JP2008190773A - 空調システムの内部熱交換器構造 - Google Patents
空調システムの内部熱交換器構造 Download PDFInfo
- Publication number
- JP2008190773A JP2008190773A JP2007025447A JP2007025447A JP2008190773A JP 2008190773 A JP2008190773 A JP 2008190773A JP 2007025447 A JP2007025447 A JP 2007025447A JP 2007025447 A JP2007025447 A JP 2007025447A JP 2008190773 A JP2008190773 A JP 2008190773A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- internal heat
- refrigerant
- pressure side
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
【課題】暖房運転時の内部熱交換量を減らしつつ、液圧縮による破損も防止することができる空調システムの内部熱交換器構造を提供する空調システムの内部熱交換器構造を提供する。
【解決手段】複数の内部熱交換器14,15が、直列に接続されて構成される内部熱交換器群16内の少なくとも1つの内部熱交換器14の高圧側通路14dの入口側部14eと、出口側部14fとを接続するバイパス通路18を有している。
また、バイパス通路18では、内部熱交換器14の高圧側通路14dの全部を跨いで、冷房運転時の上流側と下流側とが連通されるように接続されていて、高圧側通路14dと、並列になるように設けられている。
このバイパス通路18には、暖房運転時の冷媒の流れを許容すると共に、冷房運転時の冷媒の流れを停止させる逆止弁19が、設けられている。
【選択図】図1
【解決手段】複数の内部熱交換器14,15が、直列に接続されて構成される内部熱交換器群16内の少なくとも1つの内部熱交換器14の高圧側通路14dの入口側部14eと、出口側部14fとを接続するバイパス通路18を有している。
また、バイパス通路18では、内部熱交換器14の高圧側通路14dの全部を跨いで、冷房運転時の上流側と下流側とが連通されるように接続されていて、高圧側通路14dと、並列になるように設けられている。
このバイパス通路18には、暖房運転時の冷媒の流れを許容すると共に、冷房運転時の冷媒の流れを停止させる逆止弁19が、設けられている。
【選択図】図1
Description
本発明は、主に、自動車等、車両に用いられて、内部熱交換器を有する冷却システムで、特に、炭酸ガス冷凍サイクルを用いた空調システムの内部熱交換器構造に関するものである。
従来、図12に示すような内部熱交換器を用いた空調システムが、知られている(例えば、特許文献1等参照)。
まず、図中二点鎖線矢印に示す冷房時について、構成から説明すると、この従来の空調システム10では、車両用走行エンジン等からの駆動力を得て、気相状態の吐出側の炭酸ガスを圧縮する圧縮機1が、室外熱交換器2に接続されている。
この室外熱交換器2は、前記圧縮機1で圧縮された炭酸ガスを、外気等との間で、熱交換して、冷却するように構成されている。
また、この室外熱交換器2の出口部側2aには、圧力制御弁としての膨張弁8が、設けられていて、前記炭酸ガスを減圧することにより、低温低圧の気液2相状態の炭酸ガスとなるように構成されている。
この気液2相状態の炭酸ガスは、室内熱交換器4内で蒸発する際に、車室内の空気から熱を奪って、車室内空気を冷却する。
更に、この室内熱交換器4は、液相状態のCO2を、一時的に蓄えるアキュムレータ5を介して、内部熱交換器6内の低圧側通路6aに接続されている。
そして、この内部熱交換器6では、前記室外熱交換器2と膨張弁8との間に介在される高圧側通路6aが、この低圧側通路6bに隣接配置されていて、これらの高圧側通路6aと、低圧側通路6bとの間で、熱交換が行われるように、構成されている。
次に、この従来例の空調システム10の作用効果について説明する。
このように構成された従来の内部熱交換器6を用いた空調システム10では、前記実線で示す暖房運転時の暖房切換位置では、圧縮機1から吐出する冷媒が、切換弁7、室内熱交換器4、膨張弁8を介して、内部熱交換器6の高圧側通路6a、前記室外熱交換器2に流通される。
この室外熱交換器2では、室外空気から熱が吸収されて、冷媒が蒸発し、この室外空気から吸熱された熱が、前記室内熱交換器4にて、車室空気中に放熱される。
また、図中実線で示す暖房運転時には、前記膨張弁8によって、減圧されて低温になった冷媒が、前記内部熱交換器6内で、高圧側通路6a内に流通されるので、低圧側通路6b内を流通する前記圧縮機1の吸入側開口部1aに、向かう冷媒との間では、実質的に熱交換が行われない。
特開2000−130878号公報(0012段落乃至0040段落、図1、図3)
しかしながら、このように構成された従来の空調システムの内部熱交換器構造では、ヒートポンプ化することにより、暖房にも使用できる構成とすると、暖房運転時、外気温度が低くて、圧力も低下し、サイクルバランスが冷房運転時と異なることが知られている。
このため、暖房運転時には、内部熱交換器6の熱交換量が、過大となり、圧縮機1の吸入開口部1aに至る冷媒としての炭酸ガスの温度が、上昇しすぎると共に、吐出側開口部1bの炭酸ガス温度も上昇してしまう。
このため、高温が原因で、前記圧縮機1が、破損してしまう虞があった。
また、吐出側開口部1bの炭酸ガスが、高温となり、冷媒中に混合された潤滑油が、分解又は変成してしまい、液圧縮により、前記圧縮機1を損傷させてしまう虞もあった。
従って、前記従来の空調システムの内部熱交換器構造では、暖房運転時に、減圧器を用いて、高圧側通路6a内の冷媒を減圧して、殆ど熱交換を行わないようにしているが、前記圧縮機1に向かう冷媒が、十分にガス化されず、液冷媒が圧縮機1に吸引されて、圧縮機1が破損する虞があった。
そこで、この発明は、暖房運転時の内部熱交換量を減らしつつ、液圧縮による破損も防止することができる空調システムの内部熱交換器構造を提供することを課題としている。
上記目的を達成するために、請求項1に記載された発明は、冷暖房切換可能なヒートポンプサイクルに用いられ、冷媒を吸入し、該吸入した冷媒を、圧縮する圧縮機と、室外空気及び冷媒間で熱交換を行う室外熱交換器と、室内に吹き出す室内空気と冷媒との間で熱交換を行う室内熱交換器と、前記室外熱交換器及び該室内熱交換器との間に設けられて、冷媒を減圧する減圧器と、冷房運転時には、前記減圧器にて減圧される前の高圧冷媒と、前記圧縮機に吸入される低圧冷媒とを各々高圧側通路及び低圧側通路に流通して熱交換を行うことにより、前記室内熱交換器の入口側と出口側との比エンタルピ差を増大させる内部熱交換器とを有し、暖房運転時には、該内部熱交換器の高圧側通路の流れを逆転させることにより、ヒートポンプ化可能な空調システムの内部熱交換器構造であって、前記内部熱交換器の高圧側通路には、一部又は、全部を跨いで、冷房運転時の上流側と下流側とを連通するバイパス通路を接続すると共に、該パイパス通路には、暖房運転時の冷媒の流れを許容すると共に、冷房運転時の冷媒の流れを停止させる逆止弁が設けられている空調システムの内部熱交換器構造を特徴としている。
また、請求項2に記載されたものは、前記バイパス通路は、前記高圧側通路の入口側部と、出口側部とを接続している請求項1記載の空調システムの内部熱交換器構造を特徴としている。
更に、請求項3に記載されたものは、前記バイパス通路は、複数の前記内部熱交換器を、直列に接続した内部熱交換器群内の少なくとも1つの内部熱交換器の高圧側通路の入口側部と、出口側部とを接続している請求項1記載の空調システムの内部熱交換器構造を特徴としている。
このように構成された請求項1記載の発明は、前記バイパス通路に設けられた逆止弁が、流れ方向に応じて、暖房運転時の冷媒の流れを許容すると共に、冷房運転時の冷媒の流れを停止させる。
このため、前記内部熱交換器の高圧側通路を通過する冷媒の流量を、暖房運転時には、減少させることにより、余分な熱交換を行わせないように設定して、前記圧縮機の吸入側開口部に至る冷媒の温度を、低下させることができる。
この際、前記高圧側通路を通過する冷媒の流量を所望の流量となるように設定できるので、熱交換が行われる低圧側通路の冷媒のガス化が行われ、前記圧縮機の破損を防止できる。
また、冷房時には、前記バイパス通路を通過する冷媒量が無くなるので、前記減圧器にて減圧される前の高圧冷媒が、略全て、高圧側通路に流通されて、前記圧縮機に吸入される低圧冷媒と、熱交換を行わせることができる。
従って、前記バイパス通路を設けていない熱交換器と、略同等の熱交換性能を発揮させることが出来、前記室内熱交換器の入口側と出口側との比エンタルピ差を増大させる内部熱交換器が設けられている分、冷凍能力を更に増大させることが出来る。
また、請求項2に記載されたものは、前記バイパス通路によって、前記高圧側通路の入口側部と、出口側部とが接続されている。
このため、冷房時には、前記逆止弁により、バイパス通路内の冷媒の通過が阻止されるので、全ての冷媒を、前記内部熱交換器の高圧側通路内に、入口側開口部から出口側開口部に至るまで、略全長に渡り、流通させることが出来る。
また、暖房時には、前記逆止弁により、前記バイパス通路内の冷媒の通過が許容されるので、一部の冷媒を、前記内部熱交換器の高圧側通路内に、入口側開口部から出口側開口部に至るまで、略全長に渡り、流通させることが出来る。
このように、前記バイパス通路が、前記高圧側通路の入口側開口部から出口側開口部に至るまで、略全域に設けられているので、高圧側通路の冷媒の流通量によって、略設定される熱交換量が、前記高圧側通路の流通抵抗と、前記バイパス通路の流通抵抗との差異により、容易に設定出来る。
更に、請求項3に記載されたものは、前記複数の前記内部熱交換器を、直列に接続した内部熱交換器群内の少なくとも1つの内部熱交換器の前記高圧側通路の入口側部と、出口側部とが、バイパス通路によって接続されている。
このため、バイパス通路を設ける内部熱交換器の数量によって、更に、容易に、熱交換量の比率が、設定出来る。
次に、図面に基づいて、この発明を実施するための最良の実施の形態の空調システムの内部熱交換器構造について、図1乃至図11を用いて、説明する。
なお、前記従来例と同一乃至均等な部分については、同一符号を付して、説明する。
この発明の最良の実施の形態の空調システムの内部熱交換器構造を示すものである。
図1乃至図5は、この発明の実施の形態の実施例1の空調システムの内部熱交換器構造を示すものである。
まず、全体の構成について、図1及び図2を用いて説明すると、この実施の形態の空調システム11には、車両用走行エンジン等からの駆動力を得て、気相状態の冷媒としての炭酸ガスを圧縮する圧縮機1が、設けられている。
図1に示す冷房時、この圧縮機1は、冷媒を吸入し、この吸入した冷媒を冷媒の臨界圧力以上まで、圧縮する様に構成されていて、吐出開口部1b側が、切換弁7を介して、室外熱交換器2に接続されていると共に、吸入開口部1a側が、内部熱交換器14の低圧側通路14aの出口側開口部14bと接続されている。
この実施例1の内部熱交換機14は、略同一の熱交換性能を有する内部熱交換器15を直列に接続することにより、複数の内部熱交換器14,15…からなる内部熱交換器群16の一部を構成している。
このうち、内部熱交換器14の高圧側通路14dは、前記低圧側通路14aに隣接配置されて、この高圧側通路14d内を通過する高温高圧の冷媒と、前記低圧側通路14a内を通過する低温低圧の冷媒との間で、熱交換が行われるように、各々多孔管により構成されている。
そして、前記低圧側通路14aの入口側開口部14cは、前記内部熱交換器15の低圧側通路15aの出口側開口部15bと接続されている。
また、この内部熱交換器15の低圧側通路15aの入口側開口部15cは、液相状態のCO2を、一時的に蓄えるアキュムレータ5に接続されている。
この内部熱交換器15の高圧側通路15dは、多孔管により構成されていて、同じく多孔管により構成される前記低圧側通路15aに隣接配置されて、この高圧側通路15d内を通過する高温高圧の冷媒と、前記低圧側通路15a内を通過する低温低圧の冷媒との間で、熱交換が行われるように、構成されている。
そして、この内部熱交換器15の高圧側通路15dの入口側開口部15fは、前記内部熱交換機14の高圧側通路14dの出口側開口部14eと接続されている。
また、前記室外熱交換器2は、前記圧縮機1で圧縮された炭酸ガスが、外気等との間で、熱交換されて、冷却されるように構成されている。
この室外熱交換器2の出口部側には、冷房時は開放された一方の減圧器としての第1絞り弁13aが、内部熱交換器15の高圧側通路14d,15dを介し、他方の減圧器としての第2絞り弁13bが設けられていて、前記炭酸ガスが、減圧されることにより、低温低圧の気液2相状態の炭酸ガスとなるように構成されている。
この気液2相状態の炭酸ガスは、室内熱交換器17内で、蒸発する際に、車室内の空気から熱を奪って、車室内空気を冷却するように構成されている。
そして、前記内部熱交換器14,15は、図1に示す冷房運転時には、前記第2絞り弁13bにて減圧される前の高圧冷媒と、前記圧縮機1に吸入される低圧冷媒とを各々高圧側通路14d,15d及び低圧側通路14a,15aに流通して熱交換が行われることにより、前記室内熱交換器17の入口側と出口側との比エンタルピ差を増大させる(図5中δQ部分参照)ように構成されている。
また、図2に示す暖房運転時には、この内部熱交換器14,15の高圧側通路14d,15dの流れを逆転させることにより、ヒートポンプ化可能として、冬場の暖房としても使用出来るように構成されている。
すなわち、前記切換弁7は、図1に示すように、前記圧縮機1の吐出開口部1b側を、前記室外熱交換器2側に連通させて、前記室内熱交換器17からの冷媒を、前記アキュムレータ5に戻す冷房運転時切換位置と、図2に示すように、前記圧縮機1の吐出開口部1b側を、前記室内熱交換器17に連通させると共に、前記室外熱交換器2から送られてくる冷媒を、前記アキュムレータ5に戻す暖房運転時切換位置とが、選択的に切換可能となるように構成されている。
そして、この実施例1の空調システムの内部熱交換器構造では、複数の前記内部熱交換器14,15が、直列に接続されて構成される内部熱交換器群16内の少なくとも1つの内部熱交換器14の高圧側通路14dの暖房時入口側部14eと、暖房時出口側部14fとを接続するバイパス通路18を有している。
また、この実施例1のバイパス通路18では、前記内部熱交換器14の高圧側通路14dの全部を跨いで、冷房運転時の上流側と下流側とが連通されるように接続されていて、前記高圧側通路14dと、並列になるように設けられている。
このバイパス通路18には、暖房運転時の冷媒の流れを許容すると共に、冷房運転時の冷媒の流れを停止させる逆止弁19が、設けられている。
次に、この実施例の空調システムの内部熱交換器構造の作用効果について説明する。
このように構成された実施例の空調システムの内部熱交換器構造では、図1に示すように、冷房運転時には、前記切換弁7を冷房運転切換位置に切り換えると共に、前記第1絞り弁13aを開放して、第2絞り弁13bを絞り、前記圧縮機1から吐出された冷媒が、矢印に示す方向に循環される。
この際、図3に示すように、前記逆止弁19が閉塞されるので、前記高圧側通路14d内に冷媒が流通する。
また、暖房運転時には、図2に示すように、前記切換弁7が、暖房運転切換位置に切り換えられると共に、前記第1絞り弁13aが絞られて、第2絞り弁13bが開放されることにより、前記圧縮機1から吐出された冷媒が、矢印に示す方向に循環される。
この際、図4に示すように、前記逆止弁19が開放されるので、前記高圧側通路14d内に冷媒の流れが、前記バイパス通路18に設けられた逆止弁19を通過して、許容される。
このため、暖房運転時、高圧側通路14dと、バイパス通路18との間の内部流通抵抗の相違により、通過する冷媒は、これらの高圧側通路14dと、バイパス通路18とに分配される。
従って、前記内部熱交換器14の高圧側通路14dを通過する冷媒の流量を、暖房運転時には、減少させることにより、余分な熱交換を行わせないように設定して、前記圧縮機1の吸入側開口部1aに至る冷媒の温度を、低下させることができる。
このため、圧縮機1の吸入開口部1aに至る冷媒の温度が、上昇しすぎることなく、吐出側開口部1bの冷媒の温度も抑制され、高温が原因で、前記圧縮機1が、破損してしまう虞がなくなる。
更に、前記高圧側通路14dを通過する冷媒の流量を所望の流量となるように設定できるので、熱交換が行われる低圧側通路14aの冷媒のガス化が行われ、前記圧縮機1の破損を防止できる。
また、冷房時には、逆止弁19により、前記バイパス通路18を通過する冷媒量が無くなるので、前記第2絞り弁13bにて減圧される前の高圧冷媒が、略全て、高圧側通路14dに流通されて、前記圧縮機1に吸入される低圧冷媒と、熱交換を行わせることができる。
従って、前記バイパス通路18を設けていない内部熱交換器14と、略同等の熱交換性能を発揮させることが出来、前記室内熱交換器17の入口側と出口側との比エンタルピ差を増大させる内部熱交換器14が設けられている分、冷凍能力を更に増大させることが出来る。
また、前記逆止弁19が設けられたバイパス通路18によって、前記高圧側通路14の入口側開口部14cと、出口側開口部14bとが接続されている。
このため、冷房時には、図3に示すように、前記逆止弁19により、バイパス通路18内の冷媒の通過が阻止されるので、全ての冷媒を、前記内部熱交換器14の高圧側通路14d内に、冷房時入口側開口部14fから冷房時出口側開口部14eに至るまで、略全長に渡り、流通させることが出来る。
また、暖房時には、図4に示すように、前記逆止弁19により、前記バイパス通路18内の冷媒の通過が許容されるので、一部の冷媒を、前記内部熱交換器14の高圧側通路14d内に、暖房時入口側開口部14eから暖房時出口側開口部14fに至るまで、略全長に渡り、流通させることが出来る。
このように、前記バイパス通路18が、前記高圧側通路14dの暖房時入口側開口部14eから暖房時出口側開口部14fに至るまで、略全域に設けられているので、高圧側通路14dの冷媒の流通量によって、略設定される熱交換量が、前記高圧側通路14dの流通抵抗と、前記バイパス通路18の流通抵抗との差異により、容易に設定出来る。
また、この実施例1では、前記複数の内部熱交換器14,15を、直列に接続した内部熱交換器群16内の1つの内部熱交換器14に形成されている前記高圧側通路14dの入口側開口部14eと、出口側開口部14fとが、バイパス通路18によって接続されている。
このため、バイパス通路18を設ける内部熱交換器14等の数量によって、更に、容易に、熱交換量の比率が、設定出来る。
図6乃至図9は、この発明の実施の形態の実施例2の空調システム21の内部熱交換器構造を示すものである。
なお、前記実施例1と同一乃至均等な部分については、同一符号を付して説明する。
この実施例2の空調システム21の内部熱交換器構造では、1つの内部熱交換器24が設けられていて、多孔管で構成される高圧側通路24dが、同じく多孔管で構成される低圧側通路24aに隣接配置されることにより、この高圧側通路24d内を通過する高温高圧の冷媒と、前記低圧側通路24a内を通過する低温低圧の冷媒との間で、熱交換が行われる。
そして、前記低圧側通路24aの入口側開口部24cは、液相状態のCO2を、一時的に蓄えるアキュムレータ5に接続されていると共に、この低圧側通路24aの出口側開口部24bは、前記圧縮機1の吸入側開口部1aに接続されている。
また、この内部熱交換器24の高圧側通路24dの冷房時出口側開口部24eは、第2絞り弁13bを介して、前記室内熱交換器17に接続されている。
更に、この内部熱交換器24の高圧側通路24dの冷房時入口側開口部24fは、第1絞り弁13aを介して、前記室外熱交換器2に接続されている。
そして、この実施例2の空調システムの内部熱交換器構造では、内部熱交換器24の高圧側通路24dの冷房時出口側部24eと、冷房時入口側部24fとを接続するバイパス通路28が設けられている。
また、この実施例2のバイパス通路28では、前記内部熱交換器24の高圧側通路24dの全部を跨いで、冷房運転時の上流側と下流側とが連通されるように接続されていて、前記高圧側通路24dと、並列になるように設けられている。
そして、このバイパス通路28には、暖房運転時の冷媒の流れを許容すると共に、冷房運転時の冷媒の流れを停止させる逆止弁19が、設けられている。
次に、この実施例2の空調システムの内部熱交換器構造の作用効果について、説明する。
このように構成された実施例2記載の空調システムの内部熱交換器構造では、前記実施例1の作用効果に加えて、更に、バイパス通路28が、前記高圧側通路24dの冷房時出口側開口部24eから冷房時入口側開口部24fに至るまで、略全域に設けられている。
このため、暖房時において、前記高圧側通路24dの冷媒の流通量によって、略設定される熱交換量の比率が、前記高圧側通路24dの流通抵抗と、前記バイパス通路18の流通抵抗との比により、容易に設定出来る。
他の構成、及び作用効果については、前記実施例1と同一乃至均等であるので、説明を省略する。
図10乃至図11は、この発明の実施の形態の実施例3の空調システムの内部熱交換器構造を示すものである。
なお、前記実施例1,2と同一乃至均等な部分については、同一符号を付して説明する。
この実施例3の空調システムの内部熱交換器構造では、1つの内部熱交換器34が設けられていて、多孔管で構成される高圧側通路34dが、同じく多孔管で構成される低圧側通路34aに隣接配置されることにより、この高圧側通路34d内を通過する高温高圧の冷媒と、前記低圧側通路34a内を通過する低温低圧の冷媒との間で、熱交換が行われる。
そして、前記低圧側通路34aの入口側開口部34cは、液相状態のCO2を、一時的に蓄えるアキュムレータ5に接続されていると共に、この低圧側通路34aの出口側開口部34bは、前記圧縮機1の吸入側開口部1aに接続されている。
また、この内部熱交換器34の高圧側通路34dの冷房時出口側開口部34eは、第2絞り弁13bを介して、前記室内熱交換器17に接続されている。
更に、この内部熱交換器34の高圧側通路34dの冷房時入口側開口部34fは、第1絞り弁13aを介して、前記室外熱交換器2に接続されている。
そして、この実施例3の空調システムの内部熱交換器構造では、内部熱交換器34の高圧側通路34dの冷房時入口側部34fと、冷媒の流れ方向の略中央に設けられた中間開口部34gとを接続するバイパス通路38が設けられている。
また、この実施例3のバイパス通路38では、前記内部熱交換器34の高圧側通路34dの略半分の道程を跨いで、冷房運転時の上流側と下流側とが連通されるように接続されていて、この高圧側通路34dと、並列になるように設けられている。
そして、このバイパス通路38には、暖房運転時の冷媒の流れを許容すると共に、冷房運転時の冷媒の流れを停止させる逆止弁19が、設けられている。
次に、この実施例3の空調システムの内部熱交換器構造の作用効果について、説明する。
このように構成された実施例3記載の空調システムの内部熱交換器構造では、前記実施例1,2の作用効果に加えて、更に、バイパス通路38が、前記高圧側通路34dの冷房時入口側開口部34fから中間開口部34gに至るまで、高圧側通路34dの一部に設けられている。
このため、暖房時において、前記高圧側通路34dの冷媒の流通量によって、略設定される熱交換量の比率が、前記高圧側通路34dの流通抵抗と、前記バイパス通路38の流通抵抗との比、及び、高圧側通路34dとバイパス通路38との長さの比を変えることにより、設定出来る。
他の構成、及び作用効果については、前記実施例1,2と同一乃至均等であるので、説明を省略する。
以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態及び実施例1乃至3に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
即ち、前記実施例1では、前記内部熱交換器14の高圧側通路14dと、内部熱交換器15の高圧側通路15dを略同様の内部流通抵抗を有するように構成しているが、特にこれに限らず、例えば、高圧側通路14dの管径に比して、高圧側通路15dの管径を大きく設定する等、内部流通抵抗量を相違させて、暖房運転時の熱交換量を調整してもよい。
また、前記実施例3では、バイパス通路38が、前記内部熱交換器34の高圧側通路34dの略半分の道程を跨ぐように、中間開口部34g及び出口開口部34f間を接続しているが、中間開口部34g形成位置は、前記高圧側通路34dの何れの箇所であっても良いと共に、例えば、中間開口部34g,34gを前記高圧側通路34dの何れの箇所に一対形成するようにしてもよく、バイパス通路18及び38の形状、数量及び材質が特に限定されるものではない。
1 圧縮機
2 室外熱交換器
11 空調システム
13a,13b 第1絞り弁,第2絞り弁(減圧器)
14,15,24,34
内部熱交換器
14a,24a,34a
低圧側通路
14d,24d,34d
高圧側通路
14e,24e,34e
冷房時出口側開口部(暖房時入口側開口部)
14f,24f,34f
冷房時入口側開口部(暖房時出口側開口部)
16 内部熱交換器群
17 室内熱交換器
18,28,38
バイパス通路
19 逆止弁
34g 中間開口部
2 室外熱交換器
11 空調システム
13a,13b 第1絞り弁,第2絞り弁(減圧器)
14,15,24,34
内部熱交換器
14a,24a,34a
低圧側通路
14d,24d,34d
高圧側通路
14e,24e,34e
冷房時出口側開口部(暖房時入口側開口部)
14f,24f,34f
冷房時入口側開口部(暖房時出口側開口部)
16 内部熱交換器群
17 室内熱交換器
18,28,38
バイパス通路
19 逆止弁
34g 中間開口部
Claims (3)
- 冷暖房切換可能なヒートポンプサイクルに用いられ、冷媒を吸入し、該吸入した冷媒を、圧縮する圧縮機と、室外空気及び冷媒間で熱交換を行う室外熱交換器と、室内に吹き出す室内空気と冷媒との間で熱交換を行う室内熱交換器と、前記室外熱交換器及び該室内熱交換器との間に設けられて、冷媒を減圧する減圧器と、冷房運転時には、前記減圧器にて減圧される前の高圧冷媒と、前記圧縮機に吸入される低圧冷媒とを各々高圧側通路及び低圧側通路に流通して熱交換を行うことにより、前記室内熱交換器の入口側と出口側との比エンタルピ差を増大させる内部熱交換器とを有し、暖房運転時には、該内部熱交換器の高圧側通路の流れを逆転させることにより、ヒートポンプ化可能な空調システムの内部熱交換器構造であって、
前記内部熱交換器の高圧側通路には、一部又は、全部を跨いで、冷房運転時の上流側と下流側とを連通するバイパス通路を接続すると共に、該パイパス通路には、暖房運転時の冷媒の流れを許容すると共に、冷房運転時の冷媒の流れを停止させる逆止弁が設けられていることを特徴とする空調システムの内部熱交換器構造。 - 前記バイパス通路は、前記高圧側通路の入口側部と、出口側部とを接続していることを特徴とする請求項1記載の空調システムの内部熱交換器構造。
- 前記バイパス通路は、複数の前記内部熱交換器を、直列に接続した内部熱交換器群内の少なくとも1つの内部熱交換器の高圧側通路の入口側部と、出口側部とを接続していることを特徴とする請求項1記載の空調システムの内部熱交換器構造。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007025447A JP2008190773A (ja) | 2007-02-05 | 2007-02-05 | 空調システムの内部熱交換器構造 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007025447A JP2008190773A (ja) | 2007-02-05 | 2007-02-05 | 空調システムの内部熱交換器構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008190773A true JP2008190773A (ja) | 2008-08-21 |
Family
ID=39751037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007025447A Pending JP2008190773A (ja) | 2007-02-05 | 2007-02-05 | 空調システムの内部熱交換器構造 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008190773A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013161725A1 (ja) * | 2012-04-23 | 2013-10-31 | 三菱電機株式会社 | 冷凍サイクルシステム |
CN104776655A (zh) * | 2014-01-11 | 2015-07-15 | 苏州恒兆空调节能科技有限公司 | 一种改进型变频空调器 |
US9746212B2 (en) | 2011-11-29 | 2017-08-29 | Mitsubishi Electric Coroporation | Refrigerating and air-conditioning apparatus |
-
2007
- 2007-02-05 JP JP2007025447A patent/JP2008190773A/ja active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9746212B2 (en) | 2011-11-29 | 2017-08-29 | Mitsubishi Electric Coroporation | Refrigerating and air-conditioning apparatus |
WO2013161725A1 (ja) * | 2012-04-23 | 2013-10-31 | 三菱電機株式会社 | 冷凍サイクルシステム |
CN104246393A (zh) * | 2012-04-23 | 2014-12-24 | 三菱电机株式会社 | 冷冻环路系统 |
CN104246393B (zh) * | 2012-04-23 | 2016-06-22 | 三菱电机株式会社 | 冷冻环路系统 |
US9822994B2 (en) | 2012-04-23 | 2017-11-21 | Mitsubishi Electric Corporation | Refrigeration cycle system with internal heat exchanger |
DE112013002162B4 (de) | 2012-04-23 | 2019-03-14 | Mitsubishi Electric Corporation | Kältekreislaufsystem |
CN104776655A (zh) * | 2014-01-11 | 2015-07-15 | 苏州恒兆空调节能科技有限公司 | 一种改进型变频空调器 |
CN104776655B (zh) * | 2014-01-11 | 2018-05-08 | 苏州恒兆空调节能科技有限公司 | 一种改进型变频空调器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4597180B2 (ja) | 車両用空調システム | |
JP4752765B2 (ja) | 空気調和装置 | |
JP3982545B2 (ja) | 空気調和装置 | |
US8516841B2 (en) | Heating and air conditioning unit for an automotive vehicle | |
US7331196B2 (en) | Refrigerating apparatus and refrigerator | |
US7257964B2 (en) | Air conditioner | |
EP3217121B1 (en) | Outdoor unit for air conditioner and method for controlling air conditioner | |
US9156333B2 (en) | System for the heating, ventilation, and/or air conditioning of a vehicle, comprising at least one heat exchanger through which a heat-transfer fluid flows | |
CN101568769A (zh) | 具有经济器、中间冷却器和多级压缩机的制冷剂系统 | |
CN101512249B (zh) | 制冷装置 | |
JP2006509678A5 (ja) | ||
KR20190024469A (ko) | 공기조화기 | |
JP2009210138A (ja) | 冷凍サイクルシステム | |
JP5535510B2 (ja) | 陸上輸送用冷凍装置 | |
JP2006207980A (ja) | 冷凍装置及び冷蔵庫 | |
JP2004333108A (ja) | 空気調和機及びそれに使用される室外機 | |
JP2014156143A (ja) | 車両用空調装置 | |
JP2007205596A (ja) | 空気調和装置 | |
JP2006207974A (ja) | 冷凍装置及び冷蔵庫 | |
JP2008190773A (ja) | 空調システムの内部熱交換器構造 | |
JP2008267653A (ja) | 冷凍装置 | |
US7299648B2 (en) | Refrigeration system of air conditioning apparatuses with bypass line between inlet and outlet of compressor | |
JP2006170541A (ja) | 空気調和装置 | |
JP2006170488A (ja) | 空気調和機 | |
JPH0894205A (ja) | 空気調和装置 |