WO2013157128A1 - 全固体電池の検査装置及び検査方法 - Google Patents
全固体電池の検査装置及び検査方法 Download PDFInfo
- Publication number
- WO2013157128A1 WO2013157128A1 PCT/JP2012/060621 JP2012060621W WO2013157128A1 WO 2013157128 A1 WO2013157128 A1 WO 2013157128A1 JP 2012060621 W JP2012060621 W JP 2012060621W WO 2013157128 A1 WO2013157128 A1 WO 2013157128A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- battery
- resistance
- voltage
- state battery
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000005856 abnormality Effects 0.000 claims abstract description 99
- 238000003860 storage Methods 0.000 claims abstract description 12
- 238000004364 calculation method Methods 0.000 claims description 30
- 238000007689 inspection Methods 0.000 claims description 26
- 238000010998 test method Methods 0.000 claims 1
- 239000007784 solid electrolyte Substances 0.000 description 27
- 239000007774 positive electrode material Substances 0.000 description 18
- 239000003792 electrolyte Substances 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 9
- 239000007773 negative electrode material Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002482 conductive additive Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000010450 olivine Substances 0.000 description 3
- 229910052609 olivine Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 2
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910052795 boron group element Inorganic materials 0.000 description 2
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- -1 lithium (LiNiO 2 ) Chemical class 0.000 description 2
- 150000002642 lithium compounds Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical group N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910019208 La0.51Li0.34TiO0.74 Inorganic materials 0.000 description 1
- 229910018091 Li 2 S Inorganic materials 0.000 description 1
- 229910018111 Li 2 S-B 2 S 3 Inorganic materials 0.000 description 1
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 description 1
- 229910009147 Li1.3Al0.3Ti0.7(PO4)3 Inorganic materials 0.000 description 1
- 229910008637 Li2O—Li2S—P2S5 Inorganic materials 0.000 description 1
- 229910009324 Li2S-SiS2-Li3PO4 Inorganic materials 0.000 description 1
- 229910009320 Li2S-SiS2-LiBr Inorganic materials 0.000 description 1
- 229910009316 Li2S-SiS2-LiCl Inorganic materials 0.000 description 1
- 229910009318 Li2S-SiS2-LiI Inorganic materials 0.000 description 1
- 229910009328 Li2S-SiS2—Li3PO4 Inorganic materials 0.000 description 1
- 229910007281 Li2S—SiS2—B2S3LiI Inorganic materials 0.000 description 1
- 229910007295 Li2S—SiS2—Li3PO4 Inorganic materials 0.000 description 1
- 229910007291 Li2S—SiS2—LiBr Inorganic materials 0.000 description 1
- 229910007288 Li2S—SiS2—LiCl Inorganic materials 0.000 description 1
- 229910007289 Li2S—SiS2—LiI Inorganic materials 0.000 description 1
- 229910007306 Li2S—SiS2—P2S5LiI Inorganic materials 0.000 description 1
- 229910012029 Li4SiO4-Li3BO3 Inorganic materials 0.000 description 1
- 229910012050 Li4SiO4-Li3PO4 Inorganic materials 0.000 description 1
- 229910012078 Li4SiO4—Li3BO3 Inorganic materials 0.000 description 1
- 229910012069 Li4SiO4—Li3PO4 Inorganic materials 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910013184 LiBO Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910017267 Mo 6 S 8 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- GNVXPFBEZCSHQZ-UHFFFAOYSA-N iron(2+);sulfide Chemical compound [S-2].[Fe+2] GNVXPFBEZCSHQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/3865—Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
Definitions
- the present invention relates to an inspection device and an inspection method for an all-solid-state battery.
- a lithium ion secondary battery has a higher energy density than a conventional secondary battery and can be operated at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
- a lithium ion secondary battery has a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed between them.
- the electrolyte used for the electrolyte layer include non-aqueous liquid and solid substances. Are known.
- electrolytic solution a liquid electrolyte (hereinafter referred to as “electrolytic solution”)
- the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved.
- the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
- solid electrolyte that is flame retardant
- all-solid battery a lithium ion secondary battery
- solid electrolyte layer a layer containing a solid electrolyte
- Patent Document 1 discloses a secondary battery in which an abnormality is detected in the voltage and / or current during charging, with a pulse wave and / or a low charging voltage. A technique for charging is disclosed.
- an object of the present invention is to provide an inspection device and an inspection method for an all-solid-state battery capable of grasping a battery capacity at which a voltage abnormality occurs before the voltage abnormality occurs.
- a first aspect of the present invention is based on a storage unit that stores a relationship between a battery capacity at which a voltage abnormality occurs in an all-solid battery and a resistance of the all-solid battery, and current and voltage during charging of the all-solid battery.
- a resistance calculation unit that calculates resistance, and calculates a battery capacity at which a voltage abnormality occurs in an all-solid-state battery from the relationship stored in the storage unit and the resistance calculated by the resistance calculation unit. This is an inspection device for a solid battery.
- the resistance calculation unit preferably calculates the resistance based on a current and a voltage during charging when the state of charge of the all solid state battery is 0% or more and 20% or less.
- the resistance calculation unit preferably calculates the resistance based on the current and voltage when charging with a constant current, and the constant current has a charge rate of 10 C or less.
- the constant current is more preferable.
- C means a charge / discharge rate representing the speed at which the entire capacity of the battery is charged / discharged.
- the amount of current required to charge the entire capacity of the battery in 1 hour is the 1C rate, and the amount of current 10 times the 1C rate is 10C.
- the second aspect of the present invention is based on the grasping step for grasping the relationship between the battery capacity at which voltage abnormality occurs in the all solid state battery and the resistance of the all solid state battery, and the current and voltage during the charging of the all solid state battery.
- the resistance is calculated based on the current and voltage during charging when the state of charge of the all solid state battery is 0% or more and 20% or less in the resistance calculation step.
- the resistance based on the current and voltage when charging with a constant current in the resistance calculating step it is preferable to calculate the resistance based on the current and voltage when charging with a constant current in the resistance calculating step, and the constant current has a charging rate of 10 C or less.
- the constant current is more preferable.
- an inspection device and an inspection method for an all-solid-state battery capable of grasping the battery capacity at which a voltage abnormality occurs before the voltage abnormality occurs.
- FIG. 1 is a diagram illustrating an all solid state battery 1.
- FIG. It is a figure explaining an example of the relationship between the battery capacity and IV input resistance which a voltage abnormality generate
- FIG. 1 is a diagram for explaining an all-solid-state battery inspection device 10 of the present invention (hereinafter sometimes simply referred to as “the device 10 of the present invention”).
- the device 10 of the present invention includes a storage unit 11, a resistance calculation unit 12, and a capacitance calculation unit 13.
- the storage unit 11 is a part that stores the relationship between the battery capacity at which voltage abnormality occurs in the all-solid-state battery and the resistance of the all-solid-state battery, and a known storage medium can be appropriately used as the storage unit 11.
- the resistance calculator 12 calculates the resistance based on the current detected using the ammeter 2 during charging of the all-solid battery and the voltage detected using the voltmeter 3 during charging of the all-solid battery. It is a part to do.
- the capacity calculation unit 13 converts the current and voltage detected by the ammeter 2 and the voltmeter 3 from the above relationship stored in the storage unit 11 and the resistance calculated by the resistance calculation unit 12 into an all-solid battery. This is a part for calculating the battery capacity at which voltage abnormality occurs.
- a known processing device such as a CPU can be used as appropriate.
- FIG. 2 is a diagram for explaining an all-solid-state battery inspection method of the present invention (hereinafter, simply referred to as “the present invention”). As shown in FIG. 2, the present invention includes a grasping step (S1), a resistance calculating step (S2), and a capacity calculating step (S3).
- S1 grasping step
- S2 resistance calculating step
- S3 capacity calculating step
- the grasping step includes a battery capacity at which voltage abnormality occurs in the all solid state battery, and a resistance when charging is performed when the state of charge of the all solid state battery is equal to or lower than a predetermined value.
- This is a step of grasping the relationship with (IV input resistance).
- S1 is a step of grasping the relationship (regression line) as shown in FIG.
- the form of S1 is not particularly limited as long as the relationship between the battery capacity where the voltage abnormality occurs and the IV input characteristics can be grasped.
- the battery capacity at which the voltage abnormality occurs in the all-solid-state battery can be specified by, for example, rapid charging at a predetermined charging rate.
- the IV input resistance (R) is, for example, an all solid state battery having an SOC of 0% or more and 20% or less at a charging rate of 10C or less for a predetermined time (for example, about several seconds to several tens of seconds).
- R V / I for the voltage (V) obtained by monitoring the voltage of the all-solid-state battery at a specific time (for example, a few seconds after the start of charging) during charging can do.
- the battery capacity [mAh / g] in which voltage abnormality occurs is on the vertical axis
- the IV input resistance [ ⁇ / cm 2 ] is on the horizontal axis.
- the resistance calculation step (hereinafter, sometimes referred to as “S2”) is an all-solid manufactured using the same material as the all-solid-state battery whose relationship has been grasped in S1, whose charged state is equal to or less than a predetermined value after S1.
- This is a step of charging the battery and observing the voltage of the all-solid battery during the charging to calculate the resistance (IV input resistance) of the all-solid battery.
- there is a strong correlation (a strong negative correlation in the example of FIG. 4) between the battery capacity at which the voltage abnormality occurs and the IV input resistance of the all solid state battery measured in the low SOC region.
- the capacity calculation step calculates the battery capacity at which voltage abnormality occurs in the all-solid-state battery by applying the IV input resistance calculated in S2 to the relationship grasped in S1. It is a process to do. Since there is a strong correlation between the battery capacity at which the voltage abnormality occurs and the IV input resistance measured in the low SOC region, the IV input resistance calculated in S2 is applied to the relationship grasped in S1. Before the voltage abnormality actually occurs in the all solid state battery, it is possible to estimate the battery capacity at which the voltage abnormality occurs when the all solid state battery is rapidly charged.
- the battery capacity of the all-solid-state battery is less than the battery capacity at which the voltage abnormality occurs, it can be estimated that the voltage abnormality does not occur, and if the battery capacity of the all-solid battery is greater than the battery capacity at which the voltage abnormality occurs For example, it can be estimated that a voltage abnormality occurs. Therefore, according to the inspection method of the present invention and the inspection apparatus 10 of the present invention capable of performing the inspection method, it is possible to grasp the battery capacity at which the voltage abnormality occurs before the voltage abnormality occurs.
- the all-solid battery to be inspected in the present invention (hereinafter, sometimes referred to as “inspection all-solid battery”) has a positive electrode layer and a negative electrode layer, and a solid electrolyte layer disposed therebetween, Electric power is taken out through the positive electrode current collector connected to the positive electrode layer and the negative electrode current collector connected to the negative electrode layer.
- Examples of the positive electrode active material contained in the positive electrode layer of the all-solid battery to be inspected include nickel cobalt lithium manganate (LiNi x Co 1-xy Mn y O 2 ), lithium cobalt oxide (LiCoO 2 ), and nickel acid.
- Lithium compounds such as lithium (LiNiO 2 ), lithium manganate (LiMnO 2 ), iron olivine (LiFePO 4 ), cobalt olivine (LiCoPO 4 ), manganese olivine (LiMnPO 4 ), and lithium titanate (Li 4 Ti 5 O 12 )
- Examples thereof include chalcogenides such as copper subrel (Cu 2 Mo 6 S 8 ), iron sulfide (FeS), cobalt sulfide (CoS), nickel sulfide (NiS), and the like.
- the average particle diameter of the positive electrode active material is preferably in the range of 1 ⁇ m to 50 ⁇ m, in particular in the range of 1 ⁇ m to 20 ⁇ m, particularly in the range of 3 ⁇ m to 5 ⁇ m. If the average particle size of the positive electrode active material is too small, the handleability may be deteriorated. If the average particle size of the positive electrode active material is too large, it may be difficult to obtain a flat positive electrode active material layer. Because.
- the average particle diameter of the positive electrode active material can be determined by measuring and averaging the particle diameter of the active material carrier observed with, for example, a scanning electron microscope (SEM).
- solid electrolytes such as a solid oxide electrolyte and a solid sulfide electrolyte
- electrolyte which can be used for the positive electrode layer of a test object all-solid-state battery.
- solid oxide electrolyte LiPON (lithium phosphate oxynitride), Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 , La 0.51 Li 0.34 TiO 0 .74 , Li 3 PO 4 , Li 2 SiO 2 , Li 2 SiO 4 and the like.
- a polymer electrolyte, a gel electrolyte, or the like can be used for the positive electrode layer of the all-solid battery to be inspected.
- SEI Solid Electrolyte Interface. The same applies hereinafter
- SEI Solid Electrolyte Interface. The same applies hereinafter
- SEI is unlikely to be generated in the negative electrode, so that the negative electrode greatly affects the battery voltage in the low SOC region. Therefore, the electrolyte can be appropriately used for the all-solid battery to be inspected.
- the positive electrode active material is preferably coated with an ion conductive oxide.
- the lithium ion conductive oxide that coats the positive electrode active material include a general formula Li x AO y (A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, or W). And x and y are positive numbers).
- Examples include O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , LiNbO 3 , Li 2 MoO 4 , Li 2 WO 4 and the like.
- the lithium ion conductive oxide may be a complex oxide.
- any combination of the above lithium ion conductive oxides can be employed.
- Li 4 SiO 4 —Li 3 BO 3 , Li 4 SiO 4 —Li 3 PO 4 etc. can be mentioned.
- the ion conductive oxide when the surface of the positive electrode active material is coated with an ion conductive oxide, the ion conductive oxide only needs to cover at least a part of the positive electrode active material, and covers the entire surface of the positive electrode active material. Also good.
- the thickness of the ion conductive oxide covering the positive electrode active material is, for example, preferably from 0.1 nm to 100 nm, and more preferably from 1 nm to 20 nm. The thickness of the ion conductive oxide can be measured using, for example, a transmission electron microscope (TEM).
- the positive electrode layer of the all solid state battery to be inspected can contain a conductive additive, a binder, or the like, if necessary.
- a conductive additive it is not particularly limited as long as the conductivity of the positive electrode layer can be improved.
- carbon black or the like can be used.
- content of the conductive support material in a positive electrode layer can be determined according to the kind of conductive support material, for example, can be 1 mass% or more and 10 mass% or less.
- examples of the binder usable for the positive electrode layer of the all solid state battery to be inspected include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
- the content of the binder in the positive electrode layer may be an amount that can fix the positive electrode active material and the like, and is preferably smaller.
- the content of the binder can be, for example, 1% by mass or more and 10% by mass or less.
- the thickness of the positive electrode layer of the all-solid battery to be inspected can be determined according to the use of the all-solid battery. Specifically, the thickness is preferably 10 ⁇ m to 250 ⁇ m, more preferably 20 ⁇ m to 200 ⁇ m, and most preferably 30 ⁇ m to 150 ⁇ m.
- the positive electrode layer of the all-solid battery to be inspected configured as described above can be produced by a known method.
- the positive electrode current collector connected to the positive electrode layer for example, aluminum, SUS, nickel, iron, copper, titanium, or the like can be used, and aluminum or SUS can be preferably used.
- the positive electrode current collector can be formed into a foil shape, a plate shape, a mesh shape, or the like, for example, and a foil shape is preferable.
- the negative electrode active material contained in the negative electrode layer of the all-solid battery to be inspected is not particularly limited as long as it can occlude and release metal ions.
- alkali metals such as lithium, sodium, and potassium; magnesium, calcium, and the like Group 13 elements such as aluminum; Group 13 elements such as aluminum; Transition metals such as zinc, iron, copper and nickel; or alloys and compounds containing these metals.
- the negative electrode active material containing lithium element include metal lithium, lithium compounds such as lithium titanate (Li 4 Ti 5 O 12 ), metal alloys such as Li 3 Ni 2 Sn 7 , metal oxides, metal sulfides, Examples thereof include metal nitrides and carbon materials such as graphite.
- the negative electrode active material may be in the form of a powder or a thin film.
- the negative electrode layer of the all-solid battery to be inspected can contain the above electrolyte that can be used for the positive electrode layer of the all-solid battery to be inspected.
- the negative electrode layer of the all solid state battery to be inspected can contain a conductive additive, a binder, or the like, if necessary.
- the same conductive aids and binders that can be used for the positive electrode layer can be used, and the amount of conductive aid and binder used is determined according to the application of the all-solid-state battery, etc. It is preferable to do.
- the thickness of the negative electrode layer of the all-solid battery to be inspected can be determined according to the use of the all-solid battery. Specifically, the thickness is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 50 ⁇ m or less.
- the negative electrode layer of the all-solid battery to be inspected configured as described above can be manufactured by a known method.
- the material and shape of the negative electrode current collector connected to the negative electrode layer can be appropriately selected from the material and shape of the positive electrode current collector described above.
- the solid electrolyte layer of the all-solid battery to be inspected can contain the above electrolyte that can be used for the positive electrode layer of the all-solid battery to be inspected.
- the solid electrolyte layer can be produced, for example, by pressing the solid electrolyte.
- An all-solid battery to be inspected comprising a positive electrode current collector, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector constituted by the materials and methods described above is, for example, a known laminate film (metal (Including a laminated film on which is vapor-deposited) or in a state of being housed in a known housing.
- a known laminate film metal (Including a laminated film on which is vapor-deposited) or in a state of being housed in a known housing.
- the present invention is not limited to this form.
- the SOC is not particularly limited as long as the state of the negative electrode can be specified.
- the SOC is preferably 0% or more and 20% or less, and more preferably 0% or more and 10% or less from the viewpoint of making the state of the negative electrode easy to specify.
- the present invention is not limited to this mode. However, it is preferable to calculate the IV input resistance based on the current and voltage when charging with a constant current from the viewpoint of making it possible to accurately estimate the battery capacity at which voltage abnormality occurs.
- the constant current is preferably a constant current with a charging rate of 10 C or less, and more preferably 7 C or less.
- the all-solid battery is exemplified as a lithium ion secondary battery, but the present invention is not limited to this form.
- the all solid state battery inspected according to the present invention may be in a form in which ions other than lithium ions move between the positive electrode layer and the negative electrode layer. Examples of such ions include sodium ions and potassium ions.
- the positive electrode active material, the solid electrolyte, and the negative electrode active material may be appropriately selected according to the moving ions.
- An all-solid-state battery is manufactured, and for the produced all-solid-state battery, the relationship between the battery capacity where the voltage abnormality occurs and the IV input resistance, the relation between the battery capacity where the voltage abnormality occurs and the IV output resistance, and the voltage abnormality occur.
- the relationship between the battery capacity to be measured and the impedance measurement result was investigated.
- the lithium nickel cobalt manganate as prepared cathode active material coated with LiNbO 3 of the all-solid-state battery, Li 2 S-P 2 was prepared by the same procedure as disclosed in JP-A-2005-228570 as a solid electrolyte the S 5, the graphite as the negative electrode active material, an Al foil as a positive electrode collector, using Cu foil, respectively as the negative electrode current collector, to prepare an all-solid battery.
- the positive electrode layer formed on the surface of the positive electrode current collector, the solid electrolyte layer, and the negative electrode layer formed on the surface of the negative electrode current collector are arranged so that the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer.
- the battery pellets were produced by laminating to each other, and through the process of pressing the battery pellets at 4.3 tf / cm 2 ( ⁇ 421.4 MPa), six all solid batteries (1 to 6 cells) were produced.
- the form of the produced all solid state battery is shown in FIG.
- the all-solid battery 1 shown in FIG. 3 includes a positive electrode layer 1a and a negative electrode layer 1c, a solid electrolyte layer 1b disposed therebetween, a positive electrode current collector 1d connected to the positive electrode layer 1a, and a negative electrode layer 1c. And a negative electrode current collector 1e connected to.
- a difference was made in the conductivity of the solid electrolyte used in each of 1 to 6 cells. Specifically, the conductivity of the solid electrolyte mixed with the negative electrode active material was 6 cells ⁇ 4 cells ⁇ 1 cell ⁇ 2 cells ⁇ 3 cells ⁇ 5 cells.
- the direct current resistance and reaction resistance in SOC20% were measured by measuring alternating current impedance using the alternating current impedance apparatus by Solartron.
- the resistance from the origin of the Cole-Cole plot to the arc start position was defined as DC resistance, and the resistance from the arc start position to the end was defined as reaction resistance.
- FIG. 4 shows the relationship between the IV input resistance measured in the first 5 seconds when the SOC 0% all solid state battery is charged at the 7C rate and the battery capacity at which voltage abnormality occurs.
- the vertical axis in FIG. 4 is the battery capacity [mAh / g] where voltage abnormality occurs, and the horizontal axis is the IV input resistance [ ⁇ / cm 2 ].
- the IV input resistance had a strong correlation with the strong capacity at which voltage abnormality occurred in the all solid state battery charged at the 1.5 C rate. .
- the SOC 0% the battery capacity correlation coefficient R 2 is a voltage abnormality occurs in 0.89 or more (0.96 in 0.89,7C rate 10C rate) and, IV input resistance and all-solid-state cell is It had a strong correlation.
- the IV input resistance at 20% SOC also had a strong correlation with the battery capacity at which voltage abnormalities occur in all solid state batteries, but voltage abnormalities occurred in some batteries. Oops.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本発明の第1の態様は、全固体電池に電圧異常が発生する電池容量と、全固体電池の抵抗と、の関係を記憶する記憶部と、全固体電池の充電中における電流及び電圧に基づいて抵抗を算出する抵抗算出部と、を有し、記憶部に記憶された関係と、抵抗算出部により算出された抵抗と、から全固体電池に電圧異常が発生する電池容量を算出する、全固体電池の検査装置である。
を有する、全固体電池の検査方法である。
固体酸化物電解質としては、具体的には、LiPON(リン酸リチウムオキシナイトライド)、Li1.3Al0.3Ti0.7(PO4)3、La0.51Li0.34TiO0.74、Li3PO4、Li2SiO2、Li2SiO4等を例示することができる。
固体硫化物電解質としては、具体的には、Li2S-P2S5(Li2S:P2S5=50:50~100:0)、Li2S-SiS2、Li3.25P0.25Ge0.76S4、Li2O-Li2S-P2S5、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B2S3-LiI、Li2S-SiS2-P2S5-LiI、Li2S-B2S3、Li2S-P2S5-ZmSn(Z=Ge、Zn、Ga)、Li2S-GeS2、Li2S-SiS2-Li3PO4、Li2S-SiS2-LixMOy(M=P、Si、Ge、B、Al、Ga、In)等を例示することができる。
このほか、検査対象全固体電池の正極層には、ポリマー電解質やゲル電解質等を用いることもできる。
なお、液体電解質(電解液)を用いる電池では、電解液の分解によって負極にSEI(Solid Electrolyte Interface。以下において同じ。)が生成されるため、電池の電圧に負極の影響が現れ難い。これに対し、固体電解質を用いる電池では、負極にSEIが生成され難いため、低SOC領域における電池の電圧に負極の影響が大きく現れる。そのため、検査対象全固体電池には、上記電解質を適宜用いることができる。
リチウム元素を含む負極活物質の例としては、金属リチウム、チタン酸リチウム(Li4Ti5O12)等のリチウム化合物、Li3Ni2Sn7等の金属合金、金属酸化物、金属硫化物、金属窒化物、およびグラファイト等の炭素材料等を挙げることができる。また、負極活物質は、粉末状であっても良く、薄膜状であっても良い。
正極活物質としてLiNbO3を被覆したニッケルコバルトマンガン酸リチウムを、固体電解質として特開2005-228570号公報に開示されている手法と同様の手法で作製したLi2S-P2S5を、負極活物質としてグラファイトを、正極集電体としてAl箔を、負極集電体としてCu箔をそれぞれ用いて、全固体電池を作製した。なお、正極層は、正極活物質及び固体電解質の体積比率が正極活物質:固体電解質=6:4となるように混合した混合物を含むスラリー状の組成物を、正極集電体の表面に塗工する過程を経て作製した。また、負極層は、負極活物質及び固体電解質の体積比率が負極活物質:固体電解質=6:4となるように混合した混合物を含むスラリー状の組成物を、負極集電体の表面に塗工する過程を経て作製した。そして、正極集電体の表面に形成した正極層と、固体電解質層と、負極集電体の表面に形成した負極層とを、固体電解質層が正極層及び負極層の間に配置されるように積層することにより電池ペレットを作製し、この電池ペレットを4.3tf/cm2(≒421.4MPa)でプレスする過程を経て、6つの全固体電池(1セル乃至6セル)を作製した。作製した全固体電池の形態を図3に示す。図3に示した全固体電池1は、正極層1a及び負極層1cと、これらの間に配置された固体電解質層1bと、正極層1aに接続された正極集電体1dと、負極層1cに接続された負極集電体1eと、を有している。なお、広くデータ点を取るため、1セル乃至6セルのそれぞれに用いる固体電解質の伝導度に差を設けた。具体的には、負極活物質と混合する固体電解質の伝導度が、6セル<4セル<1セル<2セル<3セル<5セルとなるようにした。
作製した6つの全固体電池それぞれについて、以下に示す評価を行った。
6つの全固体電池を25℃の温度環境下で3時間に亘って放置した後、1/3Cレートで充放電を実施した。その後、SOC20%及びSOC60%におけるIV出力抵抗を、7Cレート及び10Cレートの場合について、それぞれ5秒間に亘って測定した。その後、1.5Cレートで充放電を実施し、6つの全固体電池それぞれについて、1.5Cで電圧異常が発生する電池容量を測定した。その後、SOC0%、20%、60%におけるIV入力抵抗を、7Cレート及び10Cレートの場合について、それぞれ5秒間に亘って測定した。また、ソーラートロン社製の交流インピーダンス装置を用いて、交流インピーダンスを測定することにより、SOC20%における直流抵抗及び反応抵抗を測定した。なお、コールコールプロットの原点から円弧開始位置までの抵抗を直流抵抗とし、円弧開始位置から終了までを反応抵抗とした。
測定結果を表1に示す。表1の相関係数R2は、少数第3位を四捨五入した値を示している。また、表1の「直流」は直流抵抗を意味し、「反応」は反応抵抗を意味している。また、SOC0%の全固体電池を7Cレートで充電した時の最初の5秒間で測定したIV入力抵抗と、電圧異常が発生する電池容量との関係を図4に示す。図4の縦軸は電圧異常が発生する電池容量[mAh/g]であり、横軸はIV入力抵抗[Ω/cm2]である。
1a…正極層
1b…固体電解質層
1c…負極層
1d…正極集電体
1e…負極集電体
2…電流計
3…電圧計
10…全固体電池の検査装置
11…記憶部
12…抵抗算出部
13…容量算出部
Claims (8)
- 全固体電池に電圧異常が発生する電池容量と、全固体電池の抵抗と、の関係を記憶する記憶部と、
全固体電池の充電中における電流及び電圧に基づいて抵抗を算出する抵抗算出部と、を有し、
前記記憶部に記憶された関係と、前記抵抗算出部により算出された抵抗と、から前記全固体電池に電圧異常が発生する電池容量を算出する、全固体電池の検査装置。 - 前記抵抗算出部は、前記全固体電池の充電状態が0%以上20%以下の時の充電中における電流及び電圧に基づいて抵抗を算出する、請求項1に記載の全固体電池の検査装置。
- 前記抵抗算出部は、定電流にて充電している時の電流及び電圧に基づいて抵抗を算出する、請求項1又は2に記載の全固体電池の検査装置。
- 前記定電流は、充電レートが10C以下の定電流である、請求項3に記載の全固体電池の検査装置。
- 全固体電池に電圧異常が発生する電池容量と、全固体電池の抵抗と、の関係を把握する把握工程と、
全固体電池の充電中における電流及び電圧に基づいて抵抗を算出する抵抗算出工程と、
前記把握工程で把握した関係と、前記抵抗算出工程により算出された抵抗と、から前記全固体電池に電圧異常が発生する電池容量を算出する容量算出工程と、
を有する、全固体電池の検査方法。 - 前記抵抗算出工程で、前記全固体電池の充電状態が0%以上20%以下の時の充電中における電流及び電圧に基づいて抵抗を算出する、請求項5に記載の全固体電池の検査方法。
- 前記抵抗算出工程で、定電流にて充電している時の電流及び電圧に基づいて抵抗を算出する、請求項5又は6に記載の全固体電池の検査方法。
- 前記定電流は、充電レートが10C以下の定電流である、請求項7に記載の全固体電池の検査方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/060621 WO2013157128A1 (ja) | 2012-04-19 | 2012-04-19 | 全固体電池の検査装置及び検査方法 |
JP2014511051A JP5780359B2 (ja) | 2012-04-19 | 2012-04-19 | 全固体電池の検査装置及び検査方法 |
CN201280072238.4A CN104204829B (zh) | 2012-04-19 | 2012-04-19 | 全固体电池的检查装置和检查方法 |
US14/385,592 US9903918B2 (en) | 2012-04-19 | 2012-04-19 | Apparatus and method for inspecting all-solid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/060621 WO2013157128A1 (ja) | 2012-04-19 | 2012-04-19 | 全固体電池の検査装置及び検査方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013157128A1 true WO2013157128A1 (ja) | 2013-10-24 |
Family
ID=49383110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/060621 WO2013157128A1 (ja) | 2012-04-19 | 2012-04-19 | 全固体電池の検査装置及び検査方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9903918B2 (ja) |
JP (1) | JP5780359B2 (ja) |
CN (1) | CN104204829B (ja) |
WO (1) | WO2013157128A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022533496A (ja) * | 2019-05-09 | 2022-07-25 | エルジー エナジー ソリューション リミテッド | 二次電池の製造方法 |
EP4333123A1 (en) * | 2022-08-31 | 2024-03-06 | Samsung SDI Co., Ltd. | All-solid secondary battery |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6690584B2 (ja) * | 2017-03-10 | 2020-04-28 | トヨタ自動車株式会社 | 電池状態推定装置 |
JP6939527B2 (ja) * | 2017-12-25 | 2021-09-22 | トヨタ自動車株式会社 | 蓄電デバイスの検査方法および製造方法 |
US11592488B2 (en) * | 2018-02-28 | 2023-02-28 | Denso Corporation | Battery monitoring system |
US12339327B2 (en) | 2018-02-28 | 2025-06-24 | Denso Corporation | Battery monitoring system |
CN110231569B (zh) | 2018-03-06 | 2022-06-14 | 丰田自动车株式会社 | 全固体电池的检查方法、全固体电池的制造方法和电池组的制造方法 |
JP7000976B2 (ja) * | 2018-04-27 | 2022-01-19 | トヨタ自動車株式会社 | 全固体電池の検査方法、全固体電池の製造方法および組電池の製造方法 |
KR20220072444A (ko) * | 2020-11-25 | 2022-06-02 | 현대자동차주식회사 | 배터리 불량원인 선별 시스템 및 배터리 불량원인 선별방법 |
DE102022104742A1 (de) * | 2021-07-22 | 2023-01-26 | Shimano Inc. | Fahrradkomponente, berührungsloses ladesystem und berührungsloses ladeverfahren |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010086911A (ja) * | 2008-10-02 | 2010-04-15 | Nissan Motor Co Ltd | 組電池の性能検出装置及び制御装置 |
JP2011252930A (ja) * | 2011-01-13 | 2011-12-15 | Yokogawa Electric Corp | 二次電池の検査装置、二次電池の検査方法、二次電池の製造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1437031A (zh) * | 2002-02-08 | 2003-08-20 | 上海华谊(集团)公司 | 用于电池容量的测量方法 |
JP4061965B2 (ja) * | 2002-05-14 | 2008-03-19 | ソニー株式会社 | 電池容量算出方法 |
CA2500043C (en) * | 2002-09-24 | 2009-06-30 | Research In Motion Limited | System and method of battery capacity estimation |
JP4032934B2 (ja) * | 2002-11-15 | 2008-01-16 | ソニー株式会社 | 電池容量算出方法、電池容量算出装置、及び電池容量算出プログラム |
KR100494947B1 (ko) * | 2003-08-07 | 2005-06-13 | 현대자동차주식회사 | 배터리 정상상태 단자 전압 산출방법 |
JP4286842B2 (ja) * | 2005-03-30 | 2009-07-01 | 株式会社ピーシーエヌ | 車載バッテリー管理装置 |
CN101184648B (zh) * | 2005-05-27 | 2012-08-08 | Lg化学株式会社 | 通过利用电池的内部电阻估算电池最大功率的方法和装置 |
CN1945345A (zh) * | 2005-10-09 | 2007-04-11 | 奇瑞汽车有限公司 | 一种混合动力汽车电池余量检测装置及检测方法 |
WO2009075109A1 (ja) * | 2007-12-13 | 2009-06-18 | Panasonic Corporation | リチウム二次電池の寿命推定方法と劣化抑制方法、寿命推定器と劣化抑制器、それを用いた電池パック、充電器 |
JP2010040198A (ja) * | 2008-07-31 | 2010-02-18 | Idemitsu Kosan Co Ltd | 二次電池充放電装置、電気機器、二次電池充放電方法及び二次電池充放電プログラム |
JP4722976B2 (ja) * | 2008-08-26 | 2011-07-13 | 本田技研工業株式会社 | 蓄電容量制御装置 |
JP5368038B2 (ja) * | 2008-09-11 | 2013-12-18 | ミツミ電機株式会社 | 電池状態検知装置及びそれを内蔵する電池パック |
CN101388477B (zh) * | 2008-09-28 | 2010-12-29 | 广州丰江电池新技术有限公司 | 一种快速充电方法 |
JP5493925B2 (ja) * | 2010-01-29 | 2014-05-14 | 富士通株式会社 | 電子装置 |
US8836284B2 (en) * | 2010-05-17 | 2014-09-16 | Toyota Jidosha Kabushiki Kaisha | Device and method for calculating value of rechargeable battery |
KR20110134019A (ko) * | 2010-06-08 | 2011-12-14 | 현대자동차주식회사 | 차량용 배터리의 셀 열화 진단 방법 |
JP5608747B2 (ja) * | 2010-07-13 | 2014-10-15 | 本田技研工業株式会社 | 蓄電容量管理装置 |
CN101907688B (zh) * | 2010-08-02 | 2012-08-22 | 天津力神电池股份有限公司 | 一种锂离子电池电性能一致性的检测方法 |
US8738310B2 (en) * | 2010-12-08 | 2014-05-27 | Paul Swanton | Automatic determination of baselines for battery testing |
JP2012247339A (ja) * | 2011-05-30 | 2012-12-13 | Renesas Electronics Corp | 半導体集積回路およびその動作方法 |
-
2012
- 2012-04-19 US US14/385,592 patent/US9903918B2/en active Active
- 2012-04-19 WO PCT/JP2012/060621 patent/WO2013157128A1/ja active Application Filing
- 2012-04-19 CN CN201280072238.4A patent/CN104204829B/zh active Active
- 2012-04-19 JP JP2014511051A patent/JP5780359B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010086911A (ja) * | 2008-10-02 | 2010-04-15 | Nissan Motor Co Ltd | 組電池の性能検出装置及び制御装置 |
JP2011252930A (ja) * | 2011-01-13 | 2011-12-15 | Yokogawa Electric Corp | 二次電池の検査装置、二次電池の検査方法、二次電池の製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022533496A (ja) * | 2019-05-09 | 2022-07-25 | エルジー エナジー ソリューション リミテッド | 二次電池の製造方法 |
JP7196383B2 (ja) | 2019-05-09 | 2022-12-27 | エルジー エナジー ソリューション リミテッド | 二次電池の製造方法 |
US12272792B2 (en) | 2019-05-09 | 2025-04-08 | Lg Energy Solution, Ltd. | Method for manufacturing secondary battery |
EP4333123A1 (en) * | 2022-08-31 | 2024-03-06 | Samsung SDI Co., Ltd. | All-solid secondary battery |
Also Published As
Publication number | Publication date |
---|---|
US20150048838A1 (en) | 2015-02-19 |
CN104204829A (zh) | 2014-12-10 |
JP5780359B2 (ja) | 2015-09-16 |
US9903918B2 (en) | 2018-02-27 |
CN104204829B (zh) | 2016-08-24 |
JPWO2013157128A1 (ja) | 2015-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5780359B2 (ja) | 全固体電池の検査装置及び検査方法 | |
JP5108588B2 (ja) | 二次電池用正極板およびその製造方法 | |
CN103733390B (zh) | 锂离子二次电池 | |
JP2019036391A (ja) | 全固体電池および負極 | |
JP2016018735A (ja) | 複合活物質及びその製造方法 | |
TW201840050A (zh) | 鋰離子二次電池及其製造方法 | |
US20160079634A1 (en) | All-solid-state battery and method for producing the same, and method for restoring capacity of the same | |
JP6805940B2 (ja) | リチウムイオン二次電池およびその製造方法 | |
JP6137554B2 (ja) | 非水電解質二次電池および該電池用のセパレータ | |
JP2011222215A (ja) | リチウムイオン二次電池 | |
Deng et al. | From the charge conditions and internal short-circuit strategy to analyze and improve the overcharge safety of LiCoO2/graphite batteries | |
JP5804202B2 (ja) | 電池の劣化診断装置及び劣化診断方法並びに電池の製造方法 | |
JP6250941B2 (ja) | 非水電解質二次電池 | |
JP2015170477A (ja) | 非水電解液二次電池 | |
JP6848749B2 (ja) | 二次電池 | |
CN111799441B (zh) | 非水电解质二次电池 | |
EP4170746A1 (en) | Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
Parikh | Understanding the Limitations in Battery Components for Improving Energy Density under Extreme Fast Charging (XFC) Conditions | |
Deng et al. | Analysis on the constant-current overcharge electrode process and self-protection mechanism of LiCoO2/graphite batteries | |
JP6863213B2 (ja) | 二次電池の製造方法 | |
JP2019160613A (ja) | リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池 | |
JP6960091B2 (ja) | 非水電解質二次電池用の正極 | |
JP2000285909A (ja) | リチウムイオン2次電池の電極板試験装置 | |
JP2022088979A (ja) | 全固体電池 | |
JP2021163707A (ja) | 非水電解質蓄電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12874671 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014511051 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14385592 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12874671 Country of ref document: EP Kind code of ref document: A1 |