WO2013160929A1 - 冷凍サイクルシステム - Google Patents

冷凍サイクルシステム Download PDF

Info

Publication number
WO2013160929A1
WO2013160929A1 PCT/JP2012/002776 JP2012002776W WO2013160929A1 WO 2013160929 A1 WO2013160929 A1 WO 2013160929A1 JP 2012002776 W JP2012002776 W JP 2012002776W WO 2013160929 A1 WO2013160929 A1 WO 2013160929A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
pressure side
internal heat
refrigerant
flow path
Prior art date
Application number
PCT/JP2012/002776
Other languages
English (en)
French (fr)
Inventor
悟 梁池
加藤 央平
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/002776 priority Critical patent/WO2013160929A1/ja
Priority to PCT/JP2013/061680 priority patent/WO2013161725A1/ja
Priority to JP2014512537A priority patent/JP5901750B2/ja
Priority to DE112013002162.5T priority patent/DE112013002162B4/de
Priority to US14/390,869 priority patent/US9822994B2/en
Priority to CN201380021353.3A priority patent/CN104246393B/zh
Priority to CN201320209139.8U priority patent/CN203421870U/zh
Publication of WO2013160929A1 publication Critical patent/WO2013160929A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle

Definitions

  • the present invention relates to a refrigeration cycle system including an internal heat exchanger for exchanging heat between a high-pressure side refrigerant from the condenser outlet to the expansion means and a low-pressure side refrigerant from the evaporator outlet to the compressor suction.
  • coolant circulation amount is reduced by enlarging the entrance / exit enthalpy difference of an evaporator, and there exists an effect which improves COP (The value which remove
  • the pressure loss from the evaporator outlet to the compressor suction greatly affects the decrease in COP. If the piping path of the internal heat exchanger is lengthened, it is effective when the liquid back is generated, but when the liquid back is not generated, the COP is lowered due to an increase in pressure loss. Further, when the pipe diameter of the internal heat exchanger is increased, the refrigerant flow rate is lowered, and the refrigerating machine oil cannot ride on the refrigerant flow and return to the compressor, thereby causing seizure.
  • the present invention has been made to solve the above-described problems, and provides a refrigeration cycle system that can achieve both high-efficiency operation and improved reliability at the time of an abnormal rise in liquid back and discharge temperature.
  • the compressor (1), the load side heat exchanger (3), the internal heat exchanger (4), the expansion means (5), and the heat source side heat exchanger (6) are pipes.
  • the internal heat exchanger (4) includes a refrigerant circuit that is connected and circulates the refrigerant, and the internal heat exchanger (4) exchanges heat between the refrigerant that flows through the high-pressure channel and the refrigerant that flows through the low-pressure channel.
  • a second internal heat exchanger (8) in which heat is exchanged between the refrigerant flowing in the high-pressure side flow path and the refrigerant flowing in the low-pressure side flow path, the first internal heat exchanger (7), and the second
  • a first high-pressure side channel switching device (11) provided between one side of the high-pressure side channel of the internal heat exchanger (8) and the outlet side of the load-side heat exchanger (3); Provided between the other side of the high-pressure side flow path of the first internal heat exchanger (7) and the second internal heat exchanger (8) and the expansion means (5).
  • the refrigerant that has flowed out of the load-side heat exchanger (3) flows through the high-pressure side flow paths of the first internal heat exchanger (7) and the second internal heat exchanger (8), respectively.
  • the refrigerant flowing into the expansion means (5) and flowing out from the heat source side heat exchanger (6) becomes the low pressure side of the first internal heat exchanger (7) and the second internal heat exchanger (8).
  • a parallel operation mode that flows through each flow path and flows into the compressor (1), and the load-side heat exchanger (3)
  • the refrigerant that has flowed out of the refrigerant flows through the high-pressure channel of the first internal heat exchanger (7) and then through the high-pressure channel of the second internal heat exchanger (8).
  • the refrigerant flowing into the expansion means (5) and flowing out of the heat source side heat exchanger (6) flows through the low pressure side flow path of the first internal heat exchanger (7). It is possible to switch between a serial operation mode that flows through the low pressure side flow path of the second internal heat exchanger (8) and flows into the compressor (1) via the low pressure side bypass pipe (14).
  • the present invention makes it possible to obtain a refrigeration cycle system capable of achieving both improved reliability and high-efficiency operation at the time of an abnormal rise in liquid back and discharge temperature by enabling switching between the parallel operation mode and the series operation mode.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle system according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a refrigerant circuit configuration in a “parallel operation mode” according to the first embodiment.
  • 6 is a cycle characteristic diagram showing pressure-enthalpy in the “parallel operation mode” according to Embodiment 1.
  • FIG. 3 is a diagram showing a refrigerant circuit configuration in “series operation mode” according to the first embodiment.
  • FIG. 3 is a cycle characteristic diagram showing pressure-enthalpy in the “series operation mode” according to the first embodiment.
  • FIG. 4 is a diagram showing a control flow when a liquid back is generated in the “series operation mode” according to the first embodiment.
  • FIG. 3 is a diagram showing a refrigerant circuit configuration in a “bypass operation mode” according to Embodiment 1.
  • FIG. 6 is a cycle characteristic diagram showing pressure-enthalpy in the “bypass operation mode” according to the first embodiment.
  • FIG. 3 is a diagram showing a control flow of “bypass operation mode” according to the first embodiment. It is a figure which shows the structure of the refrigerating cycle system which concerns on Embodiment 2.
  • FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle system according to Embodiment 1.
  • the refrigeration cycle system according to Embodiment 1 includes a compressor 1, a four-way valve 2, a load side heat exchanger 3, an internal heat exchanger 4, an expansion valve 5, and a heat source side heat exchanger 6.
  • the compressor 1 sucks the refrigerant and compresses the refrigerant to a high temperature / high pressure state.
  • the four-way valve 2 is connected to the compressor 1, the load side heat exchanger 3, the internal heat exchanger 4, and the heat source side heat exchanger 6.
  • the four-way valve 2 switches the flow path of the refrigerant discharged from the compressor 1 and switches the flow path of the refrigerant flowing into the internal heat exchanger 4.
  • the load-side heat exchanger 3 functions as a condenser (heat radiator) or an evaporator, performs heat exchange between a heat medium (air, water, etc.) and a refrigerant, and condenses or liquefies the refrigerant. It is.
  • the load side heat exchanger 3 is constituted by, for example, a cross fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a large number of fins. For example, air (heat Heat exchange is performed between the medium) and the refrigerant.
  • the expansion valve 5 expands the refrigerant by reducing the pressure.
  • the expansion valve 5 is constituted by an electronic expansion valve whose opening degree can be variably controlled, for example.
  • the expansion valve 5 corresponds to “expansion means” in the present invention.
  • the heat source side heat exchanger 6 functions as an evaporator or a condenser (heat radiator), exchanges heat between a heat medium (such as air or water) and a refrigerant, and evaporates or condenses the refrigerant. is there.
  • the heat source side heat exchanger 6 is configured by, for example, a cross fin type fin-and-tube heat exchanger including heat transfer tubes and a large number of fins. For example, air supplied from a blower (not shown) (heat medium) ) And the refrigerant.
  • the internal heat exchanger 4 includes a first internal heat exchanger 7, a second internal heat exchanger 8, a first low-pressure side three-way valve 9, a second low-pressure side three-way valve 10, a first high-pressure side three-way valve 11, and a second high pressure.
  • a side three-way valve 12, a second high-pressure side bypass pipe 13, a second low-pressure side bypass pipe 14, a first low-pressure side bypass pipe 15, and a first high-pressure side bypass pipe 16 are provided.
  • the first internal heat exchanger 7 has a high-pressure channel and a low-pressure channel, and performs heat exchange between the refrigerant flowing through the high-pressure channel and the refrigerant flowing through the low-pressure channel.
  • the second internal heat exchanger 8 has a high-pressure channel and a low-pressure channel, and performs heat exchange between the refrigerant flowing through the high-pressure channel and the refrigerant flowing through the low-pressure channel.
  • the first high-pressure side three-way valve 11 is located between one side (upstream side) of the high-pressure side flow path of the first internal heat exchanger 7 and the second internal heat exchanger 8 and the outlet side of the load-side heat exchanger 3. Is provided.
  • the first high pressure side three-way valve 11 connects the high pressure side flow path of the first internal heat exchanger 7, the high pressure side flow path of the second internal heat exchanger 8, and the outlet side of the load side heat exchanger 3.
  • the refrigerant flow path is switched.
  • the first high-pressure side bypass pipe 16 branches from a pipe connecting the high-pressure side flow path of the first internal heat exchanger 7 and the high-pressure side flow path of the second internal heat exchanger 8, and the second high-pressure side three-way valve 12. Connect to.
  • the second high-pressure side three-way valve 12 is provided between the other side (downstream side) of the high-pressure side flow path of the first internal heat exchanger 7 and the second internal heat exchanger 8 and the expansion valve 5.
  • the second high-pressure side three-way valve 12 connects the first high-pressure side bypass pipe 16, the second high-pressure side bypass pipe 13, and the expansion valve 5, and switches the refrigerant flow path.
  • the second high-pressure side bypass pipe 13 branches from a pipe connecting the first high-pressure side three-way valve 11 and the high-pressure side flow path of the second internal heat exchanger 8, and the high-pressure side flow path of the second internal heat exchanger 8. And the second high-pressure side three-way valve 12 are connected.
  • the first high-pressure side three-way valve 11 corresponds to the “first high-pressure side flow path switching device” in the present invention.
  • the second high-pressure side three-way valve 12 corresponds to the “second high-pressure side flow path switching device” in the present invention.
  • the second high-pressure side bypass pipe 13 corresponds to the “high-pressure side bypass pipe” in the present invention.
  • the first low pressure side three-way valve 9 is located between one side (upstream side) of the low pressure side flow path of the first internal heat exchanger 7 and the second internal heat exchanger 8 and the outlet side of the heat source side heat exchanger 6. Is provided.
  • the first low pressure side three-way valve 9 connects the low pressure side flow path of the first internal heat exchanger 7, the low pressure side flow path of the second internal heat exchanger 8, and the outlet side of the load side heat exchanger 3.
  • the refrigerant flow path is switched.
  • the first low pressure side bypass pipe 15 branches from a pipe connecting the low pressure side flow path of the first internal heat exchanger 7 and the low pressure side flow path of the second internal heat exchanger 8, and the second low pressure side three-way valve 10. Connect to.
  • the second low-pressure side three-way valve 10 is provided between the compressor 1 and the other side (downstream side) of the low-pressure side flow path of the first internal heat exchanger 7 and the second internal heat exchanger 8.
  • the second low-pressure side three-way valve 10 connects the first low-pressure side bypass pipe 15, the second low-pressure side bypass pipe 14, and the compressor 1, and switches the refrigerant flow path.
  • the second low pressure side bypass pipe 14 branches from a pipe connecting the first low pressure side three-way valve 9 and the low pressure side flow path of the second internal heat exchanger 8, and the low pressure side flow path of the second internal heat exchanger 8. And the second low-pressure side three-way valve 10 are connected.
  • the first low-pressure side three-way valve 9 corresponds to the “first low-pressure side flow path switching device” in the present invention.
  • the second low-pressure side three-way valve 10 corresponds to the “second low-pressure side flow path switching device” in the present invention.
  • the second low pressure side bypass pipe 14 corresponds to the “low pressure side bypass pipe” in the present invention.
  • the first high-pressure side three-way valve 11, the second high-pressure side three-way valve 12, the first low-pressure side three-way valve 9, and the second low-pressure side three-way valve 10 are not limited to three-way valves, and can switch the flow path. That's fine.
  • the flow paths may be switched by combining a plurality of open / close valves and the like that open and close the two-way flow path.
  • a control device (not shown) is configured by a microcomputer or the like, and controls the drive frequency of the compressor 1, switching of the four-way valve 2, opening of the expansion valve 5, and the like.
  • the control device will be described later by switching the refrigerant flow path using the first high-pressure side three-way valve 11, the second high-pressure side three-way valve 12, the first low-pressure side three-way valve 9, and the second low-pressure side three-way valve 10. Execute each operation mode.
  • the refrigeration cycle system in the first embodiment can switch between the parallel operation mode, the series operation mode, and the bypass operation mode.
  • FIG. 2 is a diagram illustrating a refrigerant circuit configuration in the “parallel operation mode” according to the first embodiment.
  • the refrigerant flowing out from the load side heat exchanger 3 flows into both the high pressure side flow path of the first internal heat exchanger 7 and the high pressure side flow path of the second internal heat exchanger 8.
  • the first high-pressure side three-way valve 11 is set.
  • the refrigerant that has passed through the first high-pressure side bypass pipe 16 passes through the high-pressure side passages of the first internal heat exchanger 7 and the second internal heat exchanger 8 and flows into the expansion valve 5, and the second high-pressure side bypass pipe.
  • the second high-pressure side three-way valve 12 is set so that the refrigerant that has passed through 13 does not flow into the expansion valve 5.
  • the refrigerant that has flowed out of the heat source side heat exchanger 6 and passed through the four-way valve 2 passes through the low pressure side flow path of the first internal heat exchanger 7 and the low pressure side flow of the second internal heat exchanger 8.
  • the first low pressure side three-way valve 9 is set so as to flow into both of the paths.
  • the refrigerant that has passed through the first low pressure side bypass pipe 15 passes through the low pressure side flow path of the first internal heat exchanger 7 and the second internal heat exchanger 8 and flows into the compressor 1, and the second low pressure side bypass pipe.
  • the second low pressure side three-way valve 10 is set so that the refrigerant that has passed through 14 does not flow into the compressor 1.
  • the refrigerant flowing out from the load side heat exchanger 3 flows into the expansion valve 5 after flowing through the high-pressure side flow paths of the first internal heat exchanger 7 and the second internal heat exchanger 8, respectively. Then, the refrigerant that has flowed out of the heat source side heat exchanger 6 flows through the low pressure side flow paths of the first internal heat exchanger 7 and the second internal heat exchanger 8 and flows into the compressor 1.
  • FIG. 3 is a cycle characteristic diagram showing pressure-enthalpy in the “parallel operation mode” according to the first embodiment.
  • the refrigerant discharged from the compressor 1 becomes a high-temperature and high-pressure gas refrigerant (point A).
  • the high-temperature and high-pressure gas refrigerant passes through the four-way valve 2 and is condensed by exchanging heat with a heat medium (such as air or water) in the load-side heat exchanger 3 to become a high-pressure liquid refrigerant (point B).
  • a heat medium such as air or water
  • the refrigerant flows in parallel to the first internal heat exchanger 7 and the second internal heat exchanger 8, and the high-pressure liquid refrigerant and the low-pressure gas refrigerant exchange heat, so that high pressure
  • the liquid refrigerant is cooled (point C).
  • the refrigerant of the high pressure liquid is decompressed by the expansion valve 5 and becomes a low pressure two-phase refrigerant (point D).
  • the low-pressure two-phase refrigerant evaporates by exchanging heat with a heat medium (such as air or water) in the heat source side heat exchanger 6 (point E).
  • the refrigerant flows in parallel to the first internal heat exchanger 7 and the second internal heat exchanger 8, and the high-pressure liquid refrigerant and the low-pressure gas refrigerant exchange heat to thereby generate the refrigerant. It is overheated (point F) and returns to the suction of the compressor 1.
  • the air flow rate or the water flow rate may be increased or decreased. The same applies to other operation modes described later.
  • refrigeration oil lubricating oil
  • the concentration of lubricating oil (hereinafter referred to as refrigeration oil) of the compressor 1 is reduced, resulting in insufficient lubrication and seizing the compressor. Arise.
  • the pipe path of the internal heat exchanger 4 is lengthened, the pipe of the internal heat exchanger 4 is thickened, etc. A method of increasing the heat transfer area can be considered.
  • the pressure loss from the evaporator outlet to the compressor suction greatly affects the decrease in COP.
  • the piping path of the internal heat exchanger 4 is lengthened, it is effective when a liquid back is generated, but if no liquid back is generated, the COP is lowered due to an increase in pressure loss. Further, when the pipe diameter of the internal heat exchanger 4 is increased, the refrigerant flow rate decreases, and the refrigeration oil cannot be returned to the compressor 1 along the refrigerant flow, thereby causing seizure.
  • the cross-sectional areas of the first internal heat exchanger 7 and the second internal heat exchanger 8 can be returned to the compressor 1 with the refrigeration oil riding on the refrigerant flow. It is set so that the refrigerant flow rate is about. If it does in this way, heat exchange can be performed, suppressing pressure loss, and operation with high COP is possible, ensuring reliability.
  • FIG. 4 is a diagram illustrating a refrigerant circuit configuration in the “series operation mode” according to the first embodiment.
  • the refrigerant flowing out from the load side heat exchanger 3 flows into the high pressure side flow path of the first internal heat exchanger 7 and does not flow into the high pressure side flow path of the second internal heat exchanger 8.
  • the first high-pressure side three-way valve 11 is set.
  • the refrigerant that has passed through the high-pressure side flow path of the first internal heat exchanger 7 is prevented from flowing into the expansion valve 5 via the first high-pressure side bypass pipe 16, and the refrigerant that has passed through the second high-pressure side bypass pipe 13
  • the second high-pressure side three-way valve 12 is set so as to flow into the expansion valve 5.
  • the refrigerant that has flowed out of the heat source side heat exchanger 6 and passed through the four-way valve 2 flows into the low pressure side flow path of the low pressure side flow path of the first internal heat exchanger 7, and the low pressure of the second internal heat exchanger 8.
  • the first low pressure side three-way valve 9 is set so as not to flow into the side flow path.
  • the refrigerant that has passed through the low pressure side flow path of the first internal heat exchanger 7 is prevented from flowing into the compressor 1 via the first low pressure side bypass pipe 15, and the refrigerant that has passed through the second low pressure side bypass pipe 14 is
  • the second low pressure side three-way valve 10 is set so as to flow into the compressor 1.
  • the refrigerant that has flowed out of the load-side heat exchanger 3 flows through the high-pressure side flow path of the second internal heat exchanger 8 after flowing through the high-pressure side flow path of the first internal heat exchanger 7, and the second high pressure It flows into the expansion valve 5 through the side bypass pipe 13.
  • the refrigerant flowing out of the heat source side heat exchanger 6 flows through the low pressure side flow path of the second internal heat exchanger 8 after flowing through the low pressure side flow path of the first internal heat exchanger 7, and the second low pressure side It flows into the compressor 1 through the bypass pipe 14.
  • FIG. 5 is a cycle characteristic diagram showing pressure-enthalpy in the “series operation mode” according to the first embodiment.
  • the refrigerant discharged from the compressor 1 becomes a high-temperature and high-pressure gas refrigerant (point G).
  • the high-temperature and high-pressure gas refrigerant passes through the four-way valve 2 and is condensed by exchanging heat with a heat medium (such as air or water) in the load-side heat exchanger 3 to become a high-pressure liquid refrigerant (point H).
  • a heat medium such as air or water
  • the refrigerant flows in series in the first internal heat exchanger 7 and the second internal heat exchanger 8, and the high-pressure liquid refrigerant and the low-pressure gas refrigerant exchange heat.
  • the refrigerant of the high-pressure liquid is cooled in two stages of 1 internal heat exchanger 7 and 2nd internal heat exchanger 8 (point I, point J).
  • the high-pressure liquid refrigerant is decompressed by the expansion valve 5 and becomes a low-pressure two-phase refrigerant (point K).
  • the low-pressure two-phase refrigerant evaporates by exchanging heat with a heat medium (such as air or water) in the heat source side heat exchanger 6 (point L).
  • the refrigerant flows in series in the first internal heat exchanger 7 and the second internal heat exchanger 8, and the high-pressure liquid refrigerant and the low-pressure gas refrigerant exchange heat.
  • the internal heat exchanger 7 and the second internal heat exchanger 8 are superheated in two stages (point M and point N), and return to the suction of the compressor 1.
  • the effect in the “series operation mode” will be described.
  • the first internal heat exchanger 7 and the second internal heat exchanger 8 are parallel to the refrigerant flow direction to constitute the internal heat exchanger 4, whereas in the “series operation mode”, The difference is that the first internal heat exchanger 7 and the second internal heat exchanger 8 form an internal heat exchanger 4 in series with respect to the flow direction of the refrigerant.
  • the heat transfer area where the high-pressure refrigerant and the low-pressure refrigerant exchange heat is the same, but the heat transfer coefficient Are larger in series. For this reason, when the liquid back is generated, the heat transfer performance of the internal heat exchanger 4 is high, and the “series operation mode” that can evaporate more liquid refrigerant returning to the suction of the compressor 1 improves the reliability. .
  • Equation (1) there is a relationship represented by Equation (1) among the amount of heat exchange Q, the heat transfer area A of the heat exchanger, the heat transfer coefficient K, and the temperature difference dT between the high-pressure refrigerant and the low-pressure refrigerant.
  • the heat transfer area A is the same when the refrigerant flows in parallel with the first internal heat exchanger 7 and the second internal heat exchanger 8 and when the refrigerant flows in series. Further, the temperature difference dT is considered to be substantially the same. Therefore, the exchange heat quantity Q of the internal heat exchanger 4 is greatly affected by the heat transfer coefficient K.
  • Equation (2) a Ditus-Boelter equation shown in Equation (2) is known as a single-phase turbulent equation.
  • heat transfer coefficient
  • d representative length
  • kinematic viscosity coefficient
  • u refrigerant flow velocity
  • kinematic viscosity coefficient
  • a temperature conductivity
  • thickness of the plate separating the high pressure side and the low pressure side
  • ⁇ ′ thermal conductivity of the plate separating the high pressure side and the low pressure side
  • ⁇ i heat transfer coefficient inside the tube
  • ⁇ o heat transfer coefficient outside the tube.
  • Nu is a dimensionless number that expresses the magnitude of heat transfer
  • Pr is a dimensionless number that expresses the influence of physical properties
  • Re is a dimensionless number that expresses the influence of flow disturbance.
  • the refrigerant flows separately into the first internal heat exchanger 7 and the second internal heat exchanger 8, whereas in the serial operation mode, the refrigerant passes through the first internal heat exchanger 7. , Passing through the second internal heat exchanger 8. For this reason, in the serial operation mode, the refrigerant having a flow rate twice that of the parallel operation mode flows to the first internal heat exchanger 7 and the second internal heat exchanger 8. Therefore, in the serial operation mode, Re increases as the refrigerant flow rate increases, heat transfer is promoted, and a larger amount of exchange heat can be obtained.
  • the “series operation mode” is set, so that the dryness of the suction of the compressor 1 can be increased and the discharge temperature of the compressor 1 rises.
  • the exchanger and the like can be heated efficiently, and hot blown air and water can be quickly supplied to the load side.
  • FIG. 6 is a diagram illustrating a control flow when a liquid back is generated in the “series operation mode” according to the first embodiment.
  • the control device determines whether or not a liquid back has occurred.
  • the determination of the occurrence of liquid back is, for example, the difference between the temperature measured by the temperature sensor and the saturation temperature of the refrigerant calculated from the pressure measured by the pressure sensor by attaching a pressure sensor and a temperature sensor to the discharge part of the compressor 1. When the discharge superheat degree falls below a predetermined value, it is determined that liquid back has occurred.
  • a pressure sensor and a temperature sensor are attached to the suction portion of the compressor 1, and the suction superheat degree that is the difference between the temperature measured by the temperature sensor and the saturation temperature of the refrigerant calculated from the pressure measured by the pressure sensor is predetermined.
  • the suction superheat degree that is the difference between the temperature measured by the temperature sensor and the saturation temperature of the refrigerant calculated from the pressure measured by the pressure sensor is predetermined.
  • FIG. 7 is a diagram illustrating a control flow when the “series operation mode” according to the first embodiment is started and when defrosting is resumed.
  • the control device determines whether to start or not to return to defrosting. For example, the start of activation is determined when the operation of the refrigeration cycle system is started by an operation instruction from a remote controller or the like.
  • the determination of the defrosting return is made by temporarily switching the four-way valve 2 to the heat source side heat exchanger 6 that functions as an evaporator during the heating operation. After the defrosting operation for supplying hot gas, when the four-way valve 2 is switched and the heat source side heat exchanger 6 is made to function again as an evaporator, the defrosting return is determined. In STEP 1, when start-up start or defrost return is not detected, the mode is switched to “parallel operation mode”, and it is continuously determined whether start-up or defrost return has occurred.
  • the mode is switched to “series operation mode” in STEP 2.
  • the control device determines whether or not a predetermined time has elapsed in the “series operation mode”. If the predetermined time has not elapsed, the “series operation mode” is continued. For example, the predetermined time is set to a time when the device is sufficiently warmed.
  • the mode is switched to the “parallel operation mode”, and the process returns to STEP 1 to repeat the above operation.
  • a predetermined time has passed in STEP 3
  • the operation is switched to the “parallel operation mode” in STEP 4, and the operation is repeated by returning to STEP 1.
  • the passage of a predetermined time is used as a determination criterion.
  • the degree of superheat or the refrigerant temperature of the discharge portion of the compressor 1 is equal to or higher than a predetermined value, the operation mode is switched to the parallel operation mode. Also good.
  • FIG. 8 is a diagram illustrating a refrigerant circuit configuration in the “bypass operation mode” according to the first embodiment.
  • the refrigerant flowing out of the load-side heat exchanger 3 is prevented from flowing into the high-pressure side flow path of the first internal heat exchanger 7 and is flown into the second high-pressure side bypass pipe 13.
  • the high-pressure side three-way valve 11 is set.
  • the refrigerant that has passed through the high-pressure side flow path of the second internal heat exchanger 8 is prevented from flowing into the expansion valve 5 via the first high-pressure side bypass pipe 16, and the refrigerant that has passed through the second high-pressure side bypass pipe 13
  • the second high-pressure side three-way valve 12 is set so as to flow into the expansion valve 5.
  • the refrigerant that has flowed out of the heat source side heat exchanger 6 and passed through the four-way valve 2 does not flow into the low pressure side flow path of the low pressure side flow path of the first internal heat exchanger 7, and the second low pressure side bypass pipe 14.
  • the first low-pressure side three-way valve 9 is set so as to flow into the valve.
  • the refrigerant that has passed through the low pressure side flow path of the second internal heat exchanger 8 is prevented from flowing into the compressor 1 via the first low pressure side bypass pipe 15, and the refrigerant that has passed through the second low pressure side bypass pipe 14 is
  • the second low pressure side three-way valve 10 is set so as to flow into the compressor 1.
  • the refrigerant flowing out from the load side heat exchanger 3 flows into the expansion valve 5 through the second high pressure side bypass pipe 13 without passing through the first internal heat exchanger 7 and the second internal heat exchanger 8. To do. Then, the refrigerant flowing out from the heat source side heat exchanger 6 flows into the compressor 1 via the second low pressure side bypass pipe 14 without passing through the first internal heat exchanger 7 and the second internal heat exchanger 8. .
  • FIG. 9 is a cycle characteristic diagram showing pressure-enthalpy in the “bypass operation mode” according to the first embodiment.
  • the refrigerant discharged from the compressor 1 becomes a high-temperature and high-pressure gas refrigerant (point O).
  • the high-temperature and high-pressure gas refrigerant passes through the four-way valve 2 and is condensed by exchanging heat with a heat medium (such as air or water) in the load-side heat exchanger 3 to become a high-pressure liquid refrigerant (point P).
  • a heat medium such as air or water
  • the high-pressure liquid refrigerant that has flowed out of the load-side heat exchanger 3 bypasses the internal heat exchanger 4 and flows into the expansion valve 5 (point P).
  • the refrigerant of the high pressure liquid is decompressed by the expansion valve 5 and becomes a low pressure two-phase refrigerant (point Q).
  • the low-pressure two-phase refrigerant evaporates by exchanging heat with a heat medium (such as air or water) in the heat source side heat exchanger 6 (point R). Then, the refrigerant that has flowed out of the heat source side heat exchanger 6 bypasses the internal heat exchanger 4 (point R) and returns to the suction of the compressor 1.
  • the heat exchange amount of the internal heat exchanger 4 can be made zero, and when the discharge temperature of the compressor 1 is abnormally increased, the suction dryness of the compressor 1 is lowered. Can improve reliability.
  • FIG. 10 is a diagram illustrating a control flow of the “bypass operation mode” according to the first embodiment.
  • the control device determines whether or not the refrigerant temperature (discharge temperature) of the discharge unit of the compressor 1 is equal to or higher than a predetermined value. This discharge temperature may be detected by installing a temperature sensor at the discharge portion of the compressor 1. If it is determined in STEP 1 that the discharge temperature is not equal to or higher than the predetermined value, the mode is switched to the “parallel operation mode” and it is continuously checked whether or not the discharge temperature is equal to or higher than the predetermined value.
  • the operation mode is switched to “bypass operation mode” in STEP 2.
  • the control device determines whether or not the discharge temperature is less than a predetermined value. If the discharge temperature is not less than the predetermined value, the “bypass operation mode” is continued. If it is determined in STEP 3 that the discharge temperature is less than the predetermined value, the operation mode is switched to the “parallel operation mode” in STEP 4 and the above operation is repeated by returning to STEP 1.
  • the refrigeration cycle apparatus when the refrigeration cycle apparatus is operating around the predetermined value of the discharge temperature, which is a criterion for switching to the “bypass operation mode”, the “bypass operation mode” and the “parallel operation mode” are frequently switched. Therefore, the device may become unstable. Therefore, it is preferable to provide a differential such as a grace period before and after the duration or threshold.
  • first internal heat exchanger 7 and the second internal heat exchanger 8 have been described with respect to the case where the refrigerant flowing through the high-pressure channel and the refrigerant flowing through the low-pressure channel are in parallel flow.
  • the refrigerant flowing through the high-pressure channel of the first internal heat exchanger 7 and the second internal heat exchanger 8 and the refrigerant flowing through the low-pressure channel may be counterflows. By using such a counterflow, the amount of exchange heat can be further increased.
  • the heat transfer performance of the internal heat exchanger 4 that is set to the series operation mode when the load fluctuates transiently and a liquid back occurs can be increased.
  • the back state can be eliminated and the reliability can be improved.
  • the parallel operation mode is set, so that the exchange heat amount of the internal heat exchanger 4 is increased or the pressure loss is suppressed depending on the situation. It is possible to achieve both improved reliability and higher efficiency. Further, by setting the bypass operation mode when the discharge temperature of the compressor 1 rises excessively, the exchange heat amount of the internal heat exchanger 4 can be made zero, and the discharge temperature can be quickly lowered.
  • FIG. FIG. 11 is a diagram illustrating a configuration of the refrigeration cycle system according to the second embodiment.
  • the refrigeration cycle system in the second embodiment is connected to the load side heat exchanger 3, the first high pressure side three-way valve 11, the expansion valve 5, and the heat source side heat exchanger 6 in addition to the configuration of the first embodiment.
  • a bridge circuit 17 is provided.
  • the bridge circuit 17 is configured by bridge-connecting check valves 17a to 17d.
  • the four-way valve 2 is switched so that the refrigerant discharged from the compressor 1 flows into the load side heat exchanger 3 and the refrigerant flowing out of the heat source side heat exchanger 6 becomes the first low pressure side three-way valve 9.
  • the load side heat exchanger 3 functions as a condenser
  • the heat source side heat exchanger 6 functions as an evaporator.
  • the refrigerant that has flowed out of the load-side heat exchanger 3 flows through the check valve 17 b of the bridge circuit 17 and reaches the internal heat exchanger 4.
  • the refrigerant that has flowed out of the internal heat exchanger 4 and passed through the expansion valve 5 flows through the check valve 17 d of the bridge circuit 17 and reaches the heat source side heat exchanger 6.
  • the four-way valve 2 is switched so that the refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 6 and the refrigerant flowing out of the load side heat exchanger 3 becomes the first low pressure side three-way. Set to flow into valve 9.
  • the load side heat exchanger 3 functions as an evaporator
  • the heat source side heat exchanger 6 functions as a condenser.
  • the refrigerant that has flowed out of the heat source side heat exchanger 6 flows through the check valve 17 a of the bridge circuit 17 and reaches the internal heat exchanger 4.
  • the refrigerant that has flowed out of the internal heat exchanger 4 and passed through the expansion valve 5 flows through the check valve 17 c of the bridge circuit 17 and reaches the load-side heat exchanger 3.
  • the bridge circuit 17 by providing the bridge circuit 17, it functions as a condenser among the load side heat exchanger 3 and the heat source side heat exchanger 6 in both cases of heating operation and cooling operation.
  • the refrigerant from the heat exchanger that flows into the first high-pressure side three-way valve 11 and the refrigerant that flows out of the expansion valve 5 serves as heat that functions as an evaporator of the load-side heat exchanger 3 and the heat source-side heat exchanger 6. Let it flow into the exchanger. Therefore, since the internal heat exchanger 4 functions in both the cooling operation and the heating operation, the effects of high efficiency operation and improved reliability can be obtained even during the cooling operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 負荷側熱交換器3から流出した冷媒が、第1内部熱交換器7及び第2内部熱交換器8の高圧側流路をそれぞれ流通し、熱源側熱交換器6から流出した冷媒が、第1内部熱交換器7及び第2内部熱交換器8の低圧側流路をそれぞれ流通する並列運転モードと、負荷側熱交換器3から流出した冷媒が、第1内部熱交換器7の高圧側流路を流通したあと第2内部熱交換器8の高圧側流路を流通し、熱源側熱交換器6から流出した冷媒が、第1内部熱交換器7の低圧側流路を流通したあと第2内部熱交換器8の低圧側流路を流通する直列運転モードと、を切り替え可能である。

Description

冷凍サイクルシステム
 この発明は、凝縮器出口から膨張手段までの高圧側の冷媒と、蒸発器出口から圧縮機吸入までの低圧側の冷媒とを熱交換させる内部熱交換器を備えた冷凍サイクルシステムに関する。
 従来の技術においては、凝縮器出口から膨張手段までの高圧側の冷媒と、蒸発器出口から圧縮機吸入までの低圧側の冷媒とを熱交換させる内部熱交換器を備えた冷凍サイクルシステムが提案されている。内部熱交換器で高圧側の冷媒と低圧側の冷媒とが熱交換を行うことにより、蒸発器出口からの液冷媒を蒸発させることができ、圧縮機に過度の液冷媒が戻ること(以下、液バックと称する)を防止し、圧縮機の潤滑油の濃度減少による焼き付きが発生するのを防止する効果がある。また、蒸発器の出入口エンタルピ差を大きくすることで冷媒循環量を減らし、COP(冷房能力や暖房能力を入力で除した値)を向上させる効果がある(例えば、特許文献1参照)。
特開2010-282384号公報
 しかしながら、特許文献1の技術では、内部熱交換器の交換熱量は一定であるので、過渡的に負荷が変動して冷媒循環量が増加して液バックが生じた場合や、除霜運転で圧縮機に液冷媒が溜まった場合などに、内部熱交換器の交換熱量を大きくすることができない。このため、過渡的に負荷が変動した場合の液バックにより、圧縮機の循環用の油濃度が低下し、信頼性が低下するという問題点があった。
 この過渡的な液バックへの対処として、内部熱交換器の配管経路を長くすることや、内部熱交換器の配管を太くするなどして、伝熱面積を大きくする方法が考えられる。しかし、冷凍サイクルシステムにおいて、蒸発器出口から圧縮機吸入にかけての圧力損失は、COPの低下に大きく影響する。内部熱交換器の配管経路を長くすると、液バック発生時には有効ではあるが、液バックが発生していない場合には圧力損失増大により、COPが低下する。また、内部熱交換器の配管径を太くすると、冷媒流速が低下し、冷凍機油が冷媒の流れに乗って圧縮機に戻ることが出来なくなり、焼付きを引き起こしてしまう。
 また、圧縮機の吐出温度が過度に上昇すると、圧縮機を駆動するモーターの磁石が減磁し、圧縮機の性能の低下や喪失といった問題が起こる。このような場合には、圧縮機の吸入乾き度を下げて、吐出温度を抑えることが必要となる。特許文献1の技術のように、内部熱交換器の容量が固定の場合、吐出温度が異常上昇した場合にも内部熱交換器が熱交換するため、圧縮機吸入の乾き度を下げるのが困難である。
 本発明は、上記のような課題を解決するためになされたもので、液バックや吐出温度の異常上昇時の信頼性向上と高効率運転を両立できる冷凍サイクルシステムを提供するものである。
 本発明に係る冷凍サイクルシステムは、圧縮機(1)、負荷側熱交換器(3)、内部熱交換器(4)、膨張手段(5)、及び熱源側熱交換器(6)が配管で接続され、冷媒を循環させる冷媒回路を備え、前記内部熱交換器(4)は、高圧側流路を流れる冷媒と低圧側流路を流れる冷媒とが熱交換を行う第1内部熱交換器(7)と、高圧側流路を流れる冷媒と低圧側流路を流れる冷媒とが熱交換を行う第2内部熱交換器(8)と、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の高圧側流路の一方側と、前記負荷側熱交換器(3)の出口側との間に設けられた第1高圧側流路切替装置(11)と、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の高圧側流路の他方側と、前記膨張手段(5)との間に設けられた第2高圧側流路切替装置(12)と、前記第1高圧側流路切替装置(11)と前記第2内部熱交換器(8)の高圧側流路とを接続する配管から分岐し、前記第2内部熱交換器(8)の高圧側流路と前記第2高圧側流路切替装置(12)とを接続する高圧側バイパス配管(13)と、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の低圧側流路の一方側と、前記熱源側熱交換器(6)の出口側との間に設けられた第1低圧側流路切替装置(9)と、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の低圧側流路の他方側と、前記圧縮機(1)との間に設けられた第2低圧側流路切替装置(10)と、前記第1低圧側流路切替装置(9)と前記第2内部熱交換器(8)の低圧側流路とを接続する配管から分岐し、前記第2内部熱交換器(8)の低圧側流路と前記第2低圧側流路切替装置(10)とを接続する低圧側バイパス配管(14)と、を備え、前記第1高圧側流路切替装置(11)、前記第2高圧側流路切替装置(12)、前記第1低圧側流路切替装置(9)、及び、前記第2低圧側流路切替装置(10)により冷媒の流路を切り替えることにより、前記負荷側熱交換器(3)から流出した冷媒が、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の高圧側流路をそれぞれ流通したあと前記膨張手段(5)に流入し、前記熱源側熱交換器(6)から流出した冷媒が、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の低圧側流路をそれぞれ流通して前記圧縮機(1)に流入する並列運転モードと、前記負荷側熱交換器(3)から流出した冷媒が、前記第1内部熱交換器(7)の高圧側流路を流通したあと前記第2内部熱交換器(8)の高圧側流路を流通し、前記高圧側バイパス配管(13)を介して前記膨張手段(5)に流入し、前記熱源側熱交換器(6)から流出した冷媒が、前記第1内部熱交換器(7)の低圧側流路を流通したあと前記第2内部熱交換器(8)の低圧側流路を流通し、前記低圧側バイパス配管(14)を介して前記圧縮機(1)に流入する直列運転モードと、を切り替え可能であることを特徴とする。
 本発明は、並列運転モードと直列運転モードとを切り替え可能とすることにより、液バックや吐出温度の異常上昇時の信頼性向上と高効率運転を両立できる冷凍サイクルシステムを得ることができる。
実施の形態1に係る冷凍サイクルシステムの構成を示す図である。 実施の形態1に係る「並列運転モード」の冷媒回路構成を示す図である。 実施の形態1に係る「並列運転モード」の圧力―エンタルピで示すサイクル特性図である。 実施の形態1に係る「直列運転モード」の冷媒回路構成を示す図である。 実施の形態1に係る「直列運転モード」の圧力―エンタルピで示すサイクル特性図である。 実施の形態1に係る「直列運転モード」の液バック発生時の制御フローを示す図である。 実施の形態1に係る「直列運転モード」の起動時と除霜復帰時の制御フローを示す図である。 実施の形態1に係る「バイパス運転モード」の冷媒回路構成を示す図である。 実施の形態1に係る「バイパス運転モード」の圧力―エンタルピで示すサイクル特性図である。 実施の形態1に係る「バイパス運転モード」の制御フローを示す図である。 実施の形態2に係る冷凍サイクルシステムの構成を示す図である。
実施の形態1.
 図1は、実施の形態1に係る冷凍サイクルシステムの構成を示す図である。
 図1に示すように、実施の形態1に係る冷凍サイクルシステムは、圧縮機1、四方弁2、負荷側熱交換器3、内部熱交換器4、膨張弁5、及び熱源側熱交換器6が冷媒配管で接続され、冷媒を循環させる冷媒回路を備えている。
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にする。
 四方弁2は、圧縮機1、負荷側熱交換器3、内部熱交換器4、及び熱源側熱交換器6に接続される。四方弁2は、圧縮機1から吐出された冷媒の流路を切り替えるとともに、内部熱交換器4へ流入する冷媒の流路を切り替える。
 負荷側熱交換器3は、凝縮器(放熱器)又は蒸発器として機能し、熱媒体(空気や水など)と冷媒との間で熱交換を行い、冷媒を凝縮液化又は蒸発ガス化するものである。負荷側熱交換器3は、例えば伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器により構成され、例えば図示省略の送風手段から供給される空気(熱媒体)と冷媒との間で熱交換を行う。
 膨張弁5は、冷媒を減圧して膨張させるものである。この膨張弁5は、例えば開度が可変に制御可能である電子式膨張弁により構成される。なお、膨張弁5は、本発明における「膨張手段」に相当する。
 熱源側熱交換器6は、蒸発器や凝縮器(放熱器)として機能し、熱媒体(空気や水など)と冷媒の間で熱交換を行い、冷媒を蒸発ガス化又は凝縮液化するものである。熱源側熱交換器6は、例えば伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器により構成され、例えば図示省略の送風機から供給される空気(熱媒体)と冷媒との間で熱交換を行う。
 内部熱交換器4は、第1内部熱交換器7、第2内部熱交換器8、第1低圧側三方弁9、第2低圧側三方弁10、第1高圧側三方弁11、第2高圧側三方弁12、第2高圧側バイパス配管13、第2低圧側バイパス配管14、第1低圧側バイパス配管15、及び、第1高圧側バイパス配管16を備えている。
 第1内部熱交換器7は、高圧側流路及び低圧側流路を有し、高圧側流路を流れる冷媒と低圧側流路を流れる冷媒との間で熱交換を行う。
 第2内部熱交換器8は、高圧側流路及び低圧側流路を有し、高圧側流路を流れる冷媒と低圧側流路を流れる冷媒との間で熱交換を行う。
 第1高圧側三方弁11は、第1内部熱交換器7及び第2内部熱交換器8の高圧側流路の一方側(上流側)と、負荷側熱交換器3の出口側との間に設けられている。第1高圧側三方弁11は、第1内部熱交換器7の高圧側流路と、第2内部熱交換器8の高圧側流路と、負荷側熱交換器3の出口側とを接続し、冷媒の流路を切り替える。
 第1高圧側バイパス配管16は、第1内部熱交換器7の高圧側流路と第2内部熱交換器8の高圧側流路とを接続する配管から分岐し、第2高圧側三方弁12に接続する。
 第2高圧側三方弁12は、第1内部熱交換器7及び第2内部熱交換器8の高圧側流路の他方側(下流側)と、膨張弁5との間に設けられている。第2高圧側三方弁12は、第1高圧側バイパス配管16と、第2高圧側バイパス配管13と、膨張弁5とを接続し、冷媒の流路を切り替える。
 第2高圧側バイパス配管13は、第1高圧側三方弁11と第2内部熱交換器8の高圧側流路とを接続する配管から分岐し、第2内部熱交換器8の高圧側流路と第2高圧側三方弁12とを接続する。
 なお、第1高圧側三方弁11は、本発明における「第1高圧側流路切替装置」に相当する。また、第2高圧側三方弁12は、本発明における「第2高圧側流路切替装置」に相当する。また、第2高圧側バイパス配管13は、本発明における「高圧側バイパス配管」に相当する。
 第1低圧側三方弁9は、第1内部熱交換器7及び第2内部熱交換器8の低圧側流路の一方側(上流側)と、熱源側熱交換器6の出口側との間に設けられている。第1低圧側三方弁9は、第1内部熱交換器7の低圧側流路と、第2内部熱交換器8の低圧側流路と、負荷側熱交換器3の出口側とを接続し、冷媒の流路を切り替える。
 第1低圧側バイパス配管15は、第1内部熱交換器7の低圧側流路と第2内部熱交換器8の低圧側流路とを接続する配管から分岐し、第2低圧側三方弁10に接続する。
 第2低圧側三方弁10は、第1内部熱交換器7及び第2内部熱交換器8の低圧側流路の他方側(下流側)と、圧縮機1との間に設けられている。第2低圧側三方弁10は、第1低圧側バイパス配管15と、第2低圧側バイパス配管14と、圧縮機1とを接続し、冷媒の流路を切り替える。
 第2低圧側バイパス配管14は、第1低圧側三方弁9と第2内部熱交換器8の低圧側流路とを接続する配管から分岐し、第2内部熱交換器8の低圧側流路と第2低圧側三方弁10とを接続する。
 なお、第1低圧側三方弁9は、本発明における「第1低圧側流路切替装置」に相当する。また、第2低圧側三方弁10は、本発明における「第2低圧側流路切替装置」に相当する。また、第2低圧側バイパス配管14は、本発明における「低圧側バイパス配管」に相当する。
 なお、第1高圧側三方弁11、第2高圧側三方弁12、第1低圧側三方弁9、及び、第2低圧側三方弁10は、三方弁に限らず流路を切り替えられるものであればよい。例えば、開閉弁等の二方流路の開閉を行うものを複数組み合わせることで、流路を切り替えるようにしても良い。
 また、図示省略の制御装置は、マイコン等で構成されており、圧縮機1の駆動周波数、四方弁2の切り替え、膨張弁5の開度等を制御する。また制御装置は、第1高圧側三方弁11、第2高圧側三方弁12、第1低圧側三方弁9、及び、第2低圧側三方弁10により冷媒の流路を切り替えることにより、後述する各運転モードを実行する。
 次に、本実施の形態1に係る冷凍サイクルシステムの運転動作について説明する。
 本実施の形態1における冷凍サイクルシステムは、並列運転モード、直列運転モード、及びバイパス運転モードを切り替え可能である。
 まず、「並列運転モード」について説明する。
 図2は、実施の形態1に係る「並列運転モード」の冷媒回路構成を示す図である。
 並列運転モードでは、負荷側熱交換器3から流出した冷媒が、第1内部熱交換器7の高圧側流路と、第2内部熱交換器8の高圧側流路の双方に流入するように、第1高圧側三方弁11を設定する。
 また、第1内部熱交換器7及び第2内部熱交換器8の高圧側流路を経て、第1高圧側バイパス配管16を通過した冷媒が膨張弁5に流入し、第2高圧側バイパス配管13を通過した冷媒が膨張弁5に流入しないように、第2高圧側三方弁12を設定する。
 また、熱源側熱交換器6から流出し四方弁2を通過した冷媒が、第1内部熱交換器7の低圧側流路の低圧側流路と、第2内部熱交換器8の低圧側流路の双方に流入するように、第1低圧側三方弁9を設定する。
 また、第1内部熱交換器7及び第2内部熱交換器8の低圧側流路を経て、第1低圧側バイパス配管15を通過した冷媒が圧縮機1に流入し、第2低圧側バイパス配管14を通過した冷媒が圧縮機1に流入しないように、第2低圧側三方弁10を設定する。
 これにより、負荷側熱交換器3から流出した冷媒が、第1内部熱交換器7及び第2内部熱交換器8の高圧側流路をそれぞれ流通したあと膨張弁5に流入する。そして、熱源側熱交換器6から流出した冷媒が、第1内部熱交換器7及び第2内部熱交換器8の低圧側流路をそれぞれ流通して圧縮機1に流入する。
 続いて、暖房運転時の冷媒の流れに沿って、各要素の機能と冷媒の状態について、図3を用いて説明する。
 図3は、実施の形態1に係る「並列運転モード」の圧力―エンタルピで示すサイクル特性図である。
 圧縮機1を吐出した冷媒は高温高圧のガス冷媒になる(点A)。高温高圧のガス冷媒は四方弁2を通過し、負荷側熱交換器3で熱媒体(空気や水など)と熱交換することで凝縮し、高圧の液冷媒となる(点B)。そして、内部熱交換器4では、第1内部熱交換器7と第2内部熱交換器8に並列に冷媒が流通し、高圧液の冷媒と低圧ガスの冷媒とが熱交換することで、高圧液の冷媒が冷却される(点C)。高圧液の冷媒は膨張弁5で減圧され低圧二相の冷媒となる(点D)。低圧二相の冷媒は、熱源側熱交換器6で熱媒体(空気や水など)と熱交換することで蒸発する(点E)。そして、内部熱交換器4では、第1内部熱交換器7と第2内部熱交換器8に並列に冷媒が流通し、高圧液の冷媒と低圧ガスの冷媒とが熱交換することで冷媒が過熱され(点F)、圧縮機1の吸入へと戻る。
 なお、負荷側熱交換器3や熱源側熱交換器6の熱交換を促進、調節するために、空気を熱媒体とする場合には送風機、水などの液体を熱媒体とする場合にはポンプなどを用い、空気の風量や水の流量を増減させてもよい。後述する他の運転モードにおいても同様である。
 冷凍サイクルシステムにおいて負荷変動や除霜運転など、過渡的に液バックが生じると、圧縮機1の潤滑用の油(以下、冷凍機油)の濃度が薄まり、潤滑不足となり圧縮機が焼付く問題が生じる。
 この過渡的な液バックへの対処方法としては、特許文献1の技術のように、内部熱交換器4の配管経路を長くすることや、内部熱交換器4の配管を太くするなどして、伝熱面積を大きくする方法が考えられる。しかし、冷凍サイクルシステムにおいて、蒸発器出口から圧縮機吸入にかけての圧力損失は、COPの低下に大きく影響する。内部熱交換器4の配管経路を長くすると、液バック発生時には有効ではあるが、液バックが発生していない場合には圧力損失増大により、COPが低下する。また、内部熱交換器4の配管径を太くすると、冷媒流速が低下し、冷凍機油が冷媒の流れに乗って圧縮機1に戻ることが出来なくなり、焼付きを引き起こしてしまう。
 本実施の形態1における「並列運転モード」では、第1内部熱交換器7と第2内部熱交換器8の断面積を、冷凍機油が冷媒の流れに乗って圧縮機1に戻ることができる程度の冷媒流速となるように設定する。このようにしておけば、圧力損失を抑えつつ、熱交換を行うことができ、信頼性を確保しつつ高いCOPでの運転が可能である。
 このような「並列運転モード」において、負荷変動などで、過渡的に液バックが生じた場合には、極力早く圧縮機1の吸入へ戻る液冷媒の量を減らす必要がある。
 このような場合に、本実施の形態1に係る冷凍サイクルシステムは「直列運転モード」に切り換える。
 次に、「直列運転モード」について説明する。
 図4は、実施の形態1に係る「直列運転モード」の冷媒回路構成を示す図である。
 直列運転モードでは、負荷側熱交換器3から流出した冷媒が、第1内部熱交換器7の高圧側流路に流入し、第2内部熱交換器8の高圧側流路には流入しないように、第1高圧側三方弁11を設定する。
 また、第1内部熱交換器7の高圧側流路を通過した冷媒が第1高圧側バイパス配管16を介して膨張弁5へ流入しないようにし、第2高圧側バイパス配管13を通過した冷媒が膨張弁5に流入するように、第2高圧側三方弁12を設定する。
 また、熱源側熱交換器6から流出し四方弁2を通過した冷媒が、第1内部熱交換器7の低圧側流路の低圧側流路に流入し、第2内部熱交換器8の低圧側流路には流入しないように、第1低圧側三方弁9を設定する。
 また、第1内部熱交換器7の低圧側流路を通過した冷媒が第1低圧側バイパス配管15を介して圧縮機1へ流入しないようにし、第2低圧側バイパス配管14を通過した冷媒が圧縮機1に流入するように、第2低圧側三方弁10を設定する。
 これにより、負荷側熱交換器3から流出した冷媒が、第1内部熱交換器7の高圧側流路を流通したあと第2内部熱交換器8の高圧側流路を流通し、第2高圧側バイパス配管13を介して膨張弁5に流入する。そして、熱源側熱交換器6から流出した冷媒が、第1内部熱交換器7の低圧側流路を流通したあと第2内部熱交換器8の低圧側流路を流通し、第2低圧側バイパス配管14を介して圧縮機1に流入する。
 続いて、暖房運転時の冷媒の流れに沿って、各要素の機能と冷媒の状態について、図5を用いて説明する。
 図5は、実施の形態1に係る「直列運転モード」の圧力―エンタルピで示すサイクル特性図である。
 圧縮機1を吐出した冷媒は高温高圧のガス冷媒になる(点G)。高温高圧のガス冷媒は四方弁2を通過し、負荷側熱交換器3で熱媒体(空気や水など)と熱交換することで凝縮し、高圧の液冷媒となる(点H)。そして、内部熱交換器4では、第1内部熱交換器7と第2内部熱交換器8に直列に冷媒が流通し、高圧液の冷媒と低圧ガスの冷媒とが熱交換することで、第1内部熱交換器7と第2内部熱交換器8の二段階で高圧液の冷媒が冷却される(点I、点J)。高圧液の冷媒は膨張弁5で減圧され低圧二相の冷媒となる(点K)。低圧二相の冷媒は、熱源側熱交換器6で熱媒体(空気や水など)と熱交換することで蒸発する(点L)。そして、内部熱交換器4では、第1内部熱交換器7と第2内部熱交換器8に直列に冷媒が流通し、高圧液の冷媒と低圧ガスの冷媒とが熱交換することで、第1内部熱交換器7と第2内部熱交換器8の二段階で過熱され(点M、点N)、圧縮機1の吸入へと戻る。
 ここで、「直列運転モード」における効果について説明する。
 「並列運転モード」では、第1内部熱交換器7と第2内部熱交換器8が冷媒の流れ方向に対し並列となり内部熱交換器4を構成するのに対し、「直列運転モード」では、第1内部熱交換器7と第2内部熱交換器8が冷媒の流れ方向に対し直列となり内部熱交換器4を構成する点が異なる。第1内部熱交換器7と第2内部熱交換器8が並列に並ぶ場合と、直列に並ぶ場合では、高圧冷媒と低圧冷媒が熱交換を行う伝熱面積は同じであるが、熱伝達率は直列に並ぶほうが大きい。このため、液バック発生時には、内部熱交換器4の伝熱性能が高く、圧縮機1の吸入に戻る液冷媒をより多く蒸発させることが出来る「直列運転モード」の方が信頼性が向上する。
 一般に、交換熱量Q、熱交換器の伝熱面積A、熱伝達率K、高圧冷媒と低圧冷媒の温度差dTの間には、式(1)で表される関係がある。
Figure JPOXMLDOC01-appb-M000001
 第1内部熱交換器7と第2内部熱交換器8とに並列に冷媒が流れる場合と、直列に冷媒が流れる場合では、伝熱面積Aは同じである。また、温度差dTもほぼ同等と考えられる。そのため、内部熱交換器4の交換熱量Qは、熱伝達率Kの与える影響が大きい。
 熱伝達率Kは単相乱流の式として、式(2)に示す、Dittus-Boelterの式が知られている。
Figure JPOXMLDOC01-appb-M000002
 ここで、α:熱伝達率、d:代表長さ、λ:動粘性係数、u:冷媒流速、ν:動粘性係数、a:温度伝導率、δ:高圧側と低圧側を区切る板の厚み、λ’:高圧側と低圧側を区切る板の熱伝導率、α:管内側の熱伝達率、α:管外側の熱伝達率、である。
 このDittus-Boelterの式において、Nuは熱伝達の大小を表現する無次元数、Prは物性の影響を表現する無次元数、Reは流れの乱れの影響を表現する無次元数である。
 第1内部熱交換器7と第2内部熱交換器8に並列に冷媒が流れる場合と直列に冷媒が流れる場合で、物性値が同じとすると、Prは第1内部熱交換器7と第2内部熱交換器8が並列の場合と直列の場合とで同じであるため、ReがNuに最も影響を与える。
 並列運転モードの場合、冷媒は第1内部熱交換器7と第2内部熱交換器8にそれぞれ分かれて流れるのに対し、直列運転モードの場合は、第1内部熱交換器7を通過した後、第2内部熱交換器8を通過する。このため、直列運転モードの場合、並列運転モードの場合と比較して、2倍の流量の冷媒が第1内部熱交換器7と第2内部熱交換器8に流れることになる。よって、直列運転モードの場合、冷媒流速の増大によりReが増加し、熱伝達が促進され、より大きな交換熱量を得ることができる。
 つまり、液バック発生時には、直列運転モードにより、第1内部熱交換器7と第2内部熱交換器8に直列に冷媒が流れるようにすれば、内部熱交換器4での交換熱量が大きくなり、より多くの液冷媒をガス化して圧縮機1の吸入へ戻せるため、冷凍機油の液冷媒による希釈を軽減でき、信頼性が向上する。
 さらに、直列運転モードにおける効果として、起動開始時や、除霜運転から通常運転に移行する除霜復帰での暖房能力の立ち上がり速度の向上が考えられる。起動開始時や除霜復帰時には、冷凍サイクルシステムを構成する配管や熱交換器などが冷えた状態にある。このため、起動時や除霜復帰時には、一端、冷えた配管や熱交換器を加熱する必要がある。そのため、負荷側に高温の空気や水を供給するまでに時間を要し、使用者の不快感に繋がる。
 起動開始時や除霜復帰時には、「直列運転モード」とすることで、圧縮機1の吸入の乾き度を大きくすることができ、圧縮機1の吐出温度が上昇するため、冷えた配管や熱交換器などを効率よく加熱することができ、負荷側に高温の吹き出し空気や水を素早く供給できる。
 ここで、並列運転モードにおいて、圧縮機1への液バックの発生を検知した場合、直列運転モードに切り替える制御動作について説明する。
 図6は、実施の形態1に係る「直列運転モード」の液バック発生時の制御フローを示す図である。以下、図6に基づき説明する。
 STEP1で、制御装置は液バックの発生の有無を判断する。液バック発生の判断は、例えば、圧縮機1の吐出部に圧力センサーと温度センサーを取り付け、温度センサーで測定した温度と、圧力センサーで測定した圧力から演算した冷媒の飽和温度との差である吐出過熱度が、所定値を下回った場合に、液バック発生と判断する。また例えば、圧縮機1の吸入部に圧力センサーと温度センサーを取り付け、温度センサーで測定した温度と、圧力センサーで測定した圧力から演算した冷媒の飽和温度との差である吸入過熱度が、所定値を下回った場合に、液バック発生と判断する。
 STEP1で、液バックが発生していないと判断すると、「並列運転モード」に切り替え、継続して液バック発生の有無を確認する。
 STEP1で液バックが発生したと判断した場合には、STEP2で「直列運転モード」に切り換える。
 STEP3で、制御装置は、「直列運転モード」へ切り換え後に、液バックが継続して発生しているかを判断する。液バックが継続して発生している場合には、「直列運転モード」を継続する。
 STEP3で液バックが解消したと判断した場合には、STEP4で「並列運転モード」に切り換え、STEP1に戻り上記動作を繰り返す。
 なお、液バック発生の有無を判断後、即座に「並列運転モード」と「直列運転モード」の切り替えを行うと、液バック発生の判断値の前後で冷凍サイクルシステムが動作している場合には、切り替えが頻繁に起こるため、機器が不安定になる可能性がある。そこで、液バック発生の継続時間や閾値の前後に猶予範囲を持たせるなどして、ディファレンシャルを設けると良い。
 次に、冷凍サイクルシステムの運転を開始した場合(起動開始時)、又は、除霜運転を終了した場合(除霜復帰時)、直列運転モードへの切り替え制御動作について説明する。
 図7は、実施の形態1に係る「直列運転モード」の起動時と除霜復帰時の制御フローを示す図である。
 STEP1で、制御装置は、起動開始又は除霜復帰の有無を判断する。起動開始の判断は、例えばリモコン等からの操作指示により冷凍サイクルシステムの運転を開始させた場合に、起動開始を判断する。除霜復帰の判断は、例えばホットガス方式による除霜運転の場合、暖房運転時に蒸発器として機能する熱源側熱交換器6に対し、一時的に四方弁2を切り替えることで圧縮機1からのホットガスを供給する除霜運転のあと、四方弁2を切り替えて再び熱源側熱交換器6を蒸発器として機能させた場合に、除霜復帰を判断する。
 STEP1で、起動開始又は除霜復帰を検知しない場合には、「並列運転モード」に切り替え、継続して起動開始又は除霜復帰の有無を判断する。
 STEP1で、起動開始又は除霜復帰を検知すると、STEP2で「直列運転モード」に切り換える。
 STEP3で、制御装置は、「直列運転モード」の運転時間が所定時間経過したか否かを判断する。所定時間経過していない場合には、「直列運転モード」を継続する。この所定時間は、例えば、機器が十分に温まる時間を設定する。
 STEP3で液バックが解消したと判断した場合には、STEP4で「並列運転モード」に切り換え、STEP1に戻り上記動作を繰り返す。
 STEP3で所定時間経過した場合には、STEP4で「並列運転モード」に切り換え、STEP1に戻り上記動作を繰り返す。
 なお、STEP3では、所定時間経過を判断基準にしているが、他の判断基準として、圧縮機1の吐出部の過熱度若しくは冷媒温度が所定値以上である場合に並列運転モードに切り替えるようにしてもよい。
 次に、「バイパス運転モード」について説明する。
 圧縮機1の吐出温度が過度に上昇すると、圧縮機1を駆動するモーターの磁石が減磁し、圧縮機1の性能の低下や喪失といった問題が起こる。このような場合には、圧縮機1の吸入乾き度を下げて、吐出温度を抑えることが必要となる。特許文献1の技術のように、内部熱交換器の容量が固定の場合、吐出温度が異常上昇した場合にも内部熱交換器が熱交換するため、圧縮機吸入の乾き度を下げるのが困難である。
 本実施の形態1に係る冷凍サイクルシステムの「バイパス運転モード」では、内部熱交換器4の交換熱量をゼロにすることができ、吐出温度の異常上昇に対して早急に対応できるため、信頼性が向上する。
 図8は、実施の形態1に係る「バイパス運転モード」の冷媒回路構成を示す図である。
 バイパス運転モードでは、負荷側熱交換器3から流出した冷媒が、第1内部熱交換器7の高圧側流路に流入しないようにし、第2高圧側バイパス配管13に流入するように、第1高圧側三方弁11を設定する。
 また、第2内部熱交換器8の高圧側流路を通過した冷媒が第1高圧側バイパス配管16を介して膨張弁5へ流入しないようにし、第2高圧側バイパス配管13を通過した冷媒が膨張弁5に流入するように、第2高圧側三方弁12を設定する。
 また、熱源側熱交換器6から流出し四方弁2を通過した冷媒が、第1内部熱交換器7の低圧側流路の低圧側流路に流入しないようにし、第2低圧側バイパス配管14に流入するように、第1低圧側三方弁9を設定する。
 また、第2内部熱交換器8の低圧側流路を通過した冷媒が第1低圧側バイパス配管15を介して圧縮機1へ流入しないようにし、第2低圧側バイパス配管14を通過した冷媒が圧縮機1に流入するように、第2低圧側三方弁10を設定する。
 これにより、負荷側熱交換器3から流出した冷媒が、第1内部熱交換器7及び第2内部熱交換器8を経ずに、第2高圧側バイパス配管13を介して膨張弁5に流入する。そして、熱源側熱交換器6から流出した冷媒が、第1内部熱交換器7及び第2内部熱交換器8を経ずに、第2低圧側バイパス配管14を介して圧縮機1に流入する。
 続いて、暖房運転時の冷媒の流れに沿って、各要素の機能と冷媒の状態について、図9を用いて説明する。
 図9は、実施の形態1に係る「バイパス運転モード」の圧力―エンタルピで示すサイクル特性図である。
 圧縮機1を吐出した冷媒は高温高圧のガス冷媒になる(点O)。高温高圧のガス冷媒は四方弁2を通過し、負荷側熱交換器3で熱媒体(空気や水など)と熱交換することで凝縮し、高圧の液冷媒となる(点P)。負荷側熱交換器3を流出した高圧の液冷媒は、内部熱交換器4をバイパスして膨張弁5に流入する(点P)。高圧液の冷媒は膨張弁5で減圧され低圧二相の冷媒となる(点Q)。低圧二相の冷媒は、熱源側熱交換器6で熱媒体(空気や水など)と熱交換することで蒸発する(点R)。そして、熱源側熱交換器6を流出した冷媒は内部熱交換器4をバイパスし(点R)、圧縮機1の吸入へと戻る。
 上記のように冷媒回路を構成することで、内部熱交換器4の交換熱量をゼロにすることができ、圧縮機1の吐出温度が異常上昇した場合には圧縮機1の吸入乾き度を下げることができ、信頼性が向上する。
 次に、並列運転モードとバイパス運転モードとを切り替える制御動作について説明する。
 図10は、実施の形態1に係る「バイパス運転モード」の制御フローを示す図である。以下、図10に基づき説明する。
 STEP1で、制御装置は、圧縮機1の吐出部の冷媒温度(吐出温度)が、所定値以上であるか否かを判断する。この吐出温度は、圧縮機1の吐出部に温度センサーを設置して検知するとよい。
 STEP1で、吐出温度が所定値以上でないと判断すると、「並列運転モード」に切り替え、継続して吐出温度が所定値以上であるか否か確認する。
 STEP1で吐出温度が所定値以上であると判断した場合には、STEP2で「バイパス運転モード」に切り換える。
 STEP3で、制御装置は、「バイパス運転モード」に切り換えた後、吐出温度が所定値未満であるか否かを判断する。吐出温度が所定値未満でない場合には、「バイパス運転モード」を継続する。
 STEP3で吐出温度が所定値未満であると判断した場合には、STEP4で「並列運転モード」に切り換え、STEP1に戻り上記動作を繰り返す。
 なお、「バイパス運転モード」への切り替えの判断基準である、吐出温度の所定値前後で冷凍サイクル装置が動作している場合には、頻繁に「バイパス運転モード」と「並列運転モード」が切り替わるため、機器が不安定になる可能性がある。そこで、継続時間や閾値の前後に猶予範囲を持たせるなど、ディファレンシャルを持たせるとよい。
 なお、上記の説明では、第1内部熱交換器7及び第2内部熱交換器8は、高圧側流路を流れる冷媒と低圧側流路を流れる冷媒とが並行流である場合を説明したが、第1内部熱交換器7及び第2内部熱交換器8の高圧側流路を流れる冷媒と低圧側流路を流れる冷媒とが対向流としても良い。このような対向流とすることで、さらに交換熱量を増やすことができる。
 以上のように本実施の形態1においては、過渡的に負荷が変動して液バックが発生した場合に直列運転モードとする、内部熱交換器4の伝熱性能を増加させることができ、液バック状態を解消することができ、信頼性を向上させることができる。
 また、液バックが発生していない場合や吐出温度が異常でない場合には並列運転モードとすることで、状況に応じて内部熱交換器4の交換熱量を増加させたり、圧力損失を抑えたりすることができ、信頼性向上と高効率化を両立できる。
 さらに、圧縮機1の吐出温度が過度に上昇した場合にバイパス運転モードとすることで、内部熱交換器4の交換熱量をゼロにすることができ、吐出温度をすばやく下げることができる。
実施の形態2.
 図11は、実施の形態2に係る冷凍サイクルシステムの構成を示す図である。
 本実施の形態2における冷凍サイクルシステムは、上記実施の形態1の構成に加え、負荷側熱交換器3、第1高圧側三方弁11、膨張弁5、及び熱源側熱交換器6に接続したブリッジ回路17を備えている。ブリッジ回路17は、逆止弁17a~17dがブリッジ接続されて構成される。
 暖房運転時においては、四方弁2を切り替えて、圧縮機1から吐出された冷媒が負荷側熱交換器3に流入し、熱源側熱交換器6を流出した冷媒が第1低圧側三方弁9へ流入するように設定する。これにより、負荷側熱交換器3を凝縮器として機能させ、熱源側熱交換器6を蒸発器として機能させる。
 この暖房運転時において、負荷側熱交換器3を流出した冷媒は、ブリッジ回路17の逆止弁17bを流通して、内部熱交換器4へ至る。内部熱交換器4を流出し膨張弁5を通過した冷媒は、ブリッジ回路17の逆止弁17dを流通して熱源側熱交換器6へ至る。
 また、冷房運転時においては、四方弁2を切り替えて、圧縮機1から吐出された冷媒が熱源側熱交換器6に流入し、負荷側熱交換器3を流出した冷媒が第1低圧側三方弁9へ流入するように設定する。これにより、負荷側熱交換器3を蒸発器として機能させ、熱源側熱交換器6を凝縮器として機能させる。
 この冷房運転時において、熱源側熱交換器6を流出した冷媒は、ブリッジ回路17の逆止弁17aを流通して、内部熱交換器4へ至る。内部熱交換器4を流出し膨張弁5を通過した冷媒は、ブリッジ回路17の逆止弁17cを流通して負荷側熱交換器3へ至る。
 このように本実施の形態2においては、ブリッジ回路17を備えることで、暖房運転および冷房運転の何れの場合においても、負荷側熱交換器3及び熱源側熱交換器6のうち凝縮器として機能する熱交換器からの冷媒を、第1高圧側三方弁11に流入させ、膨張弁5から流出した冷媒を、負荷側熱交換器3及び熱源側熱交換器6のうち蒸発器として機能する熱交換器に流入させる。よって、冷房運転と暖房運転の双方で内部熱交換器4が機能するため、冷房運転時にも高効率運転と信頼性向上の効果が得られる。
 1 圧縮機、2 四方弁、3 負荷側熱交換器、4 内部熱交換器、5 膨張弁、6 熱源側熱交換器、7 第1内部熱交換器、8 第2内部熱交換器、9 第1低圧側三方弁、10 第2低圧側三方弁、11 第1高圧側三方弁、12 第2高圧側三方弁、13 第2高圧側バイパス配管、14 第2低圧側バイパス配管、15 第1低圧側バイパス配管、16 第1高圧側バイパス配管、17 ブリッジ回路、17a 逆止弁、17b 逆止弁、17c 逆止弁、17d 逆止弁。

Claims (7)

  1.  圧縮機(1)、負荷側熱交換器(3)、内部熱交換器(4)、膨張手段(5)、及び熱源側熱交換器(6)が配管で接続され、冷媒を循環させる冷媒回路を備え、
     前記内部熱交換器(4)は、
     高圧側流路を流れる冷媒と低圧側流路を流れる冷媒とが熱交換を行う第1内部熱交換器(7)と、
     高圧側流路を流れる冷媒と低圧側流路を流れる冷媒とが熱交換を行う第2内部熱交換器(8)と、
     前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の高圧側流路の一方側と、前記負荷側熱交換器(3)の出口側との間に設けられた第1高圧側流路切替装置(11)と、
     前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の高圧側流路の他方側と、前記膨張手段(5)との間に設けられた第2高圧側流路切替装置(12)と、
     前記第1高圧側流路切替装置(11)と前記第2内部熱交換器(8)の高圧側流路とを接続する配管から分岐し、前記第2内部熱交換器(8)の高圧側流路と前記第2高圧側流路切替装置(12)とを接続する高圧側バイパス配管(13)と、
     前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の低圧側流路の一方側と、前記熱源側熱交換器(6)の出口側との間に設けられた第1低圧側流路切替装置(9)と、
     前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の低圧側流路の他方側と、前記圧縮機(1)との間に設けられた第2低圧側流路切替装置(10)と、
     前記第1低圧側流路切替装置(9)と前記第2内部熱交換器(8)の低圧側流路とを接続する配管から分岐し、前記第2内部熱交換器(8)の低圧側流路と前記第2低圧側流路切替装置(10)とを接続する低圧側バイパス配管(14)と、
    を備え、
     前記第1高圧側流路切替装置(11)、前記第2高圧側流路切替装置(12)、前記第1低圧側流路切替装置(9)、及び、前記第2低圧側流路切替装置(10)により冷媒の流路を切り替えることにより、
     前記負荷側熱交換器(3)から流出した冷媒が、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の高圧側流路をそれぞれ流通したあと前記膨張手段(5)に流入し、前記熱源側熱交換器(6)から流出した冷媒が、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)の低圧側流路をそれぞれ流通して前記圧縮機(1)に流入する並列運転モードと、
     前記負荷側熱交換器(3)から流出した冷媒が、前記第1内部熱交換器(7)の高圧側流路を流通したあと前記第2内部熱交換器(8)の高圧側流路を流通し、前記高圧側バイパス配管(13)を介して前記膨張手段(5)に流入し、前記熱源側熱交換器(6)から流出した冷媒が、前記第1内部熱交換器(7)の低圧側流路を流通したあと前記第2内部熱交換器(8)の低圧側流路を流通し、前記低圧側バイパス配管(14)を介して前記圧縮機(1)に流入する直列運転モードと、を切り替え可能である
    ことを特徴とする冷凍サイクルシステム。
  2.  前記並列運転モードにおいて、前記圧縮機(1)への液バックの発生を検知した場合、
     前記直列運転モードに切り替える
    ことを特徴とする請求項1記載の冷凍サイクルシステム。
  3.  当該冷凍サイクルシステムの運転を開始した場合、又は、除霜運転を終了した場合、前記直列運転モードに切り替え、
     前記直列運転モードの運転時間が所定時間経過した場合、又は、前記圧縮機(1)の吐出部の過熱度若しくは冷媒温度が所定値以上の場合、前記並列運転モードに切り替える
    ことを特徴とする請求項1または2記載の冷凍サイクルシステム。
  4.  前記第1高圧側流路切替装置(11)、前記第2高圧側流路切替装置(12)、前記第1低圧側流路切替装置(9)、及び、前記第2低圧側流路切替装置(10)により冷媒の流路を切り替えることにより、
     前記負荷側熱交換器(3)から流出した冷媒が、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)を経ずに、前記高圧側バイパス配管(13)を介して前記膨張手段(5)に流入し、前記熱源側熱交換器(6)から流出した冷媒が、前記第1内部熱交換器(7)及び前記第2内部熱交換器(8)を経ずに、前記低圧側バイパス配管(14)を介して前記圧縮機(1)に流入するバイパス運転モードに切り替え可能である
    ことを特徴とする請求項1~3の何れか一項に記載の冷凍サイクルシステム。
  5.  前記圧縮機(1)の吐出部の冷媒温度が所定値以上の場合、前記バイパス運転モードに切り替え、
     前記圧縮機(1)の吐出部の冷媒温度が所定値未満の場合、前記並列運転モードに切り替える
    ことを特徴とする請求項4記載の冷凍サイクルシステム。
  6.  前記第1内部熱交換器(7)の高圧側流路を流れる冷媒と低圧側流路を流れる冷媒とが対向流であり、
     前記第2内部熱交換器(8)の高圧側流路を流れる冷媒と低圧側流路を流れる冷媒とが対向流である
    ことを特徴とする請求項1~5の何れか一項に記載の冷凍サイクルシステム。
  7.  前記圧縮機(1)から吐出された冷媒の流路を、前記負荷側熱交換器(3)から前記熱源側熱交換器(6)に切り替えるとともに、前記第1低圧側流路切替装置(9)へ流入する冷媒の流路を、前記熱源側熱交換器(6)から前記負荷側熱交換器(3)に切り替える四方弁(2)と、
     前記負荷側熱交換器(3)、前記第1高圧側流路切替装置(11)、前記膨張手段(5)、及び前記熱源側熱交換器(6)に接続したブリッジ回路(17)と、
    を備え、
     前記ブリッジ回路(17)は、
     前記負荷側熱交換器(3)及び前記熱源側熱交換器(6)のうち凝縮器として機能する熱交換器からの冷媒を、前記第1高圧側流路切替装置(11)に流入させ、
     前記膨張手段(5)から流出した冷媒を、前記負荷側熱交換器(3)及び前記熱源側熱交換器(6)のうち蒸発器として機能する熱交換器に流入させる
    ことを特徴とする請求項1~6の何れか一項に記載の冷凍サイクルシステム。
PCT/JP2012/002776 2012-04-23 2012-04-23 冷凍サイクルシステム WO2013160929A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2012/002776 WO2013160929A1 (ja) 2012-04-23 2012-04-23 冷凍サイクルシステム
PCT/JP2013/061680 WO2013161725A1 (ja) 2012-04-23 2013-04-19 冷凍サイクルシステム
JP2014512537A JP5901750B2 (ja) 2012-04-23 2013-04-19 冷凍サイクルシステム
DE112013002162.5T DE112013002162B4 (de) 2012-04-23 2013-04-19 Kältekreislaufsystem
US14/390,869 US9822994B2 (en) 2012-04-23 2013-04-19 Refrigeration cycle system with internal heat exchanger
CN201380021353.3A CN104246393B (zh) 2012-04-23 2013-04-19 冷冻环路系统
CN201320209139.8U CN203421870U (zh) 2012-04-23 2013-04-23 制冷循环系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002776 WO2013160929A1 (ja) 2012-04-23 2012-04-23 冷凍サイクルシステム

Publications (1)

Publication Number Publication Date
WO2013160929A1 true WO2013160929A1 (ja) 2013-10-31

Family

ID=49482317

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/002776 WO2013160929A1 (ja) 2012-04-23 2012-04-23 冷凍サイクルシステム
PCT/JP2013/061680 WO2013161725A1 (ja) 2012-04-23 2013-04-19 冷凍サイクルシステム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061680 WO2013161725A1 (ja) 2012-04-23 2013-04-19 冷凍サイクルシステム

Country Status (5)

Country Link
US (1) US9822994B2 (ja)
JP (1) JP5901750B2 (ja)
CN (2) CN104246393B (ja)
DE (1) DE112013002162B4 (ja)
WO (2) WO2013160929A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038037A (ja) * 2018-09-05 2020-03-12 富士電機株式会社 ヒートポンプ装置
JP2022041146A (ja) * 2020-08-31 2022-03-11 株式会社富士通ゼネラル 冷凍サイクル装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162475B (zh) * 2013-03-22 2015-04-15 青岛海信日立空调系统有限公司 一种空调散热循环系统
JP6138364B2 (ja) * 2014-05-30 2017-05-31 三菱電機株式会社 空気調和機
DE102014113526A1 (de) * 2014-09-19 2016-03-24 Halla Visteon Climate Control Corporation Klimatisierungssystem für ein Kraftfahrzeug
US10345022B2 (en) * 2015-08-14 2019-07-09 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2017029534A1 (en) * 2015-08-19 2017-02-23 Carrier Corporation Reversible liquid suction gas heat exchanger
CN105841255A (zh) * 2016-03-23 2016-08-10 海信(山东)空调有限公司 换热器、室外机、换热控制器和换热控制方法
US20190145667A1 (en) * 2016-03-31 2019-05-16 Nec Corporation Heat exchange device, refrigeration system, and heat exchange method
US10634391B2 (en) * 2016-10-13 2020-04-28 Johnson Controls Technology Company Supplemental heating and cooling system
JP6776969B2 (ja) * 2017-03-23 2020-10-28 トヨタ紡織株式会社 燃料電池スタックのエンドプレート
WO2019088819A1 (en) * 2017-11-02 2019-05-09 Mohd Yusof Azrina A low energy consumption air-conditioning system
DE112019006658T5 (de) * 2019-01-16 2021-12-09 Mitsubishi Electric Corporation Klimaanlage
US20220136741A1 (en) * 2019-04-05 2022-05-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
PL3756916T3 (pl) * 2019-06-24 2024-02-12 Konvekta Aktiengesellschaft Układ ogrzewania i/lub klimatyzacji z wewnętrznymi wymiennikami ciepła
CN111609665B (zh) * 2020-05-15 2021-12-07 珠海格力电器股份有限公司 化霜控制方法和装置
JPWO2022074850A1 (ja) 2020-10-09 2022-04-14
JP2022108686A (ja) * 2021-01-13 2022-07-26 本田技研工業株式会社 車両用温調システム
CN113795126B (zh) * 2021-09-27 2023-09-22 苏州浪潮智能科技有限公司 一种服务器及气液协同散热系统
CN118103644A (zh) * 2021-10-22 2024-05-28 三菱电机株式会社 二元制冷装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264614A (ja) * 1996-03-29 1997-10-07 Matsushita Electric Ind Co Ltd 空気調和機
JP2004175232A (ja) * 2002-11-27 2004-06-24 Japan Climate Systems Corp 車両用空調装置
JP2005511373A (ja) * 2001-11-28 2005-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 空調装置
JP2005164103A (ja) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置およびその制御方法
JP2008002776A (ja) * 2006-06-26 2008-01-10 Hitachi Appliances Inc ヒートポンプ給湯装置
JP2009250592A (ja) * 2008-04-11 2009-10-29 Daikin Ind Ltd 冷凍装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4409796A (en) * 1982-03-05 1983-10-18 Rutherford C. Lake, Jr. Reversible cycle heating and cooling system
JPH0245382U (ja) * 1988-09-14 1990-03-28
JP2001235239A (ja) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd 超臨界蒸気圧縮サイクル装置
NO20005576D0 (no) * 2000-09-01 2000-11-03 Sinvent As Reversibel fordampningsprosess
DE102004023834A1 (de) * 2004-05-14 2005-12-08 Robert Bosch Gmbh Expansionseinrichtung für ein Kältemittel
JP5145674B2 (ja) * 2006-09-11 2013-02-20 ダイキン工業株式会社 冷凍装置
JP2008190773A (ja) 2007-02-05 2008-08-21 Calsonic Kansei Corp 空調システムの内部熱交換器構造
JP4751851B2 (ja) * 2007-04-27 2011-08-17 日立アプライアンス株式会社 冷凍サイクル
JP2009222255A (ja) * 2008-03-13 2009-10-01 Denso Corp 蒸気圧縮式冷凍サイクル
JP5375342B2 (ja) 2009-06-04 2013-12-25 富士電機株式会社 自動販売機
JP4901916B2 (ja) * 2009-06-18 2012-03-21 三菱電機株式会社 冷凍空調装置
SE533859C2 (sv) * 2009-06-30 2011-02-08 Alfa Laval Corp Ab Metod för drift av ett system av värmeväxlare för subkritiska och transkritiska tillstånd, samt ett system av värmeväxlare
EP2516942B1 (en) * 2009-08-17 2020-10-28 Johnson Controls Technology Company Heat-pump chiller with improved heat recovery features
JP2010101621A (ja) 2010-02-12 2010-05-06 Panasonic Corp 冷凍サイクル装置およびその制御方法
EP2618074B1 (en) * 2010-09-14 2017-11-29 Mitsubishi Electric Corporation Air-conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264614A (ja) * 1996-03-29 1997-10-07 Matsushita Electric Ind Co Ltd 空気調和機
JP2005511373A (ja) * 2001-11-28 2005-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 空調装置
JP2004175232A (ja) * 2002-11-27 2004-06-24 Japan Climate Systems Corp 車両用空調装置
JP2005164103A (ja) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置およびその制御方法
JP2008002776A (ja) * 2006-06-26 2008-01-10 Hitachi Appliances Inc ヒートポンプ給湯装置
JP2009250592A (ja) * 2008-04-11 2009-10-29 Daikin Ind Ltd 冷凍装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038037A (ja) * 2018-09-05 2020-03-12 富士電機株式会社 ヒートポンプ装置
JP7099201B2 (ja) 2018-09-05 2022-07-12 富士電機株式会社 ヒートポンプ装置
JP2022041146A (ja) * 2020-08-31 2022-03-11 株式会社富士通ゼネラル 冷凍サイクル装置
JP7092169B2 (ja) 2020-08-31 2022-06-28 株式会社富士通ゼネラル 冷凍サイクル装置

Also Published As

Publication number Publication date
CN104246393B (zh) 2016-06-22
CN104246393A (zh) 2014-12-24
DE112013002162T5 (de) 2015-01-08
US9822994B2 (en) 2017-11-21
US20150075196A1 (en) 2015-03-19
DE112013002162B4 (de) 2019-03-14
WO2013161725A1 (ja) 2013-10-31
CN203421870U (zh) 2014-02-05
JPWO2013161725A1 (ja) 2015-12-24
JP5901750B2 (ja) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5901750B2 (ja) 冷凍サイクルシステム
JP5592508B2 (ja) カスケードヒートポンプ装置
JP5452138B2 (ja) 冷凍空調装置
EP2787305A1 (en) Refrigerating/air-conditioning device
EP2693136A1 (en) Expansion valve control device, heat source machine, and expansion valve control method
JP5554277B2 (ja) 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
JP5355016B2 (ja) 冷凍装置及び熱源機
JP2009228979A (ja) 空気調和装置
JP6615345B2 (ja) 冷凍サイクルシステム
JP5734031B2 (ja) 冷凍空調装置
EP2901091B1 (en) Refrigerator and method of controlling refrigerator
JP2018173260A (ja) 暖房および/または冷房用の循環システムならびに暖房および/または冷房運転方法
JP5300889B2 (ja) 冷凍サイクル装置
JP5677472B2 (ja) 冷凍装置
JP2022528256A (ja) 空気調和装置
JP5496161B2 (ja) 冷凍サイクルシステム
JP2012242053A (ja) 冷凍空気調和システム
JP5627564B2 (ja) 冷凍サイクルシステム
JP2009293887A (ja) 冷凍装置
JPWO2015121992A1 (ja) 冷凍サイクル装置
JP2022545486A (ja) ヒートポンプ
JP2011179764A (ja) 冷凍サイクル装置
JP6381712B2 (ja) 冷凍サイクル装置
JP2020020492A (ja) 空気調和装置
JP6071540B2 (ja) ヒートポンプ冷温水システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP