ⁇ 20 (J)
  • Patent Document 4 discloses that ⁇ At least one of the weld leg length or welding width formed by abutting the end face of the joining member against the surface of the joined member having a plate thickness of 50 mm or more and joining the joined member and the joined member by fillet welding is 16 mm or less
  • a welded structure having a fillet welded joint, and a thickness of the joint member in a cross section of the fillet welded joint on a surface where the end face of the joined member and the surface of the joined member in the fillet welded joint face each other
  • the Charpy impact test fracture surface transition temperature vTrs of the fillet weld metal in the fillet welded joint is related to the plate thickness tf of the joined member, vTrs ⁇ ⁇ 1.5 tf + 90 and / or Charpy impact test temperature of fillet weld metal: absorbed energy vE ⁇ 20 (J) at ⁇ 20 ° C.
  • vE ⁇ 2 Welded structure comprising fillet weld metal satisfying 0 ⁇ 2.75tf-140, and additionally joining member made of steel plate with brittle crack propagation stop toughness Kca of 2500 N / mm 2/3 or more at service temperature body" Is described.
  • produced in the to-be-joined member can stop at the fillet weld part or the base material of a joining member.
  • Patent Document 5 discloses that ⁇ At least one of the weld leg length or welding width formed by abutting the end face of the joining member against the surface of the joined member having a plate thickness of 50 mm or more and joining the joined member and the joined member by fillet welding is 16 mm or less
  • VE- 20 has toughness of 140J or more, and the welded end face of the butt welded joint of the fillet welded joint is butted against the welded surface of the butt welded joint of the joined member Surface has an unwelded portion of 95% or more of the plate thickness tw of the joining member in the cross section of the butt weld joint of the fillet welded joint, and also the Charpy impact test fracture surface transition temperature of the fillet welded metal in the fillet welded joint vTrs is the plate of the member to be joined in relation to tf, the vTrs ⁇ -1.5tf + 90, and / or a test temperature of Charpy impact test of the fillet weld metal: absorbed energy vE -20 at -20 ° C.
  • (J) is the plate thickness of the workpieces tf
  • a welded structure having fillet weld metal satisfying vE ⁇ 20 ⁇ 5.75, and tf> 53, vE ⁇ 20 ⁇ 2.75tf ⁇ 140. body" Is described.
  • produced in the to-be-joined member can stop at the fillet weld part or the base material of a joining member.
  • brittle cracks generated from the welded part of the joined member or brittle cracks generated from the welded part of the joined member can be used as a fillet welded part, a welded part of the joined member, or a joined member. It is said that propagation can be prevented at the welded part.
  • Japanese Patent Laid-Open No. 2004-232052 JP 2007-326147 A Japanese Patent No.5395985 Japanese Patent No.53657661 Japanese Patent No. 5408396
  • Japan Shipbuilding Research Association No.147 Research Group “Study on Brittle Fracture Strength Evaluation of High-Temperature Heat-Injection Joints for High-Strength Steel Hulls”, No. 87 (February 1978), p.35-53, Japan Shipbuilding Research Association Yuya Yamaguchi et al .: “Development of ultra-large container ship-Practical use of new high-strength extra-thick steel plate", Journal of Japan Society of Marine Science and Technology, No. 3 (2005), p.70-76, November 2005
  • the joining member (web) The plate thickness applicable to the member to be joined (flange) was 80 mm at the maximum. In addition, even when the plate thickness of the joining member (web) and the joined member (flange) is less than 80 mm, it is desirable to ensure the strength of the fillet weld in consideration of the variation in the weld leg length in the work.
  • the present invention solves such a problem of the prior art, and even if the weld leg length and the welding width exceed 16 mm, the propagation of brittle cracks generated in the joined member (flange) to the joined member (web) is destroyed on a large scale. It aims at providing the welded structure excellent in the brittle crack propagation stop property which can stop (prevent) before reaching.
  • the welded structure which this invention makes object the welding provided with the fillet weld joint formed by abutting the end surface of a joining member (web) with the surface of a to-be-joined member (flange), and joining these by fillet welding. It is a structure.
  • the present inventors diligently studied various factors affecting the brittle crack propagation stop characteristics of a welded structure having a fillet welded joint having a weld leg length (and a welding width) exceeding 16 mm.
  • the joined member (flange) and joined member (web) are butted together.
  • the brittle crack propagation portion is made of a member having a brittle crack propagation stopping characteristic Kca having a predetermined value or more, and having an excellent brittle crack propagation stopping property.
  • an unwelded portion that is, a discontinuous portion is secured on the surface where the surface of the member to be joined, the joining member, and the end face are abutted, and further, the toughness of the fillet weld metal is reduced by the length of the weld leg ( mm), welding width (mm), and plate thickness tf (mm) of the member to be welded, properly controlled for the first time, with a thickness exceeding 80 mm that was difficult with conventional technology It has been found that propagation of brittle cracks generated in the member to the joining member can be prevented (stopped) by fillet weld metal.
  • the setting of the unwelded part as described above and the toughness of the fillet weld metal are appropriate in relation to the weld leg length (mm), the weld width (mm), and the plate thickness tf (mm) of the joined members.
  • the brittle crack generated in the joined member (flange) can be applied to the joining member (web) without specially considering the brittle crack propagation stop characteristic. It has been found that propagation can be prevented.
  • the above-described configuration similarly results in a joint member having a brittle crack generated in the member to be joined. It has been found that the propagation of metal can be prevented by fillet weld metal.
  • Yield strength of 355 to 390 N / mm grade 2 steel plates having various thicknesses, and various unwelded portion ratios Y (%) ( (width B of unwelded portion in fillet welded joint cross section) / (joining member) Large fillet welded joints having unwelded portions with a thickness of tw) ⁇ 100), various low temperature toughnesses and weld leg lengths were produced. The weld leg length and weld width were both adjusted to exceed 16 mm.
  • a steel plate having a butt-welded joint part thickness of 50 mm or more was used as a member to be joined (flange). Further, as a joining member (web), ordinary shipbuilding class D to E steels that do not consider brittle crack propagation stopping toughness Kca were used.
  • the butt weld joint was produced by one-pass high heat input electrogas arc welding (SEGARC or two-electrode SEGARC) or multi-layer carbon dioxide arc welding (multi-layer CO 2 ).
  • an ultra-large structural model test body shown in FIG. 4B was prepared, and a brittle crack propagation stop test was performed.
  • the ultra-large-sized structural model test body welded the steel plate of the same board thickness as the flange 2 by the tack welding 8 under the to-be-joined member (flange) 2 of the large-scale fillet welded joint 9.
  • the butt weld joint 11 of the member to be joined (flange) 2 is produced so as to be orthogonal to the joint member (web) 1, and the tip of the mechanical notch 7 is produced.
  • brittle crack propagation stop test In the brittle crack propagation stop test, a mechanical notch was hit to generate a brittle crack, and it was investigated whether the propagated brittle crack stopped at the fillet weld. All tests were performed under the conditions of a stress of 243 to 257 N / mm 2 and a temperature of ⁇ 10 ° C.
  • the stress: 243 to 257 N / mm 2 is a value corresponding to the maximum allowable stress of the yield strength 355 to 390 N / mm grade 2 steel plate applied to the hull.
  • Temperature: -10 ° C is the design temperature of the ship.
  • FIG. 5 shows the Charpy impact test fracture surface transition temperature of fillet weld metal when the unwelded portion ratio Y is 95% or more and L, which is the smaller value of the weld leg length and weld width, is 17 mm.
  • L which is the smaller value of the weld leg length and weld width
  • the unwelded portion ratio Y is 95% or more, and the toughness of the fillet weld, that is, the Charpy impact test fracture surface transition temperature vTrs (° C.) of the fillet weld metal,
  • the load stress is 243 to 257 N / mm 2
  • brittle cracks occurring in the joined member (flange) can be stopped at the fillet weld metal part, and the propagation of the brittle cracks to the joining member (web) can be prevented.
  • the unwelded portion ratio Y is a ratio defined by (B / tw) ⁇ 100 (%), the ratio of the width B of the unwelded portion to the thickness (tw) of the joining member (web) in the fillet welded joint cross section. .
  • the present invention has been completed on the basis of such findings and further studies. That is, the gist of the present invention is as follows. (1) A welded structure provided with a fillet weld joint in which an end face of a joining member is abutted against a surface of a joined member having a plate thickness of 50 mm or more, and joins the joining member and the joined member, The weld leg length and weld width of the fillet weld joint is over 16 mm, An unwelded portion having a thickness of 95% or more of the thickness tw of the joining member in the cross-section of the fillet welded joint is formed on the surface of the fillet welded joint that is abutted between the end surface of the joining member and the surface of the joined member.
  • the Charpy impact test fracture surface transition temperature vTrs (° C.) of the fillet weld metal satisfies the relationship of the following formula (1a)
  • L is 20 mm or more
  • the Charpy impact test fracture surface transition temperature vTrs (° C.) of the fillet weld metal, the plate thickness tf of the member to be joined, and L satisfy the following relationship (1b): Satisfied, welded structure.
  • vTrs Charpy impact test fracture surface transition temperature (° C) of fillet weld metal
  • tf thickness of the member to be joined (mm)
  • L The smaller value of the weld leg length and weld width (mm)
  • a joining member of a brittle crack generated in a member to be joined (flange) having a thickness of 50 mm or more, particularly 60 mm or more, and further a thick steel plate having a thickness of more than 80 mm, which has been difficult in the past (flange) Propagation to the web) can be stopped (blocked) before large-scale destruction.
  • flange a member to be joined
  • (A) is an external view
  • (b) is sectional drawing. It is explanatory drawing which shows typically another example of a structure of a fillet welded joint.
  • (A) is an external view
  • (b) is sectional drawing. It is explanatory drawing which shows typically the shape of a super-large-sized structural model test body.
  • (A) is a case where the joining member (web) 1 and the joined member (flange) 2 are made only of a steel plate base material, and (b) is a joining member (web) 1 made only of the steel plate base material, ) 2 has the butt weld joint 11, (c) is the case where the joining member (web) 1 has the butt weld joint 12 and the member to be joined (flange) 2 has the butt weld joint 11. .
  • the end face of the joining member (web) 1 is abutted against the surface of the joined member (flange) 2 having a thickness of 50 mm or more
  • the joining member (web) 1 and the joined member (flange) ) 2 is a welded structure including a fillet welded joint that joins 2.
  • the fillet welded joint has fillet weld metal 5, and the weld leg length 3 and the weld width 13 exceed 16 mm.
  • FIG. 1A shows a case where the joining member (web) 1 is attached upright with respect to the joined member (flange) 2, but the present invention is not limited to this.
  • the joining member (web) 1 may be attached to the joined member (flange) 2 at an angle ⁇ .
  • the joining member (web) plate thickness tw used when determining the ratio Y (%) of the unwelded portion is the length of the intersection between the joining member (web) and the member to be joined (flange), (tw ) / Cos (90 ° - ⁇ ).
  • FIG.1 (c) you may provide the clearance gap 14 between the joining member (web) 1 and the to-be-joined member (flange) 2.
  • FIG. 1 (d) a gap 14 may be provided between the joining member (web) 1 and the joined member (flange) 2, and a spacer 15 may be inserted into the gap 14.
  • the welding width 13 is the joining member ( Web) It is sufficient that one side satisfies a predetermined condition.
  • the fillet weld metal 5 may be dissolved in the spacer 15.
  • the welded structure of the present invention has a discontinuous structure at the abutting surface between the joining member (web) 1 and the joined member (flange) 2 in the fillet welded joint.
  • the butt surface between the joining member (web) 1 and the member to be joined (flange) 2 becomes a propagation surface of a brittle crack, and therefore, the unwelded portion 4 is present on the butt surface. Due to the presence of the unwelded portion 4, the energy release rate (crack propagation driving force) at the tip of the brittle crack that has propagated through the member to be joined (flange) 2 is reduced, and the brittle crack tends to stop at the butt surface.
  • the fillet weld metal 5 has a thickness tf, weld leg length, and weld width of the member to be joined (flange).
  • the brittle crack does not propagate to the joining member (web) 1 and stops at the fillet weld metal 5 because it has appropriate toughness.
  • a brittle crack occurs in a steel plate base material part with few defects. Many past brittle fracture accidents have occurred in welds. Therefore, for example, in a fillet welded joint as shown in FIGS. 2A and 2B and FIGS. 3A and 3B, a joining member (web) 1 of a brittle crack generated from the butt weld joint portion 11 is used.
  • a joining member (web) 1 of a brittle crack generated from the butt weld joint portion 11 is used.
  • the discontinuity of the structure first that is, the unwelded portion 4 exists on the abutting surface between the member to be joined and the joining member in the fillet welded joint.
  • FIG. 2A shows a steel plate in which the member to be joined (flange) 2 is joined by a butt weld joint 11, and the joining member (web) 1 is a welded portion (butt weld joint portion) 11 of the butt weld joint. It is an external view of the fillet welded joint which fillet welded so that it may cross
  • FIG. 2 is an external view of a fillet welded joint that has been fillet welded so that a butt welded joint portion 11 of the flange) 2 and a butt welded joint portion 12 of the joining member (web) 1 intersect each other, and (b) is a cross-sectional view. .
  • the manufacturing method of a fillet welded joint is not particularly limited, and any conventional manufacturing method can be applied.
  • the flange steel plates and the web steel plates may be butt welded, and the resulting butt weld joint may be fillet welded to produce a fillet weld joint.
  • a pair of web steel plates before butt welding are tack welded to the flange, then the web steel plates are butt welded together, and the resulting butt weld joint is main welded (fillet weld) to the flange to fillet weld A joint may be manufactured.
  • the dimension 16 (width B of the unwelded portion) of the unwelded portion 4 in the fillet welded joint cross section is 95% or more of the web plate thickness tw in order to suppress the propagation of brittle cracks.
  • the dimension of the unwelded portion 4 (width B of the unwelded portion) is less than 95% of the joining member (web) plate thickness tw, the plastic deformation in the fillet weld metal is suppressed, and the brittle crack that has entered the fillet weld metal The vicinity of the crack tip becomes high stress, and the brittle crack that has entered the joining member (web) 1 side cannot be stopped (blocked).
  • the dimension 16 of the unwelded portion 4 is 95% or more of the joining member (web) plate thickness tw in order to suppress the propagation of brittle cracks.
  • they are 96% or more and 100% or less.
  • the weld leg length and weld width of fillet welded joints shall exceed 16 mm. If the weld leg length and weld width of the fillet welded joint is 16 mm or less, it is advantageous to ensure the ability to prevent the propagation of brittle cracks, but if the thickness of the member exceeds 80 mm, the strength of the fillet weld will be ensured. It becomes difficult. Moreover, even when the member plate thickness is 80 mm or less, the risk of reworking in the execution work becomes high. For this reason, the weld leg length and weld width of fillet welded joints exceed 16 mm.
  • the upper limit of the weld leg length and the weld width is not particularly limited, but is usually up to 40 mm from the viewpoint of securing the construction efficiency and the arrest performance.
  • VTrs ⁇ -35-1.5 (tf-75) (1a) vTrs ⁇ -5L + 65-1.5 (tf-75) (1b)
  • vTrs Charpy impact test fracture surface transition temperature (° C) of fillet weld metal
  • tf thickness of the member to be joined (mm)
  • L The smaller value of the weld leg length and weld width (mm)
  • the fillet weld metal is related to the plate thickness tf of the member (flange) 2 to be joined, and L, which is the smaller value of the weld leg length and the weld width, and the above-described equation (1a) or (1b)
  • L which is the smaller value of the weld leg length and the weld width
  • the welded member (flange) 2 can be applied not only to a thickness of 50 mm or more, but also to a welded structure having a thickness of 60 mm or more and more than 80 mm.
  • the upper limits of the weld leg length and the weld width are not particularly limited, but are usually up to 40 mm.
  • the upper limit of the plate thickness of the member 2 (flange) is not particularly limited, but is usually up to 120 mm. If the low temperature toughness of the fillet weld metal does not satisfy the above formula (1a) or (1b), the low temperature toughness of the fillet weld metal will be insufficient, and it will be generated and propagated in the joined member (flange).
  • the fillet weld metal has a low temperature that satisfies the above-described conditions in relation to the plate thickness tf of the member to be joined (flange), and L, which is the smaller one of the weld leg length and the weld width. If it is a welded structure having toughness, it is possible to prevent propagation of brittle cracks occurring in the member to be joined (flange) with fillet weld metal.
  • the lower limit of vTrs is not particularly limited, but is usually ⁇ 130 ° C. when a general-purpose welding material for ships is applied.
  • the thickness of the joining member (web) 1 is not particularly limited, but is usually 50 to 120 mm. If the thickness of the joining member is less than 50 mm, it is not necessary to apply the present invention, and if ordinary E grade steel is applied to the joining member (web) and the joined member (flange), the propagation of brittle cracks can be prevented. . On the other hand, since the plate thickness of the main hull structural arrest steel plate stipulated in IACS UR (International Classification Rules) is 100 mm at the maximum, it is difficult to think that the plate thickness of the joining member exceeds 120 mm.
  • the above welded structure is provided with the above-described fillet welded joint, for example, a hull structure having a ship hull outer plate as a flange and a partition wall as a web, or a deck as a flange, and a hatch as a web. It can be applied to the hull structure.
  • a thick steel plate having a thickness tw shown in Table 1 is used as a joining member (web), and a thick steel plate having a thickness tf shown in Table 1 is used as a member to be joined (flange). ), (B), and a large fillet weld joint 9 having an actual structure size as shown in (c) was produced.
  • the unwelded portion 4 as shown in FIG. 1 (a), (c) or (d) is not applied to the butted surface of the joining member 1 and the joined member 2.
  • the welded portion ratio Y (width B of unwelded portion / bonding member (web) plate thickness tw) was changed to be present.
  • the member to be joined (flange) was a thick steel plate (base material only). (FIG. 4 (a)) or a thick steel plate (FIG. 4 (b), (c)) having a butt weld joint, and the joining member (web) is a thick steel plate (base material only) (FIG. 4 (a), ( b)), or a thick steel plate having a butt weld joint (FIG. 4C).
  • Butt welded joints were made by one-pass high heat input electrogas arc welding (SEGARC and two-electrode SEGARC) or multi-layer carbon dioxide gas welding (multi-layer CO 2 ).
  • the fillet welded joint was a fillet welded joint with various low temperature toughness, various weld leg lengths or weld widths by changing the welding conditions such as welding material, welding heat input and shield gas.
  • the low temperature toughness of fillet weld metal is based on the JIS Z 2242 standard by collecting Charpy impact test pieces (10 mm thick) from butt welded joints manufactured under the same conditions as fillet weld metal or fillet welds.
  • the fracture surface transition temperature vTrs (° C.) was determined.
  • a gap 14 was formed between the joining member (web) 1 and the joined member (flange) 2. Further, in some of the fillet welded joints, a fillet welded joint was produced by inserting a spacer 15 into the gap 14 between the joining member (web) 1 and the joined member (flange) 2.
  • an ultra-large structural model test body shown in FIG. 4 was produced, and a brittle crack propagation stop test was performed.
  • the ultra-large structural model specimen was welded with a steel plate having the same thickness as that of the member to be joined (flange) 2 by tack welding 8 below the member to be joined (flange) 2 of the large fillet welded joint 9.
  • the butt weld joint 11 of the member to be joined (flange) 2 is produced so as to be orthogonal to the joining member (web) 1, and FIG.
  • brittle crack propagation stop test In the brittle crack propagation stop test, a mechanical notch was hit to generate a brittle crack, and it was investigated whether the propagated brittle crack stopped at the fillet weld. All tests were performed under the conditions of stress 100 to 283 N / mm 2 and temperature: ⁇ 10 ° C.
  • the stress of 100 N / mm 2 is the average value of the stress that constantly acts on the hull, and the stress of 257 N / mm 2 corresponds to the maximum allowable stress of the yield strength 390 N / mm class 2 steel plate applied to the hull.
  • the value, stress 283 N / mm 2 is a value corresponding to the maximum allowable stress of the yield strength 460 N / mm grade 2 steel plate applied to the hull.
  • the temperature –10 ° C is the design temperature of the ship. In calculating the values on the right side of the equations (1a) and (1b), the numbers after the decimal point are rounded off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

 接合部材(1)の端面が板厚50mm以上の被接合部材(2)の表面に突合わされており、また前記接合部材(1)と前記被接合部材(2)とを接合する隅肉溶接継手を備える溶接構造体であって、隅肉溶接継手の溶接脚長(3)及び溶着幅(13)が16mmを超えており、隅肉溶接継手における接合部材(1)の端面と被接合部材(2)の表面とを突合わせた面に、隅肉溶接継手の断面で接合部材(1)の板厚(tw)の95%以上の未溶着部(4)を有し、さらに、隅肉溶接継手の隅肉溶接金属(5)について、隅肉溶接金属(5)のシャルピー衝撃試験破面遷移温度(vTrs(℃))と、被接合部材(2)の板厚(tf)と、あるいはさらに溶接脚長(3)及び溶着幅(13)のうちの小さい方の値(L)との間で、所定の関係を満足する。

Description

溶接構造体
 本発明は、例えば、大型コンテナ船やバルクキャリアーなどの、厚鋼板を用いて溶接施工された溶接鋼構造物(溶接構造体)に関する。とくに、本発明は、厚鋼板の母材または溶接継手部から発生した脆性亀裂の伝播を、構造物の大規模破壊に至る前に停止させることができる、脆性亀裂伝播停止特性に優れる溶接構造体に関する。
 コンテナ船やバルクキャリアーは、積載能力の向上や荷役効率の向上等のため、例えば、タンカー等とは異なり、船上部の開口部を大きくとった構造を有している。そのため、コンテナ船やバルクキャリアーでは、特に船体外板を、高強度化または厚肉化する必要がある。
 また、コンテナ船は、近年、大型化し、6,000~20,000 TEUといった大型船が建造されるようになってきている。TEU(Twenty feet Equivalent Unit)は、長さ20フィートのコンテナに換算した個数を表し、コンテナ船の積載能力の指標を示す。このような船の大型化に伴い、船体外板は、板厚:50mm以上で、降伏強さ:390N/mm級以上の厚鋼板が使用される傾向となっている。
 船体外板となる鋼板は、近年、施工期間の短縮という観点から、例えばエレクトロガスアーク溶接等の大入熱溶接により突合せ溶接されることが多い。かような大入熱溶接は、溶接熱影響部での大幅な靭性低下に繋がりやすく、溶接継手部からの脆性亀裂発生の一つの原因となっていた。
 一方、船体構造においては、従来から安全性という観点から、万一、脆性破壊が発生した場合でも、脆性亀裂の伝播を大規模破壊に至る前に停止させ、船体分離を防止することが必要であると考えられている。
 このような考え方を受けて、非特許文献1に、板厚50mm未満の造船用鋼板における溶接部の脆性亀裂伝播挙動についての実験的な検討結果が報告されている。
 非特許文献1では、溶接部で強制的に発生させた脆性亀裂の伝播経路、および伝播挙動が実験的に調査されている。ここには、溶接部の破壊靱性がある程度確保されていれば、溶接残留応力の影響により脆性亀裂は溶接部から母材側に逸れてしまうことが多いという結果が記載されているが、溶接部に沿って脆性亀裂が伝播した例も複数例確認されている。このことは、脆性破壊が溶接部に沿って直進伝播する可能性が無いとは言い切れないことを示唆していることになる。
 しかしながら、非特許文献1で適用した溶接と同等の溶接を板厚50mm未満の鋼板に適用して建造された船舶が何ら問題なく就航しているという多くの実績があることに加え、靱性が良好な鋼板母材(造船E級鋼など)は脆性亀裂を停止する能力を十分に保持しているとの認識から、造船用鋼材の溶接部の脆性亀裂伝播停止特性は、船級規則等にはとくに要求されてこなかった。
 ところで、近年の6,000 TEUを超える大型コンテナ船では、使用する鋼板の板厚は50mmを超え、板厚増大による破壊靱性の低下に加え、溶接入熱がより大きな大入熱溶接が採用され、溶接部の破壊靭性が一層低下する傾向にある。このような厚肉大入熱溶接継手では、溶接部から発生した脆性亀裂が、母材側に反れずに直進し、また骨材等の鋼板母材部でも停止しない可能性があることが示されている(例えば非特許文献2)。
 このため、板厚50mm以上の厚肉高強度鋼板を適用した船体構造の安全性確保が、大きな問題となっている。また、非特許文献2には、とくに発生した脆性亀裂の伝播停止のために、特別な脆性亀裂伝播停止特性を有する厚鋼板を必要とするとの指摘もある。
 このような問題に対し、例えば特許文献1には、好ましくは板厚50mm以上の船殻外板である溶接構造体において、突合せ溶接部に交差するように骨材を配置し、隅肉溶接で接合した溶接構造体が記載されている。
 特許文献1に記載された技術では、骨材を、表層部および裏層部で3mm以上の厚みにわたり0.5~5μmの平均円相当粒径を有しさらに板厚面に平行な面で(100)結晶面のX線面強度比が1.5以上である、ミクロ組織を有する鋼板を用いるとしている。そしてこのようなミクロ組織を有する鋼板を補強材として隅肉溶接した構造とすることにより、突合せ溶接継手部に脆性亀裂が発生しても、補強材である骨材で脆性破壊を停止でき、溶接構造体が破壊するような致命的な損傷を防止できるとしている。
 しかしながら、特許文献1に記載された技術で使用する、補強材である骨材は、所望の組織を形成させた鋼板とするために複雑な工程を必要とし、その結果、生産性が低下し、安定して所望の組織を有する鋼板を確保することが難しいという問題があった。
 また、特許文献2には、接合部材(以下、ウェブともいう)を被接合部材(以下、フランジともいう)に隅肉溶接してなる隅肉溶接継手を備える、脆性亀裂伝播停止特性に優れた溶接構造体が記載されている。
 特許文献2に記載された溶接構造体では、隅肉溶接継手断面におけるウェブの、フランジとの突合せ面に未溶着部を残存させ、その未溶着部の幅と、隅肉溶接部の左右の脚長とウェブ板厚との和との比、Xが、被接合部材(フランジ)の脆性亀裂伝播停止性能Kcaと特別な関係式を満足するように、未溶着部の幅を調整する。これにより、被接合部材(フランジ)を板厚:50mm以上の厚物材としても、接合部材(ウェブ)で発生した脆性亀裂の伝播を、隅肉溶接部のウェブとフランジの突合せ面で停止させ、被接合部材(フランジ)への脆性亀裂の伝播を阻止することができるとしている。
 しかしながら、特許文献2に記載された技術では、接合部材(ウェブ)の脆性亀裂伝播停止特性等が不十分であるため、被接合部材(フランジ)で発生した脆性亀裂を接合部材(ウェブ)で伝播停止させるにたる十分な技術であるとは言えない。なお、特許文献2には、接合部材(ウェブ)の脆性亀裂伝播停止特性については何の配慮もなされていない。
 このような問題に対し、例えば、特許文献3には、
 「接合部材の端面を板厚50mm以上の被接合部材の表面に突合わせ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長もしくは溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、隅肉溶接継手における接合部材の端面と被接合部材の表面とを突合わせた面に、隅肉溶接継手の断面で該接合部材の板厚twの95%以上の未溶着部を有し、さらに隅肉溶接継手における隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrsが、被接合部材の板厚tfとの関係で、vTrs≦-1.5tf+70を、および/または、隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃における吸収エネルギーvE-20(J)が、被接合部材の板厚tfとの関係で、vE-20≧2.75tf-105を、満足する隅肉溶接金属を有する溶接構造体」
が記載されている。
 このような溶接構造体であれば、被接合部材で発生した脆性亀裂を隅肉溶接金属で伝播阻止することができるとしている。
 また、特許文献4には、
 「接合部材の端面を板厚50mm以上の被接合部材の表面に突合わせ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長もしくは溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、隅肉溶接継手における接合部材の端面と被接合部材の表面とを突合わせた面に、隅肉溶接継手の断面で該接合部材の板厚twの95%以上の未溶着部を有し、さらに隅肉溶接継手における隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrsが、被接合部材の板厚tfとの関係で、vTrs≦-1.5tf+90を、および/または、隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃における吸収エネルギーvE-20(J)が、被接合部材の板厚tfとの関係で、50≦tf≦53の場合には、vE-20≧5.75、tf>53の場合には、vE-20≧2.75tf-140を、満足する隅肉溶接金属を有し、加えて接合部材を、脆性亀裂伝播停止靭性Kcaが供用温度で2500N/mm2/3以上である鋼板で構成する、溶接構造体」
が記載されている。
 このような溶接構造体とすることにより、被接合部材で発生した脆性亀裂は、隅肉溶接部または接合部材の母材で停止できるとしている。
 また、特許文献5には、
 「接合部材の端面を板厚50mm以上の被接合部材の表面に突合わせ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長もしくは溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、接合部材および被接合部材をともに突合せ溶接継手部を有する部材とし、突合せ溶接継手部の溶接金属が、vTrsで-65℃以下、および/または、vE-20で140J以上の靭性を有し、隅肉溶接継手における接合部材の突合せ溶接継手部の溶接部端面を、被接合部材の突合せ溶接継手部の溶接部表面に突合わせ、突合わせた面に、隅肉溶接継手の突合せ溶接継手断面で該接合部材の板厚twの95%以上の未溶着部を有し、さらに隅肉溶接継手における隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrsが、被接合部材の板厚tfとの関係で、vTrs≦-1.5tf+90を、および/または、隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃における吸収エネルギーvE-20(J)が、被接合部材の板厚tfとの関係で、50≦tf≦53の場合には、vE-20≧5.75、tf>53の場合には、vE-20≧2.75tf-140を、満足する隅肉溶接金属を有する、溶接構造体」
が記載されている。
 このような溶接構造体とすることにより、被接合部材で発生した脆性亀裂は、隅肉溶接部または接合部材の母材で停止できるとしている。また、このような溶接構造体とすることにより、被接合部材溶接部から発生した脆性亀裂、または接合部材溶接部から発生した脆性亀裂を、隅肉溶接部、接合部材の溶接部または被接合部材の溶接部で伝播阻止することができるとしている。
特開2004-232052号公報 特開2007-326147号公報 特許第5395985号公報 特許第5365761号公報 特許第5408396号公報
日本造船研究協会第147研究部会:「船体用高張力鋼板大入熱継手の脆性破壊強度評価に関する研究」、第87号(1978年2月)、p.35~53、日本造船研究協会 山口欣弥ら:「超大型コンテナ船の開発―新しい高強度極厚鋼板の実用―」、日本船舶海洋工学会誌、第3号(2005)、p.70~76、平成17年11月
 しかしながら、特許文献3~5に記載された各技術では、溶接脚長(または溶着幅)を16mm以下に制限する必要があり、そのため、隅肉溶接部の強度確保の観点から、接合部材(ウェブ)および被接合部材(フランジ)に適用できる板厚は最大でも80mmであった。
 また、接合部材(ウェブ)および被接合部材(フランジ)の板厚が80mm未満の場合であっても、実施工における溶接脚長のバラツキを考慮すると、隅肉溶接部の強度を確保するために所望の溶接脚長を確保することと、脆性亀裂阻止性能を確保するために溶接脚長を16mm以下に制限することとを両立させることは、施工管理上、多大な労力を要する。また、手直し等の追加費用を必要とする場合があり、これらの点に課題を残していた。
 さらに、最近では、大型コンテナ船では部材の極厚化がさらに進み、100mm以上の板厚の鋼材も使用されるようになりつつある。
 しかし、上記したように、特許文献3~5に記載された各技術では、接合部材(ウェブ)および被接合部材(フランジ)に適用できる板厚は最大でも80mmであり、80mmを超える部材厚を有する溶接構造物には、適用できない。
 本発明は、かかる従来技術の問題を解決し、溶接脚長および溶着幅が16mmを超えても、被接合部材(フランジ)に発生した脆性亀裂の接合部材(ウェブ)への伝播を、大規模破壊に至る前に、停止(阻止)できる、脆性亀裂伝播停止特性に優れた溶接構造体を提供することを目的とする。
 なお、本発明が対象とする溶接構造体は、接合部材(ウェブ)の端面を被接合部材(フランジ)の表面に突合わせ、これらを隅肉溶接により接合してなる隅肉溶接継手を備える溶接構造体である。
 本発明者らは、上記した目的を達成するために、溶接脚長(および溶着幅)が16mmを超える隅肉溶接継手を有する溶接構造物の脆性亀裂伝播停止特性に及ぼす各種要因について鋭意検討した。
 その結果、溶接脚長が16mmを超える場合に、被接合部材(フランジ)から発生した脆性亀裂の伝播を阻止(停止)するためには、被接合部材(フランジ)と接合部材(ウェブ)との突合せ面に不連続部を確保し、脆性亀裂の伝播部を所定値以上の脆性亀裂伝播停止特性Kcaを有する脆性亀裂伝播停止特性に優れた部材で構成しただけでは十分でないことに思い至った。
 そしてとくに、被接合部材(フランジ)の板厚tf(mm)が大きくなると、脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)が増加し、脆性亀裂が停止しにくくなることから、被接合部材(フランジ)の板厚tf(mm)に応じた、隅肉溶接部、特に隅肉溶接金属の靭性向上が必須となることに想到した。
 また、隅肉溶接継手の溶接脚長および溶着幅が20mm以上とさらに長くなると、脆性亀裂の伝播がさらに容易となるため、溶接脚長および溶着幅に合わせて隅肉溶接金属の靭性を向上させることが必要であることを知見した。
 そしてさらに、隅肉溶接継手において、被接合部材の表面と接合部材と端面とを突合せる面に未溶着部、すなわち不連続部を確保し、さらに、隅肉溶接金属の靭性を、溶接脚長(mm)、溶着幅(mm)、および被接合部材の板厚tf(mm)との関係で、適正に制御することにより、はじめて、従来の技術では困難であった、板厚80mmを超える被接合部材で発生した脆性亀裂の接合部材への伝播を、隅肉溶接金属で阻止(停止)できることを見出した。
 すなわち、上記したような未溶着部の設定や、隅肉溶接金属の靭性を、溶接脚長(mm)、溶着幅(mm)、および被接合部材の板厚tf(mm)との関係で、適正に制御することにより、接合部材(ウェブ)に使用する厚鋼板について、特別に脆性亀裂伝播停止特性を考慮することなく、被接合部材(フランジ)で発生した脆性亀裂の接合部材(ウェブ)への伝播を阻止することができることを知見した。
 さらに、被接合部材が母材ではなく突合せ溶接継手である場合や、接合部材が突合せ溶接継手である場合においても、上記した構成により、同様に、被接合部材で発生した脆性亀裂の接合部材への伝播を隅肉溶接金属で阻止できることを見出した。
 まず、本発明を導き出すに至った実験結果について説明する。
 種々の板厚を有する降伏強度355~390N/mm級鋼板を用いて、種々の未溶着部比率Y(%)(=(隅肉溶接継手断面における未溶着部の幅B)/(接合部材の板厚tw)×100)の未溶着部と、種々の低温靭性および溶接脚長を有する、大型隅肉溶接継手を作製した。なお、溶接脚長および溶着幅はいずれも16mm超えとなるように調整した。
 また、被接合部材(フランジ)には、突合せ溶接継手部を有する板厚:50mm以上の鋼板を用いた。また、接合部材(ウェブ)には、脆性亀裂伝播停止靭性Kcaに何ら配慮していない通常の造船D~E級鋼を用いた。
 なお、突合せ溶接継手は、1パスの大入熱エレクトロガスアーク溶接(SEGARCまたは2電極SEGARC)または多層盛炭酸ガスアーク溶接(多層CO)で作製した。
 得られた大型隅肉溶接継手を用いて、図4(b)に示す超大型構造モデル試験体を作製し、脆性亀裂伝播停止試験を実施した。なお、超大型構造モデル試験体は、大型隅肉溶接継手9の被接合部材(フランジ)2の下方に仮付け溶接8で、フランジ2と同じ板厚の鋼板を溶接した。
 なお、図4(b)に示す超大型構造モデル試験体では、被接合部材(フランジ)2の突合せ溶接継手部11を接合部材(ウェブ)1と直交するように作製し、機械ノッチ7の先端を突合せ溶接継手部11のBOND部となるように加工した。
 また、脆性亀裂伝播停止試験は、機械ノッチに打撃を与え脆性亀裂を発生させ、伝播した脆性亀裂が、隅肉溶接部で停止するか否かを調査した。いずれの試験も、応力243~257N/mm、温度:-10℃の条件で実施した。なお、応力:243~257N/mmは、船体に適用されている降伏強度355~390N/mm級鋼板の最大許容応力相当の値である。また、温度:-10℃は船舶の設計温度である。
 得られた結果を、図5および6に示す。
 図5は、未溶着部比率Yが95%以上で、かつ溶接脚長および溶着幅のうちの小さい方の値であるLが17mmである場合に、隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と被接合部材の板厚tfとの関係が、超大型構造モデル試験体における脆性亀裂の伝播停止に及ぼす影響を示す。また、図6は、未溶着部比率Yが95%以上で、かつ被接合部材(フランジ)の板厚tfが75mmである場合に、隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と、溶接脚長および溶着幅のうちの小さい方の値であるLとの関係が、超大型構造モデル試験体における脆性亀裂の伝播停止に及ぼす影響を示す。
 図5および図6に示す実験結果から、未溶着部比率Yが95%以上で、かつ隅肉溶接部の靭性、つまり隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と、被接合部材(フランジ)の板厚tfと、溶接脚長および溶着幅のうちの小さい方の値であるLとが、特定の関係を満足する場合には、負荷応力が243~257N/mmの場合でも、接合部材(ウェブ)のKcaに何ら配慮を加えずに、被接合部材(フランジ)で発生した脆性亀裂は隅肉溶接金属部で停止でき、脆性亀裂の接合部材(ウェブ)への伝播を阻止(停止)できることがわかる。
 なお、未溶着部比率Yは、隅肉溶接継手断面における未溶着部の幅Bと接合部材(ウェブ)板厚twの比、(B/tw)×100(%)で定義される値である。
 上記の実験結果から、隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と、被接合部材(フランジ)の板厚tfと、溶接脚長および溶着幅のうちの小さい方の値であるLに関し、以下の関係を得たのである。
   L<20の場合、vTrs ≦ -35-1.5(tf-75)  ‥‥(1a)
   L≧20の場合、vTrs ≦ -5L+65-1.5(tf-75)‥‥(1b)
 (ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、tf:被接合部材の板厚(mm)、L:溶接脚長および溶着幅のうちの小さい方の値(mm))
 本発明は、かかる知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)接合部材の端面が板厚50mm以上の被接合部材の表面に突合わされており、また前記接合部材と前記被接合部材とを接合する隅肉溶接継手を備える溶接構造体であって、
 前記隅肉溶接継手の溶接脚長および溶着幅は16mm超えであり、
 前記隅肉溶接継手における前記接合部材の端面と前記被接合部材の表面とを突合わせた面に、前記隅肉溶接継手の断面で該接合部材の板厚twの95%以上の未溶着部を有し、
 さらに、前記隅肉溶接継手の隅肉溶接金属について、
 前記溶接脚長および前記溶着幅のうちの小さい方の値をLとするとき、Lが20mm未満である場合には、前記隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と、前記被接合部材の板厚tfとが下記(1a)式の関係を満足し、
 Lが20mm以上である場合には、前記隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と、前記被接合部材の板厚tfと、Lとが下記(1b)式の関係を満足する、溶接構造体。
                 記
    vTrs ≦ -35-1.5(tf-75)   ‥‥(1a)
    vTrs ≦ -5L+65-1.5(tf-75) ‥‥(1b)
  ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、
       tf:被接合部材の板厚(mm)、
       L :溶接脚長および溶着幅のうちの小さい方の値(mm)
(2)前記被接合部材が、前記接合部材と交差するように、突合せ溶接継手部を有している、(1)に記載の溶接構造体。
(3)前記接合部材が突合せ溶接継手部を有しており、前記接合部材が、前記接合部材の突合せ溶接継手部と前記被接合部材の突合せ溶接継手部とが交差するように、配設されている、(2)に記載の溶接構造体。
 本発明によれば、従来困難であった板厚50mm以上、特には60mm以上、さらには板厚80mmを超える厚鋼板を母材とする被接合部材(フランジ)に発生した脆性亀裂の接合部材(ウェブ)への伝播を、大規模破壊に至る前に、停止(阻止)することが可能となる。このため、本発明によれば、鋼構造物、とくに、大型コンテナ船やバルクキャリアーなどの船体分離などの大規模な脆性破壊の危険性を回避でき、船体構造の安全性を確保するうえで大きな効果をもたらし、産業上格段の効果を奏する。
 また、施工時に、未溶着部の寸法および隅肉溶接金属の靭性を調整することにより、特殊な鋼板を使用することなく、安全性を損ねることなしに、容易に、脆性亀裂伝播停止特性に優れた溶接構造体を製造できるという効果がある。
隅肉溶接継手の断面構成の一例を模式的に説明する説明図である。(a)は接合部材(ウェブ)1と被接合部材(フランジ)2が直交している場合、(b)は接合部材(ウェブ)1と被接合部材(フランジ)2が斜めに交差している場合、(c)は接合部材(ウェブ)1と被接合部材(フランジ)2との間に隙間14がある場合、(d)は接合部材(ウェブ)1と被接合部材(フランジ)2との間に隙間14があり、且つその隙間14にスペーサー15が挿入されている場合、を示すものである。 隅肉溶接継手の構成の他の一例を模式的に示す説明図である。(a)は外観図、(b)は断面図である。 隅肉溶接継手の構成の他の一例を模式的に示す説明図である。(a)は外観図、(b)は断面図である。 超大型構造モデル試験体の形状を模式的に示す説明図である。(a)は接合部材(ウェブ)1および被接合部材(フランジ)2が鋼板母材のみからなる場合、(b)は接合部材(ウェブ)1が鋼板母材のみからなり、被接合部材(フランジ)2が突合せ溶接継手部11を有する場合、(c)は接合部材(ウェブ)1が突合せ溶接継手部12を有し、被接合部材(フランジ)2が突合せ溶接継手部11を有する場合である。 隅肉溶接金属の靭性とフランジ板厚との関係が、脆性亀裂の伝播停止に及ぼす影響を示す図である。 隅肉溶接金属の靭性と、溶接脚長および溶着幅のうちの小さい方の値であるLとの関係が、脆性亀裂の伝播停止に及ぼす影響を示す図である。
 本発明の溶接構造体は、接合部材(ウェブ)1の端面が板厚50mm以上の被接合部材(フランジ)2の表面に突合わされており、また接合部材(ウェブ)1と被接合部材(フランジ)2とを接合する隅肉溶接継手を備える溶接構造体である。また、隅肉溶接継手は隅肉溶接金属5を有し、溶接脚長3および溶着幅13は16mm超えとする。さらに、隅肉溶接継手の接合部材(ウェブ)1と被接合部材(フランジ)2との突合わせ面には、構造不連続部となる、未溶着部4を存在させる。
 この状態を継手断面で図1に示す。なお、図1(a)は、接合部材(ウェブ)1を被接合部材(フランジ)2に対して直立して取り付けた場合を示すが、本発明ではこれに限定されることはない。例えば、図1(b)に示すように、接合部材(ウェブ)1を被接合部材(フランジ)2に対して角度θだけ傾けて取り付けてもよい。この場合、未溶着部の比率Y(%)を求める際に使用する接合部材(ウェブ)板厚twは、接合部材(ウェブ)と被接合部材(フランジ)との交差部の長さ、(tw)/cos(90°-θ)、を使用するものとする。また、図1(c)に示すように、接合部材(ウェブ)1と被接合部材(フランジ)2の間に隙間14を設けてもよい。さらに、図1(d)に示すように、接合部材(ウェブ)1と被接合部材(フランジ)2との間に隙間14を設け、さらにその隙間14にスペーサー15を挿入してもよい。
 なお、図1(c)および図1(d)のように接合部材(ウェブ)1と被接合部材(フランジ)2との間に隙間14を設ける場合には、溶着幅13は、接合部材(ウェブ)1側が所定の条件を満足していれば良い。また、図1(d)の場合、隅肉溶接金属5はスペーサー15に溶け込んでいても良い。
 本発明の溶接構造体は、上記したように、隅肉溶接継手における接合部材(ウェブ)1と被接合部材(フランジ)2との突合わせ面で、構造が不連続となる、未溶着部4を有する。隅肉溶接継手において、接合部材(ウェブ)1と被接合部材(フランジ)2との突合わせ面は、脆性亀裂の伝播面となるので、突合せ面に未溶着部4を存在させる。未溶着部4が存在することにより、被接合部材(フランジ)2を伝播してきた脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)が低下し、突合せ面において、脆性亀裂は停止しやすくなる。なお、たとえ、被接合部材(フランジ)2から隅肉溶接金属5に脆性亀裂が伝播したとしても、隅肉溶接金属5は、被接合部材(フランジ)の板厚tfや溶接脚長、溶着幅に応じた適切な靭性を有しているため、脆性亀裂は、接合部材(ウェブ)1には伝播せず、隅肉溶接金属5で停止することになる。
 なお、脆性亀裂は、欠陥の少ない鋼板母材部で発生することは極めて稀である。過去の脆性破壊事故の多くは、溶接部で発生している。そのため、例えば、図2(a)、(b)や図3(a)、(b)に示すような隅肉溶接継手では、突合せ溶接継手部11から発生する脆性亀裂の接合部材(ウェブ)1への伝播を阻止するために、まず、構造の不連続を存在させる、すなわち隅肉溶接継手における被接合部材と接合部材との突合せ面に未溶着部4を存在させることが重要となる。
 ここで、図2(a)は、被接合部材(フランジ)2を突合せ溶接継手11で接合された鋼板とし、接合部材(ウェブ)1をその突合せ溶接継手の溶接部(突合せ溶接継手部)11と交差するように隅肉溶接した隅肉溶接継手の外観図であり、(b)は断面図である。
 また、図3(a)は、接合部材(ウェブ)1を、突合せ溶接継手部12を有する鋼板とし、被接合部材(フランジ)2を、突合せ溶接継手部11を有する鋼板とし、被接合部材(フランジ)2の突合せ溶接継手部11と接合部材(ウェブ)1の突合せ溶接継手部12とが交差するように隅肉溶接した隅肉溶接継手の外観図であり、(b)は断面図である。
 なお、図2(a)、(b)、図3(a)、(b)では、突合せ溶接継手部11とウェブ1とが直交する場合を示したが、本発明ではこれに限定されない。斜めに交差させてもよいことは言うまでもない。また、隅肉溶接継手の製造方法はとくに限定する必要はなく、常用の製造方法がいずれも適用できる。例えば、フランジ用鋼板同士、ウェブ用鋼板同士を突合せ溶接し、得られた突合せ溶接継手を隅肉溶接して隅肉溶接継手を製造してもよい。また、突合せ溶接前の一組のウェブ用鋼板をフランジに仮付溶接しついでウェブ用鋼板同士を突合せ溶接し、得られた突合せ溶接継手をフランジに本溶接(隅肉溶接)して隅肉溶接継手を製造してもよい。
 本発明の溶接構造体では、隅肉溶接継手断面における未溶着部4の寸法16(未溶着部の幅B)は、脆性亀裂の伝播抑制のため、ウェブ板厚twの95%以上とする。未溶着部4の寸法(未溶着部の幅B)が、接合部材(ウェブ)板厚twの95%未満では、隅肉溶接金属における塑性変形が抑制され、隅肉溶接金属に突入した脆性亀裂の亀裂先端近傍が高応力となり、接合部材(ウェブ)1側に侵入した脆性亀裂を停止(阻止)することができない。このため、未溶着部4の寸法16(未溶着部の幅B)は、脆性亀裂の伝播抑制のため、接合部材(ウェブ)板厚twの95%以上とする。なお、好ましくは96%以上100%以下である。
 また、隅肉溶接継手の溶接脚長および溶着幅は16mm超えとする。隅肉溶接継手の溶接脚長および溶着幅が16mm以下では、脆性亀裂の伝播阻止性能を確保するには有利であるが、部材板厚が80mmを超える場合には、隅肉溶接部の強度確保が困難となる。また、部材板厚80mm以下の場合であっても、実施工における手直し等のリスクが高くなる。このため、隅肉溶接継手の溶接脚長および溶着幅は16mm超えとする。溶接脚長および溶着幅の上限は特に限定されるものではないが、施工能率とアレスト性能確保の観点から、通常40mm迄である。
 そして、本発明の溶接構造体では、隅肉溶接継手における隅肉溶接金属について、溶接脚長および溶着幅のうちの小さい方の値をLとするとき、Lが20mm未満である場合には、隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と、被接合部材の板厚tfとが下記(1a)式の関係を満足し、Lが20mm以上である場合には、隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と、被接合部材の板厚tfと、Lとが下記(1b)式の関係を満足する、ことが重要である。
                 記
    vTrs ≦ -35-1.5(tf-75)   ‥‥(1a)
    vTrs ≦ -5L+65-1.5(tf-75) ‥‥(1b)
  ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、
       tf:被接合部材の板厚(mm)、
       L :溶接脚長および溶着幅のうちの小さい方の値(mm)
 隅肉溶接金属が、被接合部材(フランジ)2の板厚tf、さらには溶接脚長および溶着幅のうちの小さい方の値であるLと関連して、上記した(1a)式または(1b)式を満足する低温靭性を有することにより、図5および図6に示すように、被接合部材(フランジ)2の板厚が50mm以上の溶接構造体を、所望の脆性亀裂伝播阻止性能を有する溶接構造体とすることができる。なお、溶接脚長および溶着幅は16mm超えであるため、被接合部材(フランジ)2の板厚が50mm以上はもちろん、60mm以上さらには80mmを超える溶接構造体へも適用可能である。溶接脚長および溶着幅の上限は特に限定されないが、通常40mm迄である。なお、被接合部材(フランジ)2の板厚の上限は特に限定されないが、通常120mm迄である。隅肉溶接金属の低温靭性が、上記した(1a)式または(1b)式を満足しない場合には、隅肉溶接金属の低温靭性が不足して、被接合部材(フランジ)で発生し伝播してきた脆性亀裂を隅肉溶接金属部で伝播阻止することができなくなる。また、溶接脚長が40mmを超えると、また被接合部材(フランジ)2の板厚が120mmを超えると、施工能率とアレスト性能確保の両立が難しくなる。
 このように、隅肉溶接金属が、被接合部材(フランジ)の板厚tf、さらには溶接脚長および溶着幅のうちの小さい方の値であるLとの関係で、上記した条件を満足する低温靭性を有する、溶接構造体であれば、被接合部材(フランジ)で発生した脆性亀裂を隅肉溶接金属で伝播阻止することができる。
 なお、vTrsの下限は特に限定されるものではないが、船舶用の汎用溶接材料を適用する場合には、通常-130℃である。なお、vTrsを-130℃よりも低くするには低温タンク用溶材など特殊な(高価な)溶接材料の適用が必要となる。
 また、Lは、溶接脚長および溶着幅のうちの小さい方の値であるので、限定されるものではないが、通常、16mm超え、40mm以下である。
 さらに、接合部材(ウェブ)1の板厚については特に限定されるものではないが、通常50~120mmである。接合部材の板厚が50mm未満では、本発明を適用するまでもなく、通常のE級鋼を接合部材(ウェブ)と被接合部材(フランジ)に適用すれば脆性亀裂の伝播阻止が可能である。一方、IACS UR(国際船級規則)に規定される主船体構造用アレスト鋼板の板厚は最大でも100mmであるので、接合部材の板厚が120mmを超えることは考えにくい。
 また、上記の溶接構造体は、上記した隅肉溶接継手を備えるものであり、例えば、船舶の船体外板をフランジとし、隔壁をウェブとする船体構造、あるいはデッキをフランジとし、ハッチをウェブとする船体構造などに適用可能である。
 以下、実施例について、説明する。
 表1に示す板厚twの厚鋼板を接合部材(ウェブ)として、表1に示す板厚tfの厚鋼板を被接合部材(フランジ)として用い、これらを隅肉溶接して、図4(a)、(b)、(c)に示す形状となる実構造サイズの大型隅肉溶接継手9を作製した。なお、作製した大型隅肉溶接継手9では、接合部材1と被接合部材2との突合せ面に、図1(a)、(c)または(d)に示すような未溶着部4を、未溶着部の比率Y(=(未溶着部の幅B/接合部材(ウェブ)板厚tw)を変化させて、存在させた。なお、被接合部材(フランジ)は、厚鋼板(母材のみ)(図4(a))または突合せ溶接継手を有する厚鋼板(図4(b)、(c))とし、接合部材(ウェブ)は、厚鋼板(母材のみ)(図4(a)、(b))、または突合せ溶接継手を有する厚鋼板(図4(c))とした。
 突合せ溶接継手は、1パス大入熱エレクトロガスアーク溶接(SEGARCおよび2電極SEGARC)または多層盛炭酸ガス溶接(多層CO)により作製した。また、隅肉溶接継手は、溶接材料、溶接入熱およびシールドガス等の溶接条件を変化させて、種々の低温靭性、種々の溶接脚長もしくは溶着幅となる隅肉溶接継手とした。なお、隅肉溶接金属の低温靭性は、隅肉溶接金属もしくは隅肉溶接と同じ条件で作製した突合せ溶接継手からシャルピー衝撃試験片(10mm厚)を採取し、JIS Z 2242の規定に準拠して破面遷移温度vTrs(℃)を求めた。なお、一部の隅肉溶接継手では、接合部材(ウェブ)1と被接合部材(フランジ)2との間に隙間14を空けた。さらにその一部の隅肉溶接継手では、接合部材(ウェブ)1と被接合部材(フランジ)2との間の隙間14にスペーサー15を挿入して隅肉溶接継手を作製した。
 また、得られた大型隅肉溶接継手9を用いて、図4に示す超大型構造モデル試験体を作製し、脆性亀裂伝播停止試験を実施した。
 超大型構造モデル試験体は、大型隅肉溶接継手9の被接合部材(フランジ)2の下方に仮付け溶接8で、被接合部材(フランジ)2と同じ板厚の鋼板を溶接した。
 なお、図4(b)に示す超大型構造モデル試験体では、被接合部材(フランジ)2の突合せ溶接継手部11を接合部材(ウェブ)1と直交するように作製し、また、図4(c)に示す超大型構造モデル試験体では、被接合部材(フランジ)2の突合せ溶接継手部11と接合部材(ウェブ)1の突合せ溶接継手部12とを交差させた。そして、機械ノッチ7の先端を突合せ溶接継手部11のBOND部、または溶接金属WMとなるように加工した。
 また、脆性亀裂伝播停止試験は、機械ノッチに打撃を与え脆性亀裂を発生させ、伝播した脆性亀裂が、隅肉溶接部で停止するか否かを調査した。いずれの試験も、応力100~283N/mm、温度:-10℃の条件で実施した。応力100N/mmは、船体に定常的に作用する応力の平均的な値であり、応力257N/mmは、船体に適用されている降伏強度390N/mm級鋼板の最大許容応力相当の値、応力283N/mmは、船体に適用されている降伏強度460N/mm級鋼板の最大許容応力相当の値である。温度-10℃は船舶の設計温度である。なお、(1a)式、(1b)式の右辺値の計算にあたっては、小数点以下を四捨五入して表示している。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 発明例ではいずれも、脆性亀裂が被接合部材(フランジ)を伝播したのち、隅肉溶接金属に突入して停止した。一方、比較例ではいずれも、脆性亀裂は隅肉溶接金属で停止することなく接合部材(フランジ)に伝播し、隅肉溶接金属で脆性亀裂の伝播を阻止することができなかった。
1  接合部材(ウェブ)
2  被接合部材(フランジ)
3  溶接脚長
4  未溶着部
5  隅肉溶接金属
7  機械ノッチ
8  仮付け溶接
9  大型隅肉溶接継手
11 被接合部材(フランジ)の突合せ溶接継手部
12 接合部材(ウェブ)の突合せ溶接継手部
13 溶着幅
14 隙間
15 スペーサー
16 未溶着部の寸法(未溶着部の幅B)
θ  交差角

Claims (3)

  1.  接合部材の端面が板厚50mm以上の被接合部材の表面に突合わされており、また前記接合部材と前記被接合部材とを接合する隅肉溶接継手を備える溶接構造体であって、
     前記隅肉溶接継手の溶接脚長および溶着幅は16mm超えであり、
     前記隅肉溶接継手における前記接合部材の端面と前記被接合部材の表面とを突合わせた面に、前記隅肉溶接継手の断面で該接合部材の板厚twの95%以上の未溶着部を有し、
     さらに、前記隅肉溶接継手の隅肉溶接金属について、
     前記溶接脚長および前記溶着幅のうちの小さい方の値をLとするとき、Lが20mm未満である場合には、前記隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と、前記被接合部材の板厚tfとが下記(1a)式の関係を満足し、
     Lが20mm以上である場合には、前記隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と、前記被接合部材の板厚tfと、Lとが下記(1b)式の関係を満足する、溶接構造体。
                     記
        vTrs ≦ -35-1.5(tf-75)   ‥‥(1a)
        vTrs ≦ -5L+65-1.5(tf-75) ‥‥(1b)
      ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、
          tf:被接合部材の板厚(mm)、
          L :溶接脚長および溶着幅のうちの小さい方の値(mm)
  2.  前記被接合部材が、前記接合部材と交差するように、突合せ溶接継手部を有している、請求項1に記載の溶接構造体。
  3.  前記接合部材が突合せ溶接継手部を有しており、前記接合部材が、前記接合部材の突合せ溶接継手部と前記被接合部材の突合せ溶接継手部とが交差するように、配設されている、請求項2に記載の溶接構造体。
PCT/JP2016/001359 2015-03-12 2016-03-10 溶接構造体 WO2016143354A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016546103A JP6509235B2 (ja) 2015-03-12 2016-03-10 溶接構造体
KR1020177027629A KR102001923B1 (ko) 2015-03-12 2016-03-10 용접 구조체
CN201680014644.3A CN107405713B (zh) 2015-03-12 2016-03-10 焊接构造体
PH12017550088A PH12017550088B1 (en) 2015-03-12 2017-08-30 Welded structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-049329 2015-03-12
JP2015049329 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016143354A1 true WO2016143354A1 (ja) 2016-09-15

