WO2017217516A1 - 脆性亀裂伝播停止特性に優れる溶接構造体 - Google Patents

脆性亀裂伝播停止特性に優れる溶接構造体 Download PDF

Info

Publication number
WO2017217516A1
WO2017217516A1 PCT/JP2017/022213 JP2017022213W WO2017217516A1 WO 2017217516 A1 WO2017217516 A1 WO 2017217516A1 JP 2017022213 W JP2017022213 W JP 2017022213W WO 2017217516 A1 WO2017217516 A1 WO 2017217516A1
Authority
WO
WIPO (PCT)
Prior art keywords
web
flange
welded
doubler
fillet
Prior art date
Application number
PCT/JP2017/022213
Other languages
English (en)
French (fr)
Inventor
恒久 半田
聡 伊木
大井 健次
昌信 豊田
昇 木治
Original Assignee
Jfeスチール株式会社
ジャパンマリンユナイテッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, ジャパンマリンユナイテッド株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020197000921A priority Critical patent/KR102258423B1/ko
Priority to CN201780036899.4A priority patent/CN109311127B/zh
Priority to JP2017546748A priority patent/JP6615215B2/ja
Publication of WO2017217516A1 publication Critical patent/WO2017217516A1/ja
Priority to PH12018502635A priority patent/PH12018502635A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • B63B73/43Welding, e.g. laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts

Definitions

  • the present invention relates to a welded steel structure welded using a thick steel plate, such as a large container ship or a bulk carrier, and more particularly, the propagation of a brittle crack generated from a thick steel plate base material or a welded joint.
  • the present invention relates to a welded structure excellent in brittle crack propagation stopping characteristics, which can be stopped before reaching a large-scale fracture of an object.
  • Container ships and bulk carriers have a structure that has few partition walls in the hold and a large opening at the top of the ship, for example, unlike tankers, to improve loading capacity and cargo handling efficiency. Yes. Therefore, in container ships and bulk carriers, it is necessary to increase the strength or thickness of the hull skin, in particular.
  • TEU wenty feet Equivalent Unit
  • TEU represents the number of containers converted into a 20-foot container and represents an indicator of the loading capacity of a container ship.
  • thick steel plates with a thickness of 50 mm or more and a yield strength of 390 N / mm class 2 or more tend to be used.
  • Non-Patent Document 1 reports the results of an experimental study on the brittle crack propagation behavior of welds in steel plates for shipbuilding with a thickness of less than 50 mm.
  • this non-patent document 1 the propagation path and propagation behavior of a brittle crack forcibly generated in a welded portion are experimentally investigated, and if the fracture toughness of the welded portion is ensured to some extent.
  • a plurality of examples in which brittle cracks propagate along the welded part have been confirmed. This suggests that there is no possibility that brittle fracture will propagate straight along the weld.
  • Non-Patent Document 2 For this reason, in a hull structure to which a thick high-strength steel plate having a thickness of 50 mm or more is applied, ensuring safety is a big problem. In addition, Non-Patent Document 2 also points out that a thick steel plate having special brittle crack propagation stop characteristics is required in order to stop the propagation of the generated brittle cracks.
  • Patent Document 1 in a welded structure that is preferably a hull outer plate having a thickness of 50 mm or more, an aggregate is arranged so as to intersect the butt weld, and fillet welding is performed. A joined welded structure is described.
  • the surface layer portion and the back layer portion have an average equivalent particle diameter of 0.5 to 5 ⁇ m over a thickness of 3 mm or more, and are parallel to the plate thickness surface.
  • a steel sheet having a microstructure with an X-ray plane intensity ratio of (100) crystal planes of 1.5 or more is used.
  • Patent Document 2 describes a welded structure having a fillet welded joint formed by fillet welding a joining member (web) to a member to be joined (flange) and having excellent brittle crack propagation stop characteristics. .
  • an unwelded portion is left on the butt surface of the web in the fillet welded joint cross section with the flange, the width of the unwelded portion, and the left and right sides of the fillet welded portion.
  • the width of the unwelded portion is adjusted so that the ratio of the leg length to the sum of the web plate thickness, X, satisfies the brittle crack propagation stop performance Kca of the member to be joined (flange) and a special relational expression.
  • Patent Documents 3 to 5 also describe a welded structure having a fillet welded joint obtained by welding a joining member (web) to a member to be joined (flange) and having excellent brittle crack propagation stopping characteristics. ing.
  • the end face of a joining member is abutted against the surface of a member to be joined having a plate thickness of 50 mm or more, and at least a welding leg length or welding width formed by joining the joining member and the member to be joined by fillet welding.
  • One side is a welded structure having a fillet welded joint of 16 mm or less, and a cross-section of the fillet welded joint is formed on the surface where the end face of the joining member in the fillet welded joint and the surface of the joined member meet.
  • the Charpy impact test fracture surface transition temperature vTrs of the fillet weld metal in the fillet welded joint is related to the plate thickness tf of the joined member.
  • Patent Document 4 discloses a welding leg length or welding width in which an end face of a joining member is abutted against a surface of a joined member having a plate thickness of 50 mm or more and the joining member and the joined member are joined by fillet welding.
  • a cross-section of the fillet welded joint is a welded structure having at least one fillet welded joint of 16 mm or less, where the end face of the joining member in the fillet welded joint and the surface of the joined member are abutted.
  • the welded material has an unwelded portion of 95% or more of the plate thickness tw of the joining member, and the Charpy impact test fracture surface transition temperature vTrs of the fillet weld metal in the fillet welded joint is equal to the plate thickness tf of the joined member.
  • vTrs (° C) ⁇ ⁇ 1.5 tf + 90 and / or Charpy impact test temperature of fillet weld metal absorbed energy vE ⁇ 20 (J) at ⁇ 20 ° C.
  • tf of the joined member is the thickness tf of the joined member in relation to, vE -20 in case of 50 ⁇ tf (mm) ⁇ 53 5.75, satisfies vE -20 (J) ⁇ 2.75tf- 140 in the case of tf (mm)> 53, has a fillet weld metal, added bonding member, the brittle crack propagation stopping toughness Kca shared Temperature Describes a welded structure composed of a steel plate of 2500 N / mm 2/3 or more. And by setting it as such a welded structure, it is supposed that a brittle crack can be stopped by a fillet welded part or the base material of a joining member.
  • Patent Document 5 discloses a welding leg length or welding width in which an end surface of a joining member is abutted against a surface of a joined member having a plate thickness of 50 mm or more and the joining member and the joined member are joined by fillet welding.
  • At least one of which is a welded structure having a fillet welded joint of 16 mm or less, wherein both the joining member and the joined member have a butt weld joint, and the weld metal of the butt weld joint is vTrs ⁇ 65 ° C or less and / or toughness of 140J or more at vE- 20 , the weld end surface of the butt weld joint of the joint member in the fillet welded joint is the weld surface of the butt weld joint of the member to be joined And the butt-welded surface has an unwelded portion of 95% or more of the plate thickness tw of the joining member at the cross-section of the butt-welded joint of the fillet welded joint.
  • Charpy impact test fracture surface transition temperature vTrs In relation to the thickness tf of the member to be joined, vTrs (° C.) ⁇ ⁇ 1.5 tf + 90 and / or test temperature of Charpy impact test of fillet weld metal: absorbed energy at ⁇ 20 ° C. vE ⁇ 20 (J ) Is in relation to the plate thickness tf of the member to be joined, when 50 ⁇ tf (mm) ⁇ 53, vE ⁇ 20 ⁇ 5.75, and when tf (mm)> 53, vE ⁇ 20 (J ) Welded structures with fillet weld metal satisfying ⁇ 2.75 tf-140 are described.
  • a brittle crack can be stopped by the fillet weld part or the base material of a joining member. Further, by adopting such a welded structure, a brittle crack generated from the welded member welded portion, or a brittle crack generated from the welded member welded portion, the fillet welded portion or the welded portion of the joined member or the joined member It is said that propagation can be prevented at the welded part.
  • Japanese Patent Laid-Open No. 2004-232052 JP 2007-326147 A Japanese Patent No.5395985 Japanese Patent No.53657661 Japanese Patent No. 5408396
  • the aggregate which is a reinforcing material used in the technique described in Patent Document 1
  • Patent Document 2 indicates that brittle cracks generated in a joining member (hereinafter also referred to as a web), structural discontinuity, and brittle crack propagation stop of a joined member (hereinafter also referred to as a flange). It is a technology that tries to prevent it in combination with performance.
  • Non-Patent Document 3 in general, a brittle crack generated in a member to be welded (flange) of a fillet welded joint is stopped in the joint member (web) and stopped in the joint member (web). It has been experimentally confirmed that it is difficult compared to stopping propagation of the brittle crack that has been caused by the member to be joined (flange).
  • the joining member (web) is more than the case where the fracture driving force (stress intensity factor) when a crack enters the T-joint part enters the member to be joined (flange). ) Is likely to be larger.
  • the technique described in Patent Document 2 is insufficient in the brittle crack propagation stop characteristic of the web and the like, and thus is a sufficient technique that can stop the brittle crack generated in the flange from propagating on the web. I can't say there is. That is, the technique described in Patent Document 2 occurs on the strong deck (corresponding to a flange) of a large container ship, which is assumed in the “Brittle Crack Arrest Design Guidelines” (established in September 2009) of the NK class, for example. It cannot be said that it has sufficient crack propagation stop characteristics for the case where the brittle cracks propagated to the hatch side combing (corresponding to the web).
  • the leg length of the fillet welded part is large in the field work, so ensuring the strength of the fillet welded part (securing the fillet leg length)
  • To achieve both brittle crack prevention performance (restricted to fillet leg length of 16 mm or less) requires a lot of labor for construction management at the site and increases additional costs such as rework.
  • the present invention solves the above-mentioned problems of the prior art, and both the propagation of the brittle crack generated in the flange to the web and the propagation of the brittle crack generated in the web to the flange lead to large-scale fracture. It is an object to provide a welded structure excellent in brittle crack propagation stopping characteristics that can be stopped or stopped before.
  • the present inventors diligently studied a method for reducing the variation in the leg length of the fillet weld in the construction of the fillet weld that stops the brittle crack.
  • the basic welded structure is changed from a conventional fillet welded structure to a fillet welded structure with a doubler member in which a doubler member is disposed between the web and the flange.
  • I came up with the idea of carrying out the joint to attach the inside of the factory.
  • the variation in the leg length of the fillet weld is easily within a predetermined range, which leads to a significant reduction in on-site execution costs.
  • the present inventors further studied various factors affecting the brittle crack propagation stop characteristics in the fillet welded structure with a doubler member.
  • a structural discontinuity is ensured on the overlapping surface of the flange and the doubler member, and the brittle crack propagation stopping performance (arrest performance) of the doubler member I came up with the idea that improvement is essential.
  • the arrest performance of the doubler member depends on the length of the structural discontinuity (unwelded width). I also found out that there was a need for performance.
  • the present inventors have a ratio Y of the unwelded portion remaining on the overlapping surface of the flange and the doubler member. It was found that (%) and the arrest performance of the doubler member must satisfy a specific relationship.
  • the ratio Y of the unwelded portion is Y (%): ⁇ (width of unwelded portion of overlap surface of doubler member and flange in joint cross section of fillet welded joint) / (sum of plate width of doubler member and leg length of left and right fillet welded portion) ⁇ ⁇ 100 Defined in As a specific relationship, the following equation (2) Y (%) ⁇ ⁇ 6900 ⁇ (Kca) T ⁇ / 85 (2) (Where, (Kca) T : brittle crack propagation stop toughness of doubler member at service temperature T (° C) (N / mm 3/2 )) I found.
  • a structural discontinuity is ensured at the abutment surface between the web and the doubler member, and the doubler member's brittle crack propagation stopping performance (arrest performance) is improved. I thought that would be necessary as well. Furthermore, since the propagation of brittle cracks becomes easier when the length of the structural discontinuity (width of the unwelded portion) becomes shorter, the arrest performance of the doubler member is reduced by the length of the structural discontinuity, that is, the unwelded portion. It was also found that the performance according to the width is necessary. It has also been found that if the doubler member has excellent arrest performance, the unwelded portion may not remain.
  • the ratio X (%) of the unwelded portion is X (%): ⁇ (width of unwelded portion of butt surface of doubler member and web in joint cross section of fillet welded joint) / ((sum of web thickness and leg length of left and right fillet welded portion) ⁇ ⁇ 100 Defined in X (%) includes 0%.
  • the doubler member may be austenitic steel (high Mn steel, austenitic stainless steel, etc.) or low-temperature nickel steel sheet (3.5% Ni steel, 5% Ni steel, 7% Ni steel, 9% Ni steel).
  • austenitic steel high Mn steel, austenitic stainless steel, etc.
  • low-temperature nickel steel sheet 3.5% Ni steel, 5% Ni steel, 7% Ni steel, 9% Ni steel.
  • the gist of the present invention is as follows. (1) A welded structure including a doubler member at a butt portion between a web and a flange, A welded structure excellent in brittle crack propagation stopping characteristics in which the doubler member is fillet welded to the web and the flange.
  • Ratio X (%) (including 0%) of the unwelded portion defined below, remaining on the butt surface of the doubler member and the web in the joint cross section of the fillet welded joint, and the service temperature 4.
  • the propagation of a brittle crack generated in a flange made of a thick steel plate having a plate thickness of 50 mm or more, and further a plate thickness exceeding 80 mm, which has been conventionally difficult, to the web, and the flange of a brittle crack generated in the web Propagation to and / or both can be halted or stopped before massive destruction. Therefore, according to the present invention, it is possible to avoid the risk of large-scale brittle fracture such as hull separation in steel structures, particularly large container ships and bulk carriers, and to ensure the safety of the hull structure. It has a great effect and has a remarkable industrial effect.
  • the present invention by adjusting the size of the doubler member and the toughness of the fillet weld metal at the time of construction, it is easily brittle without using a special steel plate and without sacrificing safety. There is also an effect that it is possible to manufacture a welded structure having excellent crack propagation stopping characteristics.
  • the doubler having the brittle crack propagation stop characteristic according to the dimension of the unwelded portion while adjusting the size of the unwelded portion remaining on the overlapping surface between the doubler member and the flange during construction.
  • the welded structure according to the present invention is a welded structure including a doubler member 10 at a butt portion between the web 1 and the flange 2.
  • the surface of the doubler member 10 is superposed on the surface of the flange 2, the doubler member 10 and the flange 2 are joined by fillet welding, and the end surface of the web 1 is abutted against the surface of the doubler member 10.
  • the web 1, the flange 2 and the doubler member 10 are all thick steel materials having a plate thickness of 50 mm or more.
  • the flange 2 and the doubler member 10 are joined by fillet welding
  • the doubler member 10 and the web 1 are joined by fillet welding
  • the unwelded part 4 which is a structural discontinuity part is made to exist in the overlapping surface of the flange 2 and the tabular member 10, and / or the abutting surface of the doubler member 10 and the web 1.
  • FIG. 1A shows a case where the web 1 is attached upright with respect to the flange 2, but the present invention is not limited to this.
  • the web 1 may be attached to the flange 2 while being inclined by an angle ⁇ .
  • the unwelded part height (gap) 14 of the overlapping surface of the doubler member 10 and the flange 2 is good also as 5 mm or more.
  • the overlapping surface of the flange 2 and the doubler member 10 and the abutting surface of the doubler member 10 and the web 1 serve as propagation surfaces of brittle cracks. Therefore, in the present invention, the unwelded portion 4 is present on the overlapping surface of the flange 2 and the doubler member 10 and / or the butting surface of the doubler member 10 and the web 1. Due to the presence of the unwelded portion 4, the energy release rate (crack growth driving force) at the tip of the brittle crack that has propagated through the web 1 or the flange 2 is reduced, and the brittle crack stops at the overlapping surface or the butt surface. It becomes easy to do. In the present invention, it is sufficient that the unwelded portion 4 is left on either the butt surface when the approaching direction of the brittle crack is from the web or on the overlapping surface when the direction from the flange is from the flange. There is a case.
  • the doubler member 10 is disposed between the flange 2 and the web 1, and the unwelded portion 4 remains as described above, and the doubler member 10 retains a predetermined or higher arrest performance. A member. Thereby, the brittle crack stops at the doubler member 10.
  • a brittle crack occurs in a steel plate base material part with few defects. Many past brittle fracture accidents have occurred in welds. Therefore, for example, a steel plate in which the flange 2 as shown in FIG. 2 is joined by the butt weld joint portion 11 is used, and the web 1 is fillet welded so as to intersect the weld portion (butt weld joint portion) 11 of the butt weld joint.
  • the fillet welded joint in order to prevent the propagation of the brittle crack generated from the butt welded joint portion 11, it is important to first have a discontinuity in the structure.
  • the unwelded part 4 is made to exist in the overlapping surface of the flange 2 and the doubler member 10 in a fillet weld part.
  • 2A shows the appearance of the fillet weld joint
  • FIG. 2B shows the joint cross-sectional shape of the butt weld joint portion 11.
  • the web 1 is a steel plate having a butt weld joint 12
  • the flange 2 is a steel plate having a butt weld joint 11
  • the butt weld joint 11 of the flange 2 and the web 1 are joined.
  • a discontinuous structure is also used. It is important to exist.
  • the unwelded part 4 exists in the overlapping surface of the flange 2 and the doubler member 10 in a fillet weld part, and the butt
  • the unwelded portion 4 between the web 1 and the doubler member 10 is not necessarily required when the brittle crack propagation stop toughness of the doubler member 10 is 5900 N / mm 3/2 or more.
  • 3A shows the appearance of the fillet welded joint
  • FIG. 3B shows the joint cross-sectional shape of the butt weld joint parts 11 and 12.
  • a welded structure may be manufactured by butt welding flange steel plates and web steel plates, and fillet welding the obtained butt weld joints via a doubler member. Also, a set of web steel sheets before butt welding is tack welded to the doubler member on the flange surface, then the web steel sheets are butt welded together, and the resulting butt weld joint is welded to the flange to produce a welded structure. May be.
  • the ratio Y (%) of the unwelded portion remaining on the overlapping surface of the flange and the doubler member in order to prevent the brittle crack generated from the flange from propagating to the web within the doubler member is the following formula (2): Y (%) ⁇ ⁇ 6900- (Kca) T ⁇ / 85 (2) (Where, (Kca) T: brittle crack propagation stop toughness of doubler member at service temperature T (° C.) (N / mm 3/2 )) Adjust to satisfy.
  • the ratio Y (%) is Y (%): ⁇ (width of unwelded portion B F of overlap surface of doubler member and flange in fillet welded joint section) / (plate width D W of doubler member and left and right fillet welds Leg length l F ) ⁇ ⁇ 100
  • the width of the unwelded portion 4 of the overlapping surface of the doubler member and the flange in the joint cross section of the fillet welded joint is B F
  • the leg length of the fillet welded portion is l F.
  • the brittle crack propagation stop toughness Kca of the doubler member to be used is the service temperature T obtained in advance by conducting a temperature gradient type brittle crack propagation stop test (ESSO test) on the doubler member (steel plate).
  • the brittle crack propagation stop toughness Kca at (° C.) is used.
  • the ratio X (%) of the unwelded portion remaining on the butt surface between the web and the doubler member, and the arrester performance of the doubler member And the following formula (1) X (%) ⁇ ⁇ 5900 ⁇ (Kca) T ⁇ / 85 (1) (Where, (Kca) T : brittle crack propagation stop toughness of doubler member at service temperature T (° C) (N / mm 3/2 )) Adjust to satisfy.
  • the ratio X (%) is X (%): ⁇ (width B W of unwelded portion of butt surface between doubler member and web in fillet weld joint cross section) / ((web thickness t W and leg length of left and right fillet welds) l Sum of W ) ⁇ ⁇ 100 Defined in
  • the ratio X (%) of the unwelded portion and the brittle crack propagation stop toughness (Kca) T of the doubler member satisfy the formula (1), and the brittleness
  • the ratio Y (%) of the unwelded portion and the brittle crack propagation stop toughness (Kca) T of the doubler member are adjusted so as to satisfy the formula (2), The brittle crack that has propagated and propagated can be stopped or stopped by the doubler member.
  • the ratios X and Y of the unwelded portion and the brittle crack propagation stop toughness (Kca) T of the doubler member to be used are satisfied so that the expressions (1) and (2) can be satisfied at the same time. It is preferable to adjust.
  • the doubler member may be austenitic steel (high Mn steel, austenitic stainless steel, etc.) or low-temperature nickel steel sheet (3.5% Ni steel, 5% Ni steel, 7% Ni steel, 9% Ni). Steel), and in this case, the formula (1) and / or the formula (2) may not be satisfied.
  • Austenitic steel high Mn steel, austenitic stainless steel, etc.
  • the details of the chemical components are not particularly limited, but the crystal structure at the service temperature ( ⁇ 10 ° C.) needs to be austenite.
  • low-temperature nickel steel sheets (3.5% Ni steel, 5% Ni steel, 7% Ni steel, 9% Ni steel) have a brittle fracture crystal structure, but at the hull design temperature of ⁇ 10 ° C. It has extremely high toughness and can prevent the propagation of long brittle cracks.
  • a nickel steel steel plate for a low-temperature pressure vessel specified in JIS G 3127 may be used.
  • the height (gap) of the unwelded portion of the overlapping surface of the doubler member and the flange may be 5 mm or more.
  • the welded structure of the present invention having the above fillet welded joint is, for example, a hull structure in which a hull outer plate of a ship is a flange and a bulkhead is a web, or a deck is a flange and a hatch is a web. It is applicable to.
  • a thick steel plate having the thickness shown in Table 1-1 and Table 1-2 is used as a web and a flange, and a doubler member shown in Table 1-1 and Table 1-2 is provided at a butt portion of the web and the flange.
  • 4 (a), (b), and (c) show cases where brittle cracks are generated and propagated from the flange
  • FIGS. 5 (a), (b), and (c) show cases where brittle cracks are generated and propagated from the web. The case is assumed.
  • the unwelded portion 4 as shown in FIG. 1A is provided on the overlapping surface of the doubler member 10 and the flange 2 with the unwelded width B F ,
  • the plate width D W of the doubler member 10 and the leg length l F of the left and right fillet welds were changed, and the ratio Y of the unwelded part was changed to be present.
  • the unwelded portion 4 as shown in FIG. 1A is provided on the overlapping surface of the doubler member 10 and the flange 2 with the unwelded width B F .
  • the doubler member 10 in the fillet welded joint in the produced large-sized welded joint 9, a thick steel plate having (Kca) ⁇ 10 ° C. of 2500 to 11000 (N / mm 3/2 ) was used as the doubler member 10. Furthermore, in some welded structures, as shown in FIG. 1C, the unwelded portion height (gap) 14 of the overlapping surface of the doubler member 10 and the flange 2 was set to 5 mm or more.
  • the flange is a thick steel plate (base material only) (FIG. 4A), a thick steel plate having a butt weld joint (FIGS. 4B and 4C), and the web is a thick steel plate ( Base material only) (FIGS. 4A and 4B), a thick steel plate having a butt weld joint (FIG. 4C).
  • the web is a thick steel plate (base material only) (FIG. 5 (a)), the thick steel plate (FIG. 5 (b), (c)) having a butt weld joint
  • the flange is a thick steel plate (base material). Only) (FIGS. 5A and 5B), a thick steel plate having a butt-welded joint (FIG. 5C).
  • the butt weld joint 11 was produced by one-pass high heat input electrogas arc welding (one electrode and two electrodes EGW) or multilayer carbon dioxide arc welding (multilayer CO 2 ).
  • the butt weld joint 12 was produced by seg arc welding (1 electrode and 2 electrode SEGARC) or multilayer carbon dioxide arc welding (multilayer CO 2 ).
  • fillet welding between the doubler member 10 and the flange 2 is performed by changing the groove shape and welding conditions mainly by grooveless carbon dioxide arc welding, as shown in Tables 2-1 and 2-2.
  • leg l F of weld metal 5 the weld width W F was variously changed.
  • the groove shape and welding conditions are changed mainly by partial penetration carbon dioxide arc welding, as shown in Tables 2-1 and 2-2.
  • the leg length l W and the welding width W W of the meat weld metal 51 were variously changed.
  • the leg length and the welding width are average values on both the left and right sides.
  • brittle crack propagation stop test In the brittle crack propagation stop test, a mechanical notch was hit to generate a brittle crack, and it was investigated whether the propagated brittle crack stopped at the fillet weld. All tests were performed under the conditions of stress 100 to 283 N / mm 2 and temperature: ⁇ 10 ° C.
  • the stress 100N / mm 2 is the average value of the stress that constantly acts on the hull, and the stress 257N / mm 2 is equivalent to the maximum allowable stress of the yield strength 390N / mm class 2 steel plate applied to the hull.
  • the value, stress 283 N / mm 2 is a value corresponding to the maximum allowable stress of the yield strength 460 N / mm 2 grade steel plate applied to the hull.
  • the temperature –10 ° C is the design temperature of the ship.
  • the obtained results are shown in Tables 3 and 4.
  • Table 3 shows the results of a brittle crack propagation stop test when the web is a crack introduction part and Table 4 is the case where a flange is a crack introduction part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Optics & Photonics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

ウェブ(1)とフランジ(2)の突合せ部分にダブラー部材(10)を備えた溶接構造体とする。ダブラー部材表面にウェブ端面を突合せ、隅肉溶接によりウェブとダブラー部材とを接合し、フランジ表面とダブラー部材表面を重ね合わせ、隅肉溶接によりダブラー部材とを接合する。その際、隅肉溶接継手の継手断面における重ね合わせ面の未溶着部の幅と、ダブラー部材の板幅と左右の隅肉溶接部の脚長の和との比率Y(%)と、供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(Kca)T(N/mm3/2)との関係が、Y(%)≧{6900-Kca}/85 を満足するように調整する。これにより、フランジから発生した脆性亀裂の伝播をダブラー部材で阻止ないし停止することができる。

Description

脆性亀裂伝播停止特性に優れる溶接構造体
 本発明は、例えば、大型コンテナ船やバルクキャリアーなどの、厚鋼板を用いて溶接施工された溶接鋼構造物に係り、とくに厚鋼板母材あるいは溶接継手部から発生した脆性亀裂の伝播を、構造物の大規模破壊に至る前に停止させることができる、脆性亀裂伝播停止特性に優れる溶接構造体に関する。
 コンテナ船やバルクキャリアーは、積載能力の向上や荷役効率の向上等のため、例えば、タンカー等とは異なり、船倉内に仕切り壁が少なく、船上部の開口部を大きくとった構造を有している。そのため、コンテナ船やバルクキャリアーでは、特に船体外板を、高強度化または厚肉化する必要がある。
 また、コンテナ船は、近年、大型化し、6,000~22,000TEUといった大型船が建造されるようになってきている。ここに、TEU(Twenty feet Equivalent Unit)とは、長さ20フィートのコンテナに換算した個数を表し、コンテナ船の積載能力の指標を示している。このような船の大型化に伴い、船体外板は、板厚:50mm以上で、降伏強さ:390N/mm2級以上の厚鋼板が使用される傾向にある。
 船体外板となる鋼板は、近年、施工期間の短縮という観点から、例えばエレクトロガスアーク溶接等の大入熱溶接により突合せ溶接されることが多くなっている。このような大入熱溶接では、溶接熱影響部において大幅な靭性低下が生じやすく、溶接継手部からの脆性亀裂発生の一つの原因となっていた。
 船体構造においては、従来から安全性という観点から、万一、脆性破壊が発生した場合でも、脆性亀裂の伝播を大規模破壊に至る前に停止させ、船体分離を防止することが必要であるとされている。
 このような考え方を受けて、非特許文献1に、板厚50mm未満の造船用鋼板における溶接部の脆性亀裂伝播挙動についての実験的な検討結果が報告されている。
 この非特許文献1では、溶接部で強制的に発生させた脆性亀裂の伝播経路、伝播挙動を実験的に調査し、溶接部の破壊靱性がある程度確保されていれば、溶接残留応力の影響により脆性亀裂は溶接部から母材側に逸れてしまうことが多いという結果が記載されているが、溶接部に沿って脆性亀裂が伝播した例も複数例確認されている。このことは、脆性破壊が溶接部に沿って直進伝播する可能性が無いとは言い切れないことを示唆している。
 しかしながら、非特許文献1で適用した溶接と同等の溶接を板厚50mm未満の鋼板に適用して建造された船舶が何ら問題なく就航しているという多くの実績があることに加え、靱性が良好な鋼板母材(造船E級鋼など)は脆性亀裂を停止する能力を十分に保持しているとの認識から、とくに、造船用鋼材の溶接部の脆性亀裂伝播停止特性は船級規則等には要求されてこなかった。
 しかし、近年の6,000TEUを超える大型コンテナ船では、使用する鋼板の板厚は50mmを超え、板厚増大による破壊靱性の低下に加え、溶接入熱がより大きな大入熱溶接が採用されてきたことから、溶接部の破壊靭性が一層低下する傾向にある。このような厚肉大入熱溶接継手では、溶接部から発生した脆性亀裂が、母材側に反れずに直進し、また骨材等の鋼板母材部でも停止しない可能性があることが示されている(例えば非特許文献2)。このため、板厚50mm以上の厚肉高強度鋼板を適用した船体構造では、その安全性確保が大きな問題となっている。
 また、非特許文献2には、とくに発生した脆性亀裂の伝播停止のために、特別な脆性亀裂伝播停止特性を有する厚鋼板を必要とするとの指摘もある。
 このような問題に対し、例えば特許文献1には、好ましくは板厚50mm以上の船殻外板である溶接構造体において、突合せ溶接部に交差するように骨材を配置し、隅肉溶接で接合した溶接構造体が記載されている。
 この特許文献1に記載された技術では、骨材(補強材)として、表層部および裏層部で3mm以上の厚みにわたり0.5~5μmの平均円相当粒径を有しさらに板厚面に平行な面で(100)結晶面のX線面強度比が1.5以上である、ミクロ組織を有する鋼板を用いるとしている。このようなミクロ組織を有する鋼板を補強材として隅肉溶接した構造とすることにより、突合せ溶接継手部に脆性亀裂が発生しても、補強材である骨材で脆性破壊を停止でき、溶接構造体が破壊するような致命的な損傷を防止できるとしている。
 また、特許文献2には、接合部材(ウェブ)を被接合部材(フランジ)に隅肉溶接してなる隅肉溶接継手を備え、脆性亀裂伝播停止特性に優れた溶接構造体が記載されている。
 この特許文献2に記載された溶接構造体では、隅肉溶接継手断面におけるウェブの、フランジとの突合せ面に未溶着部を残存させ、その未溶着部の幅と、隅肉溶接部の左右の脚長とウェブ板厚との和との比、Xが、被接合部材(フランジ)の脆性亀裂伝播停止性能Kcaと特別な関係式を満足するように、未溶着部の幅を調整する。これにより、被接合部材(フランジ)として板厚:50mm以上の厚物材を用いたとしても、接合部材(ウェブ)で発生した脆性亀裂の伝播を、隅肉溶接部のウェブとフランジの突合せ面で停止させ、被接合部材(フランジ)への脆性亀裂の伝播を阻止することができるとしている。
 また、特許文献3~5にも、接合部材(ウェブ)を被接合部材(フランジ)に隅肉溶接してなる隅肉溶接継手を備え、脆性亀裂伝播停止特性に優れた溶接構造体が記載されている。
 特許文献3には、接合部材の端面を板厚50mm以上の被接合部材の表面に突合わせ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長または溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、隅肉溶接継手における接合部材の端面と被接合部材の表面とを突合わせた面に、隅肉溶接継手の断面で該接合部材の板厚twの95%以上の未溶着部を有し、さらに隅肉溶接継手における隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrsが、被接合部材の板厚tfとの関係で、vTrs≦-1.5tf+70を、および/または、隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃における吸収エネルギーvE-20(J)が、被接合部材の板厚tfとの関係で、vE-20≧2.75tf-105を満足する、隅肉溶接金属を有する溶接構造体が記載されている。
 そして、このような溶接構造体であれば、被接合部材で発生した脆性亀裂を、大規模破壊に至る前に隅肉溶接金属で伝播阻止することができるとしている。
 また、特許文献4には、接合部材の端面を板厚50mm以上の被接合部材の表面に突合わせ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長または溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、隅肉溶接継手における接合部材の端面と被接合部材の表面とを突合わせた面に、隅肉溶接継手の断面で該接合部材の板厚twの95%以上の未溶着部を有し、さらに隅肉溶接継手における隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrsが、被接合部材の板厚tfとの関係で、vTrs(℃)≦-1.5tf+90を、および/または、隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃における吸収エネルギーvE-20(J)が、被接合部材の板厚tfとの関係で、50≦tf(mm)≦53の場合にはvE-20≧5.75、tf(mm)>53の場合にはvE-20(J)≧2.75tf-140を満足する、隅肉溶接金属を有し、加えて接合部材を、脆性亀裂伝播停止靭性Kcaが共用温度で2500N/mm2/3以上である鋼板で構成する、溶接構造体が記載されている。
 そして、このような溶接構造体とすることにより、脆性亀裂は、隅肉溶接部または接合部材の母材で伝播停止できるとしている。
 また、特許文献5には、接合部材の端面を板厚50mm以上の被接合部材の表面に突合わせ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長または溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、接合部材および被接合部材をともに突合せ溶接継手部を有する部材とし、突合せ溶接継手部の溶接金属が、vTrsで-65℃以下、および/または、vE-20で140J以上の靭性を有し、隅肉溶接継手における接合部材の突合せ溶接継手部の溶接部端面を、被接合部材の突合せ溶接継手部の溶接部表面に突合わせ、突合わせた面に、隅肉溶接継手の突合せ溶接継手断面で該接合部材の板厚twの95%以上の未溶着部を有し、さらに隅肉溶接継手における隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrsが、被接合部材の板厚tfとの関係で、vTrs(℃)≦-1.5tf+90を、および/または、隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃における吸収エネルギーvE-20(J)が、被接合部材の板厚tfとの関係で、50≦tf(mm)≦53の場合には、vE-20≧5.75、tf(mm)>53の場合には、vE-20(J)≧2.75tf-140を満足する、隅肉溶接金属を有する、溶接構造体が記載されている。
 そして、このような溶接構造体とすることにより、脆性亀裂は、隅肉溶接部または接合部材の母材で停止できるとしている。
 また、このような溶接構造体とすることにより、被接合部材溶接部から発生した脆性亀裂、または接合部材溶接部から発生した脆性亀裂を、隅肉溶接部あるいは接合部材の溶接部または被接合部材の溶接部で伝播阻止することができるとしている。
特開2004-232052号公報 特開2007-326147号公報 特許5395985号公報 特許5365761号公報 特許5408396号公報
日本造船研究協会第147研究部会:「船体用高張力鋼板大入熱継手の脆性破壊強度評価に関する研究」、第87号(1978年2月),p.35~53、日本造船研究協会 山口欣弥ら:「超大型コンテナ船の開発―新しい高強度極厚鋼板の実用―」、日本船舶海洋工学会誌、第3号(2005)、p.70~76、平成17年11月 日本造船研究協会第169委員会報告(「船体構造の破壊管理制御設計に関する研究―報告書―」、(1979)、p.118~136、日本造船研究協会第169委員会)
