WO2010082676A1 - 耐脆性き裂伝播性に優れた溶接構造体 - Google Patents

耐脆性き裂伝播性に優れた溶接構造体 Download PDF

Info

Publication number
WO2010082676A1
WO2010082676A1 PCT/JP2010/050654 JP2010050654W WO2010082676A1 WO 2010082676 A1 WO2010082676 A1 WO 2010082676A1 JP 2010050654 W JP2010050654 W JP 2010050654W WO 2010082676 A1 WO2010082676 A1 WO 2010082676A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
welded joint
crack
insert member
brittle
Prior art date
Application number
PCT/JP2010/050654
Other languages
English (en)
French (fr)
Inventor
石川忠
井上健裕
橋場裕治
大谷潤
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010524283A priority Critical patent/JP4772922B2/ja
Priority to DK10731345.4T priority patent/DK2390048T3/da
Priority to EP10731345.4A priority patent/EP2390048B1/en
Priority to KR1020117013571A priority patent/KR101163348B1/ko
Priority to CN201080003159.9A priority patent/CN102209607B/zh
Publication of WO2010082676A1 publication Critical patent/WO2010082676A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0203Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a welded structure excellent in brittle crack propagation resistance that controls and suppresses the propagation of brittle cracks when brittle cracks occur in a welded joint.
  • a brittle crack occurs in a welded joint of a welded structure to which welding is applied using a thick steel plate, its propagation resistance can be improved by controlling and suppressing its propagation and improving safety. It relates to an excellent welded structure.
  • TEU wenty Fee Equivalent Unit
  • a container having a length of 20 feet represents an index of the loading capacity of the container ship.
  • Such a large container ship has a structure with a large upper opening without a partition wall in order to improve the loading capacity and cargo handling efficiency.
  • the strength of the hull outer plate and inner plate is ensured. Since it is necessary, the above high strength steel plates are used.
  • large heat input welding for example, electrogas arc welding
  • electrogas arc welding for example, electrogas arc welding
  • the plate thickness of the steel plate increases, so that it is required to perform welding with a large heat input to the limit.
  • HAZ Heat Affected Zone
  • the width of the HAZ also increases, so the fracture toughness value against brittle fracture tends to decrease. It is in.
  • TMCP steel sheet (Thermo Mechanical Control Process: excellent in brittle fracture resistance characteristics) for the purpose of suppressing the occurrence of brittle cracks in welded joints and achieving the propagation stop (arrest) of brittle cracks. Thermal processing control) has been proposed.
  • the fracture toughness value which is a resistance value against the occurrence of brittle fracture, is improved, so that the possibility of the structure undergoing brittle fracture becomes extremely low in a normal use environment.
  • a brittle fracture occurs in the event of an earthquake or a collision between structures, a disaster, etc., a brittle crack may continue to propagate through the HAZ, causing a large fracture in the welded structure.
  • TMCP steel plates with a thickness of about 50 mm are used. Even if a brittle crack occurs in a welded joint, the brittle crack can be Therefore, it was thought that a brittle crack could be stopped at the base material if the arrest performance of the base material was ensured.
  • a steel plate having a larger thickness is required, and further, in order to simplify the structure, it is effective to increase the thickness of the steel plate. It has been required to use a high-strength steel plate having a high design stress. However, when such a thick steel plate is used, depending on the degree of HAZ fracture toughness, a brittle crack may propagate along the HAZ without escaping to the base material.
  • a plate-like insert material is welded so as to cross the weld line in an area where the propagation of a brittle crack generated in the welded joint is to be stopped.
  • a welded structure using a material with an appropriate texture in the surface layer region having a thickness of at least% for example, Patent Document 2.
  • Patent Document 2 a material with an appropriate texture in the surface layer region having a thickness of at least%
  • Patent Document 2 when the welded structure described in Patent Document 2 is applied to a large building, for example, a brittle crack that has propagated through the welded joint propagates through the welded joint that welds the insert material to the steel sheet and enters the insert material. Then, after propagating through the inside of the insert as it is, there is a possibility of propagating through the welded joint again.
  • the fracture toughness of the base material is insufficient as described above. There is also a concern that the brittle crack propagates for a long time and the strength as a welded structure is significantly reduced.
  • the present invention can suppress the propagation of a brittle crack through a welded joint even when a brittle crack occurs in a welded joint during an earthquake or a collision. It is an object of the present invention to provide a welded structure excellent in brittle crack propagation resistance and capable of preventing the body from breaking.
  • the inventors of the present invention have provided an insert member, which is a separate member, so as to cross the weld line in a region where it is desired to stop the propagation of the brittle crack generated in the welded joint.
  • an insert member which is a separate member, so as to cross the weld line in a region where it is desired to stop the propagation of the brittle crack generated in the welded joint.
  • the present invention has been completed. That is, the gist of the present invention relates to the following contents described in the claims.
  • board thickness t (mm) is represented by following (1), (2) Formula.
  • the outer edge of the insert member on the side facing the brittle crack main side is on the both sides of the steel plate welded joint from the weld metal portion of the steel plate welded joint at an angle of 15 ° to 50 ° with respect to the longitudinal direction of the steel plate welded joint.
  • the outer edge of the other brittle crack counter-opposite side intersects the steel plate welded joint at an angle of 70 ° or more and 110 ° or less, while extending at an inclination.
  • the brittle resistance feature is characterized in that at least the end portion in the width direction of the insert member faces the region where the Kca of the steel plate is 4000 N / mm 1.5 or more. A welded structure with excellent crack propagation.
  • T (mm) represents the plate
  • d (mm) represents the width
  • the steel sheet has a brittle crack propagation stop characteristic Kca of at least a partial region of 6000 N / mm 1.5 or more, and the crack resistance control portion includes at least a lateral width direction end portion of the insert member.
  • the steel plate is provided so as to face a region where Kca of the steel plate is 6000 N / mm 1.5 or more, and has excellent brittle crack propagation properties according to the above [1] or [2] Welded structure.
  • the steel plate is composed of at least two or more small steel plates arranged in the longitudinal direction of the steel plate welded joint, and a small steel plate welded joint is formed by butt welding the small steel plates to each other.
  • the crack control section is provided such that the insert member welded joint formed on the lateral width direction end portion side of the insert member is in contact with the small steel plate welded joint.
  • the steel plate is composed of at least two or more small steel plates arranged in the longitudinal direction of the steel plate welded joint, and a small steel plate welded joint is formed by butt welding the small steel plates to each other.
  • the crack control unit is provided so that the insert member welded joint formed on the lateral width direction end side of the insert member includes the small steel plate welded joint, Furthermore, a brittle-ductile fracture surface transition temperature vTrs4 (° C.) representing the toughness of the weld metal part forming the small steel plate welded joint and a brittle-ductile fracture surface transition temperature vTrs1 (° C.) representing the base metal toughness of the steel plate.
  • the weld structure having excellent brittle crack propagation resistance according to any one of the above [1] to [3], wherein the relationship satisfies a relationship represented by the following formula: vTrs4 ⁇ vTrs1-20.
  • a portion including a weld metal portion and a weld heat affected zone is defined as a weld joint.
  • the brittle crack propagation stop characteristic Kca is a numerical value at the temperature at which the welded structure is used or at the design temperature.
  • a crack resistance control unit having an insert member and an insert weld joint formed between the insert member and the base steel plate. Even if a brittle crack occurs in a welded joint, the brittle crack propagating through the welded joint is diverted to a portion where the arrest performance of the steel plate base metal is high or controlled by the crack control section. It is possible to prevent the brittle crack from propagating through the welded joint and the base material. Therefore, it is possible to obtain a welded structure capable of preventing the occurrence of large-scale destruction with high production efficiency and low cost.
  • Such a welded structure according to the present invention is used for various types of welded structures such as large ships, building structures, civil engineering steel structures, etc., so that the welded structures can be increased in size and destroyed with high safety. Since the efficiency of welding in construction, the economics of steel materials, etc. are satisfied at the same time, the industrial effects are immeasurable.
  • FIG. 1 is a schematic diagram for explaining the present invention, in a state in which a crack resistance control unit including an insert member and an insert welded joint is provided on a part of a steel plate welded joint formed by welding steel plates. And it is a top view which shows the progress condition of a brittle crack.
  • FIG. 2 is a schematic diagram for explaining an example of a welded structure according to the present invention, and is a plan view showing a state in which a crack resistance control unit including an insert member and an insert weld joint is provided on a part of a steel plate weld joint.
  • FIG. FIG. 3 is a view for explaining the shape of the insert member, in particular, the shape of the outer edge portion on the brittle crack sub-opposition side.
  • FIG. 1 is a schematic diagram for explaining the present invention, in a state in which a crack resistance control unit including an insert member and an insert welded joint is provided on a part of a steel plate welded joint formed by welding steel plates. And it is a top view which
  • FIG. 4 is a schematic diagram illustrating an example of a welded structure according to the present invention, and is a schematic diagram illustrating a case where the welded structure according to the present invention is applied to a marine welded structure.
  • FIG. 5 is a view similar to FIG. 3 for explaining another example of the welded structure according to the present invention.
  • FIG. 6 is a view similar to FIG. 3 for explaining another example of the welded structure according to the present invention.
  • FIG. 7 is a view similar to FIG. 3 for explaining another example of the welded structure according to the present invention.
  • FIG. 8 is a diagram for explaining a method for manufacturing a welded joint specimen used in an example of the present invention.
  • FIG. 9 is a diagram illustrating a tensile test method for evaluating the brittle crack propagation property in an example of the present invention.
  • a brittle crack generated in a steel plate welded joint mainly propagates in the longitudinal direction of the steel plate welded joint. For this reason, the brittle crack which arose in the steel plate welded joint becomes a starting point, and there existed a problem that there existed a possibility that a big fracture might arise in the whole welded structure.
  • the present inventors have further added the shape of the insert member in the above-described prior art. In addition, it was found that it is important to optimize the steel material characteristics. The basic principle of the present invention will be described with reference to FIG.
  • the steel plate welded joint 2 is divided by providing a crack resistance control part 4 in the middle of the steel plate welded joint 2 formed by butt welding the steel plates 1 and 1.
  • the crack resistance control unit 4 is formed by the butt welding of the insert member 5 inserted into the through hole 3 formed across the steel plate from the steel plate welded joint, and the insert member 5 to the steel plate 1.
  • the insert weld joint 6 is made of.
  • the insert member 5 has a shape that forms an insert weld joint 6 that is inclined with respect to the steel plate weld joint 2 on the main opposing side where propagation of a brittle crack is expected.
  • the brittle crack CR generated on one side in the longitudinal direction of the steel plate welded joint 2 propagates along the boundary between the steel plate 1 and the steel plate welded joint 2 (or the heat affected zone of the steel plate base metal).
  • the crack CR reaches the insert weld joint 6, if the inclination angle of the joint with respect to the steel plate weld joint 2 is appropriate, the crack CR does not enter the insert weld joint 6.
  • the insert welded joint 6 or the heat-affected zone of the steel plate base metal
  • the brittle crack propagation stop characteristic Kca of the steel sheet 1 is high even if it enters the base metal part, the progress of the crack CR can be stopped there. Furthermore, even when the brittle crack CR propagates from the other sub-opposite side in the longitudinal direction of the steel plate welded joint 2, if the height, width and thickness of the insert member 5 are sufficiently large, FIG. As shown in FIG. 4, the crack CR can be stopped in the insert member 5.
  • the insert weld joint 6 inclined with respect to the steel plate welded joint 2 as described above is formed continuously on the steel plate welded joint 2 so that the progress of the brittle crack is insert welded from the steel plate welded joint 2.
  • the conditions of the base steel plate for preventing the progress of the brittle crack, the conditions for the insert member for controlling the progress of the brittle crack, and the like were further studied. Embodiments of the present invention will be described in detail.
  • steel plates 1 and 1 having a brittle crack propagation stopping characteristic Kca of at least a part of the base material 1A and 1A of 4000 N / mm 1.5 or more are butt welded.
  • a crack resistance control unit 4 is provided in at least one location of the steel plate welded joint 2 so as to be adjacent to the region 1A.
  • the position where the crack resistance control unit 4 is provided is preferably in the middle of a steel plate welded joint where cracks are expected to be generated and propagated when exposed to large fracture energy due to a collision or earthquake.
  • the crack resistance control unit 4 includes an insert member 5 disposed in a through hole 3 provided so as to penetrate the steel plate 1 and an insert formed by butt welding the insert member 5 to the steel plate 1. It consists of a welded joint 6.
  • the insert welded joint 6 is formed by continuously forming the main opposing side where a brittle crack is expected to propagate to the steel plate welded joint 2 and tilting the steel plate welded joint 2, thereby forming a brittle crack. Is caused to be guided from the steel plate welded joint 2 to the insert welded joint.
  • the outer edge portions 51 and 52 extending from the weld line L of the steel plate welded joint 2 are inclined at an angle in the range of 15 ° to 50 ° with respect to the longitudinal direction of the steel plate welded joint 2. It is formed to do.
  • the insert member 5 is formed as a substantially equilateral triangle in plan view.
  • the steel plate 1 is made of a steel material having a brittle crack propagation stopping characteristic Kca of at least a part of the base material of 4000 N / mm 1.5 or more.
  • Kca brittle crack propagation stopping characteristic
  • the steel plate has improved brittle crack propagation stop characteristics in a partial region of the steel plate by heat treatment, and the steel plate has a total area of Kca4000 N / mm 1.5 or more, it is subjected to heat treatment by bending in the middle.
  • a steel plate having a reduced Kca in the partial region may be used.
  • the brittle crack propagation stop characteristic Kca of the base material is 4000 N in a region 1A (lower side in the longitudinal direction in FIG. 2) that is a portion outside the insert weld joint 6.
  • the insert weld joint 6 formed on the rear end 51a, 52a side of the inclined outer edge portions 51, 52 of the insert member 5 extending from the weld line L of the steel plate weld joint 2 is 1.5 / mm or more. It is formed adjacent to region A.
  • a steel plate welded joint 2 is formed by butt welding the steel plates 1 and 1 as described above. Further, each of the steel plates 1 joined by the steel plate welded joint 2 has a through hole 3 for placing an insert member 5 to be described later in detail, with the weld line L of the steel plate welded joint 2 as the center. Each is provided so as to be symmetrical.
  • the plate thickness of the steel plate 1 is preferably in the range of 25 mm to 150 mm. If the plate thickness of the steel plate 1 is within this range, it is possible to ensure the strength of the steel plate as a welded structure and to obtain excellent brittle crack propagation resistance as will be described in detail later. In particular, in a welded structure using a steel plate of 40 mm or more, there is no effective means for stopping the propagation of a brittle crack, and a welded structure using a steel plate having a plate thickness of 40 mm or more, more preferably 50 mm or more and 100 mm or less. In the body, the present invention is more effectively implemented.
  • the brittle crack propagation stop characteristic Kca in the region 1A is 4000 N / mm 1.5 or more, but 6000 N / Mm 1.5 or more is preferable from the viewpoint that the brittle crack propagation property is further improved.
  • each of the steel plates 1 is inserted into a through-hole 3 formed over each of the steel plates 1 joined by the steel plate welded joint 2, with the weld line L of the steel plate welded joint 2 as the center.
  • the insert member 5 constitutes a crack resistance control unit 4 together with the insert weld joint 6 formed by butt welding to the weld end exposed in the through hole 3 formed in the steel plate 1. Even if a brittle crack is generated in the steel plate welded joint 2 by configuring the crack resistance control unit 4 as described above, the insert member 5 can change the propagation path of the crack from the steel plate welded joint 2.
  • the insert welded joint 6 is controlled to prevent the cracks from penetrating through the steel plate welded joint 2 so that the steel plates 1 and 1 welded to each other are divided.
  • the insert welded joint 6 is formed continuously from the steel plate welded joint 2 on the main opposing side where the propagation of brittle cracks is expected, and is inclined with respect to the steel plate welded joint 2 in the range of 15 ° to 50 °. It is preferable to form at an angle ⁇ 1.
  • the inclined outer edge portions 51 and 52 extending from the top portion 5 a on the main opposing side have an angle ⁇ 1 in the range of 15 ° to 50 ° with respect to the longitudinal direction of the steel plate welded joint 2. It is formed to be inclined at.
  • the angle of the inclined outer edge portions 51 and 52 of the insert member 5 with respect to the longitudinal direction of the steel plate welded joint is less than 15 °, even if the crack propagates along the insert welded joint 6, the insert welded joint must pass through the insert welded joint. Since the position of the crack is close to the position of the steel plate welded joint, which is the original crack propagation path, the crack may enter the steel plate welded joint and propagate again.
  • a preferable range of the inclination angle ⁇ 1 for guiding the brittle crack to propagate along the insert weld joint 6 is 25 ° or more and 40 ° or less.
  • the insert member 5 is formed as a substantially equilateral triangle in plan view, but the shape of the insert member is not limited to this.
  • the angle ⁇ 2 formed between the outer edge 53 on the counter-opposing side connecting the rear ends 51a and 52a of the inclined outer edges 51 and 52 of the insert member and the weld line L is 70 ° or more and 110 ° or less. It is. When this angle is not within the above range, the brittle crack that has propagated along the insert welded joint 6 does not escape to the base metal side of the steel sheet, but propagates through the outer edge 53 on the counter-competitive side, so that the steel plate is welded again. There is a risk of rushing into the joint.
  • a more preferable range of the angle ⁇ 2 is 80 ° or more and 100 ° or less. In FIG. 3, ⁇ 2 is shown on one side with respect to the weld line L, but the same applies to the other side.
  • the dimensions of the lateral width W and the thickness t in the direction intersecting the longitudinal direction of the steel plate welded joint 2 are expressed by the following formulas (1) and (2). It is necessary to satisfy the relationship. 3.2d + 50 ⁇ W (1) 0.95T ⁇ t (2)
  • T represents the plate
  • d represents the width
  • the lateral width W of the insert member is based on the midpoint of the weld metal part of the insert weld joint.
  • the width W of the insert member in the case shown in FIG. 3 is the maximum width in the direction perpendicular to the steel plate welded joint. Further, the width d of the weld metal part is the wider width when the weld metal part is formed on both surfaces of the steel.
  • the present inventors repeatedly performed a destructive test of the welded structure by changing the shape and dimensions of the insert member in various ways. As a result, the above-described relationship effective for preventing the brittle crack from propagating through the steel plate welded joint or the steel plate base material over a long distance was obtained.
  • Equation (1) is about the effect of deflecting cracks. It shows that there is a correlation between the width W of the insert member 5 and the width d of the weld metal part in the steel plate welded joint.
  • the crack that has propagated through the steel plate welded joint 2 is changed in the advancing direction by the insert member 5 and propagates along the inclined outer edge portion 51 or 52.
  • the width of the insert member 5 is not sufficiently larger than 3.2 times the width d of the weld metal part, the crack that has reached the rear end 51a or 52a of the arrest member
  • the left or right of the outer edge portion 53 is propagated and returned to the steel plate welded joint 2 again, progressing as it is, and not stopped.
  • the driving force for causing the cracks reaching the rear ends 51a and 52a of the outer edge portions 51 and 52 to propagate toward the steel plate 1 substantially parallel to the weld metal portion of the steel plate welded joint is applied to the insert member 5 during the test.
  • the stress is thought to depend on the stress, but this stress is proportional to the distance from the intersection of the weld line L passing through the center of the welded joint 2 and the outer edge 53 on the counter-opposition side to the rear end 51a or 52a. .
  • the above formula (2) was defined as the lower limit value of the width dimension W of the insert member. Although no upper limit value is set for W, it is naturally defined within a range that fits within the dimensions of the welded joint 2 at the time of implementation. Although the height H of the insert member is not defined, the range is restricted by the lower limit of W and the limit of the inclination angle of the arrest member.
  • the expression (2) indicates that there is a correlation between the thickness t of the insert member 5 and the thickness T of the steel plate 1 with respect to the effect of deflecting the crack.
  • the energy of the crack that propagates is proportional to the plate thickness T of the steel plate.
  • the plate thickness t of the insert member 5 is smaller than 0.95 times the plate thickness of the steel plate 1, the crack progresses. This is because the crack that has occurred does not deviate and is likely to enter the insert member 5, and the possibility that the crack penetrates the insert member as it is is increased.
  • each dimension value of the insert member 5 has the above relationship, the propagation direction of the crack can be effectively diverted to the base material side of the steel plate 1 even when a crack occurs in the steel plate welded joint 2. It becomes possible. If the relationship between the dimensional values of the insert member does not satisfy the relationship expressed by the above formulas (1) and (2), this crack may enter the insert member depending on the state of the crack generated in the steel plate welded joint. There is a possibility that the steel plate welded joint is propagated without deviating to the base material side of the steel plate.
  • the height H of the insert member is preferably 250 mm or more, or 300 mm or more, and more preferably 400 mm or more so that the crack CR can be sufficiently separated from the welded joint 2, and the lateral width W is also 200 mm or more, or 250 mm or more. Furthermore, 300 mm or more is more preferable.
  • the brittleness representing the toughness of the weld metal part forming the insert weld joint 6 the ductile fracture surface transition temperature vTrs3 (° C.) and the brittleness representing the base metal toughness of the steel plate 1—
  • the relationship with the ductile fracture surface transition temperature vTrs1 (° C.) is expressed by the following equation (3): vTrs3 ⁇ vTrs1-20 (3) It is necessary to satisfy the relationship expressed by Even if a crack occurs in the steel plate welded joint 2 because the relationship between the toughness of the weld metal part forming the insert welded joint 6 and the base material toughness of the steel plate 1 satisfies the formula (3), The propagation direction of the crack can be guided from the steel plate welded joint to the insert welded joint 6 and effectively deflected to the base metal side of the steel plate 1.
  • this crack may be caused in the insert welded joint depending on the state of the crack generated in the steel plate welded joint. There is a risk of entering, and further entering the insert member, and possibly propagating through the steel plate welded joint without deviating to the base metal side of the steel plate.
  • the material of the insert member 5 is not particularly limited, and a conventionally known steel plate having chemical components and steel characteristics can be used without any limitation. Since the welded structure of the present invention is configured to suppress the entry of a brittle crack into the insert member, the material and characteristics of the insert member 5 are not particularly limited, but the strength and toughness thereof are at least that of the steel plate welded joint 2. It is preferable to be about the base material.
  • the brittle crack CR generated on one side in the longitudinal direction of the steel plate welded joint 2 is the other side in the longitudinal direction of the steel plate welded joint 2 (vertically long in FIG. 2). Propagation is started toward the lower side of the direction (see the two-dot chain line arrow in FIG. 2), and then the insert weld joint 6 is reached. Since the insert weld joint 6 is continuously inclined to the steel plate weld joint and extends in the crack propagation direction, if the tilt angle of the insert weld joint 6 is appropriate, the crack is inserted into the insert member as in the illustrated example.
  • the brittle-ductile fracture surface transition temperature vTrs3 (° C.) of the insert welded joint 6 satisfies the above formula (3) with respect to the brittle-ductile fracture surface transition temperature vTrs1 (° C.) of the steel sheet 1
  • the possibility that the brittle crack CR enters the insert weld joint 6 is reduced, and the propagation of the brittle crack can be more reliably deflected to the base material side.
  • the transition temperature vTrs3 of the weld metal is higher than the transition temperature vTrs1 of the base steel plate, the brittle crack CR propagated in the longitudinal direction through the steel plate welded joint 2 enters the insert welded joint 6, and then enters the insert member 5. In some cases, this is not preferable.
  • a steel plate welded joint that may generate a crack when the welded structure is exposed to fracture energy is expected, and one place of the welded joint or It is preferable to provide a crack resistance control portion at a plurality of locations with the main opposing side facing in the direction in which the crack comes.
  • the orientation of the insert member can be changed to provide two crack-resistant control portions at a distance. At that time, it is necessary to set a sufficient distance to stop the crack deflected along the crack resistance control portion at the base material portion. For example, it is sufficient to separate the crack by the height H of the insert material.
  • the through-hole 3 for arranging the insert member 5 is formed.
  • a method of notching a portion to be a through hole in the steel plate stage in advance, a method of notching a steel plate temporarily assembled for welding, or a method of forming a through hole after welding the steel plate may be used.
  • the steel plate is notched so as to open at the weld ends 11 and 12 of the steel plate 1, and the through-hole 3 (3a 3b).
  • the steel plate welded joint 2 is formed by butt welding the weld ends 11 and 12 of the respective steel plates 1 with the portions to be the through holes 3a and 3b being left.
  • the insert member 5 is inserted into the formed through hole 3.
  • the insert welded joint 6 is formed by butt-welding the inclined outer edge portions 51 and 52 of the insert member 5 and the outer edge portion 53 on the sub-opposite side to the exposed weld end of the steel plate facing it.
  • the crack resistance control unit 4 including the insert member 5 and the insert weld joint 6 is formed so as to be symmetric in each of the steel plates 1 around the weld line L of the steel plate weld joint 2.
  • the inclined outer edge portions 51 and 52 extending from the top portion 5a of the insert member 5 are formed so as to be inclined at an angle in the range of 15 ° or more and 50 ° or less with respect to the longitudinal direction of the steel plate welded joint 2.
  • the outer edge portion 53 on the sub-opposition side connecting the rear ends 51a, 52a of the outer edge portions 51, 52 is formed so as to intersect the weld line L at an angle in the range of 70 ° to 110 °.
  • each welded joint is welded. It is preferable to completely fill with weld metal so that there are no defects.
  • a welded structure A having excellent brittle crack propagation property according to this embodiment as shown in FIG. 2 can be manufactured.
  • the ship structure 70 includes an aggregate (reinforcing material) 71, a deck plate (horizontal member) 72, a hull inner plate (vertical member) 73, and a hull outer plate 74.
  • the ship structure 70 in the illustrated example is formed on a part of the longitudinal direction of a steel plate welded joint (not shown in FIG. 3) formed by butt welding a plurality of steel plates 1 forming the hull inner plate 73.
  • the crack resistance control part 4 it is set as the structure which comprises the welding structure A of this embodiment.
  • the control unit 4 can effectively control the propagation direction of the crack. Thereby, the brittle crack generated in the steel plate welded joint can be stably stopped, and it is possible to prevent the large-scale destruction from occurring in the hull inner plate 73 and consequently the ship structure 70.
  • the entire base material of the steel plate 10 has a brittle crack propagation stop characteristic Kca of 4000 N / mm 1.5 or more. Thus, it is different from the welded structure A of the first embodiment.
  • the welded structure B when a brittle crack is generated in the steel plate welded joint 20, the crack propagated through the steel plate welded joint 20 is transferred to the boundary between the insert welded joint 6 and the steel plate base metal (or the heat of the adjacent base metal). It can be propagated along the influence part) and deflected toward the base material side of the steel plate 10 (see the two-dot chain line arrow in FIG. 5). And, as with the welded structure A, the crack that has deviated to the base metal side of the steel plate 10 immediately stops at the steel plate 10, so the steel plate welded joint 20 does not break, and the welded structure B has a large-scale fracture. It is possible to prevent the occurrence. Moreover, as for the welded structure B of this embodiment, it is more preferable that the whole base material forming the steel plate 10 has a brittle crack propagation stop characteristic Kca of 6000 N / mm 1.5 or more.
  • the welded structure C is an example in which a steel plate to be butt welded is formed by butt welding a plurality of small steel plates. That is, as shown in FIG. 6, the steel plate 10A is formed by butt welding at least two or more small steel plates (see reference numerals 21 to 24 in FIG. 6) arranged in the longitudinal direction of the steel plate welded joint 20A.
  • a crack resistance control unit 4 is provided on a steel plate welded joint 20A formed by butt welding the steel plates 10A and 10A.
  • small steel plates 21 to 24 are shown as small steel plates, and the small steel plate 21 and the small steel plate 22 are joined together by a small steel plate welded joint 25. And a small steel plate 24 are joined by a small steel plate welded joint 26.
  • the brittle crack propagation stop characteristic Kca of the base material forming the small steel plate 22 and the small steel plate 24 is set to 4000 N / mm 1.5 or more, while the small steel plate 21 and the small steel plate 21 are small.
  • the brittle crack propagation stop characteristic Kca of the steel plate 23 is not particularly limited.
  • the brittle crack is removed from the inclined outer edge portion 51 (52) of the insert member 5.
  • it can be deflected to the base material side of the steel plate 10A by the insert weld joint 6 (see the two-dot chain line arrow in FIG. 6).
  • the brittle crack CR generated in the steel plate welded joint 20 ⁇ / b> A reaches the small steel plate welded joint 25 from the lateral width direction end of the insert welded joint 6, and then faces the lateral width direction end.
  • the brittle crack propagation stopping characteristic Kca is entered into the small steel plate 22 having a N value of 4000 N / mm 1.5 or more, and is stopped inside the steel plate. In this way, the crack that has deviated to the base material side of the steel plate 10A immediately stops at the small steel plate 22 having a high brittle crack propagation stop characteristic Kca, so that the steel plate welded joint 20A does not break, and the weld structure C It is possible to prevent large-scale destruction.
  • the welding structure D which is the 4th Embodiment of this invention is explained in full detail, mainly referring FIG.
  • the steel plate 10B is butt welded with at least two or more small steel plates (see reference numerals 31 to 34 in FIG. 7) arranged in the longitudinal direction of the steel plate welded joint 20B.
  • the welded structure C of the third embodiment is partly configured in that the crack-resistant control unit 4 is provided on a steel plate welded joint 20B formed by butt welding the steel plates 10B and 10B. It is common.
  • the small steel plate welded joints 35 and 36 formed by butt welding small steel plates have outer edge portions (insert members) on the side opposite to the insert member 5.
  • the welded structure C of the third embodiment includes an insert welded joint formed on the outer width side 53) side.
  • the welded structure D includes a brittle-ductile fracture surface transition temperature vTrs4 (° C.) representing the toughness of the weld metal part forming the small steel plate welded joints 35, 36 and a brittle-ductile fracture representing the base metal toughness of the steel plate 10B.
  • the relationship with the surface transition temperature vTrs1 (° C.) is expressed by the following equation (4): vTrs4 ⁇ vTrs1-20 (4) Also in the point where it is set as the relationship which satisfy
  • the inclined outer edge 51 (52) or the inclined outer edge 51 of the insert member 5 is used.
  • the brittle crack CR can be deflected to the base material side of the steel plate 10B by the insert weld joint 60 formed along (52) (see the two-dot chain line arrow in FIG. 7).
  • the brittle crack CR generated in the steel plate welded joint 20A reaches the small steel plate welded joint 35 from the lateral width direction end of the insert welded joint 60, and then faces the lateral width direction end.
  • the small steel plate 32 having a brittle crack propagation stopping characteristic Kca of 4000 N / mm 1.5 or more It enters into the small steel plate 32 having a brittle crack propagation stopping characteristic Kca of 4000 N / mm 1.5 or more, and is stopped inside the steel plate.
  • the crack that has deviated to the base material side of the steel plate 10B immediately stops at the small steel plate 32 having a high brittle crack propagation stop characteristic Kca, so that the steel plate welded joint 20B does not break, and the weld structure D It is possible to prevent large-scale destruction.
  • Test pieces were appropriately collected from the manufactured steel plates, and Kca characteristics at ⁇ 10 ° C. were evaluated and confirmed, and the brittleness-ductile fracture surface transition temperature vTrs1 (° C.) of the steel plates was measured. Table 1 shows the Kca characteristics and vTrs1 together.
  • through holes 3 a and 3 b were formed so as to open at the weld ends 11 and 12 of the steel plate 1. And the welding ends 11 and 12 of each steel plate 1 are butt-welded to form the steel plate welded joint 2 so that each of the through holes 3a and 3b forms a symmetric through hole 3 with the welding line L as the center.
  • the steel plates 1 were joined together.
  • the insert member 5 having the shape shown in Table 2 is prepared, and this is inserted into the through-hole 3 formed in the steel plate 1 as shown in FIG. did. Then, the inclined outer edge portions 51 and 52 of the insert member 5 and the outer edge portion 53 on the sub-opposition side are butt welded to the weld ends of the steel plates exposed by the opposing through holes 3, and the insert member 5 and the steel plate 1 are joined. Joined.
  • the crack resistance control unit 4 including the insert member 5 and the insert welded joint 6 was formed so as to be symmetrical in each of the steel plates 1 around the weld line L of the steel plate welded joint 2.
  • the insert member 5 was arranged at a position where the position of the outer edge portion 53 on the sub-opposition side is 1000 mm from the upper end of the steel plate 1. Further, as shown in FIG. 8 (c), the inclined outer edge portions 51 and 52 of the insert member 5 and the outer edge portion 53 on the sub-opposition side, and the weld end exposed in the through-hole 3 of the steel plate 1 have a plate thickness. Groove processing was performed so that the center of the direction would be 130 ° (25 ° with respect to the horizontal line). Further, the welding process was carried out with a root interval of about 3 mm between the respective edge portions of the insert member 5 and the weld end exposed in the through hole 3 of the steel plate 1.
  • Table 1 shows a list of the chemical composition of the steel sheet used in this example, the brittle crack propagation stopping characteristic Kca (N / mm 1.5 ) of the base metal, and the brittle-ductile fracture surface transition temperature vTrs1 (° C.). Evaluation of steel plate characteristics and shape of the insert member 5, welding conditions when the insert weld joint 6 is formed, welding conditions when the steel plate 1 is butt welded to form the steel plate weld joint 2, and propagation of brittle cracks A list of results is shown in Table 2.
  • Note 1 This means a region other than the region 1A in the steel plate 1.
  • Note 2 Shows a combination of two types of steel plates based on the figure.
  • Note 3 A butt weld was made from both sides of the steel plate by electrogas arc welding to an X groove having a thickness of 4: 1. The larger applied heat input at this time is shown.
  • Note 4 Butt welding was performed by electrogas arc welding on both sides of the steel sheet in half the thickness. The amount of heat input at this time is shown.
  • Invention Examples 1 to 29 are examples relating to the welded structure B of the second embodiment of the invention shown in FIG. 5, and Invention Examples 30 to 32 are shown in FIG.
  • the weld structure C of the third embodiment of the present invention shown, the present invention examples 33 and 34 are shown in the weld structure D of the fourth embodiment shown in FIG. 7, and the present invention example 35 are shown in FIG.
  • Comparative Examples 1 to 8 shown in Tables 4 and 5 are comparative examples having the same structure as the welded structure B, Comparative Examples 9 to 11 are a welded structure C, and Comparative Example 12 is a welded structure D.
  • the comparative example 13 is a comparative example which has the same structure as the welding structure A, respectively.
  • Comparative Example 1 The welded structure of Comparative Example 1 is an example in which the lateral width W of the insert member is insufficient and the angle ⁇ 1 of the inclined outer edge portion of the insert member is inappropriate.
  • Comparative examples 2 and 3 are examples in which the angle ⁇ 1 is inappropriate, and comparative examples 4 and 5 are examples in which the angle ⁇ 2 of the outer edge portion of the insert member on the side opposite to the brittle crack is inappropriate.
  • Comparative Example 6 is an example in which the thickness t of the insert member is insufficient and the angle ⁇ 2 of the outer edge portion on the sub-opposition side is inappropriate.
  • Comparative Example 7 the Kca value of the base material portion (steel base material) of the steel plate welded joint is insufficient, the thickness of the insert member is insufficient, and the angle ⁇ 1 of the inclined outer edge portion is inadequate.
  • Comparative Examples 8 and 9 are examples in which the Kca value of the base material portion (steel plate base material) of the steel plate welded joint is insufficient
  • Comparative Examples 10 and 11 are examples in which the angle ⁇ 1 of the inclined outer edge portion is inappropriate.
  • Comparative Example 12 is an example in which the brittle-ductile fracture surface transition temperature vTrs4 of the weld metal part is inappropriate
  • Comparative Example 13 is an example in which the brittle crack propagation stop characteristic Kca in the region 1A is inappropriate.
  • the welded structure of the present invention can suppress the propagation of the crack through the welded joint and the base material even when a brittle crack occurs in the welded joint, and the welded structure can be broken. It is clear that it can be prevented and has excellent brittle crack propagation resistance.
  • A, B, C, D Welded structure 1, 10, 10A, 10B Steel plate 1A region (at least the part of the steel plate located facing the lateral width direction end of the insert member and the insert weld joint) 2, 20, 20A, 20B Steel plate welded joint 3, 3a, 3b Through hole 4 Crack resistance control part 5
  • Insert member 51, 52 Inclined outer edge part 51a, 51b extending from brittle crack main opposing side of insert member The rear end of the inclined outer edge (the widthwise end of the insert member) 53 Outer edge portion of insert member which is on the side opposite to brittle crack 6, 60
  • Insert member welded joint 25, 26, 35, 36 Small steel plate welded joint 21, 22, 23, 24, 31, 32, 33, 34 Small steel plate 70 Ship Structure L Welding Line ⁇ 1 Inclination Angle of Inserted Member's Inclined Outer Edge with Longitudinal Direction of Steel Plate Welded Joint ⁇ 2 Angle at which Outer Edge of Insert Member's Brittle Crack Sub-Counter Side Crosses with Steel Plate We

