WO2013157187A1 - 電気化学素子用非水電解質、その製造方法およびそれを用いた電気化学素子 - Google Patents
電気化学素子用非水電解質、その製造方法およびそれを用いた電気化学素子 Download PDFInfo
- Publication number
- WO2013157187A1 WO2013157187A1 PCT/JP2013/001561 JP2013001561W WO2013157187A1 WO 2013157187 A1 WO2013157187 A1 WO 2013157187A1 JP 2013001561 W JP2013001561 W JP 2013001561W WO 2013157187 A1 WO2013157187 A1 WO 2013157187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkaline earth
- earth metal
- chloride
- mol
- aqueous
- Prior art date
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 205
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000003125 aqueous solvent Substances 0.000 claims abstract description 116
- 229910001617 alkaline earth metal chloride Inorganic materials 0.000 claims description 112
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 111
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 96
- 239000000203 mixture Substances 0.000 claims description 70
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 54
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 53
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 50
- 239000007787 solid Substances 0.000 claims description 41
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims description 39
- 239000002904 solvent Substances 0.000 claims description 34
- 238000003756 stirring Methods 0.000 claims description 26
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 19
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000003792 electrolyte Substances 0.000 claims description 10
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 abstract description 40
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract description 33
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 16
- 239000000243 solution Substances 0.000 description 68
- -1 lithium hexafluorophosphate Chemical compound 0.000 description 59
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 35
- 229910052744 lithium Inorganic materials 0.000 description 33
- 239000011777 magnesium Substances 0.000 description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 31
- 238000002484 cyclic voltammetry Methods 0.000 description 30
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 26
- 150000003839 salts Chemical class 0.000 description 26
- 150000001342 alkaline earth metals Chemical class 0.000 description 24
- 210000004027 cell Anatomy 0.000 description 24
- 239000007773 negative electrode material Substances 0.000 description 24
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 23
- 239000002245 particle Substances 0.000 description 22
- 239000003990 capacitor Substances 0.000 description 20
- 238000004090 dissolution Methods 0.000 description 19
- 150000001450 anions Chemical class 0.000 description 18
- 239000002244 precipitate Substances 0.000 description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 17
- 150000001768 cations Chemical class 0.000 description 17
- 229910001416 lithium ion Inorganic materials 0.000 description 17
- 229910045601 alloy Inorganic materials 0.000 description 16
- 239000000956 alloy Substances 0.000 description 16
- 229910001425 magnesium ion Inorganic materials 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 14
- 229910052783 alkali metal Inorganic materials 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- 239000007774 positive electrode material Substances 0.000 description 14
- 230000009467 reduction Effects 0.000 description 14
- 238000006722 reduction reaction Methods 0.000 description 14
- 150000001340 alkali metals Chemical class 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229910001510 metal chloride Inorganic materials 0.000 description 13
- 230000005611 electricity Effects 0.000 description 12
- 229910001413 alkali metal ion Inorganic materials 0.000 description 11
- 239000003575 carbonaceous material Substances 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 150000002170 ethers Chemical class 0.000 description 9
- 229940052303 ethers for general anesthesia Drugs 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- 229910020366 ClO 4 Inorganic materials 0.000 description 8
- 239000012300 argon atmosphere Substances 0.000 description 8
- 238000006479 redox reaction Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910021607 Silver chloride Inorganic materials 0.000 description 7
- 150000001733 carboxylic acid esters Chemical class 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 150000001805 chlorine compounds Chemical class 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 229910003002 lithium salt Inorganic materials 0.000 description 7
- 159000000002 lithium salts Chemical class 0.000 description 7
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 7
- 229910000733 Li alloy Inorganic materials 0.000 description 6
- 229910013870 LiPF 6 Inorganic materials 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 239000006258 conductive agent Substances 0.000 description 6
- 150000004292 cyclic ethers Chemical class 0.000 description 6
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 6
- 238000003487 electrochemical reaction Methods 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 239000002608 ionic liquid Substances 0.000 description 6
- 239000001989 lithium alloy Substances 0.000 description 6
- GCICAPWZNUIIDV-UHFFFAOYSA-N lithium magnesium Chemical compound [Li].[Mg] GCICAPWZNUIIDV-UHFFFAOYSA-N 0.000 description 6
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 6
- 229910000861 Mg alloy Inorganic materials 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910001623 magnesium bromide Inorganic materials 0.000 description 5
- 150000002736 metal compounds Chemical class 0.000 description 5
- 239000005518 polymer electrolyte Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000002800 charge carrier Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 150000004010 onium ions Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910013063 LiBF 4 Inorganic materials 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 125000004437 phosphorous atom Chemical group 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- OXMIDRBAFOEOQT-UHFFFAOYSA-N 2,5-dimethyloxolane Chemical compound CC1CCC(C)O1 OXMIDRBAFOEOQT-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- VGHBEMPMIVEGJP-UHFFFAOYSA-N 4-methyl-2h-furan-5-one Chemical compound CC1=CCOC1=O VGHBEMPMIVEGJP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000012983 electrochemical energy storage Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- CAQYAZNFWDDMIT-UHFFFAOYSA-N 1-ethoxy-2-methoxyethane Chemical compound CCOCCOC CAQYAZNFWDDMIT-UHFFFAOYSA-N 0.000 description 1
- CXBDYQVECUFKRK-UHFFFAOYSA-N 1-methoxybutane Chemical compound CCCCOC CXBDYQVECUFKRK-UHFFFAOYSA-N 0.000 description 1
- HTWIZMNMTWYQRN-UHFFFAOYSA-N 2-methyl-1,3-dioxolane Chemical compound CC1OCCO1 HTWIZMNMTWYQRN-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- LJPCNSSTRWGCMZ-UHFFFAOYSA-N 3-methyloxolane Chemical compound CC1CCOC1 LJPCNSSTRWGCMZ-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- QGLBZNZGBLRJGS-UHFFFAOYSA-N Dihydro-3-methyl-2(3H)-furanone Chemical compound CC1CCOC1=O QGLBZNZGBLRJGS-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910018091 Li 2 S Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021550 Vanadium Chloride Inorganic materials 0.000 description 1
- ROZPZBUZWPOKFI-UHFFFAOYSA-M [Cl-].[Fr+] Chemical compound [Cl-].[Fr+] ROZPZBUZWPOKFI-UHFFFAOYSA-M 0.000 description 1
- FBDMJGHBCPNRGF-UHFFFAOYSA-M [OH-].[Li+].[O-2].[Mn+2] Chemical compound [OH-].[Li+].[O-2].[Mn+2] FBDMJGHBCPNRGF-UHFFFAOYSA-M 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910000573 alkali metal alloy Inorganic materials 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 1
- 229910001616 alkaline earth metal bromide Inorganic materials 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005910 alkyl carbonate group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QOTQFLOTGBBMEX-UHFFFAOYSA-N alpha-angelica lactone Chemical compound CC1=CCC(=O)O1 QOTQFLOTGBBMEX-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- NKQIMNKPSDEDMO-UHFFFAOYSA-L barium bromide Chemical compound [Br-].[Br-].[Ba+2] NKQIMNKPSDEDMO-UHFFFAOYSA-L 0.000 description 1
- 229910001620 barium bromide Inorganic materials 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- RHDGNLCLDBVESU-UHFFFAOYSA-N but-3-en-4-olide Chemical compound O=C1CC=CO1 RHDGNLCLDBVESU-UHFFFAOYSA-N 0.000 description 1
- FWBMVXOCTXTBAD-UHFFFAOYSA-N butyl methyl carbonate Chemical compound CCCCOC(=O)OC FWBMVXOCTXTBAD-UHFFFAOYSA-N 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 239000002180 crystalline carbon material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- SHXXPRJOPFJRHA-UHFFFAOYSA-K iron(iii) fluoride Chemical compound F[Fe](F)F SHXXPRJOPFJRHA-UHFFFAOYSA-K 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- QWDJLDTYWNBUKE-UHFFFAOYSA-L magnesium bicarbonate Chemical compound [Mg+2].OC([O-])=O.OC([O-])=O QWDJLDTYWNBUKE-UHFFFAOYSA-L 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- PAQGTCFSKWUKHW-UHFFFAOYSA-N methyl pentyl carbonate Chemical compound CCCCCOC(=O)OC PAQGTCFSKWUKHW-UHFFFAOYSA-N 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- TVWWSIKTCILRBF-UHFFFAOYSA-N molybdenum trisulfide Chemical compound S=[Mo](=S)=S TVWWSIKTCILRBF-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- YJPVTCSBVRMESK-UHFFFAOYSA-L strontium bromide Chemical compound [Br-].[Br-].[Sr+2] YJPVTCSBVRMESK-UHFFFAOYSA-L 0.000 description 1
- 229910001625 strontium bromide Inorganic materials 0.000 description 1
- 229940074155 strontium bromide Drugs 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910021381 transition metal chloride Inorganic materials 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- NRZWQKGABZFFKE-UHFFFAOYSA-N trimethylsulfonium Chemical compound C[S+](C)C NRZWQKGABZFFKE-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/60—Liquid electrolytes characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/166—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a non-aqueous electrolyte used for an electrochemical element, a method for producing the same, and an electrochemical element using the non-aqueous electrolyte, and more particularly to improvement of a non-aqueous electrolyte containing an alkaline earth metal chloride as a supporting salt.
- lithium metal or an intercalation compound of lithium and graphite is used as the negative electrode active material from the viewpoint of low potential and high capacity.
- the electric capacity of lithium metal is 2060 mAh / cm 3
- the interlayer compound has a composition of C 6 Li and an electric capacity of 850 mAh / cm 3 .
- devices equipped with batteries for example, mobile phones, portable information devices, laptop computers, video cameras, portable game devices, etc.
- the demand for higher energy density of batteries is also increasing.
- a negative electrode active material having a capacity higher than that of lithium metal or the interlayer compound for example, magnesium metal (electric capacity: 3830 mAh / cm 3 ) or calcium metal (electric capacity: 2070 mAh / cm 3 ) is used.
- Non-aqueous electrolyte batteries used as substances are being studied. If such a battery is realized, higher energy density can be expected than a battery using lithium metal as a negative electrode active material.
- a non-aqueous electrolyte having high ion conductivity and containing magnesium ions at a high concentration is required.
- an electrochemical element such as a battery or a capacitor
- a nonaqueous electrolyte containing a nonaqueous solvent and a supporting salt dissolved in the nonaqueous solvent is used as the electrolyte.
- the supporting salt dissociates into a cation and an anion, and these ions (particularly, the cation) serve as charge carriers in the battery reaction.
- Lithium primary batteries lithium manganese dioxide batteries, lithium fluorocarbon batteries, etc.
- lithium secondary batteries, lithium ion capacitors, and the like are typical electrochemical elements.
- ions serving as charge carriers are used.
- carrier ions is mainly lithium ions.
- a lithium salt is used as a supporting salt.
- lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), Lithium trifluoromethyl sulfonate (LiCF 3 SO 3 ), lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) and the like are widely used.
- Lithium ion is a monovalent cation, but if a polyvalent cation such as magnesium ion is used as the carrier ion, it can carry twice or more charge even if the concentration of the carrier ion in the non-aqueous electrolyte is the same.
- Alkaline earth metal ions such as magnesium ions are divalent cations and are expected to be used as carrier ions because of their relatively small formula weight.
- the usage-amount of a nonaqueous electrolyte can be decreased when the formula amount of a support salt is small, the volume which an electrode occupies can be enlarged, and it is easy to raise an energy density by this.
- the anions constituting the supporting salt are hexafluorophosphate ion (PF 6 ⁇ ), tetrafluoroborate ion (BF 4 ⁇ ), perchlorate ion (ClO 4 ⁇ ), trifluoromethanesulfonylimide ion (N (SO 2 Since it is composed of non-metallic elements such as CF 3 ) 2 ⁇ ), it is easy to make the formula amount relatively small, which helps increase the energy density of the electrochemical device. For example, Mg (ClO 4 ) 2 , Mg (N (SO 2 CF 3 ) 2 ) 2 and the like are relatively easy to dissolve in a non-aqueous solvent.
- the supporting salt when combined with a polyvalent cation, contains twice or more anions as compared with the lithium salt, so that the formula weight of the supporting salt is increased.
- the selection of the anion is also important.
- Non-Patent Document 1 reports that when an electrolytic solution in which magnesium bromide (MgBr 2 ) is dissolved in 2-methyltetrahydrofuran is used, the magnesium metal of the negative electrode can be dissolved and precipitated.
- magnesium bromide MgBr 2
- the formula amount of magnesium chloride is 95.2, almost the same as the formula amount of LiBF 4 : 93.7, and smaller than the formula amount of LiPF 6 : 151.9.
- alkaline earth metal chlorides such as magnesium chloride have low solubility in organic solvents and generally hardly dissolve in carbonates or the like used as nonaqueous solvents.
- Patent Document 1 a polymer electrolyte in which ⁇ -type magnesium chloride is uniformly dissolved in polyethylene glycol is studied.
- Patent Document 2 proposes a magnesium ion-containing electrolytic solution containing magnesium chloride and an aluminum complex. Patent Document 2 suggests that magnesium chloride is dissolved by changing to a binuclear complex ion by the action of an aluminum complex.
- Non-Patent Document 1 teaches that magnesium bromide can be used as a supporting salt for an electrolyte.
- the formula weight of magnesium bromide is 184.1, much higher than the formula weight of magnesium chloride, and even higher than the formula weight of LiPF 6 : 151.9. Therefore, the merit of using magnesium bromide is small from the viewpoint of increasing the energy density.
- magnesium bromide or Mg (ClO 4 ) 2 or Mg (N (SO 2 CF 3 ) 2 ) 2 having relatively high solubility in a non-aqueous solvent is used as a non-aqueous electrolyte
- Magnesium metal is acicular and easily precipitated. Magnesium metal is harder than lithium metal, so when acicular crystals are deposited, internal short circuit is very likely to occur.
- Patent Document 1 discloses a polymer electrolyte in which ⁇ -type magnesium chloride is uniformly dissolved in polyethylene glycol. The polymer electrolyte is considered to be less likely to cause a short circuit due to needle-like crystals than the electrolytic solution. However, Patent Document 1 does not disclose a specific concentration at which magnesium chloride dissolves. In general, it is considered difficult to dissolve magnesium chloride having low solubility in an organic solvent in a polymer at a high concentration. And since the electrolyte of patent document 1 is a polymer electrolyte, its ion conductivity is low compared with electrolyte solution. Therefore, in patent document 1, the ion conductivity sufficient to take out sufficient electric current as a battery cannot be obtained.
- Patent Document 2 describes that 1 mol of aluminum complex acts on 1 mol of magnesium chloride to produce a binuclear complex ion of magnesium, and this ion dissolves in the electrolyte.
- the produced binuclear complex ion contains two atoms of magnesium, but since the valence as a whole is divalent, the charge that can be carried is the same as in the case of lithium ion.
- an equimolar aluminum complex is required to dissolve magnesium chloride.
- the aluminum complex has a large formula weight, and causes an unnecessary increase in the amount of electrolyte used.
- aluminum complexes are highly flammable and corrosive, so care must be taken when handling them.
- an electrochemical element having a high energy density can be obtained by using a non-aqueous electrolyte containing a high concentration of alkaline earth metal ions.
- alkaline earth metal chlorides such as magnesium chloride are less expensive than lithium salts, it is expected that the cost of electrochemical devices can be reduced.
- alkaline earth metal chlorides such as magnesium chloride have low solubility in non-aqueous solvents, it is difficult to obtain a non-aqueous electrolyte using alkaline earth metal chloride as a supporting salt. Further, as described above, even if a non-aqueous solution containing magnesium ions can be prepared, it is difficult to sufficiently cause an electrochemical reaction capable of dissolving and precipitating magnesium metal as the negative electrode active material. That is, in reality, a non-aqueous electrolyte that contains alkaline earth metal ions at a high concentration, has electrochemical characteristics that can be used practically, and has high ionic conductivity has not yet been obtained.
- One aspect of the present invention is to provide a nonaqueous electrolyte for an electrochemical element that has practically sufficient ion conductivity and can improve the energy density, a method for producing the same, and an electrochemical element using the nonaqueous electrolyte. Objective.
- One aspect of the present invention includes a nonaqueous solvent and an alkaline earth metal chloride, and the alkaline earth metal chloride is dissolved in an amount of 0.015 mol or more with respect to 1 mol of the nonaqueous solvent.
- the present invention relates to a non-aqueous electrolyte for an electrochemical device in which the total amount of the non-aqueous solvent and the alkaline earth metal chloride occupies 70% by mass or more.
- a mixture containing a nonaqueous solvent and an alkaline earth metal chloride in an amount of 0.015 mol or more per 1 mol of the nonaqueous solvent is heated at a temperature of 50 ° C. or more.
- the mixture obtained in the first step and the step A while stirring is cooled to a temperature of 35 ° C. or lower, and further stirred, whereby the alkaline earth metal chloride is added to 1 mol of the non-aqueous solvent.
- Still another aspect of the present invention provides a mixture containing a non-aqueous solvent containing at least tetrahydrofuran and magnesium chloride in an amount of 0.05 mol or more with respect to 1 mol of the non-aqueous solvent at a temperature of 35 ° C. or less.
- the present invention relates to a method for producing a non-aqueous electrolyte for an electrochemical device, comprising a solution dissolved in tetrahydrofuran.
- Another aspect of the present invention relates to an electrochemical device comprising a first electrode, a second electrode having a polarity different from that of the first electrode, and the nonaqueous electrolyte.
- Yet another aspect of the present invention includes a negative electrode current collector and a deposit of a negative electrode active material containing an alkaline earth metal and an alkali metal attached to the surface of the negative electrode current collector,
- the non-aqueous electrolyte is deposited on the surface of the negative electrode current collector by flowing a reduction current through the negative electrode current collector, and the non-aqueous electrolyte is a non-aqueous solvent and an alkali dissolved in the non-aqueous solvent.
- An earth metal chloride and an alkali metal chloride wherein the alkali earth metal chloride is dissolved in an amount of 0.015 mol or more with respect to 1 mol of the non-aqueous solvent; And a negative electrode for an electrochemical element, wherein the total amount of the alkaline earth metal chloride accounts for 70% by mass or more of the total.
- the alkaline earth metal chloride is dissolved at a high molar ratio with respect to the nonaqueous solvent, the ion conductivity that can withstand the use as the nonaqueous electrolyte of the electrochemical element is obtained.
- the energy density of the electrochemical device can be improved.
- Sample No. 1 of Example 1 using an iron working electrode. 2 is a cyclic voltammogram of solution 2;
- Sample No. 1 of Example 1 4 is a cyclic voltammogram of solution 4;
- Sample No. 1 of Example 1 4 is an electron micrograph of the tip of the working electrode after the fourth cathode sweep in cyclic voltammetry (CV) measurement of solution No. 4;
- Sample No. 1 of Example 1 using a silver working electrode. 2 is a cyclic voltammogram of solution 2;
- Sample No. of Comparative Example 2 6 is a cyclic voltammogram of solution 6;
- Sample No. 2 in Example 2 14 is a cyclic voltammogram of 14 solutions.
- Example 2 15 is a cyclic voltammogram of 15 solutions.
- Sample No. 2 in Example 2 9 is a cyclic voltammogram of 9 solutions.
- Sample No. 2 in Example 2 16 is a graph showing reduction electric energy (Qcathodic) and oxidation electric energy (Qanodic) in a negative electrode when a charge / discharge cycle is repeated in a lithium secondary battery using an electrode having a deposit precipitated in 16 solutions as a negative electrode. is there.
- Example 3 17 is an X-ray diffraction spectrum by 2 ⁇ / ⁇ method using CuK ⁇ rays of 17 mixtures.
- Sample No. of Example 3 18 is an X-ray diffraction spectrum by 2 ⁇ / ⁇ method using CuK ⁇ rays of 18 mixtures.
- Sample No. of Example 3 18 is a cyclic voltammogram of 17 mixtures. It is explanatory drawing which shows an example of a structure of an electrochemical element notionally.
- a non-aqueous electrolyte for an electrochemical device includes a non-aqueous solvent and an alkaline earth metal chloride, and the alkaline earth metal chloride is 0 with respect to 1 mol of the non-aqueous solvent. It is dissolved in an amount of .015 mol or more, and the total amount of the nonaqueous solvent and the alkaline earth metal chloride accounts for 70% by mass or more of the whole.
- alkaline earth metal ions are divalent cations, they can carry twice as much charge in a solution having the same concentration as a monovalent cation such as lithium ion. Therefore, development of a non-aqueous electrolyte containing alkaline earth metal ions is expected.
- Conventional alkaline earth metal salts considered to be usable as supporting salts include Mg (ClO 4 ) 2 , Mg (N (SO 2 CF 3 ) 2 ) 2 , and MgBr 2 .
- Mg (ClO 4 ) 2 and Mg (N (SO 2 CF 3 ) 2 ) 2 have relatively high solubility in non-aqueous solvents, but ion conductivity comparable to lithium ion conductivity in lithium secondary batteries and the like. It is difficult to get sex. Moreover, since the alkaline earth metal salt has a large anion formula, the amount of non-aqueous electrolyte used is increased, which is disadvantageous in increasing the energy density of the electrochemical device.
- Alkaline earth metal chlorides such as magnesium chloride have a relatively small formula weight as compared with conventional alkaline earth metal salts, so if they can be used as supporting salts, it is considered that the energy density of electrochemical devices can be increased. It is done.
- alkaline earth metal chlorides generally have very low solubility in non-aqueous solvents used in non-aqueous electrolytes, and therefore alkaline earth metal chlorides are used as supporting salts and non-aqueouss exhibiting high ionic conductivity. Obtaining an electrolyte has been difficult. Due to the low solubility of alkaline earth metal chlorides, impurities that are hardly soluble in non-aqueous solvents (carbonates, oxides, etc.) are present on the solid surface. This is caused by the inhibition of the dissolution.
- alkali to non-aqueous solvent for example, by removing impurities on the solid surface of alkaline earth metal chloride or adding alkali metal chloride to alkaline earth metal chloride, alkali to non-aqueous solvent can be obtained. It has been found that the solubility of earth metal chlorides can be increased (or promote dissolution). A mixture (including a solution) containing a high concentration of dissolved alkaline earth metal chloride is obtained, and such a mixture has high ionic conductivity sufficient to be used as a non-aqueous electrolyte for an electrochemical device. It became clear to show sex.
- the non-aqueous electrolyte according to one embodiment of the present invention includes an alkaline earth metal chloride dissolved at a high concentration in a non-aqueous solvent, and thus is sufficient to cause an electrochemical reaction in an electrochemical device. It has ionic conductivity. Also, the alkaline earth metal chloride has a smaller formula weight than that of the conventional non-aqueous electrolyte support salt, and the formula weight can be the same as the lithium salt used as the support salt of the lithium battery. Accordingly, sufficient ion conductivity can be ensured even with a small amount of use, and the volume occupied by the electrode can be increased, so that the energy density of the electrochemical device can be improved.
- a dendritic precipitate of lithium metal is formed during charging, and this precipitate may cause an internal short circuit between the positive electrode and the negative electrode.
- a non-aqueous electrolyte containing an alkaline earth metal ion such as magnesium ion is used, a precipitate containing an alkaline earth metal may be formed on the electrode surface.
- Alkaline earth metals such as magnesium metal have a higher hardness than lithium metal, so if they are deposited in the form of needles or dendrites, they tend to cause internal short circuits.
- acicular precipitates containing magnesium metal are likely to be deposited.
- non-aqueous electrolyte even if alkaline earth metal is deposited on the electrode surface, the shape of the precipitate tends to be particulate. Therefore, unlike the case of acicular precipitates, it is difficult to cause an internal short circuit between the positive electrode and the negative electrode. From such a viewpoint, it is desirable to use a nonaqueous electrolyte containing an alkaline earth metal chloride as a supporting salt.
- Patent Document 2 a nonaqueous electrolyte containing an alkaline earth metal chloride dissolved at a high concentration can be obtained without using an aluminum complex that requires careful handling. Can do.
- an alkaline earth metal chloride cannot be dissolved in a nonaqueous solvent unless a large amount of aluminum complex is added.
- the total amount of the non-aqueous solvent and the alkaline earth metal chloride accounts for 70% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more of the entire non-aqueous electrolyte.
- the upper limit of the ratio of the total amount of the nonaqueous solvent and alkaline earth metal chloride in the nonaqueous electrolyte is not particularly limited, and may be 100% by mass, or 99% by mass or 95% by mass. May be. These lower limit value and upper limit value can be arbitrarily selected.
- the total amount may be, for example, 70 to 100% by mass, or 70 to 95% by mass.
- the non-aqueous electrolyte contains an alkali metal chloride in addition to the non-aqueous solvent and the alkaline earth metal chloride, the non-aqueous solvent, the alkaline earth metal chloride and the alkali metal chloride.
- the total amount may occupy, for example, 80% by mass or more, preferably 85% by mass, and more preferably 90% by mass or more of the entire nonaqueous electrolyte.
- the proportion of other components is relative Therefore, the amount of non-aqueous electrolyte used can be reduced while ensuring high ion conductivity.
- examples of other components include additives and polymers (polyethylene oxide, etc.).
- the amount of dissolved alkaline earth metal chloride is 0.015 mol or more, preferably 0.02 mol or more (for example, 0.025 mol or more) with respect to 1 mol of the non-aqueous solvent. More preferably, it is 0.03 mol or more. When the amount is less than 0.015 mol, it is difficult to obtain sufficient ionic conductivity for use as a non-aqueous electrolyte in an electrochemical device.
- the amount of the dissolved alkaline earth metal chloride is, for example, 0.07 mol, preferably 0.05 mol, and more preferably less than 0.05 mol, with respect to 1 mol of the non-aqueous solvent.
- the upper limit of the above amount may be an amount at which the alkaline earth metal chloride has a supersaturated concentration in the nonaqueous electrolyte, but is saturated so that alkaline earth metal chloride crystals do not precipitate in the nonaqueous electrolyte. It is preferable that it is below the quantity used as a density
- the amount of the alkaline earth metal chloride dissolved with respect to 1 mol of the non-aqueous solvent may be, for example, 0.015 to 0.07 mol, or 0.02 mol or more and less than 0.05 mol.
- the non-aqueous electrolyte contains an alkaline earth metal chloride dissolved in a high concentration in a non-aqueous solvent.
- the dissolved alkaline earth metal chloride dissociates into alkaline earth metal ions (cations) and chloride ions (anions).
- alkaline earth metal ions are precipitated or eluted again as alkaline earth metal on the electrode surface.
- alkaline earth metal ions form an alloy on the electrode surface or elute again from the alloy depending on the type of electrode active material and the type of other cations contained in the non-aqueous electrolyte.
- alkaline earth metal ions are responsible for the electrochemical reaction at the electrode, thereby obtaining alkaline earth metal ion conductivity. Can do.
- the non-aqueous electrolyte may be a solution. Further, when a non-aqueous solvent and an alkaline earth metal chloride in an amount equal to or higher than the saturation concentration are mixed under predetermined conditions, an adduct obtained by adding a non-aqueous solvent to the alkaline earth metal chloride, and an alkaline earth metal A semi-solid mixture containing a solution of metal chloride dissolved in a non-aqueous solvent may be obtained. Such a semi-solid mixture also contains a large amount of alkaline earth metal ions as in the case of the solution, and thus exhibits high ionic conductivity. Moreover, when used for an electrochemical element, alkaline earth metal can be deposited on the electrode surface and redissolved. Therefore, such a semi-solid mixture can also be used as a non-aqueous electrolyte.
- semi-solid means a state where a solid adduct and a solution coexist, and is non-gel.
- a semi-solid non-aqueous electrolyte non-aqueous solvent is added to the alkaline earth metal chloride particles remaining without being dissolved in the non-aqueous solvent to swell. A solution in which the metal species is dissolved in the non-aqueous solvent is retained.
- Such a semi-solid nonaqueous electrolyte is preferably in a deformable form such as a slurry or meringue. The semi-solid non-aqueous electrolyte is less likely to cause an internal short circuit than the solution.
- the solid adduct is formed in the process of stirring the alkaline earth metal chloride in the mixture containing the alkaline earth metal chloride and the non-aqueous solvent. In the mixture, the solid adduct aggregates into a soft mass such as cotton or snow.
- the amount of the alkaline earth metal chloride contained in the semi-solid nonaqueous electrolyte is, for example, 0.04 mol or more, preferably 0.05 mol or more with respect to 1 mol of the nonaqueous solvent.
- the amount of the alkaline earth metal chloride relative to 1 mol of the nonaqueous solvent is, for example, 0.7 mol or less, preferably 0.6 mol or less. These lower limit values and upper limit values can be arbitrarily combined.
- the amount of alkaline earth metal chloride in the semi-solid non-aqueous electrolyte may be 0.04 to 0.7 mol, or 0.05 to 0.6 mol with respect to 1 mol of the non-aqueous solvent. .
- the above adduct may be, for example, a compound in which 1 to 6 molecules of nonaqueous solvent is added to 1 molecule of alkaline earth metal chloride, and 1.2 to 5 molecules of nonaqueous solvent are added. It may be a compound.
- the adduct can be made solid, and the non-aqueous electrolyte tends to take a semi-solid form.
- alkaline earth metal chloride contained in the non-aqueous electrolyte a chloride of a Group 2 element in the periodic table can be used, but magnesium chloride (MgCl 2 ), calcium chloride, strontium chloride, barium chloride and the like are preferable.
- Alkaline earth metal chlorides can be used singly or in combination of two or more. Of these chlorides, magnesium chloride, calcium chloride, and the like are preferable because of their small formula weight.
- the alkaline earth metal chloride preferably contains at least magnesium chloride.
- the proportion of magnesium chloride in the alkaline earth metal chloride is, for example, 80 mol% or more, preferably 90 mol% or more or 95 mol% or more.
- the alkaline earth metal chloride may be magnesium chloride (that is, the alkaline earth metal chloride may contain 100 mol% of magnesium chloride).
- Nonaqueous solvents include ethers, carbonates, carboxylic acid esters, nitriles (eg, aliphatic nitriles such as acetonitrile, propionitrile, adiponitrile), sulfoxides (eg, dimethyl sulfoxide), pyrrolidones (eg, N-methyl-2-pyrrolidone), etc. Can be illustrated. Moreover, you may use an ionic liquid as a nonaqueous solvent. These non-aqueous solvents can be used singly or in combination of two or more. Of these non-aqueous solvents, ether, carbonate, carboxylic acid ester and the like are preferable.
- Ethers include tetrahydrofuran (THF), 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 1,3-dioxolane, 2-methyl-1,3-dioxolane, tetrahydropyran, 2-methyl-tetrahydro
- examples include cyclic ethers such as pyran (such as cyclic ethers having 1 or 2 oxygen atoms); chain ethers.
- chain ethers examples include dialkyl ethers such as diethyl ether and methyl butyl ether (diC 1-6 alkyl ethers); 1,2-dimethoxyethane, 1-methoxy-2-ethoxyethane, 1,2-diethoxyethane, etc.
- Dialkoxyalkanes such as diC 1-4 alkoxy-C 1-4 alkanes; glymes such as diglyme, triglyme and tetraglyme; It can be illustrated.
- ethers can be used singly or in combination of two or more.
- cyclic ethers are preferred, among which 5- to 8-membered cyclic ethers having 1 or 2 oxygen atoms (preferably 5- to 6-membered cyclic ethers), particularly THF, 2-methyltetrahydrofuran, etc.
- THF having a substituent (such as a C 1-4 alkyl group).
- Examples of the carbonate include cyclic carbonates; chain carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl butyl carbonate, methyl pentyl carbonate (di-C 1-6 alkyl-carbonate, etc.).
- Examples of cyclic carbonates include alkylene carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (C 2-5 alkylene-carbonates); alkylene carbonates having fluorine atoms such as fluoroethylene carbonate (fluoro C 2 ⁇ 5 alkylene carbonates); cyclic carbonates having unsaturated bonds such as vinylene carbonate and vinyl ethylene carbonate. These carbonates can be used singly or in combination of two or more. Of these, cyclic carbonates are preferable, and PC is particularly preferable.
- carboxylic acid esters examples include cyclic carboxylic acid esters such as ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, furanone, 3-methyl-2 (5H) -furanone, ⁇ -angelicalactone;
- chain carboxylic acid ester examples include: Of these, cyclic carboxylic acid esters are preferred.
- the ionic liquid is a salt of a liquid cation and an anion in a molten state, and is preferably in a molten state at the operating temperature of the electrochemical element.
- the cation constituting the ionic liquid include organic onium ions containing a nitrogen atom, a phosphorus atom, a sulfur atom, and the like.
- organic onium ions containing nitrogen atoms include quaternary ammonium ions and nitrogen-containing cyclic onium ions.
- quaternary ammonium ions include aliphatic quaternary ammonium ions, for example, tetraalkylammonium ions such as tetraethylammonium ion, tetrabutylammonium ion, tetraoctylammonium ion, and triethylmethylammonium ion (tetra C 1-10 alkylammonium ion).
- tetraalkylammonium ions such as tetraethylammonium ion, tetrabutylammonium ion, tetraoctylammonium ion, and triethylmethylammonium ion (tetra C 1-10 alkylammonium ion).
- trialkyl-alkoxyalkylammonium ions such as diethylmethyl-2-methoxyethylammonium ion (such as tri-C 1-10
- nitrogen-containing cyclic onium ions examples include spiro- (1,1) -bipyrrolidinium ion ((C 4 H 8 ) 2 N + ), butylmethylpyrrolidinium ion ((C 4 H 9 ) (CH 3 ) (C 4 H 8) N +) pyrrolidinium ions such as; propyl methyl piperidinium ion ((C 3 H 7) ( CH 3) (C 5 H 10) , etc. N +) piperidinium ions, and others.
- organic onium ion containing a phosphorus atom in the quaternary ammonium ion, an organic phosphonium ion in which a nitrogen atom is replaced with a phosphorus atom can be exemplified.
- organic onium ions containing a sulfur atom include trialkylsulfonium ions such as trimethylsulfonium ion and dimethylethylsulfonium ion (such as tri-C 1-10 alkylsulfonium ion).
- the ionic liquid may contain one kind of these cations or a combination of two or more kinds.
- anion constituting the ionic liquid examples include PF 6 ⁇ , BF 4 ⁇ , ClO 4 ⁇ , perfluoroalkyl sulfonate ion (trifluoromethyl sulfonate ion: CF 3 SO 3 — and the like), sulfonylimide ion and the like. .
- sulfonylimide ions are preferred, and specific examples include (FSO 2 ) 2 N ⁇ , (FSO 2 ) (CF 3 SO 2 ) N ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ , (CF 3 SO 2 ) (C 4 F 9 SO 2 ) N ⁇ , (CF 3 SO 2 ) (CF 3 CO) N ⁇ and other chain sulfonylimide ions; the a (CF 2 SO 2) 2 N -, CF 2 (CF 2 SO 2) having a 6-membered ring 2 N -, and the like cyclic imide ion such.
- the ionic liquid may contain one of these anions or a combination of two or more.
- the non-aqueous solvents at least one selected from the group consisting of ether and carbonate is preferred.
- the non-aqueous solvent contains at least cyclic carbonate or THF.
- the cyclic carbonate preferably contains at least PC.
- Alkaline earth metal chlorides such as magnesium chloride have low solubility in such non-aqueous solvents (especially ethers such as THF) and are difficult to dissolve at high concentrations.
- the solubility of alkaline earth metal chloride can be increased, and high ion conductivity can be ensured.
- the content of THF in the non-aqueous solvent is, for example, 60 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more. Further, the content of THF in the non-aqueous solvent may be, for example, 99 mol% or less, and the non-aqueous solvent may contain only THF.
- the content of PC in the non-aqueous solvent is, for example, 60 mol% or more, preferably 80 mol% or more, and more preferably 90 mol% or more. Further, the content of PC in the non-aqueous solvent may be, for example, 99 mol% or less, and the non-aqueous solvent may contain only PC.
- the lithium salt used as the supporting salt of the nonaqueous electrolyte is PF 6 ⁇ , BF 4 ⁇ , ClO 4 ⁇ , N (SO 2 CF 3 ) 2 as an anion. -, and the like.
- chloride ion Cl - since the amount of the formula is small, if using the chloride as a supporting salt, easy to reduce the amount of non-aqueous electrolyte.
- alkali metal chlorides such as lithium chloride have low solubility in non-aqueous solvents generally used for non-aqueous electrolytes. Therefore, like alkaline earth metal chlorides, it is difficult to dissolve at a high concentration and it is difficult to use as a supporting salt for non-aqueous electrolytes.
- alkaline earth metal chlorides and alkali metal chlorides have low solubility in non-aqueous solvents individually.
- combining alkaline earth metal chlorides and alkali metal chlorides increases the individual solubility, so that any chloride can be dissolved in a non-aqueous solvent at a high concentration, and high ion conductivity can be obtained. I understood.
- the non-aqueous electrolyte may further include an alkali metal chloride dissolved in a non-aqueous solvent.
- an alkali metal chloride dissolved in a non-aqueous solvent.
- the coexistence of alkaline earth metal chlorides and alkali metal chlorides facilitates the dissolution of individual chlorides (especially the dissolution of alkali metal chlorides) and is sufficient to act as an electrolyte salt. Ion concentration (and ion conductivity) can be obtained.
- Alkali metal chlorides have very low solubility in non-aqueous solvents such as ethers, carbonates, carboxylic acid esters, etc., but even when using such non-aqueous solvents by coexisting with alkaline earth metal chlorides, Solubility can be improved and sufficient ion conductivity to function as a nonaqueous electrolyte can be ensured.
- Alkali metal chlorides include lithium chloride, sodium chloride, potassium chloride, rubidium chloride, cesium chloride, and francium chloride. These alkali metal chlorides can be used singly or in combination of two or more. Of these, lithium chloride, sodium chloride, potassium chloride and the like are preferable from the viewpoint of a small formula weight, and it is particularly preferable that the alkali metal chloride contains at least lithium chloride.
- the content of lithium chloride in the alkali metal chloride is preferably 90 mol% or more, and may be 95 mol% or more.
- a non-aqueous electrolyte containing both alkaline earth metal chlorides and alkali metal chlorides at least one of alkaline earth metal ions and alkali metal ions serves as a charge carrier.
- the type of ion serving as a carrier depends on the type of non-aqueous solvent. For example, when the non-aqueous solvent contains a large amount of carbonate, carboxylic acid ester, etc., alkali metal ion conductivity tends to be dominant. In addition, when the non-aqueous solvent contains a large amount of ether, alkaline earth metal ion conductivity tends to be dominant.
- the type of ions serving as the carrier can be controlled. Therefore, such a non-aqueous electrolyte can be applied to an electrochemical element using any one of an alkali metal and an alkaline earth metal as an electrode active material while having a simple composition.
- the amount of the dissolved alkali metal chloride is, for example, 0.001 mol or more, preferably 0.005 mol or more, and 0.01 mol or more with respect to 1 mol of the nonaqueous solvent. Is preferred.
- the amount of the dissolved alkali metal chloride is, for example, 0.05 mol or less, preferably 0.045 mol or less, more preferably 0.04 mol or less, with respect to 1 mol of the non-aqueous solvent. These lower limit values and upper limit values can be arbitrarily combined.
- the amount of dissolved alkali metal chloride per mole of non-aqueous solvent may be, for example, 0.001 to 0.05 mole or 0.005 to 0.045 mole.
- both the alkaline earth metal chloride and the alkali metal chloride are not highly concentrated. Easy to dissolve in water solvent.
- the amount of the alkali metal chloride per 1 mol of the alkaline earth metal chloride can be selected, for example, from the range of 0.1 to 3 mol, preferably 0.2 to 2.5 mol, preferably 0.3 to 2 .2 is preferable.
- the amount of alkali metal chloride relative to 1 mol of alkaline earth metal chloride is 0.2 to 1.5 mol. Is preferable, and 0.3 to 1.2 mol is more preferable.
- the non-aqueous solvent contains more than 50 mol% of ether
- a relatively large amount of alkali metal chloride can be dissolved
- the amount of alkali metal chloride relative to 1 mol of alkaline earth metal chloride is For example, it is 0.4 to 2.5 mol, and may be 0.5 to 2.3 mol.
- the amount of the alkali metal chloride relative to the alkaline earth metal chloride is in the above range, it is easy to promote dissolution of the individual chlorides in the non-aqueous solvent.
- the non-aqueous electrolyte comprises a non-aqueous solvent containing at least THF and an alkaline earth metal chloride containing magnesium chloride.
- Impurities that are hardly soluble in non-aqueous solvents such as magnesium carbonate and magnesium oxide are present on the solid surface of magnesium chloride, which inhibits dissolution of magnesium chloride inside the solid. Therefore, the solubility with respect to non-aqueous solvents, such as THF, is low.
- the embodiment (a) by removing impurities on the solid surface of magnesium chloride by a method as described later, dissolution of magnesium chloride in a non-aqueous solvent is promoted and non-contained high concentration of dissolved magnesium chloride. A water electrolyte can be obtained.
- the non-aqueous electrolyte includes magnesium chloride, but may further include other than the above-exemplified alkaline earth metal chlorides as required.
- magnesium chloride and other alkaline earth metal chlorides are contained, it is advantageous in increasing the solubility of magnesium chloride.
- the non-aqueous electrolyte can contain components other than alkaline earth metal chlorides and non-aqueous solvents. However, from the viewpoint of oxidation resistance, it is preferable that the nonaqueous electrolyte does not contain alkaline earth metal bromides such as magnesium bromide, strontium bromide, and barium bromide. Moreover, it is preferable that the electrode of an electrochemical element does not contain perfluoroalkylsulfonylimide salts such as Mg (N (SO 2 CF 3 ) 2 ) 2 from the viewpoint of efficiently depositing and dissolving magnesium metal.
- alkaline earth metal bromides such as magnesium bromide, strontium bromide, and barium bromide.
- the electrode of an electrochemical element does not contain perfluoroalkylsulfonylimide salts such as Mg (N (SO 2 CF 3 ) 2 ) 2 from the viewpoint of efficiently depositing and dissolving magnesium metal.
- the non-aqueous solvent can contain other solvents (those other than THF among the above-mentioned non-aqueous solvents) in addition to THF. Is preferably less.
- the THF content in the non-aqueous solvent can be selected from the above range, and may be 95 mol% or more.
- the amount of dissolved alkaline earth metal chloride (including magnesium chloride) with respect to 1 mol of the non-aqueous solvent can be selected from the above range, but is 0.025 mol or more. It is particularly preferable that the amount is 0.03 mol or more.
- the concentration of alkaline earth metal ions such as magnesium ions in the non-aqueous electrolyte is high, which is advantageous for ensuring high ion conductivity. is there.
- the nonaqueous electrolyte of the embodiment (a) is preferably a solution.
- the amount of dissolved magnesium chloride is preferably an amount that provides a saturated concentration of alkaline earth metal chloride.
- the non-aqueous electrolyte of the embodiment (a) exhibits high magnesium ion conductivity because it contains magnesium ions at a high concentration by dissolution of magnesium chloride.
- the non-aqueous electrolyte includes a non-aqueous solvent, an alkaline earth metal chloride and an alkali metal chloride dissolved in the non-aqueous solvent.
- the amount of each chloride dissolved can be selected from the above range.
- the alkaline earth metal chloride preferably contains at least magnesium chloride.
- the alkali metal chloride preferably contains at least lithium chloride. When lithium chloride is used, the solubility of both can be greatly improved when combined with magnesium chloride.
- Alkali metal chlorides such as lithium chloride generally dissolve in non-aqueous solvents at concentrations sufficient to function as non-aqueous electrolytes because of their low solubility in organic solvents such as those used as non-aqueous solvents for non-aqueous electrolytes. It is difficult to let Lithium chloride can be dissolved by using a phosphate ester such as triethyl phosphate as a solvent. However, since the obtained solution is reduced and decomposed by an alkali metal or an alkaline earth metal used as an electrode active material of an electrochemical element, it is difficult to use it as a non-aqueous electrolyte.
- the non-aqueous solvent is preferably at least one selected from the group consisting of ether and carbonate.
- the ether preferably includes at least a cyclic ether (particularly THF), and the carbonate preferably includes at least a cyclic carbonate (particularly PC).
- the amount of magnesium chloride per mole of THF can be selected from the range of the amount of alkaline earth metal chloride per mole of non-aqueous solvent described for the semi-solid non-aqueous electrolyte, preferably 0.8. 05-0.7 mol or 0.05-0.6 mol.
- the number of THF molecules added to one molecule of magnesium chloride can be selected from the range of the number of molecules of the non-aqueous solvent added to one molecule of alkaline earth metal chloride described above. It is preferably 4.5 molecules or 1.5 to 4 molecules.
- the non-aqueous solvent is not limited to THF as long as the non-aqueous electrolyte has a semi-solid form (other than THF among the non-aqueous solvents exemplified above). Can be included.
- the THF content in the non-aqueous solvent can be selected from the above range, and may be 95 mol% or more.
- the non-aqueous electrolyte according to the embodiment of the present invention has high ionic conductivity and can increase the energy density, various electrochemicals such as a battery such as a primary battery and a secondary battery and a capacitor (such as a hybrid capacitor). It can be used as a non-aqueous electrolyte for an element (such as an electrochemical energy storage device). Further, as described later, since a redox reaction can be performed when a metal / metal chloride electrode is used, as a highly reliable non-aqueous electrolyte of a reference electrode required for developing an electrochemical element. Can also be used.
- the non-aqueous electrolyte is effective in obtaining an electrochemical element having high energy density and reliability because it can be stably prepared while containing alkaline earth metal ions at a high concentration.
- Non-aqueous electrolyte production method a method for producing a nonaqueous electrolyte will be described by taking a preferred embodiment as an example.
- the non-aqueous electrolyte is desirably manufactured in an atmosphere of an inert gas (nitrogen gas, argon gas, etc.).
- the alkaline earth metal chloride solids are rubbed with each other in the step A of stirring the mixture under heating, and the hardly soluble impurities existing on the solid surface are removed.
- the alkaline earth metal chloride can be dissolved in a non-aqueous solvent at a temperature of 35 ° C. or lower in subsequent Step B. Therefore, as in Patent Document 2, alkaline earth metal chloride can be dissolved in a non-aqueous solvent at a high concentration without using an aluminum complex that requires careful handling, and the alkaline earth metal ion concentration is sufficient. High non-aqueous electrolyte can be prepared.
- Process A temperature is 50 ° C. or higher, preferably 55 ° C. or higher, and preferably 60 ° C. or higher.
- the temperature in step A is not higher than the decomposition point of the nonaqueous solvent, and is preferably not higher than the boiling point.
- the stirring time in step A is, for example, 10 to 60 hours, preferably 12 to 48 hours.
- step A the alkaline earth metal chloride from which impurities on the surface are removed is dissolved in a non-aqueous solvent by further stirring in step B.
- the temperature in Step B is 35 ° C. or less, preferably room temperature (about 20 to 35 ° C.), more preferably 30 ° C. or less (for example, 20 to 30 ° C.).
- the stirring time in Step B is, for example, 24 to 150 hours, preferably 48 to 100 hours, and more preferably 60 to 90 hours.
- the semi-solid nonaqueous electrolyte is a mixture containing a nonaqueous solvent and an alkaline earth metal chloride in an amount equal to or higher than a saturated concentration, at 35 ° C. or lower. It can obtain by passing through the process C which produces
- step C the non-aqueous solvent coordinates to the alkaline earth metal chloride solid (particles) present in the mixture without dissolving, and swells.
- a solution in which the alkaline earth metal chloride is dissolved in the non-aqueous solvent is held between the swollen ones and the surface thereof.
- the non-aqueous electrolyte becomes a semi-solid state in which the solid adduct and the solution coexist.
- bubbles enter and the nonaqueous electrolyte expands including bubbles and becomes meringue-like.
- the temperature during stirring is specifically 35 ° C. or less, preferably room temperature (about 20 to 35 ° C.), and preferably 30 ° C. or less (for example, 20 to 30 ° C.). Is more preferable.
- Stirring can be performed by a known method, for example, a stirring method using a stirring bar or a stirring blade. Stirring is preferably performed at the slowest possible speed, and the stirring speed is, for example, 70 to 200 rpm, preferably 80 to 150 rpm. For example, in the case of stirring using a magnetic stirrer and a rotor, it is desirable to perform stirring at the lowest speed at which the mixture of solvent and alkaline earth metal chloride is stirred.
- the production method of the embodiment (e) is useful for producing the semi-solid nonaqueous electrolyte of the embodiment (c).
- the non-aqueous electrolyte comprises a non-aqueous solvent, an alkaline earth metal chloride in an amount of 0.015 mol or more per 1 mol of the non-aqueous solvent, and an alkali.
- the mixture containing the metal chloride is stirred while being heated at a temperature of 50 ° C. or higher, whereby the alkali is added to the non-aqueous solvent in an amount of 0.015 mol or more per 1 mol of the alkali metal chloride and the non-aqueous solvent. It can manufacture by passing through the process D which produces
- step D the alkaline earth metal chloride is easily dissolved in the non-aqueous solvent by heating.
- the alkali metal chloride is easily dissolved by the interaction with the alkaline earth metal chloride via chlorine ions. Therefore, the dissolution efficiency of the supporting salt can be increased.
- the heating temperature is 50 ° C. or higher, preferably 55 ° C. or higher or 60 ° C. or higher.
- the heating temperature is not higher than the decomposition temperature of the nonaqueous solvent, and is preferably not higher than the boiling point.
- the heating time is, for example, 10 to 48 hours, preferably 12 to 36 hours.
- the non-aqueous electrolyte contains an alkali metal chloride in addition to the alkaline earth metal chloride. Therefore, after the heating and stirring, the nonaqueous electrolyte is stirred for a long time as in the step B of the embodiment (d). Even without these, these chlorides can be dissolved at high concentrations.
- Such a manufacturing method of the embodiment (f) is suitable for manufacturing the nonaqueous electrolyte of the embodiment (b).
- the alkaline earth metal chloride used is in the form of particles such as beads (spherical, spheroid, columnar, or these so that impurities on the solid surface can be easily peeled off. It is preferable that the shape is similar.
- the average particle size of the particulate alkaline earth metal chloride is, for example, preferably in the range of 0.1 to 2 mm, and more preferably in the range of 0.5 to 1.8 mm.
- the average particle diameter D 50 in the volume-based particle size distribution may be in such a range.
- An electrochemical element includes a first electrode, a second electrode having a polarity different from that of the first electrode, and the nonaqueous electrolyte.
- the non-aqueous electrolyte can cause a redox reaction on the electrode surface. Therefore, it is preferable to use, as at least one of the first electrode and the second electrode, an electrode that can flow a Faraday current related to the oxidation-reduction reaction.
- the first electrode and the second electrode are both non-aqueous electrolyte batteries that can pass a Faraday current, and the first electrode (positive electrode) is a polarizable electrode.
- a hybrid capacitor or the like in which the second electrode (negative electrode) is an electrode through which a Faraday current can flow is preferable.
- the non-aqueous electrolyte contains an alkaline earth metal ion and, if necessary, an alkali metal ion, thereby exhibiting alkaline earth metal ion conductivity and / or alkali metal ion conductivity. Therefore, electrode active material capable of causing precipitation and dissolution, alloying and dealloying of alkaline earth metal and / or alkali metal, causing insertion and desorption of alkaline earth metal ions and / or alkali metal ions It is suitable for combination with an electrode using an electrode active material that can be used.
- the non-aqueous electrolyte contains chloride ions
- a redox reaction that regenerates metal chloride by forming a metal simple substance at the positive electrode with charge / discharge. Can also be done. Therefore, the nonaqueous electrolyte can be combined with a positive electrode using a metal chloride.
- the electrochemical element examples include a nonaqueous electrolyte battery and a hybrid capacitor
- the nonaqueous electrolyte battery may be either a primary battery or a secondary battery. Since the oxidation-reduction reaction using a non-aqueous electrolyte occurs reversibly, the non-aqueous electrolyte is suitable for electrochemical devices such as non-aqueous electrolyte secondary batteries and hybrid capacitors. Since these electrochemical elements do not impair the low redox potential and high capacity of an alkaline earth metal such as magnesium, they can be electrochemical energy storage devices with high energy density.
- a negative electrode (second electrode) used for an electrochemical element such as a non-aqueous electrolyte battery or a hybrid capacitor is composed of a simple substance or an alloy of an alkaline earth metal (an alloy of a plurality of alkaline earth metals, an alkaline earth metal and an alkali metal, Alloys (for example, those having an alkaline earth metal content of 50 atomic% or more), intermetallic compounds containing an alkaline earth metal element (for example, an intermetallic compound of magnesium and bismuth and / or tin), A carbonaceous material is included as a negative electrode active material.
- an alloy of an alkaline earth metal such as a magnesium-lithium alloy and an alkali metal is preferable from the viewpoint of easy electrochemical precipitation and dissolution of the alkaline earth metal.
- the negative electrode active material can be selected according to the type of chloride contained in the nonaqueous electrolyte.
- the non-aqueous electrolyte contains an alkali metal chloride
- a simple substance and an alloy of an alkali metal a plurality of alkali metal alloys, an alloy of an alkali metal and an alkaline earth metal (for example, an alkali metal content of 50 atomic%) Etc.
- an alkali metal content of 50 atomic%) Etc. can also be used as the negative electrode active material.
- a metal simple substance or an alloy As a negative electrode active material, it is preferable that these contain the same kind of metal as the metal ion (especially metal ion used as a charge carrier) contained in a nonaqueous electrolyte.
- metal ion especially metal ion used as a charge carrier
- a nonaqueous electrolyte containing magnesium chloride magnesium metal, a magnesium alloy, or the like can be used as the negative electrode active material.
- magnesium metal, lithium metal, magnesium or lithium alloy is used depending on the type of carrier metal ion of the non-aqueous electrolyte it can.
- the carbonaceous material used as the negative electrode active material includes a carbonaceous material including a highly crystalline region such as a graphite structure; hard carbon, soft carbon; amorphous carbon material; nanocarbon (single-walled or multi-walled carbon nanotubes Etc.); activated carbon can be exemplified. Also, those containing alkaline earth metal ions and / or alkali metal ions in the structure of these carbonaceous materials (intercalated compounds in which alkaline earth metal ions are inserted into the graphite structure; A compound included in the crystalline carbon material can also be used as the negative electrode active material. These carbonaceous materials occlude and release carrier ions such as alkaline earth metal ions and / or alkali metal ions with charge and discharge.
- Examples of the carbonaceous material including a highly crystalline region include graphite (natural graphite, artificial graphite, etc.), graphitized mesophase carbon, and vapor growth carbon material.
- the carbonaceous material may be particulate or fibrous.
- Examples of the fibrous carbonaceous material include graphite fibers and vapor grown carbon fibers.
- the negative electrode active material can be used alone or in combination of two or more.
- the negative electrode may contain a negative electrode mixture.
- the negative electrode mixture can include a negative electrode active material and a conductive agent, a binder, and / or a thickener as optional components.
- the foil and plate-like body of these metals or alloys can be used as a negative electrode.
- the negative electrode mixture includes, for example, a powdery metal simple substance or alloy as a negative electrode active material and a powder mixture containing a conductive agent, a negative electrode active material, a conductive agent, a binder, and a thickener as necessary. It may be a mixture or the like. What inserted the electrical power collector in the powdery mixture may be used as a negative electrode, and a negative electrode may be formed by shape
- the current collector used for the negative electrode a conventional current collector used for each electrochemical device, for example, a nonporous or porous conductive substrate can be used.
- the metal material forming the negative electrode current collector include stainless steel, nickel, copper, and copper alloy.
- the conductive agent examples include carbon black such as acetylene black; conductive fiber such as carbon fiber; carbon fluoride; graphite and the like.
- the conductive agent may be particulate or fibrous.
- the binder include fluorine resins such as polyvinylidene fluoride; acrylic resins such as polymethyl acrylate and ethylene-methyl methacrylate copolymer; rubber-like materials such as styrene-butadiene rubber, acrylic rubber, and modified products thereof. It can be illustrated.
- the thickener examples include cellulose derivatives such as carboxymethyl cellulose; poly C 2-4 alkylene glycol such as polyethylene glycol.
- the dispersion medium for example, various solvents exemplified as the non-aqueous solvent can be used, and ethers such as THF, N-methyl-2-pyrrolidone and the like are preferable.
- the positive electrode (first electrode) in a non-aqueous electrolyte battery is a positive electrode such as a metal compound (oxide; sulfide; halide such as fluoride or chloride), fluorinated graphite or sulfur.
- a positive electrode such as a metal compound (oxide; sulfide; halide such as fluoride or chloride), fluorinated graphite or sulfur.
- the metal compound include oxides such as iron (III) oxide and vanadium pentoxide (V 2 O 5 ); sulfides such as iron sulfide (FeS 2 ) and molybdenum sulfide (MoS 3 ); iron (III) fluoride and the like
- the halide (fluoride etc.) of can be illustrated.
- lithium cobalt oxide LiCoO 2
- LiNiO 2 lithium nickel oxide
- LiMnO 2 O 4 lithium manganese oxide
- LiMnO 2 Li 2 Mn 2 O 3
- lithium iron phosphate LiFePO 4
- a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
- an electrochemical reaction occurs between the positive electrode active material and carrier ions such as alkaline earth metal ions and alkali metal ions contained in the nonaqueous electrolyte.
- carrier ions such as alkaline earth metal ions and alkali metal ions contained in the nonaqueous electrolyte.
- the metal compound such as iron (III) oxide, metal sulfide, or metal fluoride
- the metal compound is converted to metal during discharge, while alkaline earth metal ions are converted into the compound. Converted.
- alkaline earth metal ions such as Mg 2+
- alkali metal ions such as Li +
- oxides MgO, Li 2 O, etc.
- sulfides MgS, Li 2 S
- fluoride MgF 2 , LiF, etc.
- vanadium pentoxide When vanadium pentoxide is used as the positive electrode active material, carrier ions such as alkaline earth metal ions and alkali metal ions are reversibly inserted and released between the layers in the layered crystal structure of vanadium pentoxide.
- the positive electrode active material is sulfur
- alkaline earth metal sulfides and alkali metal sulfides are generated during discharge, and sulfur is regenerated during charging.
- fluorinated graphite carbon and fluoride (an alkaline earth metal fluoride such as MgF 2 and an alkali metal fluoride such as LiF) are generated during discharge.
- the non-aqueous electrolyte contains chloride ions, it can be combined with a positive electrode using metal chloride as an active material as described above.
- metal chlorides include transition metal chlorides such as vanadium chloride, chromium chloride, manganese chloride, iron chloride, cobalt chloride, nickel chloride, silver chloride, and copper chloride. Of these metal chlorides, silver chloride is preferred. When silver chloride is used as the positive electrode active material, chlorine ions are released from silver chloride during discharge to produce silver metal, and silver chloride is regenerated during charging. The same charge / discharge reaction occurs when other metal chlorides are used.
- the size (particle diameter, etc.) of the positive electrode active material is preferably small, and more preferably nano-sized.
- the positive electrode current collector a non-porous or porous conductive substrate used in each electrochemical device application can be used.
- the conductive material used for the current collector include metal materials such as stainless steel, titanium, aluminum, aluminum alloys, molybdenum, and tungsten; and conductive carbonaceous materials.
- a positive electrode used for a hybrid capacitor such as a lithium ion capacitor or an electric double layer capacitor can be used.
- an electrode capable of flowing a non-Faraday current such as an electrode capable of adsorbing an anion and a polarizable electrode capable of forming an electric double layer can be used. May be used.
- a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
- the positive electrode is preferably a polarizable electrode, and preferably includes activated carbon as a positive electrode active material.
- the activated carbon include activated carbon derived from natural plants such as coconut shell, activated carbon derived from synthetic resin such as phenol resin, activated carbon derived from fossil fuel such as coke, etc. Ultra fine powder obtained by activating carbon black Activated carbon or the like may be used. Activated carbon can be used individually by 1 type or in combination of 2 or more types.
- an anion such as a chloride ion or an anion generated by the interaction between an alkali metal salt and an alkaline earth metal salt
- an anion contained in the non-aqueous electrolyte is adsorbed on the surface of the positive electrode during charging. Or inserted. Further, cations (alkaline earth metal ions and / or alkali metal ions) are reduced on the negative electrode surface. During discharge, anions are released from the positive electrode and cations are released from the negative electrode.
- the positive electrode can be formed in the same manner as the negative electrode using a positive electrode active material.
- the positive electrode can include, for example, a positive electrode active material and a conductive agent, a binder, and / or a thickener as optional components.
- the positive electrode may be formed by compression molding a mixture of constituent components, or may be formed by adhering a mixture containing the constituent components to the surface of the positive electrode current collector.
- the mixture can contain a dispersion medium as required. As these components, those similar to those exemplified for the negative electrode can be used.
- the electrochemical device can further include a separator, if necessary.
- the separator is interposed between the first electrode and the second electrode, and has a function of electrically insulating the two while ensuring ionic conductivity.
- the non-aqueous electrolyte is a semi-solid (such as meringue-like) mixture
- a semi-solid non-aqueous electrolyte is interposed between the first electrode and the second electrode without using a separator.
- a separator is used.
- a separator may be used.
- separator examples include known ones used for non-aqueous electrolyte batteries and capacitor applications, such as porous films or nonwoven fabrics.
- material for forming the separator examples include polyolefin resins such as polyethylene and polypropylene; cellulose and the like.
- the electrode group may be formed by winding the first electrode, the second electrode, and a separator that separates them.
- the electrode plate group is not limited to a wound one, but may be a laminated one or a folded one.
- the shape of the electrode plate group may be, for example, a cylindrical shape or a flat shape, respectively, depending on the shape of the electrochemical element, the shape of the case, and the like.
- Electrochemical element can be manufactured by housing the electrode plate group together with a non-aqueous electrolyte in a case.
- conventional methods known for the production of nonaqueous electrolyte batteries and capacitors can be employed.
- a negative electrode current collector is immersed in a nonaqueous electrolyte containing alkaline earth metal chloride and alkali metal chloride among the above nonaqueous electrolytes. Also included is a negative electrode obtained by forming a precipitate containing an alkaline earth metal and an alkali metal on the surface of the negative electrode current collector by passing a reduction current through the negative electrode current collector. That is, the negative electrode includes a negative electrode current collector and a deposit of a negative electrode active material containing an alkaline earth metal and an alkali metal attached to the surface of the negative electrode current collector. Examples of the non-aqueous electrolyte used for deposition of the negative electrode active material include the non-aqueous electrolyte of the embodiment (b).
- the negative electrode active material formed on the surface of the negative electrode current collector include an alkaline earth metal and an alloy containing an alkali metal (such as a magnesium-lithium alloy) contained in the nonaqueous electrolyte.
- a negative electrode active material containing an alkaline earth metal such as a magnesium-lithium alloy and an alloy containing an alkali metal is deposited on the surface of the negative electrode current collector in a state where a part of a cone is spirally overlapped.
- the precipitate has a rose-like shape. Therefore, the electrical contact with the current collector is good and the surface area is large. Therefore, when such a negative electrode is used in an electrochemical device (such as a non-aqueous electrolyte secondary battery such as a lithium secondary battery), the ratio of the amount of oxidized electricity to the amount of reduced electricity can be increased, resulting in high dissolution efficiency. It is done.
- a lithium secondary battery using such a negative electrode includes the negative electrode, a positive electrode, a separator interposed therebetween, and a lithium ion conductive nonaqueous electrolyte.
- the lithium ion conductive nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt dissolved in the nonaqueous solvent.
- the lithium salt known salts used for lithium secondary batteries can be used, and examples thereof include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , and LiN (SO 2 CF 3 ) 2 .
- the positive electrode a publicly known positive electrode used in a lithium secondary battery, or a positive electrode containing the above exemplified lithium composite oxide as a positive electrode active material can be used.
- the separator the same separators as those exemplified above can be used.
- Example 1 (1) Preparation of a solution containing Mg ions In a glove box under an argon atmosphere, anhydrous magnesium chloride (MgCl 2 , manufactured by Aldrich, beads, average particle size: about 1 mm) and THF (manufactured by Kishida Chemical Co., Ltd.)
- MgCl 2 anhydrous magnesium chloride
- THF manufactured by Kishida Chemical Co., Ltd.
- the amount of MgCl 2 with respect to mol is 0.025 mol (sample No. 1), 0.033 mol (sample No. 2), 0.05 mol (sample No. 3), or 0.1 mol (sample No. 1). It mixed so that it might become 4).
- the mixture was in a state where MgCl 2 particles were dispersed in the THF liquid phase. When the mixture was stirred at 60 ° C. for 24 hours, the surface of the MgCl 2 particles was scraped and the liquid phase became cloudy. The mixture was then
- Sample No. In No. 4 a milky mixture was obtained, and when this mixture was allowed to stand for a while, MgCl 2 turned into a cotton-like sphere and precipitated. As seen in Example 3 described below, this precipitate, THF is added to the MgCl 2, MgCl 2 is believed to be of course start lead to chained. From this, sample no. Similar to sample 3, sample no. It can be seen that the liquid phase of the mixture of 4 is saturated with MgCl 2 . Sample No. The mixture of 1 to 4 was filtered through a filter (pore size: 0.2 ⁇ m, made of polytetrafluoroethylene (PTFE)) to obtain a transparent solution.
- a filter pore size: 0.2 ⁇ m, made of polytetrafluoroethylene (PTFE)
- FIG. 1 and FIG. 2 are plots of changes in current with respect to changes in potential of the working electrode when each solution is used as a non-aqueous electrolyte. Sample No. In each of the solutions 2 and 4, an electric current that appeared to cause precipitation and dissolution of magnesium metal flowed at the working electrode.
- Sample No. FIG. 3 shows an electron micrograph (magnification: 100 times) obtained by observing the tip of the working electrode when the potential sweep was stopped by the fourth cathode sweep using the solution No. 4.
- a large number of particles having a size of several tens of ⁇ m were generated at the tip of the iron working electrode.
- these particles were analyzed by energy dispersive X-ray spectroscopy or X-ray diffraction, they were magnesium metal particles.
- an oxidation current and a reduction current were confirmed at the working electrode.
- the reduced electricity quantity / oxidized electricity quantity was 0.9 or more.
- CV measurement when the potential difference between the working electrode and the counter electrode was measured simultaneously, it was 1.8 V when the current was zero.
- the working electrode changed to magenta by the potential sweep in the anode direction. This shows that silver chloride was generated at the working electrode. Therefore, the reduction current corresponds to a reaction in which chlorine ions are released from silver chloride. From these points, it can be seen that the obtained cell can be used as a non-aqueous electrolyte secondary battery having a high energy density.
- Example 1 Sample No. 1 of Example 1 except that the mixture of MgCl 2 and THF was stirred at 60 ° C. for 96 hours and then filtered. A solution was prepared as in 2. However, most of the added MgCl 2 particles were not dissolved in the mixture before being filtered by the filter. Using the obtained solution (sample No. 5), CV measurement was performed in the same manner as in Example 1. However, no current was passed to the extent that magnesium metal precipitation and dissolution could be detected at the working electrode.
- Example 2 (1) Preparation of a solution containing Mg ions
- PC manufactured by Kishida Chemical Co., Ltd.
- lithium chloride LiCl manufactured by Aldrich
- anhydrous magnesium chloride MgCl 2 , Aldrich
- the mixture was stirred at 60 ° C. for 24 hours and cooled to room temperature. The state of the mixture after cooling is shown in Table 1.
- the reduction current flowed from the potential of about ⁇ 1.4 V by sweeping in the reduction direction.
- black particles were deposited on the working electrode. It was confirmed by energy dispersive X-ray spectroscopy that the black particles contained Mg. Oxidation current began to flow from around -0.6 V in the subsequent sweep in the oxidation direction, but the current was small. In FIG. 6, the oxidation current from around 1.4 V is the melting current of the iron wire.
- CV measurement was performed with a sweep range of the potential of the test electrode with respect to the reference electrode being ⁇ 0.4 to 2.0 V and a sweep speed of 1 mV / second.
- the amount of electricity reduced in each reduction cycle and the amount of electricity oxidized in each oxidation cycle were measured.
- FIG. 10 shows plots of the amount of reduced electricity (Qcathodic) and the amount of oxidized electricity (Qanodic) in each cycle.
- the ratio of the oxidized electricity amount to the reduced electricity amount exceeds 0.98.
- Example 3 Preparation of semi-solid non-aqueous electrolyte
- anhydrous magnesium chloride (MgCl 2 , manufactured by Aldrich, beads, average particle size was placed in a reaction vessel containing a rotor (stirrer). : About 1 mm) and THF (manufactured by Kishida Chemical Co., Ltd.) were added so that the amount of MgCl 2 with respect to 1 mol of THF was 0.1 mol.
- the reaction vessel was set on a magnetic stirrer, and the rotary scale of the magnetic stirrer was set so that the minimum rotation speed at which the rotor could rotate was set, and the components in the reaction vessel were mixed by slowly stirring.
- the temperature of the mixture at this time was 30 degreeC.
- the bead-shaped magnesium chloride particles were dispersed in the liquid phase, and the surface was gradually scraped.
- the whole mixture became milky, and a cotton-like product was formed in the mixture.
- stirring was continued the whole mixture eventually became meringue-like.
- the obtained meringue-like mixture (sample No. 17) was semi-solid and could retain a predetermined shape but could be freely deformed.
- a meringue-like mixture (Sample No. 18) was obtained in the same manner as above except that the amount of MgCl 2 with respect to 1 mol of THF was changed to 0.5 mol.
- Sample No. The 18 mixture was also semi-solid and could retain a predetermined shape, but could be freely deformed. Sample No. Compared to the mixture of No. 18, sample no. The 17 mixture was wetter.
- FIGS. 11 and 12 The X-ray diffraction spectrum by the 2 ⁇ / ⁇ method using CuK ⁇ rays of 18 mixtures is shown in FIGS. 11 and 12, respectively.
- the diffraction pattern of the meringue-like mixture and the measurement jig is indicated by a black solid line B
- the diffraction pattern of only the measurement jig is indicated by a solid line A.
- sample No. Although the non-aqueous electrolyte of 17 is semi-solid, the precipitation and dissolution of magnesium metal occurs favorably not only in the presence of magnesium ions in the liquid THF, but also in the solid state. This is probably because the resulting magnesium compound (adduct) also contributes to the conduction of magnesium ions. Sample No. The result of 17 suggests that the semi-solid non-aqueous electrolyte contributes to an ion conduction mechanism different from that of the polymer electrolyte prepared by uniformly dissolving MgCl 2 .
- FIG. 14 shows an example of the configuration of the electrochemical element 10.
- the electrochemical element 10 includes a non-aqueous electrolyte 3 housed in the case 1, and a positive electrode 2 and a negative electrode 4 immersed in the non-aqueous electrolyte 3.
- the positive electrode 2 and the negative electrode 4 can be opposed to each other with a separator 5 interposed therebetween.
- a positive electrode external terminal can be formed by connecting a metal positive electrode lead 2 a to the positive electrode 2 and leading it out from the case 1.
- a negative electrode external terminal can be formed by connecting a metal negative electrode lead 4 a to the negative electrode 4 and leading it out from the case 1.
- the said structure is only an example of the structure of the electrochemical element 10, and the structure of an electrochemical element is not limited to this.
- the alkaline earth metal chloride is dissolved at a high concentration even though the total amount of the non-aqueous solvent and the alkaline earth metal chloride in the non-aqueous electrolyte is large. Therefore, it has high ionic conductivity. Moreover, since the alkaline earth metal chloride having a small formula amount can be used as the supporting salt of the non-aqueous electrolyte, the amount of the non-aqueous electrolyte used can be reduced, thereby improving the energy density of the electrochemical device.
- the non-aqueous electrolyte can be applied to various electrochemical elements such as batteries (primary batteries, secondary batteries), capacitors (hybrid capacitors, etc.).
- the electrochemical element using the non-aqueous electrolyte is useful as a power source for a mobile phone, a portable information terminal, a personal computer, a video camera, a portable game device, and the like. Further, it can be used as a power source for driving or assisting an electric motor in a hybrid electric vehicle, a plug-in hybrid electric vehicle, a fuel cell vehicle, etc., a driving power source for a power tool, a vacuum cleaner, a robot, or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Secondary Cells (AREA)
- Primary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
非特許文献1では、臭化マグネシウム(MgBr2)を2-メチルテトラヒドロフランに溶解させた電解液を用いた場合に、負極のマグネシウム金属が溶解および析出可能であることが報告されている。
特許文献2では、塩化マグネシウムおよびアルミニウム錯体を含むマグネシウムイオン含有電解液が提案されている。特許文献2には、アルミニウム錯体の作用により、塩化マグネシウムが二核錯体イオンに変化することにより溶解することが示唆されている。
本発明の一実施形態に係る電気化学素子用非水電解質は、非水溶媒と、アルカリ土類金属塩化物とを含み、アルカリ土類金属塩化物は、非水溶媒1モルに対して、0.015モル以上の量で溶解しており、非水溶媒およびアルカリ土類金属塩化物の総量は、全体の70質量%以上を占める。
非水電解質において、非水溶媒およびアルカリ土類金属塩化物の総量は、非水電解質全体の70質量%以上を占め、好ましくは80質量%以上、さらに好ましくは90質量%以上である。なお、非水電解質に占める非水溶媒およびアルカリ土類金属塩化物の総量の比率の上限は、特に制限されず、100質量%であってもよく、また、99質量%または95質量%であってもよい。これらの下限値と上限値とは任意に選択できる。上記総量は、例えば、70~100質量%、または70~95質量%であってもよい。なお、後述するように、非水電解質が、非水溶媒、アルカリ土類金属塩化物に加え、さらにアルカリ金属塩化物を含む場合、非水溶媒、アルカリ土類金属塩化物およびアルカリ金属塩化物の総量が、非水電解質全体の、例えば、80質量%以上、好ましくは85質量%、さらに好ましくは90質量%以上を占めてもよい。
また、非水溶媒と、飽和濃度以上の量のアルカリ土類金属塩化物とを、所定の条件で混合した場合、アルカリ土類金属塩化物に非水溶媒が付加した付加体と、アルカリ土類金属塩化物が非水溶媒に溶解した溶液とを含む半固形状の混合物が得られる場合がある。このような半固形状の混合物も、溶液の場合と同様に、多量のアルカリ土類金属イオンを含むため、高いイオン伝導性を示す。また、電気化学素子に使用した際に、電極表面にアルカリ土類金属を析出させ、かつ再溶解させることができる。よって、このような半固形状の混合物も、非水電解質として使用できる。
イオン性液体を構成するカチオンとしては、窒素原子、リン原子、イオウ原子などを含む有機オニウムイオンが例示できる。窒素原子を含む有機オニウムイオンとしては、第4級アンモニウムイオン、窒素含有環状オニウムイオンなどが挙げられる。
イオウ原子を含む有機オニウムイオンとしては、トリメチルスルホニウムイオン、ジメチルエチルスルホニウムイオンなどのトリアルキルスルホニウムイオン(トリC1-10アルキルスルホニウムイオンなど)などが例示できる。
イオン性液体は、これらのカチオンを一種含んでもよく、二種以上組み合わせて含んでもよい。
好ましい実施形態(a)では、非水電解質は、少なくともTHFを含む非水溶媒と、塩化マグネシウムを含むアルカリ土類金属塩化物とを含む。
アルカリ土類金属塩化物は、少なくとも塩化マグネシウムを含むことが好ましい。また、アルカリ金属塩化物は、少なくとも塩化リチウムを含むことが好ましい。塩化リチウムを用いると、塩化マグネシウムと組み合わせたときに、両者の溶解性を大きく向上できる。
以下に非水電解質の製造方法について、好ましい実施形態を例に挙げて説明する。なお、非水電解質は、不活性ガス(窒素ガス、アルゴンガスなど)の雰囲気下で製造することが望ましい。
非水溶媒と、非水溶媒1モルに対して0.015モル以上の量のアルカリ土類金属塩化物とを含む混合物を、50℃以上の温度で加熱しながら撹拌する工程Aと、
第1工程で得られる混合物を35℃以下の温度に冷却し、さらに撹拌することにより、前記アルカリ土類金属塩化物が、前記非水溶媒1モルに対して0.015モル以上の量で溶解した非水電解質を生成させる工程Bと、を経ることにより製造できる。
工程Bの温度は、具体的には、35℃以下であり、室温(20~35℃程度)であることが好ましく、30℃以下(例えば、20~30℃)であることがより好ましい。
工程Bの撹拌時間は、例えば、24~150時間、好ましくは48~100時間、さらに好ましくは60~90時間である。
実施形態(d)の製造方法は、アルカリ金属塩化物を含まない溶液状の非水電解質を製造する場合に適しており、例えば、実施形態(a)の非水電解質を製造する場合に有効である。
撹拌は、公知の方法、例えば、撹拌子や撹拌翼などを用いる撹拌方法などにより行うことができる。撹拌は、できるだけ遅い速度で行うことが好ましく、撹拌速度は、例えば、70~200rpm、好ましくは80~150rpmである。例えば、マグネティックスターラーおよび回転子を利用した撹拌の場合、溶媒とアルカリ土類金属塩化物の混合物が撹拌される最低の速度で撹拌を行うことが望ましい。
実施形態(e)の製造方法は、実施形態(c)の半固形状の非水電解質を製造するのに有用である。
加熱時間は、例えば、10~48時間、好ましくは12~36時間である。実施形態(f)において、非水電解質は、アルカリ土類金属塩化物に加え、アルカリ金属塩化物を含むため、加熱撹拌後に、実施形態(d)の工程Bのような長時間の撹拌を行わなくても、これらの塩化物を高濃度で溶解させることができる。このような実施形態(f)の製造方法は、実施形態(b)の非水電解質を製造するのに適している。
粒子状のアルカリ土類金属塩化物の平均粒径は、例えば、0.1~2mmの範囲内であることが好ましく、0.5~1.8mmの範囲内であることがより好ましい。なお、体積基準の粒度分布における平均粒径D50がこのような範囲であってもよい。
本発明の一実施形態に係る電気化学素子は、第1電極と、第1電極とは極性が異なる第2電極と、上記の非水電解質とを備える。
非水電解質電池やハイブリッドキャパシタなどの電気化学素子に使用される負極(第2電極)は、アルカリ土類金属の単体および合金(複数のアルカリ土類金属の合金、アルカリ土類金属とアルカリ金属との合金(例えば、アルカリ土類金属含有量が50原子%以上であるもの)など)、アルカリ土類金属元素を含む金属間化合物(例えば、マグネシウムとビスマスおよび/スズとの金属間化合物など)、炭素質材料などを負極活物質として含む。負極活物質として合金を使用する場合、アルカリ土類金属の電気化学的な析出および溶解が容易である観点から、マグネシウム-リチウム合金などのアルカリ土類金属とアルカリ金属との合金が好ましい。
炭素質材料は、粒子状または繊維状であってもよい。繊維状の炭素質材料としては、例えば、黒鉛繊維、気相成長炭素繊維などが例示できる。
結着剤としては、ポリフッ化ビニリデンなどのフッ素樹脂;ポリアクリル酸メチル、エチレン-メタクリル酸メチル共重合体などのアクリル樹脂;スチレン-ブタジエンゴム、アクリルゴムまたはこれらの変性体などのゴム状材料が例示できる。
分散媒としては、例えば、非水溶媒として例示した各種溶媒が使用でき、THFなどのエーテル、N-メチル-2-ピロリドンなどが好ましい。
非水電解質電池(一次電池、二次電池)における正極(第1電極)は、金属化合物(酸化物;硫化物;フッ化物、塩化物などのハロゲン化物など)、フッ化黒鉛、硫黄などの正極活物質を含む。金属化合物としては、酸化鉄(III)、五酸化バナジウム(V2O5)などの酸化物;硫化鉄(FeS2)、硫化モリブデン(MoS3)などの硫化物;フッ化鉄(III)などのハロゲン化物(フッ化物など)が例示できる。
正極活物質は、一種を単独でまたは二種以上を組み合わせて使用できる。
電気化学素子は、必要により、さらにセパレータを含むことができる。セパレータは、第1電極と第2電極との間に介在して、イオン伝導性を確保しながらも、両者を電気的に絶縁させる機能を有する。非水電解質が、半固形状(メレンゲ状など)の混合物である場合、セパレータを使用しなくても、第1電極と第2電極との間に、このような半固形状の非水電解質を介在させることにより、イオン伝導性と、絶縁性とを両立することができる。例えば、液体の非水電解質を用いる場合には、セパレータが使用される。半固形状の非水電解質を用いる場合であっても、セパレータを用いてもよい。
電気化学素子では、第1電極と、第2電極と、これらを隔離するセパレータとを捲回して極板群を形成してもよい。極板群は、捲回したものに限らず、積層したもの、またはつづら折りにしたものであってもよい。極板群の形状は、電気化学素子の形状およびケースの形状などに応じて、それぞれ、例えば、円筒型、扁平形状であってもよい。
本発明の一実施形態(実施形態(g))には、上記の非水電解質のうち、アルカリ土類金属塩化物およびアルカリ金属塩化物を含む非水電解質に、負極集電体を浸漬させて、負極集電体に還元電流を流すことにより、負極集電体の表面にアルカリ土類金属およびアルカリ金属を含む析出物を形成することにより得られる負極も含まれる。つまり、この負極は、負極集電体と、負極集電体の表面に付着したアルカリ土類金属およびアルカリ金属を含む負極活物質の析出物とを含む。負極活物質の析出に使用される非水電解質としては、実施形態(b)の非水電解質などが挙げられる。
負極集電体表面に形成される負極活物質としては、非水電解質に含まれるアルカリ土類金属およびアルカリ金属を含む合金(マグネシウム-リチウム合金など)が例示できる。
(1)Mgイオンを含む溶液の調製
アルゴン雰囲気のグローブボックス中で、無水塩化マグネシウム(MgCl2、Aldrich社製、ビーズ状、平均粒径:約1mm)およびTHF(キシダ化学社製)を、THF1モルに対するMgCl2の量が、0.025モル(サンプルNo.1)、0.033モル(サンプルNo.2)、0.05モル(サンプルNo.3)、または0.1モル(サンプルNo.4)となるように混合した。混合物は、THFの液相にMgCl2粒子が分散した状態であった。混合物を、60℃で24時間撹拌すると、MgCl2粒子の表面が削られ、液相は白濁した。次いで、混合物を、室温で72時間撹拌した。
サンプルNo.1~4の混合物を、フィルター(孔径:0.2μm、ポリテトラフルオロエチレン(PTFE)製)で濾過することにより、透明な溶液を得た。
上記(1)で調製したサンプルNo.2および4の溶液を用いて、下記の手順で、セルを組み立て、CV測定を行った。
まず、アルゴン雰囲気のグローブボックス中で、セルケースに、鉄線(ニラコ社製、直径1mm)を作用極として、また、2本のマグネシウムリボン(高純度化学社製、3.2mm幅)をそれぞれ参照極および対極として配設した。セルケースにサンプルNo.2の溶液を注ぐことにより、セルを組み立てた。また、サンプルNo.2の溶液に代えて、サンプルNo.4の溶液を用いた場合についても、上記と同様にしてセルを組み立てた。
サンプルNo.2の溶液を用いるとともに、2本の銀リボン(ニラコ社製)を、それぞれ、作用極および参照極として用い、マグネシウムリボンを対極として用いる以外は、上記(2)と同様にして、セルを組み立てた。
得られたセルを用いて、参照極に対する作用極の電位の掃引範囲を、-1.0~0.5V、掃引速度を1mV/秒として、CV測定を行った。このときのサイクリックボルタモグラムを図4に示す。
これらの点から、得られたセルは、エネルギー密度の高い非水電解質二次電池として使用できることが分かる。
MgCl2およびTHFの混合物を、60℃で、96時間撹拌し、次いでフィルターで濾過する以外は、実施例1のサンプルNo.2と同様にして、溶液を調製した。ただし、フィルターで濾過する前の混合物では、添加したMgCl2の粒子の大部分が溶解していなかった。
得られた溶液(サンプルNo.5)を用いて、実施例1と同様にしてCV測定を行ったが、作用極においてマグネシウム金属の析出および溶解が検出できる程度の電流は流れなかった。
アルゴン雰囲気のグローブボックス中で、マグネシウムビス(トリフルオロメタンスルホニル)イミドMg(N(SO2CF3)2)2(キシダ化学社製、以下、Mg(TFSI)2と称する)およびTHF(キシダ化学社製)を、THF1モルに対するMg(TFSI)2の量が、0.033モルとなるように混合した。Mg(TFSI)2およびTHFの混合物を、60℃で撹拌すると、Mg(TFSI)2は完全に溶解して透明な溶液に変化した。しかし、溶液を室温まで冷却すると、わずかな衝撃でMg(TFSI)2の結晶が析出した。つまり、得られた溶液は室温では、過飽和溶液であった。析出物を実施例1と同様のフィルターで濾別して、飽和溶液(サンプルNo.6)を得た。
(1)Mgイオンを含む溶液の調製
アルゴン雰囲気のグローブボックス中で、非水溶媒としてのPC(キシダ化学社製)と、塩化リチウムLiCl(Aldrich社製)および無水塩化マグネシウム(MgCl2、Aldrich社製、平均粒径:約1mm)とを、PC1モルに対するモル比が表1に示す値となるように、混合した。混合物を、60℃で、24時間撹拌し、室温まで冷却した。冷却後の混合物の状態を表1に示す。
サンプルNo.14および15の溶液を用いる以外は、実施例1の(2)と同様にして、セルを組み立てた。得られたセルを用いて、参照極に対する作用極の電位の掃引範囲を、-1.6~1.8V、掃引速度を1mV/秒として、CV測定を行った。サンプルNo.14の溶液を用いた場合のサイクリックボルタモグラムを図6に、サンプルNo.15の溶液を用いた場合のサイクリックボルタモグラムを図7に、それぞれ示す。これらの図は、各溶液を非水電解質として用いた場合の、作用極の電位変化に対する電流変化をプロットしたものである。
このように、MgCl2およびLiClを含む非水電解質では、マグネシウムイオン伝導性が示された。
サンプルNo.9の溶液を用い、参照極としてリチウム箔を用いる以外は、実施例1の(2)と同様にしてセルを組み立てた。得られたセルを用いて、参照極に対する作用極の電位の掃引範囲を、-1~3V、掃引速度を1mV/秒として、CV測定を行った。このときのサイクリックボルタモグラムを図8に示す。図8は、サンプルNo.9の溶液を非水電解質として用いた場合の、作用極の電位変化に対する電流変化をプロットしたものである。
サンプルNo.16の溶液を用いて、リチウム金属を対極として用いた場合に、作用極にリチウムマグネシウム合金が形成されることを以下の手順で確認した。
まず、アルゴン雰囲気のグローブボックス中で、作用極としての鉄線(ニラコ社製、直径1mm)と、対極としてのリチウム箔(本城金属社製)とを、サンプルNo.16の溶液に浸漬した。この状態で、作用極に対して、約0.5mA/cm2の電流密度の還元電流を30分間流した。これにより、作用極の表面に析出物が形成された。図9に析出物の電子顕微鏡写真(倍率:5000倍)を示す。析出物を、エネルギー分散型X線分光法により分析したところ、マグネシウムおよびリチウムを含む合金であることが分かった。
アルゴン雰囲気のグローブボックス中で、上記(4)で得られた析出物が形成された鉄線を、試験極として、また、2枚のリチウム箔をそれぞれ対極および参照極として、セルケースにそれぞれ配設した。セルケースに、LiPF6を含む非水電解質を注いで、セルを組み立てた。このとき、非水電解質としては、ECおよびDMCを、EC/DMCのモル比1/1で含む混合溶媒に、LiPF6を1モル/Lの濃度となるように溶解した溶液を用いた。
(1)半固形状の非水電解質の調製
アルゴン雰囲気のグローブボックス中で、回転子(撹拌子)を入れた反応容器に、無水塩化マグネシウム(MgCl2、Aldrich社製、ビーズ状、平均粒径:約1mm)およびTHF(キシダ化学社製)を、THF1モルに対するMgCl2の量が、0.1モルとなるように添加した。反応容器をマグネティックスターラー上にセットし、回転子が回転できる最低限の回転速度となるように、マグネティックスターラーの回転目盛りを設定し、反応容器内の成分をゆっくりと撹拌することにより、混合した。なお、このときの混合物の温度は、30℃であった。
上記(1)で調製したサンプルNo.17のメレンゲ状非水電解質を用いて、下記の手順で、セルを組み立て、CV測定を行った。
まず、アルゴン雰囲気のグローブボックス中で、セルケースに、サンプルNo.17の非水電解質を充填した。2本のマグネシウムリボン(高純度化学研究所製)を、それぞれ、インジウムを介して、ニッケルリードに接続することにより、マグネシウム金属製の対極および参照極を作製した。対極、参照極、および作用極としての鉄線(ニラコ社製、直径1mm)を、非水電解質に浸漬した状態でセルケースに配設することによりセルを組み立てた。
Claims (14)
- 非水溶媒と、アルカリ土類金属塩化物とを含み、
前記アルカリ土類金属塩化物が、前記非水溶媒1モルに対して、0.015モル以上の量で溶解しており、
前記非水溶媒および前記アルカリ土類金属塩化物の総量が、全体の70質量%以上を占める、電気化学素子用非水電解質。 - 前記アルカリ土類金属塩化物が、少なくとも塩化マグネシウムを含む、請求項1に記載の電気化学素子用非水電解質。
- 前記アルカリ土類金属塩化物が、前記非水溶媒1モルに対して、0.03モル以上の量で溶解している、請求項1または2に記載の電気化学素子用非水電解質。
- さらに、前記非水溶媒に溶解したアルカリ金属塩化物を含む、請求項1~3のいずれか1項に記載の電気化学素子用非水電解質。
- 前記アルカリ金属塩化物が、少なくとも塩化リチウムを含む、請求項4に記載の電気化学素子用非水電解質。
- 前記非水溶媒が、エーテルおよびカーボネートからなる群より選択される少なくとも一種を含む、請求項1~5のいずれか1項に記載の電気化学素子用非水電解質。
- 前記非水溶媒が少なくとも環状カーボネートを含み、
前記環状カーボネートが、少なくともプロピレンカーボネートを含む、請求項4または5に記載の電気化学素子用非水電解質。 - 前記非水溶媒が少なくともテトラヒドロフランを含み、
前記アルカリ土類金属塩化物が塩化マグネシウムである、請求項1~6のいずれか1項に記載の電気化学素子用非水電解質。 - 前記テトラヒドロフランが前記塩化マグネシウムに付加した固体状の付加体と、
前記塩化マグネシウムが前記テトラヒドロフランに溶解した溶液とを含み、
メレンゲ状である、請求項8に記載の電気化学素子用非水電解質。 - 前記非水電解質中に含まれる前記塩化マグネシウムの量が、前記テトラヒドロフラン1モルに対して0.05~0.6モルである、請求項9に記載の電気化学素子用非水電解質。
- 前記付加体が、前記塩化マグネシウム1分子に対して、1.5~4分子の前記テトラヒドロフランが付加した化合物である、請求項9または10に記載の電気化学素子用非水電解質。
- 非水溶媒と、前記非水溶媒1モルに対して0.015モル以上の量のアルカリ土類金属塩化物とを含む混合物を、50℃以上の温度で加熱しながら撹拌する工程Aと、
前記第1工程で得られる混合物を35℃以下の温度に冷却し、さらに撹拌することにより、前記アルカリ土類金属塩化物が、前記非水溶媒1モルに対して0.015モル以上の量で溶解した非水電解質を生成させる工程Bと、を含む電気化学素子用非水電解質の製造方法。 - 少なくともテトラヒドロフランを含む非水溶媒と、前記非水溶媒1モルに対して0.05モル以上の量の塩化マグネシウムとを含む混合物を、35℃以下の温度で撹拌することにより、メレンゲ状の非水電解質を生成させる工程Cを含み、
前記非水電解質が、前記テトラヒドロフランが前記塩化マグネシウムに付加した固体状の付加体と、前記塩化マグネシウムが、飽和濃度で前記テトラヒドロフランに溶解した溶液とを含む、電気化学素子用非水電解質の製造方法。 - 第1電極と、前記第1電極とは極性が異なる第2電極と、請求項1~11のいずれか1項に記載の非水電解質とを備える、電気化学素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013551816A JP6087840B2 (ja) | 2012-04-16 | 2013-03-11 | 電気化学素子用非水電解質、その製造方法およびそれを用いた電気化学素子 |
CN201380002284.1A CN103703603B (zh) | 2012-04-16 | 2013-03-11 | 电化学装置用非水电解质、其制造方法及使用其的电化学装置 |
US14/235,023 US10033049B2 (en) | 2012-04-16 | 2013-03-11 | Non-aqueous electrolyte for electrochemical devices, method for producing the same, and electrochemical device using the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-092731 | 2012-04-16 | ||
JP2012-092732 | 2012-04-16 | ||
JP2012092734 | 2012-04-16 | ||
JP2012092732 | 2012-04-16 | ||
JP2012092731 | 2012-04-16 | ||
JP2012-092734 | 2012-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013157187A1 true WO2013157187A1 (ja) | 2013-10-24 |
Family
ID=49383162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/001561 WO2013157187A1 (ja) | 2012-04-16 | 2013-03-11 | 電気化学素子用非水電解質、その製造方法およびそれを用いた電気化学素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10033049B2 (ja) |
JP (1) | JP6087840B2 (ja) |
CN (1) | CN103703603B (ja) |
WO (1) | WO2013157187A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014165185A (ja) * | 2013-02-21 | 2014-09-08 | Aisin Seiki Co Ltd | 蓄電デバイス用電解液 |
WO2015072577A1 (ja) * | 2013-11-18 | 2015-05-21 | 住友化学株式会社 | ナトリウム二次電池 |
WO2015195571A1 (en) * | 2014-06-16 | 2015-12-23 | The Research Foundation For The State University Of New York | Hybrid electrolytes for group 2 cation-based electrochemical energy storage devices |
WO2016056629A1 (ja) * | 2014-10-08 | 2016-04-14 | 国立研究開発法人産業技術総合研究所 | 非水電解質マグネシウム系二次電池 |
JP2016149351A (ja) * | 2015-02-10 | 2016-08-18 | パナソニック株式会社 | 電気化学エネルギー蓄積デバイス |
WO2016132903A1 (ja) * | 2015-02-19 | 2016-08-25 | 株式会社リコー | 非水電解液蓄電素子 |
WO2016143423A1 (ja) * | 2015-03-11 | 2016-09-15 | 株式会社リコー | 非水電解液蓄電素子 |
JPWO2014115784A1 (ja) * | 2013-01-25 | 2017-01-26 | 和光純薬工業株式会社 | 電気化学デバイス用電解液及び電気化学デバイス |
US9742035B2 (en) | 2015-03-26 | 2017-08-22 | Panasonic Corporation | Electrochemical energy storage device |
JP2017168371A (ja) * | 2016-03-17 | 2017-09-21 | 国立大学法人静岡大学 | 電解質材料、及びこれを用いた二次電池 |
WO2020235615A1 (ja) * | 2019-05-23 | 2020-11-26 | 富士フイルム和光純薬株式会社 | マグネシウム電池 |
JP2021181602A (ja) * | 2020-05-20 | 2021-11-25 | 日本軽金属株式会社 | 電解液、マグネシウムの製造方法、マグネシウム、およびマグネシウム箔 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104934639A (zh) * | 2015-04-29 | 2015-09-23 | 张家港智电芳华蓄电研究所有限公司 | 一种锂离子电池电解质溶液的制备方法 |
CN108630979B (zh) * | 2017-03-24 | 2021-06-15 | 深圳先进技术研究院 | 一种基于钙离子的二次电池及其制备方法 |
CN108155409B (zh) * | 2017-12-26 | 2020-10-27 | 深圳中科瑞能实业有限公司 | 钡基双离子电池及其制备方法 |
CN109961958A (zh) * | 2017-12-26 | 2019-07-02 | 深圳先进技术研究院 | 钙离子混合超级电容器及其制备方法 |
CN108172896B (zh) * | 2017-12-26 | 2021-01-19 | 深圳先进技术研究院 | 钙离子二次电池及其制备方法 |
CN108054376B (zh) * | 2017-12-26 | 2021-05-25 | 深圳先进技术研究院 | 硒基复合材料用作正极活性材料在钡离子电池中的应用、钡离子电池及其制备方法 |
CN109961957B (zh) * | 2017-12-26 | 2022-02-22 | 深圳先进技术研究院 | 钙离子双电层电容器及其制备方法 |
CN109961959B (zh) * | 2017-12-26 | 2022-02-22 | 深圳先进技术研究院 | 钙离子混合超级电容器及其制备方法 |
US11165091B2 (en) * | 2018-01-23 | 2021-11-02 | City University Of Hong Kong | Battery system and a method of forming a battery |
CN110783586B (zh) * | 2019-11-21 | 2021-10-08 | 华南师范大学 | 一种高功率密度一次电池电解液及其制备方法和应用 |
CN113506909B (zh) * | 2021-05-07 | 2022-07-26 | 鹏盛国能(深圳)新能源集团有限公司 | 一种锂电池及其电解质 |
US11302961B1 (en) | 2021-06-30 | 2022-04-12 | Storagenergy Technologies, Inc. | Semi-solid polymer electrolyte and uses thereof in electrochemical devices |
CN113618177B (zh) * | 2021-08-17 | 2022-06-28 | 青岛理工大学 | 一种盐膜法提高合金微区表面质量的方法及应用 |
WO2024145184A2 (en) * | 2022-12-28 | 2024-07-04 | Wildcat Discovery Technologies, Inc. | Lithium salt for high concentration electrolytes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS622469A (ja) * | 1985-06-28 | 1987-01-08 | Showa Denko Kk | 高分子2次電池 |
JP2000133307A (ja) * | 1998-10-21 | 2000-05-12 | Matsushita Electric Ind Co Ltd | 非水系二次電池 |
JP2001023685A (ja) * | 1999-07-07 | 2001-01-26 | Sony Corp | 電解液およびそれを用いた二次電池 |
JP2004327326A (ja) * | 2003-04-25 | 2004-11-18 | Sanyo Electric Co Ltd | 非水電解質 |
JP2007188694A (ja) * | 2006-01-12 | 2007-07-26 | Sony Corp | 電気化学デバイス |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5552244A (en) * | 1995-02-14 | 1996-09-03 | Eric Blair Griffen | Reversible high energy capacity metal-sulfur battery and method of making same |
CN1091547C (zh) * | 1996-09-09 | 2002-09-25 | 东芝株式会社 | 锂电池 |
US6265109B1 (en) | 1998-06-02 | 2001-07-24 | Matsushita Electric Industrial Co., Ltd. | Magnesium alloy battery |
IT1307220B1 (it) | 1999-07-29 | 2001-10-29 | Univ Padova | Batterie primarie (non ricaricabili) e secondarie (ricaricabili) abase di elettroliti polimerici basati su ioni magnesio |
JP3737729B2 (ja) | 2001-09-26 | 2006-01-25 | 株式会社東芝 | 非水電解液電池および非水電解液 |
US6982237B2 (en) * | 2002-07-15 | 2006-01-03 | Univation Technologies, Llc | Spray-dried polymerization catalyst and polymerization processes employing same |
JP5245108B2 (ja) | 2007-07-11 | 2013-07-24 | ソニー株式会社 | マグネシウムイオン含有非水電解液及びその製造方法、並びに電気化学デバイス |
JP5034799B2 (ja) * | 2007-09-07 | 2012-09-26 | ソニー株式会社 | マグネシウムイオン含有非水電解液及びその製造方法、並びに電気化学デバイス |
JP2009093983A (ja) * | 2007-10-11 | 2009-04-30 | Toyota Central R&D Labs Inc | 二次電池 |
US8541133B2 (en) * | 2010-10-27 | 2013-09-24 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electrochemical device with a magnesium anode and a stable, safe electrolyte compatible with sulfur |
WO2013015369A1 (ja) * | 2011-07-28 | 2013-01-31 | 和光純薬工業株式会社 | 電気化学デバイス用電解液 |
-
2013
- 2013-03-11 US US14/235,023 patent/US10033049B2/en active Active
- 2013-03-11 WO PCT/JP2013/001561 patent/WO2013157187A1/ja active Application Filing
- 2013-03-11 CN CN201380002284.1A patent/CN103703603B/zh active Active
- 2013-03-11 JP JP2013551816A patent/JP6087840B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS622469A (ja) * | 1985-06-28 | 1987-01-08 | Showa Denko Kk | 高分子2次電池 |
JP2000133307A (ja) * | 1998-10-21 | 2000-05-12 | Matsushita Electric Ind Co Ltd | 非水系二次電池 |
JP2001023685A (ja) * | 1999-07-07 | 2001-01-26 | Sony Corp | 電解液およびそれを用いた二次電池 |
JP2004327326A (ja) * | 2003-04-25 | 2004-11-18 | Sanyo Electric Co Ltd | 非水電解質 |
JP2007188694A (ja) * | 2006-01-12 | 2007-07-26 | Sony Corp | 電気化学デバイス |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014115784A1 (ja) * | 2013-01-25 | 2017-01-26 | 和光純薬工業株式会社 | 電気化学デバイス用電解液及び電気化学デバイス |
JP2014165185A (ja) * | 2013-02-21 | 2014-09-08 | Aisin Seiki Co Ltd | 蓄電デバイス用電解液 |
WO2015072577A1 (ja) * | 2013-11-18 | 2015-05-21 | 住友化学株式会社 | ナトリウム二次電池 |
JPWO2015072577A1 (ja) * | 2013-11-18 | 2017-03-16 | 住友化学株式会社 | ナトリウム二次電池 |
WO2015195571A1 (en) * | 2014-06-16 | 2015-12-23 | The Research Foundation For The State University Of New York | Hybrid electrolytes for group 2 cation-based electrochemical energy storage devices |
US10566632B2 (en) | 2014-06-16 | 2020-02-18 | The Research Foundation For The State University Of New York | Hybrid electrolytes for group 2 cation-based electrochemical energy storage device |
US10998574B2 (en) | 2014-10-08 | 2021-05-04 | National Institute Of Advanced Industrial Science And Technology | Non-aqueous electrolyte magnesium secondary battery |
JPWO2016056629A1 (ja) * | 2014-10-08 | 2017-08-10 | 国立研究開発法人産業技術総合研究所 | 非水電解質マグネシウム系二次電池 |
WO2016056629A1 (ja) * | 2014-10-08 | 2016-04-14 | 国立研究開発法人産業技術総合研究所 | 非水電解質マグネシウム系二次電池 |
US9716292B2 (en) | 2015-02-10 | 2017-07-25 | Panasonic Corporation | Electrochemical energy storage device |
JP2016149351A (ja) * | 2015-02-10 | 2016-08-18 | パナソニック株式会社 | 電気化学エネルギー蓄積デバイス |
JP2019024119A (ja) * | 2015-02-19 | 2019-02-14 | 株式会社リコー | 炭素質材料、及び電極 |
WO2016132903A1 (ja) * | 2015-02-19 | 2016-08-25 | 株式会社リコー | 非水電解液蓄電素子 |
US10811674B2 (en) | 2015-02-19 | 2020-10-20 | Ricoh Company, Ltd. | Non-aqueous electrolyte electricity-storage element including positive electrode having carbonaceous material with fluorine on surface |
JPWO2016132903A1 (ja) * | 2015-02-19 | 2017-12-14 | 株式会社リコー | 非水電解液蓄電素子 |
US10490846B2 (en) | 2015-03-11 | 2019-11-26 | Ricoh Company, Ltd. | Non-aqueous electrolyte electricity-storage element |
JP2019024120A (ja) * | 2015-03-11 | 2019-02-14 | 株式会社リコー | 多孔質炭素、及び電極 |
JP2018117151A (ja) * | 2015-03-11 | 2018-07-26 | 株式会社リコー | 多孔質炭素 |
JPWO2016143423A1 (ja) * | 2015-03-11 | 2018-01-11 | 株式会社リコー | 非水電解液蓄電素子 |
US10833358B2 (en) | 2015-03-11 | 2020-11-10 | Ricoh Company, Ltd. | Porous carbon having connecting mesopores and electrode |
WO2016143423A1 (ja) * | 2015-03-11 | 2016-09-15 | 株式会社リコー | 非水電解液蓄電素子 |
US9742035B2 (en) | 2015-03-26 | 2017-08-22 | Panasonic Corporation | Electrochemical energy storage device |
JP2017168371A (ja) * | 2016-03-17 | 2017-09-21 | 国立大学法人静岡大学 | 電解質材料、及びこれを用いた二次電池 |
WO2020235615A1 (ja) * | 2019-05-23 | 2020-11-26 | 富士フイルム和光純薬株式会社 | マグネシウム電池 |
JP2021181602A (ja) * | 2020-05-20 | 2021-11-25 | 日本軽金属株式会社 | 電解液、マグネシウムの製造方法、マグネシウム、およびマグネシウム箔 |
WO2021235034A1 (ja) | 2020-05-20 | 2021-11-25 | 日本軽金属株式会社 | 電解液、マグネシウムの製造方法、マグネシウム、およびマグネシウム箔 |
JP7424912B2 (ja) | 2020-05-20 | 2024-01-30 | 日本軽金属株式会社 | 電解液およびマグネシウムの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6087840B2 (ja) | 2017-03-01 |
US20140170507A1 (en) | 2014-06-19 |
US10033049B2 (en) | 2018-07-24 |
JPWO2013157187A1 (ja) | 2015-12-21 |
CN103703603A (zh) | 2014-04-02 |
CN103703603B (zh) | 2017-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6087840B2 (ja) | 電気化学素子用非水電解質、その製造方法およびそれを用いた電気化学素子 | |
CN106063015B (zh) | 反应性烷氧基硼酸锂在锂离子电池组用电解质中作为电解质添加剂的用途 | |
Komaba et al. | Functional interface of polymer modified graphite anode | |
JP6087841B2 (ja) | 電気化学エネルギー蓄積デバイスおよびこれに用いる活物質とその製造法 | |
WO2015001803A1 (ja) | 電気化学エネルギー蓄積デバイス | |
JP7260530B2 (ja) | 高容量、ミクロンスケール、体積変化アノード粒子を有する金属イオン電池セルのための電解質 | |
JP6374390B2 (ja) | 電気化学エネルギー蓄積デバイス | |
JP2016531389A (ja) | リチウムイオン電池の電解質添加剤としてのオキシラニルアシル誘導体 | |
JP2007220496A (ja) | カルボン酸無水有機化合物を電解液に含むリチウム二次電池 | |
CN107732163A (zh) | 一种锂离子二次电池 | |
JP2010108940A (ja) | 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ | |
JP2016528684A (ja) | リチウムイオン電池の電解質添加剤としてのアクリロニトリル誘導体 | |
CN108475823A (zh) | 包含不对称硼酸盐的用于锂离子电池的非水电解质 | |
Getie et al. | Development of electrolytes for rechargeable zinc-air batteries: Current progress, challenges, and future outlooks | |
JP6889751B2 (ja) | デュアルイオン蓄電デバイス | |
CN105870442B (zh) | 电化学能存储装置 | |
Kumar et al. | Safe and extended operating voltage zinc-ion battery engineered by a gel-polymer/ionic-liquid electrolyte and water molecules pre-intercalated V2O5 cathode | |
WO2024073804A1 (en) | Hybrid electrolyte solutions for electrochemical devices with a wide operating temperature range and preparation method thereof | |
JP2017004638A (ja) | 電解質塩、該電解質塩を含む非水電解液、及びそれを用いた蓄電デバイス | |
JP5843885B2 (ja) | 重合体およびそれを用いた二次電池 | |
JP2013051065A (ja) | 金属二次電池 | |
JP5727985B2 (ja) | 電池用電極及びこれを用いた電池 | |
JP2013206645A (ja) | 活物質及び蓄電デバイス | |
Do | Next generation electrolytes for sodium ion battery | |
Yue | Design, Synthesis and Characterization of Novel Materials to Construct High-Energy-Density Rechargeable Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013551816 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13778894 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14235023 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13778894 Country of ref document: EP Kind code of ref document: A1 |