WO2013153679A1 - 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法 - Google Patents

建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013153679A1
WO2013153679A1 PCT/JP2012/060526 JP2012060526W WO2013153679A1 WO 2013153679 A1 WO2013153679 A1 WO 2013153679A1 JP 2012060526 W JP2012060526 W JP 2012060526W WO 2013153679 A1 WO2013153679 A1 WO 2013153679A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cooling
hot
temperature
phase
Prior art date
Application number
PCT/JP2012/060526
Other languages
English (en)
French (fr)
Inventor
力 上
雄太 田村
崇登 玉井
修司 川村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to PCT/JP2012/060526 priority Critical patent/WO2013153679A1/ja
Priority to CA2869700A priority patent/CA2869700C/en
Priority to US14/391,899 priority patent/US9708680B2/en
Priority to EP12874301.0A priority patent/EP2837706B1/en
Priority to KR1020147028014A priority patent/KR101660149B1/ko
Priority to CN201280072370.5A priority patent/CN104220619B/zh
Publication of WO2013153679A1 publication Critical patent/WO2013153679A1/ja
Priority to US15/620,957 priority patent/US10876180B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • Patent Document 1 describes weight percentages of C: 0.03 to 0.25%, Si: 0.10 to 0.50%, and Mn: 0.30 to 2.00%.
  • P 0.020% or less
  • S 0.020% or less
  • O 50ppm or less
  • H 5ppm or less
  • Al 0.150% or less
  • Ti 0.050% or less
  • V 0.100% or less
  • Nb not more than 0.080%
  • Zr not more than 0.050%
  • B not more than 0.0050%
  • N is defined as N ⁇ (1/5) ⁇ (1 / 2)
  • V + (1 / 6.5) Nb + (1 / 6.5) Zr + B ⁇ Low yield ratio, hot rolled under conditions of 1150 to 1250 ° C, finishing temperature of 800 to 870 ° C, and wound under conditions of 500 to 650 ° C
  • Patent Document 4 describes a hot-rolled steel sheet for processing.
  • the hot-rolled steel sheet described in Patent Document 4 is, by weight, C: 0.01 to 0.2%, Si: 0.01 to 0.3%, Mn: 0.1 to 1.5%, Al : A composition containing 0.001 to 0.1%, containing P, S, N adjusted to a predetermined value or less, a polygonal ferrite as a main phase, and a hard second phase, and a hard second phase
  • the volume fraction is 3 to 20%
  • the hardness ratio (hard second phase hardness / polygonal ferrite hardness) is 1.5 to 6
  • the particle size ratio (polygonal ferrite particle size / hard second phase particle size) is It is a steel plate having a structure of 1.5 or more.
  • each region of 5 to 15% from the front and back surfaces of the plate thickness has fine ferrite grains with an equivalent circle average diameter of 4 ⁇ m or less and an aspect ratio of 2 or less, and a region of 50 to 75% of the plate thickness is It is said that a steel sheet having fine ferrite grains having an equivalent circle average diameter of 7 ⁇ m or less and an aspect ratio of 2 or less, excellent COD characteristics, low temperature toughness, and excellent brittle crack generation characteristics can be obtained.
  • the thick-walled hot-rolled steel sheet intended by the present invention has the above-mentioned characteristics, and further, in a square steel pipe manufactured by cold forming using the steel sheet as a raw material, yield strength: 295 to 445 MPa, tensile strength in the pipe axis direction. Strength: 400 to 550 MPa strength and low yield ratio of 80% or less, test temperature: 0 ° C, preferably test temperature: -30 ° C, high toughness with absorbed energy of Charpy impact test of 150 J or more It is the steel plate which can be comprised.
  • the “thick-walled hot-rolled steel sheet” here refers to a hot-rolled steel sheet having a thickness of 6 mm to 25 mm.
  • the present inventors diligently studied the influence of various factors on the yield ratio and toughness of a square steel pipe manufactured by cold forming using a hot-rolled steel sheet as a raw material.
  • the structure of the hot-rolled steel sheet used as a raw material particularly the presence of the second phase, greatly affects the yield ratio and toughness of a square steel pipe manufactured by cold forming.
  • a composite structure composed of a ferrite phase and a second phase other than that it is said that the presence of a hard second phase in which brittle cracks propagate more easily than ferrite reduces toughness.
  • the present inventors have found that the influence of the second phase on the toughness and yield ratio of the square steel pipe manufactured by cold forming is the second phase frequency of the hot-rolled steel sheet as the material. It was also found that if the average particle size including the main phase ferrite and the second phase is used, it can be evaluated well.
  • the “second phase frequency” here refers to the value obtained as follows.
  • a cross section in the rolling direction (L cross section) of a hot-rolled steel sheet as a material is imaged using an optical microscope and a scanning electron microscope.
  • a predetermined number of line segments are drawn in the rolling direction and the plate thickness direction, respectively, and the number of crystal grains intersecting with the line segments is determined as the main phase, Measure for each phase of the second phase.
  • the edge part of a line segment stays in a crystal grain, it sets to 0.5 pieces.
  • the obtained total number of grains of the second phase intersecting with each line segment (number of grains of the second phase), and the obtained total number of grains of each phase intersecting with each line segment (total number of grains)
  • the ratio (number of grains in the second phase) / (total number of grains) is determined and defined as the second phase frequency.
  • the predetermined length of each line segment suitably according to the magnitude
  • a round steel pipe was produced by cold roll forming, and then cold-rolled to form a square steel pipe (250 mm square to 550 mm square).
  • a JIS No. 5 tensile test piece was collected in accordance with the provisions of JIS Z 2210 so that the tensile direction would be the longitudinal direction of the pipe, and pulled according to the provisions of JIS Z 2241. A test was conducted to determine the yield ratio.
  • a structure observation specimen having an observation surface at a thickness 1 / 4t of the cross section in the rolling direction is collected, polished, and subjected to nital corrosion. Tissue observation was performed using an optical microscope or a scanning microscope. About the obtained structure photograph, using an image analysis device, the volume fraction of each phase, the average crystal grain size of each phase by the cutting method, and further the average crystal grain size including the main phase and the second phase Asked.
  • FIG. 3 shows the relationship with the average crystal grain size including the main phase and the second phase.
  • both the yield ratio YR of the cold-formed square steel pipe flat portion and the absorbed energy vE 0 of the Charpy impact test can be arranged with little variation by using the second phase frequency. It can be seen that this greatly affects the toughness and yield ratio of the hot-formed square steel pipe.
  • the average crystal including the main phase (ferrite) and the second phase (pearlite, bainite) both of the yield ratio YR of the cold-formed square steel pipe flat portion and the absorbed energy vE 0 of the Charpy impact test.
  • the grain size it can be arranged with less variation, and it can be seen that such average crystal grain size greatly affects the toughness and yield ratio of the cold-formed square steel pipe.
  • the yield ratio increases remarkably.
  • Second phase frequency (number of grains of second phase grains intersecting with a predetermined length of line segment) / (total number of main phase grains and second phase grains intersecting with a predetermined length of line segment) (1)
  • the steel material is subjected to a hot rolling process, a cooling process, and a winding process to obtain a hot rolled steel sheet.
  • C 0.07 to 0.18%
  • Mn 0.3 to 1.5%
  • P 0.03% or less
  • S 0.015% or less
  • Al 0.01 to 0.06%
  • N 0.006% or less
  • the hot rolling step heating the steel material temperature: 1100 After heating to ⁇ 1300 ° C., the heated steel material is subjected to rough rolling to a rough rolling end temperature of 1150 to 950 ° C., and the finish rolling start temperature of the sheet bar is 1100 to 850 ° C.
  • the cooling process is started immediately after the finish rolling is finished, until the average cooling rate in the temperature range of 750 to 650 ° C. is 20 ° C./s or less and the sheet thickness center temperature reaches 650 ° C.
  • a step of cooling to the coiling temperature so that the average cooling rate in the temperature range of 750 to 650 ° C.
  • the steel material is subjected to a hot rolling process, a cooling process, and a winding process to obtain a hot rolled steel sheet.
  • C 0.07 to 0.18%, Mn: 0.3 to 1.5%, P: 0.03% or less, S: 0.015% or less, Al: 0.01 to 0.06%, N: 0.006% or less, a steel material having a composition consisting of the remainder Fe and inevitable impurities, the hot rolling step, heating the steel material temperature: 1100 After heating to ⁇ 1300 ° C, the heated steel material is subjected to rough rolling at a rough rolling end temperature of 1150 to 950 ° C to form a sheet bar, and the finish rolling start temperature of the sheet bar is 1100 to 850 ° C and finish rolling Finishing temperature: It is a step of applying hot rolling to 900 to 750 ° C.
  • the cooling step starts cooling immediately after finishing the finish rolling, and performs primary cooling to cool the surface to a cooling stop temperature of 550 ° C. or more, and secondary cooling to air for 3 to 15 seconds after the primary cooling is finished. Cooling, and after the completion of the secondary cooling, tertiary cooling is performed to cool to 650 ° C. or less at a cooling rate in which the average cooling rate in the temperature range of 750 to 650 ° C. is 4 to 15 ° C./s at the center thickness of the plate. In the three-stage cooling, it is a process of applying cooling in which the time from the start of cooling to the arrival at 650 ° C.
  • the thick hot-rolled steel sheet of the present invention exhibits a yield strength of 215 MPa or more, a tensile strength of 400 to 510 MPa, a low yield ratio of 75% or less, and preferably an elongation of 28% or more.
  • Test temperature A thick hot-rolled steel sheet having high toughness at 0 ° C., preferably at a test temperature of ⁇ 30 ° C., and having an absorption energy of 180 J or more in a Charpy impact test.
  • C 0.07 to 0.18%
  • C is an element that increases the strength of the steel sheet by solid solution strengthening and contributes to the formation of pearlite, which is one of the second phases.
  • a content of 0.07% or more is required.
  • the content exceeds 0.18%, the desired steel sheet structure cannot be obtained, and the tensile properties and toughness of the desired hot-rolled steel sheet and further the square steel pipe cannot be secured. Therefore, C is limited to a range of 0.07 to 0.18%. Note that the content is preferably 0.09 to 0.17%.
  • P 0.03% or less
  • P is an element that segregates at the ferrite grain boundaries and has a function of reducing toughness.
  • the content be 0.002% or more. Note that 0.03% is acceptable. For this reason, P was limited to 0.03% or less. In addition, Preferably it is 0.025% or less.
  • S 0.015% or less S is present as sulfide in steel, and is mainly present as MnS within the composition range of the present invention. MnS is stretched thinly in the hot rolling process and adversely affects ductility and toughness. Therefore, it is desirable to reduce it as much as possible in the present invention. However, excessive reduction leads to an increase in refining cost, so 0.0002% or more It is preferable that In addition, up to 0.015% is acceptable. For this reason, S was limited to 0.015% or less. In addition, Preferably it is 0.010% or less.
  • Al 0.01 to 0.06%
  • Al is an element that acts as a deoxidizing agent and has an action of fixing N as AlN.
  • 0.01% or more of content is required. If it is less than 0.01%, the deoxidizing power is insufficient when Si is not added, the oxide inclusions increase, the cleanliness of the steel sheet decreases, and the quality of the welded part of the square steel pipe is adversely affected.
  • the content exceeds 0.06%, the amount of solute Al increases, and the risk of forming oxides in the weld becomes high when welding square steel pipes, especially when welding in the atmosphere. The toughness of the steel pipe weld is reduced. For this reason, Al was limited to 0.01 to 0.06%.
  • the content is preferably 0.02 to 0.05%.
  • Si Less than 0.4% Si is an element that contributes to an increase in the strength of the steel sheet by solid solution strengthening, and can be contained as necessary in order to ensure a desired steel sheet strength. In order to obtain such an effect, it is desirable to contain more than 0.01%. However, if the content is 0.4% or more, a firelight called red scale is easily formed on the steel sheet surface, In many cases, the appearance properties of the resin deteriorate. For this reason, when it contains, it is preferable to set it as less than 0.4%. In particular, when Si is not added, Si is an inevitable impurity, and its level is 0.01% or less.
  • B 0.008% or less
  • B is an element that delays the ferrite transformation in the cooling process, promotes the formation of low-temperature transformed ferrite, that is, an ash-like ferrite phase, and increases the strength of the steel sheet. , Increase the yield ratio of the steel plate and hence the yield ratio of the square steel pipe. For this reason, in this invention, if it is a range whose yield ratio of a square steel pipe will be 80% or less, it can contain as needed. Such a range is B: 0.008% or less.
  • the hot-rolled steel sheet of the present invention has the above-described composition, and further has a structure composed of ferrite as a main phase and a second phase.
  • the second phase consists of pearlite or pearlite and bainite.
  • the main phase here means the case where the said phase occupies 50% or more by area ratio.
  • the second phase composed of pearlite or pearlite and bainite has a second phase frequency of 0.20 to 0.42. If the frequency of the second phase is less than 0.20, the yield ratio of the square steel pipe obtained by cold forming exceeds 0.80, and the yield ratio (0.80 or less) required for building structural members cannot be secured. . On the other hand, if the frequency of the second phase exceeds 0.42, the desired toughness of 150 J or more is secured in the absorbed energy vE 0 in the Charpy impact test at 0 ° C., which is required for square steel pipes for building structural members. become unable. For this reason, the second phase frequency is limited to the range of 0.20 to 0.42. In addition, Preferably it is 0.40 or less.
  • the hot-rolled steel sheet having the above composition and the above structure has a yield strength of 215 MPa or more, a tensile strength of 400 to 510 MPa, and a low yield ratio of 75% or less, and a test temperature of 0 ° C.
  • the hot-rolled steel sheet of the present invention is manufactured by subjecting a steel material having the above composition to a hot-rolling process, a cooling process, and a winding process.
  • the steel material used is made by melting the molten steel having the above composition by a generally known melting method such as a converter, an electric furnace, a vacuum melting furnace, etc., and a desired dimension by a generally known casting method such as a continuous casting method.
  • a generally known melting method such as a converter, an electric furnace, a vacuum melting furnace, etc.
  • a desired dimension such as a continuous casting method.
  • the molten steel may be further subjected to secondary refining such as ladle refining.
  • secondary refining such as ladle refining.
  • the steel material having the above composition is heated to a heating temperature of 1100 to 1300 ° C., then subjected to rough rolling to a rough rolling end temperature of 950 to 1150 ° C., and finish rolling to the sheet bar Finish rolling is performed at a start temperature of 1100 to 850 ° C. and a finish rolling end temperature of 750 to 900 ° C.
  • Heating temperature 1100-1300 ° C
  • the heating temperature of the steel material is less than 1100 ° C.
  • the deformation resistance of the material to be rolled becomes too large, resulting in insufficient load resistance and rolling torque of the roughing mill and finish rolling mill, making rolling difficult.
  • the temperature exceeds 1300 ° C. the austenite crystal grains become coarse, and even if the austenite grains are repeatedly processed and recrystallized by rough rolling and finish rolling, it becomes difficult to make fine grains. It becomes difficult to ensure the particle size.
  • the heating temperature of the steel material is preferably limited to 1100 to 1300 ° C.
  • the temperature is more preferably 1100 to 1250 ° C.
  • a heating temperature in the range of 1100 ° C. or lower and the Ac3 transformation point or higher may be selected.
  • the thickness of the steel material may be about 200 to 350 mm that is usually used, and is not particularly limited.
  • This rough rolling end temperature range can be achieved by adjusting the heating temperature of the steel material, the stay between rough rolling passes, the thickness of the steel material, and the like.
  • the lower limit of the rough rolling end temperature may be set to Ar3 transformation point + 100 ° C. or higher.
  • the sheet bar thickness is not particularly limited as long as it can be a product plate (hot rolled steel plate) having a desired product thickness by finish rolling. In the present invention, the sheet bar thickness is suitably about 32 to 60 mm.
  • Finish rolling start temperature finish rolling entry temperature: 1100 to 850 ° C.
  • finish rolling rolling and recrystallization are repeated, and austenite ( ⁇ ) grain refinement proceeds.
  • finish rolling start temperature finish rolling entry temperature
  • the processing strain introduced by the rolling process tends to remain, and the ⁇ grains can be easily refined.
  • finishing rolling start temperature finishing rolling entry temperature
  • finishing rolling entry temperature is less than 850 ° C., the temperature in the vicinity of the steel sheet surface becomes lower than the Ar3 transformation point in the finishing mill, and the risk of generating ferrite increases.
  • finish rolling entry temperature finish rolling entry temperature
  • finish rolling entry temperature finish rolling entry temperature
  • the finish rolling entry temperature is limited to a range of 1100 to 850 ° C.
  • the temperature is more preferably 1050 to 850 ° C.
  • Finish rolling end temperature (finish rolling exit temperature): 900 to 750 ° C.
  • finish rolling end temperature finish rolling exit temperature
  • finish rolling exit temperature exceeds 900 ° C. and becomes a high temperature
  • the processing strain added during finish rolling is insufficient, and ⁇ Grain refinement is not achieved, and therefore, it becomes difficult to ensure a desired average grain size of the hot-rolled steel sheet with an average grain size of 15 ⁇ m or less.
  • finish rolling finish temperature (finish rolling exit temperature) is less than 750 ° C., the temperature in the vicinity of the steel sheet surface is below the Ar3 transformation point in the finish rolling mill, ferrite grains elongated in the rolling direction are formed, and ferrite grains are mixed.
  • finish rolling exit temperature is limited to a range of 900 to 750 ° C. More preferably, the temperature is 850 to 750 ° C.
  • the total rolling reduction of finish rolling is 35 to 70%.
  • the total rolling reduction is less than 35%, it is difficult to impart sufficient working strain necessary for ⁇ grain refinement, and it becomes difficult to secure a desired average grain size of the hot-rolled steel sheet.
  • the total rolling reduction exceeds 70%, there may be a concern that the rolling load capacity and the rolling torque are insufficient, and ⁇ grains elongated in the rolling direction are formed, resulting in elongated ferrite grains. , The risk that workability will decrease increases. For this reason, it is more preferable that the total rolling reduction of finish rolling is 35 to 70%. More preferably, it is 40 to 70%.
  • cooling step (1) Two cooling methods, cooling method (1) and cooling method (2), are proposed as the cooling step.
  • Cooling method (1) In the cooling process, immediately after finishing rolling, cooling of the hot-rolled steel sheet is started, the average cooling rate in the temperature range of 750 to 650 ° C. reaches 20 ° C./s or less, and the plate thickness center temperature reaches 650 ° C. Cooling to the coiling temperature is performed so that the average cooling rate in the temperature range of 750 to 650 ° C. at the center of the plate thickness is 4 to 15 ° C./s within 30 s.
  • the cooling stop temperature is preferably set to the coiling temperature to the coiling temperature + 50 ° C.
  • Average cooling rate on the steel sheet surface 20 ° C./s or less
  • the average cooling rate on the steel sheet surface exceeds 20 ° C./s, the vicinity of the steel sheet surface passes through the bainite formation region during cooling, and a bainite phase is formed.
  • the desired ferrite and second phase structure cannot be formed, the desired second phase frequency cannot be ensured, the yield ratio increases, and the cold-formed square steel pipe has a desired low yield in the tube axis direction.
  • the ratio cannot be achieved.
  • the average cooling rate of the steel sheet surface means an average in a temperature range of 750 to 650 ° C.
  • Average cooling rate at the center of the plate thickness 4 to 15 ° C / s If the average cooling rate at the center of the plate thickness is less than 4 ° C / s, the frequency of ferrite grain formation decreases, the ferrite crystal grains become coarse, and the average Crystal grain size: The desired average grain size of the hot-rolled steel sheet of 15 ⁇ m or less cannot be secured. On the other hand, when it exceeds 15 ° C./s, generation of pearlite is suppressed and coarse bainite grains are generated, so that it is impossible to secure a desired average grain size of the hot-rolled steel sheet. For this reason, it is preferable to limit the average cooling rate at the center of the plate thickness to a range of 4 to 15 ° C./s. More preferably, it is 4.5 to 14 ° C./s.
  • the average cooling rate of the steel plate thickness center portion is the average in the temperature range of 750 to 650 ° C.
  • the winding temperature is preferably limited to a range of 500 to 650 ° C.
  • the temperature is more preferably 520 to 630 ° C.
  • Cooling method (2) The cooling step is a step consisting of cooling in which primary cooling, secondary cooling, and tertiary cooling are sequentially performed immediately after finishing rolling.
  • the cooling of the hot-rolled steel sheet is started and firstly the primary cooling is performed.
  • the value (temperature) obtained by heat transfer calculation shall be used for the temperature used in a cooling process.
  • the primary cooling cooling is performed so that the cooling stop temperature is 550 ° C. or higher at the surface temperature. If the cooling stop temperature in the primary cooling is less than 550 ° C., particularly the vicinity of the steel sheet surface passes through the bainite formation region, a bainite phase is formed, and a structure composed of desired ferrite and the second phase cannot be formed. Therefore, a desired second phase frequency cannot be ensured, the yield ratio increases, and a desired low yield ratio in the tube axis direction cannot be achieved when a cold-formed square steel pipe is formed.
  • the cooling stop temperature in the primary cooling was limited to 550 ° C. or higher. If the cooling stop temperature can be set to 550 ° C. or higher, the cooling rate up to that point need not be particularly limited. Thereby, the formation of bainite on the surface layer can be stably avoided, and the above-described desired hot rolled structure can be stably formed.
  • the average cooling rate at the central portion of the plate thickness is a range of 4 to 15 ° C./s. More preferably, it is 4.5 to 14 ° C./s.
  • the average cooling rate of the steel plate thickness center portion is the average in the temperature range of 750 to 650 ° C.
  • a winding process is performed.
  • winding is performed at a winding temperature of 500 to 650 ° C., and then allowed to cool.
  • Winding temperature 500 ⁇ 650 °C
  • the coiling temperature is less than 500 ° C.
  • pearlite generation is suppressed, and a high proportion of lumped and coarse lath spacing bainite grains cannot be ensured, and a desired yield ratio in a cold-formed square steel pipe cannot be secured. Toughness cannot be achieved.
  • the temperature is higher than 650 ° C., the pearlite transformation proceeds after winding, so that the winding shape is broken.
  • the winding temperature is preferably limited to a range of 500 to 650 ° C.
  • the temperature is more preferably 520 to 630 ° C.
  • Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material: wall thickness 215 mm) by a continuous casting method. After these slabs (steel materials) are heated to the heating temperatures shown in Tables 2 and 3, the thickness is 12-25 mm by the hot rolling process, cooling process, and winding process shown in Tables 2 and 3. A hot-rolled steel sheet was obtained. Using the obtained hot-rolled steel sheet as a raw material, a round steel pipe was formed by cold roll forming, and then a square steel pipe (250 to 550 mm square) was formed by cold roll forming.
  • Specimens were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, and impact test.
  • the test method was as follows.
  • Second phase frequency (number of second phase grains intersecting with line segment) / (total number of main phase grains and second phase grains intersecting with line segment)
  • test piece was extract
  • the test method was as follows. (4) Square steel pipe tensile test JIS No. 5 tensile test specimen was sampled from the flat part of the obtained square steel pipe so that the tensile direction would be the longitudinal direction of the pipe, and the tensile test was performed in accordance with the provisions of JIS Z 2241 Then, the yield strength and the tensile strength were measured, and the yield ratio (%) defined by (yield strength) / (tensile strength) was calculated.
  • the absorbed energy vE 0 (J) in the Charpy impact test at a test temperature of 0 ° C. is 150 J or more
  • the absorbed energy vE ⁇ 30 (J) at a test temperature of ⁇ 30 ° C. is 150 J.
  • any of the comparative examples outside the scope of the present invention is a square steel pipe that does not satisfy the desired low yield ratio, or does not ensure the desired high toughness, or both. Not done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

建築構造部材向け角形鋼管用素材として好適な、厚肉熱延鋼板を提供する。質量%で、C:0.07~0.18%、Mn:0.3~1.5%、Al:0.01~0.06%、N:0.006%以下を含み、残部Feおよび不可避的不純物からなり、フェライトを主相とし、パーライトまたはパーライトおよびベイナイトからなる第二相を有し、かつ第二相頻度が0.20~0.42であり、主相と第二相とを含む平均結晶粒径が7~15μmである。この厚肉熱延鋼板を用いて、冷間成形により角形鋼管を製造すると、低降伏比と高靱性を具備する角形鋼管とすることができる。

Description

建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法
 本発明は、建築構造部材向け角形鋼管用熱延鋼板に係り、とくに、熱延鋼板を素材とし冷間でロール成形により製造される角形鋼管(角コラム)の低降伏比化、靭性の更なる向上に関する。なお、熱延鋼板には、熱延鋼板、熱延鋼帯を含むものとする。
 角形鋼管は、通常、熱延鋼板(熱延鋼帯)または厚板を素材として、冷間成形により製造される。角形鋼管の製造に際し、用いる冷間成形としては、プレス成形、ロール成形がある。熱延鋼帯を素材とし、ロール成形を利用して角形鋼管を製造する場合には、まず熱延鋼帯を丸型鋼管に成形し、その後、該丸型鋼管に冷間成形を加えて角形鋼管とするのが一般的である。このロール成形を利用した角形鋼管の製造方法は、プレス成形を利用した角形鋼管の製造方法に比べて、生産性が高いという利点がある。しかし、ロール成形を利用した角形鋼管の製造方法では、丸型への成形に際し管軸方向に大きな加工歪が導入されるとともに、丸型から角形に冷間成形される際に、角形鋼管の平坦部では丸型への曲げ成形とは逆方向の曲げ戻し成形を受けることになる。このため、ロール成形を利用して製造された角形鋼管では、管軸方向の降伏比が上昇しやすく、さらにバウシンガー効果等により、延性、靭性が低下しやすいという問題がある。
 このような問題に対し、例えば特許文献1には、重量%で、C:0.03~0.25%、Si:0.10~0.50%、Mn:0.30~2.00%、P:0.020%以下、S:0.020%以下、O:50ppm以下、H:5ppm以下、Al:0.150%以下、Ti:0.050%以下、V:0.100%以下、Nb:0.080%以下、Zr:0.050%以下、B:0.0050%以下のうちの1種または2種以上を含有し、NをN≦(1/5){(1/2)Al+(1/1.5)Ti+(1/3.5)V+(1/6.5)Nb+(1/6.5)Zr+B}の関係を満足するように含有する鋼に、加熱温度:1150~1250℃、仕上温度:800~870℃の条件で熱間圧延を施し、500~650℃の条件で巻取する、低降伏比高靭性角形鋼管用鋼材の製造方法が記載されている。
 また、特許文献2には、低炭素鋼鋼管に、Ac−250℃~Ac−20℃に加熱し、引続き15℃/s以上の冷却速度で急冷したのち、冷間で角管に成形し、さらに200~600℃の温度範囲で焼戻しする、降伏比が低く、低温靭性に優れた角管の製造方法が記載されている。特許文献2に記載された技術によれば、二相域加熱後急冷と、冷間成形と、焼戻とを、順次施すことにより、パイプ成形における加工硬化の影響を除去し、低降伏比と高靭性の角管を製造できるとしている。
 また、特許文献3には、角鋼管用とは明記されていないが、高成形性と低降伏比とを有する鋼板が記載されている。特許文献3に記載された鋼板は、質量%で、C:0.0002~0.1%、Si:0.003~2.0%、Mn:0.003~3.0%、Al:0.002~2.0%を含有し、さらに、B:0.0002~0.01%含む1群、Ti、Nb、V、Zrのうちから1種または2種以上を合計で0.005~1.0%を含む2群、Cr、Mo、Cu、Niのうちから1種または2種以上を合計で0.005~3.0%を含む3群、Ca:0.005%以下および希土類元素:0.20%以下含む4群、のうちから1群または2群以上を含み、不純物としてP:0.0002~0.15%、S:0.0002~0.05%、N:0.0005~0.015%を含み、フェライト相の平均結晶粒径が1μm超え~50μm、フェライト相の体積率が70%以上、フェライト相のアスペクト比が5以下で、フェライト粒界の70%以上が大角粒界からなり、かつ、残部相のうち体積率が最大である第二相の平均結晶粒径が50μm以下である、降伏強さと降伏比の変動が小さい鋼板である。
 また、特許文献4には、加工用熱延鋼板が記載されている。特許文献4に記載された熱延鋼板は、重量%で、C:0.01~0.2%、Si:0.01~0.3%、Mn:0.1~1.5%、Al:0.001~0.1%を含み、P,S,Nを所定値以下に調整して含む組成と、主相であるポリゴナルフェライトと硬質第二相とを有し、硬質第二相の体積分率が3~20%で、硬度比(硬質第二相硬度/ポリゴナルフェライト硬度)が1.5~6、粒径比(ポリゴナルフェライト粒径/硬質第二相粒径)が1.5以上である組織を有する鋼板である。特許文献4に記載された技術では、プレスによる歪導入と塗装焼付処理とにより、60MPa以上のBH量を確保できる熱延鋼板を製造でき、370~490MPa級の熱延鋼板であっても、540~640MPa級鋼板を適用した場合と同等の強度を有するプレス成形部品を安定して製造できるとしている。
 また、特許文献5には、脆性亀裂発生特性に優れた鋼板の製造方法が記載されている。特許文献5に記載された技術では、熱間圧延により、C:0.03~0.2%、Si:0.5%以下、Mn:1.8%以下、Al:0.01~0.1%、N:0.01%以下を満たす組成を有し、ミクロ組織がフェライト組織及びパーライト組織より構成された鋼板を得て、該鋼板に板厚表裏面から各々5~15%の領域を4~15℃/sの平均冷却速度で450~650℃の温度以下まで一次冷却し、次いでAr変態点以下まで復熱させてから、1~10℃/sの平均冷却速度で二次冷却を施す。これにより、板厚表裏面から各々5~15%の領域が円相当平均径:4μm以下、アスペクト比:2以下の、微細なフェライト粒を有し、板厚の50~75%の領域が、円相当平均径:7μm以下、アスペクト比:2以下の、微細なフェライト粒を有し、COD特性、さらには低温靭性が優れ、耐脆性き裂発生特性に優れた鋼板が得られるとしている。
特開平08−246095号公報 特開平03−219015号公報 特開2002−241897号公報 WO2005/028693 A1 特開2001−303168号公報
 しかしながら、特許文献1に記載された技術で製造された鋼材では、降伏比は高々81~85%程度で、80%以下の低降伏比を確保できないうえ、0℃における吸収エネルギーも100J未満という場合もあり、必ずしも安定して、高靭性を確保できないという問題がある。また、特許文献2に記載された技術では、二相域加熱後急冷と、焼戻という2種類の熱処理を施す必要があり、工程が複雑になり、生産性が低下するとともに、製造コストが高騰するという問題がある。
 またさらに、特許文献3に記載された鋼板を素材として用いて、丸型鋼管としたのち、冷間成形で角形鋼管とすると、角形鋼管の平坦部で冷間加工度が大きくなるため、角形鋼管として、十分な靭性を確保できるとは言い難いという問題がある。 また、特許文献4に記載された鋼板を素材として、丸型鋼管としたのち、冷間成形で角形鋼管とすると、得られる角形鋼管の平坦部では、冷間加工度が大きく、降伏強さが増加して降伏比が上昇するとともに、靭性が低下するという問題があった。さらに、特許文献4に記載された熱延鋼板は、歪時効が起こりやすく、冷間成形により角形鋼管を製造するための素材としては不適であると言える。
 また、特許文献5に記載された技術で製造された熱延鋼板を用い、冷間成形により角形鋼管とすると、該熱延鋼板ではフェライト粒が微細であるため、冷間成形により得られた角形鋼管の降伏強さが上昇し、結果的に降伏比が上昇する。このため、特許文献5に記載された技術で製造された熱延鋼板を素材とすると、建築構造部材向け角形鋼管として、80%以下という低降伏比化を達成できないという問題がある。
 本発明は、上記した従来技術の問題を有利に解決し、建築構造部材向け角形鋼管用素材として好適な、降伏強さ:215MPa以上、引張強さ:400~510MPaの強度と、75%以下の低降伏比を示し、試験温度:0℃で、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが180J以上となる、高靭性を具備する、厚肉熱延鋼板およびその製造方法を提供することを目的とする。
 本発明が目的とする厚肉熱延鋼板は、上記した特性を有し、さらに該鋼板を素材として冷間成形により製造した角形鋼管において、管軸方向で、降伏強さ:295~445MPa、引張強さ:400~550MPaの強度と、80%以下の低降伏比を示し、試験温度:0℃、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが150J以上となる、高靭性を具備させることができる鋼板である。
 なお、ここでいう「厚肉熱延鋼板」とは、板厚が6mm以上25mm以下の熱延鋼板をいうものとする。
 本発明者らは、上記した目的を達成するため、熱延鋼板を素材として冷間成形により製造された角形鋼管の降伏比、靭性に及ぼす各種要因の影響について鋭意研究した。その結果、素材として用いる熱延鋼板の組織、とくに第二相の存在が、冷間成形で製造された角形鋼管の降伏比、靭性に大きく影響することを知見した。
 従来から、フェライト相とそれ以外の第二相とからなる複合組織では、フェライトより脆性クラックが伝播しやすい硬質の第二相の存在は、靭性を低下させると言われている。しかし、通常用いられる第二相の体積分率、第二相の平均粒径では、うまく靭性を評価できないことを知見した。というのは、第二相は、塊状に存在する場合や、結晶粒界に沿って存在する場合があり、その存在形態により、第二相体積分率や平均粒径は大きく異なったものとなる。通常用いられる第二相の体積分率や、平均結晶粒径で、第二相の靭性への影響を評価すると、粒界に沿って存在する第二相の影響が過少評価されることになる。
 そこで、本発明者らは、更なる研究を行った結果、冷間成形により製造された角形鋼管の靭性、降伏比への第二相の影響は、素材である熱延鋼板の第二相頻度および主相であるフェライトと第二相とを含めた平均粒径を用いれば、うまく評価できることを見出した。 なお、ここでいう「第二相頻度」とは、つぎのようにして、求めた値を言うものとする。
 まず、素材である熱延鋼板の圧延方向断面(L断面)組織を光学顕微鏡、走査型電子顕微鏡を用いて撮像する。得られた組織写真に、図1に示すように圧延方向および板厚方向にそれぞれ、所定長さの線分を所定本数だけ描き、該線分と交差する結晶粒の粒数を、主相、第二相の各相についてそれぞれ測定する。なお、線分の端部が結晶粒内に留まる場合には、0.5個とする。得られた、各線分と交差する第二相の合計粒数(第二相の粒数)と、得られた、各線分と交差する各相の粒数の合計粒数(総粒数)との比、(第二相の粒数)/(総粒数)を求め、第二相頻度と定義する。なお、各線分の所定長さは、組織の大きさに応じて適宜決定すればよい。
 つぎに、本発明の基礎となった実験結果について説明する。 質量%で、0.09~0.15%C−0.01~0.18%Si−0.43~1.35%Mn−0.017~0.018%P−0.0025~0.0033%S−0.031~0.040%Al−残部Feおよび不可避的不純物からなる組成のスラブ(肉厚:230mm)を、1200~1270℃に加熱・均熱したのち、粗圧延、仕上圧延からなる熱間圧延を施して、熱延鋼帯(板厚:16~25mm)とし、コイル状に巻き取った。なお、仕上圧延は、総圧下率:40~52%、仕上圧延終了温度:750~850℃とする圧延とし、仕上圧延終了後、加速冷却を行った。また、巻取温度は550~600℃とし、コイル状に巻取った後、放冷した。
 ついで、得られた熱延鋼帯を素材とし、冷間ロール成形で丸型鋼管を製造したのち、さらに冷間でロール成形して角形鋼管(250mm角~550mm角)とした。
得られた角形鋼管の平坦部から、引張方向が管長手方向となるように、JIS Z 2210の規定に準拠してJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏比を求めた。また、得られた角形鋼管の平坦部の板厚1/4t位置から、管長手方向が試験片長手方向となるように、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:0℃でシャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。
 なお、角形鋼管の素材として使用した熱延鋼帯から、圧延方向断面(L断面)の板厚1/4t位置を観察面とする組織観察用試験片を採取し、研磨、ナイタール腐食して、光学顕微鏡または走査型顕微鏡を用いて、組織観察を行った。得られた組織写真について、画像解析装置を用いて、各相の体積分率、さらに切断法で各相の平均結晶粒径、さらには、主相、第二相を含めた平均結晶粒径を求めた。
 また、得られた組織写真に、図1に示すように、圧延方向と板厚方向にそれぞれ長さ125μmの線分を6本描き、それら線分と交差する各相の結晶粒数を測定した。そして、得られた、線分と交差する各相の結晶粒数から、次式第二相頻度=(線分と交叉する第二相粒の粒数)/(線分と交叉する主相粒および第二相粒の合計粒数)で定義される、第二相頻度を算出した。なお、第二相は、パーライトおよびベイナイトであり、主相はポリゴナルフェライトであった。
 得られた冷間成形角形鋼管平坦部の、(a)降伏比YR、および(b)試験温度:0℃におけるシャルピー衝撃試験の吸収エネルギーvEと、素材として用いた熱延鋼帯の第二相頻度との関係を図2に示す。また、得られた冷間成形角形鋼管平坦部の、(a)降伏比YR、および(b)試験温度:0℃におけるシャルピー衝撃試験の吸収エネルギーvEと、素材として用いた熱延鋼帯の主相、第二相を含めた平均結晶粒径との関係を図3に示す。
 図2から、冷間成形角形鋼管平坦部の降伏比YRと、シャルピー衝撃試験の吸収エネルギーvEとはともに、第二相頻度を用いることにより、ばらつき少なく整理でき、第二相頻度が、冷間成形角形鋼管の靭性、降伏比へ大きく影響していることがわかる。また、図3から、冷間成形角形鋼管平坦部の降伏比YRと、シャルピー衝撃試験の吸収エネルギーvEとはともに、主相(フェライト)、第二相(パーライト、ベイナイト)を含めた平均結晶粒径を用いることによっても、ばらつき少なく整理でき、このような平均結晶粒径が、冷間成形角形鋼管の靭性、降伏比へ大きく影響していることがわかる。なお、急冷して表面から1/4t付近までの組織がベイナイトを主相とする組織になると、降伏比が顕著に上昇する。
 また、図2、図3から、本発明の目標の一つである冷間成形角形鋼管の降伏比YR:80%以下は、第二相頻度を0.20以上に、主相(フェライト)、第二相(パーライト、ベイナイト)を含めた平均結晶粒径を7μm以上に、それぞれ調整することにより達成できる。また、本発明の目標の一つである冷間成形角形鋼管のシャルピー衝撃試験の吸収エネルギーvE:150J以上は、第二相頻度を0.42以下に、主相(フェライト)、第二相(パーライト、ベイナイト)を含めた平均結晶粒径を15μm以下に、それぞれ調整することにより達成できる、ことがわかる。
 なお、参考として、得られた冷間成形角形鋼管平坦部のシャルピー吸収エネルギーvEと素材として用いた熱延鋼帯の第二相平均粒径との関係を図4に、vEと第二相の組織分率との関係を図5に、それぞれ示す。図4、図5から、vEと第二相平均粒径や第二相の組織分率との関係は、ばらつきが大きく、第二相平均粒径や第二相の組織分率では、冷間成形角形鋼管平坦部の靱性をうまく評価できないという、ことがわかる。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、
 C:0.07~0.18%、     Mn:0.3~1.5%、
 P:0.03%以下、         S:0.015%以下、
 Al:0.01~0.06%、      N:0.006%以下
を含み、残部Feおよび不可避的不純物からなる組成と、フェライトを主相とし、第二相として、パーライト、または、パーライトおよびベイナイトを有し、下記(1)式で定義される第二相頻度が0.20~0.42であり、主相と第二相とを含む平均結晶粒径が7~15μmである組織を有することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板。
                   記
第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数)‥‥(1)
(2)前記組成に加えてさらに、質量%で、Si:0.4%未満を含有することを特徴とする(1)に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板。
(3)前記組成に加えてさらに、質量%で、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上を含有することを特徴とする(1)または(2)に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板。
(4)前記組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする(1)ないし(3)のいずれかに記載の建築構造部材向け角形鋼管用厚肉熱延鋼板。
(5)鋼素材に、熱延工程と、冷却工程と、巻取工程を施し、熱延鋼板とするに当たり、前記鋼素材を、質量%で、
 C:0.07~0.18%、     Mn:0.3~1.5%、
 P:0.03%以下、         S:0.015%以下、
 Al:0.01~0.06%、     N:0.006%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱延工程が、前記鋼素材を加熱温度:1100~1300℃に加熱したのち、該加熱された鋼素材に粗圧延終了温度:1150~950℃とする粗圧延を施しシートバーと、該シートバーに仕上圧延開始温度を1100~850℃、仕上圧延終了温度を900~750℃とする仕上圧延を施し熱延板とする工程であり、
前記冷却工程を、前記仕上圧延終了後直ちに冷却を開始し、表面温度で750~650℃の温度域の平均冷却速度が20℃/s以下、板厚中心部温度が650℃に到達するまでの時間が35s以内でかつ板厚中心部の750~650℃の温度域の平均冷却速度が4~15℃/sとなるように、巻取温度まで冷却する工程とし、
前記巻取工程を、巻取温度:500~650℃で巻取り、その後放冷する工程とする、ことを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(6)鋼素材に、熱延工程と、冷却工程と、巻取工程を施し、熱延鋼板とするに当たり、前記鋼素材を、質量%で、
 C:0.07~0.18%、     Mn:0.3~1.5%、
 P:0.03%以下、         S:0.015%以下、
 Al:0.01~0.06%、     N:0.006%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱延工程が、前記鋼素材を加熱温度:1100~1300℃に加熱したのち、該加熱された鋼素材に粗圧延終了温度:1150~950℃とする粗圧延を施しシートバーとし、該シートバーに仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施し熱延板とする工程であり、
前記冷却工程が、前記仕上圧延終了後直ちに冷却を開始し、表面温度で冷却停止温度が550℃以上となるように冷却する一次冷却と、該一次冷却終了後、3~15s間空冷する二次冷却と、該二次冷却終了後、板厚中央部温度で750~650℃の温度域の平均冷却速度が4~15℃/sとなる冷却速度で650℃以下まで冷却する三次冷却とからなる三段階の冷却で、冷却開始から板厚中央部温度で650℃に到着するまでの時間が35s以内となる冷却を施す工程であり、
前記巻取工程を、巻取温度:500~650℃で巻取り、その後放冷する工程とする、ことを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(7)前記仕上圧延の総圧下率が35~70%であることを特徴とする(5)または(6)に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(8)前記鋼素材の組成に加えてさらに、質量%で、Si:0.4%未満を含有することを特徴とする(5)または(6)に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(9)前記鋼素材の組成に加えてさらに、質量%で、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上を含有することを特徴とする(5)または(6)に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(10)前記鋼素材の組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする(5)または(6)に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(11)前記三段階の冷却に加えて、前記三次冷却終了後、四次冷却を施すことを特徴とする(6)に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(12)(1)ないし(4)のいずれかに記載の厚肉熱延鋼板を素材として、冷間成形により製造されてなる建築構造部材向け角形鋼管。
 本発明によれば、建築構造部材向け角形鋼管用厚肉熱延鋼板を、容易にしかも安価に製造でき、産業上格段の効果を奏する。本発明になる厚肉熱延鋼板を用いて、冷間成形により角形鋼管を製造すると、管軸方向で、降伏強さ:295MPa以上、引張強さ:400MPa以上の強度と、80%以下の低降伏比を有し、かつ試験温度:−0℃で、150J以上のシャルピー衝撃試験吸収エネルギーを示す高靭性を具備する、角形鋼管を容易に製造できる。[図面の簡単な説明]
第二相頻度の測定に用いる線分の一例を示す説明図である。 冷間成形された角形鋼管の降伏比YR、試験温度:0℃におけるシャルピー吸収エネルギーvEに及ぼす第二相頻度の影響を示すグラフである。 冷間成形された角形鋼管の降伏比YR、試験温度:0℃におけるシャルピー吸収エネルギーvEに及ぼす平均結晶粒径の影響を示すグラフである。 冷間成形された角形鋼管の試験温度:0℃におけるシャルピー吸収エネルギーvEと第二相の平均粒径との関係を示すグラフである。 冷間成形された角形鋼管の試験温度:0℃におけるシャルピー吸収エネルギーvEと第二相組織分率との関係を示すグラフである。
 本発明厚肉熱延鋼板は、降伏強さ:215MPa以上、引張強さ:400~510MPaの強度と、75%以下の低降伏比と、好ましくは28%以上の伸びとを示し、試験温度:0℃、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが180J以上となる、高靭性を具備する、厚肉熱延鋼板である。
 まず、本発明厚肉熱延鋼板の組成限定理由について説明する。なお、とくに断わらない限り質量%は、単に%で記す。
 C:0.07~0.18% Cは、固溶強化により鋼板の強度を増加させるとともに、第二相の一つであるパーライトの形成に寄与する元素である。所望の引張特性、靭性、さらに所望の鋼板組織を確保するためには、0.07%以上の含有を必要とする。一方、0.18%を超える含有は、所望の鋼板組織が得られず、所望の熱延鋼板の、さらには角形鋼管の引張特性、靭性を確保できなくなる。このため、Cは0.07~0.18%の範囲に限定した。なお、好ましくは0.09~0.17%である。
 Mn:0.3~1.5% Mnは、固溶強化を介して鋼板の強度を増加させる元素であり、所望の鋼板強度を確保するために、0.3%以上の含有を必要とする。なお、0.3%未満の含有では、フェライト変態開始温度の上昇を招き、組織が粗大化しやすい。一方、1.5%を超えて含有すると、鋼板の降伏強さが高くなりすぎるため、冷間成形して製造される角形鋼管の降伏比が高くなり、所望の降伏比を確保できなくなる。このため、Mnは0.3~1.5%の範囲に限定した。なお、好ましくは0.35~1.4%である。
 P:0.03%以下
 Pは、フェライト粒界に偏析して、靭性を低下させる作用を有する元素であり、本発明では、不純物としてできるだけ低減することが望ましいが、過度の低減は、精錬コストの高騰を招くため、0.002%以上とすることが好ましい。なお、0.03%までは許容できる。このため、Pは0.03%以下に限定した。なお、好ましくは0.025%以下である。
 S:0.015%以下 Sは、鋼中では硫化物として存在し、本発明の組成範囲であれば、主としてMnSとして存在する。MnSは、熱間圧延工程で薄く延伸され、延性、靭性に悪影響を及ぼすため、本発明ではできるだけ低減することが望ましいが、過度の低減は、精錬コストの高騰を招くため、0.0002%以上とすることが好ましい。なお、0.015%までは許容できる。このため、Sは0.015%以下に限定した。なお、好ましくは0.010%以下である。
 Al:0.01~0.06% Alは、脱酸剤として作用するとともに、AlNとしてNを固定する作用を有する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。0.01%未満では、Si無添加の場合に脱酸力が不足し、酸化物系介在物が増加し、鋼板の清浄度が低下するとともに、角形鋼管の溶接部品質に悪影響を及ぼす。一方、0.06%を超える含有は、固溶Al量が増加し、角形鋼管の溶接時に、とくに大気中での溶接の場合に、溶接部に酸化物を形成させる危険性が高くなり、角形鋼管溶接部の靭性が低下する。このため、Alは0.01~0.06%に限定した。なお、好ましくは0.02~0.05%である。
 N:0.006%以下 Nは、鋼板の延性、角形鋼管の溶接性を低下するため、本発明ではできるだけ低減することが望ましいが、0.006%までは許容できる。このため、Nは0.006%以下に限定した。なお、好ましくは0.005%以下である。
 上記した成分が、基本の成分であるが、これら基本組成に加えて、選択元素として、Si:0.4%未満、および/または、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上、および/または、B:0.008%以下、を必要に応じて選択して含有できる。
 Si:0.4%未満 Siは、固溶強化で鋼板の強度増加に寄与する元素であり、所望の鋼板強度を確保するために、必要に応じて含有できる。このような効果を得るためには、0.01%を超えて含有することが望ましいが、0.4%以上の含有は、鋼板表面に、赤スケールと称するファイアライトが形成しやすくなり、表面の外観性状が低下する場合が多くなる。このため、含有する場合には、0.4%未満とすることが好ましい。なお、とくにSiを添加しない場合は、Siは不可避的不純物として、そのレベルは0.01%以下である。
 Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上 Nb、Ti、Vはいずれも、炭化物、窒化物を形成し、結晶粒径を微細化する作用を有する元素であり、降伏比が高くなる傾向となる。このため、本発明では、含有しないことが望ましいが、結晶粒径を極微細化しない範囲であれば、すなわち、フェライト相と第二相(パーライト、ベイナイト)を含む平均粒径で7μm以上を確保できる範囲であれば、含有してもよい。このような含有範囲はそれぞれ、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下である。
 B:0.008%以下 Bは、冷却過程のフェライト変態を遅延させ、低温変態フェライト、すなわちアシュキュラーフェライト相の形成を促進し、鋼板強度を増加させる作用を有する元素であり、Bの含有は、鋼板の降伏比、したがって角形鋼管の降伏比を増加させる。このため、本発明では、角形鋼管の降伏比が80%以下となるような範囲であれば、必要に応じて含有できる。このような範囲はB:0.008%以下である。
 上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、O:0.005%以下、N:0.005%以下が許容できる。
 つぎに、本発明熱延鋼板の組織限定理由について説明する。
本発明熱延鋼板は、上記した組成を有し、さらに主相であるフェライトと、第二相とからなる組織を有する。第二相は、パーライト、または、パーライトおよびベイナイトからなる。なお、ここでいう主相とは、当該相が面積率で50%以上を占める場合をいう。
 パーライト、または、パーライトおよびベイナイトからなる第二相は、0.20~0.42の第二相頻度を有する。第二相頻度が0.20未満では、冷間成形して得た角形鋼管の降伏比が0.80超えとなり、建築構造部材用として要求される降伏比(0.80以下)を確保できなくなる。一方、第二相頻度が0.42を超えると、建築構造部材用として角形鋼管に要求される、試験温度:0℃におけるシャルピー衝撃試験の吸収エネルギーvEで150J以上という、所望の靭性を確保できなくなる。このため、第二相頻度を0.20~0.42の範囲に限定した。なお、好ましくは0.40以下である。試験温度:−30℃におけるシャルピー衝撃試験の吸収エネルギーvE−30が150J以上という高靭性を確保するためには 第二相頻度は、0.35以下とすることが好ましい。なお、第二相頻度は、次式で定義される。
 第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数)
測定方法は上記したとおりである。
 さらに本発明熱延鋼板は、上記した第二相頻度を有するとともに、主相であるフェライト相と第二相とを含む平均結晶粒径が7~15μmである組織を有する。
 ここでいう「主相であるフェライト相と第二相とを含む平均結晶粒径」とは、主相であるフェライト相と第二相であるパーライト相、ベイナイト相を含んだ、全結晶粒について測定した平均結晶粒径を意味する。この平均結晶粒径の測定は、熱延鋼板の所定の位置から採取した組織観察用試験片について、圧延方向断面(L断面)を研磨、ナイタール腐食を施し、板厚1/4t位置を、光学顕微鏡(倍率:500倍)、または走査型電子顕微鏡(倍率:500倍)を用いて組織観察し、1視野以上について撮像し、画像処理して、切断法で平均粒径を算出するものとする。
 上記した方法で測定された平均結晶粒径が、7μm未満では、微細すぎて、角形鋼管の降伏比が80%以下を確保できない。一方、15μmを超えて粗大化すると、角形鋼管の靭性が低下し、所望の靭性を確保できなくなる。なお、更なる高靭性を確保するという観点から、好ましくは、12μm以下である。 上記した組成と、上記した組織とを有する熱延鋼板は、降伏強さ:215MPa以上、引張強さ:400~510MPaの強度と、75%以下の低降伏比を示し、試験温度:0℃で、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが180J以上となる、高靭性とを具備する鋼板となる。このような熱延鋼板を素材とすれば、冷間でロール成形して角形鋼管としても、管軸方向で、降伏強さ:295MPa以上、引張強さ:400~550MPaの強度と、80%以下の低降伏比と、試験温度:−0℃で、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが150J以上となる、高靭性を具備する角形鋼管とすることができる。
 つぎに、本発明熱延鋼板の好ましい製造方法について説明する。 本発明熱延鋼板は、上記した組成を有する鋼素材に、熱延工程と、冷却工程と、巻取工程を施して製造される。
 使用される鋼素材は、上記した組成の溶鋼を、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製し、連続鋳造法等の通常公知の鋳造方法により、所望寸法に製造される。なお、溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。また、連続鋳造法に代えて、造塊−分塊圧延法を適用しても何ら問題はない。
 熱延工程では、上記した組成を有する鋼素材を加熱温度:1100~1300℃に加熱したのち、粗圧延終了温度:950~1150℃とする粗圧延を施しシートバーと、該シートバーに仕上圧延開始温度を1100~850℃、仕上圧延終了温度を750~900℃とする仕上圧延を施す。
 加熱温度:1100~1300℃
 鋼素材の加熱温度が1100℃未満では、被圧延材の変形抵抗が大きくなりすぎて、粗圧延機、仕上圧延機の耐荷重、圧延トルクの不足が生じ、圧延が困難となる。一方、1300℃を超えると、オーステナイト結晶粒が粗大化し、粗圧延、仕上圧延でオーステナイト粒の加工・再結晶を繰返しても、細粒化することが困難となり、所望の熱延鋼板の平均結晶粒径を確保することが困難となる。このため、鋼素材の加熱温度は1100~1300℃に限定することが好ましい。なお、より好ましくは1100~1250℃である。また、圧延機の耐荷重、圧延トルクに余裕がある場合には、1100℃以下Ac3変態点以上の範囲の加熱温度を選択してもよい。鋼素材厚さは、通常用いられる200~350mm程度でよく、とくに限定されない。
 加熱された鋼素材は、ついで粗圧延を施され、シートバーとされる。 粗圧延終了温度:950~1150℃ 加熱された鋼素材は、粗圧延により、オーステナイト粒が加工、再結晶されて微細化する。粗圧延終了温度が950℃未満では、粗圧延機の耐荷重、圧延トルクの不足が生じやすくなる。一方、1150℃を超えて高温となると、オーステナイト粒が粗大化し、その後に仕上圧延を施しても、平均結晶粒径:15μm以下という所望の平均結晶粒径を確保することが困難となる。このため、粗圧延終了温度は950~1150℃の範囲に限定することが好ましい。この粗圧延終了温度範囲は、鋼素材の加熱温度、粗圧延のパス間での滞留、鋼素材厚さ等を調整することにより達成できる。なお、圧延機の耐荷重、圧延トルクに余裕がある場合には、粗圧延終了温度の下限を、Ar3変態点+100℃以上としてもよい。なお、シートバー厚は、仕上圧延で、所望の製品厚さの製品板(熱延鋼板)とすることができればよく、とくに限定する必要はない。本発明では、シートバー厚さは32~60mm程度が適当である。
 シートバーはついで、タンデム圧延機により仕上圧延を施され、熱延鋼板とされる。 仕上圧延開始温度(仕上圧延入側温度):1100~850℃ 仕上圧延では、圧延加工−再結晶が繰り返され、オーステナイト(γ)粒の微細化が進行する。仕上圧延開始温度(仕上圧延入側温度)が低くなると、圧延加工により導入される加工歪が残存しやすくなり、γ粒の微細化を達成しやすい。仕上圧延開始温度(仕上圧延入側温度)が、850℃未満では、仕上圧延機内で鋼板表面近傍の温度がAr3変態点以下となりフェライトが生成する危険性が増大する。生成したフェライトは、その後の仕上圧延加工により圧延方向に伸長したフェライト粒となり、加工性低下の原因となる。一方、仕上圧延開始温度(仕上圧延入側温度)が、1100℃を超えて高温となると、上記した仕上圧延によるγ粒の微細化効果が低減し、平均結晶粒径:15μm以下という所望の熱延鋼板の平均結晶粒径を確保することが困難となる。このため、仕上圧延入側温度(仕上圧延開始温度)は1100~850℃の範囲に限定することが好ましい。なお、より好ましくは1050~850℃である。
 仕上圧延終了温度(仕上圧延出側温度):900~750℃ 仕上圧延終了温度(仕上圧延出側温度)が900℃を超えて高温となると、仕上圧延時に付加される加工歪が不足し、γ粒の微細化が達成されず、したがって、平均結晶粒径:15μm以下という所望の熱延鋼板の平均結晶粒径を確保することが困難となる。一方、仕上圧延終了温度(仕上圧延出側温度)が750℃未満では、仕上圧延機内で鋼板表面近傍の温度がAr3変態点以下となり、圧延方向に伸長したフェライト粒が形成され、フェライト粒が混粒となり、加工性が低下する危険性が増大する。このため、仕上圧延出側温度(仕上圧延終了温度)は900~750℃の範囲に限定することが好ましい。なお、より好ましくは850~750℃である。
 なお、上記した仕上圧延では、仕上圧延の総圧下率を35~70%とすることがより好ましい。総圧下率が35%未満では、γ粒微細化に必要な十分な加工歪を付与できにくく、所望の熱延鋼板の平均結晶粒径を確保することが難しくなる。一方、総圧下率が70%を超えると、圧延機の耐荷重、圧延トルクの不足が懸念される場合があるとともに、圧延方向に長く伸長したγ粒が形成され、結果として伸長したフェライト粒となり、加工性が低下する危険性が増大する。このため、仕上圧延の総圧下率を35~70%とすることがより好ましい。さらに好ましくは40~70%である。
 仕上圧延終了後、冷却工程を施す。冷却工程として冷却方法(1)と冷却方法(2)の二つの冷却方法を提案する。
冷却方法(1)
 冷却工程では、仕上圧延終了後直ちに、熱延鋼板の冷却を開始し、表面温度で750~650℃の温度域の平均冷却速度が20℃/s以下、板厚中心部温度が650℃に到達するまでの時間が30s以内でかつ板厚中心部の750~650℃の温度域の平均冷却速度が4~15℃/sとなるように、巻取温度まで冷却する。なお、冷却停止温度は巻取温度~巻取温度+50℃とすることが好ましい。
本発明でいう「仕上圧延終了後直ちに」とは、仕上圧延終了後、10s以内を意味する。圧延終了後、10sを超えて冷却を開始しないと、すなわち高温での滞留時間が長くなると、粒成長が進行して、γ粒の粗大化が生じる。このため、本発明では、仕上圧延終了後10s以内に冷却を開始することにした。なお、好ましくは8s以内である。
 鋼板表面で平均冷却速度:20℃/s以下
鋼板表面の平均冷却速度が、20℃/sを超えると、冷却に際し、鋼板表面近傍がベイナイト生成域を通過することになり、ベイナイト相が形成され、所望のフェライトと第二相からなる組織を形成できず、所望の第二相頻度を確保できず、降伏比が増加し、冷間成形角形鋼管とした場合に管軸方向の所望の低降伏比を達成できなくなる。このため、鋼板表面で平均冷却速度は20℃/s以下に限定することが好ましい。なお、より好ましくは4~18℃/sである。ここで、鋼板表面の平均冷却速度は、750~650℃の温度域での平均をいう。
 板厚中心部温度が650℃に到達するまでの時間:35s以内 冷却開始から、板厚中心部温度が650℃に到達するまでの時間が、35sを超えて冷却時間が長くなると、パーライト相が生成する前に高温で滞留することになり、結晶粒の粗大化が起り、第二相頻度が0.42を超え、所望の熱延鋼板靭性を確保できなくなる。なお、更なる靭性向上のためには、板厚中心部温度が650℃に到達するまでの間を30s以下とすることがより好ましい。30s以下とすることにより、冷間成形角形鋼管の靭性を、試験温度:−30℃でシャルピー吸収エネルギーvE−30で150J以上を確保できる。
 板厚中心部の平均冷却速度:4~15℃/s 鋼板板厚中心部の平均冷却速度が4℃/s未満では、フェライト粒の生成頻度が減少し、フェライト結晶粒が粗大化して、平均結晶粒径:15μm以下という所望の熱延鋼板の平均結晶粒径を確保できなくなる。一方、15℃/sを超えると、パーライトの生成が抑制され、粗大なベイナイト粒が生成されるため、所望の熱延鋼板の平均結晶粒径を確保できなくなる。このため、板厚中心部の平均冷却速度を4~15℃/sの範囲に限定することが好ましい。なお、より好ましくは4.5~14℃/sである。ここで、鋼板板厚中心部の平均冷却速度は、750~650℃の温度域での平均をいう。
 なお、板厚中央部の冷却速度は、伝熱計算により求めた値を用いるものとする。冷却後、巻取工程を施される。 巻取工程では、巻取温度:500~650℃で巻取り、その後放冷する。 巻取温度:500~650℃ 巻取温度が500℃未満では、パーライト生成が抑制され、塊状でラス間隔の粗いベイナイト粒が混在する割合が高くなり、所望の組織を確保できなくなり、冷間成形角形鋼管での所望の降伏比、靭性を達成できなくなる。一方、650℃を超えて高くなると、巻取り後に、パーライト変態が進行するため、巻取り形状が崩れるという不具合が発生するとともに、平均粒径が大きくなり所望の靭性を確保できない。このため、巻取温度は500~650℃の範囲に限定することが好ましい。なお、より好ましくは520~630℃である。
冷却方法(2)
 冷却工程は、仕上圧延終了後直ちに、一次冷却と、二次冷却と、三次冷却とを順次施す冷却からなる工程とする。
 熱延鋼板の冷却を開始して、まず、一次冷却を行う。なお、冷却工程において使用する温度は伝熱計算により得られた値(温度)を用いるものとする。
 一次冷却では、表面温度で冷却停止温度が550℃以上となるように冷却する。
 一次冷却における冷却停止温度が、550℃未満では、とくに鋼板表面近傍がベイナイト生成域を通過して、ベイナイト相が形成され、所望のフェライトと第二相からなる組織を形成できない。そのため、所望の第二相頻度を確保できず、降伏比が増加し、冷間成形角形鋼管とした場合に管軸方向の所望の低降伏比を達成できなくなる。このようなことから、一次冷却における冷却停止温度を550℃以上に限定した。なお、冷却停止温度を550℃以上とすることができれば、それまでの冷却速度はとくに限定する必要はない。これにより、表層でのベイナイトの形成を安定して回避でき、上記した所望の熱延組織を安定して形成することができなることになる。
 一次冷却終了後、ついで二次冷却を行う。
 二次冷却は、一次冷却終了後、3~15s間空冷する冷却とする。この二次冷却では、高温のフェライト生成域で滞留させて、ベイナイトの生成を抑制する。空冷時間が3s未満では、その後の冷却(三次冷却)で、ベイナイト生成域を通過する危険性が高くなる。一方、空冷時間が15sを超えて長くなると、フェライト粒の粗大化が生じる。このため、二次冷却における空冷時間は3~15s間に限定した。なお、好ましくは4~13sである。
 二次冷却終了後、ついで三次冷却を行う。
 三次冷却では、板厚中央部温度で750~650℃の温度域の平均冷却速度が4~15℃/sとなる冷却速度で650℃以下まで冷却する。
 鋼板板厚中心部の平均冷却速度が4℃/s未満では、フェライト粒の生成頻度が減少し、フェライト結晶粒が粗大化して、平均結晶粒径:15μm以下という所望の熱延鋼板の平均結晶粒径を確保できなくなる。一方、15℃/sを超えると、パーライトの生成が抑制され、粗大なベイナイト粒が生成されるため、所望の熱延鋼板の平均結晶粒径を確保できなくなる。このため、板厚中心部の平均冷却速度を4~15℃/sの範囲に限定することが好ましい。なお、より好ましくは4.5~14℃/sである。ここで、鋼板板厚中心部の平均冷却速度は、750~650℃の温度域での平均をいう。
 なお、本発明の冷却工程では、上記した一次冷却と、二次冷却と、三次冷却とを、冷却開始から板厚中央部温度で650℃に到着するまでの時間が35s以内となるように調整して、順次施す。冷却開始から、板厚中心部温度が650℃に到達するまでの時間が、35sを超えて冷却時間が長くなると、パーライト相が生成する前に高温で滞留することになり、結晶粒の粗大化が起こり、第二相頻度が0.42を超え、所望の熱延鋼板靭性を確保できなくなる。なお、更なる靭性向上のためには、板厚中心部温度が650℃に到達するまでの時間を30s以下とすることが好ましい。30s以下とすることにより、冷間成形角形鋼板の靭性を、試験温度:−30℃でのシャルピー吸収エネルギーvE−30で150J以上とすることができる。
 また、三次冷却終了後、必要に応じて、四次冷却を施すことが好ましい。四次冷却は、所望の巻取温度で的確に巻き取るために行う。三次冷却終了後の鋼板温度を測定し、所望の巻取温度が確保できるように、水冷時間を適正に調整することが好ましい。なお、四次冷却で、所望の巻取温度を確保できない場合には、さらに五次冷却(水冷)を実施してもよい。
 冷却終了後、巻取工程を施される。
 巻取工程では、巻取温度:500~650℃で巻取り、その後放冷する。
 巻取温度:500~650℃
 巻取温度が500℃未満では、パーライト生成が抑制され、塊状でラス間隔の粗いベイナイト粒が混在する割合が高く、所望の組織を確保できなくなり、冷間成形角形鋼管での所望の降伏比、靭性を達成できなくなる。一方、650℃を超えて高くなると、巻取り後に、パーライト変態が進行するため、巻取り形状が崩れるという不具合が発生する。このため、巻取温度は500~650℃の範囲に限定することが好ましい。なお、より好ましくは520~630℃である。
 以下、実施例に基づいて、さらに本発明について詳細に説明する。
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材:肉厚215mm)とした。それらスラブ(鋼素材)を、表2と表3に示す加熱温度に加熱した後、表2と表3に示す熱延工程、冷却工程、巻取工程により、板厚:12~25mmの厚肉熱延鋼板とした。 得られた熱延鋼板を素材として、冷間でロール成形により丸型鋼管とし、ついで、冷間でロール成形により角形鋼管(250~550mm角)とした。
 得られた熱延鋼板から試験片を採取して、組織観察、引張試験、衝撃試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
 得られた熱延鋼板から、観察面が、L断面となるように、組織観察用試験片を採取し、研磨、ナイタール腐食して、光学顕微鏡(倍率:500倍)または走査型電子顕微鏡(倍率:500倍)を用いて、板厚1/4t位置における組織を観察し、撮像した。得られた組織写真について、画像解析装置を用いて、主相、第二相の種類、および切断法で主相、第二相を含む平均結晶粒径を求めた。
 また、得られた組織写真に、図1に示すように、圧延方向と板厚方向にそれぞれ長さ125μmの線分を6本描き、それら線分と交差する各相の結晶粒数を測定した。そして、得られた、線分と交差する各相の結晶粒数から、次式で定義される、第二相頻度を算出した。
 第二相頻度=(線分と交叉する第二相粒の粒数)/(線分と交叉する主相粒および第二相粒の合計粒数)
(2)引張試験
 得られた熱延鋼板から、引張方向が圧延方向となるように、JIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さ、引張強さを測定し、(降伏強さ)/(引張強さ)で定義される降伏比(%)を算出した。
(3)衝撃試験
 得られた熱延鋼板の板厚1/4t位置から、試験片長手方向が圧延方向となるように、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:0℃、−30℃で、シャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本とした。
 また、得られた角形鋼管の平坦部から、試験片を採取し、引張試験、衝撃試験を実施し、降伏比、靭性を評価した。試験方法はつぎの通りとした。
(4)角形鋼管引張試験
 得られた角形鋼管平坦部から、引張方向が管長手方向となるように、JIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さ、引張強さを測定し、(降伏強さ)/(引張強さ)で定義される降伏比(%)を算出した。
(5)角形鋼管衝撃試験
 得られた角形鋼管平坦部の板厚1/4t位置から、試験片長手方向が管長手方向となるように、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:0℃、−30℃で、シャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本とした。
 得られた結果を表4と表5に示す。
 本発明例はいずれも、冷間成形により角形鋼管を製造しても、角形鋼管の平坦部で、降伏強さ:295MPa以上、引張強さ:400MPa以上、降伏比:80%以下の所望の引張特性を満足するとともに、試験温度:0℃での、シャルピー衝撃試験における吸収エネルギーvE(J)が150J以上、さらには試験温度:−30℃での、吸収エネルギーvE−30(J)が150J以上という高靭性を兼備させることができる、厚肉熱延鋼板となっている。一方、本発明の範囲を外れる比較例はいずれも、角形鋼管で、所望の低降伏比を満足できていないか、あるいは所望の高靭性を確保できていないか、あるいはその両方を満足させることができていない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-I000008

Claims (12)

  1.  質量%で、
     C:0.07~0.18%、     Mn:0.3~1.5%、
     P:0.03%以下、         S:0.015%以下、
     Al:0.01~0.06%、     N:0.006%以下
    を含み、残部Feおよび不可避的不純物からなる組成と、フェライトを主相とし、第二相として、パーライト、または、パーライトおよびベイナイトを有し、下記(1)式で定義される第二相頻度が0.20~0.42であり、主相と第二相とを含む平均結晶粒径が7~15μmである組織を有することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板。
                       記
    第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数)‥‥(1)
  2.  前記組成に加えてさらに、質量%で、Si:0.4%未満を含有することを特徴とする請求項1に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板。
  3.  前記組成に加えてさらに、質量%で、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または2に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板。
  4.  前記組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする請求項1ないし3のいずれかに記載の建築構造部材向け角形鋼管用厚肉熱延鋼板。
  5.  鋼素材に、熱延工程と、冷却工程と、巻取工程を施し、熱延鋼板とするに当たり、前記鋼素材を、質量%で、
     C:0.07~0.18%、     Mn:0.3~1.5%、
     P:0.03%以下、         S:0.015%以下、
     Al:0.01~0.06%、     N:0.006%以下
    を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱延工程が、前記鋼素材を加熱温度:1100~1300℃に加熱したのち、該加熱された鋼素材に粗圧延終了温度:1150~950℃とする粗圧延を施しシートバーと、該シートバーに仕上圧延開始温度を1100~850℃、仕上圧延終了温度を900~750℃とする仕上圧延を施し熱延板とする工程であり、
    前記冷却工程を、前記仕上圧延終了後直ちに冷却を開始し、表面温度で750~650℃の温度域の平均冷却速度が20℃/s以下、板厚中心部温度が650℃に到達するまでの時間が35s以内でかつ板厚中心部の750~650℃の温度域の平均冷却速度が4~15℃/sとなるように、巻取温度まで冷却する工程とし、
    前記巻取工程を、巻取温度:500~650℃で巻取り、その後放冷する工程とする、ことを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  6.  鋼素材に、熱延工程と、冷却工程と、巻取工程を施し、熱延鋼板とするに当たり、前記鋼素材を、質量%で、
     C:0.07~0.18%、     Mn:0.3~1.5%、
     P:0.03%以下、         S:0.015%以下、
     Al:0.01~0.06%、     N:0.006%以下
    を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱延工程が、前記鋼素材を加熱温度:1100~1300℃に加熱したのち、該加熱された鋼素材に粗圧延終了温度:1150~950℃とする粗圧延を施しシートバーとし、該シートバーに仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施し熱延板とする工程であり、
    前記冷却工程が、前記仕上圧延終了後直ちに冷却を開始し、表面温度で冷却停止温度が550℃以上となるように冷却する一次冷却と、該一次冷却終了後、3~15s間空冷する二次冷却と、該二次冷却終了後、板厚中央部温度で750~650℃の温度域の平均冷却速度が4~15℃/sとなる冷却速度で650℃以下まで冷却する三次冷却とからなる三段階の冷却で、冷却開始から板厚中央部温度で650℃に到着するまでの時間が35s以内となる冷却を施す工程であり、
    前記巻取工程を、巻取温度:500~650℃で巻取り、その後放冷する工程とする、ことを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  7.  前記仕上圧の総圧下率が35~70%であることを特徴とする請求項5または6に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  8.  前記鋼素材の組成に加えてさらに、質量%で、Si:0.4%未満を含有することを特徴とする請求項5または6に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  9.  前記鋼素材の組成に加えてさらに、質量%で、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項5または6に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  10.  前記鋼素材の組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする請求項5または6に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  11.  前記三段階の冷却に加えて、前記三次冷却終了後、四次冷却を施すことを特徴とする請求項6に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  12.  請求項1ないし4のいずれかに記載の厚肉熱延鋼板を素材として、冷間成形により製造されてなる建築構造部材向け角形鋼管。
PCT/JP2012/060526 2012-04-12 2012-04-12 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法 WO2013153679A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2012/060526 WO2013153679A1 (ja) 2012-04-12 2012-04-12 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法
CA2869700A CA2869700C (en) 2012-04-12 2012-04-12 Hot rolled steel sheet for square column for building structural members and method for manufacturing the same
US14/391,899 US9708680B2 (en) 2012-04-12 2012-04-12 Hot rolled steel sheet for square column for building structural members
EP12874301.0A EP2837706B1 (en) 2012-04-12 2012-04-12 Hot-rolled steel plate for square steel tube for use as builiding structural member and process for producing same
KR1020147028014A KR101660149B1 (ko) 2012-04-12 2012-04-12 건축 구조 부재용 각형 강관용 두꺼운 열연 강판 및 그 제조 방법
CN201280072370.5A CN104220619B (zh) 2012-04-12 2012-04-12 用于面向建筑结构构件的方形钢管的厚壁热轧钢板及其制造方法
US15/620,957 US10876180B2 (en) 2012-04-12 2017-06-13 Method of manufacturing hot rolled steel sheet for square column for building structural members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060526 WO2013153679A1 (ja) 2012-04-12 2012-04-12 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/391,899 A-371-Of-International US9708680B2 (en) 2012-04-12 2012-04-12 Hot rolled steel sheet for square column for building structural members
US15/620,957 Division US10876180B2 (en) 2012-04-12 2017-06-13 Method of manufacturing hot rolled steel sheet for square column for building structural members

Publications (1)

Publication Number Publication Date
WO2013153679A1 true WO2013153679A1 (ja) 2013-10-17

Family

ID=49327282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060526 WO2013153679A1 (ja) 2012-04-12 2012-04-12 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法

Country Status (6)

Country Link
US (2) US9708680B2 (ja)
EP (1) EP2837706B1 (ja)
KR (1) KR101660149B1 (ja)
CN (1) CN104220619B (ja)
CA (1) CA2869700C (ja)
WO (1) WO2013153679A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057449A (ja) * 2015-09-15 2017-03-23 新日鐵住金株式会社 耐サワー性に優れた鋼板及びその製造方法
US20170342529A1 (en) * 2014-12-22 2017-11-30 Posco Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
US10351927B2 (en) * 2014-12-22 2019-07-16 Posco Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
JP2019196508A (ja) * 2018-05-08 2019-11-14 日本製鉄株式会社 熱延鋼板、角形鋼管、およびその製造方法
TWI754213B (zh) * 2019-02-20 2022-02-01 日商Jfe鋼鐵股份有限公司 方形鋼管及其製造方法以及建築構造物
JP7396552B1 (ja) * 2022-09-20 2023-12-12 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物
WO2024062686A1 (ja) * 2022-09-20 2024-03-28 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398576B2 (ja) * 2014-10-10 2018-10-03 新日鐵住金株式会社 靭性に優れた鋼板およびその製造方法
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
JP6477020B2 (ja) * 2015-02-27 2019-03-06 新日鐵住金株式会社 熱延鋼板及びその製造方法
CN110073018B (zh) * 2016-12-12 2021-08-27 杰富意钢铁株式会社 低屈服比方形钢管用热轧钢板及其制造方法、和低屈服比方形钢管及其制造方法
KR101858853B1 (ko) 2016-12-19 2018-06-28 주식회사 포스코 용접성이 우수한 전봉강관용 열연강판 및 이의 제조방법
KR101899674B1 (ko) 2016-12-19 2018-09-17 주식회사 포스코 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
KR101977474B1 (ko) * 2017-08-09 2019-05-10 주식회사 포스코 표면 품질, 강도 및 연성이 우수한 도금강판
KR101988765B1 (ko) 2017-12-21 2019-06-12 주식회사 포스코 내구성이 우수한 열연강판 및 이의 제조방법
KR101988764B1 (ko) 2017-12-21 2019-06-12 주식회사 포스코 확관성이 우수한 열연강판 및 그 제조방법
RU2677426C1 (ru) * 2018-01-16 2019-01-16 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаного проката из конструкционной стали
CN112601831B (zh) * 2018-08-23 2022-05-31 杰富意钢铁株式会社 方形钢管及其制造方法以及建筑构造物
CN109338224A (zh) * 2018-11-12 2019-02-15 包头钢铁(集团)有限责任公司 一种4~8mm屈服强度440MPa级汽车传动轴管用热轧钢带及其生产方法
KR102236852B1 (ko) * 2018-11-30 2021-04-06 주식회사 포스코 우수한 저항복비 및 저온인성 특성을 가지는 구조용강 및 그 제조방법
JP6813140B1 (ja) * 2019-02-20 2021-01-13 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
CN110331344B (zh) * 2019-07-15 2021-04-06 武汉钢铁有限公司 一种强度性能稳定的Rm≥600MPa汽车大梁钢及生产方法
KR102492029B1 (ko) * 2020-12-21 2023-01-26 주식회사 포스코 내진성이 우수한 고강도 강 및 그 제조방법
KR102503451B1 (ko) * 2020-12-23 2023-02-27 현대제철 주식회사 내진 특성이 우수한 저항복비 열연강판 및 그 제조방법
CN112872036B (zh) * 2021-01-14 2022-11-22 首钢京唐钢铁联合有限责任公司 一种消除镀锌板表面微裂纹的方法
KR20240098720A (ko) 2022-12-21 2024-06-28 주식회사 포스코 강판 및 그 제조방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219015A (ja) 1989-11-22 1991-09-26 Nippon Steel Corp 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた角管の製造方法
JPH08246095A (ja) 1995-03-07 1996-09-24 Nkk Corp 低降伏比高靭性角鋼管用鋼材およびその製造方法
JPH09118952A (ja) * 1995-10-20 1997-05-06 Kobe Steel Ltd 降伏比の低い高強度熱延鋼板部材
JPH10280088A (ja) * 1997-02-06 1998-10-20 Sumitomo Metal Ind Ltd 建築構造用鋼材及びその製造方法
JPH1192858A (ja) * 1997-09-16 1999-04-06 Nkk Corp 繰返し大変形下での延性き裂進展抵抗の優れた鋼材及びその製造方法
JPH11158581A (ja) * 1997-11-27 1999-06-15 Kobe Steel Ltd 冷間ロール成形ボックスコラム用厚物高強度熱延鋼板
JP2001303168A (ja) 2000-04-18 2001-10-31 Kobe Steel Ltd 脆性亀裂発生特性に優れた鋼板の製造方法
JP2002241897A (ja) 2001-02-13 2002-08-28 Sumitomo Metal Ind Ltd 降伏強さと破断伸びの変動が小さく高成形性と低降伏比とを有する鋼板およびその製造方法
WO2005028693A1 (ja) 2003-09-24 2005-03-31 Nippon Steel Corporation 加工用熱延鋼板およびその製造方法
JP2008007833A (ja) * 2006-06-30 2008-01-17 Jfe Steel Kk 疲労亀裂伝播抵抗性に優れた鋼材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109521A (ja) * 1993-10-12 1995-04-25 Nippon Steel Corp 冷間成形による建築用低降伏比600N/mm2 級鋼管の製造法
JPH09143612A (ja) * 1995-11-21 1997-06-03 Kobe Steel Ltd 降伏比の低い高強度熱延鋼板部材
WO2005095663A1 (ja) * 2004-03-31 2005-10-13 Jfe Steel Corporation 高剛性高強度薄鋼板およびその製造方法
CN101724777B (zh) * 2008-10-21 2012-04-25 宝山钢铁股份有限公司 抗拉强度为550MPa级热轧轮辋钢板及其制造方法
CN101928881A (zh) * 2009-06-26 2010-12-29 宝山钢铁股份有限公司 抗拉强度为590MPa级热轧高扩孔钢板及其制造工艺
EP2530177B1 (en) * 2010-01-25 2016-05-04 Nippon Steel & Sumitomo Metal Corporation Steel plate for cold forging and process for producing same
JP5056876B2 (ja) 2010-03-19 2012-10-24 Jfeスチール株式会社 冷間加工性と焼入れ性に優れた熱延鋼板およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219015A (ja) 1989-11-22 1991-09-26 Nippon Steel Corp 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた角管の製造方法
JPH08246095A (ja) 1995-03-07 1996-09-24 Nkk Corp 低降伏比高靭性角鋼管用鋼材およびその製造方法
JPH09118952A (ja) * 1995-10-20 1997-05-06 Kobe Steel Ltd 降伏比の低い高強度熱延鋼板部材
JPH10280088A (ja) * 1997-02-06 1998-10-20 Sumitomo Metal Ind Ltd 建築構造用鋼材及びその製造方法
JPH1192858A (ja) * 1997-09-16 1999-04-06 Nkk Corp 繰返し大変形下での延性き裂進展抵抗の優れた鋼材及びその製造方法
JPH11158581A (ja) * 1997-11-27 1999-06-15 Kobe Steel Ltd 冷間ロール成形ボックスコラム用厚物高強度熱延鋼板
JP2001303168A (ja) 2000-04-18 2001-10-31 Kobe Steel Ltd 脆性亀裂発生特性に優れた鋼板の製造方法
JP2002241897A (ja) 2001-02-13 2002-08-28 Sumitomo Metal Ind Ltd 降伏強さと破断伸びの変動が小さく高成形性と低降伏比とを有する鋼板およびその製造方法
WO2005028693A1 (ja) 2003-09-24 2005-03-31 Nippon Steel Corporation 加工用熱延鋼板およびその製造方法
JP2008007833A (ja) * 2006-06-30 2008-01-17 Jfe Steel Kk 疲労亀裂伝播抵抗性に優れた鋼材

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170342529A1 (en) * 2014-12-22 2017-11-30 Posco Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
US10351927B2 (en) * 2014-12-22 2019-07-16 Posco Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
US10533241B2 (en) * 2014-12-22 2020-01-14 Posco Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
JP2017057449A (ja) * 2015-09-15 2017-03-23 新日鐵住金株式会社 耐サワー性に優れた鋼板及びその製造方法
JP2019196508A (ja) * 2018-05-08 2019-11-14 日本製鉄株式会社 熱延鋼板、角形鋼管、およびその製造方法
JP7031477B2 (ja) 2018-05-08 2022-03-08 日本製鉄株式会社 熱延鋼板、角形鋼管、およびその製造方法
TWI754213B (zh) * 2019-02-20 2022-02-01 日商Jfe鋼鐵股份有限公司 方形鋼管及其製造方法以及建築構造物
JP7396552B1 (ja) * 2022-09-20 2023-12-12 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物
WO2024062686A1 (ja) * 2022-09-20 2024-03-28 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物

Also Published As

Publication number Publication date
US20170275720A1 (en) 2017-09-28
KR101660149B1 (ko) 2016-09-26
EP2837706A4 (en) 2015-12-16
US10876180B2 (en) 2020-12-29
US9708680B2 (en) 2017-07-18
EP2837706A1 (en) 2015-02-18
KR20140138854A (ko) 2014-12-04
CA2869700A1 (en) 2013-10-17
US20150292054A1 (en) 2015-10-15
EP2837706B1 (en) 2019-06-05
CA2869700C (en) 2017-12-19
CN104220619B (zh) 2016-08-24
CN104220619A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2013153679A1 (ja) 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法
JP5594165B2 (ja) 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法
JP5589885B2 (ja) 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法
JP6388091B1 (ja) 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法
JP6565887B2 (ja) 低降伏比角形鋼管用熱延鋼板の製造方法および低降伏比角形鋼管の製造方法
US20030066580A1 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP6135577B2 (ja) 高強度熱延鋼板およびその製造方法
JP6354910B2 (ja) 厚肉高強度ラインパイプ用熱延鋼板、ならびに、厚肉高強度ラインパイプ用溶接鋼管およびその製造方法
JP5321605B2 (ja) 延性に優れる高強度冷延鋼板およびその製造方法
WO2013065298A1 (ja) 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
JP2013185196A (ja) 成形性に優れる高強度冷延鋼板およびその製造方法
JP4957854B1 (ja) 高強度電縫鋼管およびその製造方法
WO2013094130A1 (ja) 高強度鋼板およびその製造方法
JP7031477B2 (ja) 熱延鋼板、角形鋼管、およびその製造方法
JP5878829B2 (ja) 曲げ性に優れた高強度冷延鋼板およびその製造方法
JP7473792B2 (ja) 熱延鋼板、角形鋼管、およびそれらの製造方法
JP4367091B2 (ja) 耐疲労特性に優れ、かつ強度−延性バランスに優れた高強度熱延鋼板およびその製造方法
CA3048358C (en) Hot-rolled steel sheet for coiled tubing
JP6123734B2 (ja) 鋼管杭向け低降伏比高強度電縫鋼管およびその製造方法
JP6825751B1 (ja) 冷間ロール成形角形鋼管用熱延鋼帯およびその製造方法、ならびに冷間ロール成形角形鋼管の製造方法
JP2001207244A (ja) 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
JP5747250B2 (ja) 強度、延性及び衝撃エネルギー吸収能に優れた高強度鋼材並びにその製造方法
JP5857683B2 (ja) 鋼板内の材質均一性に優れた高強度高靭性厚肉鋼板及びその製造方法
WO2013160938A1 (ja) 延性に優れる高強度冷延鋼板およびその製造方法
JPH10130723A (ja) 延性に優れ、均一な材質を有する熱延鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012874301

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2869700

Country of ref document: CA

Ref document number: 20147028014

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14391899

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP