JP4901916B2 - 冷凍空調装置 - Google Patents

冷凍空調装置 Download PDF

Info

Publication number
JP4901916B2
JP4901916B2 JP2009145777A JP2009145777A JP4901916B2 JP 4901916 B2 JP4901916 B2 JP 4901916B2 JP 2009145777 A JP2009145777 A JP 2009145777A JP 2009145777 A JP2009145777 A JP 2009145777A JP 4901916 B2 JP4901916 B2 JP 4901916B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
expander
flow rate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009145777A
Other languages
English (en)
Other versions
JP2009204304A (ja
Inventor
史武 畝崎
慎一 若本
昌之 角田
宗 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009145777A priority Critical patent/JP4901916B2/ja
Publication of JP2009204304A publication Critical patent/JP2009204304A/ja
Application granted granted Critical
Publication of JP4901916B2 publication Critical patent/JP4901916B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は冷凍空調装置に関するものであり、特に、圧縮機と膨張機とを同軸で連結し、膨張機の動力を回収する二酸化炭素(CO2)冷媒を用いた冷凍空調装置に関するものである。
二酸化炭素を冷媒として用いる冷凍空調装置として、圧縮機、四方弁、熱源側熱交換器、膨張機、負荷側熱交換器、レシーバ、アキュムレータが配管接続され、膨張機と圧縮機は同軸で連結されている冷凍空調装置がある(例えば、特許文献1参照)。
この冷凍サイクルの冷媒の流れは以下のようになる。まず、負荷側熱交換器から冷熱を供給する冷熱供給運転(冷房運転)の場合は、圧縮機において高温高圧のガスに圧縮され吐出された冷媒は、四方弁を経て超臨界状態で熱源側熱交換器にて冷却され温度が低下する。その後冷媒は四方弁、レシーバを経て膨張機に流入し、ここで冷媒は高圧から低圧まで膨張され、低圧の二相状態となる。その後冷媒は負荷側熱交換器に流入し、ここで蒸発ガス化するとともに、周囲より吸熱し冷房運転を実施する。その後冷媒は四方弁、アキュムレータを経て圧縮機に吸入される。
次に、負荷側熱交換器から温熱を供給する温熱供給運転(暖房運転)の場合には、圧縮機において高温高圧のガスに圧縮され吐出された冷媒は、四方弁を経て超臨界状態で負荷側熱交換器にて冷却され、温度が低下するとともに周囲に放熱し暖房運転を実施する。その後冷媒は四方弁、レシーバを経て膨張機に流入し、ここで冷媒は高圧から低圧まで膨張され、低圧の二相状態となる。その後冷媒は熱源側熱交換器に流入し、ここで蒸発ガス化し、四方弁、アキュムレータを経て圧縮機に吸入される。
このような運転を実施することで、冷房運転、暖房運転いずれの運転においても、膨張機において、冷媒が膨張する際の膨張動力を回収し、この動力を同軸で連結される圧縮機に伝達して圧縮機の運転に要する動力を低減し、高効率な冷凍空調装置の運転を実現していた。
また、膨張機をバイパスする流量制御弁付きのバイパス回路を設け、流量制御弁によりバイパス回路を流れる冷媒流量を制御することで、膨張機流入冷媒密度/圧縮機流入冷媒密度の比である密度比が一定となる運転条件の制約を無くし、冷凍サイクルの形状を適切に制御することを可能とし、冷凍空調装置の運転を高効率にしようとするものもある(例えば、特許文献2参照)。
特開平2001−66006号公報(第4頁〜第5頁、図1) 特開2001−116371号公報(第4頁、図1)
しかし、特許文献1の冷凍空調装置には以下のような問題があった。
圧縮機、膨張機の形式としては往復動式、ロータリー式、スクロール式などの容積式が用いられることが多い。この場合、圧縮機と膨張機を同軸に連結した構成にあっては、圧縮機と膨張機とが常時同一回転数で駆動される。特許文献1の場合、冷凍空調装置を流れる冷媒の流量(質量流量)は圧縮機と膨張機で同一となる一方で、圧縮機、膨張機を通過する冷媒流量は
圧縮機流量=圧縮機流入冷媒密度×圧縮機内容積×回転数×圧縮機体積効率
膨張機流量=膨張機流入冷媒密度×膨張機内容積×回転数×膨張機体積効率
で規定され、圧縮機流量=膨張機流量となるので、前記相関より
膨張機流入冷媒密度/圧縮機流入冷媒密度=(圧縮機内容積×圧縮機体積効率)/(膨張機内容積×膨張機体積効率)
となる。この式の右辺の値は機器によって定まる定数となるので、膨張機流入冷媒密度/圧縮機流入冷媒密度の比である密度比が一定値となる運転が実施される。
一方、図16には密度比が一定の条件の下で作動する冷凍空調装置の冷凍サイクルをPH線図に表したものである。図16から高温時のサイクルS1から中温時のサイクルS2、低温時のサイクルS3へと冷媒温度が低下するに従って、サイクルの形状が横長四角状から縦長四角状へと次第に変化し、低温領域になるにつれて運転効率が低下することがわかる。冷凍空調装置の運転では負荷状況によって運転条件が異なる場合が通常であり、特許文献1の場合では運転条件によっては、冷凍空調装置の運転効率が大きく低下する問題点があった。
また、この問題を解決する方法として特許文献2は、前記の密度比一定となる運転条件の制約を無くし、冷凍サイクルの形状を適切に制御することを可能とし、冷凍空調装置の運転を高効率にしようとするものであった。
しかし、この特許文献2の場合には、バイパス回路を流れる冷媒流量分の膨張動力は回収されないことになる。従ってバイパスする冷媒流量が多くなる運転条件では、膨張機による膨張動力回収量が低下し、圧縮機の運転動力低減効果が小さくなり、動力回収による冷凍空調装置での高効率運転が望めないという問題点があった。
例えば、冷凍空調装置が冷暖房を行うヒートポンプであった場合、その場合の冷凍空調装置での冷凍サイクルの状況をPH線図に示すと図17となる。ここで冷暖の空気条件はJISで定められている定格条件(冷房:負荷側27℃、熱源側35℃、暖房:負荷側20℃、熱源側7℃)としている。図17で実線は冷房運転、点線は暖房運転でのサイクルを示している。
図17からわかるように、冷房運転に比べ、暖房運転の方が高低圧側とも空気温度が低くなるので、圧力の低い運転となる。また放熱器側の空気温度は暖房運転の方が低いので(冷房35℃、暖房20℃)、放熱器出口すなわち、膨張機入口の温度は暖房運転の方が低くなる。
Figure 0004901916
表1は、この運転での圧縮機、膨張機の冷媒密度を表したものである。表1にあるように、暖房運転の方が、低圧が低いため圧縮機吸入密度が小さくなる一方で、膨張機入口温度が低いため膨張機の吸入密度は大きくなる。従って、密度比(=膨張機流入冷媒密度/圧縮機流入冷媒密度)は暖房運転の方が大きくなり、表1にあるように暖房運転で8.2、冷房運転で4.5となる。
従って、冷暖の運転で密度比が異なるので、仮に暖房運転に合わせて、膨張機、圧縮機の内容積を調整した場合、暖房運転では問題なく運転されるが、冷房運転では、密度比が小さいことから膨張機吸入密度が小さいことになり、圧縮機で搬送される冷媒流量を膨張機5で流せないことになる。
そこで、冷房運転時にはバイパス回路に冷媒を流す運転を実施することになり、この量は圧縮機で搬送される冷媒流量の45%(=(8.2−4.5)/8.2)となる。即ち膨張機を流れる流量は圧縮機流量の1/2程度となり、同様に動力回収量も1/2程度となる。従って当初の狙いの膨張機による動力回収効果が十分に果たせない運転となる。
