NL2028573B1 - A welding method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel - Google Patents

A welding method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel Download PDF

Info

Publication number
NL2028573B1
NL2028573B1 NL2028573A NL2028573A NL2028573B1 NL 2028573 B1 NL2028573 B1 NL 2028573B1 NL 2028573 A NL2028573 A NL 2028573A NL 2028573 A NL2028573 A NL 2028573A NL 2028573 B1 NL2028573 B1 NL 2028573B1
Authority
NL
Netherlands
Prior art keywords
welding
weld
seam
area
groove
Prior art date
Application number
NL2028573A
Other languages
Dutch (nl)
Other versions
NL2028573A (en
Inventor
Zhao Yongping
Li Rong
Zhang Yongkang
Wu Fengmin
Xie Liqiang
Gu Wei
Wu Haiyan
Guo Xiaodong
Li Yuzhou
Original Assignee
Univ Guangdong Technology
Cosco Shipping Shipyard Nangtong Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Guangdong Technology, Cosco Shipping Shipyard Nangtong Co Ltd filed Critical Univ Guangdong Technology
Publication of NL2028573A publication Critical patent/NL2028573A/en
Application granted granted Critical
Publication of NL2028573B1 publication Critical patent/NL2028573B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • B63B73/43Welding, e.g. laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/025Connecting cutting edges or the like to tools; Attaching reinforcements to workpieces, e.g. wear-resisting zones to tableware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0288Seam welding; Backing means; Inserts for curved planar seams for welding of tubes to tube plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/164Arc welding or cutting making use of shielding gas making use of a moving fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

The invention discloses a welding method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel, which belongs to the ship field. 5 The welding method comprises the following steps: weld between the cylinder and the flange by sequence balanced welding; respectively set the welding paths for the areas to be welded between the panel and the flange, between the web and the cylinder and between the panel and the web, respectively weld between the panel and the outer side of the flange, between the web and the outer side of the cylinder and among the web, 10 the panel and the flange in the sequence of the set welding paths. The welding method of the invention reduces the internal stress generated during the welding process of the main propulsor base to effectively decrease welding deformation, so that the formed structure rigidity and manufacturing accuracy of the welded main propulsor base meet requirements, thereby ensuring the installation accuracy of the main propulsor during 15 the construction process of the deep-water dynamic positioning crude oil cargo transfer vessel.

Description

-1- A WELDING METHOD FOR A MAIN PROPULSOR BASE OF A DEEP-
WATER DYNAMIC POSITIONING CRUDE OIL CARGO TRANSFER
VESSEL Technical Field The invention relates to the field of ship engineering, in particular to a welding method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel.
Background Art Under the background that the international crude oil price remains low and the global offshore oil companies greatly cut the operating costs, CTV (Cargo Transfer Vessel) for reducing FPSO oil unloading costs emerges. The new concept deep-water dynamic positioning crude oil CTV will challenge the traditional existing crude oil transfer ways in the market. Two full-revolving propulsors are required to be installed in the deep-water dynamic positioning crude oil cargo transfer vessel, a single full-revolving propulsor has the propeller diameter of up to 3,500 mm, the weight of 56T and the net height of more than 6,000 mm, the volume and weight are large, and the installation accuracy is high, so the base for the full-revolving propulsors is required to connect the stern structure of the vessel with the main propulsor, so as to realize the installation of the main propulsor. By comparing other structures of the ship, the main propulsor base for the deep-water dynamic positioning crude oil cargo transfer vessel adopts the thick plate structure, the thickness of the flange is 120 mm, and the thickness of the other structures reaches 50 mm, so the conventional welding method can hardly meet the requirements for the structure rigidity and the manufacturing accuracy of the main propulsor base for the deep-water dynamic positioning crude oil cargo transfer vessel.
Contents of the Invention The invention aims to propose a welding method for a main propulsor base of a deep- water dynamic positioning crude oil cargo transfer vessel.
-2- For this purpose, the invention adopts the following technical proposal which includes the following steps: Step S100: arrange a first groove on the outer side of the panel, arrange a second groove on the top of the web, arrange a third groove on the top of the cylinder, and arrange a fourth groove on one side of the web;
Step S200: set the welding parameters for the welding process; Step S300: weld between the third groove of the cylinder and the flange by sequence balanced welding; Step S400: set the welding paths for the areas to be welded between the panel and the flange, between the web and the cylinder and between the panel and the web; Step S500: weld between the first groove of the panel and the outer side of the flange, between the fourth groove of the web and the outer side of the cylinder and among the second groove of the web, the panel and the flange in the sequence of the welding paths set in Step S400;
Step S600: repeat Step S500 until all panels and webs are welded.
Preferably, the first groove, the second groove, the third groove and the fourth groove are all asymmetric V-shaped grooves.
Preferably, Step S300 includes: Step S301: divide the joint part between the cylinder and the flange into a first seam, a second seam, a third seam and a fourth seam which are equal in length and symmetrically distributed, wherein two ends of the first seam are respectively connected with one end of the third seam and one end of the fourth seam, and two ends of the second seam are respectively connected with the other end of the third seam and the other end of the fourth seam;
Step S302: weld the backing layer and the filling layer counterclockwise in sequence on the inner side of the first seam; Step S303: perform back gouging on the outer side of the first seam; Step S304: weld the backing layer and the filling layer counterclockwise in sequence on the outer side of the first seam;
Step S305: weld the capping layer counterclockwise on the inner side of the first seam; Step S306: weld the capping layer counterclockwise on the outer side of the first seam; Step S307: repeat steps S302-S307 for the second seam, the third seam and the fourth seam to complete the welding between the flange and the cylinder.
-3- Preferably, Step S400 includes: Step S401: divide the area to be welded between the panel and the flange counterclockwise in sequence into a first panel welding area, a fourth panel welding area, a sixth panel welding area, a second panel welding area, a fifth panel welding area and a third panel welding area symmetrically arranged, Step S402: divide the area to be welded between the web and the cylinder counterclockwise in sequence into a first web welding area, a fourth web welding area, a sixth web welding area, a second web welding area, a fifth web welding area and a third web welding area symmetrically arranged; Step S403: divide the area to be welded between the panel and the web counterclockwise in sequence into a first T-shaped beam welding area, a fourth T- shaped beam welding area, a sixth T-shaped beam welding area, a second T-shaped beam welding area, a fifth T-shaped beam welding area and a third T-shaped beam welding area symmetrically arranged, Step S404: set the welding path as follows: the first panel welding area - the second panel welding area - the third panel welding area - the fourth panel welding area - the fifth panel welding area - the sixth panel welding area - the first web welding area - the second web welding area - the third web welding area - the fourth web welding area - the fifth web welding area - the sixth web panel welding area - the first T-shaped beam welding area - the second T-shaped beam welding area - the third T-shaped beam welding area - the fourth T-shaped beam welding area - the fifth T-shaped beam welding area - the sixth T-shaped beam welding area.
Preferably, Step S500 includes the following steps for the welding between the first groove of the panel and the outer side of the flange: Step S511: weld the backing layer and the filling layer on one side between the first groove of the panel and the outer side of the flange; Step S512: perform back gouging on the other side between the first groove of the panel and the outer side of the flange; Step S513: weld the backing layer and the filling layer on the other side between the first groove of the panel and the outer side of the flange; Step S514: weld the capping layer on one side between the first groove of the panel and the outer side of the flange;
-4- Step S515: weld the capping layer on the other side between the first groove of the panel and the outer side of the flange; Preferably, Step S500 includes the following steps for the welding between the fourth groove of the web and the outer side of the cylinder: Step S521: divide the joint part between the cylinder and the web into a fifth seam and a sixth seam which are equal in length, wherein one end of the sixth seam is connected with the panel, and the other end of the sixth seam is connected with one end of the fifth seam; Step S522: weld the backing layer and the filling layer on one side of the fifth seam in sequence; Step S523: perform back gouging on the other side of the fifth seam, Step S524: weld the backing layer and the filling layer on the other side of the fifth seam; Step S525: weld the capping layer on one side of the fifth seam; Step S526: weld the capping layer on the other side of the fifth seam; Step S527: repeat Steps S522-S526 for the sixth seam to complete the welding between the cylinder and the web.
Preferably, Step S500 includes the following steps for the welding among the second groove of the web, the panel and the flange: Step S531: weld the backing layer and the filling layer on one side among the second groove of the web, the panel and the flange; Step S532: perform back gouging on the other side among the second groove of the web, the panel and the flange; Step S533: weld the backing layer and the filling layer in sequence on the other side among the second groove of the web, the panel and the flange; Step S534: weld the capping layer on one side among the second groove of the web, the panel and the flange; Step S535: weld the capping layer on the other side among the second groove of the web, the panel and the flange; Preferably, welding between the third groove of the cylinder and the flange, between the first groove of the panel and the outer side of the flange and among the second groove of the web, the panel and the flange in Step S200 is FCAW double-sided welding. The welding parameters are as follows:
-5- Backing layer: welding current: 180-200A, welding voltage: 26-30V, gas flow: 15-20 L/min; Filling layer: welding current: 200-230A, welding voltage: 28-32V, gas flow: 15-20 L/min; Capping layer: welding current: 200-230A, welding voltage: 28-32V, gas flow: 15-20 L/min. Preferably, welding between the fourth groove on the web and the outer side of the cylinder in Step S200 is FCAW double-sided welding. The welding parameters are as follows: Backing layer: welding current: 160-190A, welding voltage: 25-39V, gas flow: 15-20 L/min; Filling layer: welding current: 180-200A, welding voltage: 26-30V, gas flow: 15-20 L/min; Capping layer: welding current: 180-200A, welding voltage: 26-31V, gas flow: 15-20 L/min. Preferably, the size of each weld leg is 6-10 mm. The invention has the following beneficial effects: the welding method of the invention reduces the internal stress generated during the welding process of the main propulsor base to effectively decrease the welding deformation, so that the formed structure rigidity and manufacturing accuracy of the welded main propulsor base meet requirements, thereby ensuring the installation accuracy of the main propulsor during the construction process of the deep-water dynamic positioning crude oil cargo transfer vessel. The welding method of the invention has passed the weldability test and the evaluation on the welding process, facilitates the operation of production personnel in combination with the sequence balanced welding and the backstep welding, improves the welding efficiency, avoids the waste of welding materials, reduces the production cost and shortens the construction cycle of the deep-water dynamic positioning crude oil cargo transfer vessel.
Drawing Description The drawings provide further explanation for the invention, but the contents in the drawings do not constitute any limitation to the invention.
-6- Fig. 1 is a section view for the main propulsor base of the deep-water dynamic positioning crude oil cargo transfer vessel in the invention; Fig. 2(a) is a partial enlarged view for the position I of Fig. 1; Fig. 2(b) is a section enlarged view for the position II of Fig. 1; Fig. 2(c) is a partial enlarged view for the position III of Fig. 1; Fig. 2(d) is a section view for the position IV of Fig. 1; Fig. 3(a) is a schematic diagram for the welding sequence between the inner side of the cylinder and the flange; Fig. 3(b) is a schematic diagram for the welding sequence between the outer side of the cylinder and the flange; Fig. 4(a) is a schematic diagram for the area to be welded between the panel and the flange; Fig. 4(b) is a schematic diagram for the area to be welded between the web and the cylinder; Fig. 4(c) is a schematic diagram for the area to be welded between the web and the panel. Fig. 51s a schematic diagram for the division of the joint part between the cylinder and the web of the invention; Fig. 6 is a structure diagram for the main propulsor base of the deep-water dynamic positioning crude oil cargo transfer vessel. Embodiments The technical proposal of the invention is further explained as follows according to the drawings and the embodiments.
The welding method for the main propulsor base of the deep-water dynamic positioning crude oil cargo transfer vessel in the embodiment includes the following steps: Step S100: arrange a first groove on the outer side of the panel, arrange a second groove on the top of the web, arrange a third groove on the top of the cylinder, and arrange a fourth groove on one side of the web; Step S200: set the welding parameters for the welding process; Step S300: weld between the third groove of the cylinder and the flange by sequence balanced welding;
-7- Step S400: set the welding paths for the areas to be welded between the panel and the flange, between the web and the cylinder and between the panel and the web; Step S500: weld between the first groove of the panel and the outer side of the flange, between the fourth groove of the web and the outer side of the cylinder and among the second groove of the web, the panel and the flange in the sequence of the welding paths set in Step S400; Step S600: repeat Step S500 until all panels and webs are welded.
The welding method of the invention reduces the internal stress generated during the welding process of the main propulsor base to effectively decrease welding deformation, so that the formed structure rigidity and manufacturing accuracy of the welded main propulsor base meet requirements, thereby ensuring the installation accuracy of the main propulsor during the construction process of the deep-water dynamic positioning crude oil cargo transfer vessel. The welding method of the invention has passed the weldability test and the evaluation on the welding process, facilitates the operation of production personnel in combination with the sequence balanced welding and the backstep welding, improves the welding efficiency, avoids the waste of welding materials, reduces the production cost and shortens the construction cycle of the deep-water dynamic positioning crude oil cargo transfer vessel.
The method of the embodiment is used to realize the welding based forming of the main propulsor base for the deep-water dynamic positioning crude oil cargo transfer vessel. The structure of the main propulsor base for the deep-water dynamic positioning crude oil cargo transfer vessel is shown in Fig. 1 and Fig. 6, comprising a flange 23, a cylinder 21 and multiple T-shaped beams 22, wherein the cylinder 21 is installed at the upper end of the flange 23, the T-shaped beams 22 are evenly distributed on the outside of the cylinder, the T-shaped beam 22 comprises a web 221 and a panel 222, one side of the web 221 is connected with the outer side of the cylinder 21, the bottom of the web 221 is connected with the upper side of the flange 23 and the panel 222, and one side of the panel 222 is connected with the outer side of the flange 23.
Preferably, the first groove, the second groove, the third groove and the fourth groove are all asymmetric V-shaped grooves according to Fig. 2(a) to Fig. 2(d).
-8- The workpieces to be welded are all of thick plate structure, in which the panel is 50 mm thick, the web is 35 mm thick, the cylinder is 35 mm thick, and the flange is 120 mm thick, so the first groove, the second groove, the third groove and the fourth groove are all asymmetric V-shaped grooves to ensure the welding effect between the panel and the flange, between the web and the flange, between the cylinder and the flange, and between the web and the panel, the welding arc can go deep into the root of the seam, and the weld can connect the gap in the seam to improve the strength of the welding position, so that the formed structure rigidity and manufacturing accuracy of the welded main propulsor base meet requirements.
Wherein, the first groove angle of the first groove is set to 40-45 degrees, the second groove angle is set to 40-45 degrees, and the root gap is set to 0-3 mm; the first groove angle of the second groove is set to 40-45 degrees, the second groove angle is set to 45 degrees, and the root gap is set to 0-3 mm; the first groove angle of the third groove is set to 40-45 degrees, the second groove angle is set to 45 degrees, and the root gap is setto 0-3 mm; the first groove angle of the fourth groove is set to 40-45 degrees, the second groove angle is set to 45 degrees, and the root gap is set to 0-3 mm. Preferably, Step S300 includes the following steps: Step S301: according to Fig. 3, divide the joint part between the cylinder and the flange into a first seam 1, a second seam 2, a third seam 3 and a fourth seam 4 which are equal in length and symmetrically distributed, wherein the two ends of the first seam 1 are respectively connected with one end of the third seam 3 and one end of the fourth seam 4, and the two ends of the second seam are respectively connected with the other end of the third seam 3 and the other end of the fourth seam 4; Step S302: weld the backing layer and the filling layer counterclockwise on the inner side of the first seam 1 in sequence; Step S303: perform back gouging on the outer side of the first seam 1; Step S304: weld the backing layer and the filling layer counterclockwise on the outer side of the first seam 1 in sequence; Step S305: weld the capping layer counterclockwise on the inner side of the first seam 1; Step S306: weld the capping layer counterclockwise on the outer side of the first seam 1;
-9-
Step S307: repeat steps S302-S307 for the second seam 2, the third seam 3 and the fourth seam 4 to complete the welding between the flange and the cylinder.
Welding between the flange and the cylinder is sequence balanced welding.
The welding position is divided according to the actual size of the cylinder on the main propulsor base.
As the section of the cylinder is circular, in order to disperse the weld heat and facilitate the positioning and fixation of cylinder, two symmetrical seams are welded each time to reduce the deformation caused by the internal stress during welding.
Each seam is welded according to Steps S302 to S306. The angular deformation of the structure is effectively controlled by double-sided cross welding of the same seam, thus guaranteeing the accurate installation of the main propulsor.
Preferably, Step S400 includes the following steps:
Step S401: according to Fig. 4, divide the area to be welded between the panel and the flange counterclockwise in sequence into a first panel welding area Al, a fourth panel welding area A4, a sixth panel welding area A6, a second panel welding area A2, a fifth panel welding area AS and a third panel welding area A3 symmetrically arranged; Step S402: divide the area to be welded between the web and the cylinder counterclockwise in sequence into a first web welding area B1, a fourth web welding area B4, a sixth web welding area B6, a second web welding area B2, a fifth web welding area BS and a third web welding area B3 symmetrically arranged,
Step S403: divide the area to be welded between the panel and the web counterclockwise in sequence into a first T-shaped beam welding area C1, a fourth T- shaped beam welding area C4, a sixth T-shaped beam welding area C6, a second T- shaped beam welding area C2, a fifth T-shaped beam welding area C5 and a third T- shaped beam welding area C3 symmetrically arranged;
Step S404: set the welding path as follows: the first panel welding area A1 - the second panel welding area A2- the third panel welding area A3 - the fourth panel welding area A4 - the fifth panel welding area A5 - the sixth panel welding area A6 - the first web welding area B1 - the second web welding area B2 - the third web welding area B3 - the fourth web welding area B4 - the fifth web welding area BS - the sixth web panel welding area B6 - the first T-shaped beam welding area C1 - the second T-shaped beam welding area C2 - the third T-shaped beam welding area C3 - the fourth T- shaped beam welding area C4 - the fifth T-shaped beam welding area C5 - the sixth T- shaped beam welding area C6.
-10- Multiple T-shaped beams are arranged on the outer side of the main propulsor base for the deep-water dynamic positioning crude oil cargo transfer vessel and are welded by the web and the panel, so that the whole main propulsor base is in gear shape.
T- shaped beams are used for connecting with a T-shaped connecting structure in the stern structure of the deep-water dynamic positioning crude oil cargo transfer vessel.
Therefore, by setting the welding path, welding each panel with the flange in sequence in Step S404, then welding each web with the cylinder and finally welding each panel with each web, the weld heat is dispersed effectively to reduce the deformation caused by the internal stress during welding, thereby ensuring the installation accuracy of the T-shaped beam and the stern structure for the deep-water dynamic positioning crude oil cargo transfer vessel.
Preferably, Step S500 includes the following steps for the welding between the first groove of the panel and the outer side of the flange: Step S511: weld the backing layer and the filling layer on one side between the first groove of the panel and the outer side of the flange; Step S512: perform back gouging on the other side between the first groove of the panel and the outer side of the flange; Step S513: weld the backing layer and the filling layer on the other side between the first groove of the panel and the outer side of the flange; Step S514: weld the capping layer on one side between the first groove of the panel and the outer side of the flange; Step S515: weld the capping layer on the other side between the first groove of the panel and the outer side of the flange; Thus, for the welding between one side of the panel and the flange, the method of double-sided cross welding is used on the same seam to effectively control the angular deformation between the panel and the flange and ensure the installation accuracy of the panel and the flange, thereby ensuring the installation accuracy of the T-shaped beam and the stern structure for the deep-water dynamic positioning crude oil cargo transfer vessel.
Preferably, Step S500 includes the following steps for the welding between the fourth groove of the web and the outer side of the cylinder according to Fig. 5: Step S521: divide the joint part between the cylinder and the web into a fifth seam 5 and a sixth seam 6 which are equal in length, wherein one end of the sixth seam 6 is
-11- connected with the panel, and the other end of the sixth seam is connected with one end of the fifth seam 5; Step S522: weld the backing layer and the filling layer on one side of the fifth seam 5 in sequence; Step S523: perform back gouging on the other side of the fifth seam 5; Step S524: weld the backing layer and the filling layer on the other side of the fifth seam 5; Step S525: weld the capping layer on one side of the fifth seam 5; Step S526: weld the capping layer on the other side of the fifth seam 5; Step S527: repeat Steps S522-S526 for the sixth seam 6 to complete the welding between the cylinder and the web.
The seam between the cylinder and the web is long according to the actual size of the cylinder and the web on the main propulsor base.
If the seam is welded by one step, the heat of the weld will be high due to too long welding time to finally cause the thermal expansion and deformation of the weld.
Therefore, in the backstep welding method of the embodiment, the joint part between the cylinder and the web is divided into the fifth seam 5 and the sixth seam 6 equal in length according to Step S521, the fifth seam 5 away from the cylinder is first welded, and then the sixth seam 6 close to the cylinder is welded, so that the part being welded keeps away from the part already welded, reducing the temperature difference between the fifth seam 5 and the sixth seam 6, and avoiding the thermal expansion and deformation of the weld.
Moreover, for welding between the cylinder and the web, the angular deformation between the cylinder and the web is effectively controlled by double-sided cross welding of the same seam to ensure the installation accuracy between the cylinder and the web, thus ensuring the installation accuracy of the T-shaped beams and the stern structure for the deep-water dynamic positioning crude oil cargo transfer vessel.
Preferably, Step S500 includes the following steps for the welding among the second groove of the web, the panel and the flange: Step S531: weld the backing layer and the filling layer on one side among the second groove of the web, the panel and the flange; Step S532: perform back gouging on the other side among the second groove of the web, the panel and the flange;
-12- Step S533: weld the backing layer and the filling layer on the other side among the second groove of the web, the panel and the flange in sequence; Step S534: weld the capping layer on one side among the second groove of the web, the panel and the flange; Step S535: weld the capping layer on the other side among the second groove of the web, the panel and the flange.
For welding among the flange, the web and the panel, the angular deformation among the flange, the web and the panel is also effectively controlled by double-sided cross welding of the same seam to ensure the installation accuracy among the flange, the web and the panel, thus ensuring the installation accuracy of the T-shaped beams and the stern structure for the deep-water dynamic positioning crude oil cargo transfer vessel.
Preferably, welding between the third groove of the cylinder and the flange, between the first groove of the panel and the outer side of the flange and among the second groove of the web, the panel and the flange in Step S200 is FCAW double-sided welding.
The welding parameters are as follows: Backing layer: welding current: 180-200A, welding voltage: 26-30V, gas flow: 15-20 L/min; Filling layer: welding current: 200-230A, welding voltage: 28-32V, gas flow: 15-20 L/min; Capping layer: welding current: 200-230A, welding voltage: 28-32V, gas flow: 15-20 L/min.
Preferably, welding between the fourth groove on the web and the outer side of the cylinder in Step S200 is FCAW double-sided welding.
The welding parameters are as follows: Backing layer: welding current: 160-190A, welding voltage: 25-39V, gas flow: 15-20 L/min; Filling layer: welding current: 180-200A, welding voltage: 26-30V, gas flow: 15-20 L/min; Capping layer: welding current: 180-200A, welding voltage: 26-31V, gas flow: 15-20 L/min.
By setting the welding parameters, defects such as thermal cracks or lack of penetration can be prevented.
-13-
Preferably, the size of each weld leg is 6-10 mm.
By setting the size of the weld leg to 6-10 mm, the weld filling amount is guaranteed in the welding process, and welding defects such as lack of penetration are avoided.
The technical principle of the invention is described above in combination with the embodiments.
These descriptions are intended only to explain the principle of the invention and shall not be construed as limitation to the scope of protection of the invention in any way.
Based on the explanation herein, the technicians in this field can associate with other embodiments of the invention without creative efforts, which will fall within the scope of protection of the invention.

Claims (10)

-14- Conclusies-14- Conclusions 1. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, met het kenmerk, dat de laswerkwijze de volgende stappen omvat: stap S100: plaats een eerste groef aan de buitenkant van het oplegwerk, plaats een tweede groef op de bovenkant van de verbindingsplaat, plaats een derde groef op de bovenkant van de cilinder en plaats een vierde groef aan één kant van de verbindingsplaat; stap S200: stel de parameters van het lassen voor het lasproces in; stap S300: las tussen de derde groef van de cilinder en de flens door opeenvolgend gebalanceerd te lassen; stap S400: stel de laslijnen in voor de te lassen gebieden tussen het oplegwerk en de flens, tussen de verbindingsplaat en de cilinder en tussen het oplegwerk en de verbindingsplaat; stap S500: las tussen de eerste groef van het oplegwerk en de buitenkant van de flens, tussen de vierde groef van de verbindingsplaat en de buitenkant van de cilinder en tussen de tweede groef van de verbindingsplaat, het oplegwerk en de flens in de volgorde van de laslijnen zoals ingesteld is in stap S400; stap S600: herhaal stap S500 tot alle oplegwerken en verbindingsplaten zijn gelast.1. Welding method for a main drive base of a deep-water dynamically positioning crude oil transportation vessel, characterized in that the welding method comprises the following steps: step S100: place a first groove on the outside of the bearing, place a second groove on the top of the connection plate, place a third groove on the top of the cylinder and place a fourth groove on one side of the connection plate; step S200: set the welding parameters for the welding process; step S300: weld between the third groove of the cylinder and the flange by sequential balanced welding; step S400: set the welding lines for the areas to be welded between the bearing and the flange, between the connecting plate and the cylinder, and between the supporting and the connecting plate; step S500: weld between the first groove of the bearing and the outside of the flange, between the fourth groove of the connecting plate and the outside of the cylinder and between the second groove of the connecting plate, the bearing and the flange in the order of the welding lines as set in step S400; step S600: repeat step S500 until all supports and connection plates are welded. 2. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, volgens conclusie 1, met het kenmerk, dat de eerste groef, de tweede groef, de derde groef en de vierde groef asymmetrische V-vormige groeven zijn.The welding method for a main drive base of a deep-water dynamically positioning crude oil transportation vessel, according to claim 1, characterized in that the first groove, the second groove, the third groove and the fourth groove are asymmetrical V-shaped grooves. 3. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, volgens conclusie 1, met het kenmerk, dat het stap S300 omvat: stap S301: verdeel het gelaste deel tussen de cilinder en de flens in een eerste naad, een tweede naad, een derde naad en een vierde naad, die even lang en symmetrisch verdeeld zijn, waarbij de twee uiteinden van de eerste naad respectievelijk verbonden zijn met een uiteinde van de derde naad en een uiteinde van de vierde naad en de tweeThe welding method for a main drive base of a deep-water dynamically positioning crude oil transportation vessel, according to claim 1, characterized in that it comprises step S300: step S301: divide the welded portion between the cylinder and the flange in a first seam , a second seam, a third seam and a fourth seam, which are equally long and symmetrically distributed, the two ends of the first seam being joined respectively to one end of the third seam and one end of the fourth seam and the two -15- uiteinden van de tweede naad respectievelijk verbonden zijn met het andere uiteinde van de derde naad en het andere uiteinde van de vierde naad; stap S302: las de onderlaag en de vullaag aan de binnenkant van de eerste naad achtereenvolgens tegen de klok in; stap S303: voer het teruggutsen aan de buitenkant van de eerste naad uit; stap S304: las de onderlaag en de vullaag aan de buitenkant van de eerste naad achtereenvolgens tegen de klok in; stap S305: las de afdeklaag op de binnenkant van de eerste naad tegen de klok in; stap S306: las de afdeklaag op de buitenkant van de eerste naad tegen de klok in; stap S307: herhaal de stappen S302-S307 voor de tweede naad, de derde naad en de vierde naad om het lassen tussen de flens en de cilinder af te ronden.-15- ends of the second seam are connected to the other end of the third seam and the other end of the fourth seam, respectively; step S302: sequentially weld the bottom layer and the filler layer inside the first seam counterclockwise; step S303: perform gouging on the outside of the first seam; step S304: sequentially weld the bottom layer and the filler layer on the outside of the first seam counterclockwise; step S305: weld the cover layer on the inside of the first seam counterclockwise; step S306: weld the cover layer on the outside of the first seam counterclockwise; step S307: repeat steps S302-S307 for the second seam, the third seam and the fourth seam to complete the welding between the flange and the cylinder. 4. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, volgens conclusie 1, met het kenmerk, dat stap S400 omvat: stap S401: verdeel het te lassen gebied tussen het oplegwerk en de flens achtereenvolgens tegen de wijzers van de klok in, in een eerste lasgebied van het oplegwerk, een vierde lasgebied van het oplegwerk, een zesde lasgebied van het oplegwerk, een tweede lasgebied van het oplegwerk, een vijfde lasgebied van het oplegwerk en een derde symmetrisch gerangschikt lasgebied van het oplegwerk; stap S402: verdeel het te lassen gebied tussen de verbindingsplaat en de cilinder achtereenvolgens tegen de wijzers van de klok in, in een eerste lasgebied van de verbindingsplaat, een vierde lasgebied van de verbindingsplaat, een zesde lasgebied van de verbindingsplaat, een tweede lasgebied van de verbindingsplaat, een vijfde lasgebied van de verbindingsplaat en een derde symmetrisch gerangschikt lasgebied van de verbindingsplaat; stap S403: verdeel het te lassen gebied tussen het oplegwerk en de verbindingsplaat achtereenvolgens tegen de wijzers van de klok in, in een eerste T-vormig laslijngebied, een vierde T-vormig laslijngebied, een zesde T-vormig laslijngebied, een tweede T- vormig laslijngebied, een vijfde T-vormig laslijngebied en een derde symmetrisch gerangschikt T-vormig laslijngebied, stap S404: stel de laslijn als volgt in: het eerste lasgebied van het oplegwerk - het vierde lasgebied van het oplegwerk - het zesde lasgebied van het oplegwerk - hetThe welding method for a main drive base of a deep-water dynamically positioning crude oil transport vessel, according to claim 1, characterized in that step S400 comprises: step S401: divide the area to be welded between the bearing and the flange sequentially counterclockwise. clockwise, in a first lay-up welding area, a fourth lay-up welding area, a sixth lay-up welding area, a second lay-up welding area, a fifth lay-up welding area and a third symmetrically arranged lay-up welding area; step S402: divide the area to be welded between the connection plate and the cylinder sequentially counterclockwise into a first connection plate welding area, a fourth connection plate welding area, a sixth connection plate welding area, a second connection plate welding area splice plate, a fifth splice area of the splice plate and a third symmetrically arranged weld area of the splice plate; Step S403: Divide the area to be welded between the bearing and the connecting plate sequentially counterclockwise into a first T-shaped weld line area, a fourth T-shaped weld line area, a sixth T-shaped weld line area, a second T-shaped weld line area, a fifth T-shaped weld line area and a third symmetrically arranged T-shaped weld line area, step S404: set the weld line as follows: the first weld area of the lay-up - the fourth weld area of the lay-up - the sixth weld area of the lay-up - the -16- tweede lasgebied van het oplegwerk - het vijfde lasgebied van het oplegwerk - het derde lasgebied van het oplegwerk - het eerste lasgebied van de verbindingsplaat - het vierde lasgebied van de verbindingsplaat - het zesde lasgebied van de verbindingsplaat - het tweede lasgebied van de verbindingsplaat - het vijfde lasgebied van de verbindingsplaat - het derde lasgebied van het oplegwerk - het eerste T-vormige laslijngebied - het vierde T-vormige laslijngebied - het zesde T-vormige laslijngebied - het tweede T-vormige laslijngebied - het vijfde T-vormige laslijngebied - het derde T- vormige laslijngebied.-16- second weld area of the lay-up - the fifth weld area of the lay-up - the third weld area of the lay-up - the first weld area of the connection plate - the fourth weld area of the connection plate - the sixth weld area of the connection plate - the second weld area of the connection plate - the fifth weld area of the connecting plate - the third weld area of the support - the first T-shaped weldline area - the fourth T-shaped weldline area - the sixth T-shaped weldline area - the second T-shaped weldline area - the fifth T-shaped weldline area - the third T-shaped weld line region. 5. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, volgens conclusie 1, met het kenmerk, dat stap S500 de volgende stappen voor het lassen tussen de eerste groef van het oplegwerk en de buitenkant van de flens omvat: stap S511: las de onderlaag en de vullaag aan één kant tussen de eerste groef van het oplegwerk en de buitenkant van de flens; stap S512: voer het teruggutsen aan de andere kant tussen de eerste groef van het oplegwerk en de buitenkant van de flens uit; stap S513: las de onderlaag en de vullaag aan de andere kant tussen de eerste groef van het oplegwerk en de buitenkant van de flens; stap S514: las de afdeklaag aan één kant tussen de eerste groef van het oplegwerk en de buitenkant van de flens; stap S515: las de afdeklaag aan de andere kant tussen de eerste groef van het oplegwerk en de buitenkant van de flens.The welding method for a main drive base of a deep-water dynamically positioning crude oil transport vessel, according to claim 1, characterized in that step S500 comprises the following steps of welding between the first groove of the bearing and the outside of the flange : step S511: weld the bottom layer and the filler layer on one side between the first groove of the bearing and the outside of the flange; step S512: perform gouging on the other side between the first groove of the bearing and the outside of the flange; step S513: weld the bottom layer and the filler layer on the other side between the first groove of the bearing and the outside of the flange; step S514: weld the cover layer on one side between the first groove of the bearing and the outside of the flange; step S515: weld the cover layer on the other side between the first groove of the facing and the outside of the flange. 6. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, volgens conclusie 1, met het kenmerk, dat stap S500 de volgende stappen voor het voor het lassen tussen de vierde groef van de verbindingsplaat en de buitenkant van de cilinder omvat: stap S521: verdeel het gelaste deel tussen de cilinder en de verbindingsplaat in een vijfde naad en een zesde naad, die even lang zijn, waarbij een uiteinde van de zesde naad is verbonden met het oplegwerk en het andere uiteinde van de zesde naad is verbonden met een uiteinde van de vijfde naad.The welding method for a main drive base of a deep-water dynamically positioning crude oil transport vessel, according to claim 1, characterized in that step S500 comprises the following steps for welding between the fourth groove of the connecting plate and the outside of the cylinder includes: step S521: divide the welded part between the cylinder and the connecting plate into a fifth seam and a sixth seam of equal length, one end of the sixth seam being joined to the bearing and the other end of the sixth seam is connected to one end of the fifth seam. -17- stap S522: las de onderlaag en de vullaag achtereenvolgens aan één kant van de vijfde naad; stap S523: voer het teruggutsen aan de andere kant van de vijfde naad uit; stap S524: las de onderlaag en de vullaag aan de andere kant van de vijfde naad: stap S525: las de afdeklaag aan één kant van de vijfde naad; stap S526: las de afdeklaag aan de andere kant van de vijfde naad; stap S527: herhaal de stappen S522-S526 voor de zesde naad om het lassen tussen de cilinder en de verbindingsplaat af te ronden.-17- step S522: weld the bottom layer and the filler layer sequentially on one side of the fifth seam; step S523: perform gouging on the other side of the fifth seam; step S524: weld the bottom layer and the filler layer on the other side of the fifth seam: step S525: weld the cover layer on one side of the fifth seam; step S526: weld the cover sheet on the other side of the fifth seam; step S527: repeat steps S522-S526 for the sixth seam to complete the welding between the cylinder and the connection plate. 7. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, volgens conclusie 1, met het kenmerk, dat stap SS00 de volgende stappen voor het lassen tussen de tweede groef van de verbindingsplaat, het oplegwerk en de flens omvat: stap S531: las de onderlaag en de vullaag aan één kant tussen de tweede groef van de verbindingsplaat, het oplegwerk en de flens; stap S532: voer het teruggutsen aan de andere kant tussen de tweede groef van de verbindingsplaat, het oplegwerk en de flens uit; stap S533: las de onderlaag en de vullaag aan de andere kant achtereenvolgens tussen de tweede groef van de verbindingsplaat, het oplegwerk en de flens; stap S534: las de afdeklaag aan één kant tussen de tweede groef van de verbindingsplaat, het oplegwerk en de flens; stap S535: las de afdeklaag aan de andere kant tussen de tweede groef van de verbindingsplaat, het oplegwerk en de flens.The welding method for a main drive base of a deep-water dynamically positioning crude oil transportation vessel, according to claim 1, characterized in that step SS00 comprises the following steps of welding between the second groove of the connecting plate, the bearing and the flange : step S531: weld the bottom layer and the filler layer on one side between the second groove of the connecting plate, the bearing and the flange; step S532: perform gouging on the other side between the second groove of the connecting plate, the bearing and the flange; step S533: weld the bottom layer and the filling layer on the other side sequentially between the second groove of the connecting plate, the bearing and the flange; step S534: weld the cover layer on one side between the second groove of the connecting plate, the bearing and the flange; step S535: weld the cover layer on the other side between the second groove of the connecting plate, the bearing and the flange. 8. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, volgens conclusie 1, met het kenmerk, dat het lassen tussen de derde groef van de cilinder en de flens, tussen de eerste groef van het oplegwerk en de buitenkant van de flens en tussen de tweede groef van de verbindingsplaat, het oplegwerk en de flens in stap S200 FCAW-dubbelzijdig lassen betreft, waarbij de lasparameters als volgt zijn: onderlaag: lasstroom: 180-200 A, lasspanning: 26-30 V, gasstroom: 15-20 L/min; vullaag: lasstroom: 200-230 A, lasspanning: 28-32 V, gasstroom: 15-20 L/min; afdeklaag: lasstroom: 200-230 A, lasspanning: 28-32 V, gasstroom: 15-20 L/min;The welding method for a main drive base of a deep-water dynamically positioning crude oil transport vessel, according to claim 1, characterized in that the welding between the third groove of the cylinder and the flange, between the first groove of the bearing and the outside of the flange and between the second groove of the connection plate, the bearing and the flange in step S200 FCAW double-sided welding is concerned, where the welding parameters are as follows: substrate: welding current: 180-200 A, welding voltage: 26-30 V, gas flow: 15-20 L/min; filling layer: welding current: 200-230 A, welding voltage: 28-32 V, gas flow: 15-20 L/min; cover: welding current: 200-230 A, welding voltage: 28-32 V, gas flow: 15-20 L/min; -18--18- 9. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, volgens conclusie 1, met het kenmerk, dat het lassen tussen de vierde groef op de verbindingsplaat en de buitenkant van de cilinder in stap S200 FCAW-dubbelzijdig lassen betreft, waarbij de lasparameters als volgt zijn: onderlaag: lasstroom: 160-190 A, lasspanning: 25-39 V, gasstroom: 15-20 L/min; vullaag: lasstroom: 180-200 A, lasspanning: 26-30 V, gasstroom: 15-20 L/min; afdeklaag: lasstroom: 180-200 A, lasspanning: 26-31 V, gasstroom: 15-20 L/min.The welding method for a main drive base of a deep-water dynamically positioning crude oil transportation vessel, according to claim 1, characterized in that the welding between the fourth groove on the connecting plate and the outside of the cylinder in step S200 FCAW double-sided welding where the welding parameters are as follows: substrate: welding current: 160-190 A, welding voltage: 25-39 V, gas flow: 15-20 L/min; filling layer: welding current: 180-200 A, welding voltage: 26-30 V, gas flow: 15-20 L/min; cover: welding current: 180-200 A, welding voltage: 26-31 V, gas flow: 15-20 L/min. 10. Laswerkwijze voor een hoofdaandrijvingbasis van een in diepwater dynamisch positionerend vaartuig voor vervoer van ruwe olie, volgens conclusie 1, met het kenmerk, dat de afmeting van elke laspoot 6-10 mm is.The welding method for a main drive base of a deep-water dynamically positioning crude oil transport vessel, according to claim 1, characterized in that the size of each welding leg is 6-10 mm.
NL2028573A 2020-12-31 2021-06-29 A welding method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel NL2028573B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011628270.9A CN112658513B (en) 2020-12-31 2020-12-31 Welding method for main propeller base of deepwater power positioning crude oil conveying device

Publications (2)

Publication Number Publication Date
NL2028573A NL2028573A (en) 2022-07-21
NL2028573B1 true NL2028573B1 (en) 2022-10-10

Family

ID=75412746

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2028573A NL2028573B1 (en) 2020-12-31 2021-06-29 A welding method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel

Country Status (2)

Country Link
CN (1) CN112658513B (en)
NL (1) NL2028573B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101648310B (en) * 2008-08-15 2011-09-14 中国海洋石油总公司 Method for welding circular casings with large-thickness casing walls
CN102887220B (en) * 2012-09-11 2014-12-03 武昌船舶重工集团有限公司 Electric thruster pedestal and welding method thereof
KR101626827B1 (en) * 2014-02-20 2016-06-02 (주)지인테크 Receptacle for azimuth thruster
KR102178515B1 (en) * 2015-03-26 2020-11-13 (주)씨앤피코리아 Receptacle for azimuth thruster
CN105081520B (en) * 2015-06-11 2017-09-26 上海船舶工艺研究所 The vertical docking FCAW single face welding and double face shaping processes of thin plate in full-automatic 9%Ni steel
CN108723707B (en) * 2018-04-28 2020-04-17 哈尔滨锅炉厂有限责任公司 Manufacturing method of skirt foundation ring plate
CN110014241B (en) * 2019-04-29 2021-03-16 中电建武汉铁塔有限公司 Welding process for power transmission steel pipe tower flange
CN210306478U (en) * 2019-08-05 2020-04-14 无锡瑞风船用动力系统有限公司 Welding tool for impeller of full-rotation propeller
CN110508961A (en) * 2019-08-06 2019-11-29 湖北电力天源钢管塔有限公司 Power transmission steel pipe tower flange welding technique

Also Published As

Publication number Publication date
CN112658513A (en) 2021-04-16
CN112658513B (en) 2023-06-30
NL2028573A (en) 2022-07-21

Similar Documents

Publication Publication Date Title
FI84641C (en) Construction of metal sheets in layers
Roland et al. Advanced joining techniques in European shipbuilding
CN106628009B (en) A kind of mounting tool and installation method of ship opening and closing hinge
CN110773845B (en) Assembling and welding method for ship superstructure subsection
US11079177B2 (en) Skid-mounted cold box and its prefabricated structure and assembly method
CN111663429A (en) Manufacturing method of butterfly-shaped connecting node component
CN112958882A (en) Efficient welding process for stainless steel composite plate for bridge
JP2012210652A (en) Direct connection method of beam and inner diaphragm with protrusion for steel structure column-beam joint part
NL2028573B1 (en) A welding method for a main propulsor base of a deep-water dynamic positioning crude oil cargo transfer vessel
CN102357783A (en) Manufacturing process of pile shoe of wind power installation vessel
Kozak Selected problems on application of steel sandwich panels to marine structures
CN110541349A (en) Space curved surface special-shaped steel box girder bridge section and accurate welding processing forming method thereof
NL2028601B1 (en) A construction method for a main propulsor bsea of a deep-water dynamic positioning crude oil cargo transfer vessel
CN107938508A (en) A kind of HRP Orthotropic Steel Bridge Decks structure
CN209779448U (en) Full-automatic welding high-fatigue-resistance orthotropic steel bridge deck
CN112722196A (en) Method for mounting propeller base of deep water dynamic positioning crude oil conveying device
CN115180092A (en) Hull sheet sectional connection method and hull
CN112158314B (en) Construction method for narrow space of ship structure
CN107938510B (en) Orthotropic steel bridge deck structure
CN212001585U (en) Inside and outside lapped structure of box girder steel
CN201296995Y (en) Combined connecting structure of corrugated steel web plate in box beam bridge
JP5932567B2 (en) Steel structure manufacturing method
CN220996656U (en) Ship supporting device and ship
CN116292540A (en) Steel-aluminum mortise and tenon joint for dovetail-shaped ship
CN111188410A (en) Construction method and structure for internal and external lapping of box-type steel beam