WO2013038685A1 - 溶接構造体 - Google Patents
溶接構造体 Download PDFInfo
- Publication number
- WO2013038685A1 WO2013038685A1 PCT/JP2012/005857 JP2012005857W WO2013038685A1 WO 2013038685 A1 WO2013038685 A1 WO 2013038685A1 JP 2012005857 W JP2012005857 W JP 2012005857W WO 2013038685 A1 WO2013038685 A1 WO 2013038685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fillet
- joined
- welded
- flange
- joint
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/0026—Arc welding or cutting specially adapted for particular articles or work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
- B23K9/025—Seam welding; Backing means; Inserts for rectilinear seams
- B23K9/0256—Seam welding; Backing means; Inserts for rectilinear seams for welding ribs on plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/173—Arc welding or cutting making use of shielding gas and of a consumable electrode
Definitions
- the present invention relates to a welded steel structure welded using a thick steel plate, such as a large container ship or a bulk carrier, and more particularly, the propagation of a brittle crack generated from a thick steel plate base material or a welded joint.
- the present invention relates to a welded structure excellent in brittle crack propagation stopping characteristics, which can be stopped before reaching a large-scale fracture of an object.
- Container ships and bulk carriers for example, have a structure that has few partition walls in the hold and a large opening at the top of the ship, for example, unlike tankers, in order to improve loading capacity and cargo handling efficiency. . Therefore, in container ships and bulk carriers, it is necessary to increase the strength or thickness of the hull skin, in particular. In recent years, container ships have increased in size, and large ships of 6,000 to 20,000 TEU have been built. TEU (Twenty feet Equivalent Unit) represents the number of containers converted into a 20-foot container and represents an indicator of the loading capacity of container ships. Along with such an increase in size of a ship, a steel plate having a plate thickness of 50 mm or more and a yield strength of 390 N / mm grade 2 or more tends to be used for the hull outer plate.
- TEU wenty feet Equivalent Unit
- a steel plate to be a hull outer plate is often butt-welded by high heat input welding such as electrogas arc welding from the viewpoint of shortening the construction period.
- high heat input welding such as electrogas arc welding
- Such large heat input welding is likely to lead to a significant decrease in toughness at the weld heat affected zone, and has been one cause of the occurrence of brittle cracks at the weld joint.
- Non-Patent Document 1 reports the results of an experimental study on the brittle crack propagation behavior of welds in steel plates for shipbuilding with a thickness of less than 50 mm.
- the propagation path and propagation behavior of a brittle crack forcibly generated in a welded part are experimentally investigated.
- a plurality of examples in which a brittle crack propagated along the line have been confirmed. This suggests that it cannot be said that there is no possibility that brittle fracture propagates straight along the weld.
- Non-Patent Document 2 a thick steel plate having special brittle crack propagation stop characteristics is required in order to stop the propagation of the generated brittle cracks.
- Patent Document 1 in a welded structure that is preferably a hull outer plate having a thickness of 50 mm or more, an aggregate is arranged so as to intersect the butt weld, and this aggregate is used. A welded structure joined by fillet welding is described. In the technique described in Patent Document 1, this aggregate has a mean circle equivalent particle diameter of 0.5 to 5 ⁇ m over a thickness of 3 mm or more in the surface layer portion and the back layer portion, and is parallel to the plate thickness surface ( 100) A steel sheet having a microstructure in which the X-ray plane intensity ratio of crystal planes is 1.5 or more is used.
- Patent Document 2 includes a fillet welded joint obtained by fillet welding a joining member (hereinafter also referred to as a web) to a member to be joined (hereinafter also referred to as a flange), and has excellent brittle crack propagation stop characteristics.
- a welded structure is described.
- an unwelded portion is left on the butt surface of the web in the fillet welded joint cross section with the flange.
- X is a special relational expression with the brittle crack propagation stop toughness Kca of the member to be joined (flange)
- the width of the unwelded part is adjusted so as to satisfy the above.
- Japan Shipbuilding Research Association No. 147 Research Group "Study on brittle fracture strength evaluation of high heat input high-strength steel joints for ship hulls", No. 87 (February 1978), p.35-53, Japan Shipbuilding Research Association. Yuki Yamaguchi et al .: “Development of super-large container ship-practical use of new high strength extra heavy steel plate", Journal of Japan Society of Marine Science and Technology, No. 3 (2005), p.70-76, November 2005.
- Patent Document 1 the aggregate as a reinforcing material described in Patent Document 1 requires a complicated process in order to obtain a steel plate having a desired structure. For this reason, there has been a problem that productivity is lowered and it is difficult to stably secure a steel sheet having a desired structure.
- Patent Document 2 is a combination of the discontinuity of the structure and the brittle crack propagation stop characteristic of the joined member (flange), in the propagation of the brittle crack generated in the joining member (web). It is a technology that tries to prevent it.
- Patent Document 2 In order to stop the propagation of brittle cracks generated in the members to be joined (flange) in the joining member (web), the technique described in Patent Document 2 is used to stop the propagation of brittle cracks in the joining member (web). Since the characteristics and the like are insufficient, it cannot be said that the technique is sufficient.
- Patent Document 2 no consideration is given to the brittle crack propagation stop characteristic of the joining member (web). That is, the technique described in Patent Document 2 occurs on the strong deck (corresponding to a flange) of a large container ship, which is assumed in the “Brittle Crack Arrest Design Guidelines” (established in September 2009) of the NK class, for example. It cannot be said that it has sufficient crack propagation stop characteristics for the case where the brittle cracks propagated to the hatch side combing (corresponding to the web).
- the present invention solves the problems of the prior art, and is brittle, capable of stopping (blocking) the propagation of brittle cracks occurring in a member to be joined (flange) to the joining member (web) before reaching a large-scale fracture.
- An object of the present invention is to provide a welded structure having excellent crack propagation stopping characteristics.
- the welded structure which this invention makes object is a welded structure provided with the fillet weld joint formed by abutting the end surface of a joining member (web) on the surface of a to-be-joined material (flange), and joining by fillet welding And
- the present inventors diligently studied various factors affecting the brittle crack propagation stop characteristics in a fillet welded joint.
- a discontinuous portion is secured on the abutting surface between the member to be joined (flange) and the joining member (web), and brittleness occurs.
- an ultra-large structural model test body shown in FIG. 4B was prepared, and a brittle crack propagation stop test was performed.
- the ultra-large-sized structural model test body welded the steel plate of the same board thickness as the flange 2 by the tack welding 8 under the to-be-joined member (flange) 2 of the large-scale fillet welded joint 9.
- the ultra-large structural model specimen shown in FIG. 4B is manufactured so that the butt weld joint 11 of the member to be joined (flange) is orthogonal to the joint member (web), and the tip of the mechanical notch 7 is It processed so that it might become the BOND part of the butt-welding joint part 11.
- brittle crack propagation stop test In the brittle crack propagation stop test, a mechanical notch was hit to generate a brittle crack, and it was investigated whether the propagation of the brittle crack stopped at the fillet weld. All tests were performed under the conditions of a stress of 257 N / mm 2 and a temperature of ⁇ 10 ° C.
- the stress 257 N / mm 2 is a value corresponding to the maximum allowable stress of a yield strength 390 N / mm 2 grade steel plate applied to the hull.
- Temperature: -10 ° C is the design temperature of the ship.
- FIGS. 5 (a) and 5 (b) The obtained results are shown in FIGS. 5 (a) and 5 (b).
- FIG. 5 (a), the from (b), in the non-welded portion ratio Y is more than 95%, and when the thickness t f of the toughness and the bonded member of the fillet weld (flange) satisfies a specific relation Even when the load stress is 257 N / mm 2 , brittle cracks occurring in the joined member (flange) can be stopped at the fillet weld metal part without giving any consideration to the Kca of the joined member (web), and brittle It has been found that propagation of cracks to the joining member (web) can be prevented (stopped).
- unwelded part ratio Y the ratio of the fillet weld width B and the joining member of the unwelded part in the joint cross-section (web) thickness t w, the value defined by (B / t w) ⁇ 100 (%) It is.
- the thick member to be joined having a thickness of 50 mm or more It has been found that a brittle crack generated in (flange) can be stopped in the weld metal of the fillet weld joint. If measures such as setting of unwelded parts as described above and significant improvement in low temperature toughness of fillet welds are taken, thick steel plates used for joining members (webs) should take special consideration of brittle crack propagation stop characteristics. The conclusion was obtained that the propagation of brittle cracks generated in the member to be joined (flange) can be prevented.
- the present invention has been completed on the basis of such findings and further studies. That is, the gist of the present invention is as follows. 1. The end face of the joining member is abutted against the surface of the member to be joined having a plate thickness of 50 mm or more, and at least one of the welding leg length or welding width formed by joining the joining member and the member to be joined by fillet welding is a corner having a length of 16 mm or less.
- a welded structure with a meat weld joint Said corner said with the end face of the joining member in the weld joint surface with abutted the surface of the bonded member, unwelded portion of 95% or more of the fillet weld joint thickness t w of the bonding member in cross-section
- the Charpy impact test fracture surface transition temperature vTrs (° C.) of the fillet weld metal and the plate thickness t f of the joined member are expressed by the following formula (1) and / or Charpy impact test temperature of the fillet weld metal: Charpy impact test absorbed energy vE -20 (J) at -20 ° C and the plate thickness t f of the joined member satisfy the relationship of the following formula (2) , A welded structure characterized by that.
- VTrs ⁇ -1.5t f +70 (1) vE -20 ⁇ 2.75t f -105 (2)
- vTrs Charpy impact test fracture surface transition temperature (° C) of fillet weld metal
- vE- 20 Test temperature: Charpy impact test absorbed energy (J) at -20 ° C
- t f Plate thickness of the member to be joined (mm)
- (A) is an external view
- (b) is sectional drawing. It is explanatory drawing which shows typically another example of a structure of a fillet welded joint.
- (A) is an external view
- (b) is sectional drawing. It is explanatory drawing which shows typically the shape of the ultra-large-sized structural model test body used in the Example.
- (A) is a case where the member to be joined (flange) 2 is made only of a steel plate base material
- (b) is a case where the member to be joined (flange) 2 has a butt weld joint
- (c) is a joining member (web) 2.
- the member to be joined (flange) 2 has a butt weld joint.
- It is a graph which shows the influence of the relationship between the toughness of a fillet weld metal, and the flange plate thickness on the propagation stop of a brittle crack.
- the end face of the joining member (web) 1 is abutted against the surface of the joined member (flange) 2 having a plate thickness of 50 mm or more, and the joining member (web) 1 and the joined member (flange) 2 are joined.
