WO2013161639A1 - 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子 - Google Patents

透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子 Download PDF

Info

Publication number
WO2013161639A1
WO2013161639A1 PCT/JP2013/061367 JP2013061367W WO2013161639A1 WO 2013161639 A1 WO2013161639 A1 WO 2013161639A1 JP 2013061367 W JP2013061367 W JP 2013061367W WO 2013161639 A1 WO2013161639 A1 WO 2013161639A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
ring
nitrogen
transparent electrode
Prior art date
Application number
PCT/JP2013/061367
Other languages
English (en)
French (fr)
Inventor
健 波木井
宏 石代
敏幸 木下
和央 吉田
辻村 隆俊
美奈子 小野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US14/396,628 priority Critical patent/US9287521B2/en
Priority to JP2014512489A priority patent/JP6119742B2/ja
Publication of WO2013161639A1 publication Critical patent/WO2013161639A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a transparent electrode, a method for producing a transparent electrode, an electronic device, and an organic electroluminescent element, and in particular, a transparent electrode having both conductivity and light transmittance, a method for producing the transparent electrode, and further the transparent electrode
  • the present invention relates to an electronic device using an electrode and an organic electroluminescent element.
  • An organic electroluminescence device (so-called organic EL device) using electroluminescence (hereinafter referred to as EL) of an organic material is a thin-film type completely solid device capable of emitting light at a low voltage of several V to several tens V. It has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
  • Such an organic electroluminescent element has a configuration in which a light emitting layer composed of an organic material is sandwiched between two electrodes, and emitted light generated in the light emitting layer passes through the electrode and is extracted outside. For this reason, at least one of the two electrodes is configured as a transparent electrode.
  • oxide semiconductor materials such as indium tin oxide (SnO 2 —In 2 O 3 : Indium Tin Oxide: ITO) and silver (Ag) are generally used.
  • ITO indium tin oxide
  • silver (Ag) is excellent in conductivity as compared with ITO, but has a problem that the transmittance does not decrease at a film thickness at which the resistance is sufficiently lowered.
  • the present invention provides a transparent electrode having sufficient conductivity and light transmittance and a method for producing the same, and an electronic device and an organic electroluminescent element whose performance is improved by using the transparent electrode
  • the purpose is to provide.
  • n is the number of unshared electron pairs that the nitrogen atom has, and the effective weight when the molecular weight is M
  • a nitrogen-containing layer configured using a compound having a shared electron pair content [n / M] of 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M];
  • An electrode layer mainly composed of silver;
  • a transparent electrode comprising: the nitrogen-containing layer; and an aluminum intermediate layer sandwiched between and in contact with the electrode layer.
  • R11 and R12 represent a hydrogen atom or a substituent.
  • Y21 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • E201 to E216 and E221 to E238 each represent —C (R21) ⁇ or —N ⁇ , and R21 represents a hydrogen atom or a substituent.
  • k21 and k22 represent an integer of 0 to 4, and k21 + k22 is an integer of 2 or more.
  • E301 to E312 each represent —C (R31) ⁇
  • R31 represents a hydrogen atom or a substituent
  • Y31 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • E401 to E414 each represent —C (R41) ⁇ , and R41 represents a hydrogen atom or a substituent.
  • Ar41 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • K41 represents an integer of 3 or more.
  • R51 represents a substituent
  • E501, E502, E511 to E515, E521 to E525 each represent —C (R52) ⁇ or —N ⁇
  • R52 represents a hydrogen atom (H) or a substituent.
  • E601 to E612 each represent —C (R61) ⁇ or —N ⁇ , and R61 represents a hydrogen atom or a substituent.
  • Ar61 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • the aluminum intermediate layer includes at least an intermediate layer containing a halogen atom at an interface with the nitrogen-containing layer.
  • the nitrogen-containing layer is composed of another compound together with the compound, and the average value of the effective unshared electron pair content [n / M] in consideration of the mixing ratio of these compounds is 3.9 ⁇ 10
  • n is the number of unshared electron pairs that the nitrogen atom has, and the effective weight when the molecular weight is M
  • a nitrogen-containing layer containing a halogen atom is formed, 18.
  • a nitrogen-containing layer containing a halogen atom is formed, 19.
  • 21 The electronic device as described in 20 above, wherein the electronic device is an organic electroluminescent element.
  • An organic electroluminescent element comprising: a counter electrode provided in a state of sandwiching the light emitting functional layer between the transparent electrode.
  • An organic electroluminescent element comprising: a counter electrode provided in a state of sandwiching the light emitting functional layer between the transparent electrode.
  • the transparent electrode configured as described above was provided by adjoining an electrode layer mainly composed of silver via an aluminum intermediate layer to a nitrogen-containing layer configured using a compound containing nitrogen atoms. It is a configuration. As a result, the electrode layer mainly composed of silver aggregates due to the interaction of the aluminum intermediate layer with aluminum and the interaction with the nitrogen atoms constituting the nitrogen-containing layer, which reduces the silver diffusion distance at the adjacent interface. Is suppressed. Therefore, in general, a silver thin film that is easily isolated in an island shape by film growth of a nuclear growth type (Volume-Weber: VW type) is a single-layer growth type (Frank-van der Merwe: FM type). As a result, a film is formed. Accordingly, an electrode layer having a uniform film thickness can be obtained even though the film thickness is small.
  • a nuclear growth type Volume-Weber: VW type
  • Frank-van der Merwe FM type
  • the effective unshared electron pair content [n / M] described above is applied as an index of the bond stability of silver constituting the electrode layer with respect to the nitrogen-containing layer, and this value is 3.9 ⁇ 10 ⁇ 3 ⁇
  • the compound containing [n / M] was used to form the nitrogen-containing layer 1a. This makes it possible to provide a nitrogen-containing layer that can reliably obtain the effect of “suppressing aggregation of silver” as described above.
  • the ultrathin film of 5 nm is formed on such a nitrogen-containing layer through an ultra-thin aluminum intermediate layer to the extent that light transmittance is not hindered. It was also confirmed from the fact that an electrode layer having a sheet resistance suppressed to a low value of about two digits was formed.
  • this transparent electrode it is possible to reliably obtain an electrode layer having a uniform film thickness while ensuring light transmission while having a thin film thickness. It becomes possible to achieve both improvement in conductivity and improvement in light transmittance in the transparent electrode used.
  • the present invention it is possible to achieve both improvement in conductivity and light transmission in the transparent electrode, and it is possible to improve the electronic device and the organic electroluminescent element using the transparent electrode.
  • the performance can be improved.
  • FIG. 1 is a cross-sectional configuration diagram showing a first example of an organic electroluminescent element using a transparent electrode of the present invention. It is a cross-sectional block diagram which shows the 2nd example of the organic electroluminescent element using the transparent electrode of this invention. It is a cross-sectional block diagram which shows the 3rd example of the organic electroluminescent element using the transparent electrode of this invention. It is a cross-sectional block diagram which shows the 4th example of the organic electroluminescent element using the transparent electrode of this invention. 6 is a cross-sectional configuration diagram illustrating a top emission type organic electroluminescence device manufactured in Example 2. FIG. 4 is a cross-sectional configuration diagram illustrating a bottom emission type organic electroluminescence device manufactured in Example 3. FIG.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the transparent electrode of the embodiment.
  • the transparent electrode 1 has a laminated structure including a nitrogen-containing layer 1a, an electrode layer 1b, and an aluminum intermediate layer A sandwiched between the nitrogen-containing layer 1a and the electrode layer 1b.
  • the transparent electrode 1 is provided on the base 11 in the order of the nitrogen-containing layer 1a, the aluminum intermediate layer A, and the electrode layer 1b.
  • the electrode layer 1b which comprises the electrode part in the transparent electrode 1 is a layer comprised mainly by silver (Ag).
  • the nitrogen-containing layer 1a with respect to the electrode layer 1b is composed of a compound containing nitrogen atoms (N), and in particular, non-nitrogen atoms that are stably bonded to silver which is a main material constituting the electrode layer 1b.
  • the shared electron pair is [effective unshared electron pair], and a compound having a content of the [effective unshared electron pair] within a predetermined range is used.
  • the transparency of the transparent electrode 1 of the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the substrate 11 on which the transparent electrode 1 of the present invention is formed examples include, but are not limited to, glass and plastic. Further, the substrate 11 may be transparent or opaque. When the transparent electrode 1 of the present invention is used in an electronic device that extracts light from the substrate 11 side, the substrate 11 is preferably transparent. Examples of the transparent substrate 11 that is preferably used include glass, quartz, and a transparent resin film.
  • the glass examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. From the viewpoints of adhesion, durability, and smoothness with the nitrogen-containing layer 1a, the surface of these glass materials is subjected to physical treatment such as polishing, a coating made of an inorganic material or an organic material, if necessary, A hybrid film combining these films is formed.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name JSR) or Appel (trade name Mits
  • a film made of an inorganic material or an organic material or a hybrid film combining these films may be formed on the surface of the resin film.
  • Such coatings and hybrid coatings have a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) of 0.01 g / (measured by a method in accordance with JIS-K-7129-1992. m 2 ⁇ 24 hours) or less of a barrier film (also referred to as a barrier film or the like) is preferable.
  • the oxygen permeability measured by a method according to JIS-K-7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 hours ⁇ atm) or less, and the water vapor permeability is 10 ⁇ 5 g / (m 2 ⁇ 24 hours) or less high barrier film is preferable.
  • the material for forming the barrier film as described above may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. be able to.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weighting can be used, but an atmospheric pressure plasma polymerization method described in JP-A No. 2004-68143 is particularly preferable.
  • the base material 11 is opaque
  • a metal substrate such as aluminum or stainless steel, an opaque resin substrate, a ceramic substrate, or the like can be used. These substrates may be in the form of a film that bends flexibly.
  • the nitrogen-containing layer 1a is a layer provided adjacent to the aluminum intermediate layer A, and is configured using a compound containing a nitrogen atom (N). Part of this nitrogen-containing layer 1a may be in contact with the electrode layer 1b.
  • the nitrogen-containing layer 1a may contain a halogen atom.
  • the compound constituting the nitrogen-containing layer 1a is a non-shared electron pair of nitrogen atoms that are stably bonded to silver, which is the main material constituting the electrode layer 1b, among nitrogen atoms contained in the compound. [Effective unshared electron pair], and the content ratio of the [effective unshared electron pair] is within a predetermined range.
  • “effective unshared electron pair” means an unshared electron pair that is not involved in aromaticity and is not coordinated to a metal among the unshared electron pairs of the nitrogen atom contained in the compound.
  • [Effective unshared electron pair] as described above refers to an unshared electron pair possessed by a nitrogen atom regardless of whether or not the nitrogen atom itself provided with the unshared electron pair is a hetero atom constituting an aromatic ring. Is selected depending on whether or not is involved in aromaticity. For example, even if a nitrogen atom is a heteroatom constituting an aromatic ring, if the nitrogen atom has an unshared electron pair that does not participate in aromaticity, the unshared electron pair is [effective unshared electron. It is counted as one of the pair.
  • the number n of [effective unshared electron pairs] with respect to the molecular weight M of such a compound is defined as, for example, the effective unshared electron pair content [n / M].
  • the nitrogen-containing layer 1a is characterized in that this [n / M] is configured using a compound selected so that 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M]. Further, the nitrogen-containing layer 1a is more preferable if the effective unshared electron pair content [n / M] defined as described above is in the range of 5.0 ⁇ 10 ⁇ 3 ⁇ [n / M].
  • the effective unshared electron pair content [n / M] may be [n / M] ⁇ 1.9 ⁇ 10 ⁇ 2 .
  • the nitrogen-containing layer 1a may be configured using a compound having an effective unshared electron pair content [n / M] within the predetermined range described above, or may be configured only with such a compound. Further, such a compound and other compounds may be mixed and used. The other compound may or may not contain a nitrogen atom, and the effective unshared electron pair content [n / M] may not be within the predetermined range described above.
  • the nitrogen-containing layer 1a is composed of a plurality of compounds, for example, based on the mixing ratio of the compounds, the molecular weight M of the mixed compound obtained by mixing these compounds is obtained, and [effective non- The total number n of [shared electron pairs] is obtained as an average value of the effective unshared electron pair content [n / M], and this value is preferably within the predetermined range described above. That is, it is preferable that the effective unshared electron pair content [n / M] of the nitrogen-containing layer 1a itself is within a predetermined range.
  • the nitrogen-containing layer 1a is configured using a plurality of compounds and the composition ratio (content ratio) of the compounds is different in the film thickness direction, the side in contact with the aluminum intermediate layer A is used.
  • the effective unshared electron pair content [n / M] in the interface layer of the nitrogen-containing layer 1a may be within the predetermined range described above.
  • the nitrogen-containing layer 1a may contain a compound having a halogen atom.
  • the compound whose effective unshared electron pair content [n / M] is in the predetermined range described above may have a halogen atom, or a nitrogen-containing layer 1a different from this compound is formed.
  • the compound may contain a halogen atom.
  • Table 1 shows the corresponding general formulas when these exemplary compounds also belong to the general formulas (1) to (6) representing other compounds described below.
  • the transparent electrode 1 provided with the nitrogen-containing layer 1a in addition to the compound having the above-mentioned effective unshared electron pair content [n / M] within the predetermined range described above.
  • a compound having a property required for each electronic device to which is applied is used.
  • the transparent electrode 1 is used as an electrode of an organic electroluminescence device
  • the compound constituting the nitrogen-containing layer 1a is a general formula (described later) from the viewpoint of film forming properties and electron transport properties.
  • the compounds represented by 1) to (6) are used.
  • the compounds represented by the general formulas (1) to (6) there are also compounds that fall within the range of the effective unshared electron pair content [n / M] described above. It can be used alone as a compound constituting the nitrogen-containing layer 1a (see Table 1 above).
  • the compound represented by the following general formulas (1) to (6) is a compound that does not fall within the range of the above-mentioned effective unshared electron pair content [n / M]
  • the effective unshared electron pair content [ n / M] can be used as a compound constituting the nitrogen-containing layer 1a by mixing with a compound in the range described above.
  • R11 in General formula (1) and said R12 represent a hydrogen atom or a substituent.
  • substituents examples include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group).
  • alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group.
  • cycloalkyl groups for example, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl groups for example, vinyl group, allyl group, etc.
  • alkynyl groups for example, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon groups aromatic Also referred to as aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group , Pyrenyl group, biphenylyl group), aromatic heterocyclic group (eg , Furyl group, thienyl group, pyridyl group, pyridazinyl group,
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • This general formula (2) is also a form of the general formula (1).
  • Y21 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • E201 to E216 and E221 to E238 each represent —C (R21) ⁇ or —N ⁇ , and R21 represents a hydrogen atom or a substituent.
  • R21 represents a hydrogen atom or a substituent.
  • k21 and k22 represent an integer of 0 to 4, and k21 + k22 is an integer of 2 or more.
  • examples of the arylene group represented by Y21 include o-phenylene group, p-phenylene group, naphthalenediyl group, anthracenediyl group, naphthacenediyl group, pyrenediyl group, naphthylnaphthalenediyl group, and biphenyldiyl.
  • examples of the heteroarylene group represented by Y21 include a carbazole ring, a carboline ring, a diazacarbazole ring (also referred to as a monoazacarboline ring, and one of carbon atoms constituting the carboline ring is nitrogen.
  • the ring structure is replaced by an atom), a triazole ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a quinoxaline ring, a thiophene ring, an oxadiazole ring, a dibenzofuran ring, a dibenzothiophene ring, and an indole ring.
  • a carbazole ring also referred to as a monoazacarboline ring
  • a triazole ring also referred to as a monoazacarboline ring
  • a pyrrole ring also referred to as a monoazacarboline ring
  • the divalent linking group consisting of an arylene group, heteroarylene group or a combination thereof represented by Y21 a condensed aromatic heterocyclic ring formed by condensing three or more rings is used.
  • a group derived from a condensed aromatic heterocycle formed by condensation of three or more rings is preferably included, and the group derived from a dibenzofuran ring or a dibenzothiophene ring is preferable.
  • R21 of —C (R21) represented by E201 to E216 and E221 to E238 is a substituent
  • examples of the substituent include R11 of the general formula (1)
  • the substituents exemplified as R12 apply similarly.
  • E221 to E224 and E230 to E233 are each represented by —C (R21) ⁇ .
  • E203 is represented by —C (R21) ⁇ and R21 represents a linking site
  • R21 preferably represents a linking site.
  • This general formula (3) is also a form of the general formula (1).
  • E301 to E312 each represent —C (R31) ⁇
  • R31 represents a hydrogen atom or a substituent.
  • Y31 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • This general formula (4) is also a form of the general formula (1).
  • E401 to E414 each represent —C (R41) ⁇ , and R41 represents a hydrogen atom or a substituent.
  • Ar41 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • k41 represents an integer of 3 or more.
  • the aromatic hydrocarbon ring includes benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene Ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen And a ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
  • These rings may further have the substituents exemplified as R11
  • the aromatic heterocycle when Ar41 represents an aromatic heterocycle, the aromatic heterocycle includes a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, Triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring And azacarbazole ring.
  • the azacarbazole ring refers to one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom. These rings may further have the substituents exemplified as R11 and R12 in the general formula (1).
  • R51 represents a substituent
  • E501, E502, E511 to E515, E521 to E525 each represent —C (R52) ⁇ or —N ⁇
  • R52 represents a hydrogen atom (H) or a substituent.
  • at least one of E521 to E525 Is -N (nitrogen atom).
  • E601 to E612 each represent —C (R61) ⁇ or —N ⁇ , and R61 represents a hydrogen atom or a substituent.
  • Ar61 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • the substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring represented by Ar61 may be the same as Ar41 in the general formula (4).
  • these compounds 1 to 118 compounds that fall within the range of the effective unshared electron pair content [n / M] described above are included, and if such compounds are used, the nitrogen-containing layer 1a alone is formed. It can be used as a constituent compound. Further, among these compounds 1-118, there are compounds that fall under the general formulas (1)-(6) described above.
  • Step 1 (Synthesis of Intermediate 1) Under a nitrogen atmosphere, 2,8-dibromodibenzofuran (1.0 mol), carbazole (2.0 mol), copper powder (3.0 mol), potassium carbonate (1.5 mol), DMAc (dimethylacetamide) 300 ml Mixed in and stirred at 130 ° C. for 24 hours.
  • Step 2 (Synthesis of Intermediate 2)
  • Intermediate 1 (0.5 mol) was dissolved in 100 ml of DMF (dimethylformamide) at room temperature in the atmosphere, NBS (N-bromosuccinimide) (2.0 mol) was added, and the mixture was stirred overnight at room temperature. The resulting precipitate was filtered and washed with methanol, yielding intermediate 2 in 92% yield.
  • Step 3 (Synthesis of Compound 5) Under a nitrogen atmosphere, intermediate 2 (0.25 mol), 2-phenylpyridine (1.0 mol), ruthenium complex [( ⁇ 6 -C 6 H 6 ) RuCl 2 ] 2 (0.05 mol), triphenyl Phosphine (0.2 mol) and potassium carbonate (12 mol) were mixed in 3 L of NMP (N-methyl-2-pyrrolidone) and stirred at 140 ° C. overnight.
  • NMP N-methyl-2-pyrrolidone
  • Halogen atoms and halogen compounds examples include fluorine, chlorine, bromine and iodine. As described above, these halogen atoms may be contained in a compound containing a nitrogen atom, or may be contained in the nitrogen-containing layer 1a as a halogen compound different from the compound containing a nitrogen atom.
  • the halogen compound constituting the nitrogen-containing layer 1a include lithium fluoride, potassium fluoride, calcium fluoride, lithium chloride, potassium chloride, calcium chloride, lithium bromide, potassium bromide, calcium bromide, lithium iodide, iodine And potassium iodide and calcium iodide.
  • the film forming method includes a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, Examples include a method using a dry process such as a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like. Of these, the vapor deposition method is preferably applied.
  • the nitrogen-containing layer 1a is formed using a plurality of compounds
  • co-evaporation in which a plurality of compounds are simultaneously supplied from a plurality of evaporation sources is applied.
  • a coating method is preferably applied.
  • a coating solution in which the compound is dissolved in a solvent is used.
  • the solvent in which the compound is dissolved is not limited.
  • a coating solution may be prepared using a solvent capable of dissolving the plurality of compounds.
  • the aluminum intermediate layer A is a layer composed of aluminum, and is provided between these layers in contact with the nitrogen-containing layer 1a and the electrode layer 1b.
  • This aluminum intermediate layer A is a film that is sufficiently thin so as not to inhibit the light transmittance of the transparent electrode 1 and to not inhibit the influence of nitrogen contained in the nitrogen-containing layer 1a on the electrode layer 1b. It is important that it be thick.
  • FIG. 2 is an enlarged view of the part a in FIG. 1 and is an enlarged view of a main part including the aluminum intermediate layer A of the transparent electrode 1.
  • the aluminum intermediate layer A may have a film thickness of 1 nm or less, and does not have to be a uniform film thickness or a continuous film. It may have a shape having holes.
  • the aluminum intermediate layer A as described above contains aluminum as a main component and may contain silver, magnesium, copper, indium lithium, and the like.
  • the aluminum intermediate layer A may contain a halogen atom or a halogen compound.
  • the halogen atom or halogen compound in the aluminum intermediate layer A is contained at least at the interface with the nitrogen-containing layer 1a, and may be contained in all layers in the aluminum intermediate layer A. That is, the aluminum intermediate layer A may have a configuration in which the entire layer extending from the side in contact with the nitrogen-containing layer 1a to the side in contact with the electrode layer 1b contains a halogen atom or a halogen compound.
  • the halogen atom contained in the aluminum intermediate layer A is the same halogen atom as the halogen atom contained in the nitrogen-containing layer 1a.
  • the halogen atom is contained as an aluminum halide.
  • Specific examples of the aluminum halide constituting the aluminum intermediate layer A include aluminum fluoride, aluminum chloride, aluminum bromide, aluminum iodide and the like.
  • FIG. 3 shows another form of the aluminum intermediate layer A.
  • This FIG. 3 is the figure which expanded the a part in FIG. 1, and is the figure which expanded the principal part containing the aluminum intermediate
  • the aluminum intermediate layer A includes a first layer A1 containing halogen atoms provided on the nitrogen-containing layer 1a side and a second layer A2 containing no halogen atoms provided on the electrode layer 1b side. And may be provided.
  • the halogen atoms constituting the first layer A1 are the same halogen atoms as the halogen atoms contained in the nitrogen-containing layer 1a.
  • the halogen atoms constituting the first layer A1 are contained in the first layer A1 as aluminum halide.
  • aluminum halides include aluminum fluoride, aluminum chloride, aluminum bromide, aluminum iodide and the like.
  • the aluminum intermediate layer A As another form of the aluminum intermediate layer A, a configuration in which the content of halogen atoms has a concentration gradient in the film thickness direction is exemplified.
  • the aluminum intermediate layer A is mainly composed of aluminum formed so that the halogen atom content (halogen concentration in the aluminum intermediate layer A) gradually decreases from the nitrogen-containing layer 1a side to the electrode layer 1b side. It may be configured as a layer. That is, the aluminum intermediate layer A only needs to contain a halogen atom at least at the interface with the nitrogen-containing layer 1a.
  • a method using a wet process such as a coating method, an ink jet method, a coating method, a dipping method, a vapor deposition method (resistance heating, EB method, etc.), sputtering, etc.
  • a method using a dry process such as a CVD method or a CVD method can be applied.
  • the vapor deposition method is preferably applied.
  • annealing treatment heat treatment
  • the annealing treatment is preferably performed at 40 ° C. or higher and 150 ° C. or lower.
  • the nitrogen-containing layer 1a containing halogen atoms is first formed. Thereafter, an aluminum intermediate layer A mainly composed of aluminum is formed on the nitrogen-containing layer 1a containing halogen atoms, and at least on the interface side of the aluminum intermediate layer A with the nitrogen-containing layer 1a, Of halogen atoms.
  • the diffusion of halogen atoms into the aluminum intermediate layer A may be during the film formation of the aluminum intermediate layer A, after the film formation, or both.
  • halogen atoms are diffused during the formation of the aluminum intermediate layer A, the substrate is heated during the formation of the aluminum intermediate layer. As a result, due to the heating during film formation, the halogen atoms contained in the nitrogen-containing layer 1a react with aluminum, and at least the intermediate layer of the aluminum contains aluminum atoms as an aluminum halide at the interface with the nitrogen-containing layer 1a. Layer A is formed.
  • the annealing process may be a process after the film formation of the aluminum intermediate layer A, and may be performed, for example, after the electrode layer 1b is formed.
  • the substrate heating temperature at the time of film formation of the aluminum intermediate layer A described above is set so that the entire aluminum intermediate layer A is not halogenated. Annealing conditions after film formation are set, or substrate heating and annealing are not performed.
  • the halogen atoms in the surface layer can be reduced by reducing the amount of halogen atoms contained in the nitrogen-containing layer 1a to a predetermined value or less, or by making the film thickness of the aluminum intermediate layer as thick as possible within a range where the transmittance does not decrease.
  • An aluminum intermediate layer is formed without diffusion.
  • the film formation substrate may be cooled when the aluminum intermediate layer A is formed.
  • the aluminum intermediate layer A is formed while preventing diffusion of halogen atoms from the nitrogen-containing layer 1a.
  • the electrode layer 1b is a layer composed mainly of silver, is composed of silver or an alloy composed mainly of silver, and sandwiches the aluminum intermediate layer A with the nitrogen-containing layer 1a. It is an arranged layer. Such an electrode layer 1b is provided adjacent to the aluminum intermediate layer A. In addition, when the aluminum intermediate layer A is not a continuous film but an island-like or hole-containing layer, a part of the electrode layer 1b is provided adjacent to the nitrogen-containing layer 1a.
  • an alloy containing silver (Ag) as a main component constituting the electrode layer 1b is silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn). Etc.
  • the electrode layer 1b as described above may have a structure in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
  • the electrode layer 1b preferably has a thickness in the range of 4 to 12 nm.
  • a film thickness of 12 nm or less is preferable because the absorption component or reflection component of the layer can be kept low and the light transmittance of the transparent barrier film is maintained.
  • the electroconductivity of a layer is also ensured because a film thickness is 4 nm or more.
  • the transparent electrode 1 having a laminated structure in which the aluminum intermediate layer A is sandwiched between the nitrogen-containing layer 1a and the electrode layer 1b as described above, the upper part of the electrode layer 1b is covered with a protective film, A conductive layer may be stacked.
  • the protective film and the conductive layer have light transmittance so as not to impair the light transmittance of the transparent electrode 1.
  • Electrode Layer 1b As a method for forming such an electrode layer 1b, a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc. And a method using the dry process. Of these, the vapor deposition method is preferably applied. Further, the electrode layer 1b is formed on the nitrogen-containing layer 1a through the ultra-thin aluminum intermediate layer A, so that the electrode layer 1b has sufficient conductivity even without a high-temperature annealing treatment after the film formation.
  • a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc. And a method using the dry process.
  • the vapor deposition method
  • high temperature annealing treatment may be performed after film formation.
  • This high-temperature annealing treatment may also serve as an annealing treatment for reacting the halogen atoms in the nitrogen-containing layer 1a with the aluminum in the aluminum intermediate layer A during the formation of the aluminum intermediate layer A described above.
  • the electrode layer 1b mainly composed of silver is adjacent to the nitrogen-containing layer 1a configured using the compound containing nitrogen atoms via the aluminum intermediate layer A.
  • the electrode layer 1b containing silver as a main component causes the interaction of the aluminum intermediate layer A with aluminum and the interaction with the compound containing nitrogen atoms constituting the nitrogen-containing layer 1a, so that The diffusion distance is reduced and aggregation is suppressed. Therefore, in general, a silver thin film that is easily isolated in an island shape by film growth of a nuclear growth type (Volume-Weber: VW type) is a single layer growth type (Frank-van der Merwe: FM type) film growth. As a result, a film is formed. Therefore, the electrode layer 1b having a uniform film thickness can be obtained even though the film thickness is small.
  • the aluminum intermediate layer A may be an extremely thin film, light absorption in the aluminum intermediate layer A can be minimized. The light transmittance of the transparent electrode 1 is not hindered.
  • the film thickness of the aluminum intermediate layer A is an extremely thin film, the nitrogen constituting the nitrogen-containing layer 1a can interact with the silver constituting the electrode layer 1b via the aluminum intermediate layer A.
  • the effective unshared electron pair content [n / M] described above is applied as an index of the bond stability of silver constituting the electrode layer 1b with respect to the nitrogen-containing layer 1a, and this value is 3.9 ⁇ 10 ⁇ .
  • the nitrogen-containing layer 1a was configured using a compound satisfying 3 ⁇ [n / M]. This makes it possible to provide the nitrogen-containing layer 1a that can reliably obtain the effect of “suppressing the aggregation of silver” as described above. This is because, as will be described in detail in the following examples, on such a nitrogen-containing layer 1a, an electrode whose sheet resistance is suppressed to a low value of about two digits although it is an extremely thin film of 5 nm. It was also confirmed from the formation of the layer 1b.
  • the transparent electrode 1 it is possible to reliably obtain the electrode layer 1 b in which conductivity is ensured by having a uniform film thickness while ensuring light transmittance by being thin. Thus, it is possible to achieve both improvement in conductivity and improvement in light transmission in the transparent electrode 1 using silver.
  • the drive voltage can be lowered and the high temperature / high humidity storage stability can be improved by containing halogen atoms in the nitrogen-containing layer 1a.
  • the transparent electrode 1 configured as described above has a structure in which a halogen atom is contained as an aluminum halide at least on the interface of the aluminum intermediate layer A on the nitrogen-containing layer 1a side.
  • the change in physical properties of the inorganic material layer can be continuously changed. Therefore, when the nitrogen-containing layer 1a and the aluminum intermediate layer A are viewed as a base layer, the continuity of physical properties from the base layer to the electrode layer 1b containing silver as a main component is maintained. Reduction and suppression of silver aggregation can be achieved.
  • Such a transparent electrode 1 is low in cost because it does not use indium (In), which is a rare metal, and has excellent long-term reliability because it does not use a chemically unstable material such as ZnO. Yes.
  • the transparent electrode 1 having the above-described configuration can be used for various electronic devices.
  • Examples of electronic devices include organic electroluminescent elements, LEDs (light emitting diodes), liquid crystal elements, solar cells, touch panels, etc.
  • As electrode members that require light transmission in these electronic devices A transparent electrode 1 can be used.
  • an organic electroluminescent element using transparent electrodes as an anode and a cathode will be described.
  • FIG. 4 is a cross-sectional configuration diagram showing a first example of an organic electroluminescent element using the transparent electrode 1 described above as an example of the electronic device of the present invention. The configuration of the organic electroluminescent element will be described below based on this figure.
  • the organic electroluminescent element EL-1 shown in FIG. 4 is provided on the substrate 13, and in order from the substrate 13 side, the light-emitting functional layer 3 configured using the counter electrode 5-1, an organic material, and the like, and a transparent The electrode 1 is laminated in this order.
  • the organic electroluminescent element EL-1 is characterized in that the transparent electrode 1 of the present invention described above is used as the transparent electrode 1. For this reason, the organic electroluminescent element EL-1 is configured as a top emission type in which generated light (hereinafter referred to as emitted light h) is extracted from at least the side opposite to the substrate 13.
  • the overall layer structure of the organic electroluminescent element EL-1 is not limited and may be a general layer structure.
  • the transparent electrode 1 is disposed on the cathode (ie, cathode) side, and the electrode layer 1b mainly functions as the cathode, while the counter electrode 5-1 functions as the anode (ie, anode).
  • the light emitting functional layer 3 is formed by laminating [hole injection layer 3a / hole transport layer 3b / light emitting layer 3c / electron transport layer 3d / electron injection layer 3e] in this order from the counter electrode 5-1 side which is an anode.
  • the light emitting layer 3c composed of at least an organic material.
  • the hole injection layer 3a and the hole transport layer 3b may be provided as a hole transport / injection layer having a hole transport property and a hole injection property.
  • the electron transport layer 3d and the electron injection layer 3e may be provided as a single layer having electron transport properties and electron injection properties.
  • the electron injection layer 3e may be made of an inorganic material.
  • the nitrogen-containing layer 1a may also serve as an electron injection layer, or may serve as an electron transport layer and an electron injection layer.
  • the light emitting functional layer 3 may be laminated with a hole blocking layer, an electron blocking layer, or the like as required. Furthermore, the light emitting layer 3c has each color light emitting layer for generating emitted light in each wavelength region, and each color light emitting layer may be laminated through a non-light emitting intermediate layer to form a light emitting layer unit. good.
  • the intermediate layer may function as a hole blocking layer and an electron blocking layer.
  • the counter electrode 5-1 as an anode may also have a laminated structure as necessary. In such a configuration, only a portion where the light emitting functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5-1 becomes a light emitting region in the organic electroluminescent element EL-1.
  • the auxiliary electrode 15 may be provided in contact with the electrode layer 1 b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1.
  • the organic electroluminescent element EL-1 having the above-described configuration is a transparent sealing material 17 described later on the substrate 13 for the purpose of preventing deterioration of the light emitting functional layer 3 formed using an organic material or the like. It is sealed.
  • the transparent sealing material 17 is fixed to the substrate 13 side through an adhesive 19.
  • the terminal portions of the transparent electrode 1 and the counter electrode 5-1 are provided on the substrate 13 so as to be exposed from the transparent sealing material 17 while being insulated from each other by the light emitting functional layer 3. To do.
  • the details of the main layers for constituting the organic electroluminescent element EL-1 described above will be described in addition to the substrate 13, the transparent electrode 1, the counter electrode 5-1, the light emitting layer 3c of the light emitting functional layer 3, and the light emitting functional layer 3.
  • the layer, the auxiliary electrode 15, and the transparent sealing material 17 will be described in this order. Thereafter, a method for producing the organic electroluminescent element EL-1 will be described.
  • the substrate 13 is the same as the base material on which the transparent electrode 1 of the present invention described above is provided.
  • the organic electroluminescent element EL-1 is a double-sided light emitting type that also takes out the emitted light h from the counter electrode 5-1
  • the transparent material having optical transparency is selected from the exemplified base materials. Used.
  • the transparent electrode 1 is the transparent electrode 1 of the present invention described above, and has a configuration in which the nitrogen-containing layer 1a, the aluminum intermediate layer A, and the electrode layer 1b are sequentially formed from the light emitting functional layer 3 side.
  • the electrode layer 1b and the aluminum intermediate layer A constituting the transparent electrode 1 serve as a substantial cathode.
  • a nitrogen-containing layer 1a made of an organic material is disposed between the light emitting functional layer 3 and the electrode layer 1b used as a substantial cathode. Become.
  • the nitrogen-containing layer 1 a of the transparent electrode 1 in the present embodiment is also regarded as a layer constituting a part of the light emitting functional layer 3.
  • Such a nitrogen-containing layer 1a is constituted by using a compound having an electron transporting property or an electron injecting property from among the compounds having the above-mentioned effective unshared electron pair content [n / M] in a predetermined range.
  • a nitrogen-containing layer 1a is composed of a compound having an electron transporting property or an electron injecting property so that the nitrogen-containing layer 1a itself has the above-described effective unshared electron pair content [n / M]
  • a compound having an effective unshared electron pair content [n / M] having a size may be mixed and used.
  • the counter electrode 5-1 is an electrode film that functions as an anode for supplying holes to the light emitting functional layer 3, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 and oxide semiconductors such as SnO 2 .
  • the counter electrode 5-1 can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the counter electrode 5-1 is several hundred ⁇ / sq.
  • the film thickness is usually selected from the range of 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the organic electroluminescent element EL-1 is a double-sided light emitting type that takes out the emitted light h from the counter electrode 5-1 side, a conductive material having good light transmittance among the conductive materials described above is used.
  • the counter electrode 5-1 may be configured by selection.
  • the light emitting layer 3c used in the present invention contains, for example, a phosphorescent compound as a light emitting material.
  • the light emitting layer 3c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 3d and holes injected from the hole transport layer 3b, and the light emitting portion is the light emitting layer 3c. Even within the layer, it may be an interface with an adjacent layer in the light emitting layer 3c.
  • the light emitting layer 3c is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers 3c.
  • the total thickness of the light emitting layer 3c is preferably in the range of 1 to 100 nm, more preferably 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the film thickness of the light emitting layer 3c is a film thickness also including the said intermediate
  • the thickness of each light emitting layer is preferably adjusted to a range of 1 to 50 nm, more preferably adjusted to a range of 1 to 20 nm.
  • the plurality of stacked light emitting layers correspond to blue, green, and red light emitting colors, there is no particular limitation on the relationship between the film thicknesses of the blue, green, and red light emitting layers.
  • the light emitting layer 3c as described above is formed by forming a light emitting material or a host compound described later by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. be able to.
  • the light emitting layer 3c may be a mixture of a plurality of light emitting materials, or a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer 3c.
  • the structure of the light emitting layer 3c preferably includes a host compound (also referred to as a light emitting host) and a light emitting material (also referred to as a light emitting dopant compound or a guest material) and emits light from the light emitting material.
  • a host compound also referred to as a light emitting host
  • a light emitting material also referred to as a light emitting dopant compound or a guest material
  • a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 3c.
  • a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent element EL-1 can be increased. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • the known host compound a compound having a hole transporting ability and an electron transporting ability, preventing an increase in the wavelength of light emission and having a high Tg (glass transition temperature) is preferable.
  • the glass transition point (Tg) here is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • H1 to H79 Specific examples (H1 to H79) of host compounds that can be used in the present invention are shown below, but are not limited thereto.
  • a phosphorescent compound As a light-emitting material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound or a phosphorescent material) can be given.
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, a phosphorescent compound emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 0.01 at 25 ° C. Although defined as the above compounds, the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 version, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when using a phosphorescent compound in the present invention, the above phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
  • phosphorescent compounds There are two types of light emission principles of phosphorescent compounds. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent compound to obtain light emission from the phosphorescent compound.
  • the other is a carrier trap type in which the phosphorescent compound becomes a carrier trap, and carriers are recombined on the phosphorescent compound to emit light from the phosphorescent compound. In any case, it is a condition that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer of a general organic electroluminescent device, but preferably contains a metal of group 8 to 10 in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer 3c may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer 3c varies in the thickness direction of the light emitting layer 3c. It may be.
  • the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 3c.
  • the compound (phosphorescent compound) contained in the light emitting layer 3c is preferably a compound represented by the following general formula (7).
  • the phosphorescent compound represented by the general formula (7) (also referred to as a phosphorescent metal complex) is preferably contained as a luminescent dopant in the light emitting layer 3c of the organic electroluminescent element EL-1. However, it may be contained in a light emitting functional layer other than the light emitting layer 3c.
  • P and Q each represent a carbon atom or a nitrogen atom
  • A1 represents an atomic group that forms an aromatic hydrocarbon ring or an aromatic heterocycle together with PC.
  • A2 represents an atomic group that forms an aromatic heterocycle with QN.
  • P1-L1-P2 represents a bidentate ligand
  • P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L1 represents an atomic group that forms a bidentate ligand together with P1 and P2.
  • j1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 is 2 or 3.
  • M1 represents a group 8-10 transition metal element in the periodic table.
  • P and Q each represent a carbon atom or a nitrogen atom.
  • examples of the aromatic hydrocarbon ring that A1 forms with PC include a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
  • These rings may further have substituents exemplified as R11 and R12 in the general formula (1).
  • the aromatic heterocycle formed by A1 together with P—C includes a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, Benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, azacarbazole A ring etc. are mentioned.
  • the azacarbazole ring means one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom.
  • These rings may further have substituents exemplified as R11 and R12 in the general formula (1).
  • the aromatic heterocycle formed by A2 together with QN includes an oxazole ring, an oxadiazole ring, an oxatriazole ring, an isoxazole ring, a tetrazole ring, a thiadiazole ring, a thiatriazole ring, Examples include a thiazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an imidazole ring, a pyrazole ring, and a triazole ring.
  • These rings may further have substituents exemplified as R11 and R12 in the general formula (1).
  • P1-L1-P2 represents a bidentate ligand
  • P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom
  • L1 represents an atomic group that forms a bidentate ligand together with P1 and P2.
  • Examples of the bidentate ligand represented by P1-L1-P2 include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, acetylacetone, picolinic acid, and the like.
  • j1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 represents 2 or 3
  • j2 is preferably 0.
  • M1 is a transition metal element of group 8 to 10 in the periodic table of elements (also simply referred to as a transition metal), and among these, iridium is preferable.
  • Z represents a hydrocarbon ring group or a heterocyclic group.
  • P and Q each represent a carbon atom or a nitrogen atom
  • A1 represents an atomic group that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring together with P—C.
  • P1-L1-P2 represents a bidentate ligand
  • P1 and P2 each independently represent a carbon atom, a nitrogen atom, or an oxygen atom.
  • L1 represents an atomic group that forms a bidentate ligand together with P1 and P2.
  • j1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 is 2 or 3.
  • M1 represents a group 8-10 transition metal element in the periodic table.
  • examples of the hydrocarbon ring group represented by Z include a non-aromatic hydrocarbon ring group and an aromatic hydrocarbon ring group, and examples of the non-aromatic hydrocarbon ring group include a cyclopropyl group. , Cyclopentyl group, cyclohexyl group and the like. These groups may be unsubstituted or may have the substituents exemplified as R11 and R12 in the general formula (1).
  • aromatic hydrocarbon ring group examples include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl. Group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like.
  • examples of the heterocyclic group represented by Z include a non-aromatic heterocyclic group and an aromatic heterocyclic group.
  • examples of the non-aromatic heterocyclic group include an epoxy ring and an aziridine group. Ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ⁇ -caprolactone ring, ⁇ - Caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring
  • aromatic heterocyclic group examples include a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl).
  • oxazolyl group 1,2,3-triazol-1-yl group, etc.
  • benzoxazolyl group thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl Group, pyridazinyl group, triazinyl group, Nazoriniru group, phthalazinyl group, and the like.
  • the group represented by Z is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon ring formed by A1 together with PC includes benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring , Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring , Pyrene ring, pyranthrene ring, anthraanthrene ring and the like.
  • These rings may further have substituents exemplified as R11 and R12 in the general formula (1).
  • the aromatic heterocycle formed by A1 together with PC includes furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzo Imidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, carboline ring, And azacarbazole ring.
  • the azacarbazole ring means one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom.
  • These rings may further have substituents exemplified as R11 and R12 in the general formula (1).
  • examples of the bidentate ligand represented by P1-L1-P2 include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabole, acetylacetone, and picolinic acid. .
  • J1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 represents 2 or 3
  • j2 is preferably 0.
  • transition metal elements of groups 8 to 10 in the periodic table of elements represented by M1 (also simply referred to as transition metals) in the periodic table of elements represented by M1 in the general formula (7) Synonymous with group 8-10 transition metal elements.
  • R 03 represents a substituent
  • R 04 represents a hydrogen atom or a substituent
  • a plurality of R 04 may be bonded to each other to form a ring.
  • n01 represents an integer of 1 to 4.
  • R 05 represents a hydrogen atom or a substituent, and a plurality of R 05 may be bonded to each other to form a ring.
  • n02 represents an integer of 1 to 2.
  • R 06 represents a hydrogen atom or a substituent, and may combine with each other to form a ring.
  • n03 represents an integer of 1 to 4.
  • Z1 represents an atomic group necessary for forming a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle together with C—C.
  • Z2 represents an atomic group necessary for forming a hydrocarbon ring group or a heterocyclic group.
  • P1-L1-P2 represents a bidentate ligand, and P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L1 represents an atomic group that forms a bidentate ligand together with P1 and P2.
  • j1 represents an integer of 1 to 3
  • j2 represents an integer of 0 to 2
  • j1 + j2 is 2 or 3.
  • M1 represents a group 8-10 transition metal element in the periodic table.
  • R 03 and R 06 , R 04 and R 06, and R 05 and R 06 may be bonded to each other to form a ring.
  • each of the substituents represented by R 03 , R 04 , R 05 , and R 06 may have the substituents exemplified as R 11 and R 12 in the general formula (1).
  • examples of the 6-membered aromatic hydrocarbon ring formed by Z1 together with C—C include a benzene ring.
  • These rings may further have substituents exemplified as R11 and R12 in the general formula (1).
  • the 5-membered or 6-membered aromatic heterocycle formed by Z1 together with C—C includes, for example, an oxazole ring, an oxadiazole ring, an oxatriazole ring, an isoxazole ring, a tetrazole ring, a thiadiazole And a ring, a thiatriazole ring, an isothiazole ring, a thiophene ring, a furan ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an imidazole ring, a pyrazole ring, and a triazole ring.
  • These rings may further have substituents exemplified as R11 and R12 in the general formula (1).
  • examples of the hydrocarbon ring group represented by Z2 include a non-aromatic hydrocarbon ring group and an aromatic hydrocarbon ring group, and examples of the non-aromatic hydrocarbon ring group include a cyclopropyl group. , Cyclopentyl group, cyclohexyl group and the like. These groups may be unsubstituted or may have the substituents exemplified as R11 and R12 in the general formula (1).
  • aromatic hydrocarbon ring group examples include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl.
  • aromatic hydrocarbon group examples include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl.
  • These groups may be unsubstituted or may have the substituents exemplified as R11 and R12 in the general formula (1).
  • examples of the heterocyclic group represented by Z2 include a non-aromatic heterocyclic group and an aromatic heterocyclic group.
  • examples of the non-aromatic heterocyclic group include an epoxy ring and an aziridine group. Ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ⁇ -caprolactone ring, ⁇ - Caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring
  • aromatic heterocyclic group examples include a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl).
  • oxazolyl group 1,2,3-triazol-1-yl group, etc.
  • benzoxazolyl group thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl Group, pyridazinyl group, triazinyl group, Nazoriniru group, phthalazinyl group, and the like.
  • These rings may be unsubstituted or may further have the substituents exemplified as R11 and R12 in the general formula (1).
  • the group formed by Z1 and Z2 is preferably a benzene ring.
  • the bidentate ligand represented by P1-L1-P2 has the same meaning as the bidentate ligand represented by P1-L1-P2 in the general formula (7). .
  • the transition metal elements of groups 8 to 10 in the periodic table of elements represented by M1 are the transition metal groups of groups 8 to 10 in the periodic table of elements represented by M1 in general formula (7). Synonymous with metal element.
  • the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer 3c of the organic electroluminescent element EL-1.
  • the phosphorescent compound according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound). Rare earth complexes, most preferably iridium compounds.
  • Pt-1 to Pt-3, A-1, Ir-1 to Ir-50 Specific examples (Pt-1 to Pt-3, A-1, Ir-1 to Ir-50) of the phosphorescent compounds according to the present invention are shown below, but the present invention is not limited thereto.
  • m and n represent the number of repetitions.
  • phosphorescent compounds also referred to as phosphorescent metal complexes and the like
  • Fluorescent materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes Examples thereof include dyes, polythiophene dyes, and rare earth complex phosphors.
  • injection layer hole injection layer 3a, electron injection layer 3e
  • the injection layer is a layer provided between the electrode and the light emitting layer 3c in order to lower the driving voltage and improve the light emission luminance.
  • the injection layer can be provided as necessary.
  • the hole injection layer 3a may be present between the anode and the light emitting layer 3c or the hole transport layer 3b, and the electron injection layer 3e may be present between the cathode and the light emitting layer 3c or the electron transport layer 3d.
  • JP-A-9-45479 JP-A-9-260062, JP-A-8-288069, and the like.
  • Specific examples include phthalocyanine represented by copper phthalocyanine.
  • examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the electron injection layer 3e is desirably a very thin film, and the film thickness is preferably in the range of 1 nm to 10 ⁇ m although it depends on the material.
  • the hole transport layer 3b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 3a and the electron blocking layer are also included in the hole transport layer 3b.
  • the hole transport layer 3b can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • a so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer 3b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. be able to.
  • the film thickness of the hole transport layer 3b is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer 3b may have a single layer structure composed of one or more of the above materials.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer 3d is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer 3e and a hole blocking layer (not shown) are also included in the electron transport layer 3d.
  • the electron transport layer 3d can be provided as a single layer structure or a multi-layer structure.
  • an electron transport material also serving as a hole blocking material
  • electrons injected from the cathode are used. What is necessary is just to have the function to transmit to the light emitting layer 3c.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 3d.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material of the electron transport layer 3d.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 3d.
  • a distyrylpyrazine derivative exemplified also as a material of the light emitting layer 3c can be used as a material of the electron transport layer 3d, and n-type Si, n, like the hole injection layer 3a and the hole transport layer 3b.
  • An inorganic semiconductor such as type-SiC can also be used as the material of the electron transport layer 3d.
  • the electron transport layer 3d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the film thickness of the electron transport layer 3d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer 3d may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer 3d contains potassium or a potassium compound.
  • the potassium compound for example, potassium fluoride can be used.
  • the material (electron transporting compound) of the electron transport layer 3d a compound represented by the following general formula (10) can be preferably used.
  • n1 represents an integer of 1 or more
  • Y1 represents a substituent when n1 is 1, and represents a simple bond or an n1-valent linking group when n1 is 2 or more
  • Ar1 represents a group represented by the general formula (A) described later. When n1 is 2 or more, a plurality of Ar1s may be the same or different. However, the compound represented by the general formula (10) has at least two condensed aromatic heterocycles in which three or more rings are condensed in the molecule.
  • examples of the substituent represented by Y1 are the same as the substituents exemplified as R11 and R12 in the general formula (1) shown as the compound constituting the nitrogen-containing layer 1a of the transparent electrode 1. It is.
  • n1-valent linking group represented by Y1 in General Formula (10) include a divalent linking group, a trivalent linking group, and a tetravalent linking group.
  • an alkylene group for example, ethylene group, trimethylene group, tetramethylene group, propylene group, ethylethylene group, pentamethylene group, hexamethylene group, 2,2,4-trimethylhexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, cyclohexylene group (for example, 1,6-cyclohexanediyl group, etc.), Cyclopentylene group (for example, 1,5-cyclopentanediyl group and the like), alkenylene group (for example, vinylene group, propenylene group, butenylene group, pentenylene group, 1-methylvinylene group, 1-methylpropenylene group, 2-methylpropenylene group, 1-methylpentenylene group, 3-methyl Rupentenylene group, 1-ethylvinylene group,
  • Ring specifically, acridine ring, benzoquinoline ring, carbazole ring, phenazine ring, phenanthridine ring, phenanthroline ring, carboline ring, cyclazine ring, kindrin ring, tepenidine ring, quinindrin ring, triphenodi A thiazine ring, a triphenodioxazine ring, a phenanthrazine ring, an anthrazine ring, a perimidine ring, a diazacarbazole ring (representing any one of the carbon atoms constituting the carboline ring replaced by a nitrogen atom), a phenanthroline ring, Dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene , Benzodifuran ring, benzodithiophene ring, naphthodifuran
  • examples of the trivalent linking group represented by Y1 include ethanetriyl, propanetriyl, butanetriyl, pentanetriyl, hexanetriyl, heptanetriyl, and octanetriyl.
  • the tetravalent linking group represented by Y1 is a group in which one trivalent group is further added to the above trivalent group.
  • each of the divalent linking group, the trivalent linking group, and the tetravalent linking group may further have the substituents exemplified as R11 and R12 in the general formula (1).
  • Y1 preferably represents a group derived from a condensed aromatic heterocycle formed by condensation of three or more rings, and the three or more rings.
  • a condensed aromatic heterocyclic ring formed by condensing a dibenzofuran ring or a dibenzothiophene ring is preferable.
  • n1 is preferably 2 or more.
  • the compound represented by the general formula (10) has at least two condensed aromatic heterocycles formed by condensation of three or more rings in the molecule.
  • Y1 represents an n1-valent linking group
  • Y1 is preferably non-conjugated in order to keep the triplet excitation energy of the compound represented by the general formula (10) high, and further, Tg (glass transition In view of improving the point, also referred to as glass transition temperature, it is preferably composed of an aromatic ring (aromatic hydrocarbon ring + aromatic heterocycle).
  • non-conjugated means that the linking group cannot be expressed by repeating a single bond (also referred to as a single bond) and a double bond, or the conjugation between aromatic rings constituting the linking group is sterically cleaved. Means.
  • Ar1 in the general formula (10) represents a group represented by the following general formula (A).
  • X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
  • E1 to E8 represent —C (R1) ⁇ or —N ⁇ .
  • R, R ′ and R1 each represent a hydrogen atom, a substituent or a linking site with Y1. * Represents a linking site with Y1.
  • Y2 represents a simple bond or a divalent linking group.
  • Y3 and Y4 each represent a group derived from a 5-membered or 6-membered aromatic ring, and at least one represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring constituent atom.
  • n2 represents an integer of 1 to 4.
  • the divalent linking group represented by Y2 has the same meaning as the divalent linking group represented by Y1 in the general formula (10).
  • At least one of the groups derived from a 5-membered or 6-membered aromatic ring represented by Y3 and Y4 represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring constituent atom
  • the aromatic heterocycle containing a nitrogen atom as the ring constituent atom include an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a diazine ring, a triazine ring, an imidazole ring, an isoxazole ring, a pyrazole ring, Examples include a triazole ring.
  • the group represented by Y3 is preferably a group derived from the above 6-membered aromatic ring, and more preferably a group derived from a benzene ring.
  • the group represented by Y4 is preferably a group derived from the 6-membered aromatic ring, more preferably an aromatic heterocycle containing a nitrogen atom as a ring constituent atom. Particularly preferably, Y4 is a group derived from a pyridine ring.
  • a preferred embodiment of the group represented by the general formula (A) is represented by any one of the following general formulas (A-1), (A-2), (A-3), or (A-4) Groups.
  • X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
  • R, R 'and R1 each represent a hydrogen atom, a substituent, or a linking site with Y1.
  • Y2 represents a simple bond or a divalent linking group.
  • E11 to E20 each represent —C (R2) ⁇ or —N ⁇ , and at least one represents —N ⁇ .
  • R2 represents a hydrogen atom, a substituent or a linking site. However, at least one of E11 and E12 represents —C (R2) ⁇ , and R2 represents a linking site.
  • n2 represents an integer of 1 to 4. * Represents a linking site with Y1 in the general formula (10).
  • X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
  • R, R 'and R1 each represent a hydrogen atom, a substituent, or a linking site with Y1.
  • Y2 represents a simple bond or a divalent linking group.
  • R2 represents a hydrogen atom, a substituent or a linking site
  • R3 and R4 represent a hydrogen atom or a substituent.
  • at least one of E21 or E22 represents —C (R2) ⁇
  • R2 represents a linking site
  • n2 represents an integer of 1 to 4. * Represents a linking site with Y1 in the general formula (10).
  • X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
  • R, R 'and R1 each represent a hydrogen atom, a substituent, or a linking site with Y1.
  • Y2 represents a simple bond or a divalent linking group.
  • R2 represents a hydrogen atom, a substituent or a linking site
  • R3 and R4 represent a hydrogen atom or a substituent.
  • at least one of E32 or E33 is represented by —C (R2) ⁇
  • R2 represents a linking site
  • n2 represents an integer of 1 to 4. * Represents a linking site with Y1 in the general formula (10).
  • X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
  • R, R 'and R1 each represent a hydrogen atom, a substituent, or a linking site with Y1.
  • Y2 represents a simple bond or a divalent linking group.
  • E41 to E50 each represent —C (R2) ⁇ , —N ⁇ , —O—, —S— or —Si (R3) (R4) —, and at least one of them represents —N ⁇ .
  • R2 represents a hydrogen atom, a substituent or a linking site
  • R3 and R4 represent a hydrogen atom or a substituent.
  • n2 represents an integer of 1 to 4. * Represents a linking site with Y1 in the general formula (10).
  • the divalent linking group represented by Y2 is a divalent group represented by Y1 in the general formula (10). It is synonymous with the linking group.
  • the general formula (11) includes the general formula (2) shown as a compound constituting the nitrogen-containing layer 1a of the transparent electrode 1.
  • the compound represented by the general formula (11) will be described.
  • Y5 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • E51 to E66 each represent —C (R3) ⁇ or —N ⁇ , and R3 represents a hydrogen atom or a substituent.
  • Y6 to Y9 each represents a group derived from an aromatic hydrocarbon ring or a group derived from an aromatic heterocycle, and at least one of Y6 or Y7 and at least one of Y8 or Y9 is an aromatic group containing an N atom.
  • n3 and n4 represent an integer of 0 to 4, and n3 + n4 is an integer of 2 or more.
  • Y5 in the general formula (11) is synonymous with Y21 in the general formula (2).
  • E51 to E66 in the general formula (11) have the same meanings as E201 to E216 in the general formula (2).
  • R3 of —C (R3) ⁇ represented by each of E51 to E66 is a substituent
  • the substituents exemplified as R11 and R12 in the general formula (1) are similarly applied.
  • Y6 to Y9 are each an aromatic hydrocarbon ring used for forming a group derived from an aromatic hydrocarbon ring, such as a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring.
  • aromatic hydrocarbon ring may have a substituent exemplified as R11 and R12 in the general formula (1).
  • Y6 to Y9 are each an aromatic heterocycle used for forming a group derived from an aromatic heterocycle, such as a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, or a pyridine ring.
  • aromatic hydrocarbon ring may have a substituent exemplified as R11 and R12 in the general formula (1).
  • an aromatic heterocycle containing an N atom used for forming a group derived from an aromatic heterocycle containing an N atom represented by at least one of Y6 or Y7 and at least one of Y8 or Y9.
  • the ring include an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a benzimidazole ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, a thiazole ring, and an indole ring.
  • Indazole ring Indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, diazacarbazole ring (carboline ring) Configure Include showing a ring), such as one of the carbon atoms are further substituted with a nitrogen atom.
  • the groups represented by Y7 and Y9 each preferably represent a group derived from a pyridine ring.
  • the groups represented by Y6 and Y8 each preferably represent a group derived from a benzene ring.
  • the compound represented by the general formula (2) shown as the compound constituting the nitrogen-containing layer 1a of the transparent electrode 1 is exemplified as a more preferable embodiment.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has the function of the electron transport layer 3d in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of the electron carrying layer 3d mentioned later can be used as a hole-blocking layer based on this invention as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer 3c.
  • the electron blocking layer has the function of the hole transport layer 3b in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
  • the structure of the positive hole transport layer 3b mentioned later can be used as an electron blocking layer as needed.
  • the thickness of the blocking layer according to the present invention is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the auxiliary electrode 15 is provided for the purpose of reducing the resistance of the transparent electrode 1, and is provided in contact with the electrode layer 1 b of the transparent electrode 1.
  • the material forming the auxiliary electrode 15 is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface 17a.
  • Examples of the method for forming the auxiliary electrode 15 include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method.
  • the line width of the auxiliary electrode 15 is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode 15 is preferably 1 ⁇ m or more from the viewpoint of conductivity.
  • the transparent sealing material 17 covers the organic electroluminescent element EL-1 and is a plate-shaped (film-shaped) sealing member that is fixed to the substrate 13 by the adhesive 19. It may be a sealing film.
  • the surface of the transparent sealing material 17 serves as a light extraction surface 17a for extracting the emitted light h of the organic electroluminescent element EL-1.
  • Such a transparent sealing material 17 is provided in a state of covering at least the light emitting functional layer 3 in a state in which the terminal portions of the transparent electrode 1 and the counter electrode 5-1 in the organic electroluminescent element EL-1 are exposed.
  • an electrode may be provided on the transparent sealing material 17 so that the electrode is electrically connected to the terminal portions of the transparent electrode 1 and the counter electrode 5-1 of the organic electroluminescent element EL-1.
  • the plate-like (film-like) transparent sealing material 17 include a glass substrate and a polymer substrate, and these substrate materials may be used in the form of a thinner film.
  • the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the transparent sealing material 17 in which a polymer substrate is formed into a thin film can be preferably used.
  • the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and JIS K 7129-1992.
  • the water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method based on the above is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. It is preferable.
  • the above substrate material may be processed into a concave plate shape and used as the transparent sealing material 17.
  • the above-described substrate member is subjected to processing such as sand blasting or chemical etching to form a concave shape.
  • An adhesive 19 for fixing the plate-like transparent sealing material 17 to the substrate 13 side seals the organic electroluminescent element EL-1 sandwiched between the transparent sealing material 17 and the substrate 13. Used as a sealing agent to stop.
  • Specific examples of such an adhesive 19 include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, moisture curing types such as 2-cyanoacrylates, and the like. Can be mentioned.
  • an adhesive 19 there can be mentioned epoxy-based heat and chemical curing type (two-component mixing).
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the adhesive 19 is preferably one that can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive 19.
  • Application of the adhesive 19 to the bonding portion between the transparent sealing material 17 and the substrate 13 may be performed using a commercially available dispenser or may be printed like screen printing.
  • this gap when a gap is formed between the plate-shaped transparent sealing material 17, the substrate 13, and the adhesive 19, this gap has an inert gas such as nitrogen or argon or fluoride in the gas phase and the liquid phase. It is preferable to inject an inert liquid such as hydrocarbon or silicon oil. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
  • an inert gas such as nitrogen or argon or fluoride in the gas phase and the liquid phase. It is preferable to inject an inert liquid such as hydrocarbon or silicon oil. A vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • the transparent sealing material 17 when a sealing film is used as the transparent sealing material 17, the light emitting functional layer 3 in the organic electroluminescent element EL-1 is completely covered, and the transparent electrode 1 and the counter electrode 5-1 in the organic electroluminescent element EL-1 are covered.
  • a sealing film is provided on the substrate 13 with the terminal portions thereof exposed.
  • Such a sealing film is composed of an inorganic material or an organic material.
  • it is made of a material having a function of suppressing entry of a substance that causes deterioration of the light emitting functional layer 3 in the organic electroluminescent element EL-1, such as moisture and oxygen.
  • a material for example, an inorganic material such as silicon oxide, silicon dioxide, or silicon nitride is used.
  • a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
  • the method for forming these films is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a protective film or a protective plate may be provided between the substrate 13 and the organic electroluminescent element EL and the transparent sealing material 17.
  • This protective film or protective plate is for mechanically protecting the organic electroluminescent element EL, and in particular, when the transparent sealing material 17 is a sealing film, it is mechanical for the organic electroluminescent element EL. Since protection is not sufficient, it is preferable to provide such a protective film or protective plate.
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied.
  • a polymer film because it is light and thin.
  • the counter electrode 5-1 serving as an anode is formed on the substrate 13 by an appropriate film forming method such as a vapor deposition method or a sputtering method.
  • a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron transport layer 3d, and an electron injection layer 3e are formed in this order on this, and the light emitting functional layer 3 is formed.
  • the film formation of each of these layers includes spin coating, casting, ink jet, vapor deposition, sputtering, printing, etc., but it is easy to obtain a uniform film and it is difficult to generate pinholes.
  • a vacuum deposition method or a spin coating method is particularly preferable. Further, different film forming methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature storing the compound is 50 ° C. to 450 ° C., and the degree of vacuum is 10 ⁇ 6 Pa to 10 ⁇ 10. It is desirable to appropriately select each condition in the range of ⁇ 2 Pa, deposition rate of 0.01 nm / second to 50 nm / second, substrate temperature of ⁇ 50 ° C. to 300 ° C., and film thickness of 0.1 ⁇ m to 5 ⁇ m.
  • the nitrogen-containing layer 1a is formed to have a thickness of 1 ⁇ m or less, preferably 10 nm to 100 nm.
  • the aluminum intermediate layer A using aluminum is formed as a very thin film, preferably with a film thickness of 1 nm or less.
  • an electrode layer 1b made of silver (or an alloy containing silver as a main component) is formed to a thickness of 4 nm to 12 nm, and the transparent electrode 1 on the cathode side is manufactured.
  • the formation of the nitrogen-containing layer 1a, the aluminum intermediate layer A, and the electrode layer 1b includes a spin coating method, a casting method, an ink jet method, a vapor deposition method, a sputtering method, a printing method, and the like, but it is easy to obtain a homogeneous film.
  • the vacuum deposition method is particularly preferable from the viewpoint that pinholes are not easily generated.
  • a pattern is formed in a shape in which a terminal portion is drawn from the upper side of the light emitting functional layer 3 to the periphery of the substrate 13 while maintaining the insulating state with respect to the counter electrode 5-1 by the light emitting functional layer 3.
  • the nitrogen-containing layer 1a and the aluminum intermediate layer A may be patterned in the same shape as the electrode layer 1b.
  • a pattern of the auxiliary electrode 15 is formed as necessary. Thereby, organic electroluminescent element EL-1 is obtained.
  • a transparent sealing material 17 covering at least the light emitting functional layer 3 is provided in a state where the terminal portions of the transparent electrode 1 and the counter electrode 5-1 in the organic electroluminescent element EL-1 are exposed.
  • the adhesive 19 is used to adhere the transparent sealing material 17 to the substrate 13 side, and the organic electroluminescent element EL-1 is sealed between the transparent sealing material 17 and the substrate 13.
  • a desired organic electroluminescence element EL-1 is obtained on the substrate 13.
  • the light emitting functional layer 3 is consistently produced from the counter electrode 5-1 by one evacuation, but the substrate 13 is removed from the vacuum atmosphere in the middle. You may take out and perform a different film-forming method. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the counter electrode 5-1 as an anode has a positive polarity
  • the electrode layer 1b as a cathode has a negative polarity.
  • a voltage of about 2 V to 40 V is applied, light emission can be observed.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the transparent electrode 1 having both conductivity and light transmittance according to the present invention is used as a cathode, and the light emitting functional layer 3 and the anode are formed on the nitrogen-containing layer 1a side of the transparent electrode 1.
  • the counter electrode 5-1 is provided in this order. For this reason, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5-1 to realize high-intensity light emission in the organic electroluminescent element EL-1, while the emitted light h from the transparent electrode 1 side is emitted. It is possible to increase the luminance by improving the extraction efficiency. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
  • FIG. 5 is a cross-sectional configuration diagram illustrating a second example of an organic electroluminescent element using the above-described transparent electrode as an example of the electronic device of the present invention.
  • the organic electroluminescent element EL-2 of the second example shown in this figure is different from the organic electroluminescent element EL-1 of the first example described with reference to FIG. 4 in that the transparent electrode 1 is provided on the transparent substrate 13 ′.
  • the light emitting functional layer 3 and the counter electrode 5-2 are laminated in this order on the upper portion.
  • a detailed description of the same components as those in the first example will be omitted, and the characteristic configuration of the organic electroluminescence element EL-2 in the second example will be described.
  • the organic electroluminescent element EL-2 shown in FIG. 5 is provided on the transparent substrate 13 ′, and in order from the transparent substrate 13 ′ side, the transparent electrode 1 serving as the anode, the light emitting functional layer 3, and the counter electrode serving as the cathode. 5-2 is laminated.
  • the transparent electrode 1 is characterized in that the transparent electrode 1 of the present invention described above is used.
  • the organic electroluminescent element EL-2 is configured as a bottom emission type in which the emitted light h is extracted from at least the transparent substrate 13 'side.
  • the overall layer structure of the organic electroluminescent element EL-2 is not limited, but may be a general layer structure, as in the first example.
  • the hole injection layer 3a / hole transport layer 3b / light emitting layer 3c / electron transport layer 3d / electron injection layer 3e are arranged in this order on the transparent electrode 1 functioning as an anode.
  • a configuration in which a counter electrode 5-2 that is stacked and further serves as a cathode is stacked on top of this is illustrated.
  • the electron transport layer 3d also serves as the electron injection layer 3e, and may be provided as an electron transport layer 3d having electron injection properties.
  • the light emitting functional layer 3 adopts various configurations as necessary, as described in the first example, and a hole blocking layer and an electron not shown here are omitted.
  • a blocking layer may be provided. In the configuration as described above, only the portion where the light emitting functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5-2 becomes a light emitting region in the organic electroluminescent element EL-2, as in the first example. It is.
  • the anode is substantially the anode among the transparent electrodes 1 laminated in this order on the transparent substrate 13 ′ in the order of the nitrogen-containing layer 1a, the aluminum intermediate layer A, and the electrode layer 1b.
  • the light emitting functional layer 3 is directly provided on the electrode layer 1b functioning as: Therefore, the nitrogen-containing layer 1a is configured by using a compound having the above-described effective unshared electron pair content [n / M] in a predetermined range, and further, the effective unshared electron pair content [n / M] of the nitrogen-containing layer 1a itself [n / M].
  • / M] is preferably within a predetermined range, and it is not necessary to use a material having a hole transporting property or a hole injecting property.
  • the auxiliary electrode 15 may be provided in contact with the electrode layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. It is the same.
  • the counter electrode 5-2 provided as a cathode above the light emitting functional layer 3 is made of a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof.
  • metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
  • the counter electrode 5-2 as described above can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the counter electrode 5-2 is several hundred ⁇ / sq.
  • the film thickness is usually selected from the range of 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the sealing material 17 ′ for sealing such a bottom emission type organic electroluminescent element EL-2 does not need to have light transmittance.
  • a material composed of a metal material can be used in addition to the same material as the transparent sealing material used in the first example.
  • the metal material include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the material constituting the counter electrode 5-2 is light among the conductive materials described above.
  • a conductive material with good permeability may be selected and used.
  • a transparent sealing material having light transmittance is used as the sealing material 17 ′.
  • the organic electroluminescent element EL-2 described above uses the transparent electrode 1 having both conductivity and light transmittance of the present invention as an anode, and a light emitting functional layer 3 and a counter electrode 5-2 serving as a cathode on the upper portion. Is provided. Therefore, as in the first example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5-2 to realize high-luminance light emission in the organic electroluminescent element EL-2, while the transparent electrode 1 It is possible to increase the luminance by improving the extraction efficiency of the emitted light h from the side. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
  • FIG. 6 is a cross-sectional configuration diagram showing a third example of the organic electroluminescent element using the transparent electrode described above as an example of the electronic device of the present invention.
  • the organic electroluminescent element EL-3 of the third example shown in this figure is different from the organic electroluminescent element EL-1 of the first example described with reference to FIG. 4 in that a transparent substrate 13 ′ is used as the substrate.
  • the light emitting functional layer 3 is sandwiched between the two transparent electrodes 1.
  • the detailed description of the same components as those in the first example will be omitted, and the characteristic configuration of the organic electroluminescent element EL-3 in the third example will be described.
  • the organic electroluminescent element EL-3 shown in FIG. 6 is provided on the transparent substrate 13 ′, and in order from the transparent substrate 13 ′ side, the transparent electrode 1 serving as an anode, the light emitting functional layer 3, and the transparent electrode serving as a cathode. 1 are stacked in this order.
  • the transparent electrode 1 is characterized in that the transparent electrode 1 of the present invention described above is used.
  • the organic electroluminescent element EL-3 is configured as a double-sided light emitting type in which the emitted light h is extracted from both the transparent substrate 13 'side and the transparent sealing material 17 side opposite to the transparent substrate 13' side.
  • the overall layer structure of the organic electroluminescent element EL-3 is not limited, but may be a general layer structure, as in the first example.
  • a configuration in which a hole injection layer 3a / a hole transport layer 3b / a light emitting layer 3c / an electron transport layer 3d are provided in this order on the transparent electrode 1 serving as an anode is illustrated.
  • a configuration in which the transparent electrode 1 serving as a cathode is laminated on the upper portion is exemplified.
  • the electron transport layer 3d also serves as the electron injection layer and also serves as the nitrogen-containing layer 1a of the transparent electrode 1 serving as the cathode.
  • the light emitting functional layer 3 may have various configurations as necessary, and may be provided with a hole blocking layer or an electron blocking layer that is not shown here. . In the above configuration, only the portion sandwiched between the two transparent electrodes 1 becomes the light emitting region in the organic electroluminescent element EL-3, as in the first example.
  • the transparent electrode 1 provided on the transparent substrate 13 ′ side is in the order of the nitrogen-containing layer 1a, the aluminum intermediate layer A, and the electrode layer 1b from the transparent substrate 13 ′ side.
  • the light emitting functional layer 3 is directly provided on the electrode layer 1b which is provided and substantially functions as an anode. Therefore, the nitrogen-containing layer 1a on the transparent substrate 13 ′ side may be configured using a compound having the above-mentioned effective unshared electron pair content [n / M] satisfying a predetermined range, and further the nitrogen-containing layer 1a itself.
  • the effective unshared electron pair content [n / M] is preferably within a predetermined range, and it is not necessary to use a material having a hole transporting property or a hole injecting property.
  • the transparent electrode 1 provided on the light emitting functional layer 3 is provided in order of the nitrogen-containing layer 1a, the aluminum intermediate layer A, and the electrode layer 1b from the light emitting functional layer 3 side, and substantially functions as a cathode.
  • the nitrogen-containing layer 1a is disposed between the electrode layer 1b and the aluminum intermediate layer A and the light emitting functional layer 3.
  • the nitrogen-containing layer 1 a on the light emitting functional layer 3 also serves as a part of the light emitting functional layer 3.
  • Such a nitrogen-containing layer 1a is configured using a compound having an electron transporting property or an electron injecting property from among the compounds having the above-mentioned effective unshared electron pair content [n / M] in a predetermined range.
  • such a nitrogen-containing layer 1a is composed of a compound having an electron transporting property or an electron injecting property so that the nitrogen-containing layer 1a itself has the above-described effective unshared electron pair content [n / M]
  • a compound having an effective unshared electron pair content [n / M] having a size may be mixed and used.
  • the auxiliary electrode 15 may be provided in contact with the electrode layer 1b of the two transparent electrodes 1 for the purpose of reducing the resistance of the transparent electrode 1. It is the same as one example.
  • this organic electroluminescent element EL-3 is a double-sided light emitting type, it is sealed with a transparent sealing material 17 having light transmittance.
  • the organic electroluminescent element EL-3 described above has a configuration in which the transparent electrode 1 having both conductivity and light transmittance of the present invention is used as an anode and a cathode, and the light emitting functional layer 3 is sandwiched therebetween. For this reason, as in the first example, a sufficient voltage is applied between the two transparent electrodes 1 to realize high-intensity light emission in the organic electroluminescent element EL-3, and light emission from the two transparent electrodes 1 side. It is possible to increase the brightness by improving the extraction efficiency of the light h. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
  • FIG. 7 is a cross-sectional configuration diagram showing a fourth example of an organic electroluminescent element using the above-described transparent electrode as an example of the electronic device of the present invention.
  • the organic electroluminescent element EL-4 of the fourth example shown in this figure is different from the organic electroluminescent element EL-1 of the first example described with reference to FIG.
  • the electrode 1), the light emitting functional layer 3, and the anode (counter electrode 5-4) are provided and the stacking order is reversed.
  • a detailed description of the same components as those in the first example will be omitted, and a characteristic configuration of the organic electroluminescence element EL-4 in the fourth example will be described.
  • the organic electroluminescent element EL-4 shown in FIG. 7 is provided on the transparent substrate 13 ′, and in order from the transparent substrate 13 ′ side, the transparent electrode 1 serving as the cathode, the light emitting functional layer 3, and the counter electrode serving as the anode. 5-4 are laminated in this order.
  • the transparent electrode 1 is characterized in that the transparent electrode 1 of the present invention described above is used.
  • the organic electroluminescent element EL-4 is configured as a bottom emission type in which the emitted light h is extracted from at least the transparent substrate 13 'side.
  • the overall layer structure of the organic electroluminescent element EL-4 is not limited, and may be a general layer structure, as in the first example.
  • an electron injection layer 3e / electron transport layer 3d / light emitting layer 3c / hole transport layer 3b / hole injection layer 3a are provided in this order on the transparent electrode 1 serving as a cathode.
  • a configuration in which a counter electrode 5-4 serving as an anode is laminated on the upper portion is illustrated.
  • the light emitting functional layer 3 may have various configurations as necessary, and may be provided with a hole blocking layer or an electron blocking layer that is not shown here. . In the above configuration, only the portion sandwiched between the transparent electrode 1 and the counter electrode 5-4 becomes the light emitting region in the organic electroluminescent element EL-4, as in the first example.
  • the cathode is substantially the cathode among the transparent electrodes 1 laminated in this order on the transparent substrate 13 ′ in the order of the nitrogen-containing layer 1a, the aluminum intermediate layer A, and the electrode layer 1b.
  • the light emitting functional layer 3 is directly provided on the electrode layer 1b functioning as: Therefore, the nitrogen-containing layer 1a may be configured using a compound that satisfies the above-described effective unshared electron pair content ratio [n / M], and further includes the effective unshared electron pair content of the nitrogen-containing layer 1a itself.
  • the rate [n / M] is preferably within a predetermined range, and it is not necessary to use a material having an electron transporting property or an electron injecting property.
  • the auxiliary electrode 15 may be provided in contact with the electrode layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. It is the same.
  • the counter electrode 5-4 provided as the anode above the light emitting functional layer 3 is made of the same metal, alloy, organic or inorganic conductive compound as the anode of the first example, and a mixture thereof.
  • a configuration in which the anode on the light emitting functional layer 3 is also the transparent electrode 1 is exemplified.
  • the aluminum intermediate layer A and the electrode layer 1b provided on the light-emitting functional layer 3 via the nitrogen-containing layer 1a serve as a substantial anode.
  • the nitrogen-containing layer 1 a provided on the light emitting functional layer 3 also serves as a part of the light emitting functional layer 3.
  • Such a nitrogen-containing layer 1a is configured by using a compound having a hole transporting property or a hole injecting property from among the compounds having the above-mentioned effective unshared electron pair content [n / M] in a predetermined range. .
  • the nitrogen-containing layer 1a includes a compound having a hole transporting property or a hole injecting property so that the nitrogen-containing layer 1a itself has the above-described effective unshared electron pair content [n / M], A compound having a certain amount of effective unshared electron pair content [n / M] may be mixed and used.
  • the organic electroluminescent element EL-4 described above uses the transparent electrode 1 having both conductivity and light transmittance according to the present invention as a cathode, and a light emitting functional layer 3 and a counter electrode 5-4 serving as an anode on the upper side. Are provided in this order. Therefore, as in the first example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5-4 to realize high luminance light emission in the organic electroluminescent element EL-4, while the transparent electrode 1 It is possible to increase the luminance by improving the extraction efficiency of the emitted light h from the side. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
  • organic electroluminescent devices are surface light emitters as described above, they can be used as various light emission sources.
  • lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include, but are not limited to, a light source of an optical sensor, and can be effectively used as a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
  • the organic electroluminescent device of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the area of the light emitting surface may be increased by so-called tiling, in which the light emitting panels provided with the organic electroluminescent elements are joined together in a plane, in accordance with the recent increase in the size of lighting devices and displays.
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a color or full-color display device can be produced by using two or more organic electroluminescent elements of the present invention having different emission colors.
  • a lighting device will be described as an example of the application, and then a lighting device having a light emitting surface enlarged by tiling will be described.
  • Lighting device-1 >> The illuminating device of this invention has the said organic electroluminescent element.
  • the organic electroluminescent element used in the illumination device of the present invention may be designed such that each organic electroluminescent element having the above-described configuration has a resonator structure.
  • Examples of the purpose of use of the organic electroluminescence device configured as a resonator structure include, but are not limited to, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Not. Moreover, you may use for the said use by making a laser oscillation.
  • the material used for the organic electroluminescent element of this invention is applicable to the organic electroluminescent element (it is also called a white organic electroluminescent element) which produces substantially white light emission.
  • a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of red, green and blue, or two using the complementary colors such as blue and yellow, blue green and orange. The thing containing the light emission maximum wavelength may be used.
  • the combination of luminescent materials for obtaining multiple luminescent colors is a combination of multiple phosphorescent or fluorescent materials that emit light, fluorescent materials or phosphorescent materials, and light from the luminescent materials. Any combination with a dye material that emits light as light may be used, but in a white organic electroluminescent element, a combination of a plurality of light-emitting dopants may be used.
  • Such a white organic electroluminescent element is different from a configuration in which organic electroluminescent elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic electroluminescent element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and for example, an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. To do.
  • the light emitting material used for the light emitting layer of such a white organic electroluminescent element is not particularly limited.
  • a backlight in a liquid crystal display element is adapted to a wavelength range corresponding to the CF (color filter) characteristics.
  • any metal complex according to the present invention or a known light emitting material may be selected and combined to be whitened.
  • the white organic electroluminescent element described above it is possible to produce a lighting device that emits substantially white light.
  • the organic electroluminescent element of this invention can be used also as an illuminating device which used multiple and made the light emission surface large area.
  • the light emitting surface is enlarged by arranging a plurality of light emitting panels provided with organic electroluminescent elements on a transparent substrate on the support substrate (that is, tiling).
  • the support substrate may also serve as a sealing material, and each light emitting panel is tiled in a state where the organic electroluminescent element is sandwiched between the support substrate and the transparent substrate of the light emitting panel.
  • An adhesive may be filled between the support substrate and the transparent substrate, thereby sealing the organic electroluminescent element. Note that the terminals of the transparent electrode and the counter electrode are exposed around the light emitting panel.
  • the center of each light emitting panel is a light emitting region, and a non-light emitting region is generated between the light emitting panels.
  • a light extraction member for increasing the amount of light extracted from the non-light emitting area may be provided in the non-light emitting area of the light extraction surface.
  • a light collecting sheet or a light diffusion sheet can be used as the light extraction member.
  • a transparent alkali-free glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum tank of the vacuum deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the said vacuum chamber. Next, after depressurizing the vacuum chamber to 4 ⁇ 10 ⁇ 4 Pa, the resistance heating boat was energized and heated, and the electrode layers made of silver were respectively deposited at a deposition rate of 0.1 nm / second to 0.2 nm / second. It was formed with a film thickness. Sample 101 was formed with a film thickness of 5 nm, and sample 102 was formed with a film thickness of 15 nm.
  • a transparent alkali-free glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum tank of the vacuum deposition apparatus. Moreover, aluminum (Al) and silver (Ag) were separately put in each resistance heating boat made of tungsten, and attached to the vacuum chamber. Next, after depressurizing the vacuum tank to 4 ⁇ 10 ⁇ 4 Pa, each resistance heating boat is sequentially energized and heated, and an aluminum intermediate layer made of aluminum is formed with a film thickness of 1 nm at a deposition rate of 0.05 nm / second. Then, an electrode layer made of silver was formed at a film thickness of 5 nm at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • a transparent alkali-free glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • each transparent electrode each of compounds No.-1 to No.11 shown in Table 2 below was placed in a tantalum resistance heating boat. These substrate holder and heating boat were attached to the first vacuum chamber of the vacuum deposition apparatus.
  • aluminum (Al) and silver (Ag) were separately put into each resistance heating boat made of tungsten, and each was attached in the second vacuum chamber.
  • compounds No.-1 to No.-4 are as shown below, and a nitrogen atom having [effective unshared electron pair] is marked with ⁇ .
  • compound No.-1 is anthracene containing no nitrogen atom
  • compounds No.-2 to No.-4 contain nitrogen, but the value of effective unshared electron pair content [n / M] is [N / M] ⁇ 3.9 ⁇ 10 ⁇ 3 .
  • the compounds No. 1 to No. 11 were shown in the previous embodiment as having an effective unshared electron pair content [n / M] value of [n / M] ⁇ 3.9 ⁇ 10 ⁇ 3 . It is an exemplary compound.
  • Table 2 below also shows the number of effective unshared electron pairs [n], molecular weight [M], and effective unshared electron pair content [n / M] of the compounds used here.
  • the heating boat containing each compound was energized and heated, and deposited on the substrate at a deposition rate of 0.1 nm / sec to 0.2 nm / sec.
  • a nitrogen-containing layer (underlayer in sample 104) composed of each compound having a film thickness of 25 nm was provided.
  • the base material formed up to the nitrogen-containing layer (underlying layer) was transferred to the second vacuum chamber while maintaining a vacuum, and after the pressure of the second vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, a heating boat containing aluminum was Heated with electricity. As a result, an aluminum intermediate layer having a film thickness of 1 nm was formed at a deposition rate of 0.05 nm / second.
  • the heating boat containing silver was energized and heated.
  • an electrode layer made of silver having a film thickness of 5 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second, and a nitrogen-containing layer (underlayer), an aluminum intermediate layer, and an electrode layer were laminated in this order.
  • Transparent electrodes of samples 104 to 118 were obtained.
  • Transparent electrodes of Samples 119 and 120 were obtained in the same procedure as Samples 104 to 118 except that the thickness of the electrode layer made of silver was 8 nm. However, for the formation of the nitrogen-containing layer, Compound No. 1 was used for Sample 119 and Compound No. 8 was used for Sample 120.
  • Samples 121 to 124 were prepared in the same manner as Samples 104 to 118 except that the thickness of the aluminum intermediate layer was 0.6 nm or 0.3 nm and the thickness of the electrode layer made of silver was 8 nm. Each transparent electrode was obtained. However, for the formation of the nitrogen-containing layer, Compound No. 1 was used for Samples 121 and 123, and Compound No. 8 was used for Samples 122 and 124. The film thickness of the aluminum intermediate layer was 0.6 nm for samples 121 and 122 and 0.3 nm for samples 123 and 124.
  • Samples 104 to 118 described above were used except that polyethylene terephthalate (PET) was used as the base material, the film thickness of the aluminum intermediate layer was 0.6 nm, and the film thickness of the electrode layer made of silver was 8 nm.
  • PET polyethylene terephthalate
  • the transparent electrodes of Samples 127 and 128 were obtained in the same procedure. However, for the formation of the nitrogen-containing layer, Compound No. 1 was used for Sample 127 and Compound No. 8 was used for Sample 128.
  • Example 1 As is apparent from Table 2, the transparent electrodes of samples 108 to 128, that is, the effective unshared electron pair content [n / M] is 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M] and [n / M ] A nitrogen-containing layer composed of the compounds No. 1 to No. 11 within the confirmed predetermined range of ⁇ 1.9 ⁇ 10 ⁇ 2, an upper aluminum intermediate layer and an electrode composed of silver The transparent electrode provided with a layer had a sheet resistance value of two or less digits, although the electrode layer responsible for substantial conductivity was an extremely thin film of 5 nm or 8 nm.
  • the electrode layer formed on the nitrogen-containing layer via the aluminum intermediate layer is substantially uniform by the single-layer growth type (Frank-van der Merwe: FM type) film growth. It was confirmed that the film was formed with a sufficient thickness.
  • the transparent electrodes of these samples 108 to 128 have an aluminum intermediate layer, but the film thickness is about 0.3 nm to 1 nm and is sufficiently thin, so that the light transmittance is 50% or more and the transparent electrode is used as the transparent electrode. It was confirmed that it could be used.
  • the light transmittance is about 70% regardless of whether the electrode layer is 5 nm or 8 nm. It was maintained at a high value, and a decrease in sheet resistance value due to the increase in thickness of the electrode layer from 5 nm to 8 nm was confirmed, confirming that both improvement in light transmittance and improvement in conductivity were achieved.
  • the samples 101 and 103 without the nitrogen-containing layer and the compounds No. 1 to No. -4 in which 3.9 ⁇ 10 ⁇ 3 > [n / M] were used, and the nitrogen-containing layer (
  • the transparent electrodes of the samples 104 to 107 constituting the base layer) cannot be used as electrodes because the sheet resistance cannot be measured or is as high as four digits. Moreover, these transparent electrodes have a light transmittance of less than 50% and could not be used as transparent electrodes.
  • the sample 102 having no underlying layer such as a nitrogen-containing layer has a film thickness of 15 nm, and thus the sheet resistance is low, but the light transmittance is low and cannot be used as a transparent electrode.
  • the nitrogen-containing layer formed using the compound selected using the effective unshared electron pair content [n / M] as an index and the electrode layer mainly composed of silver are in contact with the intermediate layer of aluminum.
  • the sheet resistance of the transparent electrode is reduced as the thickness of the aluminum intermediate layer is reduced.
  • the light transmittance of the transparent electrode has a maximum value based on the film thickness of the aluminum intermediate layer, and this maximum value is 1 nm or less of the film thickness of the aluminum intermediate layer. Therefore, it can be said that the thickness of the aluminum intermediate film is preferably 1 nm or less.
  • the inclusion of the halogen compound in the nitrogen-containing layer can improve the light transmittance of the transparent electrode and further suppress the sheet resistance. It was confirmed that it was possible.
  • top emission type organic electroluminescence elements of Samples 201 to 228 provided on the top of the light emitting functional layer using each transparent electrode having the configuration manufactured in Example 1 as a cathode were manufactured.
  • Sample 201 is a transparent electrode of sample 101
  • sample 203 is a transparent electrode of sample 103
  • sample 204 is a transparent electrode of sample 104,...
  • the transparent electrode of the sample number of Example 1 corresponding to the last two digits of each sample number. Fabrication was applied.
  • the sample 202 of Example 1 since the sample 102 of Example 1 has insufficient light transmittance as a transparent electrode, the sample 202 was omitted in Example 2.
  • the manufacturing procedure will be described with reference to FIG.
  • the substrate 13 on which the counter electrode 5-1 is formed is fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, a vapor deposition mask is disposed opposite to the surface on which the counter electrode 5-1 is formed, and the first vacuum chamber of the vacuum vapor deposition apparatus. Attached to.
  • each of the heating boats in the vacuum vapor deposition apparatus was filled with each material constituting the light emitting functional layer 3 and the transparent electrode 1 in an amount optimal for film formation of the respective layers, and mounted in the first vacuum chamber. .
  • the heating boat used what was produced with the resistance heating material made from tungsten.
  • each layer was formed as follows by sequentially energizing and heating the heating boat containing each material.
  • a hole-transporting material that serves as both a hole-injecting layer and a hole-transporting layer made of ⁇ -NPD is heated by energizing a heating boat containing ⁇ -NPD represented by the following structural formula as a hole-transporting injecting material.
  • the injection layer 31 was formed on the counter electrode 5-1. At this time, the deposition rate was 0.1 nm / second to 0.2 nm / second, and the film thickness was 20 nm.
  • each of the heating boat containing the host material H4 having the structural formula shown above and the heating boat containing the phosphorescent compound Ir-4 having the structural formula shown above were energized independently to each other.
  • a light emitting layer 32 composed of H4 and the phosphorescent compound Ir-4 was formed on the hole transport / injection layer 31.
  • the film thickness was 30 nm.
  • a heating boat containing BAlq represented by the following structural formula as a hole blocking material was energized and heated to form a hole blocking layer 33 made of BAlq on the light emitting layer 32.
  • the deposition rate was 0.1 nm / second to 0.2 nm / second, and the film thickness was 10 nm.
  • Al intermediate layer A of transparent electrode 1 formation of cathode
  • the substrate 13 on which the electron transport / injection layer 34 or the nitrogen-containing layer 1a is formed is transferred into the second vacuum chamber of the vacuum deposition apparatus while maintaining the vacuum atmosphere, and the inside of the second vacuum chamber is 4 ⁇ 10 ⁇ .
  • the pressure was reduced to 4 Pa.
  • a heating boat containing aluminum attached in the second vacuum chamber was energized and heated to form an aluminum intermediate layer A made of aluminum at a deposition rate of 0.05 nm / second.
  • This aluminum intermediate layer A is used as a part of the cathode.
  • Table 3 the thickness of the aluminum intermediate layer A was formed in each of the thicknesses of 0.3 nm to 1 nm in the samples 203 to 228. In the sample 201, this step was omitted.
  • Electrode layer 1b of transparent electrode 1 formation of cathode
  • a heating boat containing silver attached in the second vacuum layer was energized and heated.
  • an electrode layer 1b made of silver was formed at a deposition rate of 0.3 nm / second.
  • This electrode layer 1b is used as a part of the cathode.
  • the film thickness of the electrode layer 1b was 5 nm or 8 nm in the samples 201 to 228.
  • the transparent electrode 1 having each structure was obtained for each of the samples 201 to 228.
  • the top emission type organic electroluminescent element EL-1 was formed on the substrate 13.
  • the organic electroluminescent element EL-1 is covered with a transparent sealing material 17 made of a glass substrate having a thickness of 300 ⁇ m, and the organic electroluminescent element EL-1 is surrounded between the transparent sealing material 17 and the substrate 13.
  • adhesive 19 an epoxy photocurable adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) was used.
  • the adhesive 19 filled between the transparent encapsulating material 17 and the substrate 13 is irradiated with UV light from the glass substrate (transparent encapsulating material 17) side to cure the adhesive 19, and the organic electroluminescent element EL. -1 was sealed.
  • the organic electroluminescent element EL-1 In the formation of the organic electroluminescent element EL-1, a vapor deposition mask is used for forming each layer, and the central 4.5 cm ⁇ 4.5 cm of the 5 cm ⁇ 5 cm substrate 13 is defined as the light emitting region A.
  • a non-light emitting region B having a width of 0.25 cm was provided on the entire circumference.
  • the counter electrode 5-1 as the anode, the electrode layer 1b of the transparent electrode 1 as the cathode, and the aluminum intermediate layer A were insulated by the hole transport / injection layer 31 to the nitrogen-containing layer (underlayer) 1a. In the state, the terminal portion was formed in the shape drawn out on the periphery of the substrate 13.
  • the organic electroluminescent elements EL-1 are provided on the substrate 13, and each light emitting panel of the organic electroluminescent elements of the samples 201 to 228 is sealed with the transparent sealing material 17 and the adhesive 19. Obtained. In each of these light emitting panels, each color of emitted light h generated in the light emitting layer 32 is extracted from the transparent sealing material 17 side.
  • Example 2 ⁇ Evaluation of each sample of Example 2> With respect to the organic electroluminescent element EL-1 (light emitting panel) produced from Samples 201 to 228, driving voltage and high temperature / high humidity storage stability were measured. The results are also shown in Table 3 below.
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing was used. A smaller value of the obtained drive voltage indicates a more favorable result.
  • each light emitting panel of Samples 201 to 228 is stored in a high temperature and high humidity environment (temperature 60 ° C., humidity 90%), and each light emitting panel is driven at a driving voltage of 1000 cd.
  • a high temperature and high humidity environment temperature 60 ° C., humidity 90%
  • each light emitting panel is driven at a driving voltage of 1000 cd.
  • the amount of change ⁇ V in the driving voltage before and after 300 hours was measured, and this value was defined as the storage stability at high temperature and high humidity.
  • a smaller numerical value of the obtained change amount ⁇ V indicates a more preferable result.
  • Example 2> As is clear from Table 3, the nitrogen-containing layer using compounds No. 1 to No. 11 in which the effective unshared electron pair content [n / M] is 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M]
  • the organic electroluminescent elements of Samples 208 to 228 having the transparent electrode 1 having 1a and the upper aluminum intermediate layer A and the electrode layer 1b made of silver have a driving voltage of 10V or less. It was confirmed that light emission with a front luminance of 1000 cd / m 2 was obtained. Further, the organic electroluminescent elements of these samples 208 to 228 were confirmed to emit light even after storage in a high temperature / high humidity environment, and were confirmed to be excellent in high temperature / high humidity storage stability. In addition, it was confirmed that the electrode layer 1b made of silver was configured as a continuous film and exhibited barrier properties, and deterioration of the light emitting functional layer 3 formed of an organic material was prevented.
  • the samples 201 and 203 without the nitrogen-containing layer 1a and the compounds No.-1 to No.-4 whose effective unshared electron pair content [n / M] was out of the above range were used.
  • the organic electroluminescent element EL-1 of Samples 204 to 207 having a nitrogen-containing layer (underlayer) does not emit light even when a voltage is applied or emits light, the driving voltage exceeds 10 V, and it is stored at high temperature and high humidity. The nature was also bad.
  • the top emission type organic electroluminescent element EL-1 using the transparent electrode 1 having the configuration of the present invention can emit light with high brightness at a low driving voltage and has excellent storage stability.
  • the driving voltage for obtaining the predetermined luminance can be reduced and the light emission life can be improved.
  • the driving voltage and the high temperature / high humidity storage stability are different from those of the aluminum intermediate layer A. It can be seen that there is a minimum value as a factor, and this minimum value is less than 1 nm of the thickness of the aluminum intermediate layer. Therefore, it can be said that the thickness of the aluminum intermediate film is preferably 1 nm or less.
  • the drive voltage can be further lowered and the high temperature / high humidity storage stability can be further increased. It was confirmed that improvement was possible.
  • ⁇ Procedure for Producing Organic Electroluminescent Elements of Samples 301 to 328> (Formation of transparent electrode 1) First, for samples 301 to 326, a transparent non-alkali glass transparent substrate 13 ′ was prepared. In samples 327 and 328, a transparent substrate 13 ′ made of polyethylene terephthalate (PET) was prepared. In the preparation of each of the samples 301 to 328, the transparent electrode 1 having each configuration shown in Table 4 was formed on the upper portion of each of the transparent substrates 13 ′. The procedure for forming these transparent electrodes 1 is the same as that of the samples 101 to 128 in Example 1. That is, the preparation of the transparent electrode with the sample number corresponding to the last two digits of each sample number was applied in the same manner as the sample 101 in the sample 301 and in the same procedure as the sample 103 in the sample 303.
  • PET polyethylene terephthalate
  • a hole transport / injection layer 31 (thickness 20 nm) serving as both a hole injection layer and a hole transport layer made of ⁇ -NPD
  • Light emitting layer 32 (film thickness 30 nm) made of host material H4 and phosphorescent compound Ir-4
  • hole blocking layer 33 film thickness 10 nm made of BAlq
  • electron transport / injection made of compound 10 and potassium fluoride Layer 34 (thickness 30 nm) was formed.
  • Counter electrode 5-2 formation of cathode
  • the transparent substrate 13 ′ on which the light emitting functional layer 3 is formed is transferred into the second vacuum chamber of the vacuum deposition apparatus, and after the pressure in the second vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, 2
  • the heating boat containing aluminum attached in the vacuum chamber was energized and heated.
  • a counter electrode 5-2 made of aluminum having a film thickness of 100 nm was formed at a deposition rate of 0.3 nm / second.
  • the counter electrode 5-2 is used as a cathode.
  • a bottom emission type organic electroluminescent element EL-2 was formed on the transparent substrate 13 ′.
  • the organic electroluminescent element EL-2 was sealed with a glass substrate (sealing material 17 ′).
  • a vapor deposition mask is used for forming each layer, and the central 4.5 cm ⁇ 4.5 cm of the 5 cm ⁇ 5 cm transparent substrate 13 ′ is defined as the light emitting region A.
  • a non-light-emitting region B having a width of 0.25 cm was provided on the entire circumference of A.
  • the electrode layer 1b and the aluminum intermediate layer A of the transparent electrode 1 serving as the anode and the counter electrode 5-2 serving as the cathode are insulated by the hole transport / injection layer 31 to the electron transport / injection layer 34.
  • the terminal portion was formed in the shape of the transparent substrate 13 ′ at the periphery.
  • the organic electroluminescence element EL-2 is provided on the transparent substrate 13 ′, and the light emission of each of the organic electroluminescence elements of the samples 301 to 328 in which the organic electroluminescence element EL-2 is sealed with the sealing material 17 ′ and the adhesive 19 is provided. I got a panel. In each of these light emitting panels, each color of emitted light h generated in the light emitting layer 32 is extracted from the transparent substrate 13 'side.
  • Example 3 ⁇ Evaluation of each sample of Example 3> With respect to the organic electroluminescent element EL-2 (light-emitting panel) produced from Samples 301 to 328, the driving voltage and the storage stability at high temperature and high humidity were measured in the same manner as in Example 2. The results are shown in Table 4 below.
  • Example 3> As is apparent from Table 4, the nitrogen-containing layer using compounds No. 1 to No. 11 in which the effective unshared electron pair content [n / M] is 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M]
  • the organic electroluminescent elements of Samples 308 to 328 having the transparent electrode 1 having 1a and the upper aluminum intermediate layer A and the electrode layer 1b made of silver have a driving voltage as low as 10 V or less. It was confirmed that light emission with a front luminance of 1000 cd / m 2 was obtained. Furthermore, the organic electroluminescent elements of these samples 308 to 328 were confirmed to emit light even after storage in a high temperature / high humidity environment, and were confirmed to be excellent in high temperature / high humidity storage stability. In addition, it was confirmed that the electrode layer 1b made of silver was configured as a continuous film and exhibited barrier properties, and deterioration of the light emitting functional layer 3 formed of an organic material was prevented.
  • the organic electroluminescent element EL-2 of Samples 304 to 307 having a containing layer (underlayer) has a high driving voltage exceeding 10 V even when a voltage is applied or does not emit light, and is stored at high temperature and high humidity. It was bad too.
  • the bottom emission type organic electroluminescence device EL-2 using the transparent electrode 1 having the configuration of the present invention can emit light with high luminance at a low driving voltage and has excellent storage stability.
  • the driving voltage for obtaining the predetermined luminance can be reduced and the light emission life can be improved.
  • the driving voltage and the high-temperature and high-humidity storage stability are factors in the thickness of the aluminum intermediate layer A. It can be seen that this minimum value is less than 1 nm of the thickness of the aluminum intermediate layer. Therefore, it can be said that the thickness of the aluminum intermediate film is preferably 1 nm or less.
  • the inclusion of the halogen compound in the nitrogen-containing layer 1 a further reduces the driving voltage and further improves the storage stability at high temperature and high humidity. It was confirmed that improvement was possible.
  • Example 4 ⁇ Preparation of transparent electrode ⁇
  • each nitrogen atom was contained in the nitrogen-containing layer 1a, and each halogen atom was contained in the entire aluminum intermediate layer.
  • Each transparent electrode was produced. Table 5 below shows the configuration of the transparent electrodes of Samples 401 to 428 produced in Example 4.
  • the configuration of the transparent electrodes of Samples 401 to 428 shown in Table 5 corresponds to the configuration of the transparent electrodes of Samples 101 to 128 of Example 1 shown in Table 1. That is, the sample 401 is the transparent electrode of the sample 101, the sample 403 is the transparent electrode of the sample 103, the sample 404 is the transparent electrode of the sample 104, and so on. Corresponds to the electrode configuration. However, in Samples 401 to 403, the same transparent electrodes as Samples 101 to 103 were produced.
  • each halogen compound shown in Table 5 below was added as a vapor deposition material to the film formation of the nitrogen-containing layer (underlayer) in the production of each transparent electrode of Example 1.
  • Co-evaporation was performed.
  • Sample 126 of Example 1 when vapor deposition was performed using Compound No. 1 and a bromine (Br) substitute of Compound No. 1 as the vapor deposition material of the nitrogen-containing layer, Sample 426 of Example 4 was used. Then, co-evaporation was performed using Compound No. 1 and potassium bromide (KBr) as the vapor deposition material for the nitrogen-containing layer.
  • Example 4> the transparent electrodes of samples 408 to 428, that is, the effective unshared electron pair content [n / M] is 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M] and [n / M ]
  • the transparent electrode provided with a layer and an electrode layer made of silver has a low sheet resistance value of two digits or less even though the electrode layer responsible for substantial conductivity is an extremely thin film of 5 nm or 8 nm. It was suppressed to the value.
  • the electrode layer formed on the nitrogen-containing layer via the aluminum intermediate layer containing a halogen atom is a single-layer growth type (Frank-van der Merwe: FM type). It was confirmed that the film was formed with a substantially uniform film thickness by film growth.
  • the transparent electrodes of these samples 408 to 428 are provided with an aluminum intermediate layer containing halogen atoms in all layers, but the film thickness is about 0.3 nm to 1 nm and is sufficiently thin, so that the light transmittance is also 50. It was confirmed that it can be used as a transparent electrode.
  • the light transmittance is about 70% regardless of whether the electrode layer is 5 nm or 8 nm. It was maintained at a high value, and a decrease in sheet resistance value due to the increase in thickness of the electrode layer from 5 nm to 8 nm was confirmed, confirming that both improvement in light transmittance and improvement in conductivity were achieved.
  • samples 401 and 403 without a nitrogen-containing layer and compounds No. 1 to No. -4 in which 3.9 ⁇ 10 ⁇ 3 > [n / M] were used, and a nitrogen-containing layer
  • the transparent electrodes of the samples 404 to 407 constituting the base layer cannot be used as electrodes because the sheet resistance cannot be measured or is as high as four digits.
  • these transparent electrodes have a light transmittance of less than 50% and could not be used as transparent electrodes.
  • the sample 402 having no underlying layer such as a nitrogen-containing layer has a film thickness of 15 nm, and thus has a low sheet resistance but a low light transmittance and cannot be used as a transparent electrode. It was.
  • the nitrogen-containing layer formed using the compound selected using the effective unshared electron pair content [n / M] as an index and the electrode layer mainly composed of silver are in contact with the halogen atom therebetween. It was confirmed that by providing the aluminum intermediate layer containing, an electrode film (that is, a transparent electrode) having a low resistance while being a thin film was obtained in order to obtain light transmittance.
  • the sheet resistance of the transparent electrode can be suppressed as the thickness of the aluminum intermediate layer is smaller.
  • the light transmittance of the transparent electrode has a maximum value based on the film thickness of the aluminum intermediate layer containing halogen atoms in all layers, and this maximum value is found to be 1 nm or less of the film thickness of the aluminum intermediate layer. Therefore, it can be said that the thickness of the aluminum intermediate layer containing halogen atoms in all layers is preferably 1 nm or less.
  • Example 5 ⁇ Fabrication of top emission type organic electroluminescence element ⁇
  • each of the top emission type organic materials of samples 501 to 528 in which each transparent electrode having the structure prepared in Example 4 is provided as a cathode on the light emitting functional layer is used.
  • An electroluminescent element was produced.
  • Sample 501 is a transparent electrode of sample 401
  • sample 503 is a transparent electrode of sample 403
  • sample 504 is a transparent electrode of sample 404,...
  • the transparent electrode of the sample number of Example 4 corresponding to the last two digits of each sample number. Fabrication was applied.
  • the sample 402 of Example 4 since the sample 402 of Example 4 has insufficient light transmittance as a transparent electrode, the sample 502 was omitted in Example 5.
  • FIG. 8 is a schematic cross-sectional view of a top emission type organic electroluminescence device formed as samples 501 to 528.
  • FIG. 8 parts corresponding to those in FIG.
  • a manufacturing procedure of the top emission type organic electroluminescent element EL-1 will be described.
  • a hole transport / injection layer 31 (thickness 20 nm) serving as both a hole injection layer and a hole transport layer made of ⁇ -NPD
  • Light emitting layer 32 (film thickness 30 nm) made of host material H4 and phosphorescent compound Ir-4
  • hole blocking layer 33 film thickness 10 nm made of BAlq
  • electron transport / injection made of compound 10 and potassium fluoride Layer 34 (thickness 30 nm) was formed.
  • the transparent electrode 1 having each structure was formed on the electron transport / injection layer.
  • the formation procedure of these transparent electrodes 1 is the same as that of the samples 401 to 428 in Example 4. That is, the preparation of the transparent electrode with the sample number corresponding to the last two digits of each sample number was applied in the same procedure as the sample 401 in the sample 501 and in the same procedure as the sample 403 in the sample 503.
  • each layer is formed by using a vapor deposition mask, and the electrode layer of the counter electrode 5-1 as an anode and the transparent electrode 1 as a cathode.
  • 1b and the aluminum intermediate layer A were formed in a shape in which a terminal portion was drawn to the peripheral edge of the substrate 13 while being insulated by the hole transport / injection layer 31 to the electron transport / injection layer 34.
  • each color of emitted light h generated in the light emitting layer 32 is extracted from the transparent sealing material 17 side.
  • Example 5 ⁇ Evaluation of each sample of Example 5> With respect to the organic electroluminescent element EL-1 (light emitting panel) produced from Samples 501 to 528, the driving voltage and high temperature / high humidity storage stability were measured in the same manner as in Example 2. The results are also shown in Table 6 below.
  • Example 5 As is clear from Table 6, the nitrogen-containing layer using compounds No. 1 to No. 11 in which the effective unshared electron pair content [n / M] is 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M]
  • An organic electroluminescent element EL-1 of samples 508 to 528 having a transparent electrode 1 having 1a, an aluminum intermediate layer A containing a halogen atom in the entire upper layer, and an electrode layer 1b made of silver is: It was confirmed that light emission with a front luminance of 1000 cd / m 2 was obtained at a low drive voltage of 10 V or less.
  • the organic electroluminescent elements of these samples 508 to 528 were confirmed to emit light even after storage in a high temperature / high humidity environment, and it was also confirmed that they were excellent in high temperature / high humidity storage.
  • the electrode layer 1b made of silver was configured as a continuous film and exhibited barrier properties, and deterioration of the light emitting functional layer 3 formed of an organic material was prevented.
  • samples 501 and 503 in which the nitrogen-containing layer 1a was not provided and compounds No.-1 to No.-4 in which the effective unshared electron pair content [n / M] was out of the above range were used.
  • the organic electroluminescent element EL-1 of Samples 504 to 507 having a nitrogen-containing layer (underlayer) has a high driving voltage exceeding 10 V even when light is applied or no light is emitted, and is stored at high temperature and high humidity. The nature was also bad.
  • the top emission type organic electroluminescent element EL-1 using the transparent electrode 1 is capable of high-luminance emission at a low driving voltage and excellent in storage stability.
  • the driving voltage for obtaining the predetermined luminance can be reduced and the light emission life can be improved.
  • the driving voltage and the high temperature / high humidity storage stability are different from those of the aluminum intermediate layer A. It can be seen that there is a minimum value as a factor, and this minimum value is less than 1 nm of the thickness of the aluminum intermediate layer A. Therefore, it can be said that the film thickness of the aluminum intermediate layer A containing halogen atoms in all layers is preferably 1 nm or less.
  • Example 6 ⁇ Fabrication of bottom emission type organic electroluminescence element ⁇
  • a light emitting element was manufactured.
  • Sample 601 is the transparent electrode of sample 401
  • sample 603 is the transparent electrode of sample 403
  • sample 604 is the transparent electrode of sample 404, and so on
  • the transparent electrode of the sample number of Example 4 corresponding to the last two digits of each sample number. Fabrication was applied.
  • the sample 402 of Example 4 since the sample 402 of Example 4 has insufficient light transmittance as a transparent electrode, the sample 602 was omitted in Example 6.
  • FIG. 9 is a schematic cross-sectional configuration diagram of a bottom emission type organic electroluminescence device formed as samples 601 to 628. 9, parts corresponding to those in FIGS. 5 and 8 are denoted by the same reference numerals. Hereinafter, the manufacturing procedure will be described with reference to FIG.
  • a hole transport / injection layer 31 (thickness 20 nm) serving as both a hole injection layer and a hole transport layer made of ⁇ -NPD
  • Light emitting layer 32 (film thickness 30 nm) made of host material H4 and phosphorescent compound Ir-4
  • hole blocking layer 33 film thickness 10 nm made of BAlq
  • electron transport / injection made of compound 10 and potassium fluoride Layer 34 (thickness 30 nm) was formed.
  • Counter electrode 5-2 formation of cathode
  • the transparent substrate 13 ′ on which the light emitting functional layer 3 is formed is transferred into the second vacuum chamber of the vacuum deposition apparatus, and after the pressure in the second vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, 2
  • the heating boat containing aluminum attached in the vacuum chamber was energized and heated.
  • a counter electrode 5-2 made of aluminum having a film thickness of 100 nm was formed at a deposition rate of 0.3 nm / second.
  • the counter electrode 5-2 is used as a cathode.
  • a bottom emission type organic electroluminescent element EL-2 was formed on the transparent substrate 13 ′.
  • Example 2 Thereafter, as in Example 2, the organic electroluminescent element EL-2 was sealed with a glass substrate (sealing material 17 ′).
  • a vapor deposition mask is used to form each layer as in Example 2, and the electrode layer of the counter electrode 5-2 as a cathode and the transparent electrode 1 as an anode is used.
  • 1b and the aluminum intermediate layer A were formed in a shape in which a terminal portion was drawn to the periphery of the transparent substrate 13 ′ while being insulated by the hole transport / injection layer 31 to the electron transport / injection layer.
  • each color of emitted light h generated in the light emitting layer 32 is extracted from the transparent substrate 13 'side.
  • Example 6 ⁇ Evaluation of each sample of Example 6> With respect to the organic electroluminescent element EL-2 (light-emitting panel) produced from Samples 601 to 628, the driving voltage and the storage stability at high temperature and high humidity were measured in the same manner as in Example 2. The results are shown in Table 7 below.
  • Example 6> As is clear from Table 7, the nitrogen-containing layer using compounds No. 1 to No. 11 in which the effective unshared electron pair content [n / M] is 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M]
  • the organic electroluminescent elements of Samples 608 to 628 having the transparent electrode 1 having 1a, the aluminum intermediate layer A containing the halogen atoms at the upper part thereof in all layers, and the electrode layer 1b made of silver have a driving voltage It was confirmed that light emission with a front luminance of 1000 cd / m 2 can be obtained at a low driving voltage of 10 V or less.
  • the organic electroluminescent elements of these samples 608 to 628 were confirmed to emit light even after storage in a high temperature / high humidity environment, and were confirmed to be excellent in high temperature / high humidity storage.
  • the electrode layer 1b made of silver was configured as a continuous film and exhibited barrier properties, and deterioration of the light emitting functional layer 3 formed of an organic material was prevented.
  • samples 601 and 603 without the nitrogen-containing layer 1a and compounds No.-1 to No.-4 whose effective unshared electron pair content [n / M] was out of the above range were used.
  • the organic electroluminescent element EL-2 of the samples 604 to 607 having a nitrogen-containing layer (underlayer) has a high driving voltage exceeding 10 V even when light is applied or no light is emitted, and is stored at high temperature and high humidity. The nature was also bad.
  • the bottom emission type organic electroluminescence device EL-2 using the transparent electrode 1 having the configuration of the present invention can emit light with high luminance at a low driving voltage and has excellent storage stability.
  • the driving voltage for obtaining the predetermined luminance can be reduced and the light emission life can be improved.
  • the comparison of samples 619, 621, and 623, which differ only in the thickness of the aluminum intermediate layer A containing halogen atoms in all layers, and the comparison of samples 620, 622, and 624 show that the drive voltage and the high-temperature and high-humidity storage properties are aluminum. It can be seen that there is a minimum value with the film thickness of the intermediate layer A as a factor, and this minimum value is less than 1 nm of the film thickness of the aluminum intermediate layer A. Therefore, it can be said that the thickness of the aluminum intermediate layer A containing halogen atoms in all layers is preferably 1 nm or less.
  • Example 7 each of the transparent electrodes of Samples 101 to 128 produced in Example 1 was made to contain each halogen atom in its nitrogen-containing layer 1a, and each of the transparent electrodes was only on the interface side with the nitrogen-containing layer in the aluminum intermediate layer. Each transparent electrode containing a halogen atom was prepared. Table 8 below shows the configuration of the transparent electrodes of Samples 701 to 728 produced in Example 7.
  • the configuration of the transparent electrodes of Samples 701 to 728 shown in Table 8 corresponds to the configuration of the transparent electrodes of Samples 101 to 128 of Example 1 shown in Table 1. That is, the sample 701 is the transparent electrode of the sample 101, the sample 703 is the transparent electrode of the sample 103, the sample 704 is the transparent electrode of the sample 104, and so on. Corresponds to the electrode configuration. However, in Samples 701 to 703, the same transparent electrodes as Samples 101 to 103 were produced.
  • each halogen compound shown in Table 8 below was added as a deposition material to the formation of the nitrogen-containing layer (underlayer) in the production of each transparent electrode in Example 1.
  • Co-evaporation was performed.
  • vapor deposition was performed using Compound No. 1 and a bromine (Br) substitute of Compound No. 1 as the vapor deposition material of the nitrogen-containing layer.
  • Co-deposition was performed using Compound No. 1 and potassium bromide (KBr) as the vapor deposition material for the nitrogen-containing layer.
  • the substrate After forming the nitrogen-containing layer (underlying layer) containing each halogen atom as described above, the substrate is not heated in the same manner as the aluminum intermediate layer deposition procedure in Samples 104 to 108 of Example 1.
  • An aluminum intermediate layer having a thickness of 1 nm was formed at a deposition rate of 0.05 nm / second.
  • halogen atoms in the nitrogen-containing layer react with aluminum constituting the material layer, so that each halogen atom is halogenated in a region from the nitrogen-containing layer side of the aluminum intermediate layer to a thickness of 0.2 nm. It became the state contained as aluminum.
  • the aluminum intermediate layer formed in Samples 704 to 728 includes the first layer containing aluminum halide (AlF 3 ) with a thickness of 0.2 nm and the aluminum (Al) with a thickness of 0.8 nm. It became the laminated structure provided with two layers.
  • the transparent electrodes of samples 708 to 728 that is, the effective unshared electron pair content [n / M] is 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M] and [n / M ]
  • the transparent electrode provided with an aluminum intermediate layer and an electrode layer made of silver has a sheet resistance value of two digits even though the electrode layer responsible for substantial conductivity is an extremely thin film of 5 nm or 8 nm. The following low values were suppressed.
  • the electrode layer formed on the nitrogen-containing layer via the aluminum intermediate layer is substantially uniform by the single-layer growth type (Frank-van der Merwe: FM type) film growth. It was confirmed that the film was formed with a sufficient thickness.
  • the transparent electrodes of these samples 708 to 728 have an aluminum intermediate layer containing halogen atoms only on the nitrogen-containing layer side, but are sufficiently thin with a film thickness of about 0.3 nm to 1 nm. The rate was also 50% or more, and it was confirmed that it could be used as a transparent electrode.
  • the light transmittance is about 70% regardless of whether the electrode layer is 5 nm or 8 nm. It was maintained at a high value, and a decrease in sheet resistance value due to the increase in thickness of the electrode layer from 5 nm to 8 nm was confirmed, confirming that both improvement in light transmittance and improvement in conductivity were achieved.
  • the samples 701 and 703 without the nitrogen-containing layer and the compounds No. 1 to No. -4 in which 3.9 ⁇ 10 ⁇ 3 > [n / M] were used, and the nitrogen-containing layer (
  • the transparent electrodes of the samples 704 to 707 constituting the base layer) cannot be used as electrodes because the sheet resistance cannot be measured or is as high as four digits. Moreover, these transparent electrodes have a light transmittance of less than 50% and could not be used as transparent electrodes.
  • the sample 702 having no base layer such as a nitrogen-containing layer has a film thickness of 15 nm, so that the sheet resistance is low but the light transmittance is low and cannot be used as a transparent electrode.
  • the nitrogen-containing layer formed using the compound selected using the effective unshared electron pair content [n / M] as an index and the electrode layer mainly composed of silver are in contact with the halogen atom therebetween. It was confirmed that by providing an aluminum intermediate layer containing only in the nitrogen-containing layer side, an electrode film (that is, a transparent electrode) having a low resistance while being a thin film can be obtained in order to obtain light transmittance.
  • the sheet resistance of the transparent electrode can be suppressed as the thickness of the intermediate layer decreases.
  • the light transmittance of the transparent electrode has a maximum value based on the film thickness of the aluminum intermediate layer, and this maximum value is 1 nm or less of the film thickness of the intermediate layer. Therefore, it can be said that the thickness of the aluminum intermediate layer containing halogen atoms only on the nitrogen-containing layer side is preferably 1 nm or less.
  • Example 8 ⁇ Fabrication of top emission type organic electroluminescence element ⁇
  • An electroluminescent element was produced.
  • Sample 801 is a transparent electrode of sample 701
  • sample 803 is a transparent electrode of sample 703
  • sample 804 is a transparent electrode of sample 704, and so on.
  • the transparent electrode of the sample number of Example 7 corresponding to the last two digits of each sample number Fabrication was applied.
  • the sample 702 of Example 7 since the sample 702 of Example 7 has insufficient light transmittance as a transparent electrode, the sample 802 was omitted in Example 8.
  • FIG. 8 is a schematic cross-sectional view of a top emission type organic electroluminescence device formed as samples 801 to 828.
  • FIG. 8 parts corresponding to those in FIG.
  • a manufacturing procedure of the top emission type organic electroluminescent element EL-1 will be described.
  • a hole transport / injection layer 31 (thickness 20 nm) serving as both a hole injection layer and a hole transport layer made of ⁇ -NPD
  • Light emitting layer 32 (film thickness 30 nm) made of host material H4 and phosphorescent compound Ir-4
  • hole blocking layer 33 film thickness 10 nm made of BAlq
  • electron transport / injection made of compound 10 and potassium fluoride Layer 34 (thickness 30 nm) was formed.
  • the transparent electrode 1 having each structure was formed on the electron transport / injection layer.
  • the transparent electrodes 1 of the samples 801 to 828 have the same procedure for forming the transparent electrodes 1 as the samples 701 to 728 in Example 7. That is, the preparation of the transparent electrode with the sample number corresponding to the last two digits of each sample number was applied in the sample 801 in the same procedure as the sample 701 and in the sample 803 in the same procedure as the sample 703.
  • each layer is formed by using a vapor deposition mask, and the electrode layer of the counter electrode 5-1 as an anode and the transparent electrode 1 as a cathode. 1b and the aluminum intermediate layer A were formed in a shape in which a terminal portion was drawn to the peripheral edge of the substrate 13 while being insulated by the hole transport / injection layer 31 to the electron transport / injection layer 34.
  • each color of emitted light h generated in the light emitting layer 32 is extracted from the transparent sealing material 17 side.
  • Example 8 ⁇ Evaluation of each sample of Example 8> With respect to the organic electroluminescent element EL-1 (light emitting panel) produced from Samples 801 to 828, the driving voltage and the storage stability at high temperature and high humidity were measured in the same manner as in Example 2. The results are also shown in Table 9 below.
  • Example 8> As is apparent from Table 9, the nitrogen-containing layer using compounds No. 1 to No. 11 in which the effective unshared electron pair content [n / M] is 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M] Organic electroluminescent elements EL of samples 808 to 828 having a transparent electrode 1 having 1a, an aluminum intermediate layer A containing the upper halogen atom only on the nitrogen-containing layer side, and an electrode layer 1b made of silver It was confirmed that light emission with a front luminance of 1000 cd / m 2 was obtained with a drive voltage of -1 at a low drive voltage of 10 V or less.
  • the organic electroluminescent elements of these samples 808 to 828 were confirmed to emit light even after storage in a high temperature / high humidity environment, and were confirmed to be excellent in high temperature / high humidity storage.
  • the electrode layer 1b made of silver was configured as a continuous film and exhibited barrier properties, and deterioration of the light emitting functional layer 3 formed of an organic material was prevented.
  • samples 801 and 803 without the nitrogen-containing layer 1a and compounds No.-1 to No.-4 whose effective unshared electron pair content [n / M] was out of the above range were used.
  • the organic electroluminescent element EL-1 of Samples 804 to 807 having a nitrogen-containing layer (underlying layer) has a high driving voltage exceeding 10V even when a voltage is applied and does not emit light or emit light, and is stored at high temperature and high humidity. The nature was also bad.
  • the top emission type organic electroluminescent element EL-1 using the transparent electrode 1 is capable of high-luminance emission at a low driving voltage and excellent in storage stability.
  • the driving voltage for obtaining the predetermined luminance can be reduced and the light emission life can be improved.
  • the driving voltage and the high temperature / high humidity storage stability are different from those of the aluminum intermediate layer A. It has a minimum value as a factor, and this minimum value is found to be in the film thickness of 1 nm or less of the aluminum intermediate layer A containing halogen atoms only on the nitrogen-containing layer side. Therefore, it can be said that the thickness of the aluminum intermediate layer A containing halogen atoms only on the nitrogen-containing layer side is preferably 1 nm or less.
  • Example 9 ⁇ Fabrication of bottom emission type organic electroluminescence element ⁇
  • Example 9 As shown in the following Table 10, the bottom emission type organic electric fields of the samples 901 to 928 provided under the light emitting functional layer with each transparent electrode having the structure prepared in Example 7 as an anode.
  • a light emitting element was manufactured.
  • Sample 901 is the transparent electrode of sample 701
  • sample 903 is the transparent electrode of sample 703
  • sample 904 is the transparent electrode of sample 704, and so on
  • the transparent electrode of the sample number of Example 7 corresponding to the last two digits of each sample number. Fabrication was applied.
  • the sample 702 of Example 7 has insufficient light transmittance as a transparent electrode, the sample 902 was omitted in Example 9.
  • FIG. 9 is a schematic cross-sectional configuration diagram of a bottom emission type organic electroluminescence device formed as samples 901 to 928. 9, parts corresponding to those in FIGS. 5 and 8 are denoted by the same reference numerals. Hereinafter, the manufacturing procedure will be described with reference to FIG.
  • a hole transport / injection layer 31 (thickness 20 nm) serving as both a hole injection layer and a hole transport layer made of ⁇ -NPD
  • Light emitting layer 32 (film thickness 30 nm) made of host material H4 and phosphorescent compound Ir-4
  • hole blocking layer 33 film thickness 10 nm made of BAlq
  • electron transport / injection made of compound 10 and potassium fluoride Layer 34 (thickness 30 nm) was formed.
  • Counter electrode 5-2 formation of cathode
  • the transparent substrate 13 ′ on which the light emitting functional layer 36 is formed is transferred into the second vacuum chamber of the vacuum deposition apparatus, and the second vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa.
  • the heating boat containing aluminum attached in the vacuum chamber was energized and heated.
  • a counter electrode 5-2 made of aluminum having a film thickness of 100 nm was formed at a deposition rate of 0.3 nm / second.
  • the counter electrode 5-2 is used as a cathode.
  • a bottom emission type organic electroluminescence EL-2 was formed on the transparent substrate 13 ′.
  • Example 2 Thereafter, as in Example 2, the organic electroluminescent element EL-2 was sealed with a glass substrate (sealing material 17 ′).
  • a vapor deposition mask is used to form each layer as in Example 2, and the electrode layer of the counter electrode 5-2 as a cathode and the transparent electrode 1 as an anode is used.
  • 1b and the aluminum intermediate layer A were formed in a shape in which a terminal portion was drawn to the periphery of the transparent substrate 13 ′ while being insulated by the hole transport / injection layer 31 to the electron transport / injection layer.
  • each color of emitted light h generated in the light emitting layer 32 is extracted from the transparent substrate 13 'side.
  • Example 9 ⁇ Evaluation of each sample of Example 9> With respect to the organic electroluminescence EL-2 (light-emitting panel) produced from Samples 901 to 928, the driving voltage and the storage stability at high temperature and high humidity were measured in the same manner as in Example 2. The results are shown in Table 10 below.
  • Example 9 As is apparent from Table 10, the nitrogen-containing layer using compounds No. 1 to No. 11 in which the effective unshared electron pair content [n / M] is 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M]
  • the organic electroluminescent elements of Samples 808 to 828 having 1a, the transparent intermediate electrode 1 including the aluminum intermediate layer A containing the halogen atom on the upper side only on the nitrogen-containing layer side, and the electrode layer 1b made of silver are It was confirmed that light emission with a front luminance of 1000 cd / m 2 was obtained at a low drive voltage of 10 V or less.
  • the organic electroluminescent elements of these samples 808 to 828 were confirmed to emit light even after storage in a high temperature / high humidity environment, and were confirmed to be excellent in high temperature / high humidity storage.
  • the electrode layer 1b made of silver was configured as a continuous film and exhibited barrier properties, and deterioration of the light emitting functional layer 3 formed of an organic material was prevented.
  • samples 801 and 803 without the nitrogen-containing layer 1a and compounds No.-1 to No.-4 whose effective unshared electron pair content [n / M] was out of the above range were used.
  • the organic electroluminescence EL-2 of samples 804 to 807 having a nitrogen-containing layer (underlayer) has a high driving voltage exceeding 10V even when a voltage is applied and does not emit light or emits light, and can be stored at high temperature and high humidity. It was bad too.
  • the bottom emission type organic electroluminescence EL-2 using the transparent electrode 1 having the configuration of the present invention is capable of high-luminance emission at a low driving voltage and excellent in storage stability.
  • the driving voltage for obtaining the predetermined luminance can be reduced and the light emission life can be improved.
  • the driving voltage and the high-temperature and high-humidity storage stability are limited to the nitrogen-containing layer side. It has a minimum value based on the film thickness of the aluminum intermediate layer A to be contained, and this minimum value is found to be 1 nm or less of the film thickness of the aluminum intermediate layer A. Therefore, it can be said that the thickness of the aluminum intermediate layer A containing halogen atoms only on the nitrogen-containing layer side is preferably 1 nm or less.
  • SYMBOLS 1 Transparent electrode, 1a ... Nitrogen-containing layer, 1b ... Electrode layer, A ... Aluminum intermediate layer, EL, EL-1, EL-2, EL-3, EL-4 ... Organic electroluminescent element (electronic device)

Abstract

 窒素含有層と、銀を主成分とする電極層と、窒素含有層と電極層とに接してこれらの間に挟持されたアルミニウム中間層とを備えた透明電極である。窒素含有層は、窒素原子を含有する化合物を用いて構成されている。この化合物は、窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]となる。

Description

透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子
 本発明は、透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子に関し、特には導電性と光透過性とを兼ね備えた透明電極と、この透明電極の製造方法、さらにはこの透明電極を用いた電子デバイスおよび有機電界発光素子に関する。
 有機材料のエレクトロルミネッセンス(electroluminescence:以下ELと記す)を利用した有機電界発光素子(いわゆる有機EL素子)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。
 このような有機電界発光素子は、2枚の電極間に有機材料を用いて構成された発光層を挟持した構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は透明電極として構成される。
 透明電極としては、酸化インジウムスズ(SnO-In:Indium Tin Oxide:ITO)等の酸化物半導体系の材料や、銀(Ag)が一般的に用いられている。しかしながら、ITOはレアメタルのインジウムを使用しているため、材料コストが高く、また抵抗を下げるために成膜後に300~400℃程度でアニール処理する必要がある。また銀(Ag)は、ITOと比較して導電性に優れるが、十分に抵抗が下がる膜厚では透過率が低くなってしなう課題を有していた。
 そこで、金、アルミニウム、銅、インジウム、スズまたは亜鉛などの銀以外の金属からなる下地層の上部に、銀または銀合金からなる銀薄膜層を含む構成の透明導電膜積層体が提案されている(例えば下記特許文献1参照)。
特開2008-171637号公報
 しかしながら、電気伝導率の高いアルミニウムなどを用いた下地層の上部に銀を積層させた構成であっても、十分な導電性と光透過性との両立を図ることは困難であった。
 そこで本発明は、十分な導電性と光透過性とを兼ね備えた透明電極とその製造方法を提供すること、およびこの透明電極を用いることによって性能の向上が図られた電子デバイスおよび有機電界発光素子を提供することを目的とする。
 本発明の上記目的は、以下の構成により達成される。
 1.窒素原子を含有すると共に当該窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]となる化合物を用いて構成された窒素含有層と、
 銀を主成分とする電極層と、
 前記窒素含有層と前記電極層とに接してこれらの間に挟持されたアルミニウム中間層とを備えた透明電極。
 2.前記化合物における前記有効非共有電子対含有率[n/M]が、5.0×10-3≦[n/M]である前記1記載の透明電極。
 3.前記窒素含有層は、下記一般式(1)で表される化合物を含有する
 請求項1または2に記載の透明電極。
Figure JPOXMLDOC01-appb-C000007
 ただし一般式(1)中、E101~E108は、各々-C(R12)=または-N=を表し、E101~E108のうち少なくとも1つは-N=である。またR11および上記R12は水素原子または置換基を表す。
 4.前記窒素含有層は、下記一般式(2)で表される化合物を含有する前記1または2に記載の透明電極。
Figure JPOXMLDOC01-appb-C000008
 ただし一般式(2)中、Y21は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E201~E216、E221~E238は、各々-C(R21)=または-N=を表し、上記R21は水素原子または置換基を表す。
 またE221~E229の少なくとも1つおよびE230~E238の少なくとも1つは-N=を表す。k21およびk22は0~4の整数を表すが、k21+k22は2以上の整数である。
 5.前記窒素含有層は、下記一般式(3)で表される化合物を含有する前記1または2に記載の透明電極。
Figure JPOXMLDOC01-appb-C000009
 ただし一般式(3)中、E301~E312は、各々-C(R31)=を表し、R31は水素原子または置換基を表す。Y31は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
 6.前記窒素含有層は、下記一般式(4)で表される化合物を含有する前記1または2に記載の透明電極。
Figure JPOXMLDOC01-appb-C000010
 ただし一般式(4)中、E401~E414は、各々-C(R41)=を表し、R41は水素原子または置換基を表す。Ar41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。またk41は3以上の整数を表す。
 7.前記窒素含有層は、下記一般式(5)で表される化合物を含有する前記1または2に記載の透明電極。
Figure JPOXMLDOC01-appb-C000011
 ただし一般式(5)中、R51は置換基を表し、E501,E502、E511~E515、E521~E525は、各々-C(R52)=または-N=を表し、E503~E505は、各々-C(R52)=を表し、前記R52は、水素原子(H)または置換基を表す。さらに、E501およびE502のうち少なくとも1つは-N=(窒素原子)であり、E511~E515のうち少なくとも1つは-N=(窒素原子)であり、E521~E525のうち少なくとも1つは-N=(窒素原子)である。
 8.前記窒素含有層は、下記一般式(6)で表される化合物を含有する前記1または2に記載の透明電極。
Figure JPOXMLDOC01-appb-C000012
 ただし一般式(6)中、E601~E612は、各々-C(R61)=または-N=を表し、R61は水素原子または置換基を表す。Ar61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。
 9.前記窒素含有層は、ハロゲン原子を含有する前記1~8の何れかに記載の透明電極。
 10.前記アルミニウム中間層は、ハロゲン原子を含有する前記9に記載の透明電極。
 11.前記アルミニウム中間層は、少なくとも前記窒素含有層との界面にハロゲン原子を含有した中間層とを備えた前記9または10に記載の透明電極。
 12.前記アルミニウム中間層は、前記窒素含有層側から前記電極層側にかけてハロゲン原子の含有量が徐々に少なくなるように形成されている前記10または11に記載の透明電極。
 13.前記アルミニウム中間層は、前記窒素含有層側のみにハロゲン原子を含有する前記9~12のいずれかに記載の透明電極。
 14.前記アルミニウム中間層は、全層にハロゲン原子を含有する前記9~12の何れかに記載の透明電極。
 15.前記アルミニウム中間層は、1nm以下の膜厚である前記1~14の何れかに記載の透明電極。
 16.前記窒素含有層は、前記化合物と共に他の化合物を用いて構成され、これらの化合物の混合比を考慮した前記有効非共有電子対含有率[n/M]の平均値が、3.9×10-3≦[n/M]である前記1~15の何れかに記載の透明電極。
 17.窒素原子を含有すると共に当該窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]となる化合物を用いて構成された窒素含有層を形成する工程と、
 前記窒素含有層に接してアルミニウム中間層を形成する工程と、
 前記アルミニウム中間層に接して銀を主成分とする電極層を形成する工程とを含む透明電極の製造方法。
 18.前記窒素含有層を形成する工程では、ハロゲン原子を含有する窒素含有層を形成し、
 前記アルミニウム中間層を形成する工程では、前記窒素含有層中のハロゲン原子を当該アルミニウム中間層中に拡散させながら当該アルミニウム中間層の成膜を行う前記17記載の透明電極の製造方法。
 19.前記窒素含有層を形成する工程では、ハロゲン原子を含有する窒素含有層を形成し、
 前記アルミニウム中間層を形成する工程の後、前記窒素含有層中のハロゲン原子を前記アルミニウム中間層中に拡散させる工程を行う前記17または18記載の透明電極の製造方法。
 20.前記1~16の何れかに記載の透明電極を有する電子デバイス。
 21.前記電子デバイスが有機電界発光素子である前記20に記載の電子デバイス。
 22.前記1~16の何れかに記載の透明電極と、
 前記透明電極における前記電極層側に設けられた発光機能層と、
 前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極とを有する
 有機電界発光素子。
 23.前記1~16の何れかに記載の透明電極と、
 前記透明電極における前記窒素含有層側に設けられた発光機能層と、
 前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極とを有する
 有機電界発光素子。
 以上のように構成された透明電極は、窒素原子を含有する化合物を用いて構成された窒素含有層に対して、アルミニウム中間層を介して銀を主成分とした電極層を隣接させて設けた構成である。これにより銀を主成分とする電極層は、アルミニウム中間層のアルミニウムとの相互作用、および窒素含有層を構成する窒素原子との相互作用により、隣接界面においての銀の拡散距離が減少して凝集が抑えられたものとなる。このため、一般的には核成長型(Volumer-Weber:VW型)での膜成長により島状に孤立し易い銀薄膜が、単層成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。したがって、薄い膜厚でありながらも、均一な膜厚の電極層が得られるようになる。
 そして特に、窒素含有層に対する電極層を構成する銀の結合安定性の指標として、上述した有効非共有電子対含有率[n/M]を適用し、この値が3.9×10-3≦[n/M]となる化合物を用いて窒素含有層1aを構成するようにした。これにより、上述したような「銀の凝集を抑える」効果が確実に得られる窒素含有層を設けることが可能になる。これは、後の実施例で詳細に説明するように、このような窒素含有層上には、光透過性を阻害しない程度に極薄膜のアルミニウム中間層を介して、5nmと言った極薄膜でありながらもシート抵抗が2桁程度の低い値に抑えられた電極層が形成されることからも確認された。
 したがって、この透明電極においては、薄い膜厚であることで光透過性を確保しつつも、均一な膜厚であることで導電性が確保された電極層を確実に得ることができ、銀を用いた透明電極における導電性の向上と光透過性の向上との両立を図ることが可能になる。
 以上説明したように本発明によれば、透明電極における導電性の向上と光透過性の向上との両立を図ることが可能になり、またこの透明電極を用いた電子デバイスおよび有機電界発光素子の性能の向上を図ることが可能になる。
本発明の透明電極の構成を示す断面模式図である。 本発明の透明電極の一部を拡大した模式図である。 本発明の別の透明電極の一部を拡大した模式図である。 本発明の透明電極を用いた有機電界発光素子の第1例を示す断面構成図である。 本発明の透明電極を用いた有機電界発光素子の第2例を示す断面構成図である。 本発明の透明電極を用いた有機電界発光素子の第3例を示す断面構成図である。 本発明の透明電極を用いた有機電界発光素子の第4例を示す断面構成図である。 実施例2で作製したトップエミッション型の有機電界発光素子を説明する断面構成図である。 実施例3で作製したボトムエミッション型の有機電界発光素子を説明する断面構成図である。
 以下、本発明の実施の形態を、図面に基づいて次に示す順に説明する。
1.透明電極
2.透明電極の用途
3.有機電界発光素子の第1例(トップエミッション型)
4.有機電界発光素子の第2例(ボトムエミッション型)
5.有機電界発光素子の第3例(両面発光型)
6.有機電界発光素子の第4例(逆積み構成)
7.有機電界発光素子の用途
8.照明装置-1
9.照明装置-2
≪1.透明電極≫
 図1は、実施形態の透明電極の構成を示す断面模式図である。この図に示すように、透明電極1は、窒素含有層1aと、電極層1bと、これらの窒素含有層1a-電極層1b間に挟持されたアルミニウム中間層Aとを備えた積層構造である。この透明電極1は、例えば基材11の上部に、窒素含有層1a、アルミニウム中間層A、電極層1bの順に設けられている。このうち、透明電極1における電極部分を構成する電極層1bは、銀(Ag)を主成分として構成された層である。また電極層1bに対する窒素含有層1aは、窒素原子(N)を含有する化合物を用いて構成されており、特に電極層1bを構成する主材料である銀と安定的に結合する窒素原子の非共有電子対を[有効非共有電子対]とし、この[有効非共有電子対]の含有率が所定範囲である化合物を用いていることを特徴としている。
 以下に、このような積層構造の透明電極1が設けられる基材11、透明電極1を構成する窒素含有層1a、アルミニウム中間層A、および電極層1bの順に、詳細な構成を説明する。尚、本発明の透明電極1の透明とは波長550nmでの光透過率が50%以上であることをいう。
<基材11>
 本発明の透明電極1が形成される基材11は、例えばガラス、プラスチック等を挙げることができるが、これらに限定されない。また、基材11は透明であっても不透明であってもよい。本発明の透明電極1が、基材11側から光を取り出す電子デバイスに用いられる場合には、基材11は透明であることが好ましい。好ましく用いられる透明な基材11としては、ガラス、石英、透明樹脂フィルムを挙げることができる。
 ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、窒素含有層1aとの密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理を施したり、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成される。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。
 樹脂フィルムの表面には、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜およびハイブリッド被膜は、JIS-K-7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m2・24時間)以下のバリア性フィルム(バリア膜等ともいう)であることが好ましい。またさらには、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が10-3ml/(m2・24時間・atm)以下、水蒸気透過度が10-5g/(m2・24時間)以下の高バリア性フィルムであることが好ましい。
 以上のようなバリア性フィルムを形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに当該バリア性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア性フィルムの形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載の大気圧プラズマ重合法によるものが特に好ましい。
 一方、基材11が不透明なものである場合、例えば、アルミニウム、ステンレス等の金属基板、不透明樹脂基板、セラミック製の基板等を用いることができる。これらの基板は、フレキシブルに屈曲するフィルム状であっても良い。
<窒素含有層1a>
 窒素含有層1aは、アルミニウム中間層Aに隣接して設けられた層であり、窒素原子(N)を含有する化合物を用いて構成されている。この窒素含有層1aは、一部が電極層1bに接していても良い。また窒素含有層1aは、ハロゲン原子を含有していても良い。そして特に、この窒素含有層1aを構成する化合物は、当該化合物に含有される窒素原子のうち、特に電極層1bを構成する主材料である銀と安定的に結合する窒素原子の非共有電子対を[有効非共有電子対]とし、この[有効非共有電子対]の含有率が所定範囲であることを特徴としている。
 ここで[有効非共有電子対]とは、化合物に含有される窒素原子が有する非共有電子対のうち、芳香族性に関与せずかつ金属に配位していない非共有電子対であることとする。ここでの芳香族性とは、π電子を持つ原子が環状に並んだ不飽和環状構造を言い、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(n=0、または自然数)個であることを条件としている。
 以上のような[有効非共有電子対]は、その非共有電子対を備えた窒素原子自体が、芳香環を構成するヘテロ原子であるか否かにかかわらず、窒素原子が有する非共有電子対が芳香族性と関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子が芳香族性に関与しない非共有電子対を有していれば、その非共有電子対は[有効非共有電子対]の一つとしてカウントされる。これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対の全てが芳香族性に関与していれば、その窒素原子の非共有電子対は[有効非共有電子対]としてカウントされることはない。尚、各化合物において、上述した[有効非共有電子対]の数nは、[有効非共有電子対]を有する窒素原子の数と一致する。
 特に本実施形態においては、このような化合物の分子量Mに対する[有効非共有電子対]の数nを、例えば有効非共有電子対含有率[n/M]と定義する。そして窒素含有層1aは、この[n/M]が、3.9×10-3≦[n/M]となるように選択された化合物を用いて構成されているところが特徴的である。また窒素含有層1aは、以上のように定義される有効非共有電子対含有率[n/M]が、5.0×10-3≦[n/M]の範囲であればさらに好ましい。また有効非共有電子対含有率[n/M]は、[n/M]≦1.9×10-2であって良い。
 また窒素含有層1aは、有効非共有電子対含有率[n/M]が上述した所定範囲である化合物を用いて構成されていれば良く、このような化合物のみで構成されていても良く、またこのような化合物と他の化合物とを混合して用いて構成されていても良い。他の化合物は、窒素原子が含有されていてもいなくても良く、さらに有効非共有電子対含有率[n/M]が上述した所定範囲でなくても良い。
 窒素含有層1aが、複数の化合物を用いて構成されている場合、例えば化合物の混合比に基づき、これらの化合物を混合した混合化合物の分子量Mを求め、この分子量Mに対しての[有効非共有電子対]の合計の数nを、有効非共有電子対含有率[n/M]の平均値として求め、この値が上述した所定範囲であることが好ましい。つまり窒素含有層1a自体の有効非共有電子対含有率[n/M]が所定範囲であることが好ましい。
 尚、窒素含有層1aが、複数の化合物を用いて構成されている場合であって、膜厚方向に化合物の混合比(含有比)が異なる構成であれば、アルミニウム中間層Aと接する側の窒素含有層1aの界面層においての有効非共有電子対含有率[n/M]が上述した所定範囲であれば良い。
 またこの窒素含有層1aは、ハロゲン原子を有する化合物を含んでいても良い。この場合、有効非共有電子対含有率[n/M]が上述した所定範囲である化合物が、ハロゲン原子を有していても良いし、この化合物とは別の窒素含有層1aを構成している化合物がハロゲン原子を含有していても良い。
[化合物-1]
 以下に、窒素含有層1aを構成する化合物として、上述した有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]を満たす化合物の具体例(No.1~No.30)を示す。各化合物No.1~No.30には、[有効非共有電子対]を有する窒素原子に対して○を付した。また、下記表1には、これらの化合物No.1~No.30の分子量M、[有効非共有電子対]の数n、および有効非共有電子対含有率[n/M]を示す。下記化合物26の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち銅に配位していない非共有電子対が[有効非共有電子対]としてカウントされる。
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-T000018
 尚、上記表1には、これらの例示化合物が、以降に説明する他の化合物を表す一般式(1)~(6)にも属する場合の該当一般式を示した。
[化合物-2]
 また窒素含有層1aを構成する化合物としては、以上のような有効非共有電子対含有率[n/M]が上述した所定範囲である化合物の他、この窒素含有層1aを備えた透明電極1が適用される電子デバイスごとに必要とされる性質を有する化合物が用いられる。例えば、この透明電極1が、有機電界発光素子の電極として用いられる場合、その成膜性や、電子輸送性の観点から、窒素含有層1aを構成する化合物としては、以降に説明する一般式(1)~(6)で表される化合物が用いられる。
 これらの一般式(1)~(6)で示される化合物の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で窒素含有層1aを構成する化合物として用いることができる(上記表1参照)。一方、下記一般式(1)~(6)で示される化合物が、上述した有効非共有電子対含有率[n/M]の範囲に当てはまらない化合物であれば、有効非共有電子対含有率[n/M]が上述した範囲の化合物と混合することで窒素含有層1aを構成する化合物として用いることができる。
Figure JPOXMLDOC01-appb-C000019
 上記一般式(1)の式中、E101~E108は、各々-C(R12)=または-N=を表し、E101~E108のうち少なくとも1つは-N=である。また、一般式(1)中のR11、および上記R12は水素原子または置換基を表す。
 この置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
 これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
Figure JPOXMLDOC01-appb-C000020
 この一般式(2)は、一般式(1)の一形態でもある。上記一般式(2)の式中、Y21は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E201~E216、E221~E238は、各々-C(R21)=または-N=を表し、R21は水素原子または置換基を表す。ただし、E221~E229の少なくとも1つおよびE230~E238の少なくとも1つは-N=を表す。k21およびk22は0~4の整数を表すが、k21+k22は2以上の整数である。
 一般式(2)において、Y21で表されるアリーレン基としては、例えば、o-フェニレン基、p-フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’-ビフェニル]-4,4’-ジイル基、3,3’-ビフェニルジイル基、3,6-ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が例示される。
 また一般式(2)において、Y21で表されるヘテロアリーレン基としては、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が例示される。
 Y21で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基またはジベンゾチオフェン環から導出される基が好ましい。
 一般式(2)において、E201~E216、E221~E238で各々表される-C(R21)=のR21が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 一般式(2)において、E201~E208のうちの6つ以上、およびE209~E216のうちの6つ以上が、各々-C(R21)=で表されることが好ましい。
 一般式(2)において、E225~E229の少なくとも1つ、およびE234~E238の少なくとも1つが-N=を表すことが好ましい。
 さらには、一般式(2)において、E225~E229のいずれか1つ、およびE234~E238のいずれか1つが-N=を表すことが好ましい。
 また、一般式(2)において、E221~E224およびE230~E233が、各々-C(R21)=で表されることが好ましい態様として挙げられる。
 さらに、一般式(2)で表される化合物において、E203が-C(R21)=で表され、かつR21が連結部位を表すことが好ましく、さらに、E211も同時に-C(R21)=で表され、かつR21が連結部位を表すことが好ましい。
 さらに、E225及びE234が-N=で表されることが好ましく、E221~E224およびE230~E233が、各々-C(R21)=で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 この一般式(3)は、一般式(1)の一形態でもある。上記一般式(3)の式中、E301~E312は、各々-C(R31)=を表し、R31は水素原子または置換基を表す。また、Y31は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
 上記一般式(3)において、E301~E312で各々表される-C(R31)=のR31が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 また一般式(3)において、Y31で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、一般式(2)のY21と同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000022
 この一般式(4)は、一般式(1)の一形態でもある。上記一般式(4)の式中、E401~E414は、各々-C(R41)=を表し、R41は水素原子または置換基を表す。またAr41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。さらにk41は3以上の整数を表す。
 上記一般式(4)において、E401~E414で各々表される-C(R41)=のR41が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 また一般式(4)において、Ar41が芳香族炭化水素環を表す場合、この芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は、さらに一般式(1)のR11,R12として例示した置換基を有しても良い。
 また一般式(4)において、Ar41が芳香族複素環を表す場合、この芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。尚、アザカルバゾール環とは、カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。これらの環は、さらに一般式(1)において、R11,R12として例示した置換基を有しても良い。
Figure JPOXMLDOC01-appb-C000023
 上記一般式(5)の式中、R51は置換基を表し、E501,E502、E511~E515、E521~E525は、各々-C(R52)=または-N=を表し、E503~E505は、各々-C(R52)=を表す。このうちのR52は、水素原子(H)または置換基を表す。またE501およびE502のうちの少なくとも1つは-N=(窒素原子)であり、E511~E515のうちの少なくとも1つは-N=(窒素原子)であり、E521~E525のうちの少なくとも1つは-N=(窒素原子)である。
 上記一般式(5)において、R51,R52が置換基を表す場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
Figure JPOXMLDOC01-appb-C000024
 上記一般式(6)の式中、E601~E612は、各々-C(R61)=または-N=を表し、R61は水素原子または置換基を表す。またAr61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。
 上記一般式(6)において、E601~E612で各々表される-C(R61)=のR61が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 また一般式(6)において、Ar61が表す、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
[化合物-3]
 また窒素含有層1aを構成するさらに他の化合物として、以上のような一般式(1)~(6)で表される化合物の他、下記に具体例を示す化合物1~118が例示される。これらの化合物は、電子輸送性または電子注入性を備えた材料である。したがって、これらの化合物を用いて窒素含有層1aを構成した透明電極1は、有機電界発光素子における透明電極として好適であり、有機電界発光素子における電子輸送層または電子注入層として窒素含有層1aを用いることができるのである。尚、これらの化合物1~118の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で窒素含有層1aを構成する化合物として用いることができる。さらに、これらの化合物1~118の中には、上述した一般式(1)~(6)に当てはまる化合物もある。
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000052
[化合物の合成例]
 以下に代表的な化合物の合成例として、化合物5の具体的な合成例を示すが、これに限定されない。
Figure JPOXMLDOC01-appb-C000053
 工程1:(中間体1の合成)
 窒素雰囲気下、2,8-ジブロモジベンゾフラン(1.0モル)、カルバゾール(2.0モル)、銅粉末(3.0モル)、炭酸カリウム(1.5モル)を、DMAc(ジメチルアセトアミド)300ml中で混合し、130℃で24時間撹拌した。これによって得た反応液を室温まで冷却後、トルエン1Lを加え、蒸留水で3回洗浄し、減圧雰囲気下において洗浄物から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(n-ヘプタン:トルエン=4:1~3:1)にて精製し、中間体1を収率85%で得た。
 工程2:(中間体2の合成)
 室温、大気下で中間体1(0.5モル)をDMF(ジメチルホルムアミド)100mlに溶解し、NBS(N-ブロモコハク酸イミド)(2.0モル)を加え、一晩室温で撹拌した。得られた沈殿を濾過し、メタノールで洗浄し、中間体2を収率92%で得た。
 工程3:(化合物5の合成)
 窒素雰囲気下、中間体2(0.25モル)、2-フェニルピリジン(1.0モル)、ルテニウム錯体[(η-C)RuCl(0.05モル)、トリフェニルホスフィン(0.2モル)、炭酸カリウム(12モル)を、NMP(N-メチル-2-ピロリドン)3L中で混合し、140℃で一晩撹拌した。
 反応液を室温まで冷却後、ジクロロメタン5Lを加え、反応液を濾過した。次いで減圧雰囲気下(800Pa、80℃)において濾液から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(CHCl:EtN=20:1~10:1)にて精製した。
 減圧雰囲気下において、精製物から溶媒を留去した後、その残渣をジクロロメタンに再び溶解し、水で3回洗浄した。洗浄によって得られた物質を無水硫酸マグネシウムで乾燥させ、減圧雰囲気下において乾燥後の物質から溶媒を留去することにより、化合物5を収率68%で得た。
[ハロゲン原子及びハロゲン化合物]
 窒素含有層1aに含まれるハロゲン原子としては、フッ素、塩素、臭素、沃素などが挙げられる。これらのハロゲン原子は前述したように、窒素原子を含有する化合物に含まれてもよく、窒素原子を含有する化合物とは別のハロゲン化合物として窒素含有層1a内に含まれてもよい。窒素含有層1aを構成するハロゲン化合物としては、フッ化リチウム、フッ化カリウム、フッ化カルシウム、塩化リチウム、塩化カリウム、塩化カルシウム、臭化リチウム、臭化カリウム、臭化カルシウム、沃化リチウム、沃化カリウム、沃化カルシウムなどが挙げられる。
[窒素含有層1aの成膜方法]
 以上のような窒素含有層1aが基材11上に成膜されたものである場合、その成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。
 特に、複数の化合物を用いて窒素含有層1aを成膜する場合であれば、複数の蒸着源から複数の化合物を同時に供給する共蒸着が適用される。また化合物として高分子材料を用いる場合であれば、塗布法が好ましく適用される。この場合、化合物を溶媒に溶解させた塗布液を用いる。化合物を溶解させる溶媒が限定されることはない。さらに、複数の化合物を用いて窒素含有層1aを成膜する場合であれば、複数の化合物を溶解させることが可能な溶媒を用いて塗布液を作製すれば良い。
<アルミニウム中間層A>
 アルミニウム中間層Aは、アルミニウムを用いて構成された層であって、窒素含有層1aおよび電極層1bに接した状態で、これらの層間に設けられている。このアルミニウム中間層Aは、透明電極1の光透過性を阻害することなく、かつ窒素含有層1aに含有されている窒素の電極層1bへの影響を阻害することのない程度に十分に薄い膜厚であることが重要である。
 図2は、図1におけるa部を拡大した図であり、透明電極1のアルミニウム中間層Aを含む要部を拡大した図である。この図に示すように、アルミニウム中間層Aは、1nm以下の膜厚であって良く、均一な膜厚であったり連続した膜として構成されている必要はなく、島状であったり、複数の孔を有する形状であっても良い。
 以上のようなアルミニウム中間層Aは、アルミニウムを主成分とし、その他に銀、マグネシウム、銅、インジウムリチウムなどを含有していても良い。
 また窒素含有層1aが、ハロゲン原子を含有する場合、アルミニウム中間層Aは、ハロゲン原子若しくはハロゲン化合物を含有していても良い。アルミニウム中間層A中におけるハロゲン原子若しくはハロゲン化合物は、少なくとも窒素含有層1aとの界面に含有されており、アルミニウム中間層A中の全層に含有されていても良い。つまり、アルミニウム中間層Aは、窒素含有層1aに接する側から電極層1bに接する側にかけた層全体に、ハロゲン原子若しくはハロゲン化合物を含有している構成であって良い。
 アルミニウム中間層Aに含有されるハロゲン原子は、窒素含有層1aに含まれたハロゲン原子と同じハロゲン原子であって、例えば、ハロゲン化アルミニウムとしてハロゲン原子が含有されている。アルミニウム中間層Aを構成するハロゲン化アルミニウムの具体例としては、例えばフッ化アルミニウム、塩化アルミニウム、臭化アルミニウム、沃化アルミニウムなどが挙げられる。
 また図3には、アルミニウム中間層Aの別の形態を示す。この図3は、図1におけるa部を拡大した図であり、透明電極1のアルミニウム中間層Aを含む要部を拡大した図である。この図に示すように、アルミニウム中間層Aは、窒素含有層1a側に設けられたハロゲン原子を含有する第1層A1と、電極層1b側に設けられたハロゲン原子を含有しない第2層A2とを備えていても良い。
 第1層A1を構成するハロゲン原子は、窒素含有層1aに含まれたハロゲン原子と同じハロゲン原子である。第1層A1を構成するハロゲン原子は、ハロゲン化アルミニウムとして第1層A1中に含有されている。このようなハロゲン化アルミニウムの具体例としては、例えばフッ化アルミニウム、塩化アルミニウム、臭化アルミニウム、沃化アルミニウムなどが挙げられる。
 また、アルミニウム中間層Aのさらに別の形態として、ハロゲン原子の含有量が、膜厚方向に濃度勾配を有する構成が例示される。この場合、アルミニウム中間層Aは、窒素含有層1a側から電極層1b側にかけてハロゲン原子の含有量(アルミニウム中間層A内のハロゲン濃度)が徐々に少なくなるように形成されたアルミニウムを主成分とする層として構成されていても良い。すなわち、アルミニウム中間層Aは、少なくとも窒素含有層1aとの界面にハロゲン原子を含有していれば良いのである。
[アルミニウム中間層Aの形成方法]
 以上のような各構成のアルミニウム中間層Aの形成には、例えば、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法を適用することができる。なかでも蒸着法が好ましく適用される。また、適宜の方法でアルミニウム中間層Aを成膜した後、必要に応じてアニール処理(加熱処理)を行ってもよい。アニール処理は、40℃以上150℃以下で行うことが好ましい。
 また特にハロゲン原子を含有するアルミニウム中間層Aを形成する場合であれば、先ずハロゲン原子を含有する窒素含有層1aを形成する。その後、ハロゲン原子を含有する窒素含有層1a上にアルミニウムを主成分とするアルミニウム中間層Aを成膜し、このアルミニウム中間層Aにおける少なくとも窒素含有層1aとの界面側に、窒素含有層1a中のハロゲン原子を拡散させる。アルミニウム中間層A中へのハロゲン原子の拡散は、アルミニウム中間層Aの成膜中であっても良いし、成膜後であっても良く、その両方であっても良い。
 アルミニウム中間層Aの成膜中にハロゲン原子を拡散させる場合であれば、アルミニウム中間層の成膜時に基板加熱を行う。これにより、成膜時の加熱に起因して、窒素含有層1aに含まれるハロゲン原子がアルミニウムと反応し、少なくとも窒素含有層1aとの界面にハロゲン原子をハロゲン化アルミニウムとして含有するようにアルミニウム中間層Aが形成される。
 一方、アルミニウム中間層Aの成膜後にハロゲン原子を拡散させる場合であれば、アルミニウム中間層Aを成膜した後に、アニール処理を行うことにより、窒素含有層1aに含まれるハロゲン原子とアルミニウム中間層A中のアルミニウムとの反応を促進することができる。この際、アニール処理における加熱温度や加熱時間の調整を行うことで、窒素含有層1aからアルミニウム中間層A中へのハロゲン原子の拡散量、すなわちアルミニウムとハロゲン原子との反応量を制御する。これにより、最終的に形成されるアルミニウム中間層A内のハロゲン原子の含有量を調整し、少なくとも窒素含有層1aとの界面側におけるアルミニウム中間層Aをハロゲン化させる。尚、このアニール処理は、アルミニウム中間層Aの成膜後の工程であればよく、例えば、電極層1bを形成した後に行ってもよい。
 そして特に図3を用いて説明したように、ハロゲン原子を含有する第1層A1と、ハロゲン原子を含有しない第2層A2とを備えたアルミニウム中間層Aを形成する場合、またはハロゲン原子の含有量に濃度勾配を有するアルミニウム中間層Aを形成する場合であれば、アルミニウム中間層Aの全層がハロゲン化することがないよう、上述したアルミニウム中間層Aの成膜時における基板加熱の温度や成膜後のアニール処理条件を設定するか、基板加熱やアニール処理を行わないようにする。また別の手段として、窒素含有層1aに含まれるハロゲン原子の量を所定値以下にしたり、アルミニウム中間層の膜厚を透過率が低下しない範囲でできるだけ厚くすることにより、表面層にハロゲン原子を拡散させることなくアルミニウム中間層を形成する。
 尚、ハロゲン原子を含有する窒素含有層1aの上部に、ハロゲン原子を含有しないアルミニウム中間層Aを形成する場合であれば、アルミニウム中間層Aの成膜時に成膜基板を冷却すれば良い。これにより、窒素含有層1aからのハロゲン原子の拡散を防止しつつ、アルミニウム中間層Aの成膜を行う。
<電極層1b>
 電極層1bは、銀を主成分として構成された層であって、銀または銀を主成分とした合金を用いて構成され、窒素含有層1aとの間にアルミニウム中間層Aを挟持する状態で配置された層である。このような電極層1bは、アルミニウム中間層Aに隣接して設けられている。また、アルミニウム中間層Aが連続膜ではなく、島状であったり孔を有する層である場合、電極層1bの一部は窒素含有層1aに隣接して設けられている。
 電極層1bを構成する銀(Ag)を主成分とする合金は、一例として銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)などが挙げられる。
 以上のような電極層1bは、銀または銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であっても良い。
 さらにこの電極層1bは、膜厚が4~12nmの範囲にあることが好ましい。膜厚が12nm以下であることにより、層の吸収成分または反射成分が低く抑えられ、透明バリア膜の光透過率が維持されるため好ましい。また、膜厚が4nm以上であることにより、層の導電性も確保される。
 尚、以上のような、窒素含有層1aと電極層1bとの間にアルミニウム中間層Aを挟持した積層構造の透明電極1は、電極層1bの上部が保護膜で覆われていたり、別の導電性層が積層されていても良い。この場合、透明電極1の光透過性を損なうことのないように、保護膜及び導電性層が光透過性を有することが好ましい。また、窒素含有層1aの下部、すなわち、窒素含有層1aと基材11との間にも、必要に応じた層を設けた構成としても良い。
[電極層1bの成膜方法]
 このような電極層1bの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。また電極層1bは、極薄いアルミニウム中間層Aを介して窒素含有層1a上に成膜されることにより、成膜後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであっても良い。この高温アニール処理は、前述したアルミニウム中間層Aの形成時において、窒素含有層1a中のハロゲン原子とアルミニウム中間層Aのアルミニウムとを反応させるためのアニール処理を兼ねるものであっても良い。
<透明電極1の効果>
 以上のように構成された透明電極1は、窒素原子を含有する化合物を用いて構成された窒素含有層1aに対して、アルミニウム中間層Aを介して銀を主成分とした電極層1bを隣接させて設けた構成である。これにより銀を主成分とする電極層1bは、アルミニウム中間層Aのアルミニウムとの相互作用、および窒素含有層1aを構成する窒素原子を含んだ化合物との相互作用により、隣接界面においての銀の拡散距離が減少して凝集が抑えられたものとなる。このため、一般的には核成長型(Volumer-Weber:VW型)での膜成長により島状に孤立し易い銀薄膜が、単層成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。したがって、薄い膜厚でありながらも、均一な膜厚の電極層1bが得られるようになる。
 以上のような電極層1bにおいての銀の凝集を抑える効果を得るためには、アルミニウム中間層Aの膜厚は極薄膜で良いため、アルミニウム中間層Aでの光の吸収が最小限に抑えられ、透明電極1の光透過性が阻害されることはない。また、アルミニウム中間層Aの膜厚が極薄膜であることにより、窒素含有層1aを構成する窒素がアルミニウム中間層Aを介して電極層1bを構成する銀と相互作用することも可能となる。
 そして特に、窒素含有層1aに対する電極層1bを構成する銀の結合安定性の指標として、上述した有効非共有電子対含有率[n/M]を適用し、この値が3.9×10-3≦[n/M]となる化合物を用いて窒素含有層1aを構成するようにした。これにより、上述したような「銀の凝集を抑える」効果が確実に得られる窒素含有層1aを設けることが可能になる。これは、後の実施例で詳細に説明するように、このような窒素含有層1a上には、5nmと言った極薄膜でありながらもシート抵抗が2桁程度の低い値に抑えられた電極層1bが形成されることからも確認された。
 以上の結果、この透明電極1においては、薄い膜厚であることで光透過性を確保しつつも、均一な膜厚であることで導電性が確保された電極層1bを確実に得ることができ、銀を用いた透明電極1における導電性の向上と光透過性の向上との両立を図ることが可能になる。
 また、本実施形態の透明電極1では、窒素含有層1aにハロゲン原子を含有させることにより、駆動電圧の低下及び高温・高湿保存性の向上が可能である。
 さらに、以上のようにして構成された透明電極1は、アルミニウム中間層Aの少なくとも窒素含有層1a側の界面に、ハロゲン原子をハロゲン化アルミニウムとして含有させた構成とすることにより、有機材料層から無機材料層への物性の変化を連続的に変化させることができる。したがって、窒素含有層1aとアルミニウム中間層Aとを下地層としてみた場合に、下地層から銀を主成分とする電極層1bに対する物性の連続性が保持されるため、密着性の向上、電圧の低減、銀の凝集の抑制が図られる。
 これによっても、さらに均一な膜厚の薄膜として銀を主成分とする電極層1bを構成することが可能になり、銀を用いた透明電極1におけるさらなる導電性の向上と光透過性の向上とを図ることが可能である。
 またこのような透明電極1は、レアメタルであるインジウム(In)を用いていないため低コストであり、またZnOのような化学的に不安定な材料を用いていないため長期信頼性にも優れている。
≪2.透明電極の用途≫
 上述した構成の透明電極1は、各種電子デバイスに用いることができる。電子デバイスの例としては、有機電界発光素子、LED(light Emitting Diode)、液晶素子、太陽電池、タッチパネル等が挙げられ、これらの電子デバイスにおいて光透過性を必要とされる電極部材として、上述の透明電極1を用いることができる。以下では、用途の一例として、透明電極をアノードおよびカソードとして用いた有機電界発光素子の実施の形態を説明する。
≪3.有機電界発光素子の第1例(トップエミッション型)≫
<有機電界発光素子EL-1の構成>
 図4は、本発明の電子デバイスの一例として、上述した透明電極1を用いた有機電界発光素子の第1例を示す断面構成図である。以下にこの図に基づいて有機電界発光素子の構成を説明する。
 図4に示す有機電界発光素子EL-1は、基板13上に設けられており、基板13側から順に、対向電極5-1、有機材料等を用いて構成された発光機能層3、および透明電極1をこの順に積層して構成されている。この有機電界発光素子EL-1においては、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子EL-1は、発生させた光(以下、発光光hと記す)を、少なくとも基板13と逆側から取り出すトップエミッション型として構成されている。
 また有機電界発光素子EL-1の全体的な層構造が限定されることはなく、一般的な層構造であって良い。ここでは、透明電極1がカソード(すなわち陰極)側に配置され、主に電極層1bがカソードとして機能する一方、対向電極5-1がアノード(すなわち陽極)として機能する。
 この場合、例えば発光機能層3は、アノードである対向電極5-1側から順に[正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3e]を積層した構成が例示されるが、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。正孔注入層3aおよび正孔輸送層3bは、正孔輸送性と正孔注入性とを有する正孔輸送/注入層として設けられても良い。電子輸送層3dおよび電子注入層3eは、電子輸送性と電子注入性とを有する単一層として設けられても良い。またこれらの発光機能層3のうち、例えば電子注入層3eは無機材料で構成されている場合もある。
 またさらに、カソードとして設けられた透明電極1のうち、窒素含有層1aは、電子注入層を兼ねていても良く、電子輸送層および電子注入層を兼ねていても良い。
 また発光機能層3は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていて良い。さらに発光層3cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させて発光層ユニットとして形成されていても良い。中間層は、正孔阻止層、電子阻止層として機能しても良い。さらにアノードである対向電極5-1も、必要に応じた積層構造であっても良い。このような構成において、透明電極1と対向電極5-1とで発光機能層3が挟持された部分のみが、有機電界発光素子EL-1における発光領域となる。
 また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の電極層1bに接して補助電極15が設けられていても良い。
 以上のような構成の有機電界発光素子EL-1は、有機材料等を用いて構成された発光機能層3の劣化を防止することを目的として、基板13上において後述する透明封止材17で封止されている。この透明封止材17は、接着剤19を介して基板13側に固定されている。ただし、透明電極1および対向電極5-1の端子部分は、基板13上において発光機能層3によって互いに絶縁性を保った状態で透明封止材17から露出させた状態で設けられていることとする。
 以下、上述した有機電界発光素子EL-1を構成するための主要各層の詳細を、基板13、透明電極1、対向電極5-1、発光機能層3の発光層3c、発光機能層3の他の層、補助電極15、および透明封止材17の順に説明する。その後、有機電界発光素子EL-1の作製方法を説明する。
[基板13]
 基板13は、先に説明した本発明の透明電極1が設けられる基材と同様のものが用いられる。ただしこの有機電界発光素子EL-1が、対向電極5-1側からも発光光hを取り出す両面発光型である場合、例示した基材のうちから光透過性を有する透明なものが選択して用いられる。
[透明電極1(カソード側)]
 透明電極1は、先に説明した本発明の透明電極1であり、発光機能層3側から順に、窒素含有層1a、アルミニウム中間層A、および電極層1bを順に成膜した構成である。ここでは特に、透明電極1を構成する電極層1bおよびアルミニウム中間層Aが実質的なカソードとなる。また本実施形態の有機電界発光素子EL-1においては、発光機能層3と、実質的なカソードとして用いられる電極層1bとの間に、有機材料からなる窒素含有層1aが配置された構成となる。このため本実施形態における透明電極1の窒素含有層1aは、発光機能層3の一部を構成する層であるともみなされる。
 このような窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲の化合物のなかから、さらに電子輸送性または電子注入性を有する化合物を用いて構成される。または、このような窒素含有層1aは、窒素含有層1a自体が上述した有効非共有電子対含有率[n/M]となるように、電子輸送性または電子注入性を有する化合物と、ある程度の大きさの有効非共有電子対含有率[n/M]を有する化合物とを混合して用いて構成されていても良い。
[対向電極5-1(アノード)]
 対向電極5-1は、発光機能層3に正孔を供給するためのアノードとして機能する電極膜であり、金属、合金、有機または無機の導電性化合物、およびこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体などが挙げられる。
 対向電極5-1は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、対向電極5-1としてのシート抵抗は、数百Ω/sq.以下が好ましく、膜厚は通常5nm~5μm、好ましくは5nm~200nmの範囲で選ばれる。
 尚、この有機電界発光素子EL-1が、対向電極5-1側からも発光光hを取り出す、両面発光型であれば、上述した導電性材料のうち光透過性の良好な導電性材料を選択して対向電極5-1を構成すれば良い。
[発光層3c]
 本発明に用いられる発光層3cは、発光材料として例えば燐光発光化合物が含有されている。
 この発光層3cは、電極または電子輸送層3dから注入された電子と、正孔輸送層3bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層3cの層内であっても発光層3cにおける隣接する層との界面であってもよい。
 このような発光層3cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層3c間には非発光性の中間層(図示せず)を有していることが好ましい。
 発光層3cの膜厚の総和は1~100nmの範囲にあることが好ましく、さらに好ましくは、より低い駆動電圧を得ることができることから1~30nmである。尚、発光層3cの膜厚の総和とは、発光層3c間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。
 複数層を積層した構成の発光層3cの場合、個々の発光層の膜厚としては、1~50nmの範囲に調整することが好ましく、さらに好ましくは1~20nmの範囲に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の膜厚の関係については、特に制限はない。
 以上のような発光層3cは、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。
 また発光層3cは、複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)を同一発光層3c中に混合して用いてもよい。
 発光層3cの構成として、ホスト化合物(発光ホストともいう)、発光材料(発光ドーパント化合物、ゲスト材料ともいう)を含有し、発光材料より発光させることが好ましい。
 (ホスト化合物)
 発光層3cに含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。さらに好ましくは燐光量子収率が0.01未満である。また、発光層3cに含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子EL-1を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)化合物が好ましい。ここでいうガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
 以下に、本発明で用いることのできるホスト化合物の具体例(H1~H79)を示すが、これらに限定されない。尚、ホスト化合物H68~H79において、x及びyはランダム共重合体の比率を表す。その比率は、例えば、x:y=1:10などとすることができる。
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000057
 
Figure JPOXMLDOC01-appb-C000058
 
Figure JPOXMLDOC01-appb-C000059
 
Figure JPOXMLDOC01-appb-C000060
 
Figure JPOXMLDOC01-appb-C000061
 
Figure JPOXMLDOC01-appb-C000062
 
Figure JPOXMLDOC01-appb-C000063
 
Figure JPOXMLDOC01-appb-C000064
 
Figure JPOXMLDOC01-appb-C000065
 
Figure JPOXMLDOC01-appb-C000066
 
Figure JPOXMLDOC01-appb-C000067
 
Figure JPOXMLDOC01-appb-C000068
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を用いることもできる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。
 (発光材料)
 本発明で用いることのできる発光材料としては、燐光発光性化合物(燐光性化合物、燐光発光材料ともいう)が挙げられる。
 燐光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。
 上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明において燐光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。
 燐光発光性化合物の発光の原理としては2種挙げられる。一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光性化合物に移動させることで燐光発光性化合物からの発光を得るというエネルギー移動型であり、もう一つは、燐光発光性化合物がキャリアトラップとなり、燐光発光性化合物上でキャリアの再結合が起こり燐光発光性化合物からの発光が得られるというキャリアトラップ型である。いずれの場合においても、燐光発光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件となる。
 燐光発光性化合物は、一般的な有機電界発光素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 本発明においては、少なくとも一つの発光層3cに2種以上の燐光発光性化合物を含有していてもよく、発光層3cにおける燐光発光性化合物の濃度比が発光層3cの厚さ方向で変化していてもよい。
 燐光発光性化合物は好ましくは発光層3cの総量に対し0.1体積%以上30体積%未満である。
 (一般式(7)で表される化合物)
 発光層3cに含まれる化合物(燐光発光性化合物)は、下記一般式(7)で表される化合物であることが好ましい。
 尚、一般式(7)で表される燐光発光性化合物(燐光発光性の金属錯体ともいう)は、有機電界発光素子EL-1の発光層3cに発光ドーパントとして含有されることが好ましい態様であるが、発光層3c以外の発光機能層に含有されていてもよい。
Figure JPOXMLDOC01-appb-C000069
 上記一般式(7)中、P、Qは、各々炭素原子または窒素原子を表し、A1はP-Cと共に芳香族炭化水素環または芳香族複素環を形成する原子群を表す。A2はQ-Nと共に芳香族複素環を形成する原子群を表す。P1-L1-P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2または3である。M1は元素周期表における8族~10族の遷移金属元素を表す。
 一般式(7)において、P、Qは、各々炭素原子または窒素原子を表す。
 そして、一般式(7)において、A1が、P-Cと共に形成する芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
 これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(7)において、A1が、P-Cと共に形成する芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。
 ここで、アザカルバゾール環とは、前記カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。
 これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(7)において、A2が、Q-Nと共に形成する芳香族複素環としては、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。
 これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(7)において、P1-L1-P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。
 P1-L1-P2で表される2座の配位子としては、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
 一般式(7)において、j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2または3を表す、中でも、j2は0である場合が好ましい。
 一般式(7)において、M1は元素周期表における8族~10族の遷移金属元素(単に遷移金属ともいう)が用いられるが、中でも、イリジウム好ましい。
 (一般式(8)で表される化合物)
 一般式(7)で表される化合物の中でも、下記一般式(8)で表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000070
 上記一般式(8)式中、Zは、炭化水素環基または複素環基を表す。P、Qは、各々炭素原子または窒素原子を表し、A1はP-Cと共に芳香族炭化水素環または芳香族複素環を形成する原子群を表す。A3は-C(R01)=C(R02)-、-N=C(R02)-、-C(R01)=N-または-N=N-を表し、R01、R02は、各々水素原子または置換基を表す。P1-L1-P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子、または酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2または3である。M1は元素周期表における8族~10族の遷移金属元素を表す。
 一般式(8)において、Zで表される炭化水素環基としては、非芳香族炭化水素環基、芳香族炭化水素環基が挙げられ、非芳香族炭化水素環基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、無置換でも良く、一般式(1)のR11,R12として例示した置換基を有しても良い。
 また、芳香族炭化水素環基(芳香族炭化水素基、アリール基等ともいう)としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。
 これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(8)において、Zで表される複素環基としては、非芳香族複素環基、芳香族複素環基等が挙げられ、非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環等から導出される基を挙げられる。
 これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有しても良い。
 芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。
 これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有しても良い。
 好ましくは、Zで表される基は芳香族炭化水素環基または芳香族複素環基である。
 一般式(8)において、A1が、P-Cと共に形成する芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
 これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(8)において、A1がP-Cと共に形成する芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、アザカルバゾール環等が挙げられる。
 ここで、アザカルバゾール環とは、前記カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。
 これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(8)のA3で表される、-C(R01)=C(R02)-、-N=C(R02)-、-C(R01)=N-において、R01、R02で各々表される置換基は、一般式(1)のR11,R12として例示した置換基と同義である。
 一般式(8)において、P1-L1-P2で表される2座の配位子としては、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
 また、j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2または3を表す、中でも、j2は0である場合が好ましい。
 一般式(8)において、M1で表される元素周期表における8族~10族の遷移金属元素(単に遷移金属ともいう)は、一般式(7)において、M1で表される元素周期表における8族~10族の遷移金属元素と同義である。
 (一般式(9)で表される化合物)
 上記一般式(8)で表される化合物の好ましい態様の一つとして、下記一般式(9)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000071
 上記一般式(9)式中、R03は置換基を表し、R04は水素原子または置換基を表し、複数のR04は互いに結合して環を形成してもよい。n01は1~4の整数を表す。R05は水素原子または置換基を表し、複数のR05は互いに結合して環を形成してもよい。n02は1~2の整数を表す。R06は水素原子または置換基を表し、互いに結合して環を形成してもよい。n03は1~4の整数を表す。Z1はC-Cと共に6員の芳香族炭化水素環もしくは、5員または6員の芳香族複素環を形成するのに必要な原子群を表す。Z2は炭化水素環基または複素環基を形成するのに必要な原子群を表す。P1-L1-P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。j1は1~3の整数を表し、j2は0~2の整数を表すが、j1+j2は2または3である。M1は元素周期表における8族~10族の遷移金属元素を表す。R03とR06、R04とR06及びR05とR06は互いに結合して環を形成していてもよい。
 一般式(9)において、R03、R04、R05、R06で各々表される置換基は、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(9)において、Z1がC-Cと共に形成する6員の芳香族炭化水素環としては、ベンゼン環等が挙げられる。
 これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(9)において、Z1がC-Cと共に形成する5員または6員の芳香族複素環としては、例えば、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。
 これらの環はさらに、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(9)において、Z2で表される炭化水素環基としては、非芳香族炭化水素環基、芳香族炭化水素環基が挙げられ、非芳香族炭化水素環基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、無置換でも良く、一般式(1)のR11,R12として例示した置換基を有しても良い。
 また、芳香族炭化水素環基(芳香族炭化水素基、アリール基等ともいう)としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。これらの基は、無置換でもよく、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(9)において、Z2で表される複素環基としては、非芳香族複素環基、芳香族複素環基等が挙げられ、非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環等から導出される基を挙げることができる。これらの基は無置換でもよく、また、一般式(1)のR11,R12として例示した置換基を有しても良い。
 芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。
 これらの環は無置換でもよく、さらに一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(9)において、Z1及びZ2で形成される基としては、ベンゼン環が好ましい。
 一般式(9)において、P1-L1-P2で表される2座の配位子は、一般式(7)において、P1-L1-P2で表される2座の配位子と同義である。
 一般式(9)において、M1で表される元素周期表における8族~10族の遷移金属元素は、一般式(7)において、M1で表される元素周期表における8族~10族の遷移金属元素と同義である。
 また、燐光発光性化合物は、有機電界発光素子EL-1の発光層3cに使用される公知のものの中から適宜選択して用いることができる。
 本発明に係る燐光発光性化合物は、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 本発明に係る燐光発光性化合物の具体例(Pt-1~Pt-3、A-1、Ir-1~Ir-50)を以下に示すが、本発明はこれらに限定されない。尚、これらの化合物において、m及びnは繰り返し数を表す。
Figure JPOXMLDOC01-appb-C000072
 
Figure JPOXMLDOC01-appb-C000073
 
Figure JPOXMLDOC01-appb-C000074
 
Figure JPOXMLDOC01-appb-C000075
 
Figure JPOXMLDOC01-appb-C000076
 
Figure JPOXMLDOC01-appb-C000077
 
Figure JPOXMLDOC01-appb-C000078
 
Figure JPOXMLDOC01-appb-C000079
 
Figure JPOXMLDOC01-appb-C000080
 上記の燐光発光性化合物(燐光発光性金属錯体等ともいう)は、例えば、Organic Letters誌、vol.3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
 (蛍光発光材料)
 蛍光発光材料としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
[注入層:正孔注入層3a、電子注入層3e]
 注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層3cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層3aと電子注入層3eとがある。
 注入層は、必要に応じて設けることができる。正孔注入層3aであれば、アノードと発光層3cまたは正孔輸送層3bの間、電子注入層3eであればカソードと発光層3cまたは電子輸送層3dとの間に存在させてもよい。
 正孔注入層3aは、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。
 電子注入層3eは、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。本発明の電子注入層3eはごく薄い膜であることが望ましく、素材にもよるがその膜厚は1nm~10μmの範囲が好ましい。
[正孔輸送層3b]
 正孔輸送層3bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層3a、電子阻止層も正孔輸送層3bに含まれる。正孔輸送層3bは単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような所謂、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
 正孔輸送層3bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層3bの膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層3bは、上記材料の1種または2種以上からなる一層構造であってもよい。
 また、正孔輸送層3bの材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 このように、正孔輸送層3bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。
[電子輸送層3d]
 電子輸送層3dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層3e、正孔阻止層(図示せず)も電子輸送層3dに含まれる。電子輸送層3dは単層構造または複数層の積層構造として設けることができる。
 単層構造の電子輸送層3d、および積層構造の電子輸送層3dにおいて発光層3cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層3cに伝達する機能を有していれば良い。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層3dの材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq3)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送層3dの材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層3dの材料として好ましく用いることができる。また、発光層3cの材料としても例示されるジスチリルピラジン誘導体も電子輸送層3dの材料として用いることができるし、正孔注入層3a、正孔輸送層3bと同様にn型-Si、n型-SiC等の無機半導体も電子輸送層3dの材料として用いることができる。
 電子輸送層3dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層3dの膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層3dは上記材料の1種または2種以上からなる一層構造であってもよい。
 また、電子輸送層3dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層3dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層3dのn性を高くすると、より低消費電力の素子を作製することができる。
 また電子輸送層3dの材料(電子輸送性化合物)として、好ましくは、下記一般式(10)で表される化合物を用いることができる。
(Ar1)n1-Y1…一般式(10)
 一般式(10)の式中、n1は1以上の整数を表し、Y1はn1が1の場合は置換基を表し、n1が2以上の場合は単なる結合手またはn1価の連結基を表す。Ar1は後記する一般式(A)で表される基を表し、n1が2以上の場合、複数のAr1は同一でも異なっていてもよい。ただし、前記一般式(10)で表される化合物は分子内に3環以上の環が縮合してなる縮合芳香族複素環を少なくとも2つ有する。
 一般式(10)において、Y1で表される置換基の例としては、透明電極1の窒素含有層1aを構成する化合物として示した一般式(1)のR11,R12として例示した置換基と同義である。
 一般式(10)において、Y1で表されるn1価の連結基としては、具体的には、2価の連結基、3価の連結基、4価の連結基等が挙げられる。
 一般式(10)において、Y1で表される2価の連結基としては、アルキレン基(例えば、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基、2,2,4-トリメチルヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、シクロヘキシレン基(例えば、1,6-シクロヘキサンジイル基等)、シクロペンチレン基(例えば、1,5-シクロペンタンジイル基など)等)、アルケニレン基(例えば、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基、1-メチルビニレン基、1-メチルプロペニレン基、2-メチルプロペニレン基、1-メチルペンテニレン基、3-メチルペンテニレン基、1-エチルビニレン基、1-エチルプロペニレン基、1-エチルブテニレン基、3-エチルブテニレン基等)、アルキニレン基(例えば、エチニレン基、1-プロピニレン基、1-ブチニレン基、1-ペンチニレン基、1-ヘキシニレン基、2-ブチニレン基、2-ペンチニレン基、1-メチルエチニレン基、3-メチル-1-プロピニレン基、3-メチル-1-ブチニレン基等)、アリーレン基(例えば、o-フェニレン基、p-フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’-ビフェニル]-4,4’-ジイル基、3,3’-ビフェニルジイル基、3,6-ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等)、ヘテロアリーレン基(例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等)、酸素や硫黄などのカルコゲン原子、3環以上の環が縮合してなる縮合芳香族複素環から導出される基等(ここで、3環以上の環が縮合してなる縮合芳香族複素環としては、好ましくはN、O及びSから選択されたヘテロ原子を、縮合環を構成する元素として含有する芳香族複素縮合環であることが好ましく、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等)が挙げられる。
 一般式(10)において、Y1で表される3価の連結基としては、例えば、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ウンデカントリイル基、ドデカントリイル基、シクロヘキサントリイル基、シクロペンタントリイル基、ベンゼントリイル基、ナフタレントリイル基、ピリジントリイル基、カルバゾールトリイル基等が挙げられる。
 一般式(10)において、Y1で表される4価の連結基としては、上記の3価の基にさらにひとつ結合基がついたものであり、例えば、プロパンジイリデン基、1,3-プロパンジイル-2-イリデン基、ブタンジイリデン基、ペンタンジイリデン基、ヘキサンジイリデン基、ヘプタンジイリデン基、オクタンジイリデン基、ノナンジイリデン基、デカンジイリデン基、ウンデカンジイリデン基、ドデカンジイリデン基、シクロヘキサンジイリデン基、シクロペンタンジイリデン基、ベンゼンテトライル基、ナフタレンテトライル基、ピリジンテトライル基、カルバゾールテトライル基等が挙げられる。
 尚、上記の2価の連結基、3価の連結基、4価の連結基は、各々さらに一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(10)で表される化合物の好ましい態様としては、Y1が3環以上の環が縮合してなる縮合芳香族複素環から導出される基を表すことが好ましく、当該3環以上の環が縮合してなる縮合芳香族複素環としては、ジベンゾフラン環またはジベンゾチオフェン環が好ましい。また、n1が2以上であることが好ましい。
 さらに、一般式(10)で表される化合物は、分子内に上記の3環以上の環が縮合してなる縮合芳香族複素環を少なくとも2つ有する。
 また、Y1がn1価の連結基を表す場合、一般式(10)で表される化合物の三重項励起エネルギーを高く保つために、Y1は非共役であることが好ましく、さらに、Tg(ガラス転移点、ガラス転移温度ともいう)を向上させる点から、芳香環(芳香族炭化水素環+芳香族複素環)で構成されていることが好ましい。
 ここで、非共役とは、連結基が単結合(一重結合ともいう)と二重結合の繰り返しによって表記できないか、または連結基を構成する芳香環同士の共役が立体的に切断されている場合を意味する。
[一般式(A)で表される基]
 一般式(10)中におけるAr1は、下記一般式(A)で表される基を表す。
Figure JPOXMLDOC01-appb-C000081
 式中、Xは、-N(R)-、-O-、-S-または-Si(R)(R′)-を表し、E1~E8は、-C(R1)=または-N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。*はY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。Y3及びY4は、各々5員または6員の芳香族環から導出される基を表し、少なくとも一方は環構成原子として窒素原子を含む芳香族複素環から導出される基を表す。n2は1~4の整数を表す。
 ここで、一般式(A)のXで表される-N(R)-または-Si(R)(R′)-において、さらに、E1~E8で表される-C(R1)=において、R、R′及びR1で各々表される置換基は、一般式(1)のR11,R12として例示した置換基と同義である。
 また、一般式(A)において、Y2で表される2価の連結基としては、一般式(10)において、Y1で表される2価の連結基と同義である。
 さらに、一般式(A)において、Y3及びY4で各々表される5員または6員の芳香族環から導出される基の形成に用いられる5員または6員の芳香族環としては、ベンゼン環、オキサゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。
 さらに、Y3及びY4で各々表される5員または6員の芳香族環から導出される基の少なくとも一方は、環構成原子として窒素原子を含む芳香族複素環から導出される基を表すが、当該環構成原子として窒素原子を含む芳香族複素環としては、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。
(Y3で表される基の好ましい態様)
 一般式(A)において、Y3で表される基としては、上記6員の芳香族環から導出される基であることが好ましく、さらに好ましくは、ベンゼン環から導出される基である。
(Y4で表される基の好ましい態様)
 一般式(A)において、Y4で表される基としては、上記6員の芳香族環から導出される基であることが好ましく、さらに好ましくは、窒素原子を環構成原子として含む芳香族複素環から導出される基であり、特に好ましくは、Y4がピリジン環から導出される基であることである。
(一般式(A)で表される基の好ましい態様)
 一般式(A)で表される基の好ましい態様としては、下記一般式(A-1)、(A-2)、(A-3)、または(A-4)のいずれかで表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000082
 上記一般式(A-1)の式中、Xは-N(R)-、-O-、-S-または-Si(R)(R′)-を表し、E1~E8は-C(R1)=または-N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。E11~E20は、-C(R2)=または-N=を表し、少なくとも1つは-N=を表す。R2は、水素原子、置換基または連結部位を表す。但し、E11、E12の少なくとも1つは-C(R2)=を表し、R2は連結部位を表す。n2は1~4の整数を表す。*は、上記一般式(10)のY1との連結部位を表す。
Figure JPOXMLDOC01-appb-C000083
 上記一般式(A-2)の式中、Xは-N(R)-、-O-、-S-または-Si(R)(R′)-を表し、E1~E8は-C(R1)=または-N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。E21~E25は-C(R2)=または-N=を表し、E26~E30は-C(R2)=、-N=、-O-、-S-または-Si(R3)(R4)-を表し、E21~E30の少なくとも1つは-N=を表す。R2は、水素原子、置換基または連結部位を表し、R3及びR4は水素原子または置換基を表す。但し、E21またはE22の少なくとも1つは-C(R2)=を表し、R2は連結部位を表す。n2は1~4の整数を表す。*は、上記一般式(10)のY1との連結部位を表す。
Figure JPOXMLDOC01-appb-C000084
 上記一般式(A-3)の式中、Xは-N(R)-、-O-、-S-または-Si(R)(R′)-を表し、E1~E8は-C(R1)=または-N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。E31~E35は-C(R2)=、-N=、-O-、-S-または-Si(R3)(R4)-を表し、E36~E40は-C(R2)=または-N=を表し、E31~E40の少なくとも1つは-N=を表す。R2は、水素原子、置換基または連結部位を表し、R3及びR4は水素原子または置換基を表す。但し、E32またはE33の少なくとも1つは-C(R2)=で表され、R2は連結部位を表す。n2は1~4の整数を表す。*は、上記一般式(10)のY1との連結部位を表す。
Figure JPOXMLDOC01-appb-C000085
 上記一般式(A-4)の式中、Xは-N(R)-、-O-、-S-または-Si(R)(R′)-を表し、E1~E8は-C(R1)=または-N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。E41~E50は-C(R2)=、-N=、-O-、-S-または-Si(R3)(R4)-を表し、少なくとも1つは-N=を表す。R2は、水素原子、置換基または連結部位を表し、R3及びR4は水素原子または置換基を表す。但し、E42またはE43の少なくとも1つは-C(R2)=で表され、R2は連結部位を表す。n2は1~4の整数を表す。*は、上記一般式(10)のY1との連結部位を表す。
 以下、一般式(A-1)~(A-4)のいずれかで表される基について説明する。
 一般式(A-1)~(A-4)で表される基のいずれかのXで表される-N(R)-または-Si(R)(R′)-において、さらにE1~E8で表される-C(R1)=において、R、R′及びR1で各々表される置換基は、一般式(1)のR11,R12として例示した置換基と同義である。
 一般式(A-1)~(A-4)で表される基のいずれかにおいて、Y2で表される2価の連結基としては、一般式(10)において、Y1で表される2価の連結基と同義である。
 一般式(A-1)のE11~E20、一般式(A-2)のE21~E30、一般式(A-3)のE31~E40、一般式(A-4)のE41~E50で、各々表される-C(R2)=のR2で表される置換基は、一般式(1)のR11,R12として例示した置換基と同義である。
 次に、本発明に係る一般式(10)で表される化合物のさらに好ましい態様について説明する。
[一般式(11)で表される化合物]
 本発明では、上記一般式(10)で表される化合物の中でも、下記一般式(11)で表される化合物が好ましい。この一般式(11)は、透明電極1の窒素含有層1aを構成する化合物として示した一般式(2)を含む。以下、一般式(11)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000086
 上記一般式(11)の式中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E51~E66は、各々-C(R3)=または-N=を表し、R3は水素原子または置換基を表す。Y6~Y9は、各々芳香族炭化水素環から導出される基または芳香族複素環から導出される基を表し、Y6またはY7の少なくとも一方、及びY8またはY9の少なくとも一方は、N原子を含む芳香族複素環から導出される基を表す。n3及びn4は0~4の整数を表すが、n3+n4は2以上の整数である。
 一般式(11)におけるY5は、一般式(2)におけるY21と同義である。
 一般式(11)におけるE51~E66は、一般式(2)におけるE201~E216と同義であり、E51~E66で各々表される-C(R3)=のR3が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 一般式(11)において、E51~E66で各々表される基としては、E51~E58のうちの6つ以上及びE59~E66のうちの6つ以上が、各々-C(R3)=で表されることが好ましい。
 一般式(11)において、Y6~Y9は、各々芳香族炭化水素環から導出される基の形成に用いられる芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
 さらに、前記芳香族炭化水素環は、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(11)において、Y6~Y9は、各々芳香族複素環から導出される基の形成に用いられる芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。
 さらに、前記芳香族炭化水素環は、一般式(1)のR11,R12として例示した置換基を有しても良い。
 一般式(11)において、Y6またはY7の少なくとも一方、及びY8またはY9の少なくとも一方で表されるN原子を含む芳香族複素環から導出される基の形成に用いられるN原子を含む芳香族複素環としては、例えば、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。
 一般式(11)において、Y7、Y9で表される基としては、各々ピリジン環から導出される基を表すことが好ましい。
 また、一般式(11)において、Y6及びY8で表される基としては、各々ベンゼン環から導出される基を表すことが好ましい。
 以上説明したような一般式(11)で表される化合物の中でもさらに好ましい態様として、透明電極1の窒素含有層1aを構成する化合物として示した一般式(2)で表される化合物が例示される。
 以上のような一般式(10),(11)、または一般式(2)で表される化合物の具体例として、上記で例示した化合物(1~118)が示される。
[阻止層:正孔阻止層、電子阻止層]
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に、必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは、広い意味では、電子輸送層3dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層3dの構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発光層3cに隣接して設けられていることが好ましい。
 一方、電子阻止層とは、広い意味では、正孔輸送層3bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層3bの構成を必要に応じて電子阻止層として用いることができる。本発明に係る阻止層の膜厚としては、好ましくは3~100nmであり、さらに好ましくは5~30nmである。
[補助電極15]
 補助電極15は、透明電極1の抵抗を下げる目的で設けるものであって、透明電極1の電極層1bに接して設けられる。補助電極15を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面17aからの発光光hの取り出しの影響のない範囲でパターン形成される。このような補助電極15の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法などが挙げられる。補助電極15の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極15の厚さは、導電性の観点から1μ以上であることが好ましい。
[透明封止材17]
 透明封止材17は、有機電界発光素子EL-1を覆うものであって、板状(フィルム状)の封止部材であって接着剤19によって基板13側に固定されるものであっても良く、封止膜であっても良い。この透明封止材17の表面は、有機電界発光素子EL-1の発光光hを取り出す光取り出し面17aとなっている。このような透明封止材17は、有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させる状態で、少なくとも発光機能層3を覆う状態で設けられている。また透明封止材17に電極を設け、有機電界発光素子EL-1の透明電極1および対向電極5-1の端子部分と、この電極とを導通させるように構成されていても良い。
 板状(フィルム状)の透明封止材17としては、具体的には、ガラス基板、ポリマー基板が挙げられ、これらの基板材料をさらに薄型のフィルム状にして用いても良い。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
 なかでも、素子を薄膜化できるということから、透明封止材17としてポリマー基板を薄型のフィルム状にしたものを好ましく使用することができる。
 さらには、フィルム状としたポリマー基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。
 また以上のような基板材料は、凹板状に加工して透明封止材17として用いても良い。この場合、上述した基板部材に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。
 またこのような板状の透明封止材17を基板13側に固定するための接着剤19は、透明封止材17と基板13との間に挟持された有機電界発光素子EL-1を封止するためのシール剤として用いられる。このような接着剤19は、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。
 またこのような接着剤19としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 尚、有機電界発光素子EL-1を構成する有機材料は、熱処理により劣化する場合がある。このため、接着剤19は、室温から80℃までに接着硬化できるものが好ましい。また、接着剤19中に乾燥剤を分散させておいてもよい。
 透明封止材17と基板13との接着部分への接着剤19の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また板状の透明封止材17と基板13と接着剤19との間に隙間が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 一方、透明封止材17として封止膜を用いる場合、有機電界発光素子EL-1における発光機能層3を完全に覆い、かつ有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させる状態で、基板13上に封止膜が設けられる。
 このような封止膜は、無機材料や有機材料を用いて構成される。特に、水分や酸素等、有機電界発光素子EL-1における発光機能層3の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成されることとする。このような材料として、例えば、酸化珪素、二酸化珪素、窒化珪素等の無機材料が用いられる。さらに封止膜の脆弱性を改良するために、これら無機材料からなる膜と共に、有機材料からなる膜を用いて積層構造としても良い。
 これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
[保護膜、保護板]
 尚、ここでの図示は省略したが、基板13との間に有機電界発光素子ELおよび透明封止材17を挟んで保護膜もしくは保護板を設けても良い。この保護膜もしくは保護板は、有機電界発光素子ELを機械的に保護するためのものであり、特に透明封止材17が封止膜である場合には、有機電界発光素子ELに対する機械的な保護が十分ではないため、このような保護膜もしくは保護板を設けることが好ましい。
 以上のような保護膜もしくは保護板は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、またはポリマー材料膜や金属材料膜が適用される。このうち特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
[有機電界発光素子の作製方法]
 ここでは一例として、図4に示す有機電界発光素子EL-1の製造方法を説明する。
 先ず基板13上に、アノードとなる対向電極5-1を、蒸着法やスパッタ法などの適宜の成膜法によって形成する。
 次にこの上に、正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d、電子注入層3eの順に成膜し、発光機能層3を形成する。これらの各層の成膜は、スピンコート法、キャスト法、インクジェット法、蒸着法、スパッタ法、印刷法等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好ましい。さらに層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般に化合物を収蔵したボート加熱温度50℃~450℃、真空度10-6Pa~10-2Pa、蒸着速度0.01nm/秒~50nm/秒、基板温度-50℃~300℃、膜厚0.1μm~5μmの範囲で、各条件を適宜選択することが望ましい。
 次いで、窒素含有層1aを、1μm以下、好ましくは10nm~100nmの膜厚になるように形成する。次に、アルミニウムを用いたアルミニウム中間層Aを、極薄膜として、好ましくは1nm以下の膜厚で形成する。その後、銀(または銀を主成分とした合金)からなる電極層1bを、4nm~12nmの膜厚になるように形成し、カソード側の透明電極1を作製する。これらの窒素含有層1a、アルミニウム中間層A、および電極層1bの形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、スパッタ法、印刷法等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法が特に好ましい。
 また特に電極層1bの形成においては、発光機能層3によって対向電極5-1に対して絶縁状態を保ちつつ、発光機能層3の上方から基板13の周縁に端子部分を引き出した形状にパターン形成する。尚、窒素含有層1aおよびアルミニウム中間層Aも、電極層1bと同様の形状にパターン形成されていても良い。また、電極層1bの形成前後またアルミニウム中間層Aの形成後には、必要に応じて補助電極15のパターン形成を行う。これにより、有機電界発光素子EL-1が得られる。またその後には、有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させた状態で、少なくとも発光機能層3を覆う透明封止材17を設ける。この際、接着剤19を用いて、透明封止材17を基板13側に接着し、これらの透明封止材17-基板13間に有機電界発光素子EL-1を封止する。
 以上により、基板13上に所望の有機電界発光素子EL-1が得られる。このような有機電界発光素子EL-1の作製においては、一回の真空引きで一貫して発光機能層3から対向電極5-1まで作製するのが好ましいが、途中で真空雰囲気から基板13を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
 このようにして得られた有機電界発光素子EL-1に直流電圧を印加する場合には、アノードである対向電極5-1を+の極性とし、カソードである電極層1bを-の極性として、電圧2V以上40V以下程度を印加すると発光が観測できる。また交流電圧を印加してもよい。尚、印加する交流の波形は任意でよい。
<有機電界発光素子EL-1の効果>
 以上説明した有機電界発光素子EL-1は、本発明の導電性と光透過性とを兼ね備えた透明電極1をカソードとして用い、この透明電極1における窒素含有層1a側に発光機能層3とアノードとなる対向電極5-1とをこの順に設けた構成である。このため、透明電極1と対向電極5-1との間に十分な電圧を印加して有機電界発光素子EL-1での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
≪4.有機電界発光素子の第2例(ボトムエミッション型)≫
<有機電界発光素子の構成>
 図5は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第2例を示す断面構成図である。この図に示す第2例の有機電界発光素子EL-2が、図4を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、透明基板13’上に透明電極1を設け、この上部に発光機能層3と対向電極5-2とをこの順に積層したところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第2例の有機電界発光素子EL-2の特徴的な構成を説明する。
 図5に示す有機電界発光素子EL-2は、透明基板13’上に設けられており、透明基板13’側から順に、アノードとなる透明電極1、発光機能層3、およびカソードとなる対向電極5-2が積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子EL-2は、少なくとも透明基板13’側から発光光hを取り出すボトムエミッション型として構成されている。
 このような有機電界発光素子EL-2の全体的な層構造が限定されることはく、一般的な層構造であって良いことは、第1例と同様である。本第2例の場合の一例としては、アノードとして機能する透明電極1の上部に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3eがこの順に積層され、さらにこの上部にカソードとなる対向電極5-2が積層された構成が例示される。ただし、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。また、電子輸送層3dは、電子注入層3eを兼ねたもので、電子注入性を有する電子輸送層3dとして設けられていても良い。
 尚、発光機能層3は、これらの層の他にも、第1例で説明したと同様に、必要に応じたさまざまな構成が採用され、ここでの図示を省略した正孔阻止層や電子阻止層が設けられても良い。以上のような構成において、透明電極1と対向電極5-2とで発光機能層3が挟持された部分のみが、有機電界発光素子EL-2における発光領域となることも、第1例と同様である。
 また本実施形態の有機電界発光素子EL-2においては、透明基板13’上に窒素含有層1a、アルミニウム中間層A、および電極層1bの順に積層された透明電極1のうち、実質的にアノードとして機能する電極層1b上に、直接、発光機能層3が設けられる。したがって、窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲の化合物を用いて構成され、さらには窒素含有層1a自体の有効非共有電子対含有率[n/M]が所定範囲であれば好ましく、正孔輸送性や正孔注入性を有する材料を用いる必要はない。
 また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の電極層1bに接して補助電極15が設けられていても良いことは、第1例と同様である。
 さらに、発光機能層3の上方にカソードとして設けられる対向電極5-2は、金属、合金、有機または無機の導電性化合物、およびこれらの混合物が用いられる。具体的には、金(Au)等の金属、ヨウ化銅(CuI)、ITO、ZnO、TiO、SnO等の酸化物半導体などが挙げられる。
 以上のような対向電極5-2は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、対向電極5-2としてのシート抵抗は、数百Ω/sq.以下が好ましく、膜厚は通常5nm~5μm、好ましくは5nm~200nmの範囲で選ばれる。
 またこのようなボトムエミッション型の有機電界発光素子EL-2を封止する封止材17’は、光透過性を有している必要はない。このような封止材17’は、先の第1例で用いた透明封止材と同様の材料の他、金属材料で構成されたものを用いることができる。金属材料としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。このような金属材料は、薄型のフィルム状にして封止材17’として用いることにより、有機電界発光素子が設けられた発光パネル全体を薄膜化できる。
 尚、この有機電界発光素子EL-2が、対向電極5-2側からも発光光hを取り出すものである場合、対向電極5-2を構成する材料としては、上述した導電性材料のうち光透過性の良好な導電性材料を選択して用いれば良い。またこの場合、封止材17’としては、光透過性を有する透明封止材が用いられる。
<有機電界発光素子EL-2の効果>
 以上説明した有機電界発光素子EL-2は、本発明の導電性と光透過性とを兼ね備えた透明電極1をアノードとして用い、この上部に発光機能層3とカソードとなる対向電極5-2とを設けた構成である。このため、第1例と同様に、透明電極1と対向電極5-2との間に十分な電圧を印加して有機電界発光素子EL-2での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
≪5.有機電界発光素子の第3例(両面発光型)≫
<有機電界発光素子の構成>
 図6は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第3例を示す断面構成図である。この図に示す第3例の有機電界発光素子EL-3が、図4を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、基板として透明基板13’を用い、2つの透明電極1間に発光機能層3を挟持させたところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第3例の有機電界発光素子EL-3の特徴的な構成を説明する。
 図6に示す有機電界発光素子EL-3は、透明基板13’上に設けられており、透明基板13’側から順に、アノードとなる透明電極1、発光機能層3、およびカソードとなる透明電極1がこの順に積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。これにより有機電界発光素子EL-3は、透明基板13’側およびこれとは逆側の透明封止材17側の両面から発光光hを取り出す両面発光型として構成されている。
 このような有機電界発光素子EL-3の全体的な層構造が限定されることはく、一般的な層構造であって良いことは、第1例と同様である。本第3例の場合の一例としては、アノードとなる透明電極1の上部に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3dをこの順に設けた構成が例示され、この上部にカソードとなる透明電極1が積層された構成が例示される。図示した例では、電子輸送層3dが、電子注入層を兼ねると共に、カソードとなる透明電極1の窒素含有層1aを兼ねて設けられている。
 尚、発光機能層3は、第1例で説明したと同様に、必要に応じたさまざまな構成が採用され、ここでの図示を省略した正孔阻止層や電子阻止層が設けられても良い。以上のような構成において、2つの透明電極1で挟持された部分のみが、有機電界発光素子EL-3における発光領域となることも、第1例と同様である。
 また本実施形態の有機電界発光素子EL-3においては、透明基板13’側に設けられた透明電極1は、透明基板13’側から窒素含有層1a、アルミニウム中間層A、電極層1bの順に設けられ、実質的にアノードとして機能する電極層1bの上部に発光機能層3が直接設けられた状態となる。したがって、透明基板13’側の窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲を満たす化合物を用いて構成されれば良く、さらには窒素含有層1a自体の有効非共有電子対含有率[n/M]が所定範囲であれば好ましく、正孔輸送性や正孔注入性を有する材料を用いる必要はない。
 これに対して、発光機能層3上に設けられた透明電極1は、発光機能層3側から窒素含有層1a、アルミニウム中間層A、電極層1bの順に設けられ、実質的にカソードとして機能する電極層1bおよびアルミニウム中間層Aと発光機能層3との間に窒素含有層1aが配置された状態となる。このため、発光機能層3上の窒素含有層1aは、発光機能層3の一部を構成する層ともなる。このような窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲の化合物のなかから、さらに電子輸送性または電子注入性を有する化合物を用いて構成される。または、このような窒素含有層1aは、窒素含有層1a自体が上述した有効非共有電子対含有率[n/M]となるように、電子輸送性または電子注入性を有する化合物と、ある程度の大きさの有効非共有電子対含有率[n/M]を有する化合物とを混合して用いて構成されていても良い。
 また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、2つの透明電極1の電極層1bに接して補助電極15が設けられていても良いことも、第1例と同様である。
 さらにこの有機電界発光素子EL-3は、両面発光型であるため、光透過性を有する透明封止材17によって封止される。
<有機電界発光素子EL-3の効果>
 以上説明した有機電界発光素子EL-3は、本発明の導電性と光透過性とを兼ね備えた透明電極1をアノードおよびカソードとして用い、この間に発光機能層3を挟持した構成である。このため、第1例と同様に、2つの透明電極1間に十分な電圧を印加して有機電界発光素子EL-3での高輝度発光を実現しつつ、2つの透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
≪6.有機電界発光素子の第4例(逆積み構成)≫
<有機電界発光素子の構成>
 図7は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第4例を示す断面構成図である。この図に示す第4例の有機電界発光素子EL-4が、図4を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、透明基板13’側から順にカソード(透明電極1)、発光機能層3、アノード(対向電極5-4)を設けて積層順を逆にしたところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第4例の有機電界発光素子EL-4の特徴的な構成を説明する。
 図7に示す有機電界発光素子EL-4は、透明基板13’上に設けられており、透明基板13’側から順に、カソードとなる透明電極1、発光機能層3、およびアノードとなる対向電極5-4がこの順に積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子EL-4は、少なくとも透明基板13’側から発光光hを取り出すボトムエミッション型として構成されている。
 このような有機電界発光素子EL-4の全体的な層構造が限定されることはく、一般的な層構造であって良いことは、第1例と同様である。本第4例の場合の一例としては、カソードとなる透明電極1の上部に、電子注入層3e/電子輸送層3d/発光層3c/正孔輸送層3b/正孔注入層3aをこの順に設けた構成が例示され、この上部にアノードとなる対向電極5-4が積層された構成が例示される。
 尚、発光機能層3は、第1例で説明したと同様に、必要に応じたさまざまな構成が採用され、ここでの図示を省略した正孔阻止層や電子阻止層が設けられても良い。以上のような構成において、透明電極1と対向電極5-4とで挟持された部分のみが、有機電界発光素子EL-4における発光領域となることも、第1例と同様である。
 また本実施形態の有機電界発光素子EL-4においては、透明基板13’上に窒素含有層1a、アルミニウム中間層A、および電極層1bの順に積層された透明電極1のうち、実質的にカソードとして機能する電極層1b上に、直接、発光機能層3が設けられる。したがって窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲を満たす化合物を用いて構成されれば良く、さらには窒素含有層1a自体の有効非共有電子対含有率[n/M]が所定範囲であれば好ましく、電子輸送性や電子注入性を有する材料を用いる必要はない。
 また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の電極層1bに接して補助電極15が設けられていても良いことも、第1例と同様である。
 さらに、発光機能層3の上方にアノードとして設けられる対向電極5-4は、第1例のアノードと同様の金属、合金、有機または無機の導電性化合物、およびこれらの混合物が用いられる。
 尚、本第実施形態の変形例として、発光機能層3上のアノードも透明電極1とする構成が例示される。この場合、発光機能層3上に窒素含有層1aを介して設けられたアルミニウム中間層Aおよび電極層1bが実質的なアノードとなる。そして、発光機能層3上に設けられた窒素含有層1aは、発光機能層3の一部を構成する層ともなる。このような窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲の化合物なかから、さらに正孔輸送性または正孔注入性を有する化合物を用いて構成される。または、このような窒素含有層1aは、窒素含有層1a自体が上述した有効非共有電子対含有率[n/M]となるように、正孔輸送性または正孔注入性を有する化合物と、ある程度の大きさの有効非共有電子対含有率[n/M]を有する化合物とを混合して用いて構成されていても良い。
<有機電界発光素子EL-4の効果>
 以上説明した有機電界発光素子EL-4は、本発明の導電性と光透過性とを兼ね備えた透明電極1をカソードとして用い、この上部に発光機能層3とアノードとなる対向電極5-4とをこの順に設けた構成である。このため、第1例と同様に、透明電極1と対向電極5-4との間に十分な電圧を印加して有機電界発光素子EL-4での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
≪7.有機電界発光素子の用途≫
 上述した各構成の有機電界発光素子は、上述したように面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではなく、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 また、本発明の有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置およびディスプレイの大型化にともない、有機電界発光素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化しても良い。
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また異なる発光色を有する本発明の有機電界発光素子を2種以上使用することにより、カラーまたはフルカラー表示装置を作製することが可能である。
 以下では、用途の一例として照明装置について説明し、次にタイリングによって発光面を大面積化した照明装置について説明する。
≪8.照明装置-1≫
 本発明の照明装置は、上記有機電界発光素子を有する。
 本発明の照明装置に用いる有機電界発光素子は、上述した構成の各有機電界発光素子に共振器構造を持たせた設計としてもよい。共振器構造として構成された有機電界発光素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 尚、本発明の有機電界発光素子に用いられる材料は、実質的に白色の発光を生じる有機電界発光素子(白色有機電界発光素子ともいう)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機電界発光素子においては、発光ドーパントを複数組み合わせて混合したものでもよい。
 このような白色有機電界発光素子は、各色発光の有機電界発光素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機電界発光素子自体が白色を発光する。このため、素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
 またこのような白色有機電界発光素子の発光層に用いる発光材料としては、特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
 以上に説明した白色有機電界発光素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。
≪9.照明装置-2≫
 また本発明の有機電界発光素子は、複数用いて発光面を大面積化した照明装置としても用いることができる。この場合、透明基板上に有機電界発光素子を設けた複数の発光パネルを、支持基板上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化する。支持基板は、封止材を兼ねるものであっても良く、この支持基板と、発光パネルの透明基板との間に有機電界発光素子を挟持する状態で各発光パネルをタイリングする。支持基板と透明基板との間には接着剤を充填し、これによって有機電界発光素子を封止しても良い。尚、発光パネルの周囲には、透明電極および対向電極の端子を露出させておく。
 このような構成の照明装置では、各発光パネルの中央が発光領域となり、発光パネル間には非発光領域が発生する。このため、非発光領域からの光取り出し量を増加させるための光取り出し部材を、光取り出し面の非発光領域に設けても良い。光取り出し部材としては、集光シートや光拡散シートを用いることができる。
≪透明電極の作製≫
 以降の表2に構成を示すように、試料101~128の各透明電極を、導電性領域の面積が5cm×5cmとなるように作製した。
<試料101,102の透明電極の作製手順>
 以下のようにして、ガラス製の基材上に、下記表2に示すそれぞれの膜厚で、銀からなる電極層を形成した。
 先ず、透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。またタングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で、銀からなる電極層をそれぞれの膜厚で形成した。試料101では膜厚5nmで形成し、試料102では膜厚15nmで形成した。
<試料103の透明電極の作製手順>
 以下のようにして、ガラス製の基材上に、アルミニウム中間層を形成し、その上部に銀からなる電極層を形成した。
 先ず、透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。またタングステン製の各抵抗加熱ボートにアルミニウム(Al)と銀(Ag)とを個別に入れ、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、各抵抗加熱ボートを順次通電して加熱し、蒸着速度0.05nm/秒でアルミニウムからなるアルミニウム中間層を1nmの膜厚で形成し、次いで蒸着速度0.1nm/秒~0.2nm/秒で銀からなる電極層を膜厚5nmで形成した。
<試料104~118の透明電極の作製手順>
 以下のようにして、ガラス製の基材上に、下記表2に示すそれぞれの材料を用いた窒素含有層を形成し、この上部にアルミニウム中間層と銀からなる電極層をこの順に形成した。尚、試料104では、窒素含有層に換えて窒素を含有しない下地層を形成した。
 先ず、透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定した。また、各透明電極の作製において、下記表2に示す各化合物No.-1~No.11をタンタル製抵抗加熱ボートに入れた。これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の各抵抗加熱ボートにアルミニウム(Al)と銀(Ag)とを個別に入れ、それぞれ第2真空槽内に取り付けた。
 ここで用いた化合物のうち、化合物No.-1~No.-4は以下に示すものであり、[有効非共有電子対]を有する窒素原子に対して○を付した。このうち化合物No.-1は窒素原子を含有していないアントラセンであり、化合物No.-2~No.-4は窒素を含有するが有効非共有電子対含有率[n/M]の値が[n/M]<3.9×10-3である。
Figure JPOXMLDOC01-appb-C000087
 一方、化合物No.1~No.11は、先の実施形態で有効非共有電子対含有率[n/M]の値が[n/M]≧3.9×10-3であるとして示した例示化合物である。下記表2にはここで用いた化合物の有効非共有電子対の数[n]、分子量[M]、および有効非共有電子対含有率[n/M]も示した。
 次いで、第1真空槽を4×10-4Paまで減圧した後、各化合物の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で基材上に膜厚25nmの各化合物で構成された窒素含有層(試料104では下地層)を設けた。
 次に、窒素含有層(下地層)まで成膜した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、アルミニウムの入った加熱ボートを通電して加熱した。これにより、蒸着速度0.05nm/秒で膜厚1nmのアルミニウム中間層を形成した。
 その後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で膜厚5nmの銀からなる電極層を形成し、窒素含有層(下地層)、アルミニウム中間層、および電極層をこの順に積層した試料104~118の各透明電極を得た。
<試料119,120の透明電極の作製手順>
 銀からなる電極層の膜厚を8nmとしたこと以外は、上記試料104~118と同様の手順で試料119,120の各透明電極を得た。ただし窒素含有層の形成には、試料119では化合物No.1、試料120では化合物No.8を用いた。
<試料121~124の透明電極の作製手順>
 アルミニウム中間層の膜厚を0.6nmまたは0.3nmとしたこと、および銀からなる電極層の膜厚を8nmとしたこと以外は、上記試料104~118と同様の手順で試料121~124の各透明電極を得た。ただし窒素含有層の形成には、試料121,123では化合物No.1、試料122,124では化合物No.8を用いた。また、アルミニウム中間層の膜厚は、試料121,122では0.6nm、試料123,124では0.3nmとした。
<試料125,126の透明電極の作製手順>
 窒素含有層の形成において、窒素を含有する化合物No.1とハロゲン化合物とを共蒸着させ、10体積%のハロゲン原子を含有する窒素含有層を形成した。またアルミニウム中間層の膜厚を0.6nmとし、さらに銀からなる電極層の膜厚を8nmとした。これ以外は、上記試料104~118と同様の手順で試料125,126の各透明電極を得た。尚、アルミニウム中間層の成膜時には、基板温度を10℃に冷却し、窒素含有層中のハロゲン原子を拡散させずにアルミニウム中間層を成膜した。また、窒素含有層の形成に用いたハロゲン化合物としては、試料125ではフッ化カリウム(KF)、試料126では化合物No.1の臭素(Br)置換体を用いた。
<試料127,128の透明電極の作製手順>
 基材としてポリエチレンテレフタレート(PET)を用いたこと、アルミニウム中間層の膜厚を0.6nmとしたこと、および銀からなる電極層の膜厚を8nmとしたこと以外は、上記試料104~118と同様の手順で試料127,128の各透明電極を得た。ただし窒素含有層の形成には、試料127では化合物No.1、試料128では化合物No.8を用いた。
<実施例1の各試料の評価>
 上記で作製した試料101~128の各透明電極について、波長550nmの光に対する光透過率、およびシート抵抗値を測定した。光透過率の測定は、分光光度計(日立製作所製U-3300)を用い、試料と同じ基材をベースラインとして行った。シート抵抗値の測定は、抵抗率計(三菱化学社製MCP-T610)を用い、4端子4探針法定電流印加方式で行った。この結果を下記表2に合わせて示す。
Figure JPOXMLDOC01-appb-T000088
<実施例1の評価結果>
 表2から明らかなように、試料108~128の透明電極、すなわち有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]で、かつ[n/M]≦1.9×10-2の確認された所定範囲内である化合物No.1~No.11を用いて構成された窒素含有層と、この上部のアルミニウム中間層および銀で構成された電極層とを備えた透明電極は、実質的な導電性を担う電極層が5nmまたは8nmと極薄膜でありながらも、シート抵抗値の値が2桁以下の低い値に抑えられていた。尚、有効非共有電子対含有率[n/M]が5.0×10-3≦[n/M]であれば、さらにこの効果は確実である。このことから、本発明構成の透明電極では、アルミニウム中間層を介して窒素含有層上に形成された電極層が、単層成長型(Frank-van der Merwe:FM型)の膜成長によってほぼ均一な膜厚で形成されていることが確認された。
 また、これら試料108~128の透明電極は、アルミニウム中間層を備えながらも、その膜厚が0.3nm~1nm程度で十分に薄いことにより、光透過率も50%以上であって透明電極として用いることが可能であることが確認された。
 以上の結果は、基材がガラスであってもプラスチック材料(PET)であっても同様であった。
 そして特に、電極層の膜厚のみが異なる、試料108と試料119、および試料115と試料120を比較すると、電極層が5nmであっても8nmであっても、光透過率が70%前後の高い値に保持され、電極層の5nmから8nmへの厚膜化によるシート抵抗値の低下も確認され、光透過率の向上と導電性の向上との両立が図られることが確認された。
 これに対して、窒素含有層を設けていない試料101,103、および3.9×10-3>[n/M]である化合物No.-1~No.-4を用いて窒素含有層(下地層)を構成した試料104~107の透明電極は、シート抵抗の測定が不可能であるか4桁と高い値であり、電極として用いることができなかった。しかもこれらの透明電極は、光透過率も50%より低く、透明電極として用いることもできなかった。尚、窒素含有層など下地層を設けていない試料102は、電極層の膜厚が15nmと厚膜であるため、シート抵抗は低いものの光透過率が低く透明電極として用いることはできないものであった
 以上より、有効非共有電子対含有率[n/M]を指標として選択した化合物を用いて構成した窒素含有層と、銀を主成分とする電極層とに接して、これらの間にアルミニウム中間層を設けることにより、光透過性を得るために薄膜でありながらも低抵抗な電極膜(すなわち透明電極)が得られることが確認された。
 さらに、アルミニウム中間層の膜厚のみが異なる試料119,121,123の比較、および試料120,122,124の比較により、透明電極のシート抵抗はアルミニウム中間層の膜厚が薄いほど小さく抑えられるが、透明電極の光透過率はアルミニウム中間層の膜厚を因子とした極大値を有し、この極大値はアルミニウム中間層の膜厚1nm以下にあることが判る。したがって、アルミニウム中間膜の膜厚は、1nm以下が好ましいと言える。
 またさらに、窒素含有層におけるハロゲン化合物の含有のみが異なる試料121,125,126の比較により、ハロゲン化合物を窒素含有層に含むことにより、透明電極の光透過率の向上およびシート抵抗のさらなる抑制が可能であることが確認された。
≪トップエミッション型の有機電界発光素子の作製≫
 以降の表3に構成を示すように、実施例1で作製した構成の各透明電極をカソードとして発光機能層の上部に設けた試料201~228のトップエミッション型の各有機電界発光素子を作製した。試料201は試料101の透明電極、試料203は試料103の透明電極、試料204は試料104の透明電極、…とそれぞれの試料番号の下二桁に対応する実施例1の試料番号の透明電極の作製を適用した。尚、実施例1の試料102は、透明電極としての光透過率が不足であるため、実施例2では試料202を欠番とした。以下、図8を参照し作製手順を説明する。
<試料201~228の有機電界発光素子の作製手順>
(対向電極5-1:アノードの形成)
 先ず試料201~226においては、透明な無アルカリガラス製の基板13を用意した。また試料227,228においては、ポリエチレンテレフタレート(PET)製の基板13を用意した。そして、各試料201~228の作製においては、これらの各基板13の上部に、スパッタ法によって膜厚100nmのアルミニウムで構成された対向電極5-1をアノード(陽極)としてパターン形成した。
 対向電極5-1が形成された基板13を、市販の真空蒸着装置の基板ホルダーに固定し、対向電極5-1の形成面側に蒸着マスクを対向配置し、真空蒸着装置の第1真空槽に取り付けた。また真空蒸着装置内の加熱ボートの各々に、発光機能層3および透明電極1を構成する各材料を、それぞれの層の成膜に最適な量で充填し、当該第1真空槽内に取り付けた。尚、加熱ボートはタングステン製抵抗加熱用材料で作製されたものを用いた。
 次いで、真空蒸着装置の第1真空槽内を4×10-4Paまで減圧し、各材料が入った加熱ボートを順次通電して加熱することにより、以下のように各層を成膜した。
(正孔輸送・注入層31の形成)
 まず、正孔輸送注入材料として下記構造式に示すα-NPDが入った加熱ボートに通電して加熱し、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31を、対向電極5-1上に成膜した。この際、蒸着速度0.1nm/秒~0.2nm/秒、膜厚20nmとした。
Figure JPOXMLDOC01-appb-C000089
(発光層32の形成)
 次に、先に構造式を示したホスト材料H4の入った加熱ボートと、先に構造式を示した燐光発光性化合物Ir-4の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H4と燐光発光性化合物Ir-4とよりなる発光層32を、正孔輸送・注入層31上に成膜した。この際、蒸着速度がホスト材料H4:燐光発光性化合物Ir-4=100:6となるように、加熱ボートの通電を調節した。また膜厚30nmとした。
(正孔阻止層33の形成)
 次いで、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層33を、発光層32上に成膜した。この際、蒸着速度0.1nm/秒~0.2nm/秒、膜厚10nmとした。
Figure JPOXMLDOC01-appb-C000090
(電子輸送・注入層34の形成)
 その後、電子輸送材料として先に構造式を示した化合物10の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、化合物10とフッ化カリウムとよりなる電子注入層と電子輸送層とを兼ねた電子輸送・注入層34を、正孔阻止層33上に成膜した。この際、蒸着速度が化合物10:フッ化カリウム(KF)=75:25になるように、加熱ボートの通電を調節した。また膜厚30nmとした。尚、化合物10は、有効非共有電子対含有率[n/M]が所定範囲である化合物No.1でもある。
(透明電極1の窒素含有層1aの形成)
 以上の後には、試料204~228において、各化合物の入った加熱ボートに通電して加熱し、各化合物で構成された各窒素含有層1a(試料204では窒素を含有しない下地層)を、電子輸送・注入層34上に成膜した。この際、蒸着速度0.1nm/秒~0.2nm/秒、膜厚25nmとした。また、試料201,203においては、この工程は省略した。
(透明電極1のアルミニウム中間層A:カソードの形成)
 電子輸送・注入層34、または窒素含有層1aまでが形成された基板13を、真空雰囲気を保ったまま真空蒸着装置の第2真空槽内に移送し、第2真空槽内を4×10-4Paまで減圧した。その後、第2真空槽内に取り付けられたアルミニウムの入った加熱ボートを通電して加熱し、蒸着速度0.05nm/秒でアルミニウムからなるアルミニウム中間層Aを形成した。このアルミニウム中間層Aは、カソードの一部として用いられる。下記表3に示したように、アルミニウム中間層Aの膜厚は、試料203~228において0.3nm~1nmの範囲の各膜厚で形成した。尚、試料201においては、この工程は省略した。
(透明電極1の電極層1b:カソードの形成)
 その後、第2真空層内に取り付けられた銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で銀からなる電極層1bを形成した。この電極層1bは、カソードの一部として用いられる。下記表3に示したように、電極層1bの膜厚は、試料201~228において5nmまたは8nmの膜厚で形成した。これにより、各試料201~228において、各構造の透明電極1を得た。以上により基板13上に、トップエミッション型の有機電界発光素子EL-1を形成した。
(素子の封止)
 その後、有機電界発光素子EL-1を、厚さ300μmのガラス基板からなる透明封止材17で覆い、有機電界発光素子EL-1を囲む状態で、透明封止材17と基板13との間に接着剤19(シール材)を充填した。接着剤19としては、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を用いた。透明封止材17と基板13との間に充填した接着剤19に対して、ガラス基板(透明封止材17)側からUV光を照射し、接着剤19を硬化させて有機電界発光素子EL-1を封止した。
 尚、有機電界発光素子EL-1の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの基板13における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである対向電極5-1と、カソードである透明電極1の電極層1bおよびアルミニウム中間層Aとは、正孔輸送・注入層31~窒素含有層(下地層)1aによって絶縁された状態で、基板13の周縁に端子部分を引き出された形状で形成した。
 以上のようにして、基板13上に有機電界発光素子EL-1を設け、これを透明封止材17と接着剤19とで封止した試料201~228の有機電界発光素子の各発光パネルを得た。これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明封止材17側から取り出される。
<実施例2の各試料の評価>
 試料201~228で作製した有機電界発光素子EL-1(発光パネル)について、駆動電圧および高温・高湿保存性を測定した。この結果を下記表3に合わせて示す。
 駆動電圧の測定においては、各有機電界発光素子EL-1の透明電極1側(すなわち透明封止材17側)での正面輝度が1000cd/m2となるときの電圧を駆動電圧として測定した。尚、輝度の測定には分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。得られた駆動電圧の数値が小さいほど、好ましい結果であることを表わす。
 また高温・高湿保存性の測定においては、高温高湿環境(温度60℃、湿度90%)下に試料201~228の各発光パネルを保存し、輝度が1000cdになる駆動電圧で各発光パネルを駆動し、300時間経過前後での駆動電圧の変化量ΔVを測定し、この値を高温・高湿保存性とした。得られた変化量ΔVの数値が小さいほど、好ましい結果であることを表す。
Figure JPOXMLDOC01-appb-T000091
<実施例2の評価結果>
 表3から明らかなように、有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]である化合物No.1~No.11を用いた窒素含有層1aと、この上部のアルミニウム中間層A、および銀で構成された電極層1bとを備えた透明電極1を有する試料208~228の有機電界発光素子は、駆動電圧が10V以下の低い駆動電圧で1000cd/m2の正面輝度の発光が得られることが確認された。さらにこれらの試料208~228の有機電界発光素子は、高温・高湿環境下での保存後にも発光が確認され、高温・高湿保存性にも優れていることが確認された。またこれにより、銀からなる電極層1bが連続膜として構成されてバリア性を発揮し、有機材料で構成された発光機能層3の劣化が防止されていることが確認された。
 これに対して、窒素含有層1aを設けていない試料201,203、および有効非共有電子対含有率[n/M]が上記範囲を外れた化合物No.-1~No.-4を用いた窒素含有層(下地層)を有する試料204~207の有機電界発光素子EL-1は、電圧を印加しても発光しないか発光しても駆動電圧が10Vを超えて高く、高温・高湿保存性も悪かった。
 以上より、本発明構成の透明電極1を用いたトップエミッション型の有機電界発光素子EL-1は、低い駆動電圧での高輝度発光が可能でかつ保存性に優れていることが確認された。またこれにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。
 さらに、アルミニウム中間層Aの膜厚のみが異なる試料219,221,223の比較、および試料220,222,224の比較により、駆動電圧および高温・高湿保存性はアルミニウム中間層Aの膜厚を因子とした極小値を有し、この極小値はアルミニウム中間層の膜厚1nm以下にあることが判る。したがって、アルミニウム中間膜の膜厚は、1nm以下が好ましいと言える。
 またさらに、窒素含有層1aにおけるハロゲン化合物の含有のみが異なる試料221,225,226の比較により、ハロゲン化合物を窒素含有層1aに含むことにより、駆動電圧の低下および高温・高湿保存性のさらなる向上が可能であることが確認された。
≪ボトムエミッション型の有機電界発光素子の作製≫
 以降の表4に構成を示すように、実施例1で作製した構成の各透明電極をアノードとして発光機能層の上部に設けた試料301~328のボトムエミッション型の各有機電界発光素子を作製した。試料301は試料101の透明電極、試料303は試料103の透明電極、試料304は試料304の透明電極、…とそれぞれの試料番号の下二桁に対応する実施例1の試料番号の透明電極の作製を適用した。尚、実施例1の試料102は、透明電極としての光透過率が不足であるため、実施例3では試料302を欠番とした。以下、図9を参照し作製手順を説明する。
<試料301~328の有機電界発光素子の作製手順>
(透明電極1の形成)
 先ず試料301~326においては、透明な無アルカリガラス製の透明基板13’を用意した。また試料327,328においては、ポリエチレンテレフタレート(PET)製の透明基板13’を用意した。そして、各試料301~328の作製においては、これらの各透明基板13’の上部に、表4に示した各構成の透明電極1を形成した。これらの透明電極1の形成手順は、実施例1における試料101~128と同様である。つまり、試料301においては試料101と同様の手順で、試料303においては試料103と同様の手順で、…とそれぞれの試料番号の下二桁に対応する試料番号の透明電極の作製を適用した。
(正孔輸送・注入層31~電子輸送・注入層34の形成)
 その後、先の実施例2の各試料201~228と同様の構成で、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31(膜厚20nm)、ホスト材料H4と燐光発光性化合物Ir-4とよりなる発光層32(膜厚30nm)、BAlqよりなる正孔阻止層33(膜厚10nm)、化合物10とフッ化カリウムとよりなる電子輸送・注入層34(膜厚30nm)を形成した。これらの各層の形成は、実施例2で説明したと同様に行った。
(対向電極5-2:カソードの形成)
 以上の後には、発光機能層3が形成された透明基板13’を、真空蒸着装置の第2真空槽内に移送し、第2真空槽内を4×10-4Paまで減圧した後、第2真空槽内に取り付けられたアルミニウムの入った加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚100nmのアルミニウムからなる対向電極5-2を形成した。この対向電極5-2は、カソードとして用いられる。以上により透明基板13’上に、ボトムエミッション型の有機電界発光素子EL-2を形成した。
(素子の封止)
 その後は、実施例2と同様に、有機電界発光素子EL-2を、ガラス基板(封止材17’)で封止した。尚、有機電界発光素子EL-2の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの透明基板13’における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである透明電極1の電極層1bおよびアルミニウム中間層Aと、カソードである対向電極5-2とは、正孔輸送・注入層31~電子輸送・注入層34によって絶縁された状態で、透明基板13’の周縁に端子部分を引き出された形状で形成した。
 以上のようにして、透明基板13’上に有機電界発光素子EL-2を設け、これを封止材17’と接着剤19とで封止した試料301~328の有機電界発光素子の各発光パネルを得た。これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明基板13’側から取り出される。
<実施例3の各試料の評価>
 試料301~328で作製した有機電界発光素子EL-2(発光パネル)について、実施例2と同様に、駆動電圧および高温・高湿保存性を測定した。この結果を下記表4に合わせて示す。
Figure JPOXMLDOC01-appb-T000092
<実施例3の評価結果>
 表4から明らかなように、有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]である化合物No.1~No.11を用いた窒素含有層1aと、この上部のアルミニウム中間層A、および銀で構成された電極層1bとを備えた透明電極1を有する試料308~328の有機電界発光素子は、駆動電圧が10V以下の低い駆動電圧で1000cd/m2の正面輝度の発光が得られることが確認された。さらにこれらの試料308~328の有機電界発光素子は、高温・高湿環境下での保存後にも発光が確認され、高温・高湿保存性にも優れていることが確認された。またこれにより、銀からなる電極層1bが連続膜として構成されてバリア性を発揮し、有機材料で構成された発光機能層3の劣化が防止されていることが確認された。
 これに対して、窒素含有層1aを設けていない301,303、および有効非共有電子対含有率[n/M]が上記範囲を外れた化合物No.-1~No.-4を用いた窒素含有層(下地層)を有する試料304~307の有機電界発光素子EL-2は、電圧を印加しても発光しないか発光しても駆動電圧が10Vを超えて高く、高温・高湿保存性も悪かった。
 以上より、本発明構成の透明電極1を用いたボトムエミッション型の有機電界発光素子EL-2は、低い駆動電圧での高輝度発光が可能でかつ保存性に優れていることが確認された。またこれにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。
 さらに、アルミニウム中間層Aの膜厚のみが異なる試料319,321,323の比較、および試料320,322,324の比較により、駆動電圧および高温高湿保存性はアルミニウム中間層Aの膜厚を因子とした極小値を有し、この極小値はアルミニウム中間層の膜厚1nm以下にあることが判る。したがって、アルミニウム中間膜の膜厚は、1nm以下が好ましいと言える。
 またさらに、窒素含有層1aにおけるハロゲン化合物の含有のみが異なる試料321,325,326の比較により、ハロゲン化合物を窒素含有層1aに含むことにより、駆動電圧の低下および高温・高湿保存性のさらなる向上が可能であることが確認された。
≪透明電極の作製≫
 実施例4では、実施例1で作製した試料101~128の各透明電極に対して、その窒素含有層1aに各ハロゲン原子を含有させ、アルミニウム中間層の全層に各ハロゲン原子を含有させた各透明電極を作製した。下記表5には、実施例4で作製した試料401~428の透明電極の構成を示す。
 尚、表5に示した試料401~428の透明電極の構成は、表1に示した実施例1の試料101~128の透明電極の構成に対応している。すなわち、試料401は試料101の透明電極、試料403は試料103の透明電極、試料404は試料104の透明電極、…とそれぞれの試料番号の下二桁に対応する実施例1の試料番号の透明電極の構成と対応している。ただし、試料401~403では、試料101~103と同様の各透明電極を作製した。
 試料404~428の透明電極の作製においては、実施例1の各透明電極の作製における窒素含有層(下地層)の成膜に対し、蒸着材料として下記表5に示した各ハロゲン化合物を追加した共蒸着を行った。ただし、実施例1の試料126では、窒素含有層の蒸着材料として化合物No.1と化合物No.1の臭素(Br)置換体とを用いた蒸着を行ったところ、本実施例4の試料426では、窒素含有層の蒸着材料として化合物No.1と臭化カリウム(KBr)とを用いた共蒸着を行った。
 さらに、次のアルミニウム中間層の成膜手順において、50℃の基板加熱を成膜条件に追加し、蒸着速度0.05nm/秒で膜厚1nmのアルミニウム中間層を形成した。そして、この形成過程において、窒素含有層中のハロゲン原子がアルミニウムと反応することで、全層に各ハロゲン原子をハロゲン化アルミニウムとして含有するアルミニウム中間層が形成された。
 その他の手順は、実施例1の試料104~128の作製手順と同様にして、試料404~428の各透明電極を作製した。
<実施例4の各試料の評価>
 上記で作製した試料401~428の各透明電極について、実施例1と同様に、波長550nmの光に対する光透過率、及びシート抵抗値を測定した。この結果を下記表5に合わせて示す。
Figure JPOXMLDOC01-appb-T000093
<実施例4の評価結果>
 表5から明らかなように、試料408~428の透明電極、すなわち有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]で、かつ[n/M]≦1.9×10-2の確認された所定範囲内である化合物No.1~No.11を用いて構成された窒素含有層と、この上部のハロゲン原子を全層に含有するアルミニウム中間層と、銀で構成された電極層とを備えた透明電極は、実質的な導電性を担う電極層が5nm又は8nmと極薄膜でありながらも、シート抵抗値の値が2桁以下の低い値に抑えられていた。尚、有効非共有電子対含有率[n/M]が5.0×10-3≦[n/M]であれば、さらにこの効果は確実である。このことから、本発明構成の透明電極では、ハロゲン原子を含有するアルミニウム中間層を介して窒素含有層上に形成された電極層が、単層成長型(Frank-van der Merwe:FM型)の膜成長によってほぼ均一な膜厚で形成されていることが確認された。
 また、これら試料408~428の透明電極は、ハロゲン原子を全層に含有するアルミニウム中間層を備えながらも、その膜厚が0.3nm~1nm程度で十分に薄いことにより、光透過率も50%以上であって透明電極として用いることが可能であることが確認された。
 以上の結果は、基材がガラスであってもプラスチック材料(PET)であっても同様であった。
 そして特に、電極層の膜厚のみが異なる、試料408と試料419、及び試料415と試料420を比較すると、電極層が5nmであっても8nmであっても、光透過率が70%前後の高い値に保持され、電極層の5nmから8nmへの厚膜化によるシート抵抗値の低下も確認され、光透過率の向上と導電性の向上との両立が図られることが確認された。   
 これに対して、窒素含有層を設けていない試料401,403、及び3.9×10-3>[n/M]である化合物No.-1~No.-4を用いて窒素含有層(下地層)を構成した試料404~407の透明電極は、シート抵抗の測定が不可能であるか4桁と高い値であり、電極として用いることができなかった。しかもこれらの透明電極は、光透過率も50%より低く、透明電極として用いることもできなかった。尚、窒素含有層など下地層を設けていない試料402は、電極層の膜厚が15nmと厚膜であるため、シート抵抗は低いものの光透過率が低く透明電極として用いることはできないものであった。
 以上より、有効非共有電子対含有率[n/M]を指標として選択した化合物を用いて構成した窒素含有層と、銀を主成分とする電極層とに接して、これらの間にハロゲン原子を含有するアルミニウム中間層を設けることにより、光透過性を得るために薄膜でありながらも低抵抗な電極膜(すなわち透明電極)が得られることが確認された。
 さらに、アルミニウム中間層の膜厚のみが異なる試料419,421,423の比較、及び試料420,422,424の比較により、透明電極のシート抵抗はアルミニウム中間層の膜厚が薄いほど小さく抑えられるが、透明電極の光透過率はハロゲン原子を全層に含有するアルミニウム中間層の膜厚を因子とした極大値を有し、この極大値はアルミニウム中間層の膜厚1nm以下にあることが判る。したがって、ハロゲン原子を全層に含有するアルミニウム中間層の膜厚は、1nm以下が好ましいと言える。 
≪トップエミッション型の有機電界発光素子の作製≫
 実施例5では、以降の表6に構成を示すように、実施例4で作製した構成の各透明電極をカソードとして発光機能層の上部に設けた、試料501~528のトップエミッション型の各有機電界発光素子を作製した。試料501は試料401の透明電極、試料503は試料403の透明電極、試料504は試料404の透明電極、…とそれぞれの試料番号の下二桁に対応する実施例4の試料番号の透明電極の作製を適用した。尚、実施例4の試料402は、透明電極としての光透過率が不足であるため、実施例5では試料502を欠番とした。図8は、試料501~528として形成したトップエミッション型の有機電界発光素子の概略断面図である。図8において、図4に対応する部分には同一符号を付す。以下、図8を参照し、トップエミッション型の有機電界発光素子EL-1の作製手順を説明する。
<試料501~528の有機電界発光素子の作製手順>
(対向電極5-1:アノードの形成)
 実施例2で説明したと同様の手順で、各基板13上にアルミニウムで構成された膜厚100nmの対向電極5-1をアノード(陽極)としてパターン形成した。
(正孔輸送・注入層31~電子輸送・注入層34の形成)
 その後、先の実施例2の各試料201~228と同様の構成で、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31(膜厚20nm)、ホスト材料H4と燐光発光性化合物Ir-4とよりなる発光層32(膜厚30nm)、BAlqよりなる正孔阻止層33(膜厚10nm)、化合物10とフッ化カリウムとよりなる電子輸送・注入層34(膜厚30nm)を形成した。これらの各層の形成は、実施例2で説明したと同様に行った。
(透明電極1の形成)
 次に、各試料501~528において、電子輸送・注入層34の上部に、各構造の透明電極1を作製した。試料401~428の透明電極1は、これらの透明電極1の形成手順は、実施例4における試料401~428と同様である。つまり、試料501においては試料401と同様の手順で、試料503においては試料403と同様の手順で、…とそれぞれの試料番号の下二桁に対応する試料番号の透明電極の作製を適用した。
(素子の封止)
 その後は、実施例2で説明した手順と同様の手順にて、有機電界発光素子EL-1を封止し、試料501~528の有機電界発光素子の各発光パネルを得た。尚、有機電界発光素子EL-1の形成においては、実施例2と同様に、各層の形成に蒸着マスクを使用し、アノードである対向電極5-1と、カソードである透明電極1の電極層1bおよびアルミニウム中間層Aとは、正孔輸送・注入層31~電子輸送・注入層34によって絶縁された状態で、基板13の周縁に端子部分を引き出された形状で形成した。
 これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明封止材17側から取り出される。
<実施例5の各試料の評価>
 試料501~528で作製した有機電界発光素子EL-1(発光パネル)について、実施例2と同様に駆動電圧及び高温・高湿保存性を測定した。この結果を下記表6に合わせて示す。
Figure JPOXMLDOC01-appb-T000094
 