 しかしながら、特許文献1に記載された技術で使用する、補強材である骨材は、所望の組織を形成させた鋼板とするために、複雑な工程を必要とし、生産性が低下し、安定して所望の組織を有する鋼板を確保することが難しいという問題があった。
 また、特許文献2に記載された技術は、接合部材(以下、ウェブともいう)で発生した脆性亀裂を、構造の不連続性と、被接合部材(以下、フランジともいう)の脆性亀裂伝播停止性能との組合せで、阻止しようとする技術である。しかし、非特許文献3に示されるように、一般に、隅肉溶接継手の被接合部材(フランジ)で発生した脆性亀裂を接合部材(ウェブ)で伝播停止させることは、接合部材(ウェブ)で発生した脆性亀裂を被接合部材(フランジ)で伝播停止させることに比べて、難しいことが実験的に確認されている。
 この理由は明確には解明されていないが、一因としてT継手部に亀裂が突入するときの破壊駆動力(応力拡大係数)が被接合部材(フランジ)に突入する場合よりも接合部材(ウェブ)に突入する場合のほうが大きくなることが考えられる。
 このようなことから、特許文献2に記載された技術では、ウェブの脆性亀裂伝播停止特性等が不十分であるため、フランジで発生した脆性亀裂をウェブで伝播停止させることができる十分な技術であるとは言えない。すなわち、特許文献2に記載された技術は、例えば、NK船級の「脆性亀裂アレスト設計指針」(2009年9月制定)で想定されている、大型コンテナ船の強力甲板(フランジに相当)で発生した脆性亀裂がハッチサイドコーミング(ウェブに相当)に伝播するようなケースに対して、十分な亀裂伝播停止特性を有しているとはいえない。
 さらに、特許文献3~5に記載された技術では、隅肉溶接脚長(または溶着幅)を16mm以下に制限する必要があるため、隅肉溶接部強度確保の観点からウェブおよびフランジの適用最大板厚は80mmが限界であった。しかし、最近の大型コンテナ船では、部材の極厚化がさらに進み、板厚100mmの鋼材が適用されつつある。このような80mmを超える厚肉部材の場合には、特許文献3~5に記載された技術を適用することがほぼ不可能という問題があった。
 また、部材の板厚が80mm未満の場合であっても、現場での実施工においては、隅肉溶接部の脚長のバラツキが大きいため、隅肉溶接部の強度確保(隅肉脚長確保)と脆性亀裂阻止性能の確保(隅肉脚長16mm以下に制限)とを両立させることは、現場での施工管理上多大な労力を要すると共に、手直し等の追加コストがかさむという問題があった。
 本発明は、上記した従来技術の問題を解決するもので、フランジに発生した脆性亀裂のウェブへの伝播、およびウェブに発生した脆性亀裂のフランジへの伝播のいずれをも、大規模破壊に至る前に、停止あるいは阻止することができる、脆性亀裂伝播停止特性に優れた溶接構造体を提供することを目的とする。
 本発明者らは、上記した目的を達成するために、脆性亀裂を停止させる隅肉溶接部の施工において、隅肉溶接部の脚長のバラツキを少なくする方策について、鋭意検討した。その結果、基本溶接構造を従来の隅肉溶接構造から、ウェブとフランジとの間に、ダブラー部材を配設したダブラー部材付き隅肉溶接構造としたうえで、フランジ表面に隅肉溶接によりダブラー部材を取り付ける接合を工場内で実施することに想到した。これにより、隅肉溶接部の脚長のばらつきを所定の範囲内とすることが容易となり、現場での実施工コストの大幅な低減に繋がることを知見した。
 フランジ表面に隅肉溶接によりダブラー部材を取り付ける接合を工場内で実施することにより、施工管理が容易でない現場で行う、ウェブとダブラー部材との接合は、ウェブの端面をダブラー部材の表面と突合せて、施工管理の容易な溶接条件、すなわち脚長管理や入熱管理の条件が緩和された隅肉、部分溶込み、あるいは完全溶込み等で施工できるようになることを知見した。
 また、本発明者らは、さらに、ダブラー部材付き隅肉溶接構造における脆性亀裂伝播停止特性に及ぼす各種要因について鋭意検討した。
 その結果、フランジから発生した脆性亀裂の伝播を阻止ないし停止するには、フランジとダブラー部材との重ね合せ面に構造不連続部を確保すると共に、ダブラー部材の脆性亀裂伝播停止性能(アレスト性能)の向上が必須となることに想到した。
 そしてさらに、構造不連続部の長さ、すなわち未溶着幅が短くなると、脆性亀裂の伝播が容易となるため、ダブラー部材のアレスト性能を構造不連続部の長さ(未溶着幅)に応じた性能とする必要があることも知見した。
 さらに、本発明者らは、フランジから発生した脆性亀裂をウェブに伝播させることなく、ダブラー部材内で阻止させるためには、フランジとダブラー部材との重ね合わせ面に残存する未溶着部の比率Y(%)と、ダブラー部材のアレスト性能とが、特定関係を満足することが必要であることを見出した。なお、未溶着部の比率Yは、
 Y(%):{(隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部の幅)/(ダブラー部材の板幅と左右の隅肉溶接部の脚長の和)}×100
で定義した。
 そして、特定関係として、次(2)式
 Y(%)≧{6900-(Kca)T}/85  ‥‥(2)
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
を見出した。
 一方、ウェブから発生した脆性亀裂の伝播を阻止ないし停止するには、ウェブとダブラー部材との突合せ面に構造不連続部を確保すると共に、ダブラー部材の脆性亀裂伝播停止性能(アレスト性能)の向上が同様に必須となることにも想到した。
 そしてさらに、構造不連続部の長さ(未溶着部の幅)が短くなると、脆性亀裂の伝播が容易となるため、ダブラー部材のアレスト性能を構造不連続部の長さ、すなわち未溶着部の幅に応じた性能とする必要があることも知見した。なお、ダブラー部材のアレスト性能が優れていれば、未溶着部の残存も必要ない場合もあることも知見した。
 そして、本発明者らは、ウェブから発生した脆性亀裂をフランジに伝播させることなく、ダブラー部材内で阻止させるためには、ウェブとダブラー部材との突合せ面に残存する未溶着部の比率X(%)と、ダブラー部材のアレスト性能とが、特定関係を満足することが必要であることを見出した。なお、未溶着部の比率X(%)は、
 X(%):{(隅肉溶接継手の継手断面におけるダブラー部材とウェブとの突合せ面の未溶着部の幅)/((ウェブの板厚と左右の隅肉溶接部の脚長の和)}×100
で定義した。なお、X(%)は0%を含むものとする。
 そして、特定関係として、次(1)式
 X(%)≧{5900-(Kca)T}/85  ‥‥(1)
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
を見出した。
 また、前記ダブラー部材が、オーステナイト鋼(高Mn鋼、オーステナイト系ステンレス鋼など)または低温用ニッケル鋼板(3.5%Ni鋼、5%Ni鋼、7%Ni鋼、9%Ni鋼)であれば、前記(1)式および/または(2)式を満足しなくとも、ウェブまたはフランジから伝播してきた長大脆性亀裂を前記ダブラー鋼板内にて停止させることができることを見出した。
 さらに、前記溶接構造体において、前記ダブラー部材と前記フランジの重ね合わせ面の未溶着部の高さ(すきま)を5mm以上とすることにより、前記長大脆性亀裂がより停止しやすくなることを見出した。
 本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
 すなわち、本発明の要旨は次のとおりである。
(1)ウェブとフランジの突合せ部分にダブラー部材を備えてなる溶接構造体であって、
 前記ダブラー部材が前記ウェブと前記フランジに隅肉溶接されてなる脆性亀裂伝播停止特性に優れる溶接構造体。
(2)前記ウェブが前記ダブラー部材に突合せ隅肉溶接され、かつ該突合せ面に未溶着部が残存し、および/または、前記ダブラー部材が前記フランジに重ね合わせ隅肉溶接され、かつ該重ね合わせ面に未溶着部が残存する隅肉溶接継手をそなえる前記1に記載の溶接構造体。
(3)前記ウェブ、前記フランジおよび前記ダブラー部材の板厚がいずれも50mm以上である前記1または2に記載の溶接構造体。
(4)前記隅肉溶接継手の継手断面における前記ダブラー部材と前記ウェブの突合せ面に残存する、下記に定義する前記未溶着部の、比率X(%)(0%を含む)と、供用温度T(℃)における前記ダブラー部材の脆性亀裂伝播停止靭性(Kca)T(N/mm3/2)とが、下記(1)式を満足する前記2または3に記載の溶接構造体。
                   記
 X(%):{(隅肉溶接継手の継手断面におけるウェブとダブラー部材との突合せ面に残存する未溶着部の幅)/(ウェブの板厚と左右の隅肉溶接部の脚長の和)}×100
 X(%)≧{5900-(Kca)T}/85  ‥‥(1)
 ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2
(5)前記隅肉溶接継手の継手断面における前記ダブラー部材と前記フランジとの重ね合わせ面に残存する、下記に定義する前記未溶着部の、比率Y(%)と、供用温度T(℃)における前記ダブラー部材の脆性亀裂伝播停止靭性(Kca)T(N/mm3/2)とが、下記(2)式を満足する前記2ないし4のいずれかに記載の溶接構造体。
                記
 Y(%):{(隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部の幅)/(ダブラー部材の板幅と左右の隅肉溶接部の脚長の和)}×100
 Y(%)≧{6900-(Kca)T}/85  ‥‥(2)
 ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2
(6)前記フランジまたはウェブが、前記ウェブまたはフランジに交差する形で突合せ溶接継手部を有する前記1ないし5のいずれかに記載の溶接構造体。
(7)前記ウェブが突合せ溶接継手部を有し、該ウェブの突合せ溶接継手部が前記フランジの突合せ溶接継手部と交差するように該ウェブを配設してなることを特徴とする前記6に記載の溶接構造体。
(8)ダブラー部材が、オーステナイト鋼または低温用ニッケル鋼板である前記1ないし3のいずれかに記載の溶接構造体。
(9)前記溶接構造体において、前記ダブラー部材と前記フランジの重ね合わせ面の未溶着部の高さ(すきま)が5mm以上である前記2ないし8のいずれかに記載の溶接構造体。
 本発明によれば、従来困難とされた板厚が50mm以上、さらには板厚が80mmを超える厚鋼板からなるフランジに発生した脆性亀裂のウェブへの伝播、およびウェブに発生した脆性亀裂のフランジへの伝播、あるいはその両方を、大規模破壊に至る前に、停止ないし阻止することができる。
 従って、本発明によれば、鋼構造物、とくに、大型コンテナ船やバルクキャリアーなどにおける船体分離などの大規模な脆性破壊の危険性を回避することができ、船体構造の安全性を確保するうえで大きな効果をもたらし、産業上格段の効果を奏する。
 また、本発明によれば、施工時に、ダブラー部材の寸法および隅肉溶接金属の靭性を調整することにより、特殊な鋼板を使用することなく、また安全性を損ねることなしに、容易に、脆性亀裂伝播停止特性に優れた溶接構造体を製造できるという効果もある。

 また、本発明によれば、施工時に、ダブラー部材とフランジの間の重ね合わせ面に残存する未溶着部の寸法を調整すると共に、未溶着部の寸法に応じた脆性亀裂伝播停止特性を有するダブラー部材を選定することにより、特殊な鋼板を大量に使用することなく、また安全性を損ねることなしに、容易に、脆性亀裂伝播停止特性に優れた溶接構造体を製造できる。この効果は、ダブラー部材とウェブの間の突合せ面に残存する未溶着部についても同様である。
隅肉溶接継手の断面構成を模式的に説明する説明図である。(a)はウェブ1とダブラー部材10およびフランジ2が直交している場合、(b)はウェブ1とダブラー部材10およびフランジ2が斜めに交差している場合、(c)はダブラー部材10とフランジ2の重ね合わせ面の未溶着部高さ(すきま)14が5mm以上である場合を示す。 隅肉溶接継手の構成の他の一例を模式的に示す説明図である。(a)は外観図、(b)は断面図である。 隅肉溶接継手の構成の他の一例を模式的に示す説明図である。(a)は外観図、(b)は断面図である。 実施例で使用した、フランジから発生・伝播する脆性亀裂を対象とした超大型構造モデル試験体の形状を模式的に示す説明図である。(a)はフランジ2が鋼板母材のみからなる場合、(b)はフランジ2が突合せ溶接継手部を有する場合、(c)はウェブ1およびフランジ2が突合せ溶接継手部を有する場合である。 実施例で使用した、ウェブから発生・伝播する脆性亀裂を対象とした超大型構造モデル試験体の形状を模式的に示す説明図である。(a)はウェブ1が鋼板母材のみからなる場合、(b)はウェブ1が突合せ溶接継手部を有する場合、(c)はウェブ1およびフランジ2が突合せ溶接継手部を有する場合である。
 以下、本発明を具体的に説明する。
 本発明の溶接構造体は、ウェブ1とフランジ2の突合せ部分にダブラー部材10を備えてなる溶接構造体である。本発明の溶接構造体は、フランジ2の表面にダブラー部材10の表面を重ね合わせて隅肉溶接によりダブラー部材10とフランジ2とを接合し、かつダブラー部材10の表面にウェブ1の端面を突合せ隅肉溶接によりダブラー部材10とウェブ1とを接合してなる溶接構造体である。本発明の溶接構造体では、ウェブ1、フランジ2およびダブラー部材10がいずれも板厚50mm以上の厚肉鋼材とする。
 本発明の溶接構造体は、フランジ2とダブラー部材10とを隅肉溶接で接合し、ダブラー部材10とウェブ1とを隅肉溶接で接合し、それぞれ、隅肉溶接金属5、51を有する隅肉継手を備える。そして、フランジ2とタブラー部材10との重ね合わせ面に、および/または、ダブラー部材10とウェブ1との突合せ面に、構造不連続部である未溶着部4を存在させる。
 この状態を、継手断面で図1に示す。なお、図1(a)は、ウェブ1をフランジ2に対して直立して取り付けた場合を示すが、本発明ではこれに限定されることはない。例えば、図1(b)に示すように、ウェブ1をフランジ2に対して角度θだけ傾けて取り付けてもよい。また、図1(c)に示すように、ダブラー部材10とフランジ2の重ね合わせ面の未溶着部高さ(すきま)14を5mm以上としてもよい。
 本発明の溶接構造体においては、フランジ2とダブラー部材10との重ね合わせ面、ダブラー部材10とウェブ1との突合せ面は、脆性亀裂の伝播面となる。そのため、本発明では、フランジ2とダブラー部材10との重ね合わせ面、および/または、ダブラー部材10とウェブ1との突合せ面に、未溶着部4を存在させる。未溶着部4が存在することにより、ウェブ1あるいはフランジ2を伝播してきた脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)が低下し、重ね合わせ面、または、突合せ面において、脆性亀裂は停止しやすくなる。なお、本発明では、未溶着部4は、脆性亀裂の進入方向がウェブからである場合には突合せ面に、フランジからの場合には重ね合わせ面に、どちらか一方に残存させるだけで十分な場合がある。
 さらに、本発明では、フランジ2とウェブ1との間にダブラー部材10を配置し、しかも上記したように未溶着部4を残存させたうえ、ダブラー部材10を、所定以上のアレスト性能を保持する部材とする。これにより、脆性亀裂は、ダブラー部材10で停止することになる。
 なお、脆性亀裂は、欠陥の少ない鋼板母材部で発生することは極めて稀である。過去の脆性破壊事故の多くは、溶接部で発生している。そのため、例えば、図2に示すようなフランジ2を突合せ溶接継手部11で接合した鋼板とし、ウェブ1をその突合せ溶接継手の溶接部(突合せ溶接継手部)11と交差するように隅肉溶接した隅肉溶接継手では、突合せ溶接継手部11から発生する脆性亀裂の伝播を阻止するためには、まず、構造の不連続を存在させることが重要となる。そのため、本発明では、隅肉溶接部におけるフランジ2とダブラー部材10との重ね合わせ面に未溶着部4を存在させるのである。
 なお、図2(a)は、隅肉溶接継手の外観を示し、図2(b)は突合せ溶接継手部11における継手断面形状を示す。
 また、図3に示すように、ウェブ1が突合せ溶接継手部12を有する鋼板とし、フランジ2が突合せ溶接継手部11を有する鋼板とし、フランジ2の突合せ溶接継手部11とウェブ1の突合せ溶接継手部12とが交差するように隅肉溶接した隅肉溶接継手では、突合せ溶接継手部11あるいは突合せ溶接継手部12から発生する脆性亀裂の伝播を阻止するためには、同じく、構造の不連続を存在させることが重要となる。そのため、本発明では、隅肉溶接部におけるフランジ2とダブラー部材10との重ね合わせ面と、ウェブ1とダブラー部材10との突合せ面に、それぞれ未溶着部4を存在させる。ただし、ウェブ1とダブラー部材10との間の未溶着部4は、ダブラー部材10の脆性亀裂伝播停止靭性が5900N/mm3/2以上の場合には必ずしも必要ではない。
 なお、図3(a)は隅肉溶接継手の外観を、図3(b)は突合せ溶接継手部11、12における継手断面形状を示す。
 なお、図2、図3では、突合せ溶接継手部11とウェブ1とが直交する場合を示したが、本発明ではこれに限定されない。斜めに交差させてもよいことは言うまでもない。
 また、溶接構造体の製造方法はとくに限定する必要はなく、通常の製造方法がいずれも適用できる。例えば、フランジ用鋼板同士、ウェブ用鋼板同士を突合せ溶接し、得られた突合せ溶接継手をダブラー部材を介して隅肉溶接して溶接構造体を製造してもよい。また、突合せ溶接前の一組のウェブ用鋼板をフランジ表面のダブラー部材に仮付溶接しついでウェブ用鋼板同士を突合せ溶接し、得られた突合せ溶接継手をフランジに溶接して溶接構造体を製造してもよい。
 本発明では、フランジから発生した脆性亀裂をウェブに伝播させることなく、ダブラー部材内で阻止させるために、フランジとダブラー部材との重ね合わせ面に残存する未溶着部の比率Y(%)と、ダブラー部材のアレスト性能とが、次(2)式
 Y(%)≧{6900-(Kca)T}/85  ‥‥(2)
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
を満足するように調整する。なお、好ましくは次(2)′式
 Y(%)≧{7900-(Kca)T}/85  ‥‥(2)′
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
である。
 ここに、比率Y(%)は、
 Y(%):{(隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部の幅BF)/(ダブラー部材の板幅DWと左右の隅肉溶接部の脚長lFの和)}×100
で定義される。なお、図1では、隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部4の幅はBFで、隅肉溶接部の脚長はlFで示してある。
 重ね合わせ面に残存する未溶着部の比率Y(%)と供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(Kca)Tが(2)式を満足しない場合には、フランジから発生した脆性亀裂をダブラー部材内で阻止することができなくなる。
 なお、ここで、使用するダブラー部材の脆性亀裂伝播停止靭性Kcaは、予め当該ダブラー部材(鋼板)について温度勾配型脆性亀裂伝播停止試験(ESSO試験)を実施して、求めておいた供用温度T(℃)における脆性亀裂伝播停止靭性Kcaを用いるものとする。
 そして、「供用温度T」としては、通常、船舶の設計温度である「-10℃」を使用するものとする。
 また、本発明では、ウェブから発生した脆性亀裂を、ダブラー部材内で阻止させるために、ウェブとダブラー部材との突合せ面に残存する未溶着部の比率X(%)と、ダブラー部材のアレスト性能とが、次(1)式
 X(%)≧{5900-(Kca)T}/85  ‥‥(1)
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
を満足するように調整する。
 ここに、比率X(%)は、
 X(%):{(隅肉溶接継手の継手断面におけるダブラー部材とウェブとの突合せ面の未溶着部の幅BW)/((ウェブの板厚tWと左右の隅肉溶接部の脚長lWの和)}×100
で定義した。
 突合せ面に残存する未溶着部の比率X(%)と供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(Kca)Tが(1)式を満足しない場合には、ウェブから発生した脆性亀裂をダブラー部材内で阻止することができなくなる。
 なお、ウェブからの脆性亀裂であれば、使用するダブラー部材の(Kca)Tが高い場合には、未溶着部の比率X(%)が0%である場合でも、(1)式を満足でき、脆性亀裂をダブラー部材で停止させることもできる。しかし、フランジから発生した脆性亀裂の伝播をダブラー部材で停止させるためには、使用できるダブラー部材の(Kca)Tに限界があり、(2)式を満足させるためには、未溶着部の比率Y(%)は大きくする必要がある。
 このように、脆性亀裂がウェブで発生し伝播する場合には、未溶着部の比率X(%)とダブラー部材の脆性亀裂伝播停止靭性(Kca)Tとが(1)式を、また、脆性亀裂がフランジで発生し伝播する場合には、未溶着部の比率Y(%)とダブラー部材の脆性亀裂伝播停止靭性(Kca)Tとが(2)式を、満足するように調整すれば、発生伝播した脆性亀裂はダブラー部材で阻止ないし停止させることができる。
 なお、実際の鋼構造物では、(1)式および(2)式を同時に満足できるように、未溶着部の比率X、Yと、使用するダブラー部材の脆性亀裂伝播停止靭性(Kca)Tを調整することが好ましい。
 また、本発明では、前記ダブラー部材を、オーステナイト鋼(高Mn鋼、オーステナイト系ステンレス鋼など)または低温用ニッケル鋼板(3.5%Ni鋼、5%Ni鋼、7%Ni鋼、9%Ni鋼)としてもよく、この場合には、前記(1)式および/または(2)式を満足しなくともよい。オーステナイト鋼(高Mn鋼、オーステナイト系ステンレス鋼など)は、脆性破壊しない結晶構造であるため、長大脆性亀裂の伝播を阻止することができる。化学成分の詳細は特に限定する必要は無いが、供用温度(-10℃)における結晶構造がオーステナイトである必要がある。例えば、C:0.2~0.6%,Si:0.1~1.0%、Mn:22~26%、P:0.03%以下、S:0.01%以下、B:0.01%以下、N:0.15%以下、Nb+Ti+Vが0.3%以下の化学組成などにすればよい。一方、低温用ニッケル鋼板(3.5%Ni鋼、5%Ni鋼、7%Ni鋼、9%Ni鋼)は、脆性破壊する結晶構造ではあるが、船体設計温度である-10℃においては、極めて高靭性であり、長大脆性亀裂の伝播を阻止することができる。低温用ニッケル鋼板には、例えば、JIS G 3127に規定されている低温圧力容器用ニッケル鋼鋼板などを用いればよい。これらの鋼材は非常に高価で、切断性やハンドリング等の問題があり、通常は主船体構造用に大量に使用されることは無いが、本発明のダブラー部材のように局所的に少量の用途に限定すれば、経済的にも施工上も問題となることはない。
 本発明では、さらに、前記溶接構造体において、前記ダブラー部材と前記フランジの重ね合わせ面の未溶着部の高さ(すきま)を5mm以上としてもよい。未溶着部の高さ(すきま)を5mm以上確保することにより、すみ肉溶接金属の局所応力集中が小さくなり、前記長大脆性亀裂がより停止しやすくなる。
 なお、上記した隅肉溶接継手を備える本発明の溶接構造体は、例えば、船舶の船体外板をフランジとし、隔壁をウェブとする船体構造、あるいはデッキをフランジとし、ハッチをウェブとする船体構造などに適用可能である。
 以下、実施例に基づき、本発明を詳細に説明する。
 表1-1、表1-2に示す板厚の厚鋼板を、ウェブおよびフランジとして、ウェブとフランジの突合せ部分に表1-1、表1-2に示すダブラー部材を備え、図4(a)、(b)、(c)および図5(a)、(b)、(c)に示す形状の、実構造サイズの大型溶接構造継手9を作製した。図4(a)、(b)、(c)は、フランジから脆性亀裂が発生・伝播するケースを、図5(a)、(b)、(c)は、ウェブから脆性亀裂が発生・伝播するケースを想定している。
 なお、作製した大型溶接構造継手9における隅肉溶接継手では、ダブラー部材10とフランジ2との重ね合わせ面に、図1(a)に示すような未溶着部4を、未溶着幅BF、ダブラー部材10の板幅DW、左右の隅肉溶接部の脚長lFを変化させ、未溶着部の比率Yを変化させて、存在させた。また、作製した大型溶接構造継手9における隅肉溶接継手では、ダブラー部材10とウェブ1との突合せ面に、図1(a)に示すような未溶着部4を、未溶着幅BW、ウェブ1の板厚tW、左右の隅肉溶接部の脚長lWを変化させ、未溶着部の比率Xを変化させて、存在させた。なお、未溶着部の比率Xが0%である場合も含む。
 また、作製した大型溶接構造継手9における隅肉溶接継手では、ダブラー部材10として、(Kca)-10℃が、2500~11000(N/mm3/2)である厚鋼板を用いた。さらに、一部の溶接構造体においては、図1(c)に示すように、ダブラー部材10とフランジ2の重ね合わせ面の未溶着部高さ(すきま)14を5mm以上とした。
 なお、図4では、フランジは、厚鋼板(母材のみ)(図4(a))、突合せ溶接継手を有する厚鋼板(図4(b)、(c))とし、ウェブは、厚鋼板(母材のみ)(図4(a)、(b))、突合せ溶接継手を有する厚鋼板(図4(c))とした。図5では、ウェブは、厚鋼板(母材のみ)(図5(a))、突合せ溶接継手を有する厚鋼板(図5(b)、(c))とし、フランジは、厚鋼板(母材のみ)(図5(a)、(b))、突合せ溶接継手を有する厚鋼板(図5(c))とした。
 なお、突合せ溶接継手11は、1パス大入熱エレクトロガスアーク溶接(1電極および2電極EGW)または多層炭酸ガスアーク溶接(多層CO2)により作製した。また、突合せ溶接継手12は、セグアーク溶接(1電極および2電極SEGARC)または多層炭酸ガスアーク溶接(多層CO2)により作製した。
 また、ダブラー部材10とフランジ2との隅肉溶接は、主に開先なし炭酸ガスアーク溶接により、開先形状、溶接条件を変化させて、表2-1、表2-2に示すように隅肉溶接金属5の脚長lF、溶着幅WFを種々変化させた。また、ダブラー部材10とウェブ1との隅肉溶接では、主に部分溶込み炭酸ガスアーク溶接により、開先形状、溶接条件を変化させて、表2-1、表2-2に示すように隅肉溶接金属51の脚長lW、溶着幅WWを種々変化させた。なおここでは、脚長、溶着幅は左右両側の平均値である。
 また、得られた大型溶接構造継手9を用いて、図4および図5に示す超大型構造モデル試験体を作製し、脆性亀裂伝播停止試験を実施した。なお、図4の超大型構造モデル試験体は、大型隅肉溶接継手9のフランジ2の下方に仮付け溶接8で、フランジ2と同じ板厚の鋼板を溶接した。そして、機械ノッチ7の先端を突合せ溶接継手部11のBOND部、または溶接金属WMとなるように加工した。また、図5の超大型構造モデル試験体は、大型溶接構造継手9のウェブ1の下方に仮付け溶接8で、ウェブ1と同じ板厚の鋼板を溶接した。そして、機械ノッチ7の先端を突合せ溶接継手部12のBOND部、または溶接金属WMとなるように加工した。
 また、脆性亀裂伝播停止試験は、機械ノッチに打撃を与え脆性亀裂を発生させ、伝播した脆性亀裂が、隅肉溶接部で停止するか否かを調査した。
 いずれの試験も、応力100~283N/mm2、温度:-10℃の条件で実施した。応力100N/mm2は、船体に定常的に作用する応力の平均的な値であり、応力257N/mm2は、船体に適用されている降伏強度390N/mm2級鋼板の最大許容応力相当の値、応力283N/mm2は、船体に適用されている降伏強度460N/mm2級鋼板の最大許容応力相当の値である。温度-10℃は船舶の設計温度である。
 得られた結果を表3、表4に示す。表3はウェブを亀裂導入部とした場合、表4はフランジを亀裂導入部とした場合の脆性亀裂伝播停止試験結果である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3および表4に示したとおり、本発明例では、脆性亀裂がフランジから伝播した場合、またはウェブから伝播した場合のいずれにおいしても、亀裂は隅肉溶接部のダブラー部材に突入して停止した。
 一方、本発明の範囲を外れる比較例では、脆性亀裂はダブラー部材で停止することなく伝播し、脆性亀裂の伝播を阻止することができなかった。
 1  ウェブ
 2  フランジ
 4  未溶着部
 5  隅肉溶接金属
 51 隅肉溶接金属
 7  機械ノッチ
 8  仮付け溶接
 9  ダブラー部材付き大型溶接構造継手(大型溶接継手)
 10 ダブラー部材
 11 フランジ突合せ溶接継手部
 12 ウェブ突合せ溶接継手部
 θ  交差角

Claims (9)

  1.  ウェブとフランジの突合せ部分にダブラー部材を備えてなる溶接構造体であって、
     前記ダブラー部材が前記ウェブと前記フランジに隅肉溶接されてなる脆性亀裂伝播停止特性に優れる溶接構造体。
  2.  前記ウェブが前記ダブラー部材に突合せ隅肉溶接され、かつ該突合せ面に未溶着部が残存し、および/または、前記ダブラー部材が前記フランジに重ね合わせ隅肉溶接され、かつ該重ね合わせ面に未溶着部が残存する隅肉溶接継手をそなえる請求項1に記載の溶接構造体。
  3.  前記ウェブ、前記フランジおよび前記ダブラー部材の板厚がいずれも50mm以上である請求項1または2に記載の溶接構造体。
  4.  前記隅肉溶接継手の継手断面における前記ダブラー部材と前記ウェブの突合せ面に残存する、下記に定義する前記未溶着部の、比率X(%)(0%を含む)と、供用温度T(℃)における前記ダブラー部材の脆性亀裂伝播停止靭性(Kca)T(N/mm3/2)とが、下記(1)式を満足する請求項2または3に記載の溶接構造体。
                       記
     X(%):{(隅肉溶接継手の継手断面におけるウェブとダブラー部材との突合せ面に残存する未溶着部の幅)/(ウェブの板厚と左右の隅肉溶接部の脚長の和)}×100
     X(%)≧{5900-(Kca)T}/85  ‥‥(1)
     ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2
  5.  前記隅肉溶接継手の継手断面における前記ダブラー部材と前記フランジとの重ね合わせ面に残存する、下記に定義する前記未溶着部の、比率Y(%)と、供用温度T(℃)における前記ダブラー部材の脆性亀裂伝播停止靭性(Kca)T(N/mm3/2)とが、下記(2)式を満足する請求項2ないし4のいずれかに記載の溶接構造体。
                    記
     Y(%):{(隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部の幅)/(ダブラー部材の板幅と左右の隅肉溶接部の脚長の和)}×100
     Y(%)≧{6900-(Kca)T}/85  ‥‥(2)
     ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2
  6.  前記フランジまたはウェブが、前記ウェブまたはフランジに交差する形で突合せ溶接継手部を有する請求項1ないし5のいずれかに記載の溶接構造体。
  7.  前記ウェブが突合せ溶接継手部を有し、該ウェブの突合せ溶接継手部が前記フランジの突合せ溶接継手部と交差するように該ウェブを配設してなることを特徴とする請求項6に記載の溶接構造体。
  8.  ダブラー部材が、オーステナイト鋼または低温用ニッケル鋼板である請求項1ないし3のいずれかに記載の溶接構造体。
  9.  前記溶接構造体において、前記ダブラー部材と前記フランジの重ね合わせ面の未溶着部の高さ(すきま)が5mm以上である請求項2ないし8のいずれかに記載の溶接構造体。
PCT/JP2017/022213 2016-06-16 2017-06-15 脆性亀裂伝播停止特性に優れる溶接構造体 WO2017217516A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197000921A KR102258423B1 (ko) 2016-06-16 2017-06-15 취성 균열 전파 정지 특성이 우수한 용접 구조체
CN201780036899.4A CN109311127B (zh) 2016-06-16 2017-06-15 脆性裂纹传播停止特性优异的焊接结构体
JP2017546748A JP6615215B2 (ja) 2016-06-16 2017-06-15 脆性亀裂伝播停止特性に優れる溶接構造体
PH12018502635A PH12018502635A1 (en) 2016-06-16 2018-12-13 Welded structure having excellent brittle crack arrestability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-119469 2016-06-16
JP2016119469 2016-06-16

Publications (1)

Publication Number Publication Date
WO2017217516A1 true WO2017217516A1 (ja) 2017-12-21

Family

ID=60664011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022213 WO2017217516A1 (ja) 2016-06-16 2017-06-15 脆性亀裂伝播停止特性に優れる溶接構造体

Country Status (5)

Country Link
JP (1) JP6615215B2 (ja)
KR (1) KR102258423B1 (ja)
CN (1) CN109311127B (ja)
PH (1) PH12018502635A1 (ja)
WO (1) WO2017217516A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019126825A (ja) * 2018-01-24 2019-08-01 日本製鉄株式会社 溶接継手
NL2028601A (en) * 2020-12-31 2022-07-21 Cosco Shipping Shipyard Nangtong Co Ltd A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel
WO2022265010A1 (ja) * 2021-06-15 2022-12-22 Jfeスチール株式会社 溶接構造体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195503B1 (ja) 2021-06-15 2022-12-26 Jfeスチール株式会社 溶接構造体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116392U (ja) * 1981-01-06 1982-07-19
JP2008023594A (ja) * 2006-06-23 2008-02-07 Ihi Marine United Inc 溶接構造体
WO2013038685A1 (ja) * 2011-09-13 2013-03-21 Jfeスチール株式会社 溶接構造体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2402258C3 (de) 1973-04-14 1980-01-03 Chemische Fabrik Pfersee Gmbh, 8900 Augsburg Verwendung von Kondensationsprodukten zum Behändem von Textilmaterialien
JP4074524B2 (ja) 2003-01-31 2008-04-09 新日本製鐵株式会社 耐脆性破壊に優れた溶接構造体
JP5144053B2 (ja) * 2006-05-12 2013-02-13 Jfeスチール株式会社 脆性亀裂伝播停止特性に優れる溶接構造体
BR112014005461B1 (pt) * 2011-09-13 2018-12-04 Jfe Steel Corporation estrutura soldada
KR101504242B1 (ko) * 2012-05-10 2015-03-19 제이에프이 스틸 가부시키가이샤 용접 구조체

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116392U (ja) * 1981-01-06 1982-07-19
JP2008023594A (ja) * 2006-06-23 2008-02-07 Ihi Marine United Inc 溶接構造体
WO2013038685A1 (ja) * 2011-09-13 2013-03-21 Jfeスチール株式会社 溶接構造体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019126825A (ja) * 2018-01-24 2019-08-01 日本製鉄株式会社 溶接継手
JP7104368B2 (ja) 2018-01-24 2022-07-21 日本製鉄株式会社 溶接継手
NL2028601A (en) * 2020-12-31 2022-07-21 Cosco Shipping Shipyard Nangtong Co Ltd A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel
WO2022265010A1 (ja) * 2021-06-15 2022-12-22 Jfeスチール株式会社 溶接構造体
JPWO2022265010A1 (ja) * 2021-06-15 2022-12-22
JP7293515B2 (ja) 2021-06-15 2023-06-19 Jfeスチール株式会社 溶接構造体

Also Published As

Publication number Publication date
CN109311127A (zh) 2019-02-05
JPWO2017217516A1 (ja) 2018-06-28
KR102258423B1 (ko) 2021-06-03
KR20190009414A (ko) 2019-01-28
CN109311127B (zh) 2021-03-09
PH12018502635A1 (en) 2019-10-07
JP6615215B2 (ja) 2019-12-04

Similar Documents

Publication Publication Date Title
JP6744274B2 (ja) 溶接構造体
JP5144053B2 (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
JP5408396B1 (ja) 溶接構造体
JP5395985B2 (ja) 溶接構造体
JP5365761B2 (ja) 溶接構造体
JP6615215B2 (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
JP6720106B2 (ja) 溶接構造体
WO2012008056A1 (ja) 耐脆性き裂伝播性を有する溶接構造体
JP7293515B2 (ja) 溶接構造体
JP6251463B1 (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
JP7195503B1 (ja) 溶接構造体
JP2012096790A (ja) 脆性亀裂伝播停止特性に優れる溶接構造体
JP2022083554A (ja) 溶接構造体の脆性亀裂伝播停止性能の評価方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017546748

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197000921

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17813410

Country of ref document: EP

Kind code of ref document: A1