WO2013157128A1 - 全固体電池の検査装置及び検査方法 - Google Patents

全固体電池の検査装置及び検査方法 Download PDF

Info

Publication number
WO2013157128A1
WO2013157128A1 PCT/JP2012/060621 JP2012060621W WO2013157128A1 WO 2013157128 A1 WO2013157128 A1 WO 2013157128A1 JP 2012060621 W JP2012060621 W JP 2012060621W WO 2013157128 A1 WO2013157128 A1 WO 2013157128A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
battery
resistance
voltage
state battery
Prior art date
Application number
PCT/JP2012/060621
Other languages
English (en)
French (fr)
Inventor
徳洋 尾瀬
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/060621 priority Critical patent/WO2013157128A1/ja
Priority to JP2014511051A priority patent/JP5780359B2/ja
Priority to CN201280072238.4A priority patent/CN104204829B/zh
Priority to US14/385,592 priority patent/US9903918B2/en
Publication of WO2013157128A1 publication Critical patent/WO2013157128A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture

Definitions

  • the present invention relates to an inspection device and an inspection method for an all-solid-state battery.
  • a lithium ion secondary battery has a higher energy density than a conventional secondary battery and can be operated at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • a lithium ion secondary battery has a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed between them.
  • the electrolyte used for the electrolyte layer include non-aqueous liquid and solid substances. Are known.
  • electrolytic solution a liquid electrolyte (hereinafter referred to as “electrolytic solution”)
  • the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • solid electrolyte that is flame retardant
  • all-solid battery a lithium ion secondary battery
  • solid electrolyte layer a layer containing a solid electrolyte
  • Patent Document 1 discloses a secondary battery in which an abnormality is detected in the voltage and / or current during charging, with a pulse wave and / or a low charging voltage. A technique for charging is disclosed.
  • an object of the present invention is to provide an inspection device and an inspection method for an all-solid-state battery capable of grasping a battery capacity at which a voltage abnormality occurs before the voltage abnormality occurs.
  • a first aspect of the present invention is based on a storage unit that stores a relationship between a battery capacity at which a voltage abnormality occurs in an all-solid battery and a resistance of the all-solid battery, and current and voltage during charging of the all-solid battery.
  • a resistance calculation unit that calculates resistance, and calculates a battery capacity at which a voltage abnormality occurs in an all-solid-state battery from the relationship stored in the storage unit and the resistance calculated by the resistance calculation unit. This is an inspection device for a solid battery.
  • the resistance calculation unit preferably calculates the resistance based on a current and a voltage during charging when the state of charge of the all solid state battery is 0% or more and 20% or less.
  • the resistance calculation unit preferably calculates the resistance based on the current and voltage when charging with a constant current, and the constant current has a charge rate of 10 C or less.
  • the constant current is more preferable.
  • C means a charge / discharge rate representing the speed at which the entire capacity of the battery is charged / discharged.
  • the amount of current required to charge the entire capacity of the battery in 1 hour is the 1C rate, and the amount of current 10 times the 1C rate is 10C.
  • the second aspect of the present invention is based on the grasping step for grasping the relationship between the battery capacity at which voltage abnormality occurs in the all solid state battery and the resistance of the all solid state battery, and the current and voltage during the charging of the all solid state battery.
  • the resistance is calculated based on the current and voltage during charging when the state of charge of the all solid state battery is 0% or more and 20% or less in the resistance calculation step.
  • the resistance based on the current and voltage when charging with a constant current in the resistance calculating step it is preferable to calculate the resistance based on the current and voltage when charging with a constant current in the resistance calculating step, and the constant current has a charging rate of 10 C or less.
  • the constant current is more preferable.
  • an inspection device and an inspection method for an all-solid-state battery capable of grasping the battery capacity at which a voltage abnormality occurs before the voltage abnormality occurs.
  • FIG. 1 is a diagram illustrating an all solid state battery 1.
  • FIG. It is a figure explaining an example of the relationship between the battery capacity and IV input resistance which a voltage abnormality generate
  • FIG. 1 is a diagram for explaining an all-solid-state battery inspection device 10 of the present invention (hereinafter sometimes simply referred to as “the device 10 of the present invention”).
  • the device 10 of the present invention includes a storage unit 11, a resistance calculation unit 12, and a capacitance calculation unit 13.
  • the storage unit 11 is a part that stores the relationship between the battery capacity at which voltage abnormality occurs in the all-solid-state battery and the resistance of the all-solid-state battery, and a known storage medium can be appropriately used as the storage unit 11.
  • the resistance calculator 12 calculates the resistance based on the current detected using the ammeter 2 during charging of the all-solid battery and the voltage detected using the voltmeter 3 during charging of the all-solid battery. It is a part to do.
  • the capacity calculation unit 13 converts the current and voltage detected by the ammeter 2 and the voltmeter 3 from the above relationship stored in the storage unit 11 and the resistance calculated by the resistance calculation unit 12 into an all-solid battery. This is a part for calculating the battery capacity at which voltage abnormality occurs.
  • a known processing device such as a CPU can be used as appropriate.
  • FIG. 2 is a diagram for explaining an all-solid-state battery inspection method of the present invention (hereinafter, simply referred to as “the present invention”). As shown in FIG. 2, the present invention includes a grasping step (S1), a resistance calculating step (S2), and a capacity calculating step (S3).
  • S1 grasping step
  • S2 resistance calculating step
  • S3 capacity calculating step
  • the grasping step includes a battery capacity at which voltage abnormality occurs in the all solid state battery, and a resistance when charging is performed when the state of charge of the all solid state battery is equal to or lower than a predetermined value.
  • This is a step of grasping the relationship with (IV input resistance).
  • S1 is a step of grasping the relationship (regression line) as shown in FIG.
  • the form of S1 is not particularly limited as long as the relationship between the battery capacity where the voltage abnormality occurs and the IV input characteristics can be grasped.
  • the battery capacity at which the voltage abnormality occurs in the all-solid-state battery can be specified by, for example, rapid charging at a predetermined charging rate.
  • the IV input resistance (R) is, for example, an all solid state battery having an SOC of 0% or more and 20% or less at a charging rate of 10C or less for a predetermined time (for example, about several seconds to several tens of seconds).
  • R V / I for the voltage (V) obtained by monitoring the voltage of the all-solid-state battery at a specific time (for example, a few seconds after the start of charging) during charging can do.
  • the battery capacity [mAh / g] in which voltage abnormality occurs is on the vertical axis
  • the IV input resistance [ ⁇ / cm 2 ] is on the horizontal axis.
  • the resistance calculation step (hereinafter, sometimes referred to as “S2”) is an all-solid manufactured using the same material as the all-solid-state battery whose relationship has been grasped in S1, whose charged state is equal to or less than a predetermined value after S1.
  • This is a step of charging the battery and observing the voltage of the all-solid battery during the charging to calculate the resistance (IV input resistance) of the all-solid battery.
  • there is a strong correlation (a strong negative correlation in the example of FIG. 4) between the battery capacity at which the voltage abnormality occurs and the IV input resistance of the all solid state battery measured in the low SOC region.
  • the capacity calculation step calculates the battery capacity at which voltage abnormality occurs in the all-solid-state battery by applying the IV input resistance calculated in S2 to the relationship grasped in S1. It is a process to do. Since there is a strong correlation between the battery capacity at which the voltage abnormality occurs and the IV input resistance measured in the low SOC region, the IV input resistance calculated in S2 is applied to the relationship grasped in S1. Before the voltage abnormality actually occurs in the all solid state battery, it is possible to estimate the battery capacity at which the voltage abnormality occurs when the all solid state battery is rapidly charged.
  • the battery capacity of the all-solid-state battery is less than the battery capacity at which the voltage abnormality occurs, it can be estimated that the voltage abnormality does not occur, and if the battery capacity of the all-solid battery is greater than the battery capacity at which the voltage abnormality occurs For example, it can be estimated that a voltage abnormality occurs. Therefore, according to the inspection method of the present invention and the inspection apparatus 10 of the present invention capable of performing the inspection method, it is possible to grasp the battery capacity at which the voltage abnormality occurs before the voltage abnormality occurs.
  • the all-solid battery to be inspected in the present invention (hereinafter, sometimes referred to as “inspection all-solid battery”) has a positive electrode layer and a negative electrode layer, and a solid electrolyte layer disposed therebetween, Electric power is taken out through the positive electrode current collector connected to the positive electrode layer and the negative electrode current collector connected to the negative electrode layer.
  • Examples of the positive electrode active material contained in the positive electrode layer of the all-solid battery to be inspected include nickel cobalt lithium manganate (LiNi x Co 1-xy Mn y O 2 ), lithium cobalt oxide (LiCoO 2 ), and nickel acid.
  • Lithium compounds such as lithium (LiNiO 2 ), lithium manganate (LiMnO 2 ), iron olivine (LiFePO 4 ), cobalt olivine (LiCoPO 4 ), manganese olivine (LiMnPO 4 ), and lithium titanate (Li 4 Ti 5 O 12 )
  • Examples thereof include chalcogenides such as copper subrel (Cu 2 Mo 6 S 8 ), iron sulfide (FeS), cobalt sulfide (CoS), nickel sulfide (NiS), and the like.
  • the average particle diameter of the positive electrode active material is preferably in the range of 1 ⁇ m to 50 ⁇ m, in particular in the range of 1 ⁇ m to 20 ⁇ m, particularly in the range of 3 ⁇ m to 5 ⁇ m. If the average particle size of the positive electrode active material is too small, the handleability may be deteriorated. If the average particle size of the positive electrode active material is too large, it may be difficult to obtain a flat positive electrode active material layer. Because.
  • the average particle diameter of the positive electrode active material can be determined by measuring and averaging the particle diameter of the active material carrier observed with, for example, a scanning electron microscope (SEM).
  • solid electrolytes such as a solid oxide electrolyte and a solid sulfide electrolyte
  • electrolyte which can be used for the positive electrode layer of a test object all-solid-state battery.
  • solid oxide electrolyte LiPON (lithium phosphate oxynitride), Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 , La 0.51 Li 0.34 TiO 0 .74 , Li 3 PO 4 , Li 2 SiO 2 , Li 2 SiO 4 and the like.
  • a polymer electrolyte, a gel electrolyte, or the like can be used for the positive electrode layer of the all-solid battery to be inspected.
  • SEI Solid Electrolyte Interface. The same applies hereinafter
  • SEI Solid Electrolyte Interface. The same applies hereinafter
  • SEI is unlikely to be generated in the negative electrode, so that the negative electrode greatly affects the battery voltage in the low SOC region. Therefore, the electrolyte can be appropriately used for the all-solid battery to be inspected.
  • the positive electrode active material is preferably coated with an ion conductive oxide.
  • the lithium ion conductive oxide that coats the positive electrode active material include a general formula Li x AO y (A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, or W). And x and y are positive numbers).
  • Examples include O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , LiNbO 3 , Li 2 MoO 4 , Li 2 WO 4 and the like.
  • the lithium ion conductive oxide may be a complex oxide.
  • any combination of the above lithium ion conductive oxides can be employed.
  • Li 4 SiO 4 —Li 3 BO 3 , Li 4 SiO 4 —Li 3 PO 4 etc. can be mentioned.
  • the ion conductive oxide when the surface of the positive electrode active material is coated with an ion conductive oxide, the ion conductive oxide only needs to cover at least a part of the positive electrode active material, and covers the entire surface of the positive electrode active material. Also good.
  • the thickness of the ion conductive oxide covering the positive electrode active material is, for example, preferably from 0.1 nm to 100 nm, and more preferably from 1 nm to 20 nm. The thickness of the ion conductive oxide can be measured using, for example, a transmission electron microscope (TEM).
  • the positive electrode layer of the all solid state battery to be inspected can contain a conductive additive, a binder, or the like, if necessary.
  • a conductive additive it is not particularly limited as long as the conductivity of the positive electrode layer can be improved.
  • carbon black or the like can be used.
  • content of the conductive support material in a positive electrode layer can be determined according to the kind of conductive support material, for example, can be 1 mass% or more and 10 mass% or less.
  • examples of the binder usable for the positive electrode layer of the all solid state battery to be inspected include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
  • the content of the binder in the positive electrode layer may be an amount that can fix the positive electrode active material and the like, and is preferably smaller.
  • the content of the binder can be, for example, 1% by mass or more and 10% by mass or less.
  • the thickness of the positive electrode layer of the all-solid battery to be inspected can be determined according to the use of the all-solid battery. Specifically, the thickness is preferably 10 ⁇ m to 250 ⁇ m, more preferably 20 ⁇ m to 200 ⁇ m, and most preferably 30 ⁇ m to 150 ⁇ m.
  • the positive electrode layer of the all-solid battery to be inspected configured as described above can be produced by a known method.
  • the positive electrode current collector connected to the positive electrode layer for example, aluminum, SUS, nickel, iron, copper, titanium, or the like can be used, and aluminum or SUS can be preferably used.
  • the positive electrode current collector can be formed into a foil shape, a plate shape, a mesh shape, or the like, for example, and a foil shape is preferable.
  • the negative electrode active material contained in the negative electrode layer of the all-solid battery to be inspected is not particularly limited as long as it can occlude and release metal ions.
  • alkali metals such as lithium, sodium, and potassium; magnesium, calcium, and the like Group 13 elements such as aluminum; Group 13 elements such as aluminum; Transition metals such as zinc, iron, copper and nickel; or alloys and compounds containing these metals.
  • the negative electrode active material containing lithium element include metal lithium, lithium compounds such as lithium titanate (Li 4 Ti 5 O 12 ), metal alloys such as Li 3 Ni 2 Sn 7 , metal oxides, metal sulfides, Examples thereof include metal nitrides and carbon materials such as graphite.
  • the negative electrode active material may be in the form of a powder or a thin film.
  • the negative electrode layer of the all-solid battery to be inspected can contain the above electrolyte that can be used for the positive electrode layer of the all-solid battery to be inspected.
  • the negative electrode layer of the all solid state battery to be inspected can contain a conductive additive, a binder, or the like, if necessary.
  • the same conductive aids and binders that can be used for the positive electrode layer can be used, and the amount of conductive aid and binder used is determined according to the application of the all-solid-state battery, etc. It is preferable to do.
  • the thickness of the negative electrode layer of the all-solid battery to be inspected can be determined according to the use of the all-solid battery. Specifically, the thickness is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the negative electrode layer of the all-solid battery to be inspected configured as described above can be manufactured by a known method.
  • the material and shape of the negative electrode current collector connected to the negative electrode layer can be appropriately selected from the material and shape of the positive electrode current collector described above.
  • the solid electrolyte layer of the all-solid battery to be inspected can contain the above electrolyte that can be used for the positive electrode layer of the all-solid battery to be inspected.
  • the solid electrolyte layer can be produced, for example, by pressing the solid electrolyte.
  • An all-solid battery to be inspected comprising a positive electrode current collector, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector constituted by the materials and methods described above is, for example, a known laminate film (metal (Including a laminated film on which is vapor-deposited) or in a state of being housed in a known housing.
  • a known laminate film metal (Including a laminated film on which is vapor-deposited) or in a state of being housed in a known housing.
  • the present invention is not limited to this form.
  • the SOC is not particularly limited as long as the state of the negative electrode can be specified.
  • the SOC is preferably 0% or more and 20% or less, and more preferably 0% or more and 10% or less from the viewpoint of making the state of the negative electrode easy to specify.
  • the present invention is not limited to this mode. However, it is preferable to calculate the IV input resistance based on the current and voltage when charging with a constant current from the viewpoint of making it possible to accurately estimate the battery capacity at which voltage abnormality occurs.
  • the constant current is preferably a constant current with a charging rate of 10 C or less, and more preferably 7 C or less.
  • the all-solid battery is exemplified as a lithium ion secondary battery, but the present invention is not limited to this form.
  • the all solid state battery inspected according to the present invention may be in a form in which ions other than lithium ions move between the positive electrode layer and the negative electrode layer. Examples of such ions include sodium ions and potassium ions.
  • the positive electrode active material, the solid electrolyte, and the negative electrode active material may be appropriately selected according to the moving ions.
  • An all-solid-state battery is manufactured, and for the produced all-solid-state battery, the relationship between the battery capacity where the voltage abnormality occurs and the IV input resistance, the relation between the battery capacity where the voltage abnormality occurs and the IV output resistance, and the voltage abnormality occur.
  • the relationship between the battery capacity to be measured and the impedance measurement result was investigated.
  • the lithium nickel cobalt manganate as prepared cathode active material coated with LiNbO 3 of the all-solid-state battery, Li 2 S-P 2 was prepared by the same procedure as disclosed in JP-A-2005-228570 as a solid electrolyte the S 5, the graphite as the negative electrode active material, an Al foil as a positive electrode collector, using Cu foil, respectively as the negative electrode current collector, to prepare an all-solid battery.
  • the positive electrode layer formed on the surface of the positive electrode current collector, the solid electrolyte layer, and the negative electrode layer formed on the surface of the negative electrode current collector are arranged so that the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer.
  • the battery pellets were produced by laminating to each other, and through the process of pressing the battery pellets at 4.3 tf / cm 2 ( ⁇ 421.4 MPa), six all solid batteries (1 to 6 cells) were produced.
  • the form of the produced all solid state battery is shown in FIG.
  • the all-solid battery 1 shown in FIG. 3 includes a positive electrode layer 1a and a negative electrode layer 1c, a solid electrolyte layer 1b disposed therebetween, a positive electrode current collector 1d connected to the positive electrode layer 1a, and a negative electrode layer 1c. And a negative electrode current collector 1e connected to.
  • a difference was made in the conductivity of the solid electrolyte used in each of 1 to 6 cells. Specifically, the conductivity of the solid electrolyte mixed with the negative electrode active material was 6 cells ⁇ 4 cells ⁇ 1 cell ⁇ 2 cells ⁇ 3 cells ⁇ 5 cells.
  • the direct current resistance and reaction resistance in SOC20% were measured by measuring alternating current impedance using the alternating current impedance apparatus by Solartron.
  • the resistance from the origin of the Cole-Cole plot to the arc start position was defined as DC resistance, and the resistance from the arc start position to the end was defined as reaction resistance.
  • FIG. 4 shows the relationship between the IV input resistance measured in the first 5 seconds when the SOC 0% all solid state battery is charged at the 7C rate and the battery capacity at which voltage abnormality occurs.
  • the vertical axis in FIG. 4 is the battery capacity [mAh / g] where voltage abnormality occurs, and the horizontal axis is the IV input resistance [ ⁇ / cm 2 ].
  • the IV input resistance had a strong correlation with the strong capacity at which voltage abnormality occurred in the all solid state battery charged at the 1.5 C rate. .
  • the SOC 0% the battery capacity correlation coefficient R 2 is a voltage abnormality occurs in 0.89 or more (0.96 in 0.89,7C rate 10C rate) and, IV input resistance and all-solid-state cell is It had a strong correlation.
  • the IV input resistance at 20% SOC also had a strong correlation with the battery capacity at which voltage abnormalities occur in all solid state batteries, but voltage abnormalities occurred in some batteries. Oops.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本発明は、電圧異常が発生する電池容量を、電圧異常が発生する前に把握することが可能な、全固体電池の検査装置及び検査方法を提供することを主目的とする。 本発明は、全固体電池に電圧異常が発生する電池容量と全固体電池の抵抗との関係を記憶する記憶部と、全固体電池の充電中における電流及び電圧に基づいて抵抗を算出する抵抗算出部とを有し、記憶部に記憶された関係と抵抗算出部により算出された抵抗とから全固体電池に電圧異常が発生する電池容量を算出する、全固体電池の検査装置とし、全固体電池に電圧異常が発生する電池容量と全固体電池の抵抗との関係を把握する把握工程と、全固体電池の充電中における電流及び電圧に基づいて抵抗を算出する抵抗算出工程と、把握工程で把握した関係と抵抗算出工程により算出された抵抗とから全固体電池に電圧異常が発生する電池容量を算出する容量算出工程と、を有する、全固体電池の検査方法とする。

Description

全固体電池の検査装置及び検査方法
 本発明は、全固体電池の検査装置及び検査方法に関する。
 リチウムイオン二次電池は、従来の二次電池よりもエネルギー密度が高く、高電圧で作動させることができる。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車用やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池は、正極層及び負極層と、これらの間に配置された電解質層とを有し、電解質層に用いられる電解質としては、例えば非水系の液体状や固体状の物質等が知られている。液体状の電解質(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、難燃性である固体状の電解質(以下において、「固体電解質」という。)を用いると、上記システムを簡素化できる。それゆえ、固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池(以下において、「全固体電池」という。)の開発が進められている。
 このようなリチウムイオン二次電池に関する技術として、例えば特許文献1には、充電時の電圧及び/又は電流に異常が検出された二次電池に対し、パルス波及び/又は低電圧の充電電圧で充電を行う技術が開示されている。
特開2010-40198号公報
 車両等に全固体電池を用いる場合には、全固体電池を急速充電することが想定される。ところが、全固体電池では、急速充電中に負極内へのリチウム挿入反応が間に合わないことに起因した電圧異常が発生して、正常な充電が困難になることがある。そのため、電圧異常が発生する前に、電圧異常が発生し得る全固体電池を特定することが望まれている。しかしながら、特許文献1に開示されている技術では、その図9等にも示されているように、電圧異常が発生するまで、電圧異常が発生する電池であるか否かを判断することができず、従来技術では、電圧異常が発生する前に電圧異常が発生する電池容量を把握することができなかった。
 そこで本発明は、電圧異常が発生する電池容量を、電圧異常が発生する前に把握することが可能な、全固体電池の検査装置及び検査方法を提供することを課題とする。
 本発明者は、鋭意検討の結果、充電状態(以下において、「SOC」ということがある。)が所定値以下である全固体電池を定電流で充電している間の特定の時間(例えば充電開始から数秒後)における、全固体電池の電圧、を用いて算出した抵抗(以下において、「IV入力抵抗」という。)と、全固体電池の充電時に電圧が急降下する異常(以下において、「電圧異常」という。)が発生し始める電池容量(以下において、この電池容量を「電圧異常が発生する電池容量」という。)との間に強い相関があることを知見した。したがって、充電状態が所定値以下である全固体電池のIV入力抵抗を測定し、この測定結果を、電圧異常が発生する電池容量とIV入力抵抗との関係に当てはめることにより、電圧異常が発生する電池容量を、実際に電圧異常が発生する前に把握することが可能になると考えられる。本発明は、当該知見に基づいて完成させた。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明の第1の態様は、全固体電池に電圧異常が発生する電池容量と、全固体電池の抵抗と、の関係を記憶する記憶部と、全固体電池の充電中における電流及び電圧に基づいて抵抗を算出する抵抗算出部と、を有し、記憶部に記憶された関係と、抵抗算出部により算出された抵抗と、から全固体電池に電圧異常が発生する電池容量を算出する、全固体電池の検査装置である。
 全固体電池のIV入力抵抗と電圧異常が発生する電池容量との間には強い相関があるので、電圧異常が発生する電池容量とIV入力抵抗との関係を特定し、この関係に、抵抗算出部で算出した抵抗を当てはめることにより、実際に電圧異常が発生する前に、全固体電池に電圧異常が発生する電池容量を算出することが可能になる。全固体電池を急速充電する前に、全固体電池に電圧異常が発生する電池容量を算出しておく(電圧異常が発生する前に電池の良否を判断しておく)ことにより、急速充電を行う際の充電レートを当初の予定よりも低減したり、電圧異常の発生が予想される全固体電池を、電圧異常が発生しないと予想される他の全固体電池と交換したりすることが可能になる。本発明の第1の態様によれば、このような対策を施すことが可能になるので、電圧異常の発生を回避することが可能になる。
 また、上記本発明の第1の態様において、抵抗算出部は、全固体電池の充電状態が0%以上20%以下の時の充電中における電流及び電圧に基づいて抵抗を算出することが好ましい。かかる形態とすることにより、IV入力抵抗と電圧異常が発生する電池容量との間の相関係数Rを高めやすくなるので、電圧異常が発生する電池容量の算出精度を高めることが可能になる。
 また、上記本発明の第1の態様において、抵抗算出部は、定電流にて充電している時の電流及び電圧に基づいて抵抗を算出することが好ましく、定電流は、充電レートが10C以下の定電流であることがより好ましい。ここで、「C」は、電池の全容量を充放電する際の速さを表す充放電率を意味する。電池の全容量を1時間で充電させるだけの電流量が1Cレートであり、1Cレートの10倍の電流量が10Cである。かかる形態とすることにより、IV入力抵抗と電圧異常が発生する電池容量との間の相関係数Rを高めやすくなるので、電圧異常が発生する電池容量の算出精度を高めることが可能になる。
 本発明の第2の態様は、全固体電池に電圧異常が発生する電池容量と、全固体電池の抵抗と、の関係を把握する把握工程と、全固体電池の充電中における電流及び電圧に基づいて抵抗を算出する抵抗算出工程と、把握工程で把握した関係と、抵抗算出工程により算出された抵抗と、から全固体電池に電圧異常が発生する電池容量を算出する容量算出工程と、
を有する、全固体電池の検査方法である。
 全固体電池のIV入力抵抗と電圧異常が発生する電池容量との間には強い相関があるので、電圧異常が発生する電池容量とIV入力抵抗との関係を把握工程で特定し、この関係に、抵抗算出工程で算出した抵抗を当てはめることにより、実際に電圧異常が発生する前に、全固体電池に電圧異常が発生する電池容量を算出することが可能になる。全固体電池を急速充電する前に、全固体電池に電圧異常が発生する電池容量を算出しておく(電圧異常が発生する前に電池の良否を判断しておく)ことにより、急速充電を行う際の充電レートを当初の予定よりも低減したり、電圧異常の発生が予想される全固体電池を、電圧異常が発生しないと予想される他の全固体電池と交換したりすることが可能になる。本発明の第2の態様によれば、このような対策を施すことが可能になるので、電圧異常の発生を回避することが可能になる。
 また、上記本発明の第2の態様において、抵抗算出工程で、全固体電池の充電状態が0%以上20%以下の時の充電中における電流及び電圧に基づいて抵抗を算出することが好ましい。かかる形態とすることにより、IV入力抵抗と電圧異常が発生する電池容量との間の相関係数Rを高めやすくなるので、電圧異常が発生する電池容量の算出精度を高めることが可能になる。
 また、上記本発明の第2の態様において、抵抗算出工程で、定電流にて充電している時の電流及び電圧に基づいて抵抗を算出することが好ましく、定電流は、充電レートが10C以下の定電流であることがより好ましい。かかる形態とすることにより、IV入力抵抗と電圧異常が発生する電池容量との間の相関係数Rを高めやすくなるので、電圧異常が発生する電池容量の算出精度を高めることが可能になる。
 本発明によれば、電圧異常が発生する電池容量を、電圧異常が発生する前に把握することが可能な、全固体電池の検査装置及び検査方法を提供することができる。
本発明の全固体電池の検査装置10を説明する図である。 本発明の全固体電池の検査方法を説明する図である。 全固体電池1を説明する図である。 電圧異常が発生する電池容量とIV入力抵抗との関係の一例を説明する図である。
 二次電池の状態を調べる方法として、例えば、特開2007-85772号公報に記載されている、内部インピーダンスを測定する方法がある。しかしながら、全固体電池では、負極よりも正極の抵抗が大きいため、内部インピーダンスを測定しても、負極の状態を特定することは困難である。また、全固体電池の状態を調べるために、定電流で放電している間の電圧を観察して導かれる抵抗(以下において、この抵抗を「IV出力抵抗」という。)を測定しても、同様に、負極の状態を特定することは困難である。以上を踏まえて、本発明者は、IV入力抵抗の測定を検討した。
 ここで、高SOC領域でIV入力抵抗を測定しても、負極の状態を特定することは困難である。また、電圧異常は高SOC領域で発生しやすいため、高SOC領域でIV入力抵抗を測定すると、電圧異常が発生して電池そのものを不良にしてしまう虞がある。これに対し、低SOC領域でIV入力抵抗を測定する場合には、電圧異常の発生を心配する必要がない。また、全固体電池では、低SOC領域において負極の抵抗が高い。そのため、電圧異常が発生する電池容量と低SOC領域で測定した全固体電池のIV入力抵抗との相関が強くなると考えられ、電圧異常が発生する前に全固体電池の良否(全固体電池に備えられている負極層の良否)を判断しやすくなると思われる。
 以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。
 図1は、本発明の全固体電池の検査装置10(以下において、単に「本発明の装置10」ということがある。)を説明する図である。図1に示したように、本発明の装置10は、記憶部11と、抵抗算出部12と、容量算出部13と、を有している。記憶部11は、全固体電池に電圧異常が発生する電池容量と全固体電池の抵抗との関係を記憶する部位であり、記憶部11としては公知の記憶媒体を適宜用いることができる。抵抗算出部12は、全固体電池の充電中に電流計2を用いて検出された電流、及び、全固体電池の充電中に電圧計3を用いて検出された電圧に基づいて、抵抗を算出する部位である。容量算出部13は、記憶部11に記憶された上記関係と、抵抗算出部12により算出された抵抗とから、電流計2及び電圧計3を用いて電流及び電圧を検出された全固体電池に電圧異常が発生する電池容量を算出する部位である。抵抗算出部12及び容量算出部13としては、CPU等の公知の処理装置を適宜用いることができる。
 図2は、本発明の全固体電池の検査方法(以下において、単に「本発明」ということがある。)を説明する図である。図2に示したように、本発明は、把握工程(S1)と、抵抗算出工程(S2)と、容量算出工程(S3)と、を有している。
 把握工程(以下において、「S1」ということがある。)は、全固体電池に電圧異常が発生する電池容量と、全固体電池の充電状態が所定値以下のときに充電を行った場合の抵抗(IV入力抵抗)との関係を把握する工程である。S1は、例えば、実施例の欄で説明する図4に示したような関係(回帰直線)を把握する工程である。S1は、電圧異常が発生する電池容量とIV入力特性との関係を把握可能であれば、その形態は特に限定されない。S1において、全固体電池に電圧異常が発生する電池容量は、例えば、所定の充電レートで急速充電をすることにより特定することができる。また、S1において、IV入力抵抗(R)は、例えば、SOCが0%以上20%以下である全固体電池を、10C以下の充電レートで所定の時間(例えば、数秒から数十秒程度)に亘って充電している間の特定の時間(例えば充電開始から数秒後)における全固体電池の電圧をモニタリングして得られた電圧(V)を、R=V/Iに代入することにより、算出することができる。このようにして、電圧異常が発生する電池容量及びIV入力抵抗を求めたら、電圧異常が発生する電池容量[mAh/g]を縦軸に、IV入力抵抗[Ω/cm]を横軸にとったグラフへ、電圧異常が発生する電池容量及びIV入力抵抗について得られた結果をプロットすることにより、図4に示したような関係を把握することができる。
 抵抗算出工程(以下において、「S2」ということがある。)は、S1の後に、充電状態が所定値以下である、S1で関係を把握した全固体電池と同じ材料を用いて作製した全固体電池を充電し、該充電を行っている間における全固体電池の電圧を観察して、全固体電池の抵抗(IV入力抵抗)を算出する工程である。上述のように、電圧異常が発生する電池容量と低SOC領域で測定した全固体電池のIV入力抵抗との間には強い相関(図4の例では強い負の相関)がある。そこで、S1で電圧異常が発生する電池容量とIV入力抵抗との関係を把握したら、後述する容量推定工程で電圧異常が発生する電池容量を推定するために、S1でIV入力抵抗を算出した時と同じ条件で、電圧異常が発生する電池容量を推定すべき全固体電池のIV入力抵抗を算出する。
 容量算出工程(以下において、「S3」ということがある。)は、S1で把握した関係に、S2で算出したIV入力抵抗を当てはめることにより、全固体電池に電圧異常が発生する電池容量を算出する工程である。電圧異常が発生する電池容量と、低SOC領域において測定したIV入力抵抗との間には強い相関があるので、S1で把握した関係に、S2で算出したIV入力抵抗を当てはめることにより、検査対象の全固体電池に実際に電圧異常が発生する前に、全固体電池を急速充電した際に電圧異常が発生する電池容量を推定することができる。全固体電池の電池容量が、電圧異常が発生する電池容量未満であれば、電圧異常は発生しないと推定することができ、全固体電池の電池容量が、電圧異常が発生する電池容量以上であれば、電圧異常が発生すると推定することができる。したがって、本発明の検査方法及び該検査方法を実施可能な本発明の検査装置10によれば、電圧異常が発生する電池容量を、電圧異常が発生する前に把握することが可能である。
 本発明で検査される全固体電池(以下において、「検査対象全固体電池」ということがある。)は、正極層及び負極層と、これらの間に配置された固体電解質層とを有し、正極層に接続された正極集電体、及び、負極層に接続された負極集電体を介して、電力が取り出される。
 検査対象全固体電池の正極層に含有される正極活物質としては、例えば、ニッケルコバルトマンガン酸リチウム(LiNiCo1-x-yMn)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、鉄オリビン(LiFePO)、コバルトオリビン(LiCoPO)、マンガンオリビン(LiMnPO)、チタン酸リチウム(LiTi12)等のリチウム化合物や、銅シュブレル(CuMo)、硫化鉄(FeS)、硫化コバルト(CoS)、硫化ニッケル(NiS)等のカルコゲン化物等を例示することができる。
 また、正極活物質の平均粒径としては、例えば1μm~50μmの範囲内、中でも1μm~20μmの範囲内、特に3μm~5μmの範囲内であることが好ましい。正極活物質の平均粒径が小さすぎると、取り扱い性が悪くなる可能性があり、正極活物質の平均粒径が大きすぎると、平坦な正極活物質層を得るのが困難になる場合があるからである。なお、正極活物質の平均粒径は、例えば走査型電子顕微鏡(SEM)により観察される活物質担体の粒径を測定して、平均することにより求めることができる。
 また、検査対象全固体電池の正極層に用いることが可能な電解質としては、固体酸化物電解質や固体硫化物電解質等の固体電解質を用いることが好ましい。
  固体酸化物電解質としては、具体的には、LiPON(リン酸リチウムオキシナイトライド)、Li1.3Al0.3Ti0.7(PO、La0.51Li0.34TiO0.74、LiPO、LiSiO、LiSiO等を例示することができる。
  固体硫化物電解質としては、具体的には、LiS-P(LiS:P=50:50~100:0)、LiS-SiS、Li3.250.25Ge0.76、LiO-LiS-P、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-B、LiS-P-ZmSn(Z=Ge、Zn、Ga)、LiS-GeS、LiS-SiS-LiPO、LiS-SiS-LiMO(M=P、Si、Ge、B、Al、Ga、In)等を例示することができる。
  このほか、検査対象全固体電池の正極層には、ポリマー電解質やゲル電解質等を用いることもできる。
  なお、液体電解質(電解液)を用いる電池では、電解液の分解によって負極にSEI(Solid Electrolyte Interface。以下において同じ。)が生成されるため、電池の電圧に負極の影響が現れ難い。これに対し、固体電解質を用いる電池では、負極にSEIが生成され難いため、低SOC領域における電池の電圧に負極の影響が大きく現れる。そのため、検査対象全固体電池には、上記電解質を適宜用いることができる。
 また、検査対象全固体電池に固体硫化物電解質が用いられる場合、正極活物質と固体電解質との界面に高抵抗層が形成され難くすることにより、電池抵抗の増加を防止しやすい形態にする観点から、正極活物質は、イオン伝導性酸化物で被覆されていることが好ましい。正極活物質を被覆するリチウムイオン伝導性酸化物としては、例えば、一般式LiAO(Aは、B、C、Al、Si、P、S、Ti、Zr、Nb、Mo、Ta又はWであり、x及びyは正の数である。)で表される酸化物を挙げることができる。具体的には、LiBO、LiBO、LiCO、LiAlO、LiSiO、LiSiO、LiPO、LiSO、LiTiO、LiTi12、LiTi、LiZrO、LiNbO、LiMoO、LiWO等を例示することができる。また、リチウムイオン伝導性酸化物は、複合酸化物であっても良い。正極活物質を被覆する複合酸化物としては、上記リチウムイオン伝導性酸化物の任意の組み合わせを採用することができ、例えば、LiSiO-LiBO、LiSiO-LiPO等を挙げることができる。また、正極活物質の表面をイオン伝導性酸化物で被覆する場合、イオン伝導性酸化物は、正極活物質の少なくとも一部を被覆してれば良く、正極活物質の全面を被覆していても良い。また、正極活物質を被覆するイオン伝導性酸化物の厚さは、例えば、0.1nm以上100nm以下であることが好ましく、1nm以上20nm以下であることがより好ましい。なお、イオン伝導性酸化物の厚さは、例えば、透過型電子顕微鏡(TEM)等を用いて測定することができる。
 また、検査対象全固体電池の正極層には、必要に応じて、導電助材や結着材等を含有させることができる。導電助材を用いる場合、正極層の導電性を向上させることが可能であれば特に限定されず、例えばカーボンブラック等を用いることができる。また、正極層における導電助材の含有量は、導電助材の種類に応じて決定することができ、例えば、1質量%以上10質量%以下とすることができる。
 また、検査対象全固体電池の正極層に使用可能な結着材としては、例えばポリビニリデンフロライド(PVDF)、ポリテトラフルオロエチレン(PTFE)等を挙げることができる。また、正極層における結着材の含有量は、正極活物質等を固定化できる程度の量であれば良く、より少ないことが好ましい。結着材の含有量は、例えば、1質量%以上10質量%以下とすることができる。
 また、検査対象全固体電池の正極層の厚さは、全固体電池等の用途等に応じて決定することができる。具体的には、10μm以上250μm以下とすることが好ましく、20μm以上200μm以下とすることがより好ましく、30μm以上150μm以下とすることが最も好ましい。
 以上のように構成される検査対象全固体電池の正極層は、公知の方法によって作製することができる。この正極層に接続される正極集電体には、例えばアルミニウム、SUS、ニッケル、鉄、銅、チタン等を用いることができ、アルミニウムやSUSを好ましく用いることができる。正極集電体は、例えば、箔状、板状、メッシュ状等にすることができ、中でも箔状が好ましい。
 また、検査対象全固体電池の負極層に含有される負極活物質は、金属イオンを吸蔵・放出可能であれば特に限定されず、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム、カルシウム等の第2族元素;アルミニウム等の第13族元素;亜鉛、鉄、銅、ニッケル等の遷移金属;又は、これらの金属を含有する合金や化合物を挙げることができる。
  リチウム元素を含む負極活物質の例としては、金属リチウム、チタン酸リチウム(LiTi12)等のリチウム化合物、LiNiSn等の金属合金、金属酸化物、金属硫化物、金属窒化物、およびグラファイト等の炭素材料等を挙げることができる。また、負極活物質は、粉末状であっても良く、薄膜状であっても良い。
 また、検査対象全固体電池の負極層には、検査対象全固体電池の正極層に使用可能な上記電解質を含有させることができる。
 また、検査対象全固体電池の負極層には、必要に応じて、導電助材や結着材等を含有させることができる。負極層には、正極層に使用可能な導電助材や結着材と同様のものを用いることができ、導電助材や結着材の使用量は、全固体電池の用途等に応じて決定することが好ましい。
 また、検査対象全固体電池の負極層の厚さは、全固体電池等の用途等に応じて決定することができる。具体的には、10μm以上100μm以下とすることが好ましく、10μm以上50μm以下とすることがより好ましい。
 以上のように構成される検査対象全固体電池の負極層は、公知の方法によって作製することができる。この負極層に接続される負極集電体の材料及び形状は、上述した正極集電体の材料及び形状から適宜選択することができる。
 また、検査対象全固体電池の固体電解質層には、検査対象全固体電池の正極層に使用可能な上記電解質を含有させることができる。固体電解質層は、例えば、上記固体電解質をプレスすることにより作製することができる。このほか、上記固体電解質と溶媒とを混合して作製したスラリー状の組成物を、正極層や負極層等に塗布する過程を経て、固体電解質層を作製することも可能である。
 以上のような材料及び方法によって構成される、正極集電体、正極層、固体電解質層、負極層、及び、負極集電体を備える検査対象全固体電池は、例えば、公知のラミネートフィルム(金属を蒸着させたラミネートフィルムも含む)や公知の筐体に収容された状態で使用される。
 本発明に関する上記説明では、SOCが0%以上20%以下である全固体電池のIV入力抵抗を算出する形態を例示したが、本発明は当該形態に限定されない。本発明において、SOCは、負極の状態を特定可能であれば特に限定されない。ただし、負極の状態を特定しやすい形態にする等の観点から、SOCは0%以上20%以下であることが好ましく、0%以上10%以下であることがより好ましい。
 また、本発明に関する上記説明では、10C以下の充電レートで充電されている全固体電池のIV入力抵抗を算出する形態を例示したが、本発明は当該形態に限定されない。ただし、電圧異常が発生する電池容量を高精度に推定可能な形態にする観点から、定電流にて充電している時の電流及び電圧に基づいてIV入力抵抗を算出することが好ましい。定電流は、充電レートが10C以下の定電流であることが好ましく、7C以下であることがより好ましい。
 また、本発明に関する上記説明では、全固体電池がリチウムイオン二次電池である形態を例示したが、本発明は当該形態に限定されない。本発明によって検査される全固体電池は、正極層と負極層との間を、リチウムイオン以外のイオンが移動する形態であっても良い。そのようなイオンとしては、ナトリウムイオンやカリウムイオン等を例示することができる。リチウムイオン以外のイオンが移動する形態とする場合、正極活物質、固体電解質、及び、負極活物質は、移動するイオンに応じて適宜選択すれば良い。
 以上、説明したように、電圧異常が発生する電池容量とIV入力抵抗との間には強い相関があるので、例えば、電池の製造工程にIV入力抵抗を測定する工程を品質検査工程として追加することによって、短時間で電池の良否を判断することが可能になる。また、全固体電池を用いた車両を急速充電する際や車検時にIV入力抵抗を測定することで、車両内の電池を破壊することなく(電圧異常を起こすことなく)電池の良否を判断することができる。そして、不良と判断された電池を交換したり、急速充電の充電レートを低減したりする等の対策を施すことが可能になる。
 全固体電池を作製し、作製した全固体電池について、電圧異常が発生する電池容量とIV入力抵抗との関係、電圧異常が発生する電池容量とIV出力抵抗との関係、及び、電圧異常が発生する電池容量とインピーダンス測定結果との関係、をそれぞれ調査した。
 1.全固体電池の作製
  正極活物質としてLiNbOを被覆したニッケルコバルトマンガン酸リチウムを、固体電解質として特開2005-228570号公報に開示されている手法と同様の手法で作製したLiS-Pを、負極活物質としてグラファイトを、正極集電体としてAl箔を、負極集電体としてCu箔をそれぞれ用いて、全固体電池を作製した。なお、正極層は、正極活物質及び固体電解質の体積比率が正極活物質:固体電解質=6:4となるように混合した混合物を含むスラリー状の組成物を、正極集電体の表面に塗工する過程を経て作製した。また、負極層は、負極活物質及び固体電解質の体積比率が負極活物質:固体電解質=6:4となるように混合した混合物を含むスラリー状の組成物を、負極集電体の表面に塗工する過程を経て作製した。そして、正極集電体の表面に形成した正極層と、固体電解質層と、負極集電体の表面に形成した負極層とを、固体電解質層が正極層及び負極層の間に配置されるように積層することにより電池ペレットを作製し、この電池ペレットを4.3tf/cm(≒421.4MPa)でプレスする過程を経て、6つの全固体電池(1セル乃至6セル)を作製した。作製した全固体電池の形態を図3に示す。図3に示した全固体電池1は、正極層1a及び負極層1cと、これらの間に配置された固体電解質層1bと、正極層1aに接続された正極集電体1dと、負極層1cに接続された負極集電体1eと、を有している。なお、広くデータ点を取るため、1セル乃至6セルのそれぞれに用いる固体電解質の伝導度に差を設けた。具体的には、負極活物質と混合する固体電解質の伝導度が、6セル<4セル<1セル<2セル<3セル<5セルとなるようにした。
 2.評価方法
  作製した6つの全固体電池それぞれについて、以下に示す評価を行った。
  6つの全固体電池を25℃の温度環境下で3時間に亘って放置した後、1/3Cレートで充放電を実施した。その後、SOC20%及びSOC60%におけるIV出力抵抗を、7Cレート及び10Cレートの場合について、それぞれ5秒間に亘って測定した。その後、1.5Cレートで充放電を実施し、6つの全固体電池それぞれについて、1.5Cで電圧異常が発生する電池容量を測定した。その後、SOC0%、20%、60%におけるIV入力抵抗を、7Cレート及び10Cレートの場合について、それぞれ5秒間に亘って測定した。また、ソーラートロン社製の交流インピーダンス装置を用いて、交流インピーダンスを測定することにより、SOC20%における直流抵抗及び反応抵抗を測定した。なお、コールコールプロットの原点から円弧開始位置までの抵抗を直流抵抗とし、円弧開始位置から終了までを反応抵抗とした。
 3.測定結果
  測定結果を表1に示す。表1の相関係数Rは、少数第3位を四捨五入した値を示している。また、表1の「直流」は直流抵抗を意味し、「反応」は反応抵抗を意味している。また、SOC0%の全固体電池を7Cレートで充電した時の最初の5秒間で測定したIV入力抵抗と、電圧異常が発生する電池容量との関係を図4に示す。図4の縦軸は電圧異常が発生する電池容量[mAh/g]であり、横軸はIV入力抵抗[Ω/cm]である。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、IV出力抵抗やインピーダンス測定と比較して、IV入力抵抗は、1.5Cレートで充電した全固体電池に電圧異常が発生する強い容量と強い相関を有していた。特に、SOC0%では、相関係数Rが0.89以上(10Cレートで0.89、7Cレートで0.96)となり、IV入力抵抗と全固体電池に電圧異常が発生する電池容量とは強い相関を有していた。また、表1に示したように、SOC20%におけるIV入力抵抗も、全固体電池に電圧異常が発生する電池容量と強い相関を有していたが、一部の電池では電圧異常が発生してしまった。また、SOC60%におけるIV入力抵抗では、正極層起因と推定される抵抗が高く、上限電圧(4.55V)に到達し、測定不能となった。測定不能となった電池が仮に上限電圧に到達しなかったとしても、SOC20%における測定と同様に、電圧異常が発生していたと推定される。
 1…全固体電池
 1a…正極層
 1b…固体電解質層
 1c…負極層
 1d…正極集電体
 1e…負極集電体
 2…電流計
 3…電圧計
 10…全固体電池の検査装置
 11…記憶部
 12…抵抗算出部
 13…容量算出部

Claims (8)

  1. 全固体電池に電圧異常が発生する電池容量と、全固体電池の抵抗と、の関係を記憶する記憶部と、
     全固体電池の充電中における電流及び電圧に基づいて抵抗を算出する抵抗算出部と、を有し、
     前記記憶部に記憶された関係と、前記抵抗算出部により算出された抵抗と、から前記全固体電池に電圧異常が発生する電池容量を算出する、全固体電池の検査装置。
  2. 前記抵抗算出部は、前記全固体電池の充電状態が0%以上20%以下の時の充電中における電流及び電圧に基づいて抵抗を算出する、請求項1に記載の全固体電池の検査装置。
  3. 前記抵抗算出部は、定電流にて充電している時の電流及び電圧に基づいて抵抗を算出する、請求項1又は2に記載の全固体電池の検査装置。
  4. 前記定電流は、充電レートが10C以下の定電流である、請求項3に記載の全固体電池の検査装置。
  5. 全固体電池に電圧異常が発生する電池容量と、全固体電池の抵抗と、の関係を把握する把握工程と、
     全固体電池の充電中における電流及び電圧に基づいて抵抗を算出する抵抗算出工程と、
     前記把握工程で把握した関係と、前記抵抗算出工程により算出された抵抗と、から前記全固体電池に電圧異常が発生する電池容量を算出する容量算出工程と、
    を有する、全固体電池の検査方法。
  6. 前記抵抗算出工程で、前記全固体電池の充電状態が0%以上20%以下の時の充電中における電流及び電圧に基づいて抵抗を算出する、請求項5に記載の全固体電池の検査方法。
  7. 前記抵抗算出工程で、定電流にて充電している時の電流及び電圧に基づいて抵抗を算出する、請求項5又は6に記載の全固体電池の検査方法。
  8. 前記定電流は、充電レートが10C以下の定電流である、請求項7に記載の全固体電池の検査方法。
PCT/JP2012/060621 2012-04-19 2012-04-19 全固体電池の検査装置及び検査方法 WO2013157128A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/060621 WO2013157128A1 (ja) 2012-04-19 2012-04-19 全固体電池の検査装置及び検査方法
JP2014511051A JP5780359B2 (ja) 2012-04-19 2012-04-19 全固体電池の検査装置及び検査方法
CN201280072238.4A CN104204829B (zh) 2012-04-19 2012-04-19 全固体电池的检查装置和检查方法
US14/385,592 US9903918B2 (en) 2012-04-19 2012-04-19 Apparatus and method for inspecting all-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060621 WO2013157128A1 (ja) 2012-04-19 2012-04-19 全固体電池の検査装置及び検査方法

Publications (1)

Publication Number Publication Date
WO2013157128A1 true WO2013157128A1 (ja) 2013-10-24

Family

ID=49383110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060621 WO2013157128A1 (ja) 2012-04-19 2012-04-19 全固体電池の検査装置及び検査方法

Country Status (4)

Country Link
US (1) US9903918B2 (ja)
JP (1) JP5780359B2 (ja)
CN (1) CN104204829B (ja)
WO (1) WO2013157128A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022533496A (ja) * 2019-05-09 2022-07-25 エルジー エナジー ソリューション リミテッド 二次電池の製造方法
EP4333123A1 (en) * 2022-08-31 2024-03-06 Samsung SDI Co., Ltd. All-solid secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690584B2 (ja) * 2017-03-10 2020-04-28 トヨタ自動車株式会社 電池状態推定装置
JP6939527B2 (ja) * 2017-12-25 2021-09-22 トヨタ自動車株式会社 蓄電デバイスの検査方法および製造方法
US11592488B2 (en) * 2018-02-28 2023-02-28 Denso Corporation Battery monitoring system
US12339327B2 (en) 2018-02-28 2025-06-24 Denso Corporation Battery monitoring system
CN110231569B (zh) 2018-03-06 2022-06-14 丰田自动车株式会社 全固体电池的检查方法、全固体电池的制造方法和电池组的制造方法
JP7000976B2 (ja) * 2018-04-27 2022-01-19 トヨタ自動車株式会社 全固体電池の検査方法、全固体電池の製造方法および組電池の製造方法
KR20220072444A (ko) * 2020-11-25 2022-06-02 현대자동차주식회사 배터리 불량원인 선별 시스템 및 배터리 불량원인 선별방법
DE102022104742A1 (de) * 2021-07-22 2023-01-26 Shimano Inc. Fahrradkomponente, berührungsloses ladesystem und berührungsloses ladeverfahren

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086911A (ja) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd 組電池の性能検出装置及び制御装置
JP2011252930A (ja) * 2011-01-13 2011-12-15 Yokogawa Electric Corp 二次電池の検査装置、二次電池の検査方法、二次電池の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437031A (zh) * 2002-02-08 2003-08-20 上海华谊(集团)公司 用于电池容量的测量方法
JP4061965B2 (ja) * 2002-05-14 2008-03-19 ソニー株式会社 電池容量算出方法
CA2500043C (en) * 2002-09-24 2009-06-30 Research In Motion Limited System and method of battery capacity estimation
JP4032934B2 (ja) * 2002-11-15 2008-01-16 ソニー株式会社 電池容量算出方法、電池容量算出装置、及び電池容量算出プログラム
KR100494947B1 (ko) * 2003-08-07 2005-06-13 현대자동차주식회사 배터리 정상상태 단자 전압 산출방법
JP4286842B2 (ja) * 2005-03-30 2009-07-01 株式会社ピーシーエヌ 車載バッテリー管理装置
CN101184648B (zh) * 2005-05-27 2012-08-08 Lg化学株式会社 通过利用电池的内部电阻估算电池最大功率的方法和装置
CN1945345A (zh) * 2005-10-09 2007-04-11 奇瑞汽车有限公司 一种混合动力汽车电池余量检测装置及检测方法
WO2009075109A1 (ja) * 2007-12-13 2009-06-18 Panasonic Corporation リチウム二次電池の寿命推定方法と劣化抑制方法、寿命推定器と劣化抑制器、それを用いた電池パック、充電器
JP2010040198A (ja) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd 二次電池充放電装置、電気機器、二次電池充放電方法及び二次電池充放電プログラム
JP4722976B2 (ja) * 2008-08-26 2011-07-13 本田技研工業株式会社 蓄電容量制御装置
JP5368038B2 (ja) * 2008-09-11 2013-12-18 ミツミ電機株式会社 電池状態検知装置及びそれを内蔵する電池パック
CN101388477B (zh) * 2008-09-28 2010-12-29 广州丰江电池新技术有限公司 一种快速充电方法
JP5493925B2 (ja) * 2010-01-29 2014-05-14 富士通株式会社 電子装置
US8836284B2 (en) * 2010-05-17 2014-09-16 Toyota Jidosha Kabushiki Kaisha Device and method for calculating value of rechargeable battery
KR20110134019A (ko) * 2010-06-08 2011-12-14 현대자동차주식회사 차량용 배터리의 셀 열화 진단 방법
JP5608747B2 (ja) * 2010-07-13 2014-10-15 本田技研工業株式会社 蓄電容量管理装置
CN101907688B (zh) * 2010-08-02 2012-08-22 天津力神电池股份有限公司 一种锂离子电池电性能一致性的检测方法
US8738310B2 (en) * 2010-12-08 2014-05-27 Paul Swanton Automatic determination of baselines for battery testing
JP2012247339A (ja) * 2011-05-30 2012-12-13 Renesas Electronics Corp 半導体集積回路およびその動作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086911A (ja) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd 組電池の性能検出装置及び制御装置
JP2011252930A (ja) * 2011-01-13 2011-12-15 Yokogawa Electric Corp 二次電池の検査装置、二次電池の検査方法、二次電池の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022533496A (ja) * 2019-05-09 2022-07-25 エルジー エナジー ソリューション リミテッド 二次電池の製造方法
JP7196383B2 (ja) 2019-05-09 2022-12-27 エルジー エナジー ソリューション リミテッド 二次電池の製造方法
US12272792B2 (en) 2019-05-09 2025-04-08 Lg Energy Solution, Ltd. Method for manufacturing secondary battery
EP4333123A1 (en) * 2022-08-31 2024-03-06 Samsung SDI Co., Ltd. All-solid secondary battery

Also Published As

Publication number Publication date
US20150048838A1 (en) 2015-02-19
CN104204829A (zh) 2014-12-10
JP5780359B2 (ja) 2015-09-16
US9903918B2 (en) 2018-02-27
CN104204829B (zh) 2016-08-24
JPWO2013157128A1 (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5780359B2 (ja) 全固体電池の検査装置及び検査方法
JP5108588B2 (ja) 二次電池用正極板およびその製造方法
CN103733390B (zh) 锂离子二次电池
JP2019036391A (ja) 全固体電池および負極
JP2016018735A (ja) 複合活物質及びその製造方法
TW201840050A (zh) 鋰離子二次電池及其製造方法
US20160079634A1 (en) All-solid-state battery and method for producing the same, and method for restoring capacity of the same
JP6805940B2 (ja) リチウムイオン二次電池およびその製造方法
JP6137554B2 (ja) 非水電解質二次電池および該電池用のセパレータ
JP2011222215A (ja) リチウムイオン二次電池
Deng et al. From the charge conditions and internal short-circuit strategy to analyze and improve the overcharge safety of LiCoO2/graphite batteries
JP5804202B2 (ja) 電池の劣化診断装置及び劣化診断方法並びに電池の製造方法
JP6250941B2 (ja) 非水電解質二次電池
JP2015170477A (ja) 非水電解液二次電池
JP6848749B2 (ja) 二次電池
CN111799441B (zh) 非水电解质二次电池
EP4170746A1 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
Parikh Understanding the Limitations in Battery Components for Improving Energy Density under Extreme Fast Charging (XFC) Conditions
Deng et al. Analysis on the constant-current overcharge electrode process and self-protection mechanism of LiCoO2/graphite batteries
JP6863213B2 (ja) 二次電池の製造方法
JP2019160613A (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP6960091B2 (ja) 非水電解質二次電池用の正極
JP2000285909A (ja) リチウムイオン2次電池の電極板試験装置
JP2022088979A (ja) 全固体電池
JP2021163707A (ja) 非水電解質蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511051

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14385592

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874671

Country of ref document: EP

Kind code of ref document: A1