- a welded structure formed by joining fillet welds includes a fillet weld joint having a fillet weld metal 5 in which at least one of the weld leg length 3 or the weld width 13 is 16 mm or less.
- FIG. 1A shows a case where the joining member (web) 1 is attached upright with respect to the joined member (flange) 2, but the present invention is not limited to this.
- the joining member (web) 1 may be attached to the joined member (flange) 2 at an angle ⁇ .
- the bonding member (web) thickness t w for use in determining the ratio Y (%) of the non-welded portion, the joint member (web) and the workpieces (flange) and the intersecting portion of the length of, ( t w ) / cos (90 ° - ⁇ ).
- the clearance gap 14 may be vacant between the joining member (web) 1 and the to-be-joined member (flange) 2.
- FIG. 1 (d) a gap 14 is vacant between the joining member (web) 1 and the joined member (flange) 2, and a spacer 15 is inserted into the gap 14. May be.
- variety 13 is taken as the welding width
- the fillet weld metal 5 may be dissolved in the spacer 15.
- the welded structure according to the present invention has an unwelded portion 4 in which the structure is discontinuous at the abutting surface between the joining member (web) 1 and the joined member (flange) 2 in the fillet welded joint.
- the unwelded portion 4 is present on the butt surface. .
- the energy release rate (crack propagation driving force) at the tip of the brittle crack that has propagated through the member to be joined (flange) 2 is reduced, and the brittle crack tends to stop at the butt surface. Even if the brittle crack propagates to the joining member (web) 1 side, the present invention forms the fillet weld metal 5 that retains the toughness of a predetermined level or more. Will stop at.
- the member to be joined (flange) 2 is a steel plate joined by a butt weld joint 11, and the joining member (web) 1 intersects with a welded portion (butt weld joint portion) 11 of the butt weld joint.
- a fillet welded joint that is fillet welded is shown. Further, in FIG.
- both the joining member (web) 1 and the joined member (flange) 2 are steel plates having butt weld joint portions 11 and 12, and the butt weld joint portion 11 of the joined member (flange) 2 and A fillet weld joint at which the butt weld joint portion 12 of the joining member (web) 1 intersects is shown.
- Even in such a fillet welded joint in order to prevent the propagation of the brittle crack generated from the butt weld joint part 11 to the joining member (web) 1, it is important to have a discontinuity in the structure. For this reason, even in these cases, the unwelded portion 4 is present on the abutting surface between the member to be joined and the joining member in the fillet weld.
- FIG. 2A shows the appearance of the fillet weld joint
- FIG. 2B shows the cross-sectional shape of the butt weld joint portion 11.
- FIG. 3 shows a case where both the joining member (web) 1 and the joined member (flange) 2 are steel plates having butt welded joint portions 11 and 12, and the butt welded joint portion of the joined member (flange) 2.
- 11 shows a fillet welded joint in which a butt weld joint portion 12 of the joining member (web) 1 intersects.
- FIG. 3A shows the appearance of the fillet weld joint
- FIG. 3B shows the joint cross-sectional shape of the butt weld joint portions 11 and 12.
- the manufacturing method of a fillet welded joint is not particularly limited, and any ordinary manufacturing method can be applied.
- the flange steel plates and the web steel plates may be butt welded, and the resulting butt weld joint may be fillet welded to produce a fillet weld joint.
- a pair of web steel plates before butt welding are tack welded to the flange, then the web steel plates are butt welded together, and the resulting butt weld joint is main welded (fillet weld) to the flange to fillet A welded joint may be manufactured.
- the dimensions of the unwelded part 4 in the fillet weld joint cross section since propagation suppression of brittle cracks, and more than 95% of the web thickness t w.
- the dimensions of the unwelded part 4 can inhibit the propagation of brittle cracks, it is limited to 95% or more of the bonding member (web) thickness t w.
- they are 96% or more and 100% or less.
- At least one of the weld leg length or weld width of the fillet weld joint shall be 16 mm or less.
- at least one of the weld leg length or the weld width of the fillet welded joint is limited to 16 mm or less, at which the high tough fillet weld metal is easily plastically deformed. Preferably it is 12 mm or less.
- the fillet weld metal in the fillet welded joint ensures toughness satisfying the following expression (1) and / or (2) in relation to the plate thickness t f of the member to be joined (flange). Adjust as possible.
- vTrs ⁇ -1.5t f +70 (1) vE -20 ⁇ 2.75t f -105 (2)
- vTrs Charpy impact test fracture surface transition temperature of fillet weld metal (° C)
- vE -20 (J) Test temperature of fillet weld metal: Charpy impact test absorbed energy at -20 ° C (J), t f : Thickness of the member to be joined (mm)
- the toughness of the fillet weld metal satisfies the above-described formula (1) and / or (2) in relation to the plate thickness t f of the member to be joined (flange), as shown in FIG.
- a welded structure having a plate thickness of a member to be joined (flange) of 50 mm or more can be a welded structure that ensures desired brittle crack propagation prevention characteristics. If the toughness of the fillet weld metal does not satisfy either of the above formulas (1) and (2), the fillet weld metal has insufficient toughness and is generated and propagated in the joined member (flange). The brittle cracks cannot be prevented from propagating in the fillet weld metal.
- the welded structure of the present invention is provided with the above-described fillet welded joint.
- a hull structure with a ship hull outer plate as a flange and a bulkhead as a web, or a deck as a flange, and a hatch as a web can be applied to the hull structure.
- FIG. 4 (a) or a thick steel plate having a butt weld joint (FIG. 4 (b), (c)).
- the butt weld joint was made by one-pass high heat input electrogas arc welding (SEGARC and two-electrode SEGARC) or multilayer CO 2 welding.
- the fillet welded joint is a fillet welded joint having fillet weld metal with various toughness, various weld leg lengths and welding widths by changing welding conditions such as welding material, welding heat input, shield gas, etc. .
- fillet weld metal was tested in accordance with the provisions of JIS Z 2242 by collecting Charpy impact test pieces (10 mm thick) from butt welded joints produced under the same conditions as fillet weld metal or fillet welds. Temperature: Absorption energy at ⁇ 20 ° C. vE ⁇ 20 (J) and fracture surface transition temperature vTrs (° C.) were determined. In some fillet welded joints, a gap was formed between the joining member (web) 1 and the joined member (flange) 2. Further, in some fillet welded joints, a fillet welded joint was produced by inserting a spacer into the gap between the joining member (web) 1 and the joined member (flange) 2.
- an ultra-large structural model test body shown in FIG. 4 was produced, and a brittle crack propagation stop test was performed.
- the ultra-large-sized structural model test body welded the steel plate of the same board thickness as the to-be-joined member (flange) 2 by the tack welding 8 below the to-be-joined member (flange) 2 of the large-scale fillet welded joint 9.
- the butt-welded joint part 11 of the to-be-joined member (flange) was produced so as to be orthogonal to a joining member (web).
- the stress 100 N / mm 2 is an average value of stress that constantly acts on the hull.
- the stress 257 N / mm 2 is a value corresponding to the maximum allowable stress of the yield strength 390 N / mm grade 2 steel plate applied to the hull.
- the stress 283 N / mm 2 is a value corresponding to the maximum allowable stress of the yield strength 460 N / mm 2 grade steel plate applied to the hull.
- the temperature –10 ° C is the design temperature of the ship.
- the brittle crack propagated from the joined member (flange) and entered the fillet weld metal of the fillet weld and stopped.
- the brittle crack propagated without stopping at the fillet weld, and the fillet weld metal could not prevent the brittle crack from propagating.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
また、コンテナ船は、近年、大型化し、6,000~20,000 TEUといった大型船が建造されるようになってきている。なお、TEU(Twenty feet Equivalent Unit)は、長さ20フィートのコンテナに換算した個数を表し、コンテナ船の積載能力の指標を示している。このような船の大型化に伴い、船体外板は、板厚:50mm以上で、降伏強さ:390N/mm2級以上の厚鋼板が使用される傾向となっている。
船体構造においては、従来から安全性という観点から、万一、脆性破壊が発生した場合でも、脆性亀裂の伝播を大規模破壊に至る前に停止させ、船体分離を防止することが必要であると考えられている。
非特許文献1では、溶接部で強制的に発生させた脆性亀裂の伝播経路、伝播挙動が実験的に調査されている。ここには、溶接部の破壊靱性がある程度確保されていれば、溶接残留応力の影響により脆性亀裂は溶接部から母材側に逸れてしまうことが多いという結果が記載されているが、溶接部に沿って脆性亀裂が伝播した例も複数例確認されている。このことは、脆性破壊が溶接部に沿って直進伝播する可能性が無いとは言い切れないことを示唆していることになる。
また、非特許文献2には、とくに発生した脆性亀裂の伝播停止のために、特別な脆性亀裂伝播停止特性を有する厚鋼板を必要とするとの指摘もある。
特許文献1に記載された技術では、この骨材に、表層部および裏層部で3mm以上の厚みにわたり0.5~5μmの平均円相当粒径を有し、さらに板厚面に平行な面で(100)結晶面のX線面強度比が1.5以上である、ミクロ組織を有する鋼板を用いるとしている。このようなミクロ組織を有する鋼板を補強材として隅肉溶接した構造とすることにより、突合せ溶接継手部に脆性亀裂が発生しても、補強材である骨材で脆性亀裂の伝播を停止でき、溶接構造体が破壊するような致命的な損傷を防止できるとしている。
特許文献2に記載された溶接構造体では、隅肉溶接継手断面におけるウェブの、フランジとの突合せ面に未溶着部を残存させる。そして、その未溶着部の幅と、隅肉溶接部の左右の脚長とウェブ板厚との和との比、Xが、被接合部材(フランジ)の脆性亀裂伝播停止靭性Kcaと特別な関係式を満足するように、未溶着部の幅を調整する。これにより、被接合部材(フランジ)を板厚:50mm以上の厚物材としても、接合部材(ウェブ)で発生した脆性亀裂の伝播を、隅肉溶接部のウェブとフランジの突合せ面で停止させ、被接合部材(フランジ)への脆性亀裂の伝播を阻止することができるとしている。
また、特許文献2に記載された技術は、接合部材(ウェブ)で発生した脆性亀裂の伝播を、構造の不連続性と、被接合部材(フランジ)の脆性亀裂伝播停止特性との組合せで、阻止しようとする技術である。
しかし、日本造船研究協会第169委員会報告(「船体構造の破壊管理制御設計に関する研究―報告書―」、(1979)、p.118~136、日本造船研究協会第169委員会)に示されるように、一般に、隅肉溶接継手の被接合部材(フランジ)で発生した脆性亀裂を接合部材(ウェブ)で伝播停止させることは、接合部材(ウェブ)で発生した脆性亀裂を被接合部材(フランジ)で伝播停止させることに比べて、難しいことが実験的に確認されている。
この理由は明確には記載されていないが、一因として、T継手部に亀裂が突入するときの破壊駆動力(応力拡大係数)が、被接合部材(フランジ)に突入する場合よりも接合部材(ウェブ)に突入する場合のほうが大きくなることが考えられる。
なお、特許文献2には、接合部材(ウェブ)の脆性亀裂伝播停止特性については何の配慮もなされていない。
すなわち、特許文献2に記載された技術は、例えば、NK船級の「脆性亀裂アレスト設計指針」(2009年9月制定)で想定されている、大型コンテナ船の強力甲板(フランジに相当)で発生した脆性亀裂がハッチサイドコーミング(ウェブに相当)に伝播するようなケースに対して、十分な亀裂伝播停止特性を有しているとはいえない。
なお、本発明が対象とする溶接構造体は、被接合材(フランジ)の表面に接合部材(ウェブ)の端面を突合せて、隅肉溶接により接合してなる隅肉溶接継手を備える溶接構造体とする。
その結果、被接合部材(フランジ)から発生した脆性亀裂の伝播を阻止(停止)するには、被接合部材(フランジ)と接合部材(ウェブ)との突合せ面に不連続部を確保し、脆性亀裂の伝播部を所定値以上の脆性亀裂伝播停止靭性Kcaを有する脆性亀裂伝播停止特性に優れた部材で構成しただけでは十分でないことに、思い至った。
とくに、被接合部材(フランジ)の板厚tf(mm)が大きくなると脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)が増加し、脆性亀裂が停止しにくくなることに鑑みて、被接合部材(フランジ)の板厚tf(mm)に関連した、隅肉溶接部の靭性向上が必須となることに想到した。
また、隅肉溶接部の脚長や溶着幅が長くなると、脆性亀裂の伝播が容易となるため、隅肉溶接部の脚長もしくは溶着幅の少なくとも一方を16mm以下にする必要があることも知見した。
すなわち、本発明者らは、特許文献2に記載の技術では、全く考慮されていない隅肉溶接継手の隅肉溶接金属部に所定値以上の低温靭性を保持させることにより、特許文献2に記載の技術では達成困難であった被接合部材(フランジ)から接合部材(ウェブ)に突入する脆性亀裂の伝播を阻止できることを見出した。
まず、本発明の基礎となった実験結果について説明する。
種々の板厚を有する鋼板を用いて、種々の未溶着部比率Y(%)(=(隅肉溶接継手断面における未溶着部の幅B)/(接合部材の板厚tw)×100)の未溶着部と、種々の低温靭性、脚長を有する隅肉溶接部からなる、大型隅肉溶接継手を作製した。
なお、被接合部材(フランジ)には、突合せ溶接継手部を有する板厚:50mm以上鋼板を用いた。また、接合部材(ウェブ)には、脆性亀裂伝播停止靭性Kcaに何ら配慮していない通常の造船D~E級鋼を用いた。
なお、突合せ溶接継手は、1パスの大入熱エレクトロガスアーク溶接(SEGARCまたは2電極SEGARC)若しくは炭酸ガスアーク溶接(多層盛)で作製した。
なお、図4(b)に示す超大型構造モデル試験体は、被接合部材(フランジ)の突合せ溶接継手部11が接合部材(ウェブ)と直交するように作製し、また機械ノッチ7の先端が突合せ溶接継手部11のBOND部となるように、加工した。
なお、応力257N/mm2は、船体に適用されている降伏強度390N/mm2級鋼板の最大許容応力相当の値である。また、温度:-10℃は船舶の設計温度である。
図5(a),(b)から、未溶着部比率Yが95%以上で、かつ隅肉溶接部の靭性と被接合部材(フランジ)の板厚tfが特定の関係を満足する場合には、負荷応力が257N/mm2の場合でも、接合部材(ウェブ)のKcaに何ら配慮を加えずに、被接合部材(フランジ)で発生した脆性亀裂は隅肉溶接金属部で停止でき、脆性亀裂の接合部材(ウェブ)への伝播を阻止(停止)できることが判明した。
なお、未溶着部比率Yは、隅肉溶接継手断面における未溶着部の幅Bと接合部材(ウェブ)板厚twの比、(B/tw)×100(%)で定義される値である。
vTrs(℃) ≦ -1.5tf(mm)+70 ‥‥(1)
が、図5(b)から、
vE-20(J) ≧ 2.75tf(mm)-105 ‥‥(2)
が得られる。
そして、未溶着部の設定に加えて、さらに上記(1)、(2)式を満足するまでに、隅肉溶接金属部の低温靭性を高めれば、板厚50mm以上の厚肉の被接合部材(フランジ)で発生した脆性亀裂を隅肉溶接継手部の溶接金属内で停止させることが可能となることを見出した。
上記したような未溶着部の設定や、隅肉溶接部の低温靭性の著しい向上という対策を施せば、接合部材(ウェブ)に使用する厚鋼板は、特別に脆性亀裂伝播停止特性を考慮することなく、被接合部材(フランジ)で発生した脆性亀裂の伝播を阻止することができるという結論を得た。
1.接合部材の端面を板厚50mm以上の被接合部材の表面に突合わせ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長もしくは溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、
前記隅肉溶接継手における前記接合部材の端面と前記被接合部材の表面とを突合わせた面に、前記隅肉溶接継手の断面で該接合部材の板厚twの95%以上の未溶着部を有し、
さらに、前記隅肉溶接継手の隅肉溶接金属について、
該隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と前記被接合部材の板厚tfとが下記(1)式の関係、および/または、
該隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20(J)と前記被接合部材の板厚tfとが下記(2)式の関係を満足させる、
ことを特徴とする溶接構造体。
記
vTrs ≦ -1.5tf+70 ‥‥(1)
vE-20 ≧ 2.75tf-105 ‥‥(2)
ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、
vE-20:試験温度:-20℃でのシャルピー衝撃試験吸収エネルギー(J)、
tf:被接合部材の板厚(mm)
3.前記接合部材が突合せ溶接継手部を有してなり、該接合部材を、該接合部材の突合せ溶接継手部が前記被接合部材の突合せ溶接継手部と交差するように配設してなることを特徴とする前記2に記載の溶接構造体。
また、図1(c)に示すように、接合部材(ウェブ)1と被接合部材(フランジ)2の間にすきま14が空いていてもよい。さらに、図1(d)に示すように、接合部材(ウェブ)1と被接合部材(フランジ)2との間にすきま14が空いており、かつそのすきま14の中にスペーサー15が挿入されていてもよい。
図1(c)および図1(d)の場合、溶着幅13は、接合部材(ウェブ)1側の溶着幅とする。この溶着幅13が所定の値(16mm以下)を満足していれば良い。また、図1(d)の場合、隅肉溶接金属5はスペーサー15に溶け込んでいても良い。
なお、たとえ、接合部材(ウェブ)1側に脆性亀裂が伝播したとしても、本発明では、所定以上の靭性を保持する隅肉溶接金属5を形成するため、脆性亀裂は、隅肉溶接金属5で停止することになる。
また、図3は、接合部材(ウェブ)1および被接合部材(フランジ)2がともに、突合せ溶接継手部11、12を有する鋼板である場合で、被接合部材(フランジ)2の突合せ溶接継手部11と接合部材(ウェブ)1の突合せ溶接継手部12とが交差する隅肉溶接継手を示す。図3(a)は隅肉溶接継手の外観を、図3(b)は突合せ溶接継手部11、12における継手断面形状を示す。
また、隅肉溶接継手の製造方法はとくに限定する必要はなく、通常の製造方法がいずれも適用できる。例えば、フランジ用鋼板同士、ウェブ用鋼板同士を突合せ溶接し、得られた突合せ溶接継手を隅肉溶接して隅肉溶接継手を製造してもよい。
また、突合せ溶接前の一組のウェブ用鋼板をフランジに仮付溶接し、ついでウェブ用鋼板同士を突合せ溶接し、得られた突合せ溶接継手をフランジに本溶接(隅肉溶接)して隅肉溶接継手を製造してもよい。
vTrs ≦ -1.5tf+70 ‥‥(1)
vE-20 ≧ 2.75tf-105 ‥‥(2)
(ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、vE-20(J):隅肉溶接金属の試験温度:-20℃におけるシャルピー衝撃試験吸収エネルギー(J)、tf:被接合部材の板厚(mm))
隅肉溶接金属の靭性が、被接合部材(フランジ)の板厚tfと関連して、上記した(1)式および/または(2)式を満足することにより、図5に示すように、被接合部材(フランジ)の板厚が50mm以上である溶接構造体を、所望の脆性亀裂伝播阻止特性を確保した溶接構造体とすることができる。隅肉溶接金属の靭性が、上記した(1)式および(2)式のいずれも満足しない場合には、隅肉溶接金属の靭性が不足して、被接合部材(フランジ)で発生し伝播してきた脆性亀裂を隅肉溶接金属部で伝播阻止することができない。
なお、本発明溶接構造体は、上記した隅肉溶接継手を備えるものであり、例えば、船舶の船体外板をフランジとし、隔壁をウェブとする船体構造、あるいはデッキをフランジとし、ハッチをウェブとする船体構造などに適用可能である。
なお、作製した隅肉溶接継手では、接合部材1と被接合部材2との突合せ面に、図1(a)、(c)もしくは(d)に示すような未溶着部4を設け、未溶着部の比率Y(=(未溶着部の幅B/接合部材(ウェブ)板厚tw)を種々変化させた。
なお、被接合部材(フランジ)は、厚鋼板(母材のみ)(図4(a))または突合せ溶接継手を有する厚鋼板(図4(b)、(c))とし、接合部材(ウェブ)は、厚鋼板(母材のみ)(図4(a)、(b))、または突合せ溶接継手を有する厚鋼板(図4(c))とした。
突合せ溶接継手は、1パス大入熱エレクトロガスアーク溶接(SEGARCおよび2電極SEGARC)または多層CO2溶接により作製した。
また、隅肉溶接継手は、溶接材料および溶接入熱、シールドガス等の溶接条件を変化させて、種々の靭性、種々の溶接脚長および溶着幅の隅肉溶接金属を有する隅肉溶接継手とした。なお、隅肉溶接金属の靭性は、隅肉溶接金属もしくは隅肉溶接と同じ条件で作製した突合せ溶接継手からシャルピー衝撃試験片(10mm厚)を採取し、JIS Z 2242の規定に準拠して試験温度:-20℃での吸収エネルギーvE-20(J)、破面遷移温度vTrs(℃)を求めた。
なお、一部の隅肉溶接継手では、接合部材(ウェブ)1と被接合部材(フランジ)2との間にすきまを空けた。さらにその一部の隅肉溶接継手では、接合部材(ウェブ)1と被接合部材(フランジ)2との間のすきまにスペーサーを挿入して隅肉溶接継手を作製した。
なお、図4(b)に示す超大型構造モデル試験体では、被接合部材(フランジ)の突合せ溶接継手部11を接合部材(ウェブ)と直交するように作製した。また、図4(c)に示す超大型構造モデル試験体では、被接合部材(フランジ)の突合せ溶接継手部11と接合部材(ウェブ)の突合せ溶接継手部12とを交差させた。そして、機械ノッチ7の先端を突合せ溶接継手部11のBOND部、または溶接金属WMとなるように加工した。
2 フランジ
3 脚長
4 未溶着部
5 隅肉溶接金属
7 機械ノッチ
8 仮付け溶接
9 大型隅肉溶接継手
11 フランジの突合せ溶接継手部
12 ウェブの突合せ溶接継手部
13 溶着幅
14 すきま
15 スペーサー
θ 交差角
Claims (3)
- 接合部材の端面を板厚50mm以上の被接合部材の表面に突合わせ、前記接合部材と前記被接合部材とを隅肉溶接により接合してなる溶接脚長もしくは溶着幅の少なくとも一方が16mm以下の隅肉溶接継手を備えた溶接構造体であって、
前記隅肉溶接継手における前記接合部材の端面と前記被接合部材の表面とを突合わせた面に、前記隅肉溶接継手の断面で該接合部材の板厚twの95%以上の未溶着部を有し、
さらに、前記隅肉溶接継手の隅肉溶接金属について、
該隅肉溶接金属のシャルピー衝撃試験破面遷移温度vTrs(℃)と前記被接合部材の板厚tfとが下記(1)式の関係、および/または、
該隅肉溶接金属のシャルピー衝撃試験の試験温度:-20℃におけるシャルピー衝撃試験吸収エネルギーvE-20(J)と前記被接合部材の板厚tfとが下記(2)式の関係を満足させる、
ことを特徴とする溶接構造体。
記
vTrs ≦ -1.5tf+70 ‥‥(1)
vE-20 ≧ 2.75tf-105 ‥‥(2)
ここで、vTrs:隅肉溶接金属のシャルピー衝撃試験破面遷移温度(℃)、
vE-20:試験温度:-20℃でのシャルピー衝撃試験吸収エネルギー(J)、
tf:被接合部材の板厚(mm) - 前記板厚50mm以上の被接合部材が、前記接合部材に交差するように、突合せ溶接継手部を有してなることを特徴とする請求項1に記載の溶接構造体。
- 前記接合部材が突合せ溶接継手部を有してなり、該接合部材を、該接合部材の突合せ溶接継手部が前記被接合部材の突合せ溶接継手部と交差するように配設してなることを特徴とする請求項2に記載の溶接構造体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147008872A KR101515465B1 (ko) | 2011-09-13 | 2012-09-13 | 용접 구조체 |
BR112014005504A BR112014005504A2 (pt) | 2011-09-13 | 2012-09-13 | estrutura soldada |
JP2013532003A JP5395985B2 (ja) | 2011-09-13 | 2012-09-13 | 溶接構造体 |
CN201280044637.XA CN103874557B (zh) | 2011-09-13 | 2012-09-13 | 焊接构造体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011199218 | 2011-09-13 | ||
JP2011-199218 | 2011-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013038685A1 true WO2013038685A1 (ja) | 2013-03-21 |
Family
ID=47882934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/005857 WO2013038685A1 (ja) | 2011-09-13 | 2012-09-13 | 溶接構造体 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5395985B2 (ja) |
KR (1) | KR101515465B1 (ja) |
CN (1) | CN103874557B (ja) |
BR (1) | BR112014005504A2 (ja) |
WO (1) | WO2013038685A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6251463B1 (ja) * | 2016-06-16 | 2017-12-20 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
WO2017217516A1 (ja) * | 2016-06-16 | 2017-12-21 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
JP2018158345A (ja) * | 2017-03-22 | 2018-10-11 | Jfeスチール株式会社 | 溶接構造体 |
WO2022265010A1 (ja) * | 2021-06-15 | 2022-12-22 | Jfeスチール株式会社 | 溶接構造体 |
WO2022265011A1 (ja) * | 2021-06-15 | 2022-12-22 | Jfeスチール株式会社 | 溶接構造体 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107405713B (zh) * | 2015-03-12 | 2019-11-05 | 杰富意钢铁株式会社 | 焊接构造体 |
JP6914923B2 (ja) * | 2017-02-28 | 2021-08-04 | Jfeスチール株式会社 | 重ね隅肉アーク溶接継手およびその製造方法 |
KR102119175B1 (ko) * | 2018-05-18 | 2020-06-04 | 닛폰세이테츠 가부시키가이샤 | 용접 구조체 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005111501A (ja) * | 2003-10-06 | 2005-04-28 | Nippon Steel Corp | 耐脆性破壊伝播特性に優れた溶接構造体 |
JP2005329461A (ja) * | 2004-04-21 | 2005-12-02 | Nippon Steel Corp | 脆性き裂伝播停止特性に優れた溶接鋼構造物およびその製造方法 |
JP2008023594A (ja) * | 2006-06-23 | 2008-02-07 | Ihi Marine United Inc | 溶接構造体 |
JP2008156750A (ja) * | 2006-11-30 | 2008-07-10 | Jfe Steel Kk | 板厚方向の脆性亀裂伝播停止特性に優れる板厚50mm以上の鋼板およびその製造方法 |
JP2008212992A (ja) * | 2007-03-05 | 2008-09-18 | Kobe Steel Ltd | 耐脆性破壊亀裂伝播停止特性に優れたt型溶接継手構造 |
JP2009061482A (ja) * | 2007-09-07 | 2009-03-26 | Ihi Marine United Inc | 溶接構造体 |
WO2010082676A1 (ja) * | 2009-01-14 | 2010-07-22 | 新日本製鐵株式会社 | 耐脆性き裂伝播性に優れた溶接構造体 |
JP2011056571A (ja) * | 2009-09-14 | 2011-03-24 | Nippon Steel Corp | 脆性き裂停止後の破壊発生防止特性に優れた溶接構造体 |
-
2012
- 2012-09-13 BR BR112014005504A patent/BR112014005504A2/pt not_active Application Discontinuation
- 2012-09-13 JP JP2013532003A patent/JP5395985B2/ja active Active
- 2012-09-13 WO PCT/JP2012/005857 patent/WO2013038685A1/ja active Application Filing
- 2012-09-13 CN CN201280044637.XA patent/CN103874557B/zh active Active
- 2012-09-13 KR KR1020147008872A patent/KR101515465B1/ko active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005111501A (ja) * | 2003-10-06 | 2005-04-28 | Nippon Steel Corp | 耐脆性破壊伝播特性に優れた溶接構造体 |
JP2005329461A (ja) * | 2004-04-21 | 2005-12-02 | Nippon Steel Corp | 脆性き裂伝播停止特性に優れた溶接鋼構造物およびその製造方法 |
JP2008023594A (ja) * | 2006-06-23 | 2008-02-07 | Ihi Marine United Inc | 溶接構造体 |
JP2008156750A (ja) * | 2006-11-30 | 2008-07-10 | Jfe Steel Kk | 板厚方向の脆性亀裂伝播停止特性に優れる板厚50mm以上の鋼板およびその製造方法 |
JP2008212992A (ja) * | 2007-03-05 | 2008-09-18 | Kobe Steel Ltd | 耐脆性破壊亀裂伝播停止特性に優れたt型溶接継手構造 |
JP2009061482A (ja) * | 2007-09-07 | 2009-03-26 | Ihi Marine United Inc | 溶接構造体 |
WO2010082676A1 (ja) * | 2009-01-14 | 2010-07-22 | 新日本製鐵株式会社 | 耐脆性き裂伝播性に優れた溶接構造体 |
JP2011056571A (ja) * | 2009-09-14 | 2011-03-24 | Nippon Steel Corp | 脆性き裂停止後の破壊発生防止特性に優れた溶接構造体 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6251463B1 (ja) * | 2016-06-16 | 2017-12-20 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
WO2017217516A1 (ja) * | 2016-06-16 | 2017-12-21 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
WO2017217515A1 (ja) * | 2016-06-16 | 2017-12-21 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
JPWO2017217516A1 (ja) * | 2016-06-16 | 2018-06-28 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
JP2018158345A (ja) * | 2017-03-22 | 2018-10-11 | Jfeスチール株式会社 | 溶接構造体 |
WO2022265010A1 (ja) * | 2021-06-15 | 2022-12-22 | Jfeスチール株式会社 | 溶接構造体 |
WO2022265011A1 (ja) * | 2021-06-15 | 2022-12-22 | Jfeスチール株式会社 | 溶接構造体 |
JPWO2022265010A1 (ja) * | 2021-06-15 | 2022-12-22 | ||
JP7195503B1 (ja) * | 2021-06-15 | 2022-12-26 | Jfeスチール株式会社 | 溶接構造体 |
JP7293515B2 (ja) | 2021-06-15 | 2023-06-19 | Jfeスチール株式会社 | 溶接構造体 |
TWI823427B (zh) * | 2021-06-15 | 2023-11-21 | 日商杰富意鋼鐵股份有限公司 | 熔接結構體 |
Also Published As
Publication number | Publication date |
---|---|
JP5395985B2 (ja) | 2014-01-22 |
KR20140071412A (ko) | 2014-06-11 |
CN103874557B (zh) | 2016-04-13 |
JPWO2013038685A1 (ja) | 2015-03-23 |
KR101515465B1 (ko) | 2015-04-29 |
CN103874557A (zh) | 2014-06-18 |
BR112014005504A2 (pt) | 2017-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5395985B2 (ja) | 溶接構造体 | |
JP6744274B2 (ja) | 溶接構造体 | |
JP5408396B1 (ja) | 溶接構造体 | |
JP5144053B2 (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
JP5365761B2 (ja) | 溶接構造体 | |
JP6615215B2 (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
JP7293515B2 (ja) | 溶接構造体 | |
JP6720106B2 (ja) | 溶接構造体 | |
JP6251463B1 (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
JP5679336B2 (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
WO2022265011A1 (ja) | 溶接構造体 | |
JP2022083554A (ja) | 溶接構造体の脆性亀裂伝播停止性能の評価方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12831910 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013532003 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147008872 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014005504 Country of ref document: BR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12831910 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112014005504 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140310 |