Family

ID=56880399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001359 WO2016143354A1 (ja) 2015-03-12 2016-03-10 溶接構造体

Country Status (5)

Country Link
JP (2) JP6509235B2 (ja)
KR (1) KR102001923B1 (ja)
CN (1) CN107405713B (ja)
PH (1) PH12017550088B1 (ja)
WO (1) WO2016143354A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217515A1 (ja) * 2016-06-16 2017-12-21 Jfeスチール株式会社 脆性亀裂伝播停止特性に優れる溶接構造体
CN110877699A (zh) * 2019-11-19 2020-03-13 沪东中华造船(集团)有限公司 一种用于lng船液货舱船体反面加强筋焊接的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102249509B1 (ko) 2017-09-20 2021-05-06 주식회사 엘지화학 가이드 결합 구조를 포함한 배터리 모듈 및 그것을 포함한 배터리 팩
CN113226614B (zh) * 2018-12-26 2023-04-28 日本制铁株式会社 焊接结构体
WO2022265011A1 (ja) 2021-06-15 2022-12-22 Jfeスチール株式会社 溶接構造体
JP7293515B2 (ja) 2021-06-15 2023-06-19 Jfeスチール株式会社 溶接構造体
JP7299554B1 (ja) * 2021-07-26 2023-06-28 日本製鉄株式会社 溶接構造体、ならびにその設計方法および施工方法
CN113879484A (zh) * 2021-10-22 2022-01-04 上海外高桥造船有限公司 一种船舶阳台分段及其焊接方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132794A1 (ja) * 2006-05-12 2007-11-22 Jfe Steel Corporation 脆性亀裂伝播停止特性に優れる溶接構造体
JP2008023594A (ja) * 2006-06-23 2008-02-07 Ihi Marine United Inc 溶接構造体
JP2009061482A (ja) * 2007-09-07 2009-03-26 Ihi Marine United Inc 溶接構造体
JP5365761B2 (ja) * 2011-09-13 2013-12-11 Jfeスチール株式会社 溶接構造体
JP5395985B2 (ja) * 2011-09-13 2014-01-22 Jfeスチール株式会社 溶接構造体
JP5408396B1 (ja) * 2012-05-10 2014-02-05 Jfeスチール株式会社 溶接構造体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365761A (en) 1976-11-22 1978-06-12 Hitachi Shipbuilding Eng Co Inspection apparatus for flavor
JPS5395985A (en) 1977-01-31 1978-08-22 Nippon Soda Co Ltd Preparation of aminopyrazinecarboxylic acid
JPS548396A (en) 1977-06-21 1979-01-22 Hitachi Zosen Corp Method of constructing concrete floating body
JP4074524B2 (ja) 2003-01-31 2008-04-09 新日本製鐵株式会社 耐脆性破壊に優れた溶接構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132794A1 (ja) * 2006-05-12 2007-11-22 Jfe Steel Corporation 脆性亀裂伝播停止特性に優れる溶接構造体
JP2008023594A (ja) * 2006-06-23 2008-02-07 Ihi Marine United Inc 溶接構造体
JP2009061482A (ja) * 2007-09-07 2009-03-26 Ihi Marine United Inc 溶接構造体
JP5365761B2 (ja) * 2011-09-13 2013-12-11 Jfeスチール株式会社 溶接構造体
JP5395985B2 (ja) * 2011-09-13 2014-01-22 Jfeスチール株式会社 溶接構造体
JP5408396B1 (ja) * 2012-05-10 2014-02-05 Jfeスチール株式会社 溶接構造体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217515A1 (ja) * 2016-06-16 2017-12-21 Jfeスチール株式会社 脆性亀裂伝播停止特性に優れる溶接構造体
CN110877699A (zh) * 2019-11-19 2020-03-13 沪东中华造船(集团)有限公司 一种用于lng船液货舱船体反面加强筋焊接的方法

Also Published As

Publication number Publication date
KR20170121278A (ko) 2017-11-01
JPWO2016143354A1 (ja) 2017-04-27
CN107405713B (zh) 2019-11-05
PH12017550088A1 (en) 2018-02-12
CN107405713A (zh) 2017-11-28
JP6509235B2 (ja) 2019-05-08
KR102001923B1 (ko) 2019-07-19
JP6744274B2 (ja) 2020-08-19
JP2018039052A (ja) 2018-03-15
PH12017550088B1 (en) 2018-02-12

Similar Documents

Publication Publication Date Title
JP6744274B2 (ja) 溶接構造体
JP5395985B2 (ja) 溶接構造体
JP5408396B1 (ja) 溶接構造体
EP2018929B1 (en) Welded structure excellent in brittle-cracking propagation stopping characteristics
JP5365761B2 (ja) 溶接構造体
JP6615215B2 (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
JP7293515B2 (ja) 溶接構造体
JP6720106B2 (ja) 溶接構造体
JP6251463B1 (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
JP5679336B2 (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
JP2022083554A (ja) 溶接構造体の脆性亀裂伝播停止性能の評価方法
JP7195503B1 (ja) 溶接構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016546103

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12017550088

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027629

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16761327

Country of ref document: EP

Kind code of ref document: A1