NL2028601A - A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel - Google Patents

A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel Download PDF

Info

Publication number
NL2028601A
NL2028601A NL2028601A NL2028601A NL2028601A NL 2028601 A NL2028601 A NL 2028601A NL 2028601 A NL2028601 A NL 2028601A NL 2028601 A NL2028601 A NL 2028601A NL 2028601 A NL2028601 A NL 2028601A
Authority
NL
Netherlands
Prior art keywords
welding
groove
panel
flange
cylinder
Prior art date
Application number
NL2028601A
Other languages
Dutch (nl)
Other versions
NL2028601B1 (en
Inventor
Lu Hua
Guo Xiaodong
Gu Wei
Jiang Feichao
Zhao Yongping
Wu Chengen
Yu Jian
Li Rong
Wu Haiyan
Original Assignee
Cosco Shipping Shipyard Nangtong Co Ltd
Cosco Shipping Qidong Offshore Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosco Shipping Shipyard Nangtong Co Ltd, Cosco Shipping Qidong Offshore Co Ltd filed Critical Cosco Shipping Shipyard Nangtong Co Ltd
Publication of NL2028601A publication Critical patent/NL2028601A/en
Application granted granted Critical
Publication of NL2028601B1 publication Critical patent/NL2028601B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • B63B73/43Welding, e.g. laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/025Connecting cutting edges or the like to tools; Attaching reinforcements to workpieces, e.g. wear-resisting zones to tableware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0288Seam welding; Backing means; Inserts for curved planar seams for welding of tubes to tube plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/164Arc welding or cutting making use of shielding gas making use of a moving fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/20Building or assembling prefabricated vessel modules or parts other than hull blocks, e.g. engine rooms, rudders, propellers, superstructures, berths, holds or tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/60Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by the use of specific tools or equipment; characterised by automation, e.g. use of robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Robotics (AREA)
  • Optics & Photonics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

The invention discloses a construction method for a main propulsor base of a deep- water dynamic positioning crude oil cargo transfer vessel, which belongs to the field of 5 ship engineering. The construction method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel comprises the following steps: press the front and rear edges of the flat cylinder steel plate, form a cylinder by rounding, and weld the sixth groove on both sides of the cylinder, splice and weld a plurality of fan-shaped panels through the fifth groove to form a flange, position the 10 cylinder at the upper end of the flange with the flange as the reference plane, and weld the third groove for the flange and the cylinder, weld the first groove of the panel to the outer side of the flange and weld the fourth groove of the web to the outer side of the cylinder to form the propulsor base, turn the propulsor base over and continue to weld among the second groove of the web, the panel and the flange. The method of the 15 invention ensures the machining accuracy of the propulsor base, effectively reduces the welding deformation and ensures that the formed structure rigidity and manufacturing accuracy of the welded main propulsor base meet requirements.

Description

-1-
A CONSTRUCTION METHOD FOR A MAIN PROPULSOR BSEA OF A DEEP-WATER DYNAMIC POSITIONING CRUDE OIL CARGO TRANSFER
VESSEL Technical Field
[0001] The invention relates to the field of ship engineering, in particular to a construction method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel.
Background Art
[0002] Under the background that the international crude oil price remains low and the global offshore oil companies greatly cut the operating costs, CTV (Cargo Transfer Vessel) for reducing FPSO oil unloading costs emerges. The new concept deep-water dynamic positioning crude oil CTV will challenge the traditional existing crude oil transfer ways in the market.
[0003] Two full-revolving propulsors are required to be installed in the deep-water dynamic positioning crude oil cargo transfer vessel, a single full-revolving propulsor has the propeller diameter of up to 3,500 mm, the weight of 56T and the net height of more than 6,000 mm, the volume and weight are large, and the installation accuracy is high, so the base for the full-revolving propulsors is required to connect the stern structure of the vessel with the main propulsor, so as to realize the installation of the main propulsor.
[0004] By comparing other structures of the ship, the main propulsor base for the deep- water dynamic positioning crude oil cargo transfer vessel adopts the thick plate structure, the thickness of the flange is 120 mm, and the thickness of the other structures reaches 50 mm, so the conventional welding method can hardly meet the requirements for the structure rigidity and the manufacturing accuracy of the main propulsor base for the deep-water dynamic positioning crude oil cargo transfer vessel.
Contents of the Invention
[0005] The invention aims to propose a construction method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel.
[0006] For this purpose, the invention adopts the following technical proposal which
-2- includes the following steps: Step S10: arrange a first groove on the outer side of the panel, arrange a second groove on the top of the web, arrange a third groove on the top of the cylinder steel plate, and arrange a fourth groove on one side of the web, arrange a fifth groove on both ends of the sector panel, and arrange a sixth groove on both sides of the cylinder steel plate; Step S20: preheat both sides of the first groove, the second groove, the third groove, the fourth groove, the fifth groove and the sixth groove before welding; Step S30: press the front and rear edges of the flat cylinder steel plate, form a cylinder by rounding, and weld the sixth groove on both sides of the cylinder; Step S40: splice and weld a plurality of fan-shaped panels through the fifth groove to form a flange; Step S50: carry out post-weld heat treatment on both sides of the weld for the flange formed by welding; Step S60: position the cylinder at the upper end of the flange with the flange as the reference plane, and weld the third groove for the flange and the cylinder; Step S70: weld the first groove of the panel to the outer side of the flange and weld the fourth groove of the web to the outer side of the cylinder to form the propulsor base; Step S80: turn the propulsor base over and continue to weld among the second groove of the web, the panel and the flange; Step S90: relieve stress at the welding position of the propulsor base.
[0007] Preferably, the construction method also comprises Step S31: round the cylinder after seam welding, and then relieve stress on the butt welds at the front and rear ends of the cylinder.
[0008] Preferably, the first groove, the second groove, the third groove, the fourth groove and the sixth groove are asymmetric V-shaped grooves, and the fifth groove is a symmetrical V-shaped groove.
[0009] Preferably, Step S60 includes: Step S61: divide the joint part between the cylinder and the flange into a first seam, a second seam, a third seam and a fourth seam which are equal in length and symmetrically distributed, wherein two ends of the first seam are respectively connected with one end of the third seam and one end of the fourth seam, and two ends of the second seam are respectively connected with the other end of the third seam and the other end of the fourth seam;
-3- Step S62: weld the backing layer and the filling layer counterclockwise in sequence on the inner side of the first seam; Step S63: perform back gouging on the outer side of the first seam; Step S64: weld the backing layer and the filling layer counterclockwise in sequence on the outer side of the first seam; Step S65: weld the capping layer counterclockwise on the inner side of the first seam; Step S66: weld the capping layer counterclockwise on the outer side of the first seam; Step S67: repeat steps S62-S67 for the second seam, the third seam and the fourth seam to complete the welding between the flange and the cylinder.
[0010] Preferably, Step S70 includes: Step S71: divide the area to be welded between the panel and the flange counterclockwise in sequence into a first panel welding area, a fourth panel welding area, a sixth panel welding area, a second panel welding area, a fifth panel welding area and a third panel welding area symmetrically arranged, Step S72: set the sequence of welding between the panel and the flange as follows: the first panel welding area - the fourth panel welding area - the sixth panel welding area - the second panel welding area - the fifth web panel area - the third web panel area; Step S73: weld between the panel and the flange in the welding sequence set in Step S72; Step S74: cover the weld formed by welding in Step S73 with thermal insulation cotton for slow cooling; Step S75: divide the area to be welded between the web and the cylinder counterclockwise in sequence into a first web welding area, a fourth web welding area, a sixth web welding area, a second web welding area, a fifth web welding area and a third web welding area symmetrically arranged; Step S76: set the sequence of welding between the web and the cylinder as follows: the first web welding area -- the fourth web welding area -- the sixth web welding area -- the second web welding area -- the fifth web welding area -- the third web welding area; Step S77: weld between the web and cylinder in the welding sequence set in Step S76; Step S78: cover the weld formed by welding in Step S77 with thermal insulation cotton for slow cooling.
[0011] Preferably, Step S80 includes:
-4- Step S81: turn the propulsor base over through a lifting device; Step S82: divide the area to be welded between the panel and the web counterclockwise in sequence into a first T-shaped beam welding area, a fourth T- shaped beam welding area, a sixth T-shaped beam welding area, a second T-shaped beam welding area, a fifth T-shaped beam welding area and a third T-shaped beam welding area symmetrically arranged, Step S83: set the sequence of welding among the web, the panel and the flange as follows: the first T-shaped beam welding area -- the fourth T-shaped beam welding area -- the sixth T-shaped beam welding area -- the second T-shaped beam welding area -- the fifth T-shaped beam welding area -- the third T-shaped beam welding area; Step S84: weld among web, the panel and the flange in the welding sequence set in Step S83; Step S85: cover the weld formed by welding in Step S84 with thermal insulation cotton for slow cooling.
[0012] Preferably, the construction method also includes Step S51 for 100% UT and MT on the flange after post-weld heat treatment.
[0013] Preferably, the sector panel is positioned by the ground sample line splicing method in Step S40.
[0014] Preferably, welding between the third groove of the cylinder and the flange, between the fourth groove of the web and the outer side of the cylinder, between the first groove of the panel and the outer side of the flange and among the second groove of the web, the panel and the flange is FCAW double-sided welding.
[0015] Preferably, the fifth groove between the sector panels and the sixth groove on both sides of the cylinder are welded by SAW.
[0016] The invention has the following beneficial effects: the method of the invention realizes the fabrication of the propulsor base for the deep-water dynamic positioning crude oil cargo transfer vessel, ensures the the installation accuracy of the propulsor base, effectively reduces the internal stress generated during the construction process of the propulsor base to effectively decrease the welding deformation, so that the formed structure rigidity and manufacturing accuracy of the welded main propulsor base meet requirements, thereby ensuring the installation accuracy of the main propulsor during the construction process of the deep-water dynamic positioning crude oil cargo transfer vessel.
-5- Drawing Description
[0017] The drawings provide further explanation for the invention, but the contents in the drawings do not constitute any limitation to the invention.
[0018] Fig. 1 is a schematic diagram for the process flow of the invention; Fig. 2 is a schematic diagram drawn by the ground sample line for the invention; Fig. 3 is a schematic diagram for the section structure of the propulsor base for the invention; Fig. 4(a) 1s a partially enlarged view for position I of Fig. 3; Fig. 4(b) is a section enlarged view for position II of Fig. 3; Fig. 4(c) is a partially enlarged view for position III of Fig. 3; Fig. 4(d) is a section view for position IV of Fig. 3; Fig. 5 is the section view for the fifth groove of the invention; Fig. 6 is the section view for the sixth groove of the invention; Fig. 7(a) is a schematic diagram for the welding sequence between the inner side of the cylinder and the flange; Fig. 7(b) is a schematic diagram for the welding sequence between the outer side of the cylinder and the flange; Fig. 8(a) is a schematic diagram for the area to be welded between the panel and the flange; Fig. 8(b) is a schematic diagram for the area to be welded between the web and the cylinder; Fig. 8(c) 1s a schematic diagram for the area to be welded between the web and the panel; Fig. 9 is a schematic diagram for the division of joint part between the cylinder and the web of the invention.
Embodiments
[0019] The technical proposal of the invention is further explained below according to the drawings and the embodiments.
[0020] According to Fig. 1, the construction method for the main propulsor base of the deep-water dynamic positioning crude oil cargo transfer vessel in the embodiment comprises the following steps: Step S10: arrange a first groove on the outer side of the panel, arrange a second groove
-6- on the top of the web, arrange a third groove on the top of the cylinder steel plate, and arrange a fourth groove on one side of the web, arrange a fifth groove on both ends of the sector panel, and arrange a sixth groove on both sides of the cylinder steel plate; Step S20: preheat both sides of the first groove, the second groove, the third groove, the fourth groove, the fifth groove and the sixth groove before welding; Step S30: press the front and rear edges of the flat cylinder steel plate, form a cylinder by rounding, and weld the sixth groove on both sides of the cylinder; Step S40: splice and weld a plurality of fan-shaped panels through the fifth groove to form a flange; Step S50: carry out post-weld heat treatment on both sides of the weld for the flange formed by welding; Step S60: position the cylinder at the upper end of the flange with the flange as the reference plane, and weld the third groove for the flange and the cylinder; Step S70: weld the first groove of the panel to the outer side of the flange and weld the fourth groove of the web to the outer side of the cylinder to form the propulsor base; Step S80: turn the propulsor base over and continue to weld among the second groove of the web, the panel and the flange; Step S90: relieve stress at the welding position of the propulsor base.
[0021] Wherein, in Step 30, the front and rear edges of the flat cylinder steel plate are pressed before rounding to avoid wrinkling on the two edges of the cylinder steel plate 21 during rounding, and the cylinder steel plate is rounded by a three-star roller rounding machine to ensure the roundness of the cylinder with large plate thickness. In Step S40, a plurality of fan-shaped panels are spliced and welded through the fifth groove to form a flange to greatly facilitate transportation and installation and ensure that the the accuracy of the flange meets the requirements, and the ground sample line positioning method is used in the splicing process, so that the levelness of the flange surface is under control. In Step S60, when the cylinder is installed at the upper end of the flange, the perpendicularity of welded cylinder and flange is ensured by controlling the perpendicularity of the cylinder and the flange. In Step S80, the propulsor base is turned over to facilitate the welding of seam between the web and the panel. After the completion of fabricaton of the propulsor base, the stress is relieved at the welding position of the propulsor base by setting Step S90 to avoid the impact of welding stress on the mechanical properties of the propulsor base.
-7-
[0022] The method of this embodiment is used to construct the propulsor base of the deep-water dynamic positioning crude oil cargo transfer vessel. As shown in Fig. 3, the structure of the propulsor base for the deep-water dynamic positioning crude oil cargo transfer vessel comprises a flange 23, a cylinder 21 and a plurality of T-shaped beams, wherein the cylinder 21 is installed at the upper end of the flange 23, a plurality of T-shaped beams are evenly distributed on the outer side of the cylinder, the T-shaped beam comprises a web 221 and a panel 222, one side of the web 221 is connected with the outer side of the cylinder 21, the bottom of the web 221 1s connected with the upper side of the flange 23 and the panel 222, and one side of the panel 222 is connected with the outer side of the flange 23.
[0023] Preferably, the construction method also comprises Step S31: round the cylinder after seam welding, and then relieve stress on the butt welds at the front and rear ends of the cylinder. Therefore, after welding the seams at the front and rear ends of the cylinder, the cylinder is rounded by the rounding machine to ensure that the roundness of the welded cylinder meets the requirements; the stress on the butt welds at the front and rear ends of the cylinder are relieved to avoid the impact of stress caused by welding on the mechanical properties of the cylinder structure.
[0024] Preferably, according to Fig. 4 to Fig. 6, the first groove, the second groove, the third groove, the fourth groove and the sixth groove are asymmetric V-shaped grooves, and the fifth groove is a symmetrical V-shaped groove.
[0025] The workpieces to be welded are all of thick plate structure, in which the panel 1s 50 mm thick, the web is 35 mm thick, the cylinder is 35 mm thick, and the flange is 120 mm thick, so the first groove, the second groove, the third groove, the fourth groove and the sixth groove are asymmetric V-shaped grooves, and the fifth groove is a symmetric V-shaped groove to ensure the welding effect between the panel and the flange, between the web and the flange, between the cylinder and the flange and between the web and the panel, the welding arc can go deep into the root of the seam, and the weld can connect the gap in the seam to improve the strength of the welding position, so that the formed structure rigidity and manufacturing accuracy of the welded main propulsor base meet requirements.
[0026] Further, the first groove angle of the first groove is set to 40-45 degrees, the second groove angle is set to 40-45 degrees, and the root gap is set to 0-3 mm; the first groove angle of the second groove is set to 40-45 degrees, the second groove angle is
-8- set to 45 degrees, and the root gap is set to 0-3 mm; the first groove angle of the third groove is set to 40-45 degrees, the second groove angle is set to 45 degrees, and the root gap Is set to 0-3 mm; the first groove angle of the fourth groove is set to 40-45 degrees, the second groove angle is set to 45 degrees, and the root gap is set to 0-3 mm; the first groove angle of the fifth groove is set to 50-60 degrees, and the root gap is set to 6-8 mm; the first and second groove angles of the sixth groove are set to 60 degrees, and the root gap is set to 6-8mm.
[0027] Preferably, Step S60 includes: Step S61: according to Fig. 7, divide the joint part between the cylinder and the flange into a first seam 1, a second seam 2, a third seam 3 and a fourth seam 4 which are equal in length and symmetrically distributed, wherein two ends of the first seam 1 are respectively connected with one end of the third seam 3 and one end of the fourth seam 4, and two ends of the second seam 2 are respectively connected with the other end of the third seam 3 and the other end of the fourth seam 4; Step S62: weld the backing layer and the filling layer counterclockwise in sequence on the inner side of the first seam 1; Step S63: perform back gouging on the outer side of the first seam 1; Step S64: weld the backing layer and the filling layer counterclockwise in sequence on the outer side of the first seam 1; Step S65: weld the capping layer counterclockwise on the inner side of the first seam 1; Step S66: weld the capping layer counterclockwise on the outer side of the first seam 1; Step S67: repeat steps S62-S67 for the second seam 2, the third seam 3 and the fourth seam 4 to complete the welding between the flange and the cylinder.
[0028] Welding between the flange and the cylinder is sequence balanced welding. The welding position is divided according to the actual size of the cylinder on the main propulsor base. As the section of the cylinder is circular, in order to disperse the weld heat and facilitate the positioning and fixation of cylinder, two symmetrical seams are welded each time to reduce the deformation caused by the internal stress during welding. Each seam is welded according to Steps S62 to S67. The angular deformation of the structure is effectively controlled by double-sided cross welding of the same seam, thus guaranteeing the accurate installation of the main propulsor.
-9-
[0029] Preferably, Step S70 includes: Step S71: according to Fig. 8, divide the area to be welded between the panel and the flange counterclockwise in sequence into a first panel welding area Al, a fourth panel welding area A4, a sixth panel welding area A6, a second panel welding area A2, a fifth panel welding area A5 and a third panel welding area A3 symmetrically arranged, Step S72: set the sequence of welding between the panel and the flange as follows: the first panel welding area Al - the fourth panel welding area A4 - the sixth panel welding area A6 - the second panel welding area A2 - the fifth web panel area A5 - the third web panel area A3, Step S73: weld between the panel and the flange in the welding sequence set in Step S72; Step S74: cover the weld formed by welding in Step S73 with thermal insulation cotton for slow cooling; Step S75: divide the area to be welded between the web and the cylinder counterclockwise in sequence into a first web welding area B1, a fourth web welding area B4, a sixth web welding area B6, a second web welding area B2, a fifth web welding area B5 and a third web welding area B3 symmetrically arranged, Step S76: set the sequence of welding between the web and the cylinder as follows: the first web welding area B1 -- the fourth web welding area B4 -- the sixth web welding area B6 -- the second web welding area B2 -- the fifth web welding area BS -- the third web welding area B3; Step S77: weld between the web and cylinder in the welding sequence set in Step S76; Step S78: cover the weld formed by welding in Step S77 with thermal insulation cotton for slow cooling.
[0030] Step S80 includes: Step S81: turn the propulsor base over through a lifting device; Step S82: divide the area to be welded between the panel and the web counterclockwise in sequence into a first T-shaped beam welding area C1, a fourth T- shaped beam welding area C4, a sixth T-shaped beam welding area C6, a second T- shaped beam welding area C2, a fifth T-shaped beam welding area C5 and a third T- shaped beam welding area C3 symmetrically arranged, Step S83: set the sequence of welding among the web, the panel and the flange as
-10- follows: the first T-shaped beam welding area C1 -- the fourth T-shaped beam welding area C4 -- the sixth T-shaped beam welding area C6 -- the second T-shaped beam welding area C2 -- the fifth T-shaped beam welding area C5 -- the third T-shaped beam welding area C3; Step S84: weld among web, the panel and the flange in the welding sequence set in Step S83; Step S85: cover the weld formed by welding in Step S84 with thermal insulation cotton for slow cooling.
[0031] A plurality of T-shaped beams are arranged on the outer side of the main propulsor base for the deep-water dynamic positioning crude oil cargo transfer vessel and are welded by the web and the panel, so that the whole main propulsor base is in gear shape. The T-shaped beams are used for connecting with a T-shaped connecting structure in the stern structure of the deep-water dynamic positioning crude oil cargo transfer vessel. Therefore, by setting the welding path, welding each panel with the flange in set sequence, then welding each web with the cylinder and finally welding each panel with each web, the weld heat is dispersed effectively to reduce the deformation caused by the internal stress during welding, thereby ensuring the installation accuracy of the T-shaped beams and the stern structure for the deep-water dynamic positioning crude oil cargo transfer vessel.
[0032] Wherein, the steps for welding between the first groove of the panel and the outer side of the flange are as follows: weld the backing layer and the filling layer on one side between the first groove of the panel and the outer side of the flange; perform back gouging on the other side between the first groove of the panel and the outer side of the flange; weld the backing layer and the filling layer in sequence on the other side between the first groove of the panel and the outer side of the flange; weld the capping layer on one side between the first groove of the panel and the outer side of the flange; weld the capping layer on the other side between the first groove of the panel and the outer side of the flange.
[0033] Thus, for the welding between one side of the panel and the flange, the method of double-sided cross welding is used on the same seam to effectively control the angular deformation between the panel and the flange and ensure the installation accuracy of the panel and the flange, thereby ensuring the installation accuracy of the T-shaped beams and the stern structure for the deep-water dynamic positioning crude
-11- oil cargo transfer vessel.
[0034] The steps for welding between the fourth groove on the web and the outer side of the cylinder are as follows: according to Fig.9, divide the joint part between the cylinder and the web into a fifth seam 5 and a sixth seam 6 which are equal in length, wherein one end of the sixth seam 6 is connected with the panel, and the other end of the sixth seam is connected with one end of the fifth seam 5; weld the backing layer and the filling layer on one side of the fifth seam 5 in sequence; perform back gouging on the other side of the fifth seam 5; weld the backing layer and the filling layer on the other side of the fifth seam 5; weld the capping layer on one side of the fifth seam 5; weld the capping layer on the other side of the fifth seam 5; repeat the above steps for the sixth seam 6 to complete the welding between the cylinder and the web.
[0035] The seam between the cylinder and the web 1s long according to the actual size of the cylinder and the web on the main propulsor base. If the seam is welded by one step, the heat of the weld will be high due to too long welding time to finally cause the thermal expansion and deformation of the weld. Therefore, in the backstep welding method of the embodiment, the joint part between the cylinder and the web is divided into the fifth seam 5 and the sixth seam 6 equal in length, the fifth seam 5 away from the cylinder is first welded, and then the sixth seam 6 close to the cylinder is welded, so that the part being welded keeps away from the part already welded, reducing the temperature difference between the fifth seam 5 and the sixth seam 6, and avoiding the thermal expansion and deformation of the weld.
[0036] Moreover, for welding between the cylinder and the web, the angular deformation between the cylinder and the web is effectively controlled by double-sided cross welding of the same seam to ensure the installation accuracy between the cylinder and the web, thus ensuring the installation accuracy of the T-shaped beams and the stern structure for the deep-water dynamic positioning crude oil cargo transfer vessel.
[0037] The steps for welding between the second groove of the web, the panel and the flange are as follows: weld the backing layer and the filling layer on one side among the second groove of the web, the panel and the flange; perform back gouging on the other side among the second groove of the web, the panel and the flange; weld the backing layer and the filling layer on the other side among the second groove of the web, the panel and the flange in sequence; weld the capping layer on one side among
-12- the second groove of the web, the panel and the flange; weld the capping layer on the other side among the second groove of the web, the panel and the flange.
[0038] For welding among the flange, the web and the panel, the angular deformation among the flange, the web and the panel is also effectively controlled by double-sided cross welding of the same seam to ensure the installation accuracy among the flange, the web and the panel, thus ensuring the installation accuracy of the T-shaped beams and the stern structure for the deep-water dynamic positioning crude oil cargo transfer vessel.
[0039] The weld formed by the above welding 1s covered with thermal insulation cotton for slow cooling at the weld temperature of not less than 250 degrees centigrade after welding, so that the weld heat is dissipated to reduce the internal stress.
[0040] Preferably, 100% UT and MT are performed on the flange after post-weld heat treatment, thereby ensuring the flatness of the welded flange to be +2.5 mm and realize the high installation accuracy of the main propulsor and the stern structure for the deep- water dynamic positioning crude oil cargo transfer vessel.
[0041] Preferably, in Step S40, according to Fig. 2, the ground sample line splicing method is used to position the sector panel.
[0042] The sector panel is positioned by the ground sample line splicing method to ensure that the excircle size and roundness after a plurality of sector panels are spliced and welded. The ground sample line splicing method is that two vertical cross center lines are drawn on the construction platform or the assembly jig, and the outer contour line is drawn with the cross center lines as the reference, so that the outer contour of the sector panel corresponds to the drawn outer contour line during the splicing of sector panels, thus ensuring the excircle size and roundness atter splicing.
[0043] Preferably, welding between the third groove of the cylinder and the flange, between the fourth groove of the web and the outer side of the cylinder, between the first groove of the panel and the outer side of the flange and among the second groove of the web, the panel and the flange is FCAW double-sided welding; the fifth groove between the sector panels and the sixth groove on both sides of the cylinder are welded by SAW.
[0044] For welding between the third groove of the cylinder and the flange, between the first groove of the panel and the outer side of the flange and among the second groove of the web, the panel and the flange, the welding parameters are as follows:
-13- Backing layer: welding current: 180-200A, welding voltage: 26-30V, gas flow: 15- 20L/min; Filling layer: welding current: 200-230A, welding voltage: 28-32V, gas flow: 15- 20L/min; Capping layer: welding current: 200-230A, welding voltage: 28-32V, gas flow: 15- 20L/min.
[0045] For welding between the fourth groove of the web and the outer side of the cylinder body, the welding parameters are as follows: Backing layer: welding current: 160-190A, welding voltage: 25-39V, gas flow: 15- 20L/min; Filling layer: welding current: 180-200A, welding voltage: 26-30V, gas flow: 15- 20L/min; Capping layer: welding current: 180-220A, welding voltage: 26-31 V, gas flow: 15- 20L/min.
[0046] For the welding of the fifth groove between the sector panels and the sixth groove on both sides of the cylinder, the welding parameters are as follows: Backing layer: welding current: 640-660A, welding voltage: 31-33 V, welding speed: 290mm/min; Filling layer: welding current: 720-760A, welding voltage: 32-34V, welding speed: 260mm/min,; Capping layer: welding current: 720-760A, welding voltage: 32-34V, welding speed: 260mm/min; By setting the welding parameters, the defects such as hot cracks or incomplete penetration can be prevented.
[0047] The technical principle of the invention is described above in combination with the embodiments. These descriptions are intended only to explain the principle of the invention and shall not be construed as limitation to the scope of protection of the invention in any way. Based on the explanation herein, the technicians in this field can associate with other embodiments of the invention without creative efforts, which will fall within the scope of protection of the invention.

Claims (10)

ConclusiesConclusions 1. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading die wordt gekenmerkt doordat de constructie de volgende stappen omvat: Stap S10: het aanbrengen van een eerste groef op de buitenkant van het paneel, het aanbrengen van een tweede groef op de bovenkant van de verbindingsplaat, het aanbrengen van een derde groef op de bovenkant van de stalen cilinderplaat, en het aanbrengen van een vierde groef op één zijde van de verbindingsplaat, het aanbrengen van een vijfde groef op beide uiteinden van het sector-paneel en het aanbrengen van een zesde groef op beide kanten van de stalen cilinderplaat; Stap S20: het voorverwarmen van beide kanten van de eerste groef, de tweede groef, de derde groef, de vierde groef, de vijfde groef en de zesde groef alvorens te lassen; Stap S30: het aandrukken van de voor- en achterranden van de platte stalen cilinderplaat, het vormen van een cilinder door deze af te ronden en het lassen van de zesde groef aan beide kanten van de cilinder; Stap S40: het verbinden en lassen van veelheid van waaiervormige panelen door de vijfde groef om een flens te vormen; Stap S50: het uitvoeren van een warmtebehandeling na het lassen aan beide kanten van de lasnaad voor de door lassen gevormde flens; Stap S60: het plaatsen van de cilinder aan het bovenste uiteinde van de flens met de flens als referentievlak en het lassen van de derde groef voor de flens en de cilinder; Stap S70: het lassen van de eerste groef van het paneel aan de buitenkant van de flens en het lassen van de vierde groef van de verbindingsplaat aan de buitenkant van de cilinder om de aandrijfbasis te vormen.A construction method for a main propulsion base of a deep-water dynamically positioning vessel for moving a crude oil cargo, characterized in that the construction comprises the following steps: Step S10: applying a first groove on the outside of the panel, making a second groove on the top of the connecting plate, making a third groove on the top of the steel cylinder plate, and making a fourth groove on one side of the connecting plate, making a fifth groove on both ends of the sector panel and applying a sixth groove on both sides of the steel cylinder plate; Step S20: preheating both sides of the first groove, the second groove, the third groove, the fourth groove, the fifth groove and the sixth groove before welding; Step S30: Pressing the leading and trailing edges of the flat steel cylinder plate, forming a cylinder by rounding it, and welding the sixth groove on both sides of the cylinder; Step S40: joining and welding a plurality of fan-shaped panels through the fifth groove to form a flange; Step S50: performing a post-weld heat treatment on both sides of the weld seam for the weld-formed flange; Step S60: Place the cylinder at the top end of the flange with the flange as reference plane and weld the third groove for the flange and the cylinder; Step S70: Welding the first groove of the panel to the outside of the flange and welding the fourth groove of the connecting plate to the outside of the cylinder to form the drive base. Stap S80: het omdraaien van de aandrijfbasis en het verder gaan met het lassen tussen de tweede groef van de verbindingsplaat, het paneel en de flens; Stap S90: het wegnemen van spanning bij de laspositie van de aandrijfbasis.Step S80: reversing the drive base and continuing the welding between the second groove of the connecting plate, the panel and the flange; Step S90: Release stress at the welding position of the drive base. 2. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 1 die wordt gekenmerkt doordat de constructiewerkwijze ook Stap S31 omvat: het rond maken van de cilinder na het lassen van de naden en vervolgens het wegnemen van spanning uit de stuiklassen aan de voor- en achtereinden van de cilinder.The construction method for a main drive base of a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim 1, characterized in that the construction method also comprises Step S31: rounding the cylinder after welding the seams and then removing stress from the butt welds at the front and rear ends of the cylinder. 3. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 1 die wordt gekenmerkt doordat de eerste groef, de tweede groef, de derde groef, de vierde groef en de zesde groef asymmetrische V-vormige groeven zijn en de vijfde groef een symmetrische V-vormige groef is.The construction method for a main drive base of a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim 1, characterized in that the first groove, the second groove, the third groove, the fourth groove and the sixth groove are asymmetrical V-shaped grooves and the fifth groove is a symmetrical V-shaped groove. 4. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 1 die wordt gekenmerkt doordat Stap S60 het volgende omvat: Stap S61: het verdelen van het gelaste deel tussen de cilinder en de flens in een eerste naad, een tweede naad, een derde naad en een vierde naad, die even lang zijn en symmetrisch verdeeld zijn, waarbij twee uiteinden van de eerste naad respectievelijk verbonden zijn met één uiteinde van de derde naad en één uiteinde van de vierde naad en twee uiteinden van de tweede naad respectievelijk verbonden zijn met het andere uiteinde van de derde naad en het andere uiteinde van de vierde naad; Stap S62: het lassen van de onderlaag en de vullaag tegen de klok in, achtereenvolgens aan de binnenkant van de eerste naad; Stap S63: het uitvoeren van het teruggutsen aan de buitenkant van de eerste naad; Stap S64: het lassen van de onderlaag en de vullaag tegen de klok in, achtereenvolgens aan de buitenkant van de eerste naad; Stap S65: het lassen van de afdeklaag tegen de klok in aan de binnenkant van de eerste naad; Stap S66: het lassen van de afdeklaag tegen de klok in, aan de buitenkant van de eerste naad; Stap S67: het herhalen van stappen S62-S67 voor de tweede naad, de derde naad en de vierde naad om het lassen tussen de flens en de cilinder te voltooien.The construction method for a main drive base of a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim 1, characterized in that Step S60 comprises: Step S61: dividing the welded portion between the cylinder and the flange in a first seam, a second seam, a third seam and a fourth seam, which are of equal length and divided symmetrically, two ends of the first seam being joined to one end of the third seam and one end of the fourth, respectively seam and two ends of the second seam are connected to the other end of the third seam and the other end of the fourth seam, respectively; Step S62: welding the bottom layer and the filler layer counterclockwise, successively on the inside of the first seam; Step S63: performing gouging on the outside of the first seam; Step S64: welding the bottom layer and the filler layer counterclockwise, successively on the outside of the first seam; Step S65: welding the cover layer counterclockwise on the inside of the first seam; Step S66: welding the cover layer counterclockwise, on the outside of the first seam; Step S67: Repeating steps S62-S67 for the second seam, the third seam and the fourth seam to complete the welding between the flange and the cylinder. 5. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 1 die wordt gekenmerkt doordat de Stap S70 het volgende omvat:The construction method for a main propulsion base of a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim 1, characterized in that the Step S70 comprises: _16- Stap S71: het verdelen van het te lassen gebied tussen het paneel en de flens tegen de wijzers van de klok in, achtereenvolgens in een eerste lasgebied van het paneel, een vierde lasgebied van het paneel, een zesde lasgebied van het paneel, een tweede lasgebied van het paneel, een vijfde lasgebied van het paneel en een derde symmetrisch gerangschikt lasgebied van het paneel, Stap S72: het instellen van de volgorde van het lassen tussen het paneel en de flens als volgt: het eerste lasgebied van het paneel - het vierde lasgebied van het paneel - het zesde lasgebied van het paneel - het tweede lasgebied van het paneel - het vijfde lasgebied van het paneel - het derde lasgebied van het paneel; Stap S73: het lassen tussen het paneel en de flens overeenkomstig de lasvolgorde van Stap S72; Stap S74: het bedekken van de las die gevormd is door het lassen in stap S73, met warmte-isolerend katoen voor langzame afkoeling; Stap S75: het verdelen van het te lassen gebied tussen de verbindingsplaat en de cilinder tegen de wijzers van de klok in achtereenvolgens in een eerste lasgebied van de verbindingsplaat, een vierde lasgebied van de verbindingsplaat, een zesde lasgebied van de verbindingsplaat, een tweede lasgebied van de verbindingsplaat, een vijfde lasgebied van de verbindingsplaat en een derde symmetrisch gerangschikt lasgebied van de verbindingsplaat; Stap S76: het instellen van de volgorde van het lassen tussen de verbindingsplaat en de cilinder als volgt: het eerste lasgebied van de verbindingsplaat - het vierde lasgebied van de verbindingsplaat - het zesde lasgebied van de verbindingsplaat - het tweede lasgebied van de verbindingsplaat - het vijfde lasgebied van de verbindingsplaat - de derde lasgebied van de verbindingsplaat; Stap S77; het lassen tussen de verbindingsplaat en cilinder overeenkomstig de lasvolgorde van stap S76; Stap S78: het bedekken van de las die gevormd is door het lassen in Stap S77 met warmte-isolerend katoen voor langzame afkoeling._16- Step S71: Dividing the area to be welded between the panel and the flange counterclockwise, sequentially into a first weld area of the panel, a fourth weld area of the panel, a sixth weld area of the panel, a second weld area of the panel, a fifth weld area of the panel and a third symmetrically arranged weld area of the panel, Step S72: Set the order of welding between the panel and the flange as follows: the first weld area of the panel - the fourth weld area of the panel - the sixth weld area of the panel - the second weld area of the panel - the fifth weld area of the panel - the third weld area of the panel; Step S73: welding between the panel and the flange according to the welding sequence of Step S72; Step S74: covering the weld formed by the welding in step S73 with heat-insulating cotton for slow cooling; Step S75: Dividing the area to be welded between the connection plate and the cylinder counterclockwise successively into a first connection plate welding area, a fourth connection plate welding area, a sixth connection plate welding area, a second connection plate welding area the splice plate, a fifth splice area of the splice plate and a third symmetrically arranged weld area of the splice plate; Step S76: Setting the welding order between the connection plate and the cylinder as follows: the first connection plate welding area - the fourth connection plate welding area - the sixth connection plate welding area - the second connection plate welding area - the fifth joint plate weld area - the third joint plate weld area; Step S77; welding between the connecting plate and cylinder according to the welding order of step S76; Step S78: Covering the weld formed by the welding in Step S77 with heat-insulating cotton for slow cooling. 6. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 1 die wordt gekenmerkt doordat Stap S80 het volgende omvat: Stap S81: het omdraaien van de aandrijfbasis door middel van een hefinrichting;,The construction method for a main drive base of a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim 1, characterized in that Step S80 comprises: Step S81: turning the drive base by means of a lifting device; , Stap S82: het verdelen van het te lassen gebied tussen het paneel en de verbindingsplaat tegen de wijzers van de klok achtereenvolgens in een eerste T-vormig lasgebied, een vierde T-vormig lasgebied, een zesde T-vormig lasgebied, een tweede T-vormig lasgebied, een vijfde T-vormig lasgebied en een derde T-vormig symmetrisch gerangschikt lasgebied; Stap S83: het instellen van de volgorde van het lassen van de verbindingsplaat, het paneel en de flens als volgt: het eerste T-vormige lasgebied — het vierde T-vormige lasgebied -- het zesde T-vormige lasgebied -- het tweede T-vormige lasgebied -- het vijfde T-vormige lasgebied -- het derde T-vormige lasgebied; Stap S84: het lassen van de verbindingsplaat, het paneel en de flens in de lasvolgorde overeenkomstig Stap S83; Stap S85: het bedekken van de lasnaad die gevormd is door het lassen in Stap S84 met warmte-isolerend katoen voor langzame afkoeling.Step S82: Dividing the area to be welded between the panel and the connection plate counterclockwise successively into a first T-shaped weld area, a fourth T-shaped weld area, a sixth T-shaped weld area, a second T-shaped weld area, a fifth T-shaped weld area and a third T-shaped weld area symmetrically arranged; Step S83: Set the welding order of the connection plate, panel and flange as follows: the first T-shaped weld area — the fourth T-shaped weld area -- the sixth T-shaped weld area -- the second T- shaped weld area -- the fifth T-shaped weld area -- the third T-shaped weld area; Step S84: welding the connection plate, panel and flange in the welding order according to Step S83; Step S85: Covering the weld seam formed by welding in Step S84 with heat-insulating cotton for slow cooling. 7. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 1 die wordt gekenmerkt doordat de constructiewerkwijze ook Stap S51 voor 100% UT en MT op de flens na de warmtebehandeling na het lassen omvat.The construction method for a main drive base of a deep-water dynamic positioning vessel for moving a crude oil cargo according to claim 1, characterized in that the construction method also includes Step S51 for 100% UT and MT on the flange after the post-weld heat treatment includes. 8. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 1 die wordt gekenmerkt doordat het sector-panel is gepositioneerd door de verbindingswerkwijze van lijnlassen zoals in stap S40.The construction method for a main drive base of a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim 1, characterized in that the sector panel is positioned by the line welding joining method as in step S40. 9. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 1 die wordt gekenmerkt doordat het lassen tussen de derde groef van de cilinder en de flens, tussen de vierde groef van de verbindingsplaat en de buitenkant van de cilinder, tussen de eerste groef van het paneel en de buitenkant van de flens en tussen de tweede groef van de verbindingsplaat, het paneel en de flens, het dubbelzijdig FCAW-lassen betreft.The construction method for a main drive base of a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim 1, characterized in that the welding between the third groove of the cylinder and the flange, between the fourth groove of the connecting plate and the outside of the cylinder, between the first groove of the panel and the outside of the flange and between the second groove of the connecting plate, the panel and the flange, FCAW double-sided welding is concerned. 10. Constructiewerkwijze voor een hoofd-aandrijfbasis van een in diepwater dynamisch posittonerend vaartuig voor het verplaatsen van een ruwe-olielading10. Construction method for a main propulsion base of a deep-water dynamically positioning vessel for moving a crude oil cargo -18- volgens conclusie 1 die wordt gekenmerkt doordat de vijfde groef tussen de sector- panelen en de zesde groef aan beide zijden van de cilinder door SAW worden gelast.-18- according to claim 1, characterized in that the fifth groove between the sector panels and the sixth groove on both sides of the cylinder are welded by SAW.
NL2028601A 2020-12-31 2021-07-01 A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel NL2028601B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011634361.3A CN112658518B (en) 2020-12-31 2020-12-31 Construction method of main propeller base of deep water dynamic positioning crude oil conveying device

Publications (2)

Publication Number Publication Date
NL2028601A true NL2028601A (en) 2022-07-21
NL2028601B1 NL2028601B1 (en) 2022-10-10

Family

ID=75413326

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2028601A NL2028601B1 (en) 2020-12-31 2021-07-01 A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel

Country Status (2)

Country Link
CN (1) CN112658518B (en)
NL (1) NL2028601B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113879481B (en) * 2021-10-28 2023-07-25 中船黄埔文冲船舶有限公司 Method for mounting lower sealing plate of full-rotation propeller base
CN114655384B (en) * 2022-03-11 2023-04-18 浙江国际海运职业技术学院 Installation method of ship telescopic azimuth thruster
CN116748725B (en) * 2023-05-26 2024-10-18 南通中远海运船务工程有限公司 Processing and mounting method for offshore wind power operation and maintenance stern propeller base

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460851A1 (en) * 1990-06-05 1991-12-11 Metro Machine Corporation Vessel hull and construction method
EP0550992A1 (en) * 1992-01-09 1993-07-14 Metro Machine Corporation Vessel hull construction and related methods
US20030205188A1 (en) * 2002-01-25 2003-11-06 Fmc Technologies, Inc. Method for constructing a very large turret mooring arrangement
EP1445192A1 (en) * 2001-10-23 2004-08-11 Japan Hamworthy & Co., Ltd Steering engine installation method and rotary vane steering engine
WO2010030901A2 (en) * 2008-09-11 2010-03-18 Horton Deepwater Development Systems, Inc. System and method for modular, high volume deepwater facility production
WO2017217516A1 (en) * 2016-06-16 2017-12-21 Jfeスチール株式会社 Welded structure having excellent brittle crack arrest characteristics

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756945B2 (en) * 1996-01-26 1998-05-25 正光 鈴木 Welding jig
CN102513664B (en) * 2011-12-29 2013-06-26 江南造船(集团)有限责任公司 Actual ship assembly welding process for ultra-large high-precision base
CN105397253A (en) * 2014-09-11 2016-03-16 佳木斯电机股份有限公司 Technique for manufacturing motor base of primary helium circulator driving motor
CN205950064U (en) * 2016-08-26 2017-02-15 厦门新长诚钢构工程有限公司 Groove preparation device of annular plate frock
CN207512555U (en) * 2017-11-20 2018-06-19 徐工集团工程机械股份有限公司 A kind of welding wheel body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460851A1 (en) * 1990-06-05 1991-12-11 Metro Machine Corporation Vessel hull and construction method
EP0550992A1 (en) * 1992-01-09 1993-07-14 Metro Machine Corporation Vessel hull construction and related methods
EP1445192A1 (en) * 2001-10-23 2004-08-11 Japan Hamworthy & Co., Ltd Steering engine installation method and rotary vane steering engine
US20030205188A1 (en) * 2002-01-25 2003-11-06 Fmc Technologies, Inc. Method for constructing a very large turret mooring arrangement
WO2010030901A2 (en) * 2008-09-11 2010-03-18 Horton Deepwater Development Systems, Inc. System and method for modular, high volume deepwater facility production
WO2017217516A1 (en) * 2016-06-16 2017-12-21 Jfeスチール株式会社 Welded structure having excellent brittle crack arrest characteristics

Also Published As

Publication number Publication date
CN112658518A (en) 2021-04-16
NL2028601B1 (en) 2022-10-10
CN112658518B (en) 2023-01-06

Similar Documents

Publication Publication Date Title
NL2028601B1 (en) A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel
CN110773845B (en) Assembling and welding method for ship superstructure subsection
CN103785932B (en) Cut deal I unclear welding procedure of type groove wide arc gap
JPH01500099A (en) Formation of large sandwich-like structural members
CN107813146A (en) Board material splice streamline and board material splice method
CN101474727A (en) Laser-arc hybrid welding method of light sheet T type joint
CN106628009A (en) Marine opening and closing hinge installation tool and method
CN104110069A (en) Box-type X-shaped section intersection node and special mold frame, clamp and machining method for box-type X-shaped section intersection node
CN111761168A (en) Steel-aluminum composite joint connection method for ships
CN111843102A (en) T-shaped joint groove welding method
CN103659012A (en) Efficient combined welding technological method for large and thick plates
CN104259636A (en) Back-gouging-free welding process for double U shaped grooves of medium-thickness plates
CN104763049A (en) Multi-weld-joint crossed steel member and fabrication method thereof
CN107598379A (en) A kind of slab double-sided laser MIG composite weldings and MIG cover welding new methods
CN212332880U (en) Ship anchor platform structure
CN110979550A (en) Ship bulkhead toe end structure and design method thereof
CN111645824B (en) High-precision construction method for torsion box of container ship
CN110722252B (en) Method for assembling and positioning composite joint and aluminum alloy light enclosure wall
CN107378193A (en) The automatic welding method of blade assemblies in rail vehicle truck
NL2028573B1 (en) A welding method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel
CN204148756U (en) A kind of subway carriage plate Quick splicing device
CN115180092A (en) Hull sheet sectional connection method and hull
CN115338601B (en) Preparation method of girder with triangular structure
CN105414784A (en) Round steel butt welding technique
CN110587165B (en) Composite welding method for aluminum and aluminum alloy section