<実施例5の評価結果>
 表6から明らかなように、有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]である化合物No.1~No.11を用いた窒素含有層1aと、この上部の全層にハロゲン原子を含有するアルミニウム中間層A、及び銀で構成された電極層1bとを備えた透明電極1を有する試料508~528の有機電界発光素子EL-1は、駆動電圧が10V以下の低い駆動電圧で1000cd/m2の正面輝度の発光が得られることが確認された。さらにこれらの試料508~528の有機電界発光素子は、高温・高湿環境下での保存後にも発光が確認され、高温・高湿保存性にも優れていることが確認された。またこれにより、銀からなる電極層1bが連続膜として構成されてバリア性を発揮し、有機材料で構成された発光機能層3の劣化が防止されていることが確認された。
 これに対して、窒素含有層1aを設けていない試料501,503、及び有効非共有電子対含有率[n/M]が上記範囲を外れた化合物No.-1~No.-4を用いた窒素含有層(下地層)を有する試料504~507の有機電界発光素子EL-1は、電圧を印加しても発光しないか発光しても駆動電圧が10Vを超えて高く、高温・高湿保存性も悪かった。
 以上より、透明電極1を用いたトップエミッション型の有機電界発光素子EL-1は、低い駆動電圧での高輝度発光が可能でかつ保存性に優れていることが確認された。またこれにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。
 さらに、アルミニウム中間層Aの膜厚のみが異なる試料519,521,523の比較、及び試料520,522,524の比較により、駆動電圧及び高温・高湿保存性はアルミニウム中間層Aの膜厚を因子とした極小値を有し、この極小値はアルミニウム中間層Aの膜厚1nm以下にあることが判る。したがって、全層にハロゲン原子を含有するアルミニウム中間層Aの膜厚は、1nm以下が好ましいと言える。
≪ボトムエミッション型の有機電界発光素子の作製≫
 実施例6では、以降の表7に構成を示すように、実施例4で作製した構成の各透明電極をアノードとして発光機能層の下部に設けた試料601~628のボトムエミッション型の各有機電界発光素子を作製した。試料601は試料401の透明電極、試料603は試料403の透明電極、試料604は試料404の透明電極、…とそれぞれの試料番号の下二桁に対応する実施例4の試料番号の透明電極の作製を適用した。尚、実施例4の試料402は、透明電極としての光透過率が不足であるため、実施例6では試料602を欠番とした。図9は、試料601~628として形成したボトムエミッション型の有機電界発光素子の概略断面構成図である。図9において、図5及び図8に対応する部分には同一符号を付す。以下、図9を参照し作製手順を説明する。
<試料601~628の有機電界発光素子の作製手順>
(透明電極1の形成)
 先ず、試料601~628においては、表7に示した各透明基板13’の上部に、各構成の透明電極1を形成した。これらの透明電極1の形成手順は、実施例4における試料401~428と同様である。つまり、試料601においては試料401と同様の手順で、試料603においては試料403と同様の手順で、…とそれぞれの試料番号の下二桁に対応する試料番号の透明電極の作製を適用した。
(正孔輸送・注入層31~電子輸送・注入層34の形成)
 その後、先の実施例2の各試料201~228と同様の構成で、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31(膜厚20nm)、ホスト材料H4と燐光発光性化合物Ir-4とよりなる発光層32(膜厚30nm)、BAlqよりなる正孔阻止層33(膜厚10nm)、化合物10とフッ化カリウムとよりなる電子輸送・注入層34(膜厚30nm)を形成した。これらの各層の形成は、実施例2で説明したと同様に行った。
(対向電極5-2:カソードの形成)
 以上の後には、発光機能層3が形成された透明基板13’を、真空蒸着装置の第2真空槽内に移送し、第2真空槽内を4×10-4Paまで減圧した後、第2真空槽内に取り付けられたアルミニウムの入った加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚100nmのアルミニウムからなる対向電極5-2を形成した。この対向電極5-2は、カソードとして用いられる。以上により透明基板13’上に、ボトムエミッション型の有機電界発光素子EL-2を形成した。
(素子の封止)
 その後は、実施例2と同様に、有機電界発光素子EL-2を、ガラス基板(封止材17’)で封止した。尚、有機電界発光素子EL-2の形成においては、実施例2と同様に、各層の形成に蒸着マスクを使用し、カソードである対向電極5-2と、アノードである透明電極1の電極層1bおよびアルミニウム中間層Aとは、正孔輸送・注入層31~電子輸送・注入層34によって絶縁された状態で、透明基板13’の周縁に端子部分を引き出された形状で形成した。
 これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明基板13’側から取り出される。
<実施例6の各試料の評価>
 試料601~628で作製した有機電界発光素子EL-2(発光パネル)について、実施例2と同様に、駆動電圧及び高温・高湿保存性を測定した。この結果を下記表7に合わせて示す。
Figure JPOXMLDOC01-appb-T000095
 
<実施例6の評価結果>
 表7から明らかなように、有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]である化合物No.1~No.11を用いた窒素含有層1aと、この上部のハロゲン原子を全層に含有するアルミニウム中間層Aと、銀で構成された電極層1bとを備えた透明電極1を有する試料608~628の有機電界発光素子は、駆動電圧が10V以下の低い駆動電圧で1000cd/m2の正面輝度の発光が得られることが確認された。さらにこれらの試料608~628の有機電界発光素子は、高温・高湿環境下での保存後にも発光が確認され、高温・高湿保存性にも優れていることが確認された。またこれにより、銀からなる電極層1bが連続膜として構成されてバリア性を発揮し、有機材料で構成された発光機能層3の劣化が防止されていることが確認された。
 これに対して、窒素含有層1aを設けていない試料601,603、及び有効非共有電子対含有率[n/M]が上記範囲を外れた化合物No.-1~No.-4を用いた窒素含有層(下地層)を有する試料604~607の有機電界発光素子EL-2は、電圧を印加しても発光しないか発光しても駆動電圧が10Vを超えて高く、高温・高湿保存性も悪かった。
 以上より、本発明構成の透明電極1を用いたボトムエミッション型の有機電界発光素子EL-2は、低い駆動電圧での高輝度発光が可能でかつ保存性に優れていることが確認された。またこれにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。
 さらに、ハロゲン原子を全層に含有するアルミニウム中間層Aの膜厚のみが異なる試料619,621,623の比較、及び試料620,622,624の比較により、駆動電圧及び高温高湿保存性はアルミニウム中間層Aの膜厚を因子とした極小値を有し、この極小値はアルミニウム中間層Aの膜厚1nm以下にあることが判る。したがって、ハロゲン原子を全層に含有するアルミニウム中間層Aの膜厚は、1nm以下が好ましいと言える。
≪透明電極の作製≫
 実施例7では、実施例1で作製した試料101~128の各透明電極に対して、その窒素含有層1aに各ハロゲン原子を含有させ、アルミニウム中間層における窒素含有層との界面側のみに各ハロゲン原子を含有させた各透明電極を作製した。下記表8には、実施例7で作製した試料701~728の透明電極の構成を示す。
 尚、表8に示した試料701~728の透明電極の構成は、表1に示した実施例1の試料101~128の透明電極の構成に対応している。すなわち、試料701は試料101の透明電極、試料703は試料103の透明電極、試料704は試料104の透明電極、…とそれぞれの試料番号の下二桁に対応する実施例1の試料番号の透明電極の構成と対応している。ただし、試料701~703では、試料101~103と同様の各透明電極を作製した。
 試料704~728の透明電極の作製においては、実施例1の各透明電極の作製における窒素含有層(下地層)の成膜に対し、蒸着材料として下記表8に示した各ハロゲン化合物を追加した共蒸着を行った。ただし、実施例1の試料126では、窒素含有層の蒸着材料として化合物No.1と化合物No.1の臭素(Br)置換体とを用いた蒸着を行ったところ、実施例7の試料726では窒素含有層の蒸着材料として化合物No.1と臭化カリウム(KBr)とを用いた共蒸着を行った。
 以上のようにして各ハロゲン原子を含有する窒素含有層(下地層)を形成した後、実施例1の試料104~108におけるアルミニウム中間層の成膜手順と同様にして、基板加熱を行うことなく蒸着速度0.05nm/秒で膜厚1nmのアルミニウム中間層を形成した。そして、この形成過程において、窒素含有層のハロゲン原子が材料層を構成するアルミニウムと反応することで、アルミニウム中間層の窒素含有層側から厚み0.2nmまでの領域に、各ハロゲン原子がハロゲン化アルミニウムとして含有された状態となった。これにより、試料704~試料728において形成したアルミニウム中間層は、膜厚0.2nmのハロゲン化アルミニウム(AlF)を含有する第1層と、膜厚0.8nmのアルミニウム(Al)からなる第2層とを備えた積層構成となった。
 その他の手順は、実施例1の試料104~128の作製手順と同様にして、試料704~728の各透明電極を作製した。
<実施例7の各試料の評価>
 上記で作製した試料701~728の各透明電極について、実施例1と同様に、波長550nmの光に対する光透過率、及びシート抵抗値を測定した。この結果を下記表8に合わせて示す。
Figure JPOXMLDOC01-appb-T000096
 
<実施例7の評価結果>
 表8から明らかなように、試料708~728の透明電極、すなわち有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]で、かつ[n/M]≦1.9×10-2の確認された所定範囲内である化合物No.1~No.11を用いて構成された窒素含有層と、この上部のハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層と、銀で構成された電極層とを備えた透明電極は、実質的な導電性を担う電極層が5nm又は8nmと極薄膜でありながらも、シート抵抗値の値が2桁以下の低い値に抑えられていた。尚、有効非共有電子対含有率[n/M]が5.0×10-3≦[n/M]であれば、さらにこの効果は確実である。このことから、本発明構成の透明電極では、アルミニウム中間層を介して窒素含有層上に形成された電極層が、単層成長型(Frank-van der Merwe:FM型)の膜成長によってほぼ均一な膜厚で形成されていることが確認された。
 また、これら試料708~728の透明電極は、ハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層を備えながらも、その膜厚が0.3nm~1nm程度で十分に薄いことにより、光透過率も50%以上であって透明電極として用いることが可能であることが確認された。
 以上の結果は、基材がガラスであってもプラスチック材料(PET)であっても同様であった。
 そして特に、電極層の膜厚のみが異なる、試料708と試料719、及び試料715と試料720を比較すると、電極層が5nmであっても8nmであっても、光透過率が70%前後の高い値に保持され、電極層の5nmから8nmへの厚膜化によるシート抵抗値の低下も確認され、光透過率の向上と導電性の向上との両立が図られることが確認された。
 これに対して、窒素含有層を設けていない試料701,703、及び3.9×10-3>[n/M]である化合物No.-1~No.-4を用いて窒素含有層(下地層)を構成した試料704~707の透明電極は、シート抵抗の測定が不可能であるか4桁と高い値であり、電極として用いることができなかった。しかもこれらの透明電極は、光透過率も50%より低く、透明電極として用いることもできなかった。尚、窒素含有層など下地層を設けていない試料702は、電極層の膜厚が15nmと厚膜であるため、シート抵抗は低いものの光透過率が低く透明電極として用いることはできないものであった
 以上より、有効非共有電子対含有率[n/M]を指標として選択した化合物を用いて構成した窒素含有層と、銀を主成分とする電極層とに接して、これらの間にハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層を設けることにより、光透過性を得るために薄膜でありながらも低抵抗な電極膜(すなわち透明電極)が得られることが確認された。
 さらに、アルミニウム中間層の膜厚のみが異なる試料719,721,723の比較、及び試料720,722,724の比較により、透明電極のシート抵抗は中間層の膜厚が薄いほど小さく抑えられるが、透明電極の光透過率はアルミニウム中間層の膜厚を因子とした極大値を有し、この極大値は中間層の膜厚1nm以下にあることが判る。したがって、ハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層の膜厚は、1nm以下が好ましいと言える。
≪トップエミッション型の有機電界発光素子の作製≫
 実施例8では、以降の表9に構成を示すように、実施例7で作製した構成の各透明電極をカソードとして発光機能層の上部に設けた、試料801~828のトップエミッション型の各有機電界発光素子を作製した。試料801は試料701の透明電極、試料803は試料703の透明電極、試料804は試料704の透明電極、…とそれぞれの試料番号の下二桁に対応する実施例7の試料番号の透明電極の作製を適用した。尚、実施例7の試料702は、透明電極としての光透過率が不足であるため、実施例8では試料802を欠番とした。図8は、試料801~828として形成したトップエミッション型の有機電界発光素子の概略断面図である。図8において、図4に対応する部分には同一符号を付す。以下、図8を参照し、トップエミッション型の有機電界発光素子EL-1の作製手順を説明する。
<試料801~828の有機電界発光素子の作製手順>
(対向電極5-1:アノードの形成)
 実施例2で説明したと同様の手順で、各基板13上にアルミニウムで構成された膜厚100nmの対向電極5-1をアノード(陽極)としてパターン形成した。
(正孔輸送・注入層31~電子輸送・注入層34の形成)
 その後、先の実施例2の各試料201~228と同様の構成で、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31(膜厚20nm)、ホスト材料H4と燐光発光性化合物Ir-4とよりなる発光層32(膜厚30nm)、BAlqよりなる正孔阻止層33(膜厚10nm)、化合物10とフッ化カリウムとよりなる電子輸送・注入層34(膜厚30nm)を形成した。これらの各層の形成は、実施例2で説明したと同様に行った。
(透明電極1の形成)
 次に、各試料801~828において、電子輸送・注入層34の上部に、各構造の透明電極1を作製した。試料801~828の透明電極1は、これらの透明電極1の形成手順は、実施例7における試料701~728と同様である。つまり、試料801においては試料701と同様の手順で、試料803においては試料703と同様の手順で、…とそれぞれの試料番号の下二桁に対応する試料番号の透明電極の作製を適用した。
(素子の封止)
 その後は、実施例2で説明した手順と同様の手順にて、有機電界発光素子EL-1を封止し、試料801~828の有機電界発光素子の各発光パネルを得た。尚、有機電界発光素子EL-1の形成においては、実施例2と同様に、各層の形成に蒸着マスクを使用し、アノードである対向電極5-1と、カソードである透明電極1の電極層1bおよびアルミニウム中間層Aとは、正孔輸送・注入層31~電子輸送・注入層34によって絶縁された状態で、基板13の周縁に端子部分を引き出された形状で形成した。
 これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明封止材17側から取り出される。
<実施例8の各試料の評価>
 試料801~828で作製した有機電界発光素子EL-1(発光パネル)について、実施例2と同様に駆動電圧及び高温・高湿保存性を測定した。この結果を下記表9に合わせて示す。
Figure JPOXMLDOC01-appb-T000097
 
<実施例8の評価結果>
 表9から明らかなように、有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]である化合物No.1~No.11を用いた窒素含有層1aと、この上部のハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層A、及び銀で構成された電極層1bとを備えた透明電極1を有する試料808~828の有機電界発光素子EL-1は、駆動電圧が10V以下の低い駆動電圧で1000cd/m2の正面輝度の発光が得られることが確認された。さらにこれらの試料808~828の有機電界発光素子は、高温・高湿環境下での保存後にも発光が確認され、高温・高湿保存性にも優れていることが確認された。またこれにより、銀からなる電極層1bが連続膜として構成されてバリア性を発揮し、有機材料で構成された発光機能層3の劣化が防止されていることが確認された。
 これに対して、窒素含有層1aを設けていない試料801,803、及び有効非共有電子対含有率[n/M]が上記範囲を外れた化合物No.-1~No.-4を用いた窒素含有層(下地層)を有する試料804~807の有機電界発光素子EL-1は、電圧を印加しても発光しないか発光しても駆動電圧が10Vを超えて高く、高温・高湿保存性も悪かった。
 以上より、透明電極1を用いたトップエミッション型の有機電界発光素子EL-1は、低い駆動電圧での高輝度発光が可能でかつ保存性に優れていることが確認された。またこれにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。
 さらに、アルミニウム中間層Aの膜厚のみが異なる試料819,821,823の比較、及び試料820,822,824の比較により、駆動電圧及び高温・高湿保存性はアルミニウム中間層Aの膜厚を因子とした極小値を有し、この極小値はハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層Aの膜厚1nm以下にあることが判る。したがって、ハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層Aの膜厚は、1nm以下が好ましいと言える。
≪ボトムエミッション型の有機電界発光素子の作製≫
 実施例9では、以降の表10に構成を示すように、実施例7で作製した構成の各透明電極をアノードとして発光機能層の下部に設けた試料901~928のボトムエミッション型の各有機電界発光素子を作製した。試料901は試料701の透明電極、試料903は試料703の透明電極、試料904は試料704の透明電極、…とそれぞれの試料番号の下二桁に対応する実施例7の試料番号の透明電極の作製を適用した。尚、実施例7の試料702は、透明電極としての光透過率が不足であるため、実施例9では試料902を欠番とした。図9は、試料901~928として形成したボトムエミッション型の有機電界発光素子の概略断面構成図である。図9において、図5及び図8に対応する部分には同一符号を付す。以下、図9を参照し作製手順を説明する。
<試料901~928の有機電界発光素子の作製手順>
(透明電極1の形成)
 まず、試料901~926においては、表10に示した各透明基板13’の上部に、各構成の透明電極1を形成した。これらの透明電極1の形成手順は、実施例7における試料701~728と同様である。つまり、試料901においては試料701と同様の手順で、試料903においては試料703と同様の手順で、…とそれぞれの試料番号の下二桁に対応する試料番号の透明電極の作製を適用した。
(正孔輸送・注入層31~電子輸送・注入層34の形成)
 その後、先の実施例2の各試料201~228と同様の構成で、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31(膜厚20nm)、ホスト材料H4と燐光発光性化合物Ir-4とよりなる発光層32(膜厚30nm)、BAlqよりなる正孔阻止層33(膜厚10nm)、化合物10とフッ化カリウムとよりなる電子輸送・注入層34(膜厚30nm)を形成した。これらの各層の形成は、実施例2で説明したと同様に行った。
(対向電極5-2:カソードの形成)
 以上の後には、発光機能層36が形成された透明基板13’を、真空蒸着装置の第2真空槽内に移送し、第2真空槽内を4×10-4Paまで減圧した後、第2真空槽内に取り付けられたアルミニウムの入った加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚100nmのアルミニウムからなる対向電極5-2を形成した。この対向電極5-2は、カソードとして用いられる。以上により透明基板13’上に、ボトムエミッション型の有機電界発光EL-2を形成した。
(素子の封止)
 その後は、実施例2と同様に、有機電界発光素子EL-2を、ガラス基板(封止材17’)で封止した。尚、有機電界発光素子EL-2の形成においては、実施例2と同様に、各層の形成に蒸着マスクを使用し、カソードである対向電極5-2と、アノードである透明電極1の電極層1bおよびアルミニウム中間層Aとは、正孔輸送・注入層31~電子輸送・注入層34によって絶縁された状態で、透明基板13’の周縁に端子部分を引き出された形状で形成した。
 これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明基板13’側から取り出される。
<実施例9の各試料の評価>
 試料901~928で作製した有機電界発光EL-2(発光パネル)について、実施例2と同様に、駆動電圧及び高温・高湿保存性を測定した。この結果を下記表10に合わせて示す。
Figure JPOXMLDOC01-appb-T000098
 
<実施例9の評価結果>
 表10から明らかなように、有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]である化合物No.1~No.11を用いた窒素含有層1aと、この上部のハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層Aと、銀で構成された電極層1bとを備えた透明電極1を有する試料808~828の有機電界発光素子は、駆動電圧が10V以下の低い駆動電圧で1000cd/m2の正面輝度の発光が得られることが確認された。さらにこれらの試料808~828の有機電界発光素子は、高温・高湿環境下での保存後にも発光が確認され、高温・高湿保存性にも優れていることが確認された。またこれにより、銀からなる電極層1bが連続膜として構成されてバリア性を発揮し、有機材料で構成された発光機能層3の劣化が防止されていることが確認された。
 これに対して、窒素含有層1aを設けていない試料801,803、及び有効非共有電子対含有率[n/M]が上記範囲を外れた化合物No.-1~No.-4を用いた窒素含有層(下地層)を有する試料804~807の有機電界発光EL-2は、電圧を印加しても発光しないか発光しても駆動電圧が10Vを超えて高く、高温・高湿保存性も悪かった。
 以上より、本発明構成の透明電極1を用いたボトムエミッション型の有機電界発光EL-2は、低い駆動電圧での高輝度発光が可能でかつ保存性に優れていることが確認された。またこれにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。
 さらに、アルミニウム中間層Aの膜厚のみが異なる試料819,821,823の比較、及び試料820,822,824の比較により、駆動電圧及び高温高湿保存性はハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層Aの膜厚を因子とした極小値を有し、この極小値はアルミニウム中間層Aの膜厚1nm以下にあることが判る。したがって、ハロゲン原子を窒素含有層側のみに含有するアルミニウム中間層Aの膜厚は、1nm以下が好ましいと言える。
 1…透明電極、1a…窒素含有層、1b…電極層、A…アルミニウム中間層、EL,EL-1,EL-2,EL-3,EL-4…有機電界発光素子(電子デバイス)

Claims (23)

  1.  窒素原子を含有すると共に当該窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]となる化合物を用いて構成された窒素含有層と、
     銀を主成分とする電極層と、
     前記窒素含有層と前記電極層とに接してこれらの間に挟持されたアルミニウム中間層とを備えた
     透明電極。
  2.  前記化合物における前記有効非共有電子対含有率[n/M]が、5.0×10-3≦[n/M]である
     請求項1記載の透明電極。
  3.  前記窒素含有層は、下記一般式(1)で表される化合物を含有する
     請求項1または2に記載の透明電極。
    Figure JPOXMLDOC01-appb-C000001
    [ただし一般式(1)中、E101~E108は、各々-C(R12)=または-N=を表し、E101~E108のうち少なくとも1つは-N=である。
     またR11および上記R12は水素原子または置換基を表す。]
  4.  前記窒素含有層は、下記一般式(2)で表される化合物を含有する
     請求項1または2に記載の透明電極。
    Figure JPOXMLDOC01-appb-C000002
    〔ただし一般式(2)中、Y21は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
     E201~E216、E221~E238は、各々-C(R21)=または-N=を表し、上記R21は水素原子または置換基を表す。
     またE221~E229の少なくとも1つおよびE230~E238の少なくとも1つは-N=を表す。
     k21およびk22は0~4の整数を表すが、k21+k22は2以上の整数である。〕
  5.  前記窒素含有層は、下記一般式(3)で表される化合物を含有する
     請求項1または2に記載の透明電極。
    Figure JPOXMLDOC01-appb-C000003
    〔ただし一般式(3)中、E301~E312は、各々-C(R31)=を表し、R31は水素原子または置換基を表す。
     Y31は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。]
  6.  前記窒素含有層は、下記一般式(4)で表される化合物を含有する
     請求項1または2に記載の透明電極。
    Figure JPOXMLDOC01-appb-C000004
    〔ただし一般式(4)中、E401~E414は、各々-C(R41)=を表し、R41は水素原子または置換基を表す。
     Ar41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。
     またk41は3以上の整数を表す。]
  7.  前記窒素含有層は、下記一般式(5)で表される化合物を含有する
     請求項1または2に記載の透明電極。
    Figure JPOXMLDOC01-appb-C000005
    〔ただし一般式(5)中、
     R51は置換基を表し、
     E501,E502、E511~E515、E521~E525は、各々-C(R52)=または-N=を表し、
     E503~E505は、各々-C(R52)=を表し、
     前記R52は、水素原子(H)または置換基を表し、
     E501およびE502のうち少なくとも1つは-N=であり、
     E511~E515のうち少なくとも1つは-N=であり、
     E521~E525のうち少なくとも1つは-N=である。〕
  8.  前記窒素含有層は、下記一般式(6)で表される化合物を含有する
     請求項1または2に記載の透明電極。
    Figure JPOXMLDOC01-appb-C000006
    〔ただし一般式(6)中、E601~E612は、各々-C(R61)=または-N=を表し、R61は水素原子または置換基を表す。
     Ar61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。]
  9.  前記窒素含有層は、ハロゲン原子を含有する
     請求項1~8の何れかに記載の透明電極。
  10.  前記アルミニウム中間層は、ハロゲン原子を含有する
     請求項9に記載の透明電極。
  11.  前記アルミニウム中間層は、少なくとも前記窒素含有層との界面にハロゲン原子を含有した中間層とを備えた
     請求項9または10に記載の透明電極。
  12.  前記アルミニウム中間層は、前記窒素含有層側から前記電極層側にかけてハロゲン原子の含有量が徐々に少なくなるように形成されている
     請求項10または11に記載の透明電極。
  13.  前記アルミニウム中間層は、前記窒素含有層側のみにハロゲン原子を含有する
     請求項9~12のいずれかに記載の透明電極。
  14.  前記アルミニウム中間層は、全層にハロゲン原子を含有する
     請求項9~12の何れかに記載の透明電極。
  15.  前記アルミニウム中間層は、1nm以下の膜厚である
     請求項1~14の何れかに記載の透明電極。
  16.  前記窒素含有層は、前記化合物と共に他の化合物を用いて構成され、これらの化合物の混合比を考慮した前記有効非共有電子対含有率[n/M]の平均値が、3.9×10-3≦[n/M]である
     請求項1~15の何れかに記載の透明電極。
  17.  窒素原子を含有すると共に当該窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が3.9×10-3≦[n/M]となる化合物を用いて構成された窒素含有層を形成する工程と、
     前記窒素含有層に接してアルミニウム中間層を形成する工程と、
     前記アルミニウム中間層に接して銀を主成分とする電極層を形成する工程と
     を含む透明電極の製造方法。
  18.  前記窒素含有層を形成する工程では、ハロゲン原子を含有する窒素含有層を形成し、
     前記アルミニウム中間層を形成する工程では、前記窒素含有層中のハロゲン原子を当該アルミニウム中間層中に拡散させながら当該アルミニウム中間層の成膜を行う
     請求項17記載の透明電極の製造方法。
  19.  前記窒素含有層を形成する工程では、ハロゲン原子を含有する窒素含有層を形成し、
     前記アルミニウム中間層を形成する工程の後、前記窒素含有層中のハロゲン原子を前記アルミニウム中間層中に拡散させる工程を行う
     請求項17または18記載の透明電極の製造方法。
  20.  請求項1~16の何れかに記載の透明電極を有する
     電子デバイス。
  21.  前記電子デバイスが有機電界発光素子である
     請求項20に記載の電子デバイス。
  22.  請求項1~16の何れかに記載の透明電極と、
     前記透明電極における前記電極層側に設けられた発光機能層と、
     前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極とを有する
     有機電界発光素子。
  23.  請求項1~16の何れかに記載の透明電極と、
     前記透明電極における前記窒素含有層側に設けられた発光機能層と、
     前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極とを有する
     有機電界発光素子。
PCT/JP2013/061367 2012-04-23 2013-04-17 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子 WO2013161639A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/396,628 US9287521B2 (en) 2012-04-23 2013-04-17 Transparent electrode, method for manufacturing transparent electrode, electronic device, and organic electroluminescence element
JP2014512489A JP6119742B2 (ja) 2012-04-23 2013-04-17 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-097978 2012-04-23
JP2012097978 2012-04-23
JP2012127213 2012-06-04
JP2012127212 2012-06-04
JP2012-127212 2012-06-04
JP2012-127213 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013161639A1 true WO2013161639A1 (ja) 2013-10-31

Family

ID=49482962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061367 WO2013161639A1 (ja) 2012-04-23 2013-04-17 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子

Country Status (3)

Country Link
US (1) US9287521B2 (ja)
JP (1) JP6119742B2 (ja)
WO (1) WO2013161639A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065215A1 (ja) * 2012-10-24 2014-05-01 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP2015211008A (ja) * 2014-04-30 2015-11-24 コニカミノルタ株式会社 透明電極、及び、電子デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180020A1 (ja) * 2012-05-31 2013-12-05 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JPWO2015125581A1 (ja) * 2014-02-24 2017-03-30 コニカミノルタ株式会社 有機電界発光素子
US11183645B2 (en) * 2015-05-11 2021-11-23 Nippon Hoso Kyokai Organic thin film and method for manufacturing organic thin film, organic electroluminescence element, display device, illumination device, organic thin film solar cell, thin film transistor, and coating composition
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
TWI694748B (zh) * 2019-08-28 2020-05-21 明志科技大學 用以產生大面積電漿之電極元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036175A (ja) * 2005-07-25 2007-02-08 Lg Electronics Inc 有機el素子及びその製造方法
WO2009054253A1 (ja) * 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010123439A (ja) * 2008-11-20 2010-06-03 Fujifilm Corp 有機電界発光素子
JP2010251675A (ja) * 2008-05-13 2010-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011077028A (ja) * 2009-09-04 2011-04-14 Hitachi Displays Ltd 有機el表示装置
JP2012009359A (ja) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd 有機エレクトロルミネッセンス素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171637A (ja) 2007-01-10 2008-07-24 Fuji Electric Holdings Co Ltd 透明導電膜積層体、該透明導電膜積層体を用いた有機el素子、並びに、これらの製造方法
JP5539659B2 (ja) * 2008-05-22 2014-07-02 リンテック株式会社 発光性組成物、それを用いる無機系電界発光シート及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036175A (ja) * 2005-07-25 2007-02-08 Lg Electronics Inc 有機el素子及びその製造方法
WO2009054253A1 (ja) * 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010251675A (ja) * 2008-05-13 2010-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010123439A (ja) * 2008-11-20 2010-06-03 Fujifilm Corp 有機電界発光素子
JP2011077028A (ja) * 2009-09-04 2011-04-14 Hitachi Displays Ltd 有機el表示装置
JP2012009359A (ja) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd 有機エレクトロルミネッセンス素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065215A1 (ja) * 2012-10-24 2014-05-01 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JPWO2014065215A1 (ja) * 2012-10-24 2016-09-08 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP2015211008A (ja) * 2014-04-30 2015-11-24 コニカミノルタ株式会社 透明電極、及び、電子デバイス

Also Published As

Publication number Publication date
US20150123091A1 (en) 2015-05-07
JP6119742B2 (ja) 2017-04-26
JPWO2013161639A1 (ja) 2015-12-24
US9287521B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP6070567B2 (ja) 透明電極、および電子デバイス
JP6003981B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP6128117B2 (ja) 透明電極の製造方法
JP5943005B2 (ja) 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法
JP6256349B2 (ja) 透明電極、及び、電子デバイス
JP6137170B2 (ja) 有機電界発光素子
JP2013229218A (ja) 表示装置
JP6119742B2 (ja) 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子
WO2013035490A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2014030666A1 (ja) 透明電極、電子デバイス、および透明電極の製造方法
JP6241281B2 (ja) 透明電極および電子デバイス
JP6070320B2 (ja) 透明電極付き基板、及び、電子デバイス
JP6028794B2 (ja) 電子デバイスの製造装置
JP5998789B2 (ja) 透明電極、及び電子デバイス
JP6366221B2 (ja) 透明電極、及び電子デバイス
WO2013137234A1 (ja) 透明電極、電子デバイス、および透明電極の製造方法
JP6241282B2 (ja) 透明電極および電子デバイス
WO2014181640A1 (ja) 発光素子および表示装置
WO2013027510A1 (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP5817557B2 (ja) 透明バリア膜、および電子デバイス
WO2014098014A1 (ja) 透明電極、及び、電子デバイス
JP2014229555A (ja) 透明電極、透明電極の製造方法、及び、電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14396628

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13782361

Country of ref document: EP

Kind code of ref document: A1