JP5594165B2 - 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法 - Google Patents

建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法 Download PDF

Info

Publication number
JP5594165B2
JP5594165B2 JP2011016207A JP2011016207A JP5594165B2 JP 5594165 B2 JP5594165 B2 JP 5594165B2 JP 2011016207 A JP2011016207 A JP 2011016207A JP 2011016207 A JP2011016207 A JP 2011016207A JP 5594165 B2 JP5594165 B2 JP 5594165B2
Authority
JP
Japan
Prior art keywords
cooling
phase
less
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011016207A
Other languages
English (en)
Other versions
JP2012153963A (ja
Inventor
力 上
雄太 田村
崇登 玉井
修司 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011016207A priority Critical patent/JP5594165B2/ja
Publication of JP2012153963A publication Critical patent/JP2012153963A/ja
Application granted granted Critical
Publication of JP5594165B2 publication Critical patent/JP5594165B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築構造部材向け角形鋼管用熱延鋼板に係り、とくに、熱延鋼板を素材とし冷間でロール成形により製造される角形鋼管(角コラム)の低降伏比化、靭性の更なる向上に関する。なお、熱延鋼板には、熱延鋼板、熱延鋼帯を含むものとする。
角形鋼管は、通常、熱延鋼板(熱延鋼帯)または厚板を素材として、冷間成形により製造される。角形鋼管の製造に際し、用いる冷間成形としては、プレス成形、ロール成形がある。熱延鋼帯を素材とし、ロール成形を利用して角形鋼管を製造する場合には、まず熱延鋼帯を丸型鋼管に成形し、その後、該丸型鋼管に冷間成形を加えて角形鋼管とするのが一般的である。このロール成形を利用した角形鋼管の製造方法は、プレス成形を利用した角形鋼管の製造方法に比べて、生産性が高いという利点がある。しかし、ロール成形を利用した角形鋼管の製造方法では、丸型への成形に際し管軸方向に大きな加工歪が導入されるとともに、丸型から角形に冷間成形される際に、角形鋼管の平坦部では丸型への曲げ成形とは逆方向の曲げ戻し成形を受けることになる。このため、ロール成形を利用して製造された角形鋼管では、管軸方向の降伏比が上昇しやすく、さらにバウシンガー効果等により、延性、靭性が低下しやすいという問題がある。
このような問題に対し、例えば特許文献1には、重量%で、C:0.03〜0.25%、Si:0.10〜0.50%、Mn:0.30〜2.00%、P:0.020%以下、S:0.020%以下、O:50ppm以下、H:5ppm以下、Al:0.150%以下、Ti:0.050%以下、V:0.100%以下、Nb:0.080%以下、Zr:0.050%以下、B:0.0050%以下のうちの1種または2種以上を含有し、NをN≦(1/5){(1/2)Al+(1/1.5)Ti+(1/3.5)V+(1/6.5)Nb+(1/6.5)Zr+B}の関係を満足するように含有する鋼に、加熱温度:1150〜1250℃、仕上温度:800〜870℃の条件で熱間圧延を施し、500〜650℃の条件で巻取を行う、低降伏比高靭性角形鋼管用鋼材の製造方法が記載されている。
また、特許文献2には、低炭素鋼鋼管に、Ac−250〜Ac−20℃に加熱し、引続き15℃/s以上の冷却速度で急冷したのち、冷間で角管に成形し、さらに200〜600℃の温度範囲で焼戻しする、降伏比が低く、低温靭性に優れた角管の製造方法が記載されている。特許文献2に記載された技術によれば、二相域加熱後急冷と、冷間成形と、焼戻とを、順次施すことにより、パイプ成形における加工硬化の影響を除去し、低降伏比と高靭性の角管を製造できるとしている。
また、特許文献3には、角鋼管用とは明記されていないが、高成形性と低降伏比とを有する鋼板が記載されている。特許文献3に記載された鋼板は、質量%で、C:0.0002〜0.1%、Si:0.003〜2.0%、Mn:0.003〜3.0%、Al:0.002〜2.0%を含有し、さらに、B:0.0002〜0.01%含む1群、Ti、Nb、V、Zrのうちから1種または2種以上を合計で0.005〜1.0%を含む2群、Cr、Mo、Cu、Niのうちから1種または2種以上を合計で0.005〜3.0%を含む3群、Ca:0.005%以下および希土類元素:0.20%以下含む4群、のうちから1群または2群以上を含み、不純物としてP:0.0002〜0.15%、S:0.0002〜0.05%、N:0.0005〜0.015%を含み、フェライト相の平均結晶粒径が1μm超え〜50μm、フェライト相の体積率が70%以上、フェライト相のアスペクト比が5以下で、フェライト粒界の70%以上が大角粒界からなり、かつ、残部相のうち体積率が最大である第二相の平均結晶粒径が50μm以下である、降伏強さと降伏比の変動が小さい鋼板である。
また、特許文献4には、加工用熱延鋼板が記載されている。特許文献4に記載された熱延鋼板は、重量%で、C:0.01〜0.2%、Si:0.01〜0.3%、Mn:0.1〜1.5%、Al:0.001〜0.1%を含み、P,S,Nを所定値以下に調整して含む組成と、主相であるポリゴナルフェライトと硬質第二相を有し、硬質第二相の体積分率が3〜20%で、硬度比(硬質第二相硬度/ポリゴナルフェライト硬度)が1.5〜6、粒径比(ポリゴナルフェライト粒径/硬質第二相粒径)が1.5以上である組織を有する鋼板である。特許文献4に記載された技術では、プレスによる歪導入と塗装焼付処理とにより、60MPa以上のBH量を確保できる熱延鋼板を製造でき、370〜490MPa級の熱延鋼板であっても、540〜640MPa級鋼板を適用した場合と同等の強度を有するプレス成形部品を安定して製造できるとしている。
また、特許文献5には、脆性亀裂発生特性に優れた鋼板の製造方法が記載されている。特許文献5に記載された技術では、熱間圧延により、C:0.03〜0.2%、Si:0.5%以下、Mn:1.8%以下、Al:0.01〜0.1%、N:0.01%以下を満たす組成を有し、ミクロ組織がフェライト組織及びパーライト組織より構成された鋼板を得て、該鋼板に板厚表裏面から各々5〜15%の領域を4〜15℃/sの平均冷却速度で450〜650℃の温度以下まで一次冷却し、次いでAr変態点以下まで復熱させてから、1〜10℃/sの平均冷却速度で二次冷却を施す。これにより、板厚表裏面から各々5〜15%の領域が円相当平均径:4μm以下、アスペクト比:2以下の、微細なフェライト粒を有し、板厚の50〜75%の領域が、円相当平均径:7μm以下、アスペクト比:2以下の、微細なフェライト粒を有し、COD特性、さらには低温靭性が優れ、耐脆性き裂発生特性に優れた鋼板が得られるとしている。
特開平08−246095号公報 特開平03−219015号公報 特開2002−241897号公報 WO2005/028693 A1 特開2001−303168号公報
しかしながら、特許文献1に記載された技術で製造された鋼材では、降伏比は高々81〜85%程度で、80%以下の低降伏比を確保できないうえ、0℃における吸収エネルギーも100J未満という場合もあり、必ずしも安定して、高靭性を確保できていないという問題がある。また、特許文献2に記載された技術では、二相域加熱後急冷と、焼戻という2種類の熱処理を施す必要があり、工程が複雑になり、生産性が低下するとともに、製造コストが高騰するという問題がある。
またさらに、特許文献3に記載された鋼板を素材として用いて、丸型鋼管としたのち、冷間成形で角形鋼管とすると、角形鋼管の平坦部で冷間加工度が大きくなるため、角形鋼管として、十分な靭性を確保できるとは言い難いという問題がある。
また、特許文献4に記載された鋼板を素材として、丸型鋼管としたのち、冷間成形で角形鋼管とすると、得られる角形鋼管の平坦部では、冷間加工度が大きく、降伏強さが増加して降伏比が上昇するとともに、靭性が低下するという問題があった。さらに、特許文献4に記載された熱延鋼板は、歪時効が起こりやすく、冷間成形により角形鋼管を製造するための素材としては不適であると言える。
また、特許文献5に記載された技術で製造された熱延鋼板を用い、冷間成形により角形鋼管とすると、該熱延鋼板ではフェライト粒が微細であるため、冷間成形により得られた角形鋼管の降伏強さが上昇し、結果的に降伏比が上昇する。このため、特許文献5に記載された技術で製造された熱延鋼板を素材とすると、建築構造部材向け角形鋼管として、80%以下という低降伏比化を達成できないという問題がある。
本発明は、上記した従来技術の問題を有利に解決し、建築構造部材向け角形鋼管用素材として好適な、降伏強さ:215MPa以上、引張強さ:400〜510MPaの強度と、75%以下の低降伏比を示し、試験温度:0℃で、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが180J以上となる、高靭性とを具備する、厚肉熱延鋼板の製造方法を提供することを目的とする。
本発明が目的とする厚肉熱延鋼板は、上記した特性を有し、さらに該鋼板を素材として冷間成形により製造した角形鋼管において、管軸方向で、降伏強さ:295〜445MPa、引張強さ:400〜550MPaの強度と、80%以下の低降伏比を示し、試験温度:0℃、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが150J以上となる、高靭性を具備させることができる鋼板である。
なお、ここでいう「厚肉熱延鋼板」とは、板厚が6mm以上25mm以下の熱延鋼板をいうものとする。
本発明者らは、上記した目的を達成するため、熱延鋼板を素材として冷間成形により製造された角形鋼管の降伏比、靭性に及ぼす各種要因の影響について鋭意研究した。その結果、素材として用いる熱延鋼板の組織、とくに第二相の存在が、冷間成形で製造された角形鋼管の降伏比、靭性に大きく影響することを知見した。
従来から、フェライト相とそれ以外の第二相とからなる複合組織では、フェライトより脆性クラックが伝播しやすい硬質の第二相の存在は、靭性を低下させると言われている。しかし、本発明者らは、通常用いられる第二相の体積分率、第二相の平均粒径では、うまく靭性を評価できないことを知見した。というのは、第二相は、塊状に存在する場合や、結晶粒界に沿って存在する場合があり、その存在形態により、第二相体積分率や平均粒径は大きく異なったものとなる。通常用いられる第二相の体積分率や、平均結晶粒径で、第二相の靭性への影響を評価すると、粒界に沿って存在する第二相の影響が過少評価されることになる。
そこで、本発明者らは、更なる研究を行った結果、冷間成形により製造された角形鋼管の靭性、降伏比への第二相の影響は、素材である熱延鋼板の第二相頻度および主相であるフェライトと第二相とを含めた平均粒径を用いれば、うまく評価できることを見出した。
なお、ここでいう「第二相頻度」とは、つぎのようにして、求めた値を言うものとする。
まず、素材である熱延鋼板の圧延方向断面(L断面)組織を光学顕微鏡、走査型電子顕微鏡を用いて撮像する。得られた組織写真に、図1に示すように圧延方向および板厚方向にそれぞれ、所定長さの線分を所定本数だけ描き、該線分と交差する結晶粒の粒数を、主相、第二相の各相についてそれぞれ測定する。なお、線分の端部が結晶粒内に留まる場合には、0.5個とする。得られた、各線分と交差する第二相の合計粒数(第二相の粒数)と、得られた、各線分と交差する各相の粒数の合計粒数(総粒数)との比、(第二相の粒数)/(総粒数)を求め、第二相頻度と定義する。なお、各線分の所定長さは、組織の大きさに応じて適宜決定すればよい。
つぎに、本発明の基礎となった実験結果について説明する。
質量%で、0.09〜0.15%C−0.01〜0.18%Si−0.43〜1.35%Mn−0.017〜0.018%P−0.0025〜0.0033%S−0.031〜0.040%Al−残部Feおよび不可避的不純物からなる組成のスラブ(肉厚:230mm)を、1200〜1270℃に加熱・均熱したのち、粗圧延、仕上圧延からなる熱間圧延を施して、熱延鋼帯(板厚:16〜25mm)とし、コイル状に巻き取った。なお、仕上圧延は、総圧下率:40〜52%、仕上圧延終了温度:750〜850℃とする圧延とし、仕上圧延終了後、加速冷却を行った。また、巻取温度は550〜600℃とし、コイル状に巻取った後、放冷した。
ついで、得られた熱延鋼帯を素材とし、冷間ロール成形で丸型鋼管を製造したのち、さらに冷間でロール成形して角形鋼管(250mm角〜550mm角)とした。
得られた角形鋼管の平坦部から、引張方向が管長手方向となるように、JIS Z 2210の規定に準拠してJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏比を求めた。また、得られた角形鋼管の平坦部の板厚1/4t位置から、管長手方向が試験片長手方向となるように、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:0℃でシャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。
なお、角形鋼管の素材として使用した熱延鋼帯から、圧延方向断面(L断面)の板厚1/4t位置を観察面とする組織観察用試験片を採取し、研磨、ナイタール腐食して、光学顕微鏡または走査型顕微鏡を用いて、組織観察を行った。得られた組織写真について、画像解析装置を用いて、各相の体積分率、さらに切断法で各相の平均結晶粒径、さらには、主相、第二相を含めた平均結晶粒径を求めた。
また、得られた組織写真に、図1に示すように、圧延方向と板厚方向にそれぞれ長さ125μmの線分を6本描き、それら線分と交差する各相の結晶粒数を測定した。そして、得られた、線分と交差する各相の結晶粒数から、次式
第二相頻度=(線分と交叉する第二相粒の粒数)/(線分と交叉する主相粒および第二 相粒の合計粒数)
で定義される、第二相頻度を算出した。なお、第二相は、パーライトおよびベイナイトであり、主相はポリゴナルフェライトであった。
得られた冷間成形角形鋼管平坦部の、(a)降伏比YR、および(b)試験温度:0℃におけるシャルピー衝撃試験の吸収エネルギーvEと、素材として用いた熱延鋼帯の第二相頻度との関係を図2に示す。また、得られた冷間成形角形鋼管平坦部の、(a)降伏比YR、および(b)試験温度:0℃におけるシャルピー衝撃試験の吸収エネルギーvEと、素材として用いた熱延鋼帯の主相、第二相を含めた平均結晶粒径との関係を図3に示す。
図2から、冷間成形角形鋼管平坦部の降伏比YRと、シャルピー衝撃試験の吸収エネルギーvEとはともに、第二相頻度を用いることにより、ばらつき少なく整理でき、第二相頻度が、冷間成形角形鋼管の靭性、降伏比へ大きく影響していることがわかる。また、図3から、冷間成形角形鋼管平坦部の降伏比YRと、シャルピー衝撃試験の吸収エネルギーvEとはともに、主相(フェライト)、第二相(パーライト、ベイナイト)を含めた平均結晶粒径を用いることによっても、ばらつき少なく整理でき、このような平均結晶粒径が、冷間成形角形鋼管の靭性、降伏比へ大きく影響していることがわかる。なお、急冷して表面から1/4t付近までの組織がベイナイトを主相とすると、降伏比が顕著に上昇する。
また、図2、図3から、本発明の目標の一つである冷間成形角形鋼管の降伏比YR:80%以下は、第二相頻度を0.20以上に、主相(フェライト)、第二相(パーライト、ベイナイト)を含めた平均結晶粒径を7μm以上に、それぞれ調整することにより達成できる。また、本発明の目標の一つである冷間成形角形鋼管のシャルピー衝撃試験の吸収エネルギーvE:150J以上は、第二相頻度を0.42以下に、主相(フェライト)、第二相(パーライト、ベイナイト)を含めた平均結晶粒径を15μm以下に、それぞれ調整することにより達成できる、ことがわかる。
なお、参考として、得られた冷間成形角形鋼管平坦部のシャルピー吸収エネルギーvEと素材として用いた熱延鋼帯の第二相平均粒径との関係を図4に、vEと第二相の組織分率との関係を図5に、それぞれ示す。図4、図5から、vEと第二相平均粒径や第二相の組織分率との関係は、ばらつきが大きく、第二相平均粒径や第二相の組織分率では、冷間成形角形鋼管平坦部の靱性をうまく評価できないという、ことがわかる。
本発明者らの更なる研究により、上記した熱延鋼板の組織は、所定の熱延条件で熱延板としてのち、所定の冷却速度で550℃以上の冷却停止温度まで冷却する一次冷却と、一次冷却終了後、所定時間空冷する二次冷却と、板厚中央部温度で所定の冷却速度で巻取温度まで冷却する三次冷却とからなる三段階の冷却で、冷却開始から板厚中央部温度で650℃に到着するまでの時間を35s以内とすることにより、確保できるという知見を得た。
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)鋼素材に、熱延工程と、冷却工程と、巻取工程を施し、熱延鋼板とするに当たり、
前記鋼素材を、質量%で、C:0.07〜0.18%、Mn:0.3〜1.5%、P:0.03%以下、S:0.015%以下、Al:0.01〜0.06%、N:0.006%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱延工程が、前記鋼素材を加熱温度:1100〜1300℃に加熱したのち、該加熱された鋼素材に粗圧延終了温度:1150〜950℃とする粗圧延を施しシートバーとし、該シートバーに仕上圧延開始温度:1100〜850℃、仕上圧延終了温度:900〜750℃とする仕上圧延を施し熱延板とする工程であり、前記冷却工程が、前記仕上圧延終了後10s以内に冷却を開始し、表面温度で冷却停止温度が550℃以上となるように冷却する一次冷却と、該一次冷却終了後、3〜15s間空冷する二次冷却と、該二次冷却終了後、板厚中央部温度で750〜650℃の温度域の平均冷却速度が4〜15℃/sとなる冷却速度で650℃以下まで冷却する三次冷却とからなる三段階の冷却で、冷却開始から板厚中央部温度で650℃に到着するまでの時間が35s以内となる冷却を施す工程であり、前記巻取工程を、巻取温度:500〜650℃で巻取り、その後放冷する工程とすることによってフェライトを主相とし、第二相として、パーライト、または、パーライトおよびベイナイトを有し、下記(1)式で定義される第二相頻度が0.20〜0.42であり、主相と第二相とを含む平均結晶粒径が7〜15μmである組織を有し、降伏強さ:215MPa以上、引張強さ:400〜510MPaの強度と、75%以下の低降伏比を示し、試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが180J以上の機械的特性を具備する厚肉熱延鋼板を製造することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。

第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数)‥‥(1)
(2)(1)において、 前記仕上圧延の総圧下率が35〜70%であることを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Si:0.4%未満を含有することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上を含有することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(5)(1)ないし(4)のいずれかにおいて、前記組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(6)(1)ないし(5)のいずれかにおいて、前記三段階の冷却に加えて、前記三次冷却終了後、四次冷却を施すことを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
(7)(1)ないし(6)のいずれかに記載の製造方法で製造された建築構造部材向け角形鋼管用厚肉熱延鋼板であって、フェライトを主相とし、第二相として、パーライト、または、パーライトおよびベイナイトを有し、次(1)式
第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数)‥‥(1)
で定義される第二相頻度が0.20〜0.42であり、主相と第二相とを含む平均結晶粒径が7〜15μmである組織を有し、降伏強さ:215MPa以上、引張強さ:400〜510MPaの強度と、75%以下の低降伏比を示し、試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが180J以上の機械的特性を具備することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板。
(8)(7)に記載の厚肉熱延鋼板を素材として、冷間成形により製造されてなる建築構造部材向け角形鋼管であって、管軸方向で、降伏強さ:295〜445MPa、引張強さ:400〜550MPaの強度と、80%以下の低降伏比を示し、試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが150J以上の機械的特性を具備することを特徴とする建築構造部材向け角形鋼管
本発明によれば、低降伏比、高靭性の冷間成形角形鋼管が製造可能な、建築構造部材向け角形鋼管用厚肉熱延鋼板を、容易にしかも安価に製造でき、産業上格段の効果を奏する。本発明になる厚肉熱延鋼板を用いて、冷間成形により角形鋼管を製造すると、管軸方向で、降伏強さ:295MPa以上、引張強さ:400MPa以上の強度と、80%以下の低降伏比を有し、かつ試験温度:0℃で、150J以上のシャルピー衝撃試験吸収エネルギーを示す高靭性を具備する、角形鋼管を製造できる。
第二相頻度の測定に用いる線分の一例を示す説明図である。 冷間成形された角形鋼管の降伏比YR、試験温度:0℃におけるシャルピー吸収エネルギーvEに及ぼす第二相頻度の影響を示すグラフである。 冷間成形された角形鋼管の降伏比YR、試験温度:0℃におけるシャルピー吸収エネルギーvEに及ぼす平均結晶粒径の影響を示すグラフである。 冷間成形された角形鋼管の試験温度:0℃におけるシャルピー吸収エネルギーvEと第二相の平均粒径との関係を示すグラフである。 冷間成形された角形鋼管の試験温度:0℃におけるシャルピー吸収エネルギーvEと第二相組織分率との関係を示すグラフである。
本発明の熱延鋼板の製造方法では、鋼素材に、熱延工程と、冷却工程と、巻取工程を施し、降伏強さ:215MPa以上、引張強さ:400〜510MPaの強度と、75%以下の低降伏比を示し、試験温度:0℃で、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが180J以上を有する、厚肉熱延鋼板とする。
まず、本発明で使用する鋼素材の組成限定理由について説明する。なお、とくに断わらない限り質量%は、単に%で記す。
C:0.07〜0.18%
Cは、固溶強化により鋼板の強度を増加させるとともに、第二相の一つであるパーライトの形成に寄与する元素である。所望の引張特性、靭性、さらに所望の鋼板組織を確保するためには、0.07%以上の含有を必要とする。一方、0.18%を超える含有は、所望の鋼板組織が得られず、所望の熱延鋼板の、さらには角形鋼管の引張特性、靭性を確保できなくなる。このため、Cは0.07〜0.18%の範囲に限定した。なお、好ましくは0.09〜0.17%である。
Mn:0.3〜1.5%
Mnは、固溶強化を介して鋼板の強度を増加させる元素であり、所望の鋼板強度を確保するために、0.3%以上の含有を必要とする。なお、0.3%未満の含有では、フェライト変態開始温度の上昇を招き、組織が粗大化しやすい。一方、1.5%を超えて含有すると、鋼板の降伏強さが高くなりすぎるため、冷間成形して製造される角形鋼管の降伏比が高くなり、所望の降伏比を確保できなくなる。このため、Mnは0.3〜1.5%の範囲に限定した。なお、好ましくは0.35〜1.4%である。
P:0.03%以下
Pは、フェライト粒界に偏析して、靭性を低下させる作用を有する元素であり、本発明では、不純物としてできるだけ低減することが望ましいが、過度の低減は、精錬コストの高騰を招くため、0.002%以上とすることが好ましい。なお、0.03%までは許容できる。このため、Pは0.03%以下に限定した。なお、好ましくは0.025%以下である。
S:0.015%以下
Sは、鋼中では硫化物として存在し、本発明の組成範囲であれば、主としてMnSとして存在する。MnSは、熱間圧延工程で薄く延伸され、延性、靭性に悪影響を及ぼすため、本発明ではできるだけ低減することが望ましい。しかし、過度の低減は、精錬コストの高騰を招くため、0.0002%以上とすることが好ましい。なお、0.015%までは許容できる。このため、Sは0.015%以下に限定した。なお、好ましくは0.010%以下である。
Al:0.01〜0.06%
Alは、脱酸剤として作用するとともに、AlNとしてNを固定する作用を有する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。0.01%未満では、Si無添加の場合に脱酸力が不足し、酸化物系介在物が増加し、鋼板の清浄度が低下するとともに、角形鋼管の溶接部品質に悪影響を及ぼす。一方、0.06%を超える含有は、固溶Al量が増加し、角形鋼管の溶接時に、とくに大気中での溶接の場合に、溶接部に酸化物を形成させる危険性が高くなり、角形鋼管溶接部の靭性が低下する。このため、Alは0.01〜0.06%に限定した。なお、好ましくは0.02〜0.05%である。
N:0.006%以下
Nは、鋼板の延性、角形鋼管の溶接性を低下させるため、本発明ではできるだけ低減することが望ましいが、0.006%までは許容できる。このため、Nは0.006%以下に限定した。なお、好ましくは0.005%以下である。
上記した成分が、基本の成分であるが、これら基本組成に加えて、選択元素として、Si:0.4%未満、および/または、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上、および/または、B:0.008%以下、を必要に応じて選択して含有できる。
Si:0.4%未満
Siは、固溶強化で鋼板の強度増加に寄与する元素であり、所望の鋼板強度を確保するために、必要に応じて含有できる。このような効果を得るためには、0.01%を超えて含有することが望ましいが、0.4%以上の含有は、鋼板表面に、赤スケールと称するファイアライトが形成しやすくなり、表面の外観性状が低下する場合が多くなる。このため、含有する場合には、0.4%未満とすることが好ましい。なお、とくにSiを添加しない場合は、Siは不可避的不純物として、そのレベルは0.01%以下である。
Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上
Nb、Ti、Vはいずれも、炭化物、窒化物を形成し、結晶粒径を微細化する作用を有する元素であり、含有すれば、降伏比が高くなる傾向となる。このため、本発明では、含有しないことが望ましいが、結晶粒径を極微細化しない範囲であれば、すなわち、フェライト相と第二相(パーライト、ベイナイト)を含む平均粒径で7μm以上を確保できる範囲であれば、含有してもよい。このような含有範囲はそれぞれ、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下である。
B:0.008%以下
Bは、冷却過程のフェライト変態を遅延させ、低温変態フェライト、すなわち、アシュキュラーフェライト相の形成を促進し、鋼板強度を増加させる作用を有する元素であり、Bの含有は、鋼板の降伏比、したがって角形鋼管の降伏比を増加させる。このため、本発明では、角形鋼管の降伏比が80%以下となるような範囲であれば、必要に応じて含有できる。このような範囲はB:0.008%以下である。なお、好ましくは0.0001〜0.0015%、さらに好ましくは0.0003〜0.0008%である。
上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、O:0.005%以下、N:0.005%以下が許容できる。
なお、上記した組成を有する鋼素材の製造方法はとくに限定する必要はなく、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製し、連続鋳造法等の通常公知の鋳造方法により、所望寸法に製造される。なお、溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。また、連続鋳造法に代えて、造塊−分塊圧延法を適用しても何ら問題はない。
本発明では、上記した組成を有する鋼素材(スラブ)に、熱延工程と、冷却工程と、巻取工程を施し、フェライトを主相とし、第二相として、パーライト、または、パーライトおよびベイナイトを有し、次(1)式
第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉 する主相粒および第二相粒の合計粒数)‥‥(1)
で定義される第二相頻度が0.20〜0.42であり、主相と第二相とを含む平均結晶粒径が7〜15μmである組織を有する厚肉熱延鋼板を得る。
熱延工程は、上記した組成を有する鋼素材を加熱温度:1100〜1300℃に加熱したのち、粗圧延終了温度:950〜1150℃とする粗圧延を施しシートバーとし、該シートバーに仕上圧延入側温度を1100〜850℃、仕上圧延出側温度を750〜900℃とする仕上圧延を施す。
加熱温度:1100〜1300℃
鋼素材の加熱温度が1100℃未満では、被圧延材の変形抵抗が大きくなりすぎて、粗圧延機、仕上圧延機の耐荷重、圧延トルクの不足が生じ、圧延が困難となる。一方、1300℃を超えると、オーステナイト結晶粒が粗大化し、粗圧延、仕上圧延でオーステナイト粒の加工・再結晶を繰返しても、細粒化することが困難となり、所望の熱延鋼板の平均結晶粒径を確保することが困難となる。このため、鋼素材の加熱温度は1100〜1300℃に限定することが好ましい。なお、より好ましくは1100〜1250℃である。また、圧延機の耐荷重、圧延トルクに余裕がある場合には、1100℃以下Ar3変態点以上の範囲の加熱温度を選択してもよい。鋼素材厚さは、通常用いられる200〜350mm程度でよく、とくに限定されない。
加熱された鋼素材は、ついで粗圧延を施され、シートバーとされる。
粗圧延終了温度:950〜1150℃
加熱された鋼素材は、粗圧延により、オーステナイト粒が加工、再結晶されて微細化する。粗圧延終了温度が950℃未満では、粗圧延機の耐荷重、圧延トルクの不足が生じやすくなる。一方、1150℃を超えて高温となると、オーステナイト粒が粗大化し、その後に仕上圧延を施しても、平均結晶粒径:15μm以下という所望の平均結晶粒径を確保することが困難となる。このため、粗圧延終了温度は950〜1150℃の範囲に限定する。この粗圧延終了温度範囲は、鋼素材の加熱温度、粗圧延のパス間での滞留、鋼素材厚さ等を調整することにより達成できる。なお、圧延機の耐荷重、圧延トルクに余裕がある場合には、粗圧延終了温度の下限を、Ar3変態点+100℃以上としてもよい。なお、シートバー厚は、仕上圧延で、所望の製品厚さの製品板(熱延鋼板)とすることができればよく、とくに限定する必要はないが、32〜60mm程度が適当である。
シートバーはついで、タンデム圧延機により仕上圧延を施され、熱延鋼板とされる。
仕上圧延開始温度(仕上圧延入側温度):1100〜850℃
仕上圧延では、圧延加工−再結晶が繰り返され、オーステナイト(γ)粒の微細化が進行する。仕上圧延開始温度(仕上圧延入側温度)が低くなると、圧延加工により導入される加工歪が残存しやすくなり、γ粒の微細化を達成しやすい。仕上圧延開始温度(仕上圧延入側温度)が、850℃未満では、仕上圧延機内で鋼板表面近傍の温度がAr3変態点以下となりフェライトが生成する危険性が増大する。生成したフェライトは、その後の仕上圧延加工により圧延方向に伸長したフェライト粒となり、加工性低下の原因となる。一方、仕上圧延開始温度(仕上圧延入側温度)が、1100℃を超えて高温となると、上記した仕上圧延によるγ粒の微細化効果が低減し、平均結晶粒径:15μm以下という所望の熱延鋼板の平均結晶粒径を確保することが困難となる。このため、仕上圧延入側温度(仕上圧延開始温度)は1100〜850℃の範囲に限定する。なお、好ましくは1050〜850℃である。
仕上圧延終了温度(仕上圧延出側温度):900〜750℃
仕上圧延終了温度(仕上圧延出側温度)が900℃を超えて高温となると、仕上圧延時に付加される加工歪が不足し、γ粒の微細化が達成されず、したがって、平均結晶粒径:15μm以下という所望の熱延鋼板の平均結晶粒径を確保することが困難となる。一方、仕上圧延終了温度(仕上圧延出側温度)が750℃未満では、仕上圧延機内で鋼板表面近傍の温度がAr3変態点以下となり、圧延方向に伸長したフェライト粒が形成され、フェライト粒が混粒となり、加工性が低下する危険性が増大する。このため、仕上圧延終了温度(仕上圧延出側温度)は900〜750℃の範囲に限定する。なお、好ましくは850〜750℃である。
なお、上記した仕上圧延では、仕上圧延の総圧下率を35〜70%とすることがより好ましい。総圧下率が35%未満では、γ粒微細化に必要な十分な加工歪を付与できにくく、所望の熱延鋼板の平均結晶粒径を確保することが難しくなる。一方、総圧下率が70%を超えると、圧延機の耐荷重、圧延トルクの不足が懸念される場合があるとともに、圧延方向に長く伸長したγ粒が形成され、結果として伸長したフェライト粒となり、加工性が低下する危険性が増大する。このため、仕上圧延の総圧下率を35〜70%とすることが好ましい。より好ましくは40〜70%である。
仕上圧延終了後、冷却工程を施す。
冷却工程は、仕上圧延終了後直ちに、一次冷却と、二次冷却と、三次冷却とを順次施す冷却からなる工程とする。
冷却開始:仕上圧延終了後直ちに
本発明でいう「仕上圧延終了後直ちに」とは、仕上圧延終了後、10s以内を意味する。圧延終了後、10sを超えて冷却を開始すると、すなわち高温での滞留時間が長くなると、粒成長が進行して、γ粒の粗大化が生じる。このため、本発明では、仕上圧延終了後10s以内に冷却を開始することにした。なお、好ましくは8s以内である。
熱延鋼板の冷却を開始して、まず、一次冷却を行う。なお、冷却工程において使用する温度は伝熱計算により得られた値(温度)を用いるものとする。
一次冷却では、表面温度で冷却停止温度が550℃以上となるように冷却する。
一次冷却における冷却停止温度が、550℃未満では、とくに鋼板表面近傍がベイナイト生成域を通過して、ベイナイト相が形成され、所望のフェライトと第二相からなる組織を形成できない。そのため、所望の第二相頻度を確保できず、降伏比が増加し、冷間成形角形鋼管とした場合に管軸方向の所望の低降伏比を達成できなくなる。このようなことから、一次冷却における冷却停止温度を550℃以上に限定した。なお、冷却停止温度を550℃以上とすることができれば、それまでの冷却速度はとくに限定する必要はない。これにより、表層でのベイナイトの形成を安定して回避でき、上記した所望の熱延組織を安定して形成することができなることになる。
一次冷却終了後、ついで二次冷却を行う。
二次冷却は、一次冷却終了後、3〜15s間空冷する冷却とする。この二次冷却では、高温のフェライト生成域で滞留させて、ベイナイトの生成を抑制する。空冷時間が3s未満では、その後の冷却(三次冷却)で、ベイナイト生成域を通過する危険性が高くなる。一方、空冷時間が15sを超えて長くなると、フェライト粒の粗大化が生じる。このため、二次冷却における空冷時間は3〜15s間に限定した。なお、好ましくは4〜13sである。
二次冷却終了後、ついで三次冷却を行う。
三次冷却では、板厚中央部温度で750〜650℃の温度域の平均冷却速度が4〜15℃/sとなる冷却速度で650℃以下まで冷却する。
鋼板板厚中心部の平均冷却速度が4℃/s未満では、フェライト粒の生成頻度が減少し、フェライト結晶粒が粗大化して、平均結晶粒径:15μm以下という所望の熱延鋼板の平均結晶粒径を確保できなくなる。一方、15℃/sを超えると、パーライトの生成が抑制され、粗大なベイナイト粒が生成されるため、所望の熱延鋼板の平均結晶粒径を確保できなくなる。このため、板厚中心部の平均冷却速度を4〜15℃/sの範囲に限定することが好ましい。なお、より好ましくは4.5〜14℃/sである。ここで、鋼板板厚中心部の平均冷却速度は、750〜650℃の温度域での平均をいう。
なお、本発明の冷却工程では、上記した一次冷却と、二次冷却と、三次冷却とを、冷却開始から板厚中央部温度で650℃に到着するまでの時間が35s以内となるように調整して、順次施す。
冷却開始から、板厚中心部温度が650℃に到達するまでの時間が、35sを超えて冷却時間が長くなると、パーライト相が生成する前に高温で滞留することになり、結晶粒の粗大化が起こり、第二相頻度が0.42を超え、所望の熱延鋼板靭性を確保できなくなる。なお、更なる靭性向上のためには、板厚中心部温度が650℃に到達するまでの時間を30s以下とすることが好ましい。30s以下とすることにより、冷間成形角形鋼板の靭性を、試験温度:−30℃でのシャルピー吸収エネルギーvE−30で150J以上とすることができる。
また、三次冷却終了後、必要に応じて、四次冷却を施すことが好ましい。四次冷却は、所望の巻取温度で的確に巻き取るために行う。三次冷却終了後の鋼板温度を測定し、所望の巻取温度が確保できるように、水冷時間を適正に調整することが好ましい。なお、四次冷却で、所望の巻取温度を確保できない場合には、さらに五次冷却(水冷)を実施してもよい。
冷却終了後、巻取工程を施される。
巻取工程では、巻取温度:500〜650℃で巻取り、その後放冷する。
巻取温度:500〜650℃
巻取温度が500℃未満では、パーライト生成が抑制され、塊状でラス間隔の粗いベイナイト粒が混在する割合が高く、所望の組織を確保できなくなり、冷間成形角形鋼管での所望の降伏比、靭性を達成できなくなる。一方、650℃を超えて高くなると、巻取り後に、パーライト変態が進行するため、巻取り形状が崩れるという不具合が発生する。このため、巻取温度は500〜650℃の範囲に限定することが好ましい。なお、より好ましくは520〜630℃である。
つぎに、上記した本発明により製造される熱延鋼板の組織について説明する。
本発明で得られる熱延鋼板は、上記した組成を有し、さらに主相であるフェライトと、第二相とからなる組織を有する。第二相は、パーライト、または、パーライトおよびベイナイトからなる。
パーライト、または、パーライトおよびベイナイトからなる第二相は、0.20〜0.42の第二相頻度を有する。第二相頻度が0.20未満では、冷間成形して得た角形鋼管の降伏比が80%超えとなり、建築構造部材用として要求される降伏比(:80%以下)を確保できなくなる。一方、第二相頻度が0.42を超えると、建築構造部材用として角形鋼管に要求される、試験温度:0℃におけるシャルピー衝撃試験の吸収エネルギーvEで150J以上という、所望の靭性を確保できなくなる。このため、第二相頻度を0.20〜0.42の範囲に限定した。なお、試験温度:−30℃におけるシャルピー衝撃試験の吸収エネルギーvE−30が150J以上という高靭性を確保するためには、好ましくは第二相頻度は0.35以下である。なお、第二相頻度は、次式
第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉 する主相粒および第二相粒の合計粒数)
で定義される。測定方法は上記したとおりである。
さらに本発明で得られる熱延鋼板は、上記した第二相頻度を有するとともに、主相であるフェライト相と第二相とを含む平均結晶粒径が7〜15μmである組織を有する。
ここでいう「主相であるフェライト相と第二相とを含む平均結晶粒径」とは、主相であるフェライト相と第二相であるパーライト相、ベイナイト相を含んだ、全結晶粒について測定した平均結晶粒径を意味する。この平均結晶粒径の測定は、熱延鋼板の所定の位置から採取した組織観察用試験片について、圧延方向断面(L断面)を研磨、ナイタール腐食を施し、板厚1/4t位置を、光学顕微鏡(倍率:500倍)、または走査型電子顕微鏡(倍率:500倍)を用いて組織観察し、撮像し、得られた組織写真について、画像解析装置により、主相、第二相の種類、および、切断法で主相、第二相を含む平均結晶粒径を算出するものとする。
上記した方法で測定された平均結晶粒径が、7μm未満では、微細すぎて、角形鋼管の降伏比が80%以下を確保できない。一方、15μmを超えて粗大化すると、角形鋼管の靭性が低下し、所望の靭性を確保できなくなる。なお、更なる高靭性を確保するという観点から、好ましくは、12μm以下である。
上記した組成と、上記した組織とを有する熱延鋼板は、降伏強さ:215MPa以上、引張強さ:400〜510MPaの強度と、75%以下の低降伏比を示し、試験温度:0℃で、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが180J以上となる、高靭性とを具備する鋼板となる。このような熱延鋼板を素材とすれば、冷間でロール成形して角形鋼管としても、管軸方向で、降伏強さ:295MPa以上、引張強さ:4001〜550MPaの強度と、80%以下の低降伏比と、試験温度:−0℃で、好ましくは試験温度:−30℃で、シャルピー衝撃試験の吸収エネルギーが150J以上となる、高靭性を具備する角形鋼管とすることができる。
以下、実施例に基づいて、さらに本発明について詳細に説明する。
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材:肉厚250mm)とした。それらスラブ(鋼素材)を、表2に示す加熱温度に加熱したのち、表2に示す条件の熱延工程、冷却工程、巻取工程により、板厚:12〜25mmの厚肉熱延鋼板とした。
また、得られた熱延鋼板を素材として、冷間でロール成形により丸型鋼管とし、ついで、冷間でロール成形により角形鋼管(250〜450mm角)とした。
得られた熱延鋼板から試験片を採取して、組織観察、引張試験、衝撃試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
得られた熱延鋼板から、観察面が、L断面となるように、組織観察用試験片を採取し、研磨、ナイタール腐食して、光学顕微鏡(倍率:500倍)または走査型電子顕微鏡(倍率:500倍)を用いて、板厚1/4t位置における組織を観察し、撮像した。得られた組織写真について、画像解析装置を用いて、主相、第二相の種類、および切断法で主相、第二相を含む平均結晶粒径を求めた。
また、得られた組織写真に、図1に示すように、圧延方向と板厚方向にそれぞれ長さ125μmの線分を6本描き、それら線分と交差する各相の結晶粒数を測定した。そして、得られた、線分と交差する各相の結晶粒数から、次式
第二相頻度=(線分と交叉する第二相粒の粒数)/(線分と交叉する主相粒および第二 相粒の合計粒数)
で定義される、第二相頻度を算出した。
(2)引張試験
得られた熱延鋼板から、引張方向が圧延方向となるように、JIS5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さ、引張強さを測定し、(降伏強さ)/(引張強さ)で定義される降伏比(%)を算出した。
(3)衝撃試験
得られた熱延鋼板の板厚1/4t位置から、試験片長手方向が圧延方向となるように、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:0℃、−30℃で、シャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本とした。
また、得られた角形鋼管の平坦部から、試験片を採取し、引張試験、衝撃試験を実施し、降伏比、靭性を評価した。試験方法はつぎの通りとした。
(4)角形鋼管引張試験
得られた角形鋼管平坦部から、引張方向が管長手方向となるように、JIS5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さ、引張強さを測定し、(降伏強さ)/(引張強さ)で定義される降伏比(%)を算出した。
(5)角形鋼管衝撃試験
得られた角形鋼管平坦部の板厚1/4t位置から、試験片長手方向が管長手方向となるように、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:0℃、−30℃で、シャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本とした。
得られた結果を表3に示す。
Figure 0005594165
Figure 0005594165
Figure 0005594165
Figure 0005594165
本発明例はいずれも、冷間成形により角形鋼管を製造しても、角形鋼管の平坦部で、降伏強さ:295MPa以上、引張強さ:400MPa以上、降伏比:80%以下の所望の引張特性を満足するとともに、試験温度:0℃での、シャルピー衝撃試験における吸収エネルギー(J)が150J以上、さらには試験温度:−30℃での、吸収エネルギー(J)が150J以上という高靭性を兼備させることができる、厚肉熱延鋼板となっている。一方、本発明の範囲を外れる比較例はいずれも、角形鋼管で、所望の低降伏比を満足できていないか、あるいは所望の高靭性を確保できていないか、あるいはその両方を満足させることができていない。

Claims (8)

  1. 鋼素材に、熱延工程と、冷却工程と、巻取工程を施し、熱延鋼板とするに当たり、
    前記鋼素材を、質量%で、
    C:0.07〜0.18%、 Mn:0.3〜1.5%、
    P:0.03%以下、 S:0.015%以下、
    Al:0.01〜0.06%、 N:0.006%以下
    を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
    前記熱延工程が、前記鋼素材を加熱温度:1100〜1300℃に加熱したのち、該加熱された鋼素材に粗圧延終了温度:1150〜950℃とする粗圧延を施しシートバーとし、該シートバーに仕上圧延開始温度:1100〜850℃、仕上圧延終了温度:900〜750℃とする仕上圧延を施し熱延板とする工程であり、
    前記冷却工程が、前記仕上圧延終了後10s以内に冷却を開始し、表面温度で冷却停止温度が550℃以上となるように冷却する一次冷却と、該一次冷却終了後、3〜15s間空冷する二次冷却と、該二次冷却終了後、板厚中央部温度で750〜650℃の温度域の平均冷却速度が4〜15℃/sとなる冷却速度で650℃以下まで冷却する三次冷却とからなる三段階の冷却で、冷却開始から板厚中央部温度で650℃に到着するまでの時間が35s以内となる冷却を施す工程であり、
    前記巻取工程を、巻取温度:500〜650℃で巻取り、その後放冷する工程とすることによってフェライトを主相とし、第二相として、パーライト、または、パーライトおよびベイナイトを有し、下記(1)式で定義される第二相頻度が0.20〜0.42であり、主相と第二相とを含む平均結晶粒径が7〜15μmである組織を有し、降伏強さ:215MPa以上、引張強さ:400〜510MPaの強度と、75%以下の低降伏比を示し、試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが180J以上の機械的特性を具備する厚肉熱延鋼板を製造することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。

    第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数)‥‥(1)
  2. 前記仕上圧延の総圧下率が35〜70%であることを特徴とする請求項1に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  3. 前記組成に加えてさらに、質量%で、Si:0.4%未満を含有することを特徴とする請求項1または2に記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  4. 前記組成に加えてさらに、質量%で、Nb:0.015%以下、Ti:0.030%以下、V:0.070%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1ないし3のいずれかに記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  5. 前記組成に加えてさらに、質量%で、B:0.008%以下を含有することを特徴とする請求項1ないし4のいずれかに記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  6. 前記三段階の冷却に加えて、前記三次冷却終了後、四次冷却を施すことを特徴とする請求項1ないし5のいずれかに記載の建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法。
  7. 請求項1ないし6のいずれかに記載の製造方法で製造された建築構造部材向け角形鋼管用厚肉熱延鋼板であって、フェライトを主相とし、第二相として、パーライト、または、パーライトおよびベイナイトを有し、下記(1)式で定義される第二相頻度が0.20〜0.42であり、主相と第二相とを含む平均結晶粒径が7〜15μmである組織を有し、降伏強さ:215MPa以上、引張強さ:400〜510MPaの強度と、75%以下の低降伏比を示し、試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが180J以上の機械的特性を具備することを特徴とする建築構造部材向け角形鋼管用厚肉熱延鋼板。

    第二相頻度=(所定長さの線分と交叉する第二相粒の粒数)/(所定長さの線分と交叉する主相粒および第二相粒の合計粒数)‥‥(1)
  8. 請求項7に記載の厚肉熱延鋼板を素材として、冷間成形により製造されてなる建築構造部材向け角形鋼管であって、管軸方向で、降伏強さ:295〜445MPa、引張強さ:400〜550MPaの強度と、80%以下の低降伏比を示し、試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが150J以上の機械的特性を具備することを特徴とする建築構造部材向け角形鋼管
JP2011016207A 2011-01-28 2011-01-28 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法 Active JP5594165B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016207A JP5594165B2 (ja) 2011-01-28 2011-01-28 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016207A JP5594165B2 (ja) 2011-01-28 2011-01-28 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2012153963A JP2012153963A (ja) 2012-08-16
JP5594165B2 true JP5594165B2 (ja) 2014-09-24

Family

ID=46835997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016207A Active JP5594165B2 (ja) 2011-01-28 2011-01-28 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP5594165B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085027A (ko) 2016-12-12 2019-07-17 제이에프이 스틸 가부시키가이샤 저항복비 각형 강관용 열연 강판 및 그의 제조 방법 그리고 저항복비 각형 강관 및 그의 제조 방법
TWI743724B (zh) * 2019-04-08 2021-10-21 日商杰富意鋼鐵股份有限公司 角形鋼管、其製造方法以及建築結構物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162680A1 (ja) 2013-04-04 2014-10-09 Jfeスチール株式会社 熱延鋼板およびその製造方法
CN104109744B (zh) * 2014-07-28 2016-11-09 攀钢集团西昌钢钒有限公司 提高管线钢落锤性能的方法
KR101675677B1 (ko) * 2015-04-23 2016-11-11 현대제철 주식회사 비열처리형 열연강판 및 그 제조 방법
JP6565887B2 (ja) * 2016-12-12 2019-08-28 Jfeスチール株式会社 低降伏比角形鋼管用熱延鋼板の製造方法および低降伏比角形鋼管の製造方法
JP7031477B2 (ja) * 2018-05-08 2022-03-08 日本製鉄株式会社 熱延鋼板、角形鋼管、およびその製造方法
WO2020039980A1 (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
JP6693607B1 (ja) * 2018-08-23 2020-05-13 Jfeスチール株式会社 熱延鋼板およびその製造方法
WO2020170774A1 (ja) * 2019-02-20 2020-08-27 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP7381842B2 (ja) * 2019-08-20 2023-11-16 日本製鉄株式会社 厚鋼板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118952A (ja) * 1995-10-20 1997-05-06 Kobe Steel Ltd 降伏比の低い高強度熱延鋼板部材
JP3724119B2 (ja) * 1997-02-06 2005-12-07 住友金属工業株式会社 建築構造用圧延棒鋼及びその製造方法
JP3849244B2 (ja) * 1997-09-16 2006-11-22 Jfeスチール株式会社 繰返し大変形下での延性き裂進展抵抗の優れた鋼材及びその製造方法
JPH11158581A (ja) * 1997-11-27 1999-06-15 Kobe Steel Ltd 冷間ロール成形ボックスコラム用厚物高強度熱延鋼板
JP5050423B2 (ja) * 2006-06-30 2012-10-17 Jfeスチール株式会社 疲労亀裂伝播抵抗性に優れた鋼材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085027A (ko) 2016-12-12 2019-07-17 제이에프이 스틸 가부시키가이샤 저항복비 각형 강관용 열연 강판 및 그의 제조 방법 그리고 저항복비 각형 강관 및 그의 제조 방법
TWI743724B (zh) * 2019-04-08 2021-10-21 日商杰富意鋼鐵股份有限公司 角形鋼管、其製造方法以及建築結構物

Also Published As

Publication number Publication date
JP2012153963A (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5594165B2 (ja) 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法
JP5589885B2 (ja) 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法
WO2013153679A1 (ja) 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法
JP6388091B1 (ja) 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法
JP5594344B2 (ja) 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
JP6565887B2 (ja) 低降伏比角形鋼管用熱延鋼板の製造方法および低降伏比角形鋼管の製造方法
JP5609383B2 (ja) 低温靭性に優れた高強度熱延鋼板およびその製造方法
JP5316634B2 (ja) 加工性に優れた高強度鋼板およびその製造方法
JP6146358B2 (ja) 高強度熱延鋼板およびその製造方法
JP7031477B2 (ja) 熱延鋼板、角形鋼管、およびその製造方法
JP6048623B2 (ja) 高強度鋼板
JP5874664B2 (ja) 落重特性に優れた高張力鋼板およびその製造方法
US11401594B2 (en) Hot-rolled steel sheet for coiled tubing and method for manufacturing the same
CA3048358C (en) Hot-rolled steel sheet for coiled tubing
RU2677426C1 (ru) Способ производства горячекатаного проката из конструкционной стали
JP7473792B2 (ja) 熱延鋼板、角形鋼管、およびそれらの製造方法
JP6123734B2 (ja) 鋼管杭向け低降伏比高強度電縫鋼管およびその製造方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140305

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250