本発明は以上のような課題を解決するためになされたものであり、圧縮機と膨張機とを同軸で連結し、膨張機の動力を回収する従来の冷凍空調装置の運転特性を改善することを目的とする。
即ち、圧縮機と膨張機とを同軸で連結し、膨張機の動力を回収する冷凍空調装置の内部熱交換器の熱交換量を運転条件に対応して変化させることにより、膨張動力回収量の低減の少ない高効率な運転を可能とすること、または、運転条件に対応して高効率な運転を可能とすること、または、運転条件に対応して信頼性が高い運転を可能とすること等、従来の冷凍空調装置の運転特性を改善する冷凍空調装置を得ることを目的とする。
本発明に係る冷凍空調装置は、1台もしくは複数台の圧縮機、四方弁、熱源側熱交換器、減圧装置である膨張機、負荷側熱交換器を配管接続し、前記膨張機と少なくとも1台の前記圧縮機とを同軸で接続し、前記膨張機の膨張動力を回収する冷凍空調装置において、
前記膨張機に流入する冷媒と、前記四方弁から前記圧縮機に吸入される冷媒とを熱交換する内部熱交換器と、制御装置と、を備え、
前記内部熱交換器が、該内部熱交換器をバイパスするバイパス回路と、前記内部熱交換器の冷媒流量を変化させる第1の流量制御弁と、前記バイパス回路に設けられ、該バイパス回路の冷媒流量を変化させる第2の流量制御弁と、を備え、
共に容積式である前記膨張機と少なくとも1台の前記圧縮機とを同軸で接続し、
前記制御装置が、冷凍空調装置の運転条件によって、前記四方弁を切換えることにより、前記負荷側熱交換器を蒸発器として作用させ冷熱を供給する冷熱供給運転及び前記負荷側熱交換器を放熱器もしくは凝縮器として作用させ温熱を供給する温熱供給運転とを行い、
前記冷熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、前記温熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、の差を縮小するように前記第1の流量制御弁及び前記第2の流量制御弁を制御するものである。
本発明に係る冷凍空調装置は、1台もしくは複数台の圧縮機、四方弁、熱源側熱交換器、減圧装置である膨張機、負荷側熱交換器を配管接続し、膨張機と少なくとも1台の圧縮機とを同軸で接続し、膨張機の膨張動力を回収する冷凍空調装置において、膨張機に流入する冷媒と、四方弁から圧縮機に吸入される冷媒とを熱交換する内部熱交換器と、制御装置と、を備え、内部熱交換器が、該内部熱交換器をバイパスするバイパス回路と、内部熱交換器の冷媒流量を変化させる第1の流量制御弁と、バイパス回路に設けられ、該バイパス回路の冷媒流量を変化させる第2の流量制御弁と、を備え、共に容積式である膨張機と少なくとも1台の圧縮機とを同軸で接続し、制御装置が、冷凍空調装置の運転条件によって、四方弁を切換えることにより、負荷側熱交換器を蒸発器として作用させ冷熱を供給する冷熱供給運転及び負荷側熱交換器を放熱器もしくは凝縮器として作用させ温熱を供給する温熱供給運転とを行い、冷熱供給運転における膨張機へ流入する冷媒密度と圧縮機へ流入する冷媒密度との密度比と、温熱供給運転における膨張機へ流入する冷媒密度と圧縮機へ流入する冷媒密度との密度比と、の差を縮小するように第1の流量制御弁及び第2の流量制御弁を制御することにより、より運転効率の高い冷凍空調装置を得ることができる。
本発明の実施の形態1における冷凍空調装置の冷媒回路を示す図である。 本発明の実施の形態1における冷凍空調装置の内部熱交換器を示す断面図である。 本発明の実施の形態1における冷凍空調装置の冷暖房運転時の冷凍サイクルを示す図である。 本発明の実施の形態1における冷凍空調装置の内部熱交換器の熱交換量と運転効率改善効果の相関を示す図である。 本発明の実施の形態1における冷凍空調装置の他の冷媒回路を示す図である。 本発明の実施の形態1における冷凍空調装置のさらに他の冷媒回路を示す図である。 本発明の実施の形態1における冷凍空調装置のさらに他の冷媒回路を示す図である。 本発明の実施の形態2における冷凍空調装置の冷媒回路を示す図である。 本発明の実施の形態2における冷凍空調装置の他の冷媒回路を示す図である。 本発明の実施の形態3における冷凍空調装置の冷媒回路を示す図である。 本発明の実施の形態3における冷凍空調装置の運転時の冷凍サイクルを示す図である。 本発明の実施の形態3における冷凍空調装置の他の冷媒回路を示す図である。 本発明の実施の形態3における冷凍空調装置のさらに他の冷媒回路を示す図である。 本発明の実施の形態3における冷房運転のみ、暖房運転のみの冷媒回路図である。 本発明の実施の形態3における冷凍空調装置の内部熱交換器の熱交換量を変化させる別の形態を説明する冷媒回路図である。 密度比が一定の条件下で作動する従来の冷凍空調装置の課題を説明する冷凍サイクルを示す図である。 従来の冷凍空調装置の課題を説明する冷暖房運転時の冷凍サイクルを示す図である。
実施の形態1.
以下、本発明の実施の形態1を図に基づいて説明する。
図1は実施の形態1における冷凍空調装置の冷媒回路図を示したものである。この冷凍空調装置は空気と直接熱交換して冷房、暖房の各運転を実施できるヒートポンプ機であり、図1において、1は圧縮機、2a、2bは四方弁、3は熱源側熱交換器、4aは内部熱交換器である第1の内部熱交換器、5は膨張機、6は負荷側熱交換器である。
7は室外機であり、室外機7は、圧縮機1、四方弁2a、2b、熱源側熱交換器3、第1の内部熱交換器4a、膨張機5から構成される。8は室内機であり、室内機8内には負荷側熱交換器6が収納される。
圧縮機1、膨張機5は容積式であり、例えばスクロール式などの形態をとる。圧縮機1は軸をモータで駆動し圧縮するものであり、この軸が膨張機5に連結されている。膨張機5で冷媒を膨張することにより得られた膨張動力はこの連結軸に伝えられ、圧縮機1にて軸を駆動するモータ動力を低減させ、圧縮機入力を低減する。
また、第1の内部熱交換器4aは、図2の断面図に示すように二重管の形態をとり、内側の管には圧縮機1の吸入冷媒が流れ、外側の管には熱源側熱交換器3と膨張機5の間の冷媒が流れ、冷房運転時に対向流になるように流路設定され、両冷媒の間で熱交換が行われる。また四方弁2bは膨張機5に流入する冷媒の流れ方向、および膨張機軸回転方向を冷暖で同一にするための流路切換のために用いられている。
冷媒としては、二酸化炭素が用いられている。この冷凍空調装置を運転制御するのは制御装置13が行う。制御装置13によって、圧縮機1の運転、回転周波数や各熱交換器の送風機風量、四方弁2a、2bの切換などを制御する。
次に、この冷凍空調装置での運転動作について説明する。冷熱供給運転である冷房運転の場合は以下のような運転となる。
まず、四方弁2a、2bの流路は図1の実線のように設定され、負荷側熱交換器6が蒸発器、熱源側熱交換器3が放熱器(凝縮器)として作用する。そして圧縮機1において高温高圧のガスに圧縮され吐出された冷媒は、四方弁2aを経て超臨界状態で熱源側熱交換器3にて外気と熱交換し、冷却され温度が低下する。その後、冷媒は第1の内部熱交換器4aで圧縮機1吸入の低圧の冷媒に熱を与え、さらに冷却され温度が低下した後で、四方弁2bを経て膨張機5に流入し、ここで冷媒は高圧から低圧まで膨張され、低圧の二相状態となる。その後冷媒は負荷側熱交換器6に流入し、ここで蒸発ガス化するとともに、室内空気より吸熱し冷房運転を実施する。その後冷媒は四方弁2aを経て第1の内部熱交換器4aで熱源側熱交換器3を出た冷媒から熱を受け取り加熱され、圧縮機1に吸入される。
温熱供給運転である暖房運転の場合であるが、この場合は四方弁2a、2bの流路は図1の点線のように設定され、負荷側熱交換器6が放熱器(凝縮器)、熱源側熱交換器3が蒸発器として作用する。そして圧縮機1において高温高圧のガスに圧縮され吐出された冷媒は、四方弁2aを経て超臨界状態で負荷側熱交換器6にて冷却され温度が低下するとともに室内空気に放熱し暖房運転を実施する。その後冷媒は四方弁2bを経て膨張機5に流入し、ここで冷媒は高圧から低圧まで膨張され、低圧の二相状態となる。その後冷媒は熱源側熱交換器3に流入し、ここで外気から吸熱し蒸発ガス化し、四方弁2aを経て圧縮機1に吸入される。
暖房運転の場合、第1の内部熱交換器4aでは、膨張機5を出た後の低圧の二相冷媒と、圧縮機1吸入の低圧のガス冷媒とが熱交換される形となる。従って第1の内部熱交換器4aでは低圧の冷媒同士で熱交換することになるが、低圧の二相冷媒の温度は低圧での飽和温度であり、圧縮機1吸入の低圧ガス冷媒の温度は蒸発器となる熱源側熱交換器3で過熱度SHがつく運転がなされる場合、低圧での飽和温度+SHとなり、一般にこのSHの値は5℃以下0℃近辺で運転されるため、第1の内部熱交換器4aで熱交換される冷媒間ではほとんど温度差がつかない状態となる。従って第1の内部熱交換器4aでの熱交換量はほとんど無く、暖房運転の場合には冷凍空調装置の運転に影響を与えない。
次に、本冷凍空調装置の高効率効果について説明する。図3は冷暖各運転での冷凍空調装置の冷凍サイクル運転状況を示したものである。ここで冷暖の空気条件はJISで定められている定格条件(冷房:負荷側27℃、熱源側35℃、暖房:負荷側20℃、熱源側7℃)としている。図3で実線は冷房運転、点線は暖房運転でのサイクルを示している。また一点鎖線は従来の図17の冷房運転を実施した場合(第1の内部熱交換器4aが無い場合)のサイクルを示している。なお暖房運転の場合は、第1の内部熱交換器4aの影響がほとんど無いので、本発明のサイクルと従来の図17の暖房運転のサイクルは同一となる。
本発明の冷房運転の冷凍サイクルは従来の図17に比べて、第1の内部熱交換器4aでの熱交換により圧縮機1の吸入は加熱側に、膨張機5の吸入は冷却側に移動する。従って図3での冷凍サイクルの形状は左右に広がった形となる。この場合、圧縮機1の吸入の冷媒密度は温度上昇により小さくなる一方、膨張機5の吸入の冷媒密度は温度低下により大きくなり、密度比(=膨張機流入冷媒密度/圧縮機流入冷媒密度)を大きい値にすることができる。
Figure 0004901916
第1の内部熱交換器4aでの熱交換量を適切に設定すると各密度の値は表2に示す値とすることができる。このとき冷房運転、暖房運転の密度比はともに8.2となる。従って、圧縮機1、膨張機5の内容積などを設計し密度比が8.2になるようにすると、冷房運転、暖房運転いずれの運転においても、圧縮機1で搬送される冷媒流量をすべて膨張機5に流すことができ、従来例のような膨張機5をバイパスすることによる動力回収量低下の無い高効率な運転を実現できる。
一般に冷凍空調装置でヒートポンプ運転(冷暖房運転)を行う場合、空気条件(暖房運転の方が高低圧側とも空気温度が低い)により密度比は暖房運転の方が大きくなる。従って本実施の形態のように、冷房運転時のみ第1の内部熱交換器4aでの熱交換を行わせる回路構成とすることで、冷房運転での密度比を大きくでき、前述のように冷暖運転での密度比を同じにできなくても密度比の格差を縮小でき、膨張機5での動力回収量低下の少ない高効率な運転を実現できる。
即ち、本実施の形態では、熱源側熱交換器3と膨張機5間の冷媒と、四方弁2aから圧縮機1に吸入される冷媒とを熱交換する第1の内部熱交換器4aを備え、四方弁2aの切換によって冷熱供給運転(冷房運転)と温熱供給運転(暖房運転)とを実施するので、冷熱供給運転(冷房運転)での密度比を大きくでき、両運転の密度比を同じにできなくても密度比の格差を縮小でき、膨張機5での動力回収量低下の少ない高効率な運転を実現できる。
なお、膨張機5での動力回収量は冷媒の温度によって変化し、一般には温度が低くなるほど動力回収量は低下する。これはCO2のような超臨界状態で膨張機に流入する場合、冷媒が高温であるほどガス的性質を持ち、低温であるほど液的性質を持つことに起因する。即ち、膨張機5に流入する冷媒の状態がガスに近い場合、膨張過程でより大きく膨張し、多くの膨張動力が回収されるのに対し、膨張機5に流入する冷媒の状態が液に近い場合、膨張過程での膨張量は小さくそれに応じて回収される膨張動力回収量も低下する。
一方、冷房運転時に第1の内部熱交換器4aでの熱交換を行った場合、蒸発器(負荷側熱交換器6)流入前の冷媒が冷却され、エンタルピが低下するので、図3に示されるように蒸発器でのエンタルピ差がΔH1からΔH2に拡大し、それに伴って冷房能力を増加させることができる。第1の内部熱交換器4aでの熱交換量が大きくなるほどエンタルピ差の拡大量は大きくなり能力増加量も大きくなる。
従って、第1の内部熱交換器4aでの熱交換量を大きくすると、第1の内部熱交換器4aでの冷媒の温度変化が大きくなり、膨張機5入口での冷媒温度が低下し、冷媒状態としてはより液に近い状態となり、膨張機5での動力回収量が低下し、その分冷凍空調装置の運転効率は低下するが、一方では冷房運転では蒸発器のエンタルピ差拡大により冷房能力が増加し、その分冷凍空調装置の運転効率は上昇する。
この相関関係を冷房運転の条件で求めると図4に示すようになる。図にあるように第1の内部熱交換器4aでの熱交換量の増加による動力回収量の低下に伴う運転効率の低下と、蒸発器のエンタルピ差拡大による冷房能力増加にともなう運転効率の上昇は互いに同じ程度の量となり打ち消しあい、第1の内部熱交換器4aで熱交換を行った場合、熱交換量の多少によらず、第1の内部熱交換器4aが無い場合に膨張機5での動力回収により得られる運転効率と同程度の運転効率を得ることができる。
なお、暖房運転時に負荷側熱交換器6出口の冷媒と圧縮機1吸入冷媒との内部熱交換を行った場合には、前述した膨張機動力回収量の低下はあるものの、蒸発器のエンタルピ差拡大が暖房能力増加とならないので、内部熱交換での熱交換量を増加した場合には、動力回収量が低下した分運転効率が低下する。従って、内部熱交換により密度比の調整を行う場合には、本実施の形態のように暖房運転時に内部熱交換を実施しない形態が望ましい。
また本実施の形態では、第1の内部熱交換器4aの構造は二重管とし、冷房運転時に対向流になる流路形態としているが、別の形態をとっても同様の効果を得ることができる。例えば、プレート式熱交換器やシェルアンドチューブ型熱交換を用いてもよい。また熱源側熱交換器3と四方弁2bとの間の配管と圧縮機1の吸入配管をロウ付けさせて接触する形態をとってもよい。また流路形態も対向流でなく、並行流であってもよい。いずれの形態でも、第1の内部熱交換器4aでの熱交換を行わせる回路構成とすることで、冷房運転での密度比を大きくし冷暖運転の密度比の格差を縮小でき、膨張機5での動力回収量低下の少ない高効率な運転を実現できる。
また本実施の形態では、圧縮機1、膨張機5が1台づつあり、それぞれが同軸で接続される形態をとっているが、圧縮機1が複数台あり、そのうちの1台が膨張機5に同軸で接続される形態をとってもよい。例えば図5に示すように圧縮機が2台並列で接続される形態や、図6、図7に示すように圧縮機が2台直列に接続されそのうちの1台が膨張機と同軸で接続される形態をとってもよい。圧縮機1が3台以上ある場合にも同様の形態をとることで、同様の効果を得ることができる。
また本実施の形態では、負荷側熱交換器6、熱源側熱交換器3ともに空気と熱交換する形態をとっているが、水など他の媒体と熱交換を行う形式の熱交換器を用いても同様の効果を得ることができる。
本実施の形態では冷媒としてCO2を用いている。CO2は他の冷凍空調装置用の冷媒と比べると、冷凍サイクルの高低圧差が大きく、膨張動力の回収量が多くなるので、膨張機5を用いる冷凍空調装置に適用した場合、より高効率の装置とすることができる。ただし用いられる冷媒としてCO2に限定されるものではなくHFC系冷媒、HC系冷媒、水、空気、NH3などの自然冷媒いずれを用いた場合にも同様の効果を得ることができる。
実施の形態2.
以下、本発明の実施の形態2を図に基づいて説明する。
図8は実施の形態2における冷凍空調装置の冷媒回路図である。図8において、4aは内部熱交換器である第1の内部熱交換器、4bは内部熱交換器である第2の内部熱交換器である。なお図中のその他の記号は実施の形態1と同一であるので説明を省略する。
第1の内部熱交換器4aは実施の形態1と同じく、圧縮機1の吸入冷媒と熱源側熱交換器3と膨張機5の間の冷媒とを熱交換する。第2の内部熱交換器4bは圧縮機1の吸入冷媒と負荷側熱交換器6と膨張機5の間の冷媒とを熱交換する。
第1の内部熱交換器4a、第2の内部熱交換器4bは、共に二重管の形態をとり、流路形態は、第1の内部熱交換器4aは冷房運転時に対向流、第2の内部熱交換器4bは暖房運転時に対向流となる形態をとる。
図8に示す第2の内部熱交換器4bの熱交換能力は、第1の内部熱交換器4aの熱交換能力より小さく設定されており、即ち、熱交換能力は第1の内部熱交換器4aの方が第2の内部熱交換器4bより大きく設定されており、例えば、第1の内部熱交換器4aの方が第2の内部熱交換器4bより熱交換面積が大きい、あるいは熱通過率が大きくなる形態などをとる。
但し、第2の内部熱交換器4bの熱交換能力を第1の内部熱交換器4aの熱交換能力と同じに設定し、後述(実施の形態3に記載)のように、第2の内部熱交換器4bをバイパスするバイパス回路を設け、必要に応じて熱交換量を制御するようにしてもよい。
次に、この冷凍空調装置での運転動作について説明する。第2の内部熱交換器4b以外の動作については実施の形態1と同じであるので説明を省略する。
冷房運転(冷熱供給運転)の場合は、第2の内部熱交換器4bでは、膨張機5で減圧された低圧の二相冷媒と圧縮機1の吸入冷媒が熱交換されることになる。このような場合、実施の形態1での暖房運転時の第1の内部熱交換器4aの熱交換の状況と同じく、熱交換される冷媒間でほとんど温度差がつかない状態となり、従って第2の内部熱交換器4bでの熱交換量はほとんど無く、冷房運転の場合には第2の内部熱交換器4bは冷凍空調装置の運転に影響を与えない。
暖房運転(温熱供給運転)の場合は以下のような運転となる。負荷側熱交換器6で放熱しながら温度低下した高圧の冷媒は、第2の内部熱交換器4bで、圧縮機1吸入の低圧のガス冷媒と熱交換する。ここで冷媒は第2の内部熱交換器4bで圧縮機1吸入の低圧の冷媒に熱を与えさらに冷却され温度が低下する。逆に圧縮機1吸入の低圧ガス冷媒は、第2の内部熱交換器4bで負荷側熱交換器6を出た冷媒から熱を受け取り加熱される。
以上のように、第1、第2の内部熱交換器4a、4bを設けることで、冷房運転、暖房運転いずれの場合も、膨張機5に吸入される高圧冷媒と圧縮機1に吸入される低圧冷媒と熱交換できる。内部熱交換器で熱交換を行うと、密度比(=膨張機流入冷媒密度/圧縮機流入冷媒密度)が大きくなるのは、実施の形態1で説明したとおりであり、実施の形態2では、冷暖いずれの運転時も内部熱交換器で熱交換を行い、密度比は大きくなるが、内部熱交換器の熱交換能力は冷房運転時に熱交換を実施する第1の内部熱交換器4aの方が暖房運転時に熱交換を実施する第2の内部熱交換器4bより大きいので、密度比としては冷房運転の方がより大きくなる。一般に冷凍空調装置でヒートポンプ運転(冷暖房運転)を行う場合、空気条件(暖房運転の方が高低圧側とも空気温度が低い)により密度比は暖房運転の方が大きくなるが、本実施の形態のように内部熱交換器を構成することで、冷房運転での密度比を大きくでき、冷暖の各運転時の密度比の格差を縮小できる。従って、膨張機5での動力回収量低下の少ない高効率な運転を実現できる。
また、本実施の形態の場合、冷暖各運転で内部熱交換器で有効な熱交換を行うことで、圧縮機1の吸入冷媒を加熱できるので蒸発器となる熱交換器で液冷媒の蒸発が不十分で液バックするような運転状態であっても内部熱交換器での熱交換で、その液冷媒を蒸発し、圧縮機1への液戻り・液圧縮を防止することにより、液圧縮による圧縮機1の破損を防止でき、信頼性の高い冷凍空調装置を得ることができる。
また、冷暖各運転で内部熱交換器で有効な熱交換を行うことで、実施の形態1に比べて密度比を大きくすることができる。従って、膨張機5の吸入密度の大きい状態で運転できるので、同一冷媒流量を流すときの膨張機5の内容積を小さくできる。それに伴い膨張機5を小型、軽量化でき、より低コストに製造することができ、より小型で安価な冷凍空調装置を得ることができる。
また、実施の形態2の別の例として、図9に示す冷媒回路図の形態をとることもできる。図9に示すように、第2の内部熱交換器4bの代わりに、内部熱交換器である第3の内部熱交換器4cを設ける。この第3の内部熱交換器4cは四方弁2bと膨張機5の間に配置され、膨張機5の吸入側に設置される。即ち、熱源側熱交換器3から冷媒が流れるとき、第1の内部熱交換器4aより下流側にあり、熱源側熱交換器3と膨張機5間の冷媒と、四方弁2aから圧縮機1に吸入される冷媒とを熱交換し、また、負荷側熱交換器6から冷媒が流れるとき、負荷側熱交換器6と膨張機5間の冷媒と、四方弁2aから圧縮機1に吸入される冷媒とを熱交換する。更に別の言い方をすれば、熱源側熱交換器3と負荷側熱交換器6のうち、いずれが放熱機になっても、放熱機となる熱交換器から出て膨張機5に流入する高圧冷媒と四方弁2aから圧縮機1に吸入される低圧冷媒とを熱交換するものである。
このような構成とすることで、冷房運転時には、膨張機5に吸入される冷媒と圧縮機1に吸入される冷媒との間の内部熱交換を第1の内部熱交換器4a、第3の内部熱交換器4cで実施し、暖房運転時には、有効な内部熱交換を第3の内部熱交換器4cでのみ実施することができる。従って、内部熱交換器での熱交換量は冷房運転の方が暖房運転よりも大きくなり、図8の冷媒回路の場合と同様の効果を得ることができる。
本実施の形態では、第1の内部熱交換器と、第1の内部熱交換器より熱交換容量の小さい第2の内部熱交換器または第1の内部熱交換器より下流の第3の内部熱交換器とを備え、四方弁の切換によって冷熱供給運転と温熱供給運転を行うので、両運転時の密度比の格差を縮小でき、膨張機5での動力回収量低下の少ない高効率な運転を実現できる。また、両運転共に内部熱交換器で有効な熱交換ができるので、圧縮機1への液戻り・液圧縮を防止できるとともに、膨張機5の吸入密度の大きい状態で運転でき、膨張機5を小型、軽量化できる。
実施の形態3.
以下、本発明の実施の形態3を図に基づき説明する。
図10は実施の形態3における冷凍空調装置の冷媒回路図である。なお、実施の形態1、2の冷媒回路図と同じ番号のものは同じものを示すので、説明を省略する。
図10において、4cは内部熱交換器である第3の内部熱交換器であり、四方弁2bと膨張機5の間に配置され、膨張機5の吸入側に設置される。第3の内部熱交換器4cは実施の形態2のものと同じであるが、本実施の形態では、単独で用いられており、またバイパス回路(バイパス回路9a)が付加されている。
9aは第3の内部熱交換器4cをバイパスするバイパス回路、10a、10bは流量制御弁であり、流量制御弁10aは第3の内部熱交換器4cに流入する流量を、流量制御弁10bはバイパス回路9に流入する冷媒流量を制御する。
また、11a、11b、11cは温度センサ、12a、12bは圧力センサ、13は制御装置である。温度センサ11aは圧縮機1の吐出温度を、温度センサ11bは圧縮機1の吸入温度、温度センサ11cは膨張機入口の冷媒温度を検知する。圧力センサ12aは圧縮機1の吐出圧力(高圧)を、圧力センサ12bは圧縮機1の吸入圧力(低圧)を検知する。
制御装置13は温度センサ11a、11b、11c、圧力センサ12a、12bの検知情報、および圧縮機1の回転周波数など運転中の冷凍空調装置の情報に基づき、即ち、運転条件に対応して、冷凍空調装置の運転方法を決定し、流量制御弁10a、10bの開度制御や圧縮機1の運転、回転周波数や各熱交換器の送風機風量、四方弁2a、2bの切換などを制御する。
次に、この冷凍空調装置での運転動作について説明する。第3の内部熱交換器4c、バイパス回路9a、流量制御弁10a、10b以外の動作については実施の形態1と同じであるので説明を省略する。
実施の形態3の構成では、第3の内部熱交換器4cは、四方弁2bと膨張機5の間に配置され、膨張機5の吸入側に設置されるので、冷暖いずれの運転(冷房運転(冷熱供給運転)及び暖房運転(温熱供給運転))モードでも膨張機5に流入する高圧の冷媒と、圧縮機1吸入の低圧の冷媒とを熱交換する。即ち、この第3の内部熱交換器4cは、熱源側熱交換器3及び負荷側熱交換器6のうち、いずれの熱交換器が放熱器になっても、放熱器となる熱交換器を出て膨張機5に流入する冷媒と、熱源側熱交換器3及び負荷側熱交換器6のうち蒸発器となる熱交換器を出て四方弁2aから圧縮機1に吸入される冷媒とを熱交換する内部熱交換器である。
また、バイパス回路9aは第3の内部熱交換器4cを流れない冷媒流路となるので、流量制御弁10a、10bで流量制御を行い、バイパス回路9aを流れる冷媒流量を多くし、第3の内部熱交換器4cを流れる冷媒流量を少なくすると、第3の内部熱交換器4cでの熱交換量を減少させ、逆にバイパス回路9aを流れる冷媒流量を少なく、第3の内部熱交換器4cを流れる冷媒流量を多くすると第3の内部熱交換器4cでの熱交換量を増加させることができる。
冷暖の各運転では、流量制御弁10a、10bの流量制御は以下のように実施する。まず冷房運転であるが、この場合は流量制御弁10bを全閉あるいは微少流量が流れるように設定するとともに、流量制御弁10aを全開とし最大流量が流れる、あるいはその量に近い流量が流れるように制御する。
暖房運転時には、流量制御弁10bを全開とし最大流量が流れる、あるいはその量に近い流量が流れるように制御するとともに、流量制御弁10aを全閉あるいは微少流量が流れるように制御する。
このように制御することで、冷房運転時のみに第3の内部熱交換器4cの熱交換能力を大きくでき、密度比(=膨張機流入冷媒密度/圧縮機流入冷媒密度)を冷房運転時のみ大きくできる。
一般に、冷凍空調装置でヒートポンプ運転(冷暖房運転)を行う場合、空気条件(暖房運転の方が高低圧側とも空気温度が低い)により密度比は暖房運転の方が大きくなるが、本実施の形態のように第3の内部熱交換器4c、バイパス回路9aを構成することで、冷房運転での密度比を大きくでき、冷暖の各運転時の密度比の格差を縮小できる。従って、膨張機5での動力回収量低下の少ない高効率な運転を実現できる。
また、冷暖の各運転においても空気条件によっては運転状況が異なってきて、冷房運転であっても外気温度、室内温度が低く暖房の条件に近くなる場合もあれば、暖房運転であっても、外気温度、室内温度が高く冷房の運転条件に近くなる場合もある。従って、流量制御弁10a、10bでの流量制御を冷暖房の運転モードによって一律に切り換えるのではなく、冷暖の各運転において、冷凍サイクルの他の運転状況、条件に応じて制御し、第3の内部熱交換器4cの熱交換量を制御してもよい。
膨張機5を通過する冷媒流量は、膨張機5入口での冷媒密度が大きくなるほど多くなる。膨張機5を流動抵抗としてみた場合、通過する冷媒流量が多いことは流動抵抗が小さく、逆に通過する冷媒流量が少ないことは流動抵抗が大きいことに相当する。
一方、膨張機5入口での冷媒密度は冷媒温度によって決定され、より低温であるほど冷媒密度は大きくなる。膨張機5入口の冷媒と圧縮機1吸入との冷媒との間で内部熱交換を行う場合、熱交換量が大きいと第3の内部熱交換器4cで膨張機5入口の冷媒はより冷却され、温度低下し、冷媒密度は増加する。従って、第3の内部熱交換器4cでの熱交換量を制御できる構成とした場合、熱交換量の制御により、膨張機5入口の冷媒温度を変化させ、膨張機5入口での冷媒密度を変化させることにより膨張機5の流動抵抗を制御することができる。
膨張機5を膨張弁と同様の機能を実現する減圧装置として見なすと、通過する冷媒流量が多く流動抵抗が小さくなると言うことは、膨張弁の開度を大きくすることに相当し、逆に通過する冷媒流量が少なく流動抵抗が大きくなると言うことは、膨張弁の開度を小さくすることに相当する。
そこで、膨張機5での流動抵抗に応じて、冷凍空調装置の冷凍サイクルは変化し、その状況は図11に示されるようになる。膨張機5での通過流量が多く、流動抵抗が小さい場合には、図1実線に示されるような冷凍サイクルの形態となり、膨張機5での通過流量が少なく、流動抵抗が大きい場合には、図11の点線に示されるような冷凍サイクルの形態となる。
図11に示されるに、膨張機5での流動抵抗が小さい場合には、流動抵抗が大きい場合に比べ、高圧は低く、低圧は高く、圧縮機1吸入での過熱度は小さく、圧縮機吐出温度は低い運転状況となる。
一般に、冷凍空調装置では、空気条件や負荷の状況に応じて最適となる冷凍サイクルが存在する。最適な冷凍サイクルは運転状況によって決定される以下のような目的、すなわち運転効率を最大とする、あるいは負荷側に供給する能力を最大とする、あるいは圧縮機1の運転を保護するといった目的に応じて決定される。
また、このサイクルを実現する制御目標としては、高圧、低圧、圧縮機1吐出温度、圧縮機1吸入の冷媒過熱度、膨張機5入口温度となる放熱器あるいは凝縮器での出口温度などがある。そこで、流量制御弁10a、10bを用いて膨張機5入口の冷媒密度を制御し、膨張機5の冷媒流量を制御することで、最適となる冷凍サイクルの状態を実現する。
例えば、冷媒としてCO2を用いる場合、運転効率最大となる高圧が存在するので、運転効率を最大としたい場合には高圧を効率最大となるように制御を実施する。
図11に示されるように、膨張機5での流動抵抗が小さい場合には、流動抵抗が大きい場合に比べ、高圧は低くなるので、圧力センサ12aで検知される現状の冷凍サイクルの高圧が最適な冷凍サイクルの高圧より高い場合には、膨張機5での流動抵抗を小さく制御装置13で制御する。すなわち、流量制御弁10bに流れる冷媒流量を少なくし、流量制御弁10aに流れる冷媒流量を多くする。このように制御することで、第3の内部熱交換器4cでの熱交換量を増加させ、膨張機5入口の冷媒密度を大きくし、膨張機5での通過流量を多くすることで、膨張機5での流動抵抗を小さくする。
こうすることで、冷凍サイクルの高圧を低くし、運転効率最大となる高圧に近づけることで、より運転効率の高い冷凍空調装置とすることができる。
また、冷媒としてCO2など高圧が超臨界状態となる冷媒を用いた場合、高圧と膨張機5の入口温度はある相関を持って変化し、運転効率最大となる膨張機5の入口温度が存在する。そこで温度センサ11cで検知される膨張機5の入口温度を前述した運転効率最大の温度となるように制御装置13で制御してもよい。このように制御しても高圧を制御する場合と同様に運転効率の高い冷凍空調装置とすることができる。
また、冷凍サイクルでは一般に蒸発器出口、あるいは圧縮機吸入の過熱度が2〜5℃程度の適正値に制御することにより運転効率のよい状態とすることができる。そこで、制御目標として蒸発器出口、あるいは圧縮機吸入の過熱度を用い、この過熱度の値が目標値となるように制御してもよい。
図11に示されるように、膨張機5での流動抵抗が小さい場合には、流動抵抗が大きい場合に比べ、過熱度は小さくなる。現状の冷凍サイクルでの圧縮機1吸入の過熱度を温度センサ11bの検知値、圧力センサ12bの検知値から制御装置13で演算し、演算された過熱度が最適な冷凍サイクルの過熱度より大きい場合には、膨張機5での流動抵抗を小さく制御装置13で制御する。即ち、流量制御弁10bに流れる冷媒流量を少なくし、流量制御弁10aに流れる冷媒流量を多くする。このように制御することで、第3の内部熱交換器4cでの熱交換量を増加させ、膨張機5入口の冷媒密度を大きくし、膨張機5での通過流量を多くすることで、膨張機5での流動抵抗を小さくする。
こうすることで、冷凍サイクルの過熱度を小さくし、運転効率最大となる過熱度に近づけることで、より運転効率の高い冷凍空調装置とすることができる。
また、冷凍サイクルでの圧縮機1保護の観点から、冷凍サイクルの高圧や圧縮機1吐出温度は許容最大値より低く、また圧縮機1吸入での液バックが発生しないような運転が求められる。そこで、制御目標として高圧あるいは圧縮機1吐出温度を用い、この値が許容最大値以下となるように制御してもよい。
図11に示されるように、膨張機5での流動抵抗が小さい場合には、流動抵抗が大きい場合に比べ、冷凍サイクルの高圧や圧縮機1吐出温度は低くなるので、圧力センサ12aや温度センサ11aで検知される現状の冷凍サイクルの高圧や吐出温度が許容最大値に近い場合には、膨張機5での流動抵抗を小さく制御装置13で制御する。
即ち、流量制御弁10bに流れる冷媒流量を少なくし、流量制御弁10aに流れる冷媒流量を多くする。このように制御することで、第3の内部熱交換器4cでの熱交換量を増加させ、膨張機5入口の冷媒密度を大きくし、膨張機5での通過流量を多くすることで、膨張機5での流動抵抗を小さくする。
こうすることで、冷凍サイクルの高圧や圧縮機1吐出温度を低くし、許容最大値より低くすることで、圧縮機1の破損を回避し、より信頼性の高い冷凍空調装置とすることができる。
また、圧縮機1吸入での液バックが発生しているときには、液バックが発生しないように制御する。図11に示されるように、膨張機5での流動抵抗が大きい場合には、流動抵抗が小さい場合に比べ、過熱度が大きくなるので、液バック状態を回避できる。
そこで、現状の冷凍サイクルで検知される過熱度≒0となったり、吐出温度が予め設定された温度よりも低くなり、液バック発生が検知される場合には、膨張機5での流動抵抗を大きく制御装置13で制御する。即ち、流量制御弁10bに流れる冷媒流量を多く、流量制御弁10aに流れる冷媒流量を少なくする。
このように制御することで、第3の内部熱交換器4cでの熱交換量を減少させ、膨張機5入口の冷媒密度を小さくし、膨張機5での通過流量を少なくすることで、膨張機5での流動抵抗を大きくする。こうすることで、冷凍サイクルの過熱度を大きくし、液バックを回避することで、液圧縮による圧縮機1の破損を回避し、より信頼性の高い冷凍空調装置とすることができる。
なお、本実施の形態では、流量制御弁をバイパス回路9a側に10b、および第3の内部熱交換器4c側に10aと、いずれにも用いているが、流量制御弁をどちらか一方に設けて、もう片方は固定の流動抵抗を設ける回路としてもよい。この場合も一方の流量制御弁の制御により、第3の内部熱交換器4cを流れる冷媒流量を制御でき、第3の内部熱交換器4cの熱交換量を制御でき、前述したものと同様の効果を得ることができる。
なお、実施の形態3では、第3の内部熱交換器4cを膨張機5の吸入前に設けその熱交換量を制御することで冷凍サイクルの制御を行ったが、実施の形態1、2に示される冷媒回路、すなわち図1、5、6、7、8、9に示される冷媒回路において少なくとも1台の内部熱交換器をバイパスするバイパス回路を設け、バイパス回路および内部熱交換器を流れる冷媒流量を制御してもよい。この場合も同様な流量制御を行うことで同じ効果を得ることができる。少なくとも1台の内部熱交換器をバイパスするバイパス回路を設ける場合、複数の内部熱交換器を有するものは、熱交換量の大きい熱交換器(例えば、第1の内部熱交換器4a)をバイパスするバイパス回路を設けることにより、より有効な制御ができる。
また、バイパス回路として、図10の第3の内部熱交換器4cの高圧側流路をバイパスする代わりに、図12に示すように第3の内部熱交換器4cの低圧側流路をバイパスするバイパス回路9bを設けてもよい。この場合にもバイパス回路9bを流れる流量、および第3の内部熱交換器4cを流れる流量(低圧側流量)を制御することで、第3の内部熱交換器4cの熱交換量を制御でき、同様の効果を得ることができる。
なお、高低圧どちら側にバイパス回路を設けるかは、流量制御弁の特性によって決定してもよい。
即ち、高圧側に流量制御弁10を設けた場合、流入する冷媒の密度は低圧側流路に設けた場合よりも大きくなる。従って、同一流量を流す場合の流量制御弁の口径は高圧側に流量制御弁を設ける方が小さくでき、より小型の流量制御弁を適用でき、低コストな冷凍空調装置とすることができる。
また、流量制御弁の耐圧や作動圧が高くない場合、バイパス回路を高圧側流路に設け、流量制御弁を高圧側に設けると冷凍空調装置の運転時の信頼性が低下する場合もある。このような場合には、バイパス回路を低圧側に設け、流量制御弁を低圧側に配置することで、冷凍空調装置運転時の信頼性を確保する。
また、冷凍空調装置の運転条件によっては、第3の内部熱交換器4cの流量制御だけでは膨張機5の流動抵抗を制御しきれず、冷凍サイクルの運転状態が適切なものから外れる場合も存在する。
そこで、図13に示すように第3の内部熱交換器4cのバイパス回路9aと膨張機5のバイパス回路9cを設け、それぞれの流量制御する流量制御弁10b、10eを設けてもよい。そして、第3の内部熱交換器4cの流量制御だけでは膨張機5の流動抵抗を制御しきれない場合には、まず第3の内部熱交換器4cの流量制御を可能な限り実施し、その後に膨張機5のバイパス回路9cの流量制御を実施する。
例えば、膨張機5の流動抵抗をできるだけ小さくしたい場合には、まず第3の内部熱交換器4cでの熱交換量を最大に制御し、その後さらに流動抵抗を小さくしたい分だけ膨張機5のバイパス回路9cに冷媒が流れるようにする。このようにすることで、バイパス回路9cを流れる冷媒流量分膨張機5を通過する流量は減少するものの、第3の内部熱交換器4cの熱交換量制御を実施しない場合に比べて、バイパス回路9cの冷媒流量を減少させ、膨張機5を通過する冷媒流量を多くでき、膨張機5での動力回収量を多くできより高効率な冷凍空調装置を得ることができる。
なお、内部熱交換器は、第3の内部熱交換器4cを設ける代わりに、図8に示したように、第1の内部熱交換器4a、第2の内部熱交換器4bを設けてもよい。但し、この場合は、両者の熱交換器の熱交換能力は同じとし、少なくとも第2の内部熱交換器4bには流量制御弁で熱交換量を変化させるバイパス回路を設ける。第1の内部熱交換器4a、第2の内部熱交換器4bを設けることにより、冷凍サイクルの熱交換量を大きくできる。
実施の形態1、2、3においては、冷媒回路(冷凍サイクル)は、いずれも四方弁2aを有し、圧縮機1から吐出した冷媒を四方弁2aを切換えることにより、熱源側熱交換器3または負荷側熱交換器6に流し、冷房運転、暖房運転を行うものについて記載したが、四方弁2aを有さず、前記両運転のうち、どちらか一方の運転のみを行うものにも、各実施の形態に記載の技術を適用できる。
図14(a)は、冷房運転のみの冷媒回路、また図14(b)は、暖房運転のみの冷媒回路である。図の番号は、前記の実施の形態1、2、3に記載のものと同じである。
これらの図において、1台もしくは複数台の圧縮機1、熱源側熱交換器3、減圧装置、負荷側熱交換器6を順次接続し、減圧装置である膨張機5と、熱源側熱交換器3及び負荷側熱交換器6のうち放熱器となる熱交換器を出て膨張機5に流入する冷媒と、熱源側熱交換器3及び負荷側熱交換器6のうち蒸発器となる熱交換器を出て圧縮機1に吸入される冷媒とを熱交換する内部熱交換器である、例えば第3の内部熱交換器4cと、内部熱交換器4cをバイパスするバイパス回路9aと、内部熱交換器4cの冷媒流量を変化させる流量制御弁10a、10bと、冷凍空調装置の運転条件によって、流量制御弁10a、10bを制御し、内部熱交換器4cの熱交換量を制御する制御装置13とを備え、運転条件に応じて、制御装置13が流量制御弁を制御し、内部熱交換器4cの冷媒流量を変化させ、熱交換量を制御することにより、膨張機流入冷媒密度と圧縮機流入冷媒密度との比である冷媒密度比の変化を小さくし、膨張機5の膨張動力の回収量の低減の少ない高効率な冷凍空調装置を得ることができる。また、冷凍サイクルを運転条件に対応した最適な冷凍サイクルに近づけることができる。
また、内部熱交換器の熱交換量を制御する手段として、実施の形態3に記載のように、バイパス回路、流量制御弁を設ける代わりに、図15に示すように、内部熱交換器である、例えば第3の内部熱交換器4c及び流量制御弁10aを複数台並列に設置し、必要に応じて冷媒を流す内部熱交換器4cの個数を制御し、内部熱交換器4cの熱交換量を制御してもよい。内部熱交換器4cの熱交換量を大きくしたいときは、流量制御弁10aを開とする個数を多くし、多くの内部熱交換器4cに冷媒を流すことで、内部熱交換器4cの熱交換量を増加する。逆に内部熱交換器4cの熱交換量を小さくしたいときは、流量制御弁10aを閉とする個数を多くし、冷媒を流す内部熱交換器4cの個数を少なくすることで、内部熱交換器4cの熱交換量を減少させる。このようにして内部熱交換器4cの熱交換量を制御しても前記と同様な効果を得ることができる。
また、各実施の形態1、2、3に記載の冷凍空調装置及び運転方法は、空気調和装置、冷凍装置等、広く適用できる。
1 圧縮機、2a 四方弁、3 熱源側熱交換器、4a 第1の内部熱交換器(内部熱交換器)、4b 第2の内部熱交換器(内部熱交換器)、4c 第3の内部熱交換器(内部熱交換器)、5 膨張機、6 負荷側熱交換器、9a、9b 内部熱交換器のバイパス回路、9c 膨張機のバイパス回路、10a、10b、10c、10d 流量制御弁、11a、11b、11c 温度センサ、12a、12b 圧力センサ、13 制御装置。

Claims (8)

  1. 1台もしくは複数台の圧縮機、四方弁、熱源側熱交換器、減圧装置である膨張機、負荷側熱交換器を配管接続し、前記膨張機と少なくとも1台の前記圧縮機とを同軸で接続し、前記膨張機の膨張動力を回収する冷凍空調装置において、
    前記膨張機に流入する冷媒と、前記四方弁から前記圧縮機に吸入される冷媒とを熱交換する内部熱交換器と、制御装置と、を備え、
    前記内部熱交換器が、該内部熱交換器をバイパスするバイパス回路と、前記内部熱交換器の冷媒流量を変化させる第1の流量制御弁と、前記バイパス回路に設けられ、該バイパス回路の冷媒流量を変化させる第2の流量制御弁と、を備え、
    共に容積式である前記膨張機と少なくとも1台の前記圧縮機とを同軸で接続し、
    前記制御装置が、冷凍空調装置の運転条件によって、前記四方弁を切換えることにより、前記負荷側熱交換器を蒸発器として作用させ冷熱を供給する冷熱供給運転及び前記負荷側熱交換器を放熱器もしくは凝縮器として作用させ温熱を供給する温熱供給運転とを行い、
    前記冷熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、前記温熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、の差を縮小するように前記第1の流量制御弁及び前記第2の流量制御弁を制御することを特徴とする冷凍空調装置。
  2. 前記圧縮機の吐出側から前記膨張機までの間の高圧側圧力を検知する吐出側圧力センサを備え、
    前記制御装置は、
    前記吐出側圧力センサの出力を予め定められた目標値と比較し、
    前記吐出側圧力センサの出力が前記目標値より高い場合には前記第2の流量制御弁に流れる冷媒流量を少なくなるように前記第2の流量制御弁を制御し、前記第1の流量制御弁に流れる冷媒流量を多くなるように前記第1の流量制御弁を制御して、前記膨張機での流動抵抗を小さくし、
    前記冷熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、前記温熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、の差を縮小することを特徴とする請求項1に記載の冷凍空調装置。
  3. 記膨張機の入口温度を検知する膨張機入口温度センサを備え、
    前記制御装置
    前記膨張機入口温度センサの出力を予め定められた目標値と比較し、
    前記膨張機入口温度センサの出力が前記目標値になるように前記第1の流量制御弁と前記第2の流量制御弁を制御し、
    前記冷熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、前記温熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、の差を縮小することを特徴とする請求項1記載の冷凍空調装置。
  4. 記圧縮機の吸入側温度を検知する圧縮機吸入側温度センサと、前記圧縮機の吸入側圧力を検知する圧縮機吸入側圧力センサとを備え、
    前記制御装置
    前記圧縮機吸入側温度センサの出力と前記圧縮機吸入側圧力センサの出力から算出される過熱度を予め定められた目標値と比較し、
    前記算出される過熱度が前記目標値より大きい場合には、前記第2の流量制御弁に流れる冷媒流量を少なくなるように前記第2の流量制御弁を制御し、前記第1の流量制御弁に流れる冷媒流量を多くなるように前記第1の流量制御弁を制御して、前記膨張機での流動抵抗を小さくし、
    前記冷熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、前記温熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、の差を縮小することを特徴とする請求項1記載の冷凍空調装置。
  5. 前記圧縮機の吐出側から前記膨張機までの間の高圧側圧力を検知する吐出側圧力センサと、前記圧縮機の吐出側温度を検知する圧縮機吐出側温度センサを備え、
    前記制御装置
    前記圧縮機吐出側温度センサの出力を予め定められた第1の許容最大値と比較すると共に前記吐出側圧力センサの出力を予め定められた第2の許容最大値と比較し、
    前記圧縮機吐出側温度センサの出力が前記第1の許容最大値に近づいた場合、または前記吐出側圧力センサの出力が前記第の許容最大値に近づいた場合には、前記第2の流量制御弁に流れる冷媒流量を少なくなるように前記第2の流量制御弁を制御し、前記第1の流量制御弁に流れる冷媒流量を多くなるように前記第1の流量制御弁を制御し、
    前記冷熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、前記温熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、の差を縮小することを特徴とする請求項1記載の冷凍空調装置。
  6. 記圧縮機の吸入側温度を検知する圧縮機吸入側温度センサと、前記圧縮機の吸入側圧力を検知する圧縮機吸入側圧力センサとを備え、
    前記制御装置
    前記圧縮機吸入側温度センサの出力と前記圧縮機吸入側圧力センサの出力から算出される過熱度を予め定められた目標値と比較し、
    前記算出される過熱度が前記目標値より小さい場合には、前記第1の流量制御弁に流れる冷媒流量を少なくなるように前記第1の流量制御弁を制御し、前記第2の流量制御弁に流れる冷媒流量を多くなるように前記第2の流量制御弁を制御して前記膨張機での流動抵抗を大きくし、
    前記冷熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、前記温熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、の差を縮小することを特徴とする請求項1記載の冷凍空調装置。
  7. 前記圧縮機の吐出側から前記膨張機までの間の高圧側圧力を検知する吐出側圧力センサを備え、
    前記制御装置は、
    前記吐出側圧力センサの出力を予め定められた目標値と比較し、
    前記吐出側圧力センサの出力が前記目標値になるように前記第1の流量制御弁と前記第2の流量制御弁を制御し、
    前記冷熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、前記温熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、の差を縮小することを特徴とする請求項1記載の冷凍空調装置。
  8. 前記圧縮機の吸入側温度を検知する圧縮機吸入側温度センサと、前記圧縮機の吸入側圧力を検知する圧縮機吸入側圧力センサとを備え、
    前記制御装置は、
    前記圧縮機吸入側温度センサの出力と前記圧縮機吸入側圧力センサの出力から算出される過熱度を予め定められた目標値と比較し、
    前記算出される過熱度が前記目標値になるように前記第1の流量制御弁と前記第2の流量制御弁を制御し、
    前記冷熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、前記温熱供給運転における前記膨張機へ流入する冷媒密度と前記圧縮機へ流入する冷媒密度との密度比と、の差を縮小することを特徴とする請求項1記載の冷凍空調装置。
JP2009145777A 2009-06-18 2009-06-18 冷凍空調装置 Expired - Lifetime JP4901916B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145777A JP4901916B2 (ja) 2009-06-18 2009-06-18 冷凍空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145777A JP4901916B2 (ja) 2009-06-18 2009-06-18 冷凍空調装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002272899A Division JP4410980B2 (ja) 2002-09-19 2002-09-19 冷凍空調装置

Publications (2)

Publication Number Publication Date
JP2009204304A JP2009204304A (ja) 2009-09-10
JP4901916B2 true JP4901916B2 (ja) 2012-03-21

Family

ID=41146756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145777A Expired - Lifetime JP4901916B2 (ja) 2009-06-18 2009-06-18 冷凍空調装置

Country Status (1)

Country Link
JP (1) JP4901916B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246393A (zh) * 2012-04-23 2014-12-24 三菱电机株式会社 冷冻环路系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1401425B1 (it) * 2010-06-24 2013-07-26 Nuovo Pignone Spa Turboespansore e metodo per usare palette direttrici di ingresso mobili all'ingresso di un compressore
JP2012132680A (ja) * 2012-04-12 2012-07-12 Mitsubishi Electric Corp 冷凍装置
CN111947336B (zh) * 2020-08-24 2024-05-07 珠海格力电器股份有限公司 一种制冷循环系统及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193967A (ja) * 1997-12-26 1999-07-21 Zexel:Kk 冷凍サイクル
JP2001108317A (ja) * 1999-10-05 2001-04-20 Daikin Ind Ltd 二酸化炭素冷媒を使用したヒートポンプ式の冷暖房型空気調和機
JP2001116371A (ja) * 1999-10-20 2001-04-27 Daikin Ind Ltd 空気調和装置
JP2001235239A (ja) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd 超臨界蒸気圧縮サイクル装置
JP3838008B2 (ja) * 2000-09-06 2006-10-25 松下電器産業株式会社 冷凍サイクル装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246393A (zh) * 2012-04-23 2014-12-24 三菱电机株式会社 冷冻环路系统
CN104246393B (zh) * 2012-04-23 2016-06-22 三菱电机株式会社 冷冻环路系统
US9822994B2 (en) 2012-04-23 2017-11-21 Mitsubishi Electric Corporation Refrigeration cycle system with internal heat exchanger

Also Published As

Publication number Publication date
JP2009204304A (ja) 2009-09-10

Similar Documents

Publication Publication Date Title
JP4410980B2 (ja) 冷凍空調装置
EP2381180B1 (en) Heat pump type hot water supply apparatus
EP1416232B1 (en) Refrigerating apparatus
JP4075429B2 (ja) 冷凍空調装置
JP4013981B2 (ja) 冷凍空調装置
EP1645818B1 (en) Air-conditioner with a dual-refrigerant circuit
JP7096511B2 (ja) 冷凍サイクル装置
JP5478715B2 (ja) 冷凍サイクル装置及びその運転方法
JP5018724B2 (ja) エジェクタ式冷凍サイクル
WO2020071294A1 (ja) 冷凍サイクル装置
JP6846685B2 (ja) 空気調和装置
JP2006071137A (ja) 冷凍装置
CN114270113B (zh) 热源机组及制冷装置
WO2009098899A1 (ja) 冷凍装置
JP4901916B2 (ja) 冷凍空調装置
WO2020071293A1 (ja) 冷凍サイクル装置
JP4192904B2 (ja) 冷凍サイクル装置
JP4827859B2 (ja) 空気調和装置およびその運転方法
JP5895662B2 (ja) 冷凍装置
JP2008002743A (ja) 冷凍装置
CN114341571B (zh) 制冷装置
JP2001066006A (ja) 空気調和装置の冷媒回路
JP2008051464A (ja) 空気調和装置
JP2010038408A (ja) 室外熱交換器及びこれを搭載した冷凍サイクル装置
WO2009098900A1 (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term