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

 少なくとも一部の領域の脆性き裂伝播停止特性Kcaが4000N/mm1.5以上である鋼板を、互いに突合せ溶接することで鋼板溶接継手が形成されてなる溶接構造体において、鋼板溶接継手の少なくとも一箇所に、鋼板溶接継手に発生した脆性き裂を鋼板母材側にそらす耐き裂制御部を設け、耐き裂制御部を構成するインサート部材の外縁部を、鋼板溶接継手の溶接金属部から、鋼板溶接継手の長手方向に対して15°以上50°以下の範囲の角度で傾斜して、前記鋼板溶接継手の長手方向に延在するように形成するとともに、前記インサート部材の横幅方向端部が、前記鋼板のKcaが4000N/mm1.5以上である領域に向かい合うようにして、溶接継手に脆性き裂が発生した場合であっても、脆性き裂が溶接継手や母材を伝播するのを抑制できるようにする。

Description

耐脆性き裂伝播性に優れた溶接構造体
 本発明は、溶接継手に脆性き裂が発生した場合に、脆性き裂の伝播を制御、抑制する耐脆性き裂伝播性に優れた溶接構造体に関する。
 特に、厚鋼板を用いて溶接を適用した溶接構造物の溶接継手において脆性き裂が発生した場合でも、その伝播を制御、抑制して安全性を向上させることができる耐脆性き裂伝播性に優れた溶接構造体に関する。
 近年、大型コンテナ船やバルクキャリア等の船舶用溶接構造体、建築構造物、土木鋼構造物に代表される溶接構造体においては、脆性き裂等の破壊に対する高い安全性が求められるようになっている。特に、コンテナ船は大型化が顕著であり、例えば、6000TEU以上の大型コンテナ船が製造されるようになり、船殻外板の鋼板が厚肉化並びに高強度化し、板厚70mm以上で降伏強度390N/mm級以上の鋼板が用いられるようになっている。
 ここで、TEU(Twenty feet Equivalent Unit)とは、長さ20フィートのコンテナに換算した個数を表し、コンテナ船の積載能力の指標を示している。
 このような大型コンテナ船は、積載能力や荷役効率の向上のため、仕切り壁を無くして上部開口部を大きく確保した構造とされており、特に、船殻外板や内板の強度を確保する必要があるため、上記のような高強度鋼板が用いられている。
 上述のような溶接構造物を建造する際、建造コストの低減や建造効率向上を目的として、大入熱溶接(例えば、エレクトロガスアーク溶接)が広く適用されている。特に、鋼板の板厚が増すほど溶接工数が著しく増加するため、極限まで大入熱で溶接を行なうことが要求される。しかしながら、鋼板の溶接に大入熱溶接を適用した場合、溶接熱影響部(HAZ:Heat Affected Zone)の靭性が低下し、HAZの幅も増大するため、脆性破壊に対する破壊靭性値が低下する傾向にある。
 このため、溶接継手において脆性き裂が発生するのを抑制するとともに、脆性き裂の伝播停止(アレスト)を達成することを目的として、耐脆性破壊特性に優れたTMCP鋼板(Thermo Mechanical Control Process:熱加工制御)が提案されている。上記TMCP鋼板を用いることにより、脆性破壊発生に対する抵抗値である破壊靭性値が向上するため、通常の使用環境では、構造物が脆性破壊する可能性は極めて低くなる。しかしながら、地震や構造物同士の衝突の事故や災害等の際に、万が一、脆性破壊が生じると、脆性き裂がHAZを伝播し続け、溶接構造物に大きな破壊をもたらすおそれがある。
 例えば、コンテナ船等に代表される溶接構造体では、板厚50mm程度のTMCP鋼板等が使用され、万が一、溶接継手で脆性き裂が発生しても、溶接残留応力によって脆性き裂が溶接部から母材側に逸れるので、母材のアレスト性能を確保すれば、脆性き裂を母材で停止できると考えられていた。また、6000TEUを超える大型コンテナ船等、さらに大型の溶接構造体においては、より大きな板厚の鋼板が必要となり、さらに、構造を簡素化するうえで鋼板の厚肉化が有効であることから、設計応力が高い高張力鋼の厚鋼板を用いることが求められていた。しかしながら、このような厚鋼板を用いた場合、HAZの破壊靭性の程度によっては、脆性き裂が母材に逸れること無くHAZに沿って伝播するおそれがある。
 上記問題を解決するため、突合せ溶接継手の一部に補修溶接(はっり、埋め戻し溶接)を施し、HAZに沿って伝播する脆性き裂を母材側に逸らせる構成とされた溶接構造体が提案されている(例えば、特許文献1)。しかしながら、特許文献1の溶接構造体では、母材の破壊靭性が非常に優れている場合には有効であるが、母材の破壊靭性が不充分な場合には、母材側に逸れた脆性き裂が長く伝播し、構造物としての強度が著しく低下するおそれがある。また、埋め戻し溶接部のボリュームが大きめとなり、工程時間が長くなるとともに、製造コストも増大するという問題がある。
 また、溶接継手に発生する脆性き裂の伝播を停止させたい領域に、板状のインサート材が溶接線と交差するように貫通して溶接され、インサート材として、表面や裏面の板厚比2%以上の厚みの表層域における集合組織が適正化されたものを用いる溶接構造体が提案されている(例えば、特許文献2)。しかしながら、特許文献2に記載の溶接構造体を大型建造物に適用した場合、例えば、溶接継手を伝播した脆性き裂が、インサート材を鋼板に溶接する溶接継手を伝播してインサート材に突入し、そのままインサート材の内部を伝播した後、再び溶接継手を伝播するおそれがある。一方、溶接継手を伝播した脆性き裂が、インサート材及び該インサート材を鋼板に溶接する溶接継手の位置で母材側に逸れた場合には、上記同様、母材の破壊靭性が不充分だと脆性き裂が長く伝播し、溶接構造物としての強度が著しく低下するという問題も懸念される。
特開2005−131708号公報 特開2007−098441号公報
 そこで、本発明は、地震や、衝突などの際に、たとえ溶接継手に脆性き裂が発生した場合であっても、脆性き裂が溶接継手を伝播するのを抑制でき、その結果、溶接構造体の破断を防止することが可能な、耐脆性き裂伝播性に優れた溶接構造体を提供することを目的とする。
 本発明者らは、溶接継手に発生する脆性き裂の伝播を停止させたい領域に、別部材となるインサート部材を溶接線に交差するように貫通して設け、脆性き裂が溶接継手や母材を伝播するのを防止する技術において、さらに大型の溶接構造体の場合でもより確実にき裂の伝播を防止できる手段について鋭意研究した。
 この結果、インサート部材の形状並びに鋼板特性を適正化することにより、溶接継手及び母材における脆性き裂の伝播を抑制し、溶接構造体に大規模な破壊が発生するのを防止できることを見出し、本発明を完成した。
 即ち、本発明の要旨は、請求の範囲に記載した以下の内容に関する。
 [1] 少なくとも一部の領域の脆性き裂伝播停止特性Kcaが4000N/mm1.5以上である鋼板を、互いに突合せ溶接することで鋼板溶接継手が形成されてなる溶接構造体において、
 前記鋼板溶接継手の少なくとも一箇所に、鋼板溶接継手に発生した脆性き裂を鋼板母材側にそらす耐き裂制御部が設けられており、
 該耐き裂制御部は、前記鋼板溶接継手から前記鋼板にまたがって形成された貫通穴に挿入され、脆性き裂の伝播方向を鋼板母材側に逃がすためのインサート部材、及び、
 該インサート部材の外縁部と、それに対向する鋼板母材とが突合せ溶接されて形成されたインサート溶接継手を有しており、
 前記インサート部材は、前記鋼板溶接継手の長手方向と交差する方向における横幅W(mm)、及び板厚t(mm)の各々の寸法が、下記(1)、(2)式で表される関係を満足するように形成されており、かつ、
 該インサート部材の脆性き裂主対抗側の外縁部は、前記鋼板溶接継手の溶接金属部から前記鋼板溶接継手の両側に、鋼板溶接継手の長手方向に対して15°以上50°以下の角度で傾斜して延伸するとともに、他方の脆性き裂副対抗側の外縁部は、70°以上110°以下の角度で前記鋼板溶接継手と交差しており、
 前記インサート部材溶接継手における溶接金属部の靱性を表す脆性−延性破面遷移温度vTrs3(℃)と、前記鋼板の母材靱性を表す脆性−延性破面遷移温度vTrs1(℃)との関係が、次式、vTrs3≦vTrs1−20で表される関係を満たし、
 少なくとも、前記インサート部材の横幅方向端部が、前記鋼板のKcaが4000N/mm1.5以上である領域に向かい合うように、前記耐き裂制御部を設けたこと、を特徴とする耐脆性き裂伝播性に優れた溶接構造体。
 3.2d+50 ≦ W ・・・・・ (1)
   0.95T ≦ t ・・・・・ (2)
 但し、上記(1)、(2)式中において、T(mm)は前記鋼板の板厚を表し、d(mm)は前記鋼板溶接継手における溶接金属部の幅を表す。
 [2] 前記鋼板の板厚が25mm以上150mm以下であること、を特徴とする上記[1]に記載の耐脆性き裂伝播性に優れた溶接構造体。
 [3] 前記鋼板は、少なくとも一部の領域の脆性き裂伝播停止特性Kcaが6000N/mm1.5以上であり、前記耐き裂制御部は、少なくとも、前記インサート部材の横幅方向端部が、前記鋼板のKcaが6000N/mm1.5以上である領域に向かい合うように設けられていること、を特徴とする上記[1]又は[2]に記載の耐脆性き裂伝播性に優れた溶接構造体。
 [4] 前記鋼板は、前記鋼板溶接継手の長手方向で配列される少なくとも2以上の小鋼板からなるとともに、該小鋼板を互いに突合せ溶接することで小鋼板溶接継手が形成されており、前記耐き裂制御部は、前記インサート部材の横幅方向端部側に形成される前記インサート部材溶接継手が前記小鋼板溶接継手に接するように設けられていること、を特徴とする上記[1]~[3]の何れかに記載の耐脆性き裂伝播性に優れた溶接構造体。
 [5] 前記鋼板は、前記鋼板溶接継手の長手方向で配列される少なくとも2以上の小鋼板からなるとともに、該小鋼板を互いに突合せ溶接することで小鋼板溶接継手が形成されており、前記耐き裂制御部は、前記インサート部材の横幅方向端部側に形成される前記インサート部材溶接継手が前記小鋼板溶接継手を含むように設けられ、
 さらに、前記小鋼板溶接継手をなす溶接金属部の靱性を表す脆性−延性破面遷移温度vTrs4(℃)と、前記鋼板の母材靱性を表す脆性−延性破面遷移温度vTrs1(℃)との関係が、次式、vTrs4≦vTrs1−20で表される関係を満たすこと、を特徴とする上記[1]~[3]の何れか記載の耐脆性き裂伝播性に優れた溶接構造体。
 なお、本発明では、溶接金属部と溶接熱影響部を含む部分を溶接継手と定義する。また、脆性き裂伝播停止特性Kcaは、当該溶接構造体が使用される温度、あるいは設計温度における数値である。
 本発明の溶接構造体によれば、溶接継手の少なくとも一箇所に、インサート部材とそれと母材鋼板との間に形成されるインサート溶接継手とを有する耐き裂制御部が設けられているので、たとえ溶接継手に脆性き裂が発生した場合であっても、溶接継手を伝播する脆性き裂を、耐き裂制御部によって鋼板母材のアレスト性能の高い部位にそらしたり、あるいは耐き裂制御部で阻止することができ、脆性き裂が溶接継手や母材を伝播するのが抑制できる。従って、大規模な破壊が発生するのを未然防止することが可能な溶接構造体を、高い生産効率及び低コストで得ることができる。
 このような本発明に係る溶接構造体が、大型船舶をはじめ、建築構造物や土木鋼構造物等の各種溶接構造物に使用されることで、溶接構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、鋼材の経済性等々が同時に満たされことから、その産業上の効果は計り知れない。
 図1は、本発明を説明する模式図であり、鋼板同士が溶接されて形成された鋼板溶接継手の一部に、インサート部材及びインサート溶接継手からなる耐き裂制御部が設けられた状態、及び、脆性き裂の進展状況を示す平面図である。
 図2は、本発明に係る溶接構造体の一例を説明する模式図であり、鋼板溶接継手の一部に、インサート部材及びインサート溶接継手からなる耐き裂制御部が設けられた状態を示す平面図である。
 図3は、インサート部材の形状、特に、脆性き裂副対抗側の外縁部の形状を説明するための図である。
 図4は、本発明に係る溶接構造体の一例を説明する模式図であり、本発明に係る溶接構造体を船舶用溶接構造体に適用した場合について説明する概略図である。
 図5は、本発明に係る溶接構造体の他の例を説明する図3と同様の図である。
 図6は、本発明に係る溶接構造体の他の例を説明する図3と同様の図である。
 図7は、本発明に係る溶接構造体の他の例を説明する図3と同様の図である。
 図8は、本発明の実施例で用いる溶接継手試験体の製作方法について説明する図である。
 図9は、本発明の実施例における耐脆性き裂伝播性を評価するための引張試験方法について説明する図である。
 以下、本発明の耐脆性き裂伝播性に優れた溶接構造体の実施の形態について図面を参照しながら詳細に説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
 従来、鋼板溶接継手において発生した脆性き裂は、主として、鋼板溶接継手の長手方向を伝播する。このため、鋼板溶接継手に生じた脆性き裂が起点となり、溶接構造体全体に大きな破壊が生じるおそれがあるという問題があった。
 本発明者等は、上述のような脆性き裂の伝播方向を効果的に制御し、溶接構造体においてき裂が伝播するのを抑制するためには、上記従来技術において、さらにインサート部材の形状並びに鋼材特性を適正化することが重要であることを知見した。
 本発明の基本原理について図1を用いて説明する。
 本発明では、鋼板1、1を突合せ溶接して形成された鋼板溶接継手2の途中に、耐き裂制御部4を設けて鋼板溶接継手2を分断する。耐き裂制御部4は、前記鋼板溶接継手から前記鋼板にまたがって形成された貫通穴3に挿入されたインサート部材5と、該インサート部材5が鋼板1に対して突合せ溶接されることで形成されるインサート溶接継手6とからなる。インサート部材5は、脆性き裂の伝播が予想される主対抗側を、鋼板溶接継手2に対して傾斜したインサート溶接継手6を形成するような形状とする。この耐き裂制御部4を設けることで、鋼板溶接継手2に発生した脆性き裂の伝播を次のように制御する。
 鋼板溶接継手2の長手方向の一方側で発生した脆性き裂CRは、鋼板1と鋼板溶接継手2の境界(あるいは鋼板母材の熱影響部)に沿って伝播する。き裂CRがインサート溶接継手6に達したとき、この継手の鋼板溶接継手2に対する傾斜角度が適切である場合には、き裂CRは、インサート溶接継手6に突入することなく、図1−bに示すように、鋼板1とインサート溶接継手6の境界(あるいは鋼板母材の熱影響部)に沿って伝播し、インサート溶接継手の横幅方向端部において鋼板1の母材部に到達することになる。このとき、母材部に進入しても鋼板1の脆性き裂伝播停止特性Kcaが高いと、そこでき裂CRの進展を停止することができる。
 さらに、鋼板溶接継手2の長手方向の他方の副対抗側から脆性き裂CRが伝播してきた場合でも、インサート部材5の高さ、幅、厚みを十分大きなものにしておけば、図1−dに示すように、インサート部材5内部でき裂CRの進展を停止することができる。
 以上とは逆に、インサート部材5の形状によっては、図1−cのように、脆性き裂がインサート部材5を貫通したり、あるいは、インサート溶接継手6に沿って伝播しても、母材側に逸れずに再び鋼板溶接継手を伝播したりすることもあり得る。
 本発明は、以上のような、鋼板溶接継手2に対して傾斜したインサート溶接継手6を、鋼板溶接継手2に連続して形成することで、脆性き裂の進展を鋼板溶接継手2からインサート溶接継手6に導くという基本原理の下で、脆性き裂の進展を阻止する母材鋼板の条件、脆性き裂の進展を制御するインサート部材の条件などについてさらに検討してなされたものであり、以下、本発明の実施形態について詳細に説明する。
[第1の実施形態]
<全体の構成>
 第1の実施形態は、図2に示すように、母材の少なくとも一部の領域1A、1Aの脆性き裂伝播停止特性Kcaが4000N/mm1.5以上である鋼板1、1を突合せ溶接することで鋼板溶接継手2が形成されている場合の例であり、以下、この継手に適用した形態を溶接構造体Aと呼称して説明する。
 溶接構造体Aにおいては、鋼板溶接継手2の少なくとも一箇所に、耐き裂制御部4が前記領域1Aに隣接するように設けられる。耐き裂制御部4が設けられる位置は、衝突や地震などによる大きな破壊エネルギーにさらされたときに、き裂の発生・伝播が予想される鋼板溶接継手の途中が望ましい。
 耐き裂制御部4は、鋼板1を貫通するように設けられた貫通孔3に配置されるインサート部材5と、該インサート部材5が鋼板1に対して突合せ溶接されることで形成されるインサート溶接継手6とからなっている。
 インサート溶接継手6は、脆性き裂の伝播が予想される主対抗側を、鋼板溶接継手2に連続して形成し、かつ鋼板溶接継手2に対して傾斜して形成することで、脆性き裂の進展を鋼板溶接継手2からインサート溶接継手に導くようにする。このため、インサート部材5は、鋼板溶接継手2の溶接線L上から延在する外縁部51、52が、鋼板溶接継手2の長手方向に対して15°以上50°以下の範囲の角度で傾斜するように形成されている。図2の溶接構造体Aでは、インサート部材5が、平面視略正三角形として形成されている例を示している。
<鋼板>
 鋼板1は、母材の少なくとも一部の脆性き裂伝播停止特性Kcaが4000N/mm1.5以上とされる鋼材からなる。
 大型の構造物を形成する溶接構造体においては、全領域がKca4000N/mm1.5以上の高い領域の脆性き裂伝播停止特性を有する鋼材を用いて構築されているものばかりではなく、製造過程の熱処理により鋼板の一部領域で脆性き裂伝播停止特性を高めた鋼板や、全領域がKca4000N/mm1.5以上の鋼板であっても、途中の曲げ加工などで加熱処理を受けて一部領域のKcaが低下した鋼板を用いる場合がある。
 溶接構造体Aでは、図2に示すように、インサート溶接継手6よりも外側の部位である領域1A(図2において縦長方向下側)において、母材の脆性き裂伝播停止特性Kcaが、4000N/mm1.5以上とされており、鋼板溶接継手2の溶接線L上から延伸するインサート部材5の傾斜外縁部51、52の後端51a、52a側に形成されるインサート溶接継手6が前記領域Aに隣接するように形成される。
 鋼板1の化学成分組成や金属組織等については、特に制限されず、船舶用溶接構造体、建築構造物及び土木鋼構造物等の分野において、従来公知の鋼板特性を備えるものを使用することができる。
 例えば、質量%で、C:0.01~0.18%、Si:0.01~0.5%、Mn:0.3~2.5%、P:0.01%以下、S:0.001~0.02%を含有する組成を基本とし、この組成に、求められる性能に応じて、さらに、N:0.001~0.008%、B:0.0001~0.005%、Mo:0.01~1.0%、Al:0.002~0.1%、Ti:0.003~0.05%、Ca:0.0001~0.003%、Mg:0.001~0.005%、V:0.001~0.18%、Ni:0.01~5.5%、Nb:0.005~0.05%、Cu:0.01~3.0%、Cr:0.01~1.0%、REM::0.0005~0.005%の1種または2種以上を含有させ、残部はFe及び不可避不純物によって構成される鋼があげられる。
 特に、脆性き裂伝播停止特性Kcaが6000N/mm1.5以上の鋼板としては、特開2007−302993号公報や、特開2008−248382号公報などに示されるような組成の厚鋼板が好適に使用できる。
 図2に示すように、溶接構造体Aでは、上記のような鋼板1、1が突合せ溶接されることにより、鋼板溶接継手2が形成される。また、この鋼板溶接継手2によって接合される鋼板1の各々には、詳細を後述するインサート部材5を配置するための貫通孔3が、鋼板溶接継手2の溶接線Lを中心として、鋼板1の各々において対称となるように設けられている。
 鋼板1の板厚は、25mm以上150mm以下の範囲とすることが好ましい。鋼板1の板厚がこの範囲であれば、溶接構造体としての鋼板強度を確保することができるとともに、詳細を後述するように、優れた耐脆性き裂伝播性を得ることが可能となる。
 特に、40mm以上の鋼板を用いた溶接構造体では、脆性き裂の伝播を止めるための有効な手段がなく、板厚40mm以上、より好ましくは50mm以上で、100mm以下の鋼板を用いた溶接構造体において、本発明はより効果的に実施される。
 また、本実施形態では、鋼板1をなす母材の少なくとも一部、図2に示す例では、領域1Aの脆性き裂伝播停止特性Kcaが4000N/mm1.5以上とされているが、6000N/mm1.5以上であることが、耐脆性き裂伝播性がより向上する点から好ましい。
<インサート部材>
 インサート部材5は、図2に示すように、鋼板溶接継手2によって接合される鋼板1の各々にまたがって形成された貫通孔3に、鋼板溶接継手2の溶接線Lを中心として鋼板1の各々において好ましくは対称となるように配置される。また、インサート部材5は、鋼板1に形成された貫通孔3内に露出する溶接端に対して突合せ溶接されることで形成されるインサート溶接継手6とともに、耐き裂制御部4を構成する。
 インサート部材5は、上述したような耐き裂制御部4を構成することにより、仮に、鋼板溶接継手2に脆性き裂が生じた場合でも、そのき裂の伝播経路を、鋼板溶接継手2からインサート溶接継手6に制御し、鋼板溶接継手2を貫くようにき裂が伝播して互いに溶接された鋼板1、1が分断されるのを防止するものである。
 そのため、インサート溶接継手6は、脆性き裂の伝播が予想される主対抗側を鋼板溶接継手2から連続して形成され、かつ鋼板溶接継手2に対して15°以上50°以下の範囲の傾斜角度θ1で形成するのがよい。
 図2に示す例のインサート部材5では、主対抗側の頂部5aから延在する傾斜外縁部51、52が、鋼板溶接継手2の長手方向に対して15°以上50°以下の範囲の角度θ1で傾斜するように形成されている。そして、インサート部材5は、傾斜外縁部51、52の後端51a、52aに、脆性き裂に対する副対抗側となる外縁部53が連なるように形成され、平面視略正三角形に構成されている。
 この傾斜角度θ1を上記範囲とすることにより、鋼板溶接継手2を伝播する脆性き裂が生じた場合でも、このき裂を、鋼板溶接継手からインサート溶接継手6に沿って進展するように導き、鋼板1の母材側に安定的に逸らすことが可能となる。この結果、脆性き裂を効果的に停止させ、溶接構造体Aに大規模な破壊が生じるのを防止することができる。
 鋼板溶接継手の長手方向に対するインサート部材5の傾斜外縁部51、52の角度が50°を超えると、鋼板溶接継手の長手方向と外縁部とが直交する角度、つまり90°に近づくため、鋼板溶接継手2を伝播した脆性き裂を、鋼板溶接継手からインサート溶接継手6に沿って伝播するように導くのが困難になり、鋼板溶接継手を伝播した脆性き裂がそのままインサート部材5に突入する可能性がある。さらに、インサート部材5に直接き裂が突入した場合には、き裂がインサート部材内部で停止せず、インサート部材を通過し、再び鋼板溶接継手に突入して伝播するおそれがある。
 また、鋼板溶接継手の長手方向に対するインサート部材5の傾斜外縁部51、52の角度が15°未満だと、インサート溶接継手6に沿ってき裂を伝播させても、このインサート溶接継手を通過したき裂の位置が、もとのき裂伝播経路である鋼板溶接継手の位置と近くなるため、き裂が再び鋼板溶接継手に突入して伝播するおそれがある。
 脆性き裂がインサート溶接継手6に沿って伝播するように導くための傾斜角度θ1の好ましい範囲は、25°以上40°以下である。
 図2の溶接構造体Aでは、インサート部材5が、平面視略正三角形として形成されている例を示したが、インサート部材の形状は、これに限定されるものではない。例えば、2等辺三角形や、図3−aに示すような溶接線Lに対して非対称な3角形、さらには、図3−bに示すように、傾斜外縁部51、52の後端51a、52aを結ぶ副対抗側の外縁部53が直線でない場合も含まれる。
 何れの場合でも、インサート部材の傾斜外縁部51、52の後端51a、52aを結ぶ副対抗側の外縁部53と溶接線Lとのなす角度θ2が70°以上110°以下であることが必要である。
 この角度が上記範囲にない場合には、インサート溶接継手6に沿って伝播してきた脆性き裂が、鋼板の母材側に逸れず、副対抗側の外縁部53を伝播して、再び鋼板溶接継手に突入するおそれがある。角度θ2のより好ましい範囲は、80°以上100°以下である。
 なお、図3では、溶接線Lに対して片側にθ2を示したが、他側も同様である。
 溶接構造体Aに用いられるインサート部材5は、鋼板溶接継手2の長手方向と交差する方向における横幅W、及び板厚tの各々の寸法が、下記(1)、(2)式で表される関係を満足することが必要である。
 3.2d+50 ≦ W ・・・・・ (1)
 0.95T ≦ t   ・・・・・ (2)
 但し、上記(1)、(2)式中において、Tは前記鋼板の板厚を表し、dは前記鋼板溶接継手における溶接金属部の幅を表す。
 なお、インサート部材の横幅Wは、インサート溶接継手の溶接金属部の中点を基準とする。図3に示すような場合のインサート部材の横幅Wは鋼板溶接継手に直角な方向の最大幅である。また、溶接金属部の幅dは、鋼の両面に溶接金属部が形成されている場合は、広い方の幅とする。
 本発明者らは、インサート部材の形状、寸法をさまざまに変えて溶接構造体の破壊試験を繰り返し実施した。その結果、脆性き裂が鋼板溶接継手や鋼板母材を長距離にわたって伝播するのを防止するのに効果のある上記関係を得た。
 (1)式は、き裂を逸らせる効果について.インサート部材5の幅Wと鋼板溶接継手における溶接金属部の幅dに相関関係があることを示している。
 鋼板溶接継手2を進展してきたき裂は、インサート部材5によって進展方向を変化せられ、傾斜外縁部51または52に沿って進展する。その際、インサート部材5の横幅寸法が、溶接金属部の幅dの3.2倍に比して十分大きくない場合は、アレスト部材の後端51aまたは52aに到達したき裂は、副対抗側の外縁部53のうちの左右どちらかを伝播し、再度、鋼板溶接継手2に戻り、そのまま進展して、停止しない可能性がある。
 外縁部51、52の後端51a、52aに到達したき裂が、鋼板1に向かって、鋼板溶接継手の溶接金属部にほぼ平行に進展させるための駆動力は、試験時にインサート部材5に加わる応力に依ると考えられているが、この応力は、溶接継手2の中心を通る溶接線Lと副対抗側の外縁部53の交点から、後端51aあるいは52aまでの距離に比例するからである。上記の相関関係により、インサート部材の幅寸法Wの下限値として、上記(2)式を規定した。Wの上限値は設けていないが、実施時には、溶接継手2の寸法に収まる範囲に自ずと規定される。
 なお、インサート部材の高さHについては規定されないが、Wの下限とアレスト部材の傾斜角度の制限からその範囲は規制される。
 (2)式は、き裂を逸らせる効果について、インサート部材5の板厚tと鋼板1の板厚Tに相関関係があることを示している。
 進展するき裂のエネルギーは鋼板の板厚Tに比例しているが、インサート部材5の板厚tが、鋼板1の板厚の0.95倍に比して、より小さい場合には、進展してきたき裂は逸れることなく、インサート部材5に突入するおそれが大きく、き裂が、そのままインサート部材を貫通する可能性が高くなるからである。
 インサート部材5の各寸法値を上記関係とすることにより、鋼板溶接継手2にき裂が生じた場合であっても、き裂の伝播方向を鋼板1の母材側へ効果的に逸らすことが可能となる。インサート部材の各寸法値の関係が、上記(1)、(2)式で表される関係を満たさない場合、鋼板溶接継手に生じたき裂の状態によっては、このき裂がインサート部材に進入し、鋼板の母材側に逸れずに鋼板溶接継手を伝播してしまう可能性がある。
 インサート部材の高さHは、き裂CRを溶接継手2から十分離すことができるよう、250mm以上、または300mm以上、さらには、400mm以上がより好ましく、横幅Wについても、200mm以上、または250mm以上、さらには、300mm以上がより好ましい。
 さらにまた、本実施形態の溶接構造体Aにおいては、インサート溶接継手6をなす溶接金属部の靱性を表す脆性−延性破面遷移温度vTrs3(℃)と、鋼板1の母材靱性を表す脆性−延性破面遷移温度vTrs1(℃)との関係が、次の式(3)
 vTrs3 ≦ vTrs1−20  ・・・(3)
で表される関係を満たすことが必要である。
 インサート溶接継手6をなす溶接金属部の靱性と鋼板1の母材靱性との関係が式(3)を満たすことにより、仮に、鋼板溶接継手2にき裂が生じた場合であっても、き裂の伝播方向を、鋼板溶接継手からインサート溶接継手6に導き、鋼板1の母材側へ効果的に逸らすことが可能となる。
 インサート溶接継手をなす溶接金属部の靱性と鋼板の母材靱性との関係が上記式(3)を満たさない場合、鋼板溶接継手に生じたき裂の状態によっては、このき裂がインサート溶接継手に進入し、さらには、インサート部材に進入するおそれがあり、鋼板の母材側に逸れずに鋼板溶接継手を伝播してしまうおそれがある。
 インサート部材5の材質としては、特に限定されるものではなく、従来公知の化学成分や鋼特性を有する鋼板を何ら制限無く用いることができる。本発明の溶接構造体は、インサート部材に脆性き裂が進入するのを抑制する構成のため、インサート部材5の材質や特性は特に限定されないものの、その強度や靭性は、少なくとも鋼板溶接継手2の母材程度とされていることが好ましい。
 なお、本実施形態では、インサート部材5を1枚のみ用いて鋼板1に溶接した構成を説明しているが、これには限定されず、例えば、2枚以上のインサート部材を積層して使用することもでき、適宜採用することが可能である。
<脆性き裂の伝播経路の制御>
 上記構成とされた溶接構造体1Aにおいて、鋼板溶接継手2に脆性き裂が発生した場合の、き裂伝播経路の制御について、以下に説明する。
 図2に示すように、鋼板溶接継手2の長手方向の一方側(図2における縦長方向の上側)で発生した脆性き裂CRは、鋼板溶接継手2における長手方向の他方側(図2における縦長方向の下側)に向かって伝播を開始し(図2中の二点鎖線矢印を参照)、ついで、インサート溶接継手6に到達する。
 インサート溶接継手6は、鋼板溶接継手に連続して傾斜してき裂の伝播方向に伸びているので、インサート溶接継手6の傾斜角度が適切であれば、き裂は、図示例のように、インサート部材5の傾斜外縁部51(又は外縁部52)に形成されたインサート溶接継手6に導かれるようにして、インサート溶接継手6と鋼板1との境界に沿って伝播する。そして、き裂は、インサート溶接継手6の横幅方向端部から鋼板1の母材側に逸れて、該横幅方向端部に向かい合って位置している脆性き裂伝播停止特性Kcaが4000N/mm1.5以上とされた領域1Aの内部で停止される。
 その場合、インサート溶接継手6の脆性−延性破面遷移温度vTrs3(℃)が、鋼板1の脆性−延性破面遷移温度vTrs1(℃)に対して、上記式(3)を満たす場合には、脆性き裂CRがインサート溶接継手6に進入するおそれが少なくなり、脆性き裂の伝播をより確実に母材側にそらすことができる。
 溶接金属の遷移温度vTrs3が母材鋼板の遷移温度vTrs1よりも高いと、鋼板溶接継手2を長手方向で伝播した脆性き裂CRがインサート溶接継手6に進入し、ついで、インサート部材5に進入する場合も想定されるので、好ましくない。
 耐き裂制御部4が上記の機能を発揮するには、溶接構造体が破壊エネルギーにさらされた時にき裂の発生の可能性がある鋼板溶接継手を予想し、その溶接継手の1箇所あるいは複数箇所に、き裂が来る方向に主対抗側を向けて耐き裂制御部を設けるのがよい。両方向からの進展が予想される鋼板溶接継手においては、インサート部材の向きを変えて2箇所の耐き裂制御部を距離を置いて設けることもできる。
 その際、耐き裂制御部に沿って逸らせたき裂を母材部で停止させるのに十分な距離を置く必要があるが、たとえばインサート材の高さHだけ離せば十分である。
<耐き裂制御部の作製方法>
 以下に、上述したような溶接構造体Aにおいて、耐き裂制御部4を作製する方法の一例について説明する。
 本実施形態の溶接構造体Aは、鋼板の少なくとも一部の領域の脆性き裂伝播停止特性Kcaが4000N/mm1.5以上である鋼板を突合せ溶接して形成した溶接構造体に、耐き裂制御部4を設ける例である。
 耐き裂制御部は、衝突や地震などによる大きな破壊エネルギーにさらされたときに、き裂の発生・伝播が予想される鋼板溶接継手の途中に、少なくとも1箇所設けられる。その際、鋼板溶接継手から連続的に形成されるインサート溶接継手の横幅方向端部が、鋼板のKca4000N/mm1.5以上の領域に少なくとも隣接するように耐き裂制御部4を設ける必要がある。
 耐き裂制御部4を設けるためには、まず、インサート部材5を配置するための貫通孔3を形成する。貫通孔の形成には、鋼板の段階で貫通孔となる部分を予め切り欠く方法、鋼板を溶接のために仮組みした状態で切り欠く方法、あるいは、鋼板を溶接した後に貫通孔を形成する方法などがあるが、いずれの方法であってもよい。既存の溶接構造体に貫通孔3を形成して本発明を適用することももちろん可能である。
 鋼板の溶接前に貫通孔3を形成する場合には、まず、図8−aに示すように、鋼板1の溶接端11、12に開口するように、鋼板を切り欠いて貫通孔3(3a、3b)を形成する。次いで、貫通孔3a、3bとなる部分を残して、各々の鋼板1の溶接端11、12を突合せ溶接することにより、鋼板溶接継手2を形成する。
 次いで、インサート部材5を、形成された貫通孔3に挿入する。次いで、インサート部材5の傾斜外縁部51、52、並びに副対抗側の外縁部53を、それと対向する鋼板の露出した溶接端に対してそれぞれ突合せ溶接することでインサート溶接継手6を形成する。このような手順により、鋼板溶接継手2の溶接線Lを中心として鋼板1の各々において対称となるように、インサート部材5とインサート溶接継手6とからなる耐き裂制御部4を形成する。
 本実施形態では、耐き裂制御部を形成する工程において、インサート部材5を、鋼板溶接継手2の溶接線L上から延在する外縁部51、52が鋼板溶接継手2の長手方向に対して15°以上50°以下の範囲の角度で傾斜するように形成して鋼板1に貫通するように設ける。
 また、インサート部材5の形状は、図2等に示すように、全体を平面視略三角形とし、インサート部材5の頂部5aが、鋼板溶接継手2の溶接線L上に位置するように配置するとともに、インサート部材5の頂部5aから延在する傾斜外縁部51、52を、鋼板溶接継手2の長手方向に対して15°以上50°以下の範囲の角度で傾斜するように形成し、それぞれの傾斜外縁部51、52の後端51a、52aを結ぶ副対抗側の外縁部53は、溶接線Lと70°以上110°以下の範囲の角度で交差するように形成している。
 本実施形態においては、鋼板1同士、並びに、鋼板1とインサート部材5とを突合せ溶接する際の溶接方法及び溶接材料については、特に限定されない。しかしながら、インサート溶接継手6自体の耐破壊靱性を高めるため、例えば、溶接方法として、被覆アーク溶接(SMAW)や炭酸ガスアーク溶接(CO溶接)を採用し、また、溶接材料となるワイヤの成分を高Niとすることが好ましい。
 また、脆性き裂伝播を可能な限り抑制し、さらに、鋼板溶接継手2及びインサート溶接継手6において新たな疲労き裂や脆性き裂の起点が生じるのを防止するため、各溶接継手を、溶接欠陥の無いように、溶接金属で完全に充填することが好ましい。
 上記手順により、図2に示すような、本実施形態の耐脆性き裂伝播性に優れた溶接構造体Aを製造することができる。
<溶接構造体を適用した船舶構造体の一例>
 上述した溶接構造体Aを適用した船舶構造体の一例を図4の概略図に示す。
 図4に示すように、船舶構造体70は、骨材(補強材)71、デッキプレート(水平部材)72、船殻内板(垂直部材)73、船殻外板74を備えて概略構成される。また、図示例の船舶構造体70は、船殻内板73をなす複数の鋼板1同士を突合せ溶接することで形成される鋼板溶接継手(図3中では図示略)の長手方向の一部に耐き裂制御部4が設けられることで、本実施形態の溶接構造体Aを具備する構造とされている。
 上記構成の船舶構造体70によれば、本実施形態の溶接構造体Aの構成を適用することにより、例え、鋼板溶接継手を伝播する脆性き裂が発生した場合であっても、耐き裂制御部4により、き裂の伝播方向を効果的に制御できる。これにより、鋼板溶接継手に生じた脆性き裂を安定的に停止させることができ、船殻内板73、ひいては船舶構造体70に大規模な破壊が生じるのを防止することが可能となる。
[第2の実施形態]
 以下、本発明の第2の実施形態である溶接構造体Bについて、主に図5を参照しながら説明する。なお、以下の説明において、上述の第1の実施形態の溶接構造体Aと共通する構成については、同じ符号を付与するとともに、その詳細な説明を省略する。また、第3、4の実施態様の説明においても同様とする。
 本実施形態の溶接構造体Bは、図5においては詳細な図示を省略するが、鋼板10の母材全体が、脆性き裂伝播停止特性Kcaが4000N/mm1.5以上とされている点で、第1の実施形態の溶接構造体Aとは異なる。
 溶接構造体Bによれば、鋼板溶接継手20に脆性き裂が発生した場合、鋼板溶接継手20を伝播してきたき裂を、インサート溶接継手6と鋼板母材の境界(あるいは隣接する母材の熱影響部)に沿って伝播させて、鋼板10の母材側に逸らすことができる(図5中の二点鎖線矢印を参照)。
 そして、溶接構造体Aと同様、鋼板10の母材側に逸れたき裂は、鋼板10において直ちに停止するので、鋼板溶接継手20が破断せず、また、溶接構造体Bに大規模な破壊が生じるのを防止することが可能となる。
 また、本実施形態の溶接構造体Bは、鋼板10をなす母材全体が、脆性き裂伝播停止特性Kcaが6000N/mm1.5以上とされていることがより好ましい。
[第3の実施形態]
 以下、本発明の第3の実施形態である溶接構造体Cについて、主に図6を参照しながら詳述する。
 溶接構造体Cは、突合せ溶接される鋼板が、複数の小鋼板を突合せ溶接されて形成されている場合の例である。
 すなわち、図6に示すように、鋼板10Aが、鋼板溶接継手20Aの長手方向で配列される少なくとも2以上の小鋼板(図6中の符号21~24を参照)を突合せ溶接して形成され、この鋼板10A、10Aを突合せ溶接して形成された鋼板溶接継手20Aに、耐き裂制御部4が設けられる。
 小鋼板21、22の間には、小鋼板溶接継手25、26が形成されており、インサート部材5の副対抗側の外縁部53側に形成されるインサート溶接継手6は、この小鋼板溶接継手25、26に接して設けられている。このため、溶接構造体Cでは、インサート部材5の副対抗側の外縁部(インサート部材の横幅方向端部側の外縁部)53は、小鋼板溶接継手25、26の形状と同じ形状とされる。
 このように、溶接構造体Cは上述の第1及び第2の実施形態の溶接構造体A、Bとは異なる。
 また、図6に示す例においては、図示の都合上、小鋼板として4枚の小鋼板21~24を示し、小鋼板21と小鋼板22とが小鋼板溶接継手25で接合され、小鋼板23と小鋼板24とが小鋼板溶接継手26で接合されている場合を示している。
 また、本実施形態の溶接構造体Cは、小鋼板22及び小鋼板24をなす母材の脆性き裂伝播停止特性Kcaが4000N/mm1.5以上とされている一方、小鋼板21及び小鋼板23の脆性き裂伝播停止特性Kcaは特に限定されない。
 溶接構造体Cによれば、上述の溶接構造体A、Bと同様、鋼板溶接継手20Aに脆性き裂が発生した場合でも、この脆性き裂を、インサート部材5の傾斜外縁部51(52)又はインサート溶接継手6によって鋼板10Aの母材側に逸らすことができる(図6中の二点鎖線矢印を参照)。図6に示す例では、鋼板溶接継手20Aに発生した脆性き裂CRが、インサート溶接継手6の横幅方向端部から、小鋼板溶接継手25に達し、ついで、該横幅方向端部に向かい合って位置している脆性き裂伝播停止特性Kcaが4000N/mm1.5以上とされた小鋼板22に突入して、その鋼板の内部で停止される。
 このように、鋼板10Aの母材側に逸れたき裂は、脆性き裂伝播停止特性Kcaの高い小鋼板22において直ちに停止するので、鋼板溶接継手20Aが破断せず、また、溶接構造体Cに大規模な破壊が生じるのを防止することが可能となる。
 また、本実施形態の溶接構造体Cは、鋼板10Aをなす小鋼板22、24の母材が、脆性き裂伝播停止特性Kca=6000N/mm1.5以上であることがより好ましい。
[第4の実施形態]
 以下、本発明の第4の実施形態である溶接構造体Dについて、主に図7を参照しながら詳述する。
 溶接構造体Dは、図7に示すように、鋼板10Bが、鋼板溶接継手20Bの長手方向で配列される少なくとも2以上の小鋼板(図7中の符号31~34を参照)を突合せ溶接して形成され、この鋼板10B、10Bを突合せ溶接して形成された鋼板溶接継手20Bに、耐き裂制御部4が設けられる点で、第3の実施形態の溶接構造体Cと構成が一部共通している。
 一方、本実施形態の溶接構造体Dは、図示例のように、小鋼板を突合せ溶接して形成された小鋼板溶接継手35、36が、インサート部材5の副対抗側の外縁部(インサート部材の横幅方向端部側の外縁部)53側に形成されるインサート溶接継手を含む構成とされている点で、第3の実施形態の溶接構造体Cとは異なる。
 またさらに、溶接構造体Dは、小鋼板溶接継手35、36をなす溶接金属部の靱性を表す脆性−延性破面遷移温度vTrs4(℃)と、鋼板10Bの母材靱性を表す脆性−延性破面遷移温度vTrs1(℃)との関係が、次の(4)式
 vTrs4 ≦ vTrs1−20  ・・・(4)
を満たす関係とされている点においても、第3の実施形態の溶接構造体Cとは異なる構成とされている。
 また、溶接構造体Dは、鋼板10Bをなす全ての小鋼板31~34の母材の脆性き裂伝播停止特性Kcaが4000N/mm1.5以上とされている。また、図示例の溶接構造体Dは、小鋼板溶接継手35、36が連なって直線状に形成されている。
 溶接構造体Dによれば、上述の溶接構造体A~Cと同様、鋼板溶接継手20Bに脆性き裂が発生した場合でも、インサート部材5の傾斜外縁部51(52)、又は傾斜外縁部51(52)に沿って形成されるインサート溶接継手60により、脆性き裂CRを、鋼板10Bの母材側に逸らすことができる(図7中の二点鎖線矢印を参照)。
 図7に示す例では、鋼板溶接継手20Aに発生した脆性き裂CRが、インサート溶接継手60の横幅方向端部から、小鋼板溶接継手35に達し、ついで、該横幅方向端部に向かい合って位置している脆性き裂伝播停止特性Kcaが4000N/mm1.5以上とされた小鋼板32に突入して、その鋼板の内部で停止される。
 このように、鋼板10Bの母材側に逸れたき裂は、脆性き裂伝播停止特性Kcaの高い小鋼板32において直ちに停止するので、鋼板溶接継手20Bが破断せず、また、溶接構造体Dに大規模な破壊が生じるのを防止することが可能となる。
 また、本実施形態の溶接構造体Dは、鋼板10Bをなす全ての小鋼板31~34の母材が、脆性き裂伝播停止特性Kca=6000N/mm1.5以上であることがより好ましい。
 以下、本発明に係る耐脆性き裂伝播性に優れた溶接構造体の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。
[溶接構造体の製造]
 まず、製鋼工程において溶鋼の脱酸・脱硫と化学成分を制御し、連続鋳造によって下記表1に示す化学成分の鋳塊を作製した。そして、日本海事協会(NK)規格船体用圧延鋼材KA32、KA36、KA40の規格に準じた製造条件で、前記鋳塊を再加熱して厚板圧延することで、板厚が25mm~150mmの範囲の鋼板をそれぞれ製造した。さらに、これらの鋼板に対して各種熱処理を施すとともに、この際の条件を制御することにより、母材の脆性き裂伝播停止特性Kca(N/mm1.5)が種々の値になるように適宜調整した。製造した鋼板から、試験片を適宜採取し、−10℃におけるKca特性を評価・確認するとともに、鋼板の脆性−延性破面遷移温度vTrs1(℃)を測定した。表1にKca特性及びvTrs1を合わせて示した。
 次に、図8(a)に示すように、鋼板1の溶接端11、12に開口するように、貫通孔3a、3bを形成した。そして、貫通孔3a、3bの各々が溶接線Lを中心として対称の貫通孔3を形成するように、各々の鋼板1の溶接端11、12を突合せ溶接し、鋼板溶接継手2を形成することにより、鋼板1同士を接合した。
 次に、下記表1に示す鋼板を用いて、表2に示す形状のインサート部材5を作製し、これを、図8(b)に示すように、鋼板1に形成された貫通孔3に挿入した。そして、インサート部材5の傾斜外縁部51、52並びに副対抗側の外縁部53を、それぞれ対向する貫通孔3によって露出した鋼板の溶接端に対して突合せ溶接し、インサート部材5と鋼板1とを接合した。以上の手順により、鋼板溶接継手2の溶接線Lを中心として鋼板1の各々において対称となるように、インサート部材5とインサート溶接継手6とからなる耐き裂制御部4を形成した。
 また、インサート部材5は、図9(b)、(c)に示すように、副対抗側の外縁部53の位置が、鋼板1の上端から1000mmとなる場所に配置した。また、図8(c)に示すように、インサート部材5の傾斜外縁部51、52及び副対抗側の外縁部53、並びに、鋼板1の貫通孔3内に露出する溶接端には、板厚方向中心を頂点として130°(水平ラインに対して25°)となるように開先加工を施した。また、インサート部材5の各縁部と、鋼板1の貫通孔3内に露出する溶接端との間は、前記頂点において約3mmのルート間隔を持たせた状態として溶接処理を行なった。
 なお、上記手順における鋼板1同士の突合せ溶接、及び、鋼板1とインサート部材5との突合せ溶接は、炭酸ガスアーク溶接(CO溶接)によって行なうとともに、この際の溶接材料として、高Ni成分とされた溶接ワイヤを用いた。また、各溶接継手の形成箇所においては、新たなき裂の起点が生じるのを防止するため、各溶接継手を溶接金属で完全に充填するように溶接処理を行なった。その後、各溶接継手を冷却することにより、図2に示すような溶接構造体(本発明例、比較例)を製造した。
 また、上記同様、各鋼板及びインサート部材を接合することにより、図5~図7に示すような溶接構造体(本発明例、比較例)を製造した。
[評価試験]
 上記手順によって製造した溶接構造体について、以下のような評価試験を行った。
 まず、図9(a)に示すような試験装置90を準備するとともに、上記手順で作製した溶接構造体のサンプルの各々を適宜調整し、試験装置90に取り付けた。ここで、図9(b)、(c)中に示す鋼板溶接継手2に設けたき裂発生部である窓枠81は、楔をあてがって所定の応力を印加することで強制的に脆性き裂を発生させるためのものであり、切欠き状の先端部は0.2mm幅のスリット加工を施したものである。
 次いで、鋼板溶接継手2の溶接線Lと垂直方向に262N/mmあるいは300N/mmの引張応力を付与することにより、鋼板溶接継手2に脆性き裂を発生させた。そして、この脆性き裂を、鋼板溶接継手2の溶接線L上で伝播させることにより、溶接構造体の耐脆性き裂伝播性を評価した。この際の雰囲気温度は−10℃とした。
 そして、鋼板溶接継手2を伝播した脆性き裂が、耐き裂制御部4をなすインサート溶接継手6に到達した後、その脆性き裂が伝播する方向及び停止位置を確認し、亀裂の伝播、停止の形態を図1のb、cに対応する以下に示す2段階(b、c)で評価し、下記表2に示した。
 [b]…脆性き裂がインサート溶接継手に到達し、次いで、鋼板母材とインサート溶接継手の境界に沿って伝播した後、鋼板の母材側に逸れ、鋼板において直ちに停止した(図1−bの形態)。
 [c]…脆性き裂がインサート溶接継手に到達した後、このインサート溶接継手に進入し、さらにインサート部材を貫通した後、そのまま鋼板溶接継手を伝播した(図1−cの形態)。
 また、[b]の場合について、き裂の伝播距離に基づいて算出した点数(最高値10)により耐きれつ伝播性能を評価した。
 本実施例で用いた鋼板の化学成分組成、母材の脆性き裂伝播停止特性Kca(N/mm1.5)及び脆性−延性破面遷移温度vTrs1(℃)の一覧を表1に示すとともに、インサート部材5の鋼板特性及び形状、インサート溶接継手6を形成する際の溶接条件、鋼板1を突合せ溶接して鋼板溶接継手2を形成する際の溶接条件、及び、脆性き裂の伝播の評価結果の一覧を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 なお、表2、4において、注1~4の内容は、次のとおりである。
 注1: 鋼板1の内の領域1A以外の領域を意味する。
 注2: 図に基づいた、2種類の鋼板の組み合わせを示す。
 注3: 板厚を4:1に分割したX開先に対し、鋼板の両面より、エレクトロガスアーク溶接により突合せ溶接した。このときの大きい方の適用入熱量を示す。
 注4: 板厚の半分づつ、鋼板の両面からエレクトロガスアーク溶接により突合せ溶接した。このときの入熱量を示す。
[評価結果]
 表2~5に示すように、本発明例1~29は、図5に示す本発明の第2の実施形態の溶接構造体Bに関する例であり、本発明例30~32は、図6に示す本発明の第3の実施形態の溶接構造体Cに、本発明例33、34は、図7に示す第4の実施形態の溶接構造体Dに、本発明例35は、図2に示す第1の実施形態の溶接構造体Aにそれぞれ関する例である。
 また、表4、5に示す比較例1~8は、溶接構造体Bと同様の構造を有する比較例であり、比較例9~11は、溶接構造体Cと、比較例12は溶接構造Dと、比較例13は溶接構造Aとそれぞれ同様の構造を有する比較例である。
 表2に示すように、本発明に係る溶接構造体(本発明例1~29)は、脆性き裂の伝播の結果が、全て[b]の形態となった。これにより、本発明の溶接構造体が、溶接継手に脆性き裂が発生した場合であっても、き裂が溶接継手や母材を伝播するのを抑制でき、溶接構造体の破断を防止することが可能であり、耐脆性き裂伝播性に優れていることが確認できた。
 これに対し、比較例1~13の溶接構造体は、鋼板の母材特性、インサート部材の形状、インサート溶接継手の特性の何れかが本発明の規定を満たしていないため、耐脆性き裂伝播の結果が何れも[c]の形態となり、脆性き裂の進展をとめることができなかった例である。
 比較例1の溶接構造体は、インサート部材の横幅Wが不充分であり、また、インサート部材の傾斜外縁部の角度θ1が不適な例である。
 比較例2、3は、角度θ1が不適な例であり、比較例4、5は、インサート部材の脆性き裂副対抗側の外縁部の角度θ2が不適な例である。
 比較例6は、インサート部材の板厚tが不充分であるとともに、副対抗側の外縁部の角度θ2が不適な例である。
 比較例7は、鋼板溶接継手の母材部(鋼板母材)のKca値が不充分であるとともに、かつインサート部材の板厚が不充分であり、また、傾斜外縁部の角度θ1が不敵な例である。
 比較例8、9は、鋼板溶接継手の母材部(鋼板母材)のKca値が不充分である例であり、比較例10、11は、傾斜外縁部の角度θ1が不適な例である。
 比較例12は、溶接金属部の脆性−延性破面遷移温度vTrs4が不適な例であり、比較例13は、領域1Aの脆性き裂伝播停止特性Kcaが不適な例である。
 以上の結果により、本発明の溶接構造体が、溶接継手に脆性き裂が発生した場合であっても、き裂が溶接継手や母材を伝播するのを抑制でき、溶接構造体の破断を防止することが可能であり、耐脆性き裂伝播性に優れていることが明らかである。
 A、B、C、D 溶接構造体
 1、10、10A、10B 鋼板
 1A 領域(少なくともインサート部材及びインサート溶接継手の横幅方向端部に向かい合って位置する鋼板の部位)
 2、20、20A、20B 鋼板溶接継手
 3、3a、3b 貫通孔
 4 耐き裂制御部
 5 インサート部材
 51、52 インサート部材の脆性き裂主対抗側から延伸する傾斜外縁部
 51a、51b インサート部材の傾斜外縁部の後端(インサート部材の横幅方向端部)
 53 脆性き裂に対する副対抗側となるインサート部材の外縁部
 6、60 インサート部材溶接継手
 25、26、35、36 小鋼板溶接継手
 21、22、23、24、31、32、33、34 小鋼板
 70 船舶構造体
 L 溶接線
 θ1 インサート部材の傾斜外縁部の鋼板溶接継手の長手方向に対する傾斜角度
 θ2 インサート部材の脆性き裂副対抗側の外縁部が鋼板溶接継手と交差する角度

Claims (5)

  1.  少なくとも一部の領域の脆性き裂伝播停止特性Kcaが4000N/mm1.5以上である鋼板を、互いに突合せ溶接することで鋼板溶接継手が形成されてなる溶接構造体において、
     前記鋼板溶接継手の少なくとも一箇所に、鋼板溶接継手に発生した脆性き裂を鋼板母材側にそらす耐き裂制御部が設けられており、
     該耐き裂制御部は、前記鋼板溶接継手から前記鋼板にまたがって形成された貫通穴に挿入され、脆性き裂の伝播方向を鋼板母材側に逃がすためのインサート部材、及び、
     該インサート部材の外縁部と、それに対向する鋼板母材とが突合せ溶接されて形成されたインサート溶接継手を有しており、
     前記インサート部材は、前記鋼板溶接継手の長手方向と交差する方向における横幅W(mm)、及び板厚t(mm)の各々の寸法が、下記(1)、(2)式で表される関係を満足するように形成されており、かつ、
     該インサート部材の脆性き裂主対抗側の外縁部は、前記鋼板溶接継手の溶接金属部から前記鋼板溶接継手の両側に、鋼板溶接継手の長手方向に対して15°以上50°以下の角度で傾斜して延伸するとともに、他方の脆性き裂副対抗側の外縁部は、70°以上110°以下の角度で前記鋼板溶接継手と交差しており、
     前記インサート部材溶接継手における溶接金属部の靱性を表す脆性−延性破面遷移温度vTrs3(℃)と、前記鋼板の母材靱性を表す脆性−延性破面遷移温度vTrs1(℃)との関係が、次式、
     vTrs3 ≦ vTrs1−20
    で表される関係を満たし、
     少なくとも、前記インサート部材の横幅方向端部が、前記鋼板のKcaが4000N/mm1.5以上である領域に向かい合うように、前記耐き裂制御部を設けたこと、を特徴とする耐脆性き裂伝播性に優れた溶接構造体。
     3.2d+50 ≦ W ・・・・・ (1)
       0.95T ≦ t ・・・・・ (2)
     但し、上記(1)、(2)式中において、T(mm)は前記鋼板の板厚を表し、d(mm)は前記鋼板溶接継手における溶接金属部の幅を表す。
  2.  前記鋼板の板厚が25mm以上150mm以下であること、を特徴とする請求項1に記載の耐脆性き裂伝播性に優れた溶接構造体。
  3.  前記鋼板は、少なくとも一部の領域の脆性き裂伝播停止特性Kcaが6000N/mm1.5以上であり、前記耐き裂制御部は、少なくとも、前記インサート部材の横幅方向端部が、前記鋼板のKcaが6000N/mm1.5以上である領域に向かい合うように設けられていること、を特徴とする請求項1又は2に記載の耐脆性き裂伝播性に優れた溶接構造体。
  4.  前記鋼板は、前記鋼板溶接継手の長手方向で配列される少なくとも2以上の小鋼板からなるとともに、該小鋼板を互いに突合せ溶接することで小鋼板溶接継手が形成されており、
     前記耐き裂制御部は、前記インサート部材の横幅方向端部側に形成される前記インサート部材溶接継手が前記小鋼板溶接継手に接するように設けられていること、を特徴とする請求項1~3の何れか1項に記載の耐脆性き裂伝播性に優れた溶接構造体。
  5.  前記鋼板は、前記鋼板溶接継手の長手方向で配列される少なくとも2以上の小鋼板からなるとともに、該小鋼板を互いに突合せ溶接することで小鋼板溶接継手が形成されており、
     前記耐き裂制御部は、前記インサート部材の横幅方向端部側に形成される前記インサート部材溶接継手が前記小鋼板溶接継手を含むように設けられ、
     さらに、前記小鋼板溶接継手をなす溶接金属部の靱性を表す脆性−延性破面遷移温度vTrs4(℃)と、前記鋼板の母材靱性を表す脆性−延性破面遷移温度vTrs1(℃)との関係が、次式、
     vTrs4 ≦ vTrs1−20
    で表される関係を満たすこと、を特徴とする請求項1~3の何れか1項に記載の耐脆性き裂伝播性に優れた溶接構造体。
PCT/JP2010/050654 2009-01-14 2010-01-14 耐脆性き裂伝播性に優れた溶接構造体 WO2010082676A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010524283A JP4772922B2 (ja) 2009-01-14 2010-01-14 耐脆性き裂伝播性に優れた溶接構造体
DK10731345.4T DK2390048T3 (da) 2009-01-14 2010-01-14 Svejsekonstruktion med fremragende modstand mod skørhedsrevneforplantning
EP10731345.4A EP2390048B1 (en) 2009-01-14 2010-01-14 Welding structure with excellent resistance to brittle crack propagation
KR1020117013571A KR101163348B1 (ko) 2009-01-14 2010-01-14 내취성 균열 전파성이 우수한 용접 구조체
CN201080003159.9A CN102209607B (zh) 2009-01-14 2010-01-14 耐脆性裂纹传播性优良的焊接结构体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-006037 2009-01-14
JP2009006037 2009-01-14

Publications (1)

Publication Number Publication Date
WO2010082676A1 true WO2010082676A1 (ja) 2010-07-22

Family

ID=42339926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050654 WO2010082676A1 (ja) 2009-01-14 2010-01-14 耐脆性き裂伝播性に優れた溶接構造体

Country Status (7)

Country Link
EP (1) EP2390048B1 (ja)
JP (1) JP4772922B2 (ja)
KR (1) KR101163348B1 (ja)
CN (1) CN102209607B (ja)
DK (1) DK2390048T3 (ja)
TW (1) TW201036747A (ja)
WO (1) WO2010082676A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818467B1 (ja) * 2010-07-14 2011-11-16 新日本製鐵株式会社 耐脆性き裂伝播性に優れた溶接継手及び溶接構造体
WO2013038685A1 (ja) * 2011-09-13 2013-03-21 Jfeスチール株式会社 溶接構造体
WO2013038686A1 (ja) * 2011-09-13 2013-03-21 Jfeスチール株式会社 溶接構造体
JP2014177649A (ja) * 2011-04-26 2014-09-25 Sekisui Chem Co Ltd 発泡性レゾール型フェノール樹脂成形材料
CN107558618A (zh) * 2017-10-12 2018-01-09 苏交科集团股份有限公司 钢板连接装置及其偏差调整方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102912A1 (ja) * 2017-11-22 2019-05-31 Jfeスチール株式会社 厚鋼板の脆性き裂伝播停止性能の評価方法
CN112894260B (zh) * 2021-01-22 2022-09-09 西部超导材料科技股份有限公司 一种液压阀块裂纹修复方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162155A (en) * 1974-11-29 1976-05-29 Kobe Steel Ltd Sentaino sensokugaihanno yosetsuhoshuhoho
JPH08248382A (ja) 1995-03-13 1996-09-27 Sony Corp 面順次カラー表示装置
JP2005131708A (ja) 2003-10-08 2005-05-26 Nippon Steel Corp 耐脆性き裂伝播性に優れた溶接構造体およびその溶接方法
JP2007098441A (ja) 2005-10-05 2007-04-19 Nippon Steel Corp 耐脆性き裂伝播性に優れた溶接構造体
JP2007302993A (ja) 2006-04-13 2007-11-22 Nippon Steel Corp アレスト性に優れた高強度厚鋼板
JP2008248382A (ja) * 2007-03-05 2008-10-16 Nippon Steel Corp 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410715B2 (ja) * 2004-04-09 2010-02-03 新日本製鐵株式会社 耐脆性き裂伝播性に優れた溶接構造体の溶接方法および溶接構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162155A (en) * 1974-11-29 1976-05-29 Kobe Steel Ltd Sentaino sensokugaihanno yosetsuhoshuhoho
JPH08248382A (ja) 1995-03-13 1996-09-27 Sony Corp 面順次カラー表示装置
JP2005131708A (ja) 2003-10-08 2005-05-26 Nippon Steel Corp 耐脆性き裂伝播性に優れた溶接構造体およびその溶接方法
JP2007098441A (ja) 2005-10-05 2007-04-19 Nippon Steel Corp 耐脆性き裂伝播性に優れた溶接構造体
JP2007302993A (ja) 2006-04-13 2007-11-22 Nippon Steel Corp アレスト性に優れた高強度厚鋼板
JP2008248382A (ja) * 2007-03-05 2008-10-16 Nippon Steel Corp 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2390048A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818467B1 (ja) * 2010-07-14 2011-11-16 新日本製鐵株式会社 耐脆性き裂伝播性に優れた溶接継手及び溶接構造体
WO2012008055A1 (ja) * 2010-07-14 2012-01-19 新日本製鐵株式会社 耐脆性き裂伝播性に優れた溶接継手及び溶接構造体
JP2014177649A (ja) * 2011-04-26 2014-09-25 Sekisui Chem Co Ltd 発泡性レゾール型フェノール樹脂成形材料
WO2013038685A1 (ja) * 2011-09-13 2013-03-21 Jfeスチール株式会社 溶接構造体
WO2013038686A1 (ja) * 2011-09-13 2013-03-21 Jfeスチール株式会社 溶接構造体
JP5365761B2 (ja) * 2011-09-13 2013-12-11 Jfeスチール株式会社 溶接構造体
CN103874557A (zh) * 2011-09-13 2014-06-18 杰富意钢铁株式会社 焊接构造体
CN103874557B (zh) * 2011-09-13 2016-04-13 杰富意钢铁株式会社 焊接构造体
CN107558618A (zh) * 2017-10-12 2018-01-09 苏交科集团股份有限公司 钢板连接装置及其偏差调整方法
CN107558618B (zh) * 2017-10-12 2023-07-21 苏交科集团股份有限公司 钢板连接装置及其偏差调整方法

Also Published As

Publication number Publication date
EP2390048A4 (en) 2012-11-07
DK2390048T3 (da) 2014-08-25
CN102209607A (zh) 2011-10-05
KR101163348B1 (ko) 2012-07-05
EP2390048B1 (en) 2014-07-16
TWI372673B (ja) 2012-09-21
JPWO2010082676A1 (ja) 2012-07-12
JP4772922B2 (ja) 2011-09-14
KR20110095335A (ko) 2011-08-24
EP2390048A1 (en) 2011-11-30
CN102209607B (zh) 2014-04-30
TW201036747A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
JP4772921B2 (ja) 耐脆性き裂伝播性に優れた溶接構造体
JP4772922B2 (ja) 耐脆性き裂伝播性に優れた溶接構造体
EP2422913B1 (en) Electron beam welded joint excellent in brittle fracture resistance
KR100772729B1 (ko) 내취성 파괴 발생 특성이 우수한 대입열 맞대기 용접이음부
JP4505368B2 (ja) 脆性き裂伝播停止特性に優れた溶接鋼構造物およびその製造方法
JP4760299B2 (ja) 溶接継手及びその製造方法
KR102001923B1 (ko) 용접 구조체
JP4818466B1 (ja) 耐脆性き裂伝播性を有する溶接構造体
JP2005111501A (ja) 耐脆性破壊伝播特性に優れた溶接構造体
CN117460594A (zh) 焊接结构体
JP5052976B2 (ja) 耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手及び溶接構造体
JP4818467B1 (ja) 耐脆性き裂伝播性に優れた溶接継手及び溶接構造体
JP5935395B2 (ja) 溶接組立四面箱形断面部材の角溶接用開先部
JP2010162570A (ja) 耐脆性き裂伝播性を有する溶接構造体
JP5292993B2 (ja) 鋼床版
JP4611250B2 (ja) 冷間加工成形鋼管
JP2010162571A (ja) 耐脆性き裂伝播性に優れた鋼板溶接継手及び溶接構造体
JP2023039270A (ja) クラッド鋼板およびその製造方法ならびに溶接構造物
EP2644735B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003159.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010524283

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117013571

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010731345

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE