WO2017217516A1 - 脆性亀裂伝播停止特性に優れる溶接構造体 - Google Patents
脆性亀裂伝播停止特性に優れる溶接構造体 Download PDFInfo
- Publication number
- WO2017217516A1 WO2017217516A1 PCT/JP2017/022213 JP2017022213W WO2017217516A1 WO 2017217516 A1 WO2017217516 A1 WO 2017217516A1 JP 2017022213 W JP2017022213 W JP 2017022213W WO 2017217516 A1 WO2017217516 A1 WO 2017217516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- web
- flange
- welded
- doubler
- fillet
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B73/00—Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
- B63B73/40—Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
- B63B73/43—Welding, e.g. laser welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
Definitions
- the present invention relates to a welded steel structure welded using a thick steel plate, such as a large container ship or a bulk carrier, and more particularly, the propagation of a brittle crack generated from a thick steel plate base material or a welded joint.
- the present invention relates to a welded structure excellent in brittle crack propagation stopping characteristics, which can be stopped before reaching a large-scale fracture of an object.
- Container ships and bulk carriers have a structure that has few partition walls in the hold and a large opening at the top of the ship, for example, unlike tankers, to improve loading capacity and cargo handling efficiency. Yes. Therefore, in container ships and bulk carriers, it is necessary to increase the strength or thickness of the hull skin, in particular.
- TEU wenty feet Equivalent Unit
- TEU represents the number of containers converted into a 20-foot container and represents an indicator of the loading capacity of a container ship.
- thick steel plates with a thickness of 50 mm or more and a yield strength of 390 N / mm class 2 or more tend to be used.
- Non-Patent Document 1 reports the results of an experimental study on the brittle crack propagation behavior of welds in steel plates for shipbuilding with a thickness of less than 50 mm.
- this non-patent document 1 the propagation path and propagation behavior of a brittle crack forcibly generated in a welded portion are experimentally investigated, and if the fracture toughness of the welded portion is ensured to some extent.
- a plurality of examples in which brittle cracks propagate along the welded part have been confirmed. This suggests that there is no possibility that brittle fracture will propagate straight along the weld.
- Non-Patent Document 2 For this reason, in a hull structure to which a thick high-strength steel plate having a thickness of 50 mm or more is applied, ensuring safety is a big problem. In addition, Non-Patent Document 2 also points out that a thick steel plate having special brittle crack propagation stop characteristics is required in order to stop the propagation of the generated brittle cracks.
- Patent Document 1 in a welded structure that is preferably a hull outer plate having a thickness of 50 mm or more, an aggregate is arranged so as to intersect the butt weld, and fillet welding is performed. A joined welded structure is described.
- the surface layer portion and the back layer portion have an average equivalent particle diameter of 0.5 to 5 ⁇ m over a thickness of 3 mm or more, and are parallel to the plate thickness surface.
- a steel sheet having a microstructure with an X-ray plane intensity ratio of (100) crystal planes of 1.5 or more is used.
- Patent Document 2 describes a welded structure having a fillet welded joint formed by fillet welding a joining member (web) to a member to be joined (flange) and having excellent brittle crack propagation stop characteristics. .
- an unwelded portion is left on the butt surface of the web in the fillet welded joint cross section with the flange, the width of the unwelded portion, and the left and right sides of the fillet welded portion.
- the width of the unwelded portion is adjusted so that the ratio of the leg length to the sum of the web plate thickness, X, satisfies the brittle crack propagation stop performance Kca of the member to be joined (flange) and a special relational expression.
- Patent Documents 3 to 5 also describe a welded structure having a fillet welded joint obtained by welding a joining member (web) to a member to be joined (flange) and having excellent brittle crack propagation stopping characteristics. ing.
- the end face of a joining member is abutted against the surface of a member to be joined having a plate thickness of 50 mm or more, and at least a welding leg length or welding width formed by joining the joining member and the member to be joined by fillet welding.
- One side is a welded structure having a fillet welded joint of 16 mm or less, and a cross-section of the fillet welded joint is formed on the surface where the end face of the joining member in the fillet welded joint and the surface of the joined member meet.
- the Charpy impact test fracture surface transition temperature vTrs of the fillet weld metal in the fillet welded joint is related to the plate thickness tf of the joined member.
- Patent Document 4 discloses a welding leg length or welding width in which an end face of a joining member is abutted against a surface of a joined member having a plate thickness of 50 mm or more and the joining member and the joined member are joined by fillet welding.
- a cross-section of the fillet welded joint is a welded structure having at least one fillet welded joint of 16 mm or less, where the end face of the joining member in the fillet welded joint and the surface of the joined member are abutted.
- the welded material has an unwelded portion of 95% or more of the plate thickness tw of the joining member, and the Charpy impact test fracture surface transition temperature vTrs of the fillet weld metal in the fillet welded joint is equal to the plate thickness tf of the joined member.
- vTrs (° C) ⁇ ⁇ 1.5 tf + 90 and / or Charpy impact test temperature of fillet weld metal absorbed energy vE ⁇ 20 (J) at ⁇ 20 ° C.
- tf of the joined member is the thickness tf of the joined member in relation to, vE -20 in case of 50 ⁇ tf (mm) ⁇ 53 5.75, satisfies vE -20 (J) ⁇ 2.75tf- 140 in the case of tf (mm)> 53, has a fillet weld metal, added bonding member, the brittle crack propagation stopping toughness Kca shared Temperature Describes a welded structure composed of a steel plate of 2500 N / mm 2/3 or more. And by setting it as such a welded structure, it is supposed that a brittle crack can be stopped by a fillet welded part or the base material of a joining member.
- Patent Document 5 discloses a welding leg length or welding width in which an end surface of a joining member is abutted against a surface of a joined member having a plate thickness of 50 mm or more and the joining member and the joined member are joined by fillet welding.
- At least one of which is a welded structure having a fillet welded joint of 16 mm or less, wherein both the joining member and the joined member have a butt weld joint, and the weld metal of the butt weld joint is vTrs ⁇ 65 ° C or less and / or toughness of 140J or more at vE- 20 , the weld end surface of the butt weld joint of the joint member in the fillet welded joint is the weld surface of the butt weld joint of the member to be joined And the butt-welded surface has an unwelded portion of 95% or more of the plate thickness tw of the joining member at the cross-section of the butt-welded joint of the fillet welded joint.
- Charpy impact test fracture surface transition temperature vTrs In relation to the thickness tf of the member to be joined, vTrs (° C.) ⁇ ⁇ 1.5 tf + 90 and / or test temperature of Charpy impact test of fillet weld metal: absorbed energy at ⁇ 20 ° C. vE ⁇ 20 (J ) Is in relation to the plate thickness tf of the member to be joined, when 50 ⁇ tf (mm) ⁇ 53, vE ⁇ 20 ⁇ 5.75, and when tf (mm)> 53, vE ⁇ 20 (J ) Welded structures with fillet weld metal satisfying ⁇ 2.75 tf-140 are described.
- a brittle crack can be stopped by the fillet weld part or the base material of a joining member. Further, by adopting such a welded structure, a brittle crack generated from the welded member welded portion, or a brittle crack generated from the welded member welded portion, the fillet welded portion or the welded portion of the joined member or the joined member It is said that propagation can be prevented at the welded part.
- Japanese Patent Laid-Open No. 2004-232052 JP 2007-326147 A Japanese Patent No.5395985 Japanese Patent No.53657661 Japanese Patent No. 5408396
- the aggregate which is a reinforcing material used in the technique described in Patent Document 1
- Patent Document 2 indicates that brittle cracks generated in a joining member (hereinafter also referred to as a web), structural discontinuity, and brittle crack propagation stop of a joined member (hereinafter also referred to as a flange). It is a technology that tries to prevent it in combination with performance.
- Non-Patent Document 3 in general, a brittle crack generated in a member to be welded (flange) of a fillet welded joint is stopped in the joint member (web) and stopped in the joint member (web). It has been experimentally confirmed that it is difficult compared to stopping propagation of the brittle crack that has been caused by the member to be joined (flange).
- the joining member (web) is more than the case where the fracture driving force (stress intensity factor) when a crack enters the T-joint part enters the member to be joined (flange). ) Is likely to be larger.
- the technique described in Patent Document 2 is insufficient in the brittle crack propagation stop characteristic of the web and the like, and thus is a sufficient technique that can stop the brittle crack generated in the flange from propagating on the web. I can't say there is. That is, the technique described in Patent Document 2 occurs on the strong deck (corresponding to a flange) of a large container ship, which is assumed in the “Brittle Crack Arrest Design Guidelines” (established in September 2009) of the NK class, for example. It cannot be said that it has sufficient crack propagation stop characteristics for the case where the brittle cracks propagated to the hatch side combing (corresponding to the web).
- the leg length of the fillet welded part is large in the field work, so ensuring the strength of the fillet welded part (securing the fillet leg length)
- To achieve both brittle crack prevention performance (restricted to fillet leg length of 16 mm or less) requires a lot of labor for construction management at the site and increases additional costs such as rework.
- the present invention solves the above-mentioned problems of the prior art, and both the propagation of the brittle crack generated in the flange to the web and the propagation of the brittle crack generated in the web to the flange lead to large-scale fracture. It is an object to provide a welded structure excellent in brittle crack propagation stopping characteristics that can be stopped or stopped before.
- the present inventors diligently studied a method for reducing the variation in the leg length of the fillet weld in the construction of the fillet weld that stops the brittle crack.
- the basic welded structure is changed from a conventional fillet welded structure to a fillet welded structure with a doubler member in which a doubler member is disposed between the web and the flange.
- I came up with the idea of carrying out the joint to attach the inside of the factory.
- the variation in the leg length of the fillet weld is easily within a predetermined range, which leads to a significant reduction in on-site execution costs.
- the present inventors further studied various factors affecting the brittle crack propagation stop characteristics in the fillet welded structure with a doubler member.
- a structural discontinuity is ensured on the overlapping surface of the flange and the doubler member, and the brittle crack propagation stopping performance (arrest performance) of the doubler member I came up with the idea that improvement is essential.
- the arrest performance of the doubler member depends on the length of the structural discontinuity (unwelded width). I also found out that there was a need for performance.
- the present inventors have a ratio Y of the unwelded portion remaining on the overlapping surface of the flange and the doubler member. It was found that (%) and the arrest performance of the doubler member must satisfy a specific relationship.
- the ratio Y of the unwelded portion is Y (%): ⁇ (width of unwelded portion of overlap surface of doubler member and flange in joint cross section of fillet welded joint) / (sum of plate width of doubler member and leg length of left and right fillet welded portion) ⁇ ⁇ 100 Defined in As a specific relationship, the following equation (2) Y (%) ⁇ ⁇ 6900 ⁇ (Kca) T ⁇ / 85 (2) (Where, (Kca) T : brittle crack propagation stop toughness of doubler member at service temperature T (° C) (N / mm 3/2 )) I found.
- a structural discontinuity is ensured at the abutment surface between the web and the doubler member, and the doubler member's brittle crack propagation stopping performance (arrest performance) is improved. I thought that would be necessary as well. Furthermore, since the propagation of brittle cracks becomes easier when the length of the structural discontinuity (width of the unwelded portion) becomes shorter, the arrest performance of the doubler member is reduced by the length of the structural discontinuity, that is, the unwelded portion. It was also found that the performance according to the width is necessary. It has also been found that if the doubler member has excellent arrest performance, the unwelded portion may not remain.
- the ratio X (%) of the unwelded portion is X (%): ⁇ (width of unwelded portion of butt surface of doubler member and web in joint cross section of fillet welded joint) / ((sum of web thickness and leg length of left and right fillet welded portion) ⁇ ⁇ 100 Defined in X (%) includes 0%.
- the doubler member may be austenitic steel (high Mn steel, austenitic stainless steel, etc.) or low-temperature nickel steel sheet (3.5% Ni steel, 5% Ni steel, 7% Ni steel, 9% Ni steel).
- austenitic steel high Mn steel, austenitic stainless steel, etc.
- low-temperature nickel steel sheet 3.5% Ni steel, 5% Ni steel, 7% Ni steel, 9% Ni steel.
- the gist of the present invention is as follows. (1) A welded structure including a doubler member at a butt portion between a web and a flange, A welded structure excellent in brittle crack propagation stopping characteristics in which the doubler member is fillet welded to the web and the flange.
- Ratio X (%) (including 0%) of the unwelded portion defined below, remaining on the butt surface of the doubler member and the web in the joint cross section of the fillet welded joint, and the service temperature 4.
- the propagation of a brittle crack generated in a flange made of a thick steel plate having a plate thickness of 50 mm or more, and further a plate thickness exceeding 80 mm, which has been conventionally difficult, to the web, and the flange of a brittle crack generated in the web Propagation to and / or both can be halted or stopped before massive destruction. Therefore, according to the present invention, it is possible to avoid the risk of large-scale brittle fracture such as hull separation in steel structures, particularly large container ships and bulk carriers, and to ensure the safety of the hull structure. It has a great effect and has a remarkable industrial effect.
- the present invention by adjusting the size of the doubler member and the toughness of the fillet weld metal at the time of construction, it is easily brittle without using a special steel plate and without sacrificing safety. There is also an effect that it is possible to manufacture a welded structure having excellent crack propagation stopping characteristics.
- the doubler having the brittle crack propagation stop characteristic according to the dimension of the unwelded portion while adjusting the size of the unwelded portion remaining on the overlapping surface between the doubler member and the flange during construction.
- the welded structure according to the present invention is a welded structure including a doubler member 10 at a butt portion between the web 1 and the flange 2.
- the surface of the doubler member 10 is superposed on the surface of the flange 2, the doubler member 10 and the flange 2 are joined by fillet welding, and the end surface of the web 1 is abutted against the surface of the doubler member 10.
- the web 1, the flange 2 and the doubler member 10 are all thick steel materials having a plate thickness of 50 mm or more.
- the flange 2 and the doubler member 10 are joined by fillet welding
- the doubler member 10 and the web 1 are joined by fillet welding
- the unwelded part 4 which is a structural discontinuity part is made to exist in the overlapping surface of the flange 2 and the tabular member 10, and / or the abutting surface of the doubler member 10 and the web 1.
- FIG. 1A shows a case where the web 1 is attached upright with respect to the flange 2, but the present invention is not limited to this.
- the web 1 may be attached to the flange 2 while being inclined by an angle ⁇ .
- the unwelded part height (gap) 14 of the overlapping surface of the doubler member 10 and the flange 2 is good also as 5 mm or more.
- the overlapping surface of the flange 2 and the doubler member 10 and the abutting surface of the doubler member 10 and the web 1 serve as propagation surfaces of brittle cracks. Therefore, in the present invention, the unwelded portion 4 is present on the overlapping surface of the flange 2 and the doubler member 10 and / or the butting surface of the doubler member 10 and the web 1. Due to the presence of the unwelded portion 4, the energy release rate (crack growth driving force) at the tip of the brittle crack that has propagated through the web 1 or the flange 2 is reduced, and the brittle crack stops at the overlapping surface or the butt surface. It becomes easy to do. In the present invention, it is sufficient that the unwelded portion 4 is left on either the butt surface when the approaching direction of the brittle crack is from the web or on the overlapping surface when the direction from the flange is from the flange. There is a case.
- the doubler member 10 is disposed between the flange 2 and the web 1, and the unwelded portion 4 remains as described above, and the doubler member 10 retains a predetermined or higher arrest performance. A member. Thereby, the brittle crack stops at the doubler member 10.
- a brittle crack occurs in a steel plate base material part with few defects. Many past brittle fracture accidents have occurred in welds. Therefore, for example, a steel plate in which the flange 2 as shown in FIG. 2 is joined by the butt weld joint portion 11 is used, and the web 1 is fillet welded so as to intersect the weld portion (butt weld joint portion) 11 of the butt weld joint.
- the fillet welded joint in order to prevent the propagation of the brittle crack generated from the butt welded joint portion 11, it is important to first have a discontinuity in the structure.
- the unwelded part 4 is made to exist in the overlapping surface of the flange 2 and the doubler member 10 in a fillet weld part.
- 2A shows the appearance of the fillet weld joint
- FIG. 2B shows the joint cross-sectional shape of the butt weld joint portion 11.
- the web 1 is a steel plate having a butt weld joint 12
- the flange 2 is a steel plate having a butt weld joint 11
- the butt weld joint 11 of the flange 2 and the web 1 are joined.
- a discontinuous structure is also used. It is important to exist.
- the unwelded part 4 exists in the overlapping surface of the flange 2 and the doubler member 10 in a fillet weld part, and the butt
- the unwelded portion 4 between the web 1 and the doubler member 10 is not necessarily required when the brittle crack propagation stop toughness of the doubler member 10 is 5900 N / mm 3/2 or more.
- 3A shows the appearance of the fillet welded joint
- FIG. 3B shows the joint cross-sectional shape of the butt weld joint parts 11 and 12.
- a welded structure may be manufactured by butt welding flange steel plates and web steel plates, and fillet welding the obtained butt weld joints via a doubler member. Also, a set of web steel sheets before butt welding is tack welded to the doubler member on the flange surface, then the web steel sheets are butt welded together, and the resulting butt weld joint is welded to the flange to produce a welded structure. May be.
- the ratio Y (%) of the unwelded portion remaining on the overlapping surface of the flange and the doubler member in order to prevent the brittle crack generated from the flange from propagating to the web within the doubler member is the following formula (2): Y (%) ⁇ ⁇ 6900- (Kca) T ⁇ / 85 (2) (Where, (Kca) T: brittle crack propagation stop toughness of doubler member at service temperature T (° C.) (N / mm 3/2 )) Adjust to satisfy.
- the ratio Y (%) is Y (%): ⁇ (width of unwelded portion B F of overlap surface of doubler member and flange in fillet welded joint section) / (plate width D W of doubler member and left and right fillet welds Leg length l F ) ⁇ ⁇ 100
- the width of the unwelded portion 4 of the overlapping surface of the doubler member and the flange in the joint cross section of the fillet welded joint is B F
- the leg length of the fillet welded portion is l F.
- the brittle crack propagation stop toughness Kca of the doubler member to be used is the service temperature T obtained in advance by conducting a temperature gradient type brittle crack propagation stop test (ESSO test) on the doubler member (steel plate).
- the brittle crack propagation stop toughness Kca at (° C.) is used.
- the ratio X (%) of the unwelded portion remaining on the butt surface between the web and the doubler member, and the arrester performance of the doubler member And the following formula (1) X (%) ⁇ ⁇ 5900 ⁇ (Kca) T ⁇ / 85 (1) (Where, (Kca) T : brittle crack propagation stop toughness of doubler member at service temperature T (° C) (N / mm 3/2 )) Adjust to satisfy.
- the ratio X (%) is X (%): ⁇ (width B W of unwelded portion of butt surface between doubler member and web in fillet weld joint cross section) / ((web thickness t W and leg length of left and right fillet welds) l Sum of W ) ⁇ ⁇ 100 Defined in
- the ratio X (%) of the unwelded portion and the brittle crack propagation stop toughness (Kca) T of the doubler member satisfy the formula (1), and the brittleness
- the ratio Y (%) of the unwelded portion and the brittle crack propagation stop toughness (Kca) T of the doubler member are adjusted so as to satisfy the formula (2), The brittle crack that has propagated and propagated can be stopped or stopped by the doubler member.
- the ratios X and Y of the unwelded portion and the brittle crack propagation stop toughness (Kca) T of the doubler member to be used are satisfied so that the expressions (1) and (2) can be satisfied at the same time. It is preferable to adjust.
- the doubler member may be austenitic steel (high Mn steel, austenitic stainless steel, etc.) or low-temperature nickel steel sheet (3.5% Ni steel, 5% Ni steel, 7% Ni steel, 9% Ni). Steel), and in this case, the formula (1) and / or the formula (2) may not be satisfied.
- Austenitic steel high Mn steel, austenitic stainless steel, etc.
- the details of the chemical components are not particularly limited, but the crystal structure at the service temperature ( ⁇ 10 ° C.) needs to be austenite.
- low-temperature nickel steel sheets (3.5% Ni steel, 5% Ni steel, 7% Ni steel, 9% Ni steel) have a brittle fracture crystal structure, but at the hull design temperature of ⁇ 10 ° C. It has extremely high toughness and can prevent the propagation of long brittle cracks.
- a nickel steel steel plate for a low-temperature pressure vessel specified in JIS G 3127 may be used.
- the height (gap) of the unwelded portion of the overlapping surface of the doubler member and the flange may be 5 mm or more.
- the welded structure of the present invention having the above fillet welded joint is, for example, a hull structure in which a hull outer plate of a ship is a flange and a bulkhead is a web, or a deck is a flange and a hatch is a web. It is applicable to.
- a thick steel plate having the thickness shown in Table 1-1 and Table 1-2 is used as a web and a flange, and a doubler member shown in Table 1-1 and Table 1-2 is provided at a butt portion of the web and the flange.
- 4 (a), (b), and (c) show cases where brittle cracks are generated and propagated from the flange
- FIGS. 5 (a), (b), and (c) show cases where brittle cracks are generated and propagated from the web. The case is assumed.
- the unwelded portion 4 as shown in FIG. 1A is provided on the overlapping surface of the doubler member 10 and the flange 2 with the unwelded width B F ,
- the plate width D W of the doubler member 10 and the leg length l F of the left and right fillet welds were changed, and the ratio Y of the unwelded part was changed to be present.
- the unwelded portion 4 as shown in FIG. 1A is provided on the overlapping surface of the doubler member 10 and the flange 2 with the unwelded width B F .
- the doubler member 10 in the fillet welded joint in the produced large-sized welded joint 9, a thick steel plate having (Kca) ⁇ 10 ° C. of 2500 to 11000 (N / mm 3/2 ) was used as the doubler member 10. Furthermore, in some welded structures, as shown in FIG. 1C, the unwelded portion height (gap) 14 of the overlapping surface of the doubler member 10 and the flange 2 was set to 5 mm or more.
- the flange is a thick steel plate (base material only) (FIG. 4A), a thick steel plate having a butt weld joint (FIGS. 4B and 4C), and the web is a thick steel plate ( Base material only) (FIGS. 4A and 4B), a thick steel plate having a butt weld joint (FIG. 4C).
- the web is a thick steel plate (base material only) (FIG. 5 (a)), the thick steel plate (FIG. 5 (b), (c)) having a butt weld joint
- the flange is a thick steel plate (base material). Only) (FIGS. 5A and 5B), a thick steel plate having a butt-welded joint (FIG. 5C).
- the butt weld joint 11 was produced by one-pass high heat input electrogas arc welding (one electrode and two electrodes EGW) or multilayer carbon dioxide arc welding (multilayer CO 2 ).
- the butt weld joint 12 was produced by seg arc welding (1 electrode and 2 electrode SEGARC) or multilayer carbon dioxide arc welding (multilayer CO 2 ).
- fillet welding between the doubler member 10 and the flange 2 is performed by changing the groove shape and welding conditions mainly by grooveless carbon dioxide arc welding, as shown in Tables 2-1 and 2-2.
- leg l F of weld metal 5 the weld width W F was variously changed.
- the groove shape and welding conditions are changed mainly by partial penetration carbon dioxide arc welding, as shown in Tables 2-1 and 2-2.
- the leg length l W and the welding width W W of the meat weld metal 51 were variously changed.
- the leg length and the welding width are average values on both the left and right sides.
- brittle crack propagation stop test In the brittle crack propagation stop test, a mechanical notch was hit to generate a brittle crack, and it was investigated whether the propagated brittle crack stopped at the fillet weld. All tests were performed under the conditions of stress 100 to 283 N / mm 2 and temperature: ⁇ 10 ° C.
- the stress 100N / mm 2 is the average value of the stress that constantly acts on the hull, and the stress 257N / mm 2 is equivalent to the maximum allowable stress of the yield strength 390N / mm class 2 steel plate applied to the hull.
- the value, stress 283 N / mm 2 is a value corresponding to the maximum allowable stress of the yield strength 460 N / mm 2 grade steel plate applied to the hull.
- the temperature –10 ° C is the design temperature of the ship.
- the obtained results are shown in Tables 3 and 4.
- Table 3 shows the results of a brittle crack propagation stop test when the web is a crack introduction part and Table 4 is the case where a flange is a crack introduction part.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Optics & Photonics (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
この非特許文献1では、溶接部で強制的に発生させた脆性亀裂の伝播経路、伝播挙動を実験的に調査し、溶接部の破壊靱性がある程度確保されていれば、溶接残留応力の影響により脆性亀裂は溶接部から母材側に逸れてしまうことが多いという結果が記載されているが、溶接部に沿って脆性亀裂が伝播した例も複数例確認されている。このことは、脆性破壊が溶接部に沿って直進伝播する可能性が無いとは言い切れないことを示唆している。
また、非特許文献2には、とくに発生した脆性亀裂の伝播停止のために、特別な脆性亀裂伝播停止特性を有する厚鋼板を必要とするとの指摘もある。
この特許文献1に記載された技術では、骨材(補強材)として、表層部および裏層部で3mm以上の厚みにわたり0.5~5μmの平均円相当粒径を有しさらに板厚面に平行な面で(100)結晶面のX線面強度比が1.5以上である、ミクロ組織を有する鋼板を用いるとしている。このようなミクロ組織を有する鋼板を補強材として隅肉溶接した構造とすることにより、突合せ溶接継手部に脆性亀裂が発生しても、補強材である骨材で脆性破壊を停止でき、溶接構造体が破壊するような致命的な損傷を防止できるとしている。
この特許文献2に記載された溶接構造体では、隅肉溶接継手断面におけるウェブの、フランジとの突合せ面に未溶着部を残存させ、その未溶着部の幅と、隅肉溶接部の左右の脚長とウェブ板厚との和との比、Xが、被接合部材(フランジ)の脆性亀裂伝播停止性能Kcaと特別な関係式を満足するように、未溶着部の幅を調整する。これにより、被接合部材(フランジ)として板厚:50mm以上の厚物材を用いたとしても、接合部材(ウェブ)で発生した脆性亀裂の伝播を、隅肉溶接部のウェブとフランジの突合せ面で停止させ、被接合部材(フランジ)への脆性亀裂の伝播を阻止することができるとしている。
そして、このような溶接構造体であれば、被接合部材で発生した脆性亀裂を、大規模破壊に至る前に隅肉溶接金属で伝播阻止することができるとしている。
そして、このような溶接構造体とすることにより、脆性亀裂は、隅肉溶接部または接合部材の母材で伝播停止できるとしている。
そして、このような溶接構造体とすることにより、脆性亀裂は、隅肉溶接部または接合部材の母材で停止できるとしている。
また、このような溶接構造体とすることにより、被接合部材溶接部から発生した脆性亀裂、または接合部材溶接部から発生した脆性亀裂を、隅肉溶接部あるいは接合部材の溶接部または被接合部材の溶接部で伝播阻止することができるとしている。
この理由は明確には解明されていないが、一因としてT継手部に亀裂が突入するときの破壊駆動力(応力拡大係数)が被接合部材(フランジ)に突入する場合よりも接合部材(ウェブ)に突入する場合のほうが大きくなることが考えられる。
また、部材の板厚が80mm未満の場合であっても、現場での実施工においては、隅肉溶接部の脚長のバラツキが大きいため、隅肉溶接部の強度確保(隅肉脚長確保)と脆性亀裂阻止性能の確保(隅肉脚長16mm以下に制限)とを両立させることは、現場での施工管理上多大な労力を要すると共に、手直し等の追加コストがかさむという問題があった。
その結果、フランジから発生した脆性亀裂の伝播を阻止ないし停止するには、フランジとダブラー部材との重ね合せ面に構造不連続部を確保すると共に、ダブラー部材の脆性亀裂伝播停止性能(アレスト性能)の向上が必須となることに想到した。
そしてさらに、構造不連続部の長さ、すなわち未溶着幅が短くなると、脆性亀裂の伝播が容易となるため、ダブラー部材のアレスト性能を構造不連続部の長さ(未溶着幅)に応じた性能とする必要があることも知見した。
Y(%):{(隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部の幅)/(ダブラー部材の板幅と左右の隅肉溶接部の脚長の和)}×100
で定義した。
そして、特定関係として、次(2)式
Y(%)≧{6900-(Kca)T}/85 ‥‥(2)
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
を見出した。
そしてさらに、構造不連続部の長さ(未溶着部の幅)が短くなると、脆性亀裂の伝播が容易となるため、ダブラー部材のアレスト性能を構造不連続部の長さ、すなわち未溶着部の幅に応じた性能とする必要があることも知見した。なお、ダブラー部材のアレスト性能が優れていれば、未溶着部の残存も必要ない場合もあることも知見した。
X(%):{(隅肉溶接継手の継手断面におけるダブラー部材とウェブとの突合せ面の未溶着部の幅)/((ウェブの板厚と左右の隅肉溶接部の脚長の和)}×100
で定義した。なお、X(%)は0%を含むものとする。
そして、特定関係として、次(1)式
X(%)≧{5900-(Kca)T}/85 ‥‥(1)
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
を見出した。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
(1)ウェブとフランジの突合せ部分にダブラー部材を備えてなる溶接構造体であって、
前記ダブラー部材が前記ウェブと前記フランジに隅肉溶接されてなる脆性亀裂伝播停止特性に優れる溶接構造体。
記
X(%):{(隅肉溶接継手の継手断面におけるウェブとダブラー部材との突合せ面に残存する未溶着部の幅)/(ウェブの板厚と左右の隅肉溶接部の脚長の和)}×100
X(%)≧{5900-(Kca)T}/85 ‥‥(1)
ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2)
記
Y(%):{(隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部の幅)/(ダブラー部材の板幅と左右の隅肉溶接部の脚長の和)}×100
Y(%)≧{6900-(Kca)T}/85 ‥‥(2)
ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2)
従って、本発明によれば、鋼構造物、とくに、大型コンテナ船やバルクキャリアーなどにおける船体分離などの大規模な脆性破壊の危険性を回避することができ、船体構造の安全性を確保するうえで大きな効果をもたらし、産業上格段の効果を奏する。
また、本発明によれば、施工時に、ダブラー部材とフランジの間の重ね合わせ面に残存する未溶着部の寸法を調整すると共に、未溶着部の寸法に応じた脆性亀裂伝播停止特性を有するダブラー部材を選定することにより、特殊な鋼板を大量に使用することなく、また安全性を損ねることなしに、容易に、脆性亀裂伝播停止特性に優れた溶接構造体を製造できる。この効果は、ダブラー部材とウェブの間の突合せ面に残存する未溶着部についても同様である。
本発明の溶接構造体は、ウェブ1とフランジ2の突合せ部分にダブラー部材10を備えてなる溶接構造体である。本発明の溶接構造体は、フランジ2の表面にダブラー部材10の表面を重ね合わせて隅肉溶接によりダブラー部材10とフランジ2とを接合し、かつダブラー部材10の表面にウェブ1の端面を突合せ隅肉溶接によりダブラー部材10とウェブ1とを接合してなる溶接構造体である。本発明の溶接構造体では、ウェブ1、フランジ2およびダブラー部材10がいずれも板厚50mm以上の厚肉鋼材とする。
なお、図2(a)は、隅肉溶接継手の外観を示し、図2(b)は突合せ溶接継手部11における継手断面形状を示す。
なお、図3(a)は隅肉溶接継手の外観を、図3(b)は突合せ溶接継手部11、12における継手断面形状を示す。
また、溶接構造体の製造方法はとくに限定する必要はなく、通常の製造方法がいずれも適用できる。例えば、フランジ用鋼板同士、ウェブ用鋼板同士を突合せ溶接し、得られた突合せ溶接継手をダブラー部材を介して隅肉溶接して溶接構造体を製造してもよい。また、突合せ溶接前の一組のウェブ用鋼板をフランジ表面のダブラー部材に仮付溶接しついでウェブ用鋼板同士を突合せ溶接し、得られた突合せ溶接継手をフランジに溶接して溶接構造体を製造してもよい。
Y(%)≧{6900-(Kca)T}/85 ‥‥(2)
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
を満足するように調整する。なお、好ましくは次(2)′式
Y(%)≧{7900-(Kca)T}/85 ‥‥(2)′
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
である。
ここに、比率Y(%)は、
Y(%):{(隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部の幅BF)/(ダブラー部材の板幅DWと左右の隅肉溶接部の脚長lFの和)}×100
で定義される。なお、図1では、隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部4の幅はBFで、隅肉溶接部の脚長はlFで示してある。
そして、「供用温度T」としては、通常、船舶の設計温度である「-10℃」を使用するものとする。
X(%)≧{5900-(Kca)T}/85 ‥‥(1)
(ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2))
を満足するように調整する。
ここに、比率X(%)は、
X(%):{(隅肉溶接継手の継手断面におけるダブラー部材とウェブとの突合せ面の未溶着部の幅BW)/((ウェブの板厚tWと左右の隅肉溶接部の脚長lWの和)}×100
で定義した。
なお、ウェブからの脆性亀裂であれば、使用するダブラー部材の(Kca)Tが高い場合には、未溶着部の比率X(%)が0%である場合でも、(1)式を満足でき、脆性亀裂をダブラー部材で停止させることもできる。しかし、フランジから発生した脆性亀裂の伝播をダブラー部材で停止させるためには、使用できるダブラー部材の(Kca)Tに限界があり、(2)式を満足させるためには、未溶着部の比率Y(%)は大きくする必要がある。
なお、実際の鋼構造物では、(1)式および(2)式を同時に満足できるように、未溶着部の比率X、Yと、使用するダブラー部材の脆性亀裂伝播停止靭性(Kca)Tを調整することが好ましい。
なお、上記した隅肉溶接継手を備える本発明の溶接構造体は、例えば、船舶の船体外板をフランジとし、隔壁をウェブとする船体構造、あるいはデッキをフランジとし、ハッチをウェブとする船体構造などに適用可能である。
表1-1、表1-2に示す板厚の厚鋼板を、ウェブおよびフランジとして、ウェブとフランジの突合せ部分に表1-1、表1-2に示すダブラー部材を備え、図4(a)、(b)、(c)および図5(a)、(b)、(c)に示す形状の、実構造サイズの大型溶接構造継手9を作製した。図4(a)、(b)、(c)は、フランジから脆性亀裂が発生・伝播するケースを、図5(a)、(b)、(c)は、ウェブから脆性亀裂が発生・伝播するケースを想定している。
いずれの試験も、応力100~283N/mm2、温度:-10℃の条件で実施した。応力100N/mm2は、船体に定常的に作用する応力の平均的な値であり、応力257N/mm2は、船体に適用されている降伏強度390N/mm2級鋼板の最大許容応力相当の値、応力283N/mm2は、船体に適用されている降伏強度460N/mm2級鋼板の最大許容応力相当の値である。温度-10℃は船舶の設計温度である。
得られた結果を表3、表4に示す。表3はウェブを亀裂導入部とした場合、表4はフランジを亀裂導入部とした場合の脆性亀裂伝播停止試験結果である。
一方、本発明の範囲を外れる比較例では、脆性亀裂はダブラー部材で停止することなく伝播し、脆性亀裂の伝播を阻止することができなかった。
2 フランジ
4 未溶着部
5 隅肉溶接金属
51 隅肉溶接金属
7 機械ノッチ
8 仮付け溶接
9 ダブラー部材付き大型溶接構造継手(大型溶接継手)
10 ダブラー部材
11 フランジ突合せ溶接継手部
12 ウェブ突合せ溶接継手部
θ 交差角
Claims (9)
- ウェブとフランジの突合せ部分にダブラー部材を備えてなる溶接構造体であって、
前記ダブラー部材が前記ウェブと前記フランジに隅肉溶接されてなる脆性亀裂伝播停止特性に優れる溶接構造体。 - 前記ウェブが前記ダブラー部材に突合せ隅肉溶接され、かつ該突合せ面に未溶着部が残存し、および/または、前記ダブラー部材が前記フランジに重ね合わせ隅肉溶接され、かつ該重ね合わせ面に未溶着部が残存する隅肉溶接継手をそなえる請求項1に記載の溶接構造体。
- 前記ウェブ、前記フランジおよび前記ダブラー部材の板厚がいずれも50mm以上である請求項1または2に記載の溶接構造体。
- 前記隅肉溶接継手の継手断面における前記ダブラー部材と前記ウェブの突合せ面に残存する、下記に定義する前記未溶着部の、比率X(%)(0%を含む)と、供用温度T(℃)における前記ダブラー部材の脆性亀裂伝播停止靭性(Kca)T(N/mm3/2)とが、下記(1)式を満足する請求項2または3に記載の溶接構造体。
記
X(%):{(隅肉溶接継手の継手断面におけるウェブとダブラー部材との突合せ面に残存する未溶着部の幅)/(ウェブの板厚と左右の隅肉溶接部の脚長の和)}×100
X(%)≧{5900-(Kca)T}/85 ‥‥(1)
ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2) - 前記隅肉溶接継手の継手断面における前記ダブラー部材と前記フランジとの重ね合わせ面に残存する、下記に定義する前記未溶着部の、比率Y(%)と、供用温度T(℃)における前記ダブラー部材の脆性亀裂伝播停止靭性(Kca)T(N/mm3/2)とが、下記(2)式を満足する請求項2ないし4のいずれかに記載の溶接構造体。
記
Y(%):{(隅肉溶接継手の継手断面におけるダブラー部材とフランジとの重ね合わせ面の未溶着部の幅)/(ダブラー部材の板幅と左右の隅肉溶接部の脚長の和)}×100
Y(%)≧{6900-(Kca)T}/85 ‥‥(2)
ここで、(Kca)T:供用温度T(℃)におけるダブラー部材の脆性亀裂伝播停止靭性(N/mm3/2) - 前記フランジまたはウェブが、前記ウェブまたはフランジに交差する形で突合せ溶接継手部を有する請求項1ないし5のいずれかに記載の溶接構造体。
- 前記ウェブが突合せ溶接継手部を有し、該ウェブの突合せ溶接継手部が前記フランジの突合せ溶接継手部と交差するように該ウェブを配設してなることを特徴とする請求項6に記載の溶接構造体。
- ダブラー部材が、オーステナイト鋼または低温用ニッケル鋼板である請求項1ないし3のいずれかに記載の溶接構造体。
- 前記溶接構造体において、前記ダブラー部材と前記フランジの重ね合わせ面の未溶着部の高さ(すきま)が5mm以上である請求項2ないし8のいずれかに記載の溶接構造体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197000921A KR102258423B1 (ko) | 2016-06-16 | 2017-06-15 | 취성 균열 전파 정지 특성이 우수한 용접 구조체 |
CN201780036899.4A CN109311127B (zh) | 2016-06-16 | 2017-06-15 | 脆性裂纹传播停止特性优异的焊接结构体 |
JP2017546748A JP6615215B2 (ja) | 2016-06-16 | 2017-06-15 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
PH12018502635A PH12018502635A1 (en) | 2016-06-16 | 2018-12-13 | Welded structure having excellent brittle crack arrestability |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016119469 | 2016-06-16 | ||
JP2016-119469 | 2016-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017217516A1 true WO2017217516A1 (ja) | 2017-12-21 |
Family
ID=60664011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022213 WO2017217516A1 (ja) | 2016-06-16 | 2017-06-15 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6615215B2 (ja) |
KR (1) | KR102258423B1 (ja) |
CN (1) | CN109311127B (ja) |
PH (1) | PH12018502635A1 (ja) |
WO (1) | WO2017217516A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019126825A (ja) * | 2018-01-24 | 2019-08-01 | 日本製鉄株式会社 | 溶接継手 |
NL2028601A (en) * | 2020-12-31 | 2022-07-21 | Cosco Shipping Shipyard Nangtong Co Ltd | A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel |
WO2022265010A1 (ja) * | 2021-06-15 | 2022-12-22 | Jfeスチール株式会社 | 溶接構造体 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022265011A1 (ja) | 2021-06-15 | 2022-12-22 | Jfeスチール株式会社 | 溶接構造体 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116392U (ja) * | 1981-01-06 | 1982-07-19 | ||
JP2008023594A (ja) * | 2006-06-23 | 2008-02-07 | Ihi Marine United Inc | 溶接構造体 |
WO2013038685A1 (ja) * | 2011-09-13 | 2013-03-21 | Jfeスチール株式会社 | 溶接構造体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2402258C3 (de) | 1973-04-14 | 1980-01-03 | Chemische Fabrik Pfersee Gmbh, 8900 Augsburg | Verwendung von Kondensationsprodukten zum Behändem von Textilmaterialien |
JP4074524B2 (ja) | 2003-01-31 | 2008-04-09 | 新日本製鐵株式会社 | 耐脆性破壊に優れた溶接構造体 |
JP5144053B2 (ja) * | 2006-05-12 | 2013-02-13 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
CN103796786B (zh) * | 2011-09-13 | 2015-04-22 | 杰富意钢铁株式会社 | 焊接结构体 |
CN104271301B (zh) * | 2012-05-10 | 2015-10-14 | 杰富意钢铁株式会社 | 焊接构造体 |
-
2017
- 2017-06-15 JP JP2017546748A patent/JP6615215B2/ja active Active
- 2017-06-15 CN CN201780036899.4A patent/CN109311127B/zh active Active
- 2017-06-15 KR KR1020197000921A patent/KR102258423B1/ko active IP Right Grant
- 2017-06-15 WO PCT/JP2017/022213 patent/WO2017217516A1/ja active Application Filing
-
2018
- 2018-12-13 PH PH12018502635A patent/PH12018502635A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116392U (ja) * | 1981-01-06 | 1982-07-19 | ||
JP2008023594A (ja) * | 2006-06-23 | 2008-02-07 | Ihi Marine United Inc | 溶接構造体 |
WO2013038685A1 (ja) * | 2011-09-13 | 2013-03-21 | Jfeスチール株式会社 | 溶接構造体 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019126825A (ja) * | 2018-01-24 | 2019-08-01 | 日本製鉄株式会社 | 溶接継手 |
JP7104368B2 (ja) | 2018-01-24 | 2022-07-21 | 日本製鉄株式会社 | 溶接継手 |
NL2028601A (en) * | 2020-12-31 | 2022-07-21 | Cosco Shipping Shipyard Nangtong Co Ltd | A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel |
WO2022265010A1 (ja) * | 2021-06-15 | 2022-12-22 | Jfeスチール株式会社 | 溶接構造体 |
JPWO2022265010A1 (ja) * | 2021-06-15 | 2022-12-22 | ||
JP7293515B2 (ja) | 2021-06-15 | 2023-06-19 | Jfeスチール株式会社 | 溶接構造体 |
Also Published As
Publication number | Publication date |
---|---|
CN109311127A (zh) | 2019-02-05 |
KR20190009414A (ko) | 2019-01-28 |
PH12018502635A1 (en) | 2019-10-07 |
JP6615215B2 (ja) | 2019-12-04 |
CN109311127B (zh) | 2021-03-09 |
KR102258423B1 (ko) | 2021-06-03 |
JPWO2017217516A1 (ja) | 2018-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6744274B2 (ja) | 溶接構造体 | |
JP5144053B2 (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
JP5408396B1 (ja) | 溶接構造体 | |
JP5395985B2 (ja) | 溶接構造体 | |
JP5365761B2 (ja) | 溶接構造体 | |
JP6615215B2 (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
JP7293515B2 (ja) | 溶接構造体 | |
JP6720106B2 (ja) | 溶接構造体 | |
WO2012008056A1 (ja) | 耐脆性き裂伝播性を有する溶接構造体 | |
JP6251463B1 (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
JP7195503B1 (ja) | 溶接構造体 | |
JP2012096790A (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
JP2022083554A (ja) | 溶接構造体の脆性亀裂伝播停止性能の評価方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017546748 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17813410 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197000921 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17813410 Country of ref document: EP Kind code of ref document: A1 |