WO2013149483A1 - 液晶面板、液晶显示器及其制造方法 - Google Patents

液晶面板、液晶显示器及其制造方法 Download PDF

Info

Publication number
WO2013149483A1
WO2013149483A1 PCT/CN2012/086506 CN2012086506W WO2013149483A1 WO 2013149483 A1 WO2013149483 A1 WO 2013149483A1 CN 2012086506 W CN2012086506 W CN 2012086506W WO 2013149483 A1 WO2013149483 A1 WO 2013149483A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
substrate
liquid crystal
piezoelectric material
spacer
Prior art date
Application number
PCT/CN2012/086506
Other languages
English (en)
French (fr)
Inventor
李坤
玄明花
高永益
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/993,365 priority Critical patent/US9405143B2/en
Publication of WO2013149483A1 publication Critical patent/WO2013149483A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04146Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using pressure sensitive conductive elements delivering a boolean signal and located between crossing sensing lines, e.g. located between X and Y sensing line layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133394Piezoelectric elements associated with the cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • Liquid crystal panel, liquid crystal display and manufacturing method thereof Liquid crystal panel, liquid crystal display and manufacturing method thereof
  • Embodiments of the present invention relate to a liquid crystal panel, a liquid crystal display, and a method of fabricating the same. Background technique
  • the thin film transistor liquid crystal display is an optoelectronic product that integrates a large-scale semiconductor integrated circuit and a flat panel light source technology with a thin film transistor as a control element and a liquid crystal as a medium.
  • Thin Film Transistors Liquid crystal displays have become the next generation of mainstream displays due to their low power consumption, portability, wide range of use, and high quality.
  • a touch panel is used in order to allow the user to perform related operations while viewing the screen.
  • the touch display is one of the important carriers for integrating the input and output terminals.
  • the touch display screen by measuring the coordinate position of the touch point on the display screen, the toucher's intention can be known according to the display content or graphic of the corresponding coordinate point on the display screen, thereby performing related operations.
  • the use of resistive, capacitive, infrared, surface acoustic wave and other technologies to achieve the confirmation of the touch point position.
  • the touch screens using these technical solutions are usually separately prepared and then attached to the display screen to achieve the touch effect on the display screen.
  • the touch display screen formed by separately preparing the touch screen and the display screen is generally costly, and has a large thickness and weight, which is not conducive to the requirement of thinning and thinning of the display screen; Large, so the touch position can not be accurately positioned; the touch screen on the surface of the display will reduce the light transmittance of the display, and require a higher power backlight under the same display brightness.
  • the touch display screen of the prior art the touch screen and the display screen are separately prepared and assembled together by a fitting manner. Therefore, the touch display screen of the prior art has the following problems: The function of the touch panel is not integrated with the display panel. Chemical. Summary of the invention
  • a liquid crystal panel comprising: a color filter substrate; an array substrate; a piezoelectric material spacer disposed between the color film substrate and the array substrate; a signal line disposed between the color filter substrate and the piezoelectric material spacer; and the piezoelectric Another signal line disposed between the material spacer and the array substrate, wherein the two signal lines are respectively in contact with the color film substrate side surface of the piezoelectric material spacer and the array substrate side surface, the color The projection of the signal line on the film substrate side on the array substrate side surface of the piezoelectric material spacer intersects with the signal line on the array substrate side, and the two signal lines are insulated from each other.
  • a liquid crystal display is provided.
  • the liquid crystal panel and the detecting circuit are disposed on a body of the liquid crystal display, and the detecting circuit is connected to two signal lines for detecting two There is no electrical signal generated on the signal line.
  • a method of fabricating a liquid crystal panel including: forming a first signal line on a first substrate; forming a piezoelectric material spacer on the first signal line, the pressing a first substrate side surface of the electrical material spacer is in contact with the first signal line; a second signal line is formed on the second substrate side surface of the piezoelectric material spacer, the piezoelectric material spacer The two substrate side surfaces are in contact with the second signal line, the projection of the first signal line on the second substrate side surface of the piezoelectric material spacer intersects with the second signal line, and the first signal line and the second signal line are mutually And insulating the first substrate and the second substrate, the first substrate is one of a color film substrate and an array substrate, and the second substrate is the other of the color film substrate and the array substrate.
  • FIG. 1 is a flow chart showing a method for preparing a touch layer on a color filter substrate according to an embodiment of the present invention
  • 2-1 is a cross-sectional structural view showing a color filter substrate of a thin film transistor liquid crystal display according to an embodiment of the present invention
  • FIG. 2-2 is a schematic view showing the planar structure of a color filter substrate of a thin film transistor liquid crystal display according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a color filter substrate after depositing an insulating layer according to an embodiment of the present invention
  • FIG. 4-1 is a cross-sectional structural view showing a color filter substrate after forming a first conductive signal line according to an embodiment of the present invention
  • FIG. 4-2 shows the flatness of the color filter substrate after forming the first conductive signal line according to the embodiment of the present invention.
  • FIG. 5-1 is a cross-sectional structural view showing a color filter substrate formed by forming a columnar spacer of a piezoelectric material according to an embodiment of the present invention
  • 5-2 is a schematic plan view showing a planar structure of a color filter substrate formed by forming a columnar spacer of a piezoelectric material according to an embodiment of the present invention
  • 6-1 is a schematic structural view of a color filter substrate after depositing an insulating layer according to an embodiment of the present invention
  • 6-2 is a schematic structural view of a color filter substrate after performing photolithography treatment on an insulating layer according to an embodiment of the present invention
  • 7-1 is a cross-sectional structural view showing a color filter substrate after forming a second conductive signal line according to an embodiment of the present invention
  • FIG. 7-2 is a schematic view showing the planar structure of a color filter substrate after forming a second conductive signal line according to an embodiment of the present invention
  • FIG. 8 is a schematic structural view of a color filter substrate after depositing an insulating layer and a common electrode layer according to an embodiment of the present invention
  • FIG. 9 is a schematic view showing the structure of a color filter substrate after depositing a liquid crystal molecule alignment layer according to an embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of a color filter substrate and an array substrate after the cartridge is provided in the embodiment of the present invention
  • FIG. 11 is a flow chart showing a method for preparing a touch layer on an array substrate according to an embodiment of the present invention.
  • 12-1 is a cross-sectional structural view showing an array substrate of a thin film transistor liquid crystal display according to an embodiment of the present invention
  • 12-2 is a schematic view showing the planar structure of an array substrate of a thin film transistor liquid crystal display according to an embodiment of the present invention
  • FIG. 13 is a schematic structural view of an array substrate after depositing an insulating layer according to an embodiment of the present invention
  • FIG. 14-1 is a cross-sectional structural view showing an array substrate after forming a first conductive signal line according to an embodiment of the present invention
  • FIG. 14-2 is a schematic diagram showing the planar structure of an array substrate after forming a first conductive signal line according to an embodiment of the present invention
  • FIG. 15-1 is a cross-sectional structural view showing an array substrate after forming a bump of a piezoelectric material column spacer according to an embodiment of the present invention
  • Figure 15-2 is a plan view showing the planar structure of the array substrate after forming the pillars of the piezoelectric material column spacer according to the embodiment of the present invention
  • 16-1 is a schematic structural view of an array substrate after depositing an insulating layer according to an embodiment of the present invention
  • 16-2 is a schematic structural view of an array substrate after performing photolithography processing on an insulating layer according to an embodiment of the present invention
  • 17-1 is a cross-sectional structural view showing an array substrate after forming a second conductive signal line according to an embodiment of the present invention
  • 17-2 is a schematic diagram showing a planar structure of an array substrate after forming a second conductive signal line according to an embodiment of the present invention
  • Figure 18 is a view showing the structure of an array substrate after depositing a liquid crystal molecule alignment layer according to an embodiment of the present invention
  • Fig. 19 is a view showing the structure of the array substrate and the color filter substrate after the cartridge is provided in the embodiment of the present invention. detailed description
  • the embodiment of the present invention provides a liquid crystal panel, wherein a piezoelectric material spacer is disposed between the color film substrate and the array substrate. Pad and two signal lines.
  • a signal line is disposed between the color film substrate and the piezoelectric material spacer of the liquid crystal panel, and another signal line is disposed between the piezoelectric material spacer and the array substrate, and the two signal lines are respectively pressed
  • the color film substrate side surface of the electrical material spacer is in contact with the array substrate side surface
  • the signal line of the color film substrate side is projected on the array substrate side surface of the piezoelectric material spacer and the signal line on the array substrate side
  • two The signal lines are insulated from each other.
  • the color filter substrate may include a glass substrate and a black matrix, color pixels, and the like formed on the glass substrate
  • the array substrate may include another glass substrate and gate signal lines and data formed on the glass substrate. Signal lines, etc.
  • An embodiment of the present invention further provides a liquid crystal display, wherein the liquid crystal panel is disposed on the body of the liquid crystal display, and a detecting circuit connected to the two signal lines for detecting the presence or absence of an electrical signal on the two signal lines .
  • the liquid crystal display is a thin film transistor liquid crystal display, but the embodiment of the invention is not limited thereto.
  • a liquid crystal panel and a liquid crystal display provided by an embodiment of the present invention will be exemplified by taking a thin film transistor liquid crystal display as an example.
  • the thin film transistor liquid crystal display controls the orientation of the liquid crystal in the liquid crystal cell by applying a voltage to the electrodes on the array substrate and the color filter substrate, and controls the optical cell through the liquid crystal by optical characteristics such as optical anisotropy and birefringence. Luminous flux to obtain the desired image.
  • the thickness of the liquid crystal cell formed by the array substrate and the color filter substrate directly affects the luminous flux passing through the liquid crystal cell. Therefore, controlling the thickness of the liquid crystal cell is extremely important for improving the uniformity of the display of the liquid crystal display and optimizing the display performance.
  • a spacer of a certain thickness between the array substrate and the color filter substrate There are various types of spacers, one of which is to form a pillar spacer (PS) on a color filter substrate by a photolithography process, and the pillar spacer is used to control the thickness of the liquid crystal cell.
  • PS pillar spacer
  • spacers of other shapes such as spherical spacers
  • a column spacer is taken as an example for description. Since the position, height, topography, and the like of the column spacer can be precisely controlled by a photolithography process, the liquid crystal display using the column spacer has a great display performance compared to the liquid crystal display using other shape spacers. Improvement.
  • Some materials with asymmetric lattice structure will change (ie, strain) the shape of the material under external force (pressure or tension); the change of shape will make the internal electron distribution of the material be locally uneven, and then on the outer surface of the material. A net electric field distribution is produced.
  • a voltage signal is applied to a material, the material deforms under the action of a voltage, and the deformation changes as the applied voltage changes. This effect is called the piezoelectric effect, and the material having the piezoelectric effect is called a piezoelectric material.
  • piezoelectric materials The conversion between electrical energy and mechanical energy.
  • a piezoelectric spacer is used to form a column spacer, which directly uses an electrical signal generated by an external pressure based on a piezoelectric effect, in addition to supporting the thickness of the liquid crystal cell, and is matched with the cross.
  • the signal line is used to determine the touch position, thereby realizing the integration of the function of the touch and the display panel; on the other hand, when not in use, a certain voltage can be applied to the columnar spacer of the piezoelectric material to restore the original height.
  • the thickness of the liquid crystal cell is maintained by control.
  • embodiments of the present invention provide a liquid crystal panel and a liquid crystal display capable of realizing a functional integrated touch panel capable of providing energy while maintaining the thickness of the liquid crystal cell, and having high transmittance and simple structure. , low cost of preparation, high precision and long life.
  • FIG. 1 is a flow chart showing a method for preparing a touch layer on a color film substrate according to an embodiment of the present invention. As shown in FIG. 1, the method includes, for example, steps 101 to 109.
  • Step 101 preparing a color film substrate.
  • a black matrix 1, a red pixel 2, a green pixel 3, and a blue pixel 4 are formed on the glass substrate 0a, as shown in Figs. 2-1 and 2-2.
  • Step 102 depositing an insulating layer 5a on the color filter substrate of step 101, as shown in FIG. If the black matrix 1 and the color pixel layer are non-conductive materials, step 102 can be omitted.
  • Step 103 depositing a first conductive layer 6 on the color film substrate through step 101 or step 102, and forming a first signal line by a patterning process.
  • the first conductive layer 6 may be a metal layer or a transparent conductive layer (ITO), or may be formed of other conductive materials; the patterning process may include, for example, a photolithography process, a network printing method, etc., as shown in the figure. Figure 4-1 and Figure 4-2.
  • Step 104 depositing a piezoelectric material layer 8 on the color filter substrate of step 103 to form a column spacer bump under the first signal line by a patterning process.
  • the patterning process may include, for example, a photolithography process, a network printing process, etc.; the column spacer protrusions are piezoelectric material spacers, as shown in Figures 5-1 and 5-2.
  • the piezoelectric material may be a piezoelectric crystal, a piezoelectric ceramic, a piezoelectric polymer or a piezoelectric ceramic/polymer composite.
  • the piezoelectric material may be
  • piezoelectric polymers or piezoelectric ceramic/polymer composites for example, polyvinylidene fluoride, because such piezoelectric materials are soft, have good molding properties, and are resistant to impact, which can meet the requirements for protrusions as column spacers;
  • the piezoelectric voltage constant of such materials is high, and the prepared touch screen has high sensitivity.
  • the piezoelectric material column spacer protrusion may be placed above the silicon island of the array substrate, the data signal line, the gate signal line, and the like, and is located under the black matrix 1 of the color filter substrate to avoid the occurrence of the column spacer. Difficulties such as light leakage caused by abnormal deflection of surrounding liquid crystal molecules.
  • the support height of the columnar spacer bumps is equal to the desired cell thickness.
  • the piezoelectric material column spacer is placed over the overlapping region of the data signal line and the gate signal line as an example, but the embodiment of the present invention is not limited thereto.
  • each pixel region includes: a red (R) pixel 2, a green (G) pixel 3 and a blue (B) pixel 4, and three black matrices 1 between the RGB sub-pixels.
  • the sub-pixels may further include other pixels, such as yellow pixels or the like, or may have only one black matrix 1.
  • the electrically conductive column spacer is raised, for example, a piezoelectric spacer spacer is placed under a black matrix of a plurality of pixel regions.
  • a piezoelectric material column spacer protrusion is disposed for each pixel region as an example, but the embodiment of the present invention is not limited thereto.
  • Step 105 depositing an insulating layer 5b on the color filter substrate of step 104, as shown in FIG. 6-1; and forming a via hole by a photolithography process to expose the lower surface of the bump of the piezoelectric material column spacer, such as Figure 6-2 shows.
  • the insulating layer 5b is deposited in this step to further ensure mutual insulation between the first signal line and the second signal line. If the first signal line and the second signal line are straight lines, the two conductive signal lines do not intersect on the same plane, but only the projection of the first signal line on the lower surface of the piezoelectric material columnar protrusion and the second When the signal lines intersect (or the projection of the second signal line on the upper surface of the convex portion of the piezoelectric material column spacer intersects with the first signal line), it is not necessary to deposit the insulating layer 5b in this step, and directly form the second signal line. , but the process is complicated to implement.
  • step 104 and step 105 may be reversed.
  • the insulating layer 5b is first deposited on the substrate through step 103, and the first signal line is located through the photolithography process.
  • a via hole is formed in the domain, and a piezoelectric material layer 8 is deposited on the substrate, and a piezoelectric material spacer bump is formed at a position of the via hole by a patterning process.
  • Step 106 depositing a second conductive layer 7 on the color filter substrate passing through step 105, and forming a second signal line by a patterning process.
  • the second conductive layer 7 may be a metal layer or a transparent conductive layer (ITO), or may be formed of other conductive materials; the patterning process may include, for example, a photolithography process, a network printing method, or the like.
  • ITO transparent conductive layer
  • the second signal line is disposed on a lower surface of the protrusion of the piezoelectric material column spacer, and is discharged in a vertical crossing manner with the first signal line in a lattice shape; the first signal line and the first signal line
  • the two signal lines can be located at any position of the pixel area; in order not to affect the normal display area and the aperture ratio, the first signal line and the second signal line can be placed above the gate signal line and the data signal line to facilitate the piezoelectric
  • the material column spacer is placed above the overlapping area of the data signal line and the gate signal line, that is, the first signal line is above the gate signal line, and the second signal line is above the data signal line, as shown in FIG. 7-1. And Figure 7-2; or, the first signal line is above the data signal line, and the second signal line is above the gate signal line.
  • Step 107 depositing an insulating layer 5c and a common electrode 9 of the color filter substrate on the color filter substrate of step 106.
  • the common electrode may or may not be present, as shown in Figure 8, depending on the display mode employed.
  • Step 108 applying a liquid crystal molecular alignment layer 10a on the color filter substrate subjected to step 107, as shown in FIG.
  • Step 109 The color film substrate passing through step 108 is aligned with the array substrate.
  • the array substrate may include a glass substrate Ob, a gate electrode signal line metal layer 11, a gate insulating layer 12, a passivation layer 14, and a liquid crystal molecule alignment layer 10b, as shown in FIG.
  • a piezoelectric spacer is used to prepare a column spacer bump to realize a functional integrated display substrate having a high transmittance and a self-providing touch panel, which utilizes
  • the piezoelectric effect of the protrusion of the piezoelectric spacer spacer can control the thickness of the liquid crystal cell.
  • Step 201 preparing an array substrate.
  • a gate signal line metal layer 11, a gate insulating layer 12, a data signal line metal layer 13, a passivation layer 14, a silicon island 15, a pixel electrode layer 16, and the like are formed on the glass substrate Ob.
  • the array substrate may include a glass substrate 0b, a gate signal line metal layer 11, a gate insulating layer 12, a data signal line metal layer 13, a passivation layer 14, a silicon island 15 and a pixel electrode layer 16, and the like.
  • embodiments of the present invention are not limited thereto, and the corresponding film layers may be increased or decreased according to actual needs, as shown in Figures 12-1 and 12-2.
  • Step 202 depositing an insulating layer 5d on the prepared array substrate.
  • the insulating layer 5d is deposited in order to prevent the layers having the conductive characteristics on the array substrate from coming into contact with the conductive layers of the subsequently formed signal lines, as shown in FIG.
  • Step 203 depositing a first conductive layer 6 on the array substrate passing through step 202 and forming a first conductive signal line by a patterning process.
  • the first conductive layer 6 may be a metal layer or a transparent conductive layer (ITO), or may be formed of other conductive materials; the patterning process may include, for example, a photolithography process, a network printing method, etc., as shown in the figure. 14-1 and Figure 14-2.
  • ITO transparent conductive layer
  • Step 204 depositing a piezoelectric material layer 8 on the array substrate passing through step 203, forming a column spacer bump above the first conductive signal line by a patterning process, as shown in FIG. 15-1 and FIG. 15-2.
  • the piezoelectric material may be a piezoelectric crystal, a piezoelectric ceramic, a piezoelectric polymer or a piezoelectric ceramic/polymer composite.
  • the piezoelectric material may be, for example, a piezoelectric polymer or a piezoelectric ceramic/polymer composite, such as polyvinylidene fluoride (because such piezoelectric materials are soft, have good forming properties, and are resistant to impact). It can meet the requirements of the protrusion as a column spacer; in addition, the piezoelectric voltage constant of such materials is high, and the prepared touch screen has high sensitivity).
  • the piezoelectric material column spacer protrusion may be placed on the silicon island of the array substrate, the data signal line, the gate signal line, etc., and is located under the black matrix of the color filter substrate to avoid the occurrence of the protrusion due to the protrusion of the column spacer. Bad phenomenon such as light leakage caused by abnormal deflection of liquid crystal molecules.
  • the support height of the columnar spacer bumps is equal to the desired thickness of the liquid crystal cell.
  • the piezoelectric material column spacer is placed over the overlapping region of the data signal line and the gate signal line as an example, but the embodiment of the present invention is not limited thereto.
  • a piezoelectric material column spacer protrusion is disposed for each pixel region as an example, but the embodiment of the present invention is not limited thereto.
  • one piezoelectric material column spacer protrusion may be distributed in a plurality of pixel regions.
  • Step 205 depositing an insulating layer 5e on the array substrate passing through step 204, and forming a via hole by a patterning process (for example, a photolithography process) to expose the upper surface of the protruding portion of the piezoelectric material column spacer, as shown in FIG. 1 and Figure 16-2.
  • a patterning process for example, a photolithography process
  • step 204 and step 205 in this embodiment may be reversed, as long as the upper surface and the lower surface of the protruding portion of the piezoelectric material column spacer are respectively ensured with the second conductive signal line and the first conductive signal line, respectively.
  • step 206 is performed, a second conductive layer 7 is deposited on the array substrate through step 205, and a second conductive signal line is formed by a patterning process.
  • the second conductive layer 7 may be a metal layer or a transparent conductive layer (ITO), or may be formed of other conductive materials.
  • the second conductive signal line is disposed on the upper surface of the protrusion of the piezoelectric material column spacer, and is discharged in a vertical crossing manner with the first conductive signal line in a lattice shape; the first conductive signal line And the second conductive signal line may be located at any position of the pixel area; in order not to affect the normal display area and the aperture ratio, the first signal line and the second signal line may be placed above the gate signal line and the data signal line, to facilitate
  • the piezoelectric material column spacer is placed above the overlapping area of the data signal line and the gate signal line; that is, the first conductive signal line is located above the gate signal line, and the second conductive signal line is located above the data signal line. As shown in FIG. 17-1 and FIG. 17-2; or, the first conductive signal line is located above the data signal line, and the second conductive signal line is located above the gate signal line.
  • Step 207 applying a liquid crystal molecular alignment layer 10b on the array substrate subjected to step 206, as shown in FIG.
  • Step 208 the array substrate passing through step 207 is aligned with the color filter substrate.
  • the color filter substrate may include: a black matrix formed on the glass substrate 0a 1. RGB sub-pixel, common electrode 9 and liquid crystal molecule alignment layer 10a, as shown in FIG.
  • the column spacer when there is no operation (no touch condition), since the original height supported by the protrusion of the piezoelectric material column spacer is the thickness of the liquid crystal cell, the column spacer The protrusion is undeformed, and no electrical signal is generated; when the finger or the stylus touches the screen, a downward pressure is applied to the liquid crystal cell, and the piezoelectric material column spacer protrusion is deformed by the pressure perpendicular to the screen direction.
  • a display substrate capable of stabilizing the thickness of the liquid crystal cell and realizing the self-providing touch panel which has high transmittance, simple structure, low preparation cost, high precision, long life, and the like. advantage.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶面板、液晶显示器及其制造方法,所述液晶面板包括:彩膜基板;阵列基板;设置在所述彩膜基板与所述阵列基板之间的压电材料隔垫物;在所述彩膜基板和隔垫物之间设置的一条信号线;以及在所述压电材料隔垫物与所述阵列基板之间设置的另一信号线,其中,两条信号线分别与所述压电材料隔垫物的彩膜基板侧表面和阵列基板侧表面接触,所述彩膜基板侧的信号线在所述压电材料隔垫物的阵列基板侧表面的投影与所述阵列基板侧的信号线相交,两条信号线相互绝缘,从而在维持液晶盒厚度的同时,实现可自行提供能源的功能一体化的触摸式面板,并具有透过率高、结构简单、制备成本低、精度高和寿命长等优点。

Description

液晶面板、 液晶显示器及其制造方法 技术领域
本发明的实施例涉及一种液晶面板、 液晶显示器及其制造方法。 背景技术
薄膜晶体管液晶显示器是以薄膜晶体管为控制元件并且以液晶为介质的 集大规模半导体集成电路和平板光源技术于一体的光电子产品。 薄膜晶体管 液晶显示器因其具有低功耗、 方便携带、 使用范围广、 高品质等优点而成为 新一代的主流显示器。
在显示装置中, 为了让使用者在观看画面的同时能够进行相关操作而釆 用触摸式面板。 触摸显示屏是将输入与输出终端一体化的重要载体之一。 在 触摸显示屏中, 通过测量触摸点在显示屏上的坐标位置, 可根据显示屏上对 应坐标点的显示内容或图形得知触摸者的意图, 从而进行相关操作。 目前, 主要利用电阻式、 电容式、 红外线式、 表面声波式等技术来实现对触摸点位 置的确认。 通常将使用这些技术方案的触摸屏独立制备出来, 再贴合到显示 屏上, 以实现对显示屏的触控作用。 这种将触控屏与显示屏分开制备所形成 的触控显示屏一般成本较高, 并且其厚度和重量较大, 不利于显示屏轻薄化 的要求; 由于贴合过程中的重叠偏离量较大, 因此触控位置不能精确定位; 在显示屏的表面贴合触控屏会降低显示器的光透过率, 在相同显示亮度的条 件下需要更高功率的背光源。
由于现有技术的触摸显示屏中, 触控屏与显示屏是分别制备出来, 再经 过贴合方式组装在一起, 因此现有技术的触摸显示屏存在如下问题: 触摸与 显示面板的功能非一体化。 发明内容
在本发明的一个实施例中, 提供一种液晶面板, 其包括: 彩膜基板; 阵 列基板; 设置在所述彩膜基板与所述阵列基板之间的压电材料隔垫物; 在所 述彩膜基板和所述压电材料隔垫物之间设置的一条信号线; 以及在所述压电 材料隔垫物与所述阵列基板之间设置的另一信号线, 其中, 两条信号线分别 与所述压电材料隔垫物的彩膜基板侧表面和阵列基板侧表面接触, 所述彩膜 基板侧的信号线在所述压电材料隔垫物的阵列基板侧表面的投影与所述阵列 基板侧的信号线相交, 两条信号线相互绝缘。
在本发明的另一个实施例中, 提供一种液晶显示器, 在所述液晶显示器 的本体上设置有上述液晶面板以及检测电路, 所述检测电路与两条信号线相 连接, 用于检测两条信号线上有无电信号产生。
在本发明的另一个实施例中, 提供一种液晶面板的制造方法, 其包括: 在第一基板上形成第一信号线; 在第一信号线上形成压电材料隔垫物, 所述 压电材料隔垫物的第一基板侧表面与第一信号线接触; 在所述压电材料隔垫 物的第二基板侧表面上形成第二信号线, 所述压电材料隔垫物的第二基板侧 表面与第二信号线接触, 第一信号线在所述压电材料隔垫物的第二基板侧表 面的投影与第二信号线相交, 并且第一信号线和第二信号线相互绝缘; 以及 将第一基板和第二基板对盒, 第一基板为彩膜基板和阵列基板中的一个, 第 二基板为彩膜基板和阵列基板中的另一个。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1 表示本发明实施例提供的在彩膜基板上制备触控层的方法的流程 图;
图 2-1表示本发明实施例提供的薄膜晶体管液晶显示器的彩膜基板的截 面结构示意图;
图 2-2表示本发明实施例提供的薄膜晶体管液晶显示器的彩膜基板的平 面结构示意图;
图 3表示本发明实施例提供的沉积绝缘层后的彩膜基板的结构示意图; 图 4-1表示本发明实施例提供的形成第一导电信号线后的彩膜基板的截 面结构示意图;
图 4-2表示本发明实施例提供的形成第一导电信号线后的彩膜基板的平 面结构示意图;
图 5-1表示本发明实施例提供的形成压电材料柱状隔垫物凸起后的彩膜 基板的截面结构示意图;
图 5-2表示本发明实施例提供的形成压电材料柱状隔垫物凸起后的彩膜 基板的平面结构示意图;
图 6-1 表示本发明实施例提供的沉积绝缘层后的彩膜基板的结构示意 图;
图 6-2表示本发明实施例提供的对绝缘层进行光刻处理后的彩膜基板的 结构示意图;
图 7-1表示本发明实施例提供的形成第二导电信号线后的彩膜基板的截 面结构示意图;
图 7-2表示本发明实施例提供的形成第二导电信号线后的彩膜基板的平 面结构示意图;
图 8表示本发明实施例提供的沉积绝缘层和公共电极层后的彩膜基板的 结构示意图;
图 9表示本发明实施例提供的沉积液晶分子取向层后的彩膜基板的结构 示意图;
图 10表示本发明实施例提供的彩膜基板与阵列基板对盒后的结构示意 图;
图 11 表示本发明实施例提供的在阵列基板上制备触控层的方法的流程 图;
图 12-1 表示本发明实施例提供的薄膜晶体管液晶显示器的阵列基板的 截面结构示意图;
图 12-2表示本发明实施例提供的薄膜晶体管液晶显示器的阵列基板的 平面结构示意图;
图 13表示本发明实施例提供的沉积绝缘层后的阵列基板的结构示意图; 图 14-1 表示本发明实施例提供的形成第一导电信号线后的阵列基板的 截面结构示意图;
图 14-2表示本发明实施例提供的形成第一导电信号线后的阵列基板的 平面结构示意图; 图 15-1 表示本发明实施例提供的形成压电材料柱状隔垫物凸起后的阵 列基板的截面结构示意图;
图 15-2表示本发明实施例提供的形成压电材料柱状隔垫物凸起后的阵 列基板的平面结构示意图;
图 16-1 表示本发明实施例提供的沉积绝缘层后的阵列基板的结构示意 图;
图 16-2表示本发明实施例提供的对绝缘层进行光刻处理后的阵列基板 的结构示意图;
图 17-1 表示本发明实施例提供的形成第二导电信号线后的阵列基板的 截面结构示意图;
图 17-2表示本发明实施例提供的形成第二导电信号线后的阵列基板的 平面结构示意图;
图 18表示本发明实施例提供的沉积液晶分子取向层后的阵列基板的结 构示意图;
图 19表示本发明实施例提供的阵列基板与彩膜基板对盒后的结构示意 图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
为了解决现有技术的触摸显示屏的触摸与显示面板的功能非一体化的问 题, 本发明的实施例提供一种液晶面板, 其中, 在彩膜基板和阵列基板之间 设置有压电材料隔垫物以及两条信号线。 例如, 在液晶面板的彩膜基板和压 电材料隔垫物之间设置有一条信号线, 在压电材料隔垫物与阵列基板之间设 置有另一信号线, 两条信号线分别与压电材料隔垫物的彩膜基板侧表面和阵 列基板侧表面接触, 彩膜基板侧的信号线在压电材料隔垫物的阵列基板侧表 面的投影与阵列基板侧的信号线相交, 并且两条信号线相互绝缘。 在本发明 的实施例中, 彩膜基板可以包括一玻璃基板以及在该玻璃基板上形成的黑矩 阵、 彩色像素等, 阵列基板可以包括另一玻璃基板以及在该玻璃基板上形成 的栅极信号线和数据信号线等。
本发明的实施例还提供一种液晶显示器, 在该液晶显示器的本体上设置 有前述液晶面板, 以及与两条信号线相连接的用于检测两条信号线上有无电 信号产生的检测电路。 在本发明的实施例中, 例如, 液晶显示器为薄膜晶体 管液晶显示器, 但是本发明的实施例不限于此。 下面, 以薄膜晶体管液晶显 示器为例, 对本发明的实施例提供的液晶面板以及液晶显示器进行示例性说 明。
下面对本发明的实施例提供的液晶面板以及液晶显示器的原理进行详细 说明。
薄膜晶体管液晶显示器通过对阵列基板和彩膜基板上的电极施加电压形 成电场来控制液晶盒中液晶的取向, 并且利用液晶分子的光学各向异性、 双 折射性等光学特性控制穿过液晶盒的光通量, 从而获得所需图像。 由阵列基 板和彩膜基板所形成的液晶盒的厚度直接影响穿过液晶盒的光通量, 因此控 制维持液晶盒的厚度对提高液晶显示器显示的均勾性以及优化显示性能有着 极为重要的作用。
为了控制维持液晶显示器的液晶盒厚度的一致性, 主要釆用在阵列基板 和彩膜基板之间加入一定厚度的隔垫物来实现。 隔垫物的工艺类型有多种, 其中一种是利用光刻工艺在彩膜基板上形成柱状隔垫物(Post spacer, PS ) , 利用该柱状隔垫物凸起来控制维持液晶盒的厚度。 当然, 利用光刻工艺在彩 膜基板上形成其它形状的隔垫物如球状隔垫物也是可以的, 本实施例中以柱 状隔垫物为例进行说明。 由于柱状隔垫物的位置、 高度、 形貌等可通过光刻 工艺来精确控制, 因而使用柱状隔垫物的液晶显示器相比于使用其它形状隔 垫物的液晶显示器在显示性能上有极大的提高。
一些具有不对称性晶格结构的材料在外界作用力 (压力或拉力)下, 材 料外形会产生变化(即应变) ; 外形的变化使材料内部电子分布呈局部不均 匀, 进而在材料的外表面产生一净电场分布。反之,对材料施加电压信号时, 在电压作用下材料产生形变, 并且形变随外加电压的变化而变化。 这种效应 称为压电效应, 具有压电效应的材料称为压电材料。 利用压电材料可以实现 电能与机械能之间的转化。
在本发明的实施例中, 利用压电材料来形成柱状隔垫物, 其除了起支持 液晶盒厚度的作用外, 直接利用基于压电效应在外界压力作用下所产生的电 信号, 并配合交叉的信号线来确定触控位置, 从而实现触摸与显示面板的功 能一体化; 另一方面, 在不使用时, 还可对压电材料的柱状隔垫物施加一定 电压, 使其恢复原始高度, 以控制维持液晶盒的厚度。
因此, 本发明的实施例提供了一种液晶面板以及液晶显示器, 其能够在 维持液晶盒厚度的同时, 实现可自行提供能源的功能一体化的触摸式面板, 并且具有透过率高、 结构简单、 制备成本低、 精度高和寿命长等优点。
下面结合图 1至图 19详细描述本发明的实施例提供的液晶面板的制造方 法。
首先,结合图 1至图 10详细说明在彩膜基板上制备触控层的方法的实施 例。图 1表示本发明实施例提供的在彩膜基板上制备触控层的方法的流程图。 如图 1所示, 该方法包括例如步骤 101至步骤 109。
步骤 101 , 制备彩膜基板。
在玻璃基板 0a上形成黑矩阵 1、 红色像素 2、 绿色像素 3和蓝色像素 4, 如图 2-1和图 2-2所示。
步骤 102, 在经过步骤 101的彩膜基板上沉积绝缘层 5a, 如图 3所示。 若黑矩阵 1以及彩色像素层为非导电材料, 则步骤 102可省略。
步骤 103 , 在经过步骤 101或步骤 102的彩膜基板上沉积第一导电层 6, 并通过构图工艺形成第一信号线。
在本发明的实施例中,第一导电层 6可以为金属层或透明导电层( ITO ) , 或者也可以由其它导电材料形成; 构图工艺可以包括例如光刻工艺、 网络印 刷法等, 如图 4-1和图 4-2所示。
步骤 104,在经过步骤 103的彩膜基板上沉积压电材料层 8,通过构图工 艺在第一信号线下方形成柱状隔垫物凸起。
在本发明的实施例中,构图工艺可以包括例如光刻工艺、 网络印刷法等; 柱状隔垫物凸起即为压电材料隔垫物, 如图 5-1和图 5-2所示。
在本发明的实施例中, 压电材料可以为压电晶体、 压电陶瓷、 压电聚合 物或压电陶瓷 /聚合物复合材料。在本发明的一些实施例中, 压电材料可以为 例如压电聚合物或压电陶瓷 /聚合物复合材料, 例如, 聚偏氟乙烯, 因为这类 压电材料柔软, 成型性能良好, 耐冲击, 可以满足作为柱状隔垫物凸起的要 求; 另外, 此类材料的压电电压常数高, 所制备出的触摸屏灵敏度高。
压电材料柱状隔垫物凸起可放置在阵列基板的硅岛、 数据信号线、 栅极 信号线等位置上方, 并且位于彩膜基板的黑矩阵 1下方, 以避免出现由于柱 状隔垫物凸起的周边液晶分子偏转不正常所造成的漏光等不良现象。 柱状隔 垫物凸起的支撑高度等于所需的液晶盒厚。 本实施例中, 以压电材料柱状隔 垫物凸起放置在数据信号线与栅极信号线的交叠区域上方为例进行说明, 但 是本发明的实施例不限于此。
由于液晶显示屏的像素尺寸远小于手指或触控笔的接触面积, 因此在进 行触控操作时可以对多个像素区域产生压力。 本实施例中, 每个像素区域包 括: 一个红色(R )像素 2、 一个绿色(G )像素 3和一个蓝色(B )像素 4, 以及 RGB子像素之间的三个黑矩阵 1。 当然, 在本发明的实施例中, 子像素 还可以包括其它像素, 例如黄色像素等, 或者可以只有一个黑矩阵 1。 因此, 不一定在每个像素区域都分布有压电材料柱状隔垫物凸起, 只需要确保在触 控操作时, 手指或触控笔能够产生压力的面积范围内分布有起感应作用的压 电材料柱状隔垫物凸起, 例如, 在多个像素区域的一个黑矩阵下方放置压电 材料隔垫物凸起。 本实施例中, 以每个像素区域都分布有 1个压电材料柱状 隔垫物凸起为例进行说明, 但是本发明的实施例不限于此。
步骤 105, 在经过步骤 104的彩膜基板上沉积绝缘层 5b, 如图 6-1所示; 并通过光刻工艺形成过孔, 使压电材料柱状隔垫物凸起的下表面露出, 如图 6-2所示。
在本步骤中沉积绝缘层 5b,是为了进一步确保第一信号线与第二信号线 之间相互绝缘。 若第一信号线与第二信号线是直线, 则两条导电信号线在同 一平面上并不相交, 只是第一信号线在压电材料柱状隔垫物凸起的下表面的 投影与第二信号线相交(或第二信号线在压电材料柱状隔垫物凸起的上表面 的投影与第一信号线相交), 则不需要在本步骤中沉积绝缘层 5b, 直接形成 第二信号线, 但工艺上实现复杂。
在本发明的实施例中, 步骤 104与步骤 105的顺序可以对调, 例如, 先 在经过步骤 103的基板上沉积绝缘层 5b,通过光刻工艺在第一信号线所在区 域形成过孔, 再在基板上沉积压电材料层 8, 通过构图工艺在过孔的位置形 成压电材料隔垫物凸起。 在本发明的实施例中, 只要保证压电材料柱状隔垫 物凸起的上表面和下表面分别与第一信号线和第二信号线接触, 并且第一信 号线与第二信号线之间相互绝缘。
步骤 106,在经过步骤 105的彩膜基板上沉积第二导电层 7 ,并通过构图 工艺形成第二信号线。
在本发明的实施例中,第二导电层 7可以为金属层或透明导电层( ITO ) , 或者也可以由其它导电材料形成; 构图工艺可以包括例如光刻工艺、 网络印 刷法等。
在本发明的实施例中, 第二信号线设置于压电材料柱状隔垫物凸起的下 表面上, 并且以与第一信号线呈格子状的垂直交叉方式排放; 第一信号线与 第二信号线可位于像素区域的任何位置; 为了不影响正常的显示区域与开口 率, 可以将第一信号线与第二信号线放置于栅极信号线与数据信号线上方, 以方便将压电材料柱状隔垫物凸起放置在数据信号线与栅极信号线的交叠区 域上方, 即第一信号线位于栅极信号线上方, 第二信号线位于数据信号线上 方, 如图 7-1和图 7-2所示; 或者, 第一信号线位于数据信号线上方, 第二 信号线位于栅极信号线上方。
步骤 107,在经过步骤 106的彩膜基板上沉积绝缘层 5c和彩膜基板的公 共电极 9。
在本发明的实施例中, 根据所釆用的显示模示, 公共电极可有可无, 如 图 8所示。
步骤 108,在经过步骤 107的彩膜基板上涂上液晶分子取向层 10a,如图 9所示。
步骤 109, 将经过步骤 108的彩膜基板与阵列基板对盒。
在本发明的实施例中, 阵列基板可以包括玻璃基板 Ob、栅电极信号线金 属层 11、栅极绝缘层 12、钝化层 14和液晶分子取向层 10b等,如图 10所示。
在本发明的实施例中, 利用压电效应, 釆用压电材料制备柱状隔垫物凸 起来实现具有高透过率、 可自行提供能源的触摸式面板的功能一体化的显示 器基板, 其利用压电材料柱状隔垫物凸起的压电效应, 可以控制稳定液晶盒 的厚度。 下面, 结合图 11至图 19详细说明在阵列基板上制备触控层的方法的实 施例。 如图 11所示, 该方法可以包括例如以下步骤 201至步骤 208。
步骤 201 , 制备阵列基板。
在玻璃基板 Ob上形成栅极信号线金属层 11、 栅极绝缘层 12、 数据信号 线金属层 13、 钝化层 14、 硅岛 15和像素电极层 16等。 在本实施例中, 阵列 基板可以包括玻璃基板 0b、 栅极信号线金属层 11、 栅极绝缘层 12、 数据信 号线金属层 13、钝化层 14、硅岛 15和像素电极层 16等,但是本发明的实施 例不限于此, 才艮据实际需求可增加或减少相应的膜层, 如图 12-1 和图 12-2 所示。
步骤 202, 在制备好的阵列基板上沉积绝缘层 5d。
在本发明的实施例中,沉积绝缘层 5d是为了防止阵列基板上的具有导电 特性的各层与后续形成的信号线的导电层相接触, 如图 13所示。
步骤 203 ,在经过步骤 202的阵列基板上沉积第一导电层 6,并通过构图 工艺形成第一导电信号线。
在本发明的实施例中,第一导电层 6可以为金属层或透明导电层( ITO ) , 或者也可以由其它导电材料形成; 构图工艺可以包括例如光刻工艺、 网络印 刷法等, 如图 14-1和图 14-2所示。
步骤 204,在经过步骤 203的阵列基板上沉积压电材料层 8,通过构图工 艺在第一导电信号线上方形成柱状隔垫物凸起, 如图 15-1和图 15-2所示。
在本发明的实施例中, 压电材料可以为压电晶体、 压电陶瓷、 压电聚合 物或压电陶瓷 /聚合物复合材料。在本发明的一些实施例中, 压电材料可以为 例如压电聚合物或压电陶瓷 /聚合物复合材料, 例如, 聚偏氟乙烯(因为这类 压电材料柔软, 成型性能良好, 耐冲击, 可以满足作为柱状隔垫物凸起的要 求; 另外, 此类材料的压电电压常数高, 所制备出的触摸屏灵敏度高) 。
压电材料柱状隔垫物凸起可放置在阵列基板的硅岛、 数据信号线、 栅极 信号线等上方, 并且位于彩膜基板黑矩阵下方, 以避免出现由于柱状隔垫物 凸起的周边液晶分子偏转不正常所造成的漏光等不良现象。 柱状隔垫物凸起 的支撑高度等于所需的液晶盒厚。 本实施例中, 以压电材料柱状隔垫物凸起 放置在数据信号线与栅极信号线的交叠区域上方为例进行说明, 但是本发明 的实施例不限于此。 由于液晶显示屏的像素尺寸远小于手指或触控笔的接触面积, 在进行触 控操作时可以对多个像素区域产生压力, 因此不一定在每个像素区域都分布 有压电材料柱状隔垫物凸起, 只需要确保在触控操作时, 手指或触控笔能够 产生压力的面积范围内分布有起感应作用的压电材料柱状隔垫物凸起。 本实 施例中, 以每个像素区域都分布有 1个压电材料柱状隔垫物凸起为例进行说 明, 但是本发明的实施例不限于此。 例如, 与前述实施例类似, 也可以多个 像素区域分布有 1个压电材料柱状隔垫物凸起。
步骤 205, 在经过步骤 204的阵列基板上沉积绝缘层 5e, 并通过构图工 艺(例如, 光刻工艺)形成过孔, 使压电材料柱状隔垫物凸起的上表面露出, 如图 16-1和图 16-2所示。
与前述实施例类似, 本实施例中步骤 204与步骤 205的顺序可以对调, 只要保证压电材料柱状隔垫物凸起的上表面和下表面分别与第二导电信号线 和第一导电信号线接触, 并且第一导电信号线与第二导电信号线之间相互绝 步骤 206,在经过步骤 205的阵列基板上沉积第二导电层 7 ,并通过构图 工艺形成第二导电信号线。
在本发明的实施例中,第二导电层 7可以为金属层或透明导电层( ITO ) , 或者也可以由其它导电材料形成。
在本发明的实施例中, 第二导电信号线设置于压电材料柱状隔垫物凸起 的上表面, 并且以与第一导电信号线呈格子状的垂直交叉方式排放; 第一导 电信号线与第二导电信号线可位于像素区域的任何位置; 为了不影响正常的 显示区域与开口率, 可以将第一信号线与第二信号线放置于栅极信号线与数 据信号线上方, 以方便将压电材料柱状隔垫物凸起放置在数据信号线与栅极 信号线的交叠区域上方; 即第一导电信号线位于栅极信号线上方, 第二导电 信号线位于数据信号线上方, 如图 17-1和图 17-2所示; 或者, 第一导电信 号线位于数据信号线上方, 第二导电信号线位于栅极信号线上方。
步骤 207,在经过步骤 206的阵列基板上涂上液晶分子取向层 10b,如图 18所示。
步骤 208, 将经过步骤 207的阵列基板与彩膜基板对盒。
在本发明的实施例中,彩膜基板可以包括: 玻璃基板 0a上形成的黑矩阵 1、 RGB子像素、 公共电极 9和液晶分子取向层 10a, 如图 19所示。
在本发明的实施例所制备出的液晶显示屏中,在没有操作 (无触摸情况 ) 时, 由于压电材料柱状隔垫物凸起所支撑的原始高度为液晶盒厚度, 因此柱 状隔垫物凸起无形变, 并且无电信号产生; 当手指或触控笔触摸屏幕时, 会 对液晶盒施加一向下压力, 压电材料柱状隔垫物凸起受到垂直于屏幕方向上 的压力而产生形变, 从而在压电材料柱状隔垫物凸起的上表面和下表面产生 净电场; 通过与第一导电信号线和第二导电信号线相连的外围电压检测系统 的检测, 确认产生电信号的第一导电信号线以及产生电信号的第二导电信号 线, 得到触摸点的位置; 从而, 可根据显示屏幕上对应坐标点的显示内容或 图形得知触摸者的意图,从而进行相关操作。 另一方面,在触控操作完成后, 还可对压电材料柱状隔垫物施加一定的电压, 使其恢复原始高度, 控制稳定 液晶盒的厚度。 从而, 避免了使用传统柱状隔垫物凸起的材料在长期触摸压 力作用下产生永久形变, 造成液晶盒厚度不稳定性, 出现液晶显示器显示不 均等不良现象。 从而, 提供了一种能够稳定液晶盒厚度, 同时实现可自行提 供能源的触摸式面板的功能一体化的显示器基板, 其具有透过率高、 结构简 单、 制备成本低、 精度高和寿命长等优点。
以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前 述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其 依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术 特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离 本发明各实施例技术方案的精神和范围。

Claims

权利要求书
1. 一种液晶面板, 包括:
彩膜基板;
阵列基板;
设置在所述彩膜基板与所述阵列基板之间的压电材料隔垫物; 在所述彩膜基板和所述压电材料隔垫物之间设置的一条信号线; 以及 在所述压电材料隔垫物与所述阵列基板之间设置的另一信号线, 其中, 两条信号线分别与所述压电材料隔垫物的彩膜基板侧表面和阵列 基板侧表面接触, 所述彩膜基板侧的信号线在所述压电材料隔垫物的阵列基 板侧表面的投影与所述阵列基板侧的信号线相交, 两条信号线相互绝缘。
2. 根据权利要求 1所述的液晶面板, 其中, 在所述彩膜基板侧的信号线 和所述阵列基板之间以及所述阵列基板侧的信号线和所述彩膜基板之间分别 设置有绝缘层。
3. 根据权利要求 1或 2所述的液晶面板, 其中, 所述压电材料隔垫物的 压电材料为压电晶体、 压电陶瓷、 压电聚合物、 以及压电陶瓷和压电聚合物 复合材料之一。
4. 根据权利要求 1至 3任一项所述的液晶面板, 其中, 所述压电材料隔 垫物放置在所述阵列基板的硅岛、 数据信号线或栅极信号线所在区域与所述 彩膜基板的黑矩阵所在区域之间。
5. 根据权利要求 4所述的液晶面板, 其中, 所述压电材料隔垫物放置在 所述数据信号线和所述栅极信号线的交叠区域与所述彩膜基板的黑矩阵所在 区 i或之间。
6. 根据权利要求 4所述的液晶面板, 其中, 所述压电材料隔垫物放置在 多个像素区域的一个黑矩阵下方, 每个像素区域包括多个子像素以及设置在 多个子像素之间的黑矩阵。
7. 根据权利要求 1至 6任一项所述的液晶面板, 其中, 所述阵列基板侧 的信号线和所述阵列基板之间设置有液晶分子导向层。
8. 根据权利要求 7所述的液晶面板, 其中, 所述彩膜基板上的黑矩阵和 彩色像素层为导电材料, 在所述彩膜基板侧的信号线和所述彩膜基板之间设 置有绝缘层。
9. 根据权利要求 1至 6任一项所述的液晶面板, 其中, 所述彩膜基板侧 的信号线和所述彩膜基板之间设置有液晶分子导向层。
10. 根据权利要求 9所述的液晶面板, 其中, 所述阵列基板侧的信号线 和所述阵列基板之间设置有绝缘层。
11. 一种液晶显示器, 所述液晶显示器的本体上设置有根据权利要求 1 至 10任一项所述的液晶面板以及检测电路,所述检测电路与两条信号线相连 接, 用于检测两条信号线上有无电信号产生。
12. 一种液晶面板的制造方法, 包括:
在第一基板上形成第一信号线;
在第一信号线上形成压电材料隔垫物, 所述压电材料隔垫物的第一基板 侧表面与第一信号线接触;
在所述压电材料隔垫物的第二基板侧表面上形成第二信号线, 所述压电 材料隔垫物的第二基板侧表面与第二信号线接触, 第一信号线在所述压电材 料隔垫物的第二基板侧表面的投影与第二信号线相交, 并且第一信号线和第 二信号线相互绝缘; 以及
将第一基板和第二基板对盒,第一基板为彩膜基板和阵列基板中的一个, 第二基板为彩膜基板和阵列基板中的另一个。
13. 根据权利要求 12所述的液晶面板的制造方法, 其中, 在第一基板上 形成第一信号线包括:
在第一基板上形成绝缘层; 以及
在所述绝缘层上形成第一信号线。
14. 根据权利要求 12所述的液晶面板的制造方法, 其中, 在第一基板上 形成第一信号线包括:
在第一基板上沉积第一导电层; 以及
通过构图工艺形成第一信号线,
其中,在所述压电材料隔垫物的第二基板侧表面上形成第二信号线包括: 在形成隔垫物凸起后的第一基板上沉积第二导电层; 以及 通过构图工艺在隔垫物凸起处形成第二信号线。
15. 根据权利要求 14所述的液晶面板的制造方法, 其中, 在第一信号线 上形成压电材料隔垫物包括:
在形成第一信号线后的第一基板上沉积绝缘层;
通过构图工艺在第一信号线所在区域形成过孔;
沉积压电材料, 以形成压电材料层; 以及
通过构图工艺在过孔位置形成压电材料隔垫物凸起。
16. 根据权利要求 14所述的液晶面板的制造方法, 其中, 在第一信号线 上形成压电材料隔垫物包括:
在形成第一信号线后的第一基板上直接沉积压电材料, 以形成压电 材料层; 以及
通过构图工艺在第一信号线所在区域形成压电材料隔垫物凸起, 其中, 在形成隔垫物凸起后的第一基板上沉积第二导电层包括:
在形成隔垫物凸起后的第一基板上沉积绝缘层;
通过构图工艺在所述隔垫物凸起处形成过孔; 以及
沉积第二导电层。
17. 根据权利要求 12至 16任一项所述的液晶面板的制造方法, 其中, 在所述压电材料隔垫物的第二基板侧表面上形成第二信号线之后并且在将第 一基板和第二基板对盒之前, 所述方法还包括:
在形成第二信号线后的第一基板上涂上液晶分子导向层。
PCT/CN2012/086506 2012-04-01 2012-12-13 液晶面板、液晶显示器及其制造方法 WO2013149483A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/993,365 US9405143B2 (en) 2012-04-01 2012-12-13 Liquid crystal panel, liquid crystal display and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210096492.XA CN102707470B (zh) 2012-04-01 2012-04-01 一种液晶面板、液晶显示器及制造方法
CN201210096492.X 2012-04-01

Publications (1)

Publication Number Publication Date
WO2013149483A1 true WO2013149483A1 (zh) 2013-10-10

Family

ID=46900383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086506 WO2013149483A1 (zh) 2012-04-01 2012-12-13 液晶面板、液晶显示器及其制造方法

Country Status (3)

Country Link
US (1) US9405143B2 (zh)
CN (1) CN102707470B (zh)
WO (1) WO2013149483A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707470B (zh) 2012-04-01 2015-06-03 京东方科技集团股份有限公司 一种液晶面板、液晶显示器及制造方法
CN103941495B (zh) 2013-01-25 2017-10-10 上海天马微电子有限公司 一种触控显示面板、触控显示装置
JP6430377B2 (ja) * 2013-05-30 2018-11-28 京セラ株式会社 ユニット、電子機器及び電子機器の製造方法
CN103365014B (zh) * 2013-07-11 2015-12-02 京东方科技集团股份有限公司 显示面板制作方法、显示面板及显示装置
CN103455202B (zh) 2013-08-28 2015-11-25 合肥京东方光电科技有限公司 内嵌式触摸屏、其制备方法及显示装置
CN103487971B (zh) * 2013-09-30 2016-05-04 京东方科技集团股份有限公司 彩膜基板、触控显示装置及彩膜基板的制作方法
CN103681765B (zh) * 2013-12-05 2016-04-06 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN104407466B (zh) * 2014-12-25 2017-12-26 厦门天马微电子有限公司 一种显示基板、显示面板和显示装置
KR20160086525A (ko) * 2015-01-09 2016-07-20 삼성디스플레이 주식회사 액정 표시 장치
CN104834121B (zh) * 2015-05-11 2018-01-30 京东方科技集团股份有限公司 触控基板、显示面板、显示装置及触控方法
CN104898318B (zh) * 2015-06-29 2018-10-26 深圳市华星光电技术有限公司 IPS型In Cell触控显示面板及其制作方法
CN105117058B (zh) * 2015-08-24 2018-07-06 联想(北京)有限公司 一种触控面板、触控显示面板及电子设备
CN105335004B (zh) * 2015-10-28 2018-03-23 京东方科技集团股份有限公司 触控基板、触控显示面板以及显示装置
CN105549268A (zh) * 2015-12-15 2016-05-04 武汉华星光电技术有限公司 液晶面板及其像素结构
CN105652488B (zh) * 2016-01-14 2017-10-10 京东方科技集团股份有限公司 一种可书写液晶显示装置及其制作方法、驱动方法
CN105629592B (zh) * 2016-01-15 2019-01-22 京东方科技集团股份有限公司 液晶面板及其制备方法
CN105652528A (zh) * 2016-01-27 2016-06-08 京东方科技集团股份有限公司 一种显示面板、显示装置及其驱动方法
CN107145253B (zh) * 2016-02-19 2020-06-09 苹果公司 力感测架构
CN105808001B (zh) 2016-03-10 2018-07-17 京东方科技集团股份有限公司 一种压感触摸屏及显示装置
CN105824468B (zh) * 2016-03-15 2018-12-25 京东方科技集团股份有限公司 一种压力触控面板及其制备方法和显示装置
TWI575436B (zh) * 2016-03-22 2017-03-21 友達光電股份有限公司 觸控顯示裝置以及其製造方法
CN105929577B (zh) * 2016-04-22 2020-01-07 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制造方法
CN105911774B (zh) * 2016-06-30 2019-07-12 京东方科技集团股份有限公司 隔垫物及其制造方法、显示装置
CN106154627A (zh) * 2016-08-29 2016-11-23 深圳市华星光电技术有限公司 一种液晶显示面板及液晶显示器
CN106773397B (zh) * 2016-12-26 2023-09-15 合肥京东方光电科技有限公司 阵列基板及其制备方法、液晶显示装置
US10732447B2 (en) * 2017-03-07 2020-08-04 Sharp Kabushiki Kaisha Touch panel and electronic device
WO2018163972A1 (ja) * 2017-03-07 2018-09-13 シャープ株式会社 タッチパネルおよび電子機器
CN106951126B (zh) * 2017-03-31 2019-08-13 京东方科技集团股份有限公司 一种液晶显示面板、其制作方法及显示装置
CN107272953B (zh) * 2017-06-16 2019-12-10 京东方科技集团股份有限公司 一种压力触控显示装置及其控制方法
CN109284023B (zh) * 2017-07-21 2021-01-26 京东方科技集团股份有限公司 触控面板及其制备方法和触控显示装置
US10642090B2 (en) * 2017-08-17 2020-05-05 Mitsubishi Electric Corporation Liquid crystal display device
CN108563361B (zh) * 2018-04-23 2021-11-09 京东方科技集团股份有限公司 一种触控显示面板及其驱动方法、触控显示装置
CN108550555B (zh) * 2018-05-17 2020-08-18 京东方科技集团股份有限公司 一种显示器、显示器的制作方法和显示处理方法
CN109447046B (zh) * 2018-12-27 2021-07-23 厦门天马微电子有限公司 显示面板和显示装置
CN110208975B (zh) * 2019-05-31 2022-01-04 厦门天马微电子有限公司 一种显示面板及电子设备
CN111061094B (zh) 2019-12-25 2021-07-06 Tcl华星光电技术有限公司 液晶显示装置及其制备方法
CN112596629B (zh) * 2020-12-21 2022-12-13 业成科技(成都)有限公司 触控模组、其制备方法及电子装置
CN113641044B (zh) * 2021-10-15 2022-02-08 惠科股份有限公司 显示面板和显示器件
CN115220269B (zh) * 2022-07-28 2023-09-29 京东方科技集团股份有限公司 显示面板及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667789A (ja) * 1992-08-18 1994-03-11 Fujitsu Ltd 座標入力装置
CN1839368A (zh) * 2003-08-23 2006-09-27 皇家飞利浦电子股份有限公司 触摸输入有源矩阵显示器件
US20090096764A1 (en) * 2007-10-15 2009-04-16 Bong-Hyun You Touch screen display device and method for controlling the same
CN101738763A (zh) * 2008-11-18 2010-06-16 奇信电子股份有限公司 具有内嵌电阻式触控结构的液晶显示器
CN101943812A (zh) * 2009-07-01 2011-01-12 卡西欧计算机株式会社 液晶显示面板及触摸面板
CN102654681A (zh) * 2012-02-23 2012-09-05 京东方科技集团股份有限公司 一种液晶显示面板及其制造方法和显示器件
CN102707470A (zh) * 2012-04-01 2012-10-03 京东方科技集团股份有限公司 一种液晶面板、液晶显示器及制造方法
CN102707504A (zh) * 2011-11-21 2012-10-03 京东方科技集团股份有限公司 液晶面板及其制备方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212816A (ja) * 1989-02-14 1990-08-24 Seiko Epson Corp 液晶表示装置
JP2003149649A (ja) * 2001-11-15 2003-05-21 Sony Corp スペーサー、画像表示装置、間隔保持方法、素子の転写方法、及び素子の配列方法
AU2003208553A1 (en) 2002-04-15 2003-10-27 Koninklijke Philips Electronics N.V. Touch sensitive display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667789A (ja) * 1992-08-18 1994-03-11 Fujitsu Ltd 座標入力装置
CN1839368A (zh) * 2003-08-23 2006-09-27 皇家飞利浦电子股份有限公司 触摸输入有源矩阵显示器件
US20090096764A1 (en) * 2007-10-15 2009-04-16 Bong-Hyun You Touch screen display device and method for controlling the same
CN101738763A (zh) * 2008-11-18 2010-06-16 奇信电子股份有限公司 具有内嵌电阻式触控结构的液晶显示器
CN101943812A (zh) * 2009-07-01 2011-01-12 卡西欧计算机株式会社 液晶显示面板及触摸面板
CN102707504A (zh) * 2011-11-21 2012-10-03 京东方科技集团股份有限公司 液晶面板及其制备方法、显示装置
CN102654681A (zh) * 2012-02-23 2012-09-05 京东方科技集团股份有限公司 一种液晶显示面板及其制造方法和显示器件
CN102707470A (zh) * 2012-04-01 2012-10-03 京东方科技集团股份有限公司 一种液晶面板、液晶显示器及制造方法

Also Published As

Publication number Publication date
US20140063365A1 (en) 2014-03-06
CN102707470A (zh) 2012-10-03
CN102707470B (zh) 2015-06-03
US9405143B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
WO2013149483A1 (zh) 液晶面板、液晶显示器及其制造方法
US8390771B2 (en) Liquid crystal display device
WO2018149010A1 (zh) 阵列基板及其制作方法与In Cell触控显示面板
WO2013139192A1 (zh) 触摸液晶显示装置、液晶显示面板及上部基板
WO2019095721A1 (zh) 触控基板及其制作方法、显示装置
US20120068200A1 (en) Liquid Crystal Display Device and Method for Manufacturing the Same
WO2017008472A1 (zh) Ads阵列基板及其制作方法、显示器件
WO2015010376A1 (zh) 阵列基板及其制造方法、触摸屏和显示装置
JPH06208101A (ja) 位置感知液晶素子及びその製造方法
WO2013123781A1 (zh) 液晶显示面板及其制造方法和显示器件
WO2015081732A1 (zh) 彩膜基板及其制作方法、显示装置
WO2013010482A1 (zh) 液晶面板及其制备方法、液晶显示装置
WO2018214759A1 (zh) 一种曲面显示装置及其制作方法
WO2020073383A1 (zh) 一种显示面板和显示面板的制程
WO2018195893A1 (zh) 液晶显示面板及其制造方法与应用的显示装置
WO2019071846A1 (zh) Coa型液晶显示面板及其制作方法
WO2015081675A1 (zh) 基板及其制作方法、显示装置
WO2014187104A1 (zh) 显示面板及其制造方法、显示装置
WO2015180302A1 (zh) 阵列基板及其制备方法、显示装置
CN107479264A (zh) 显示面板和显示装置
WO2015176437A1 (zh) 阵列基板及其制作方法、触控显示装置
CN105629556B (zh) 光阀及显示装置
WO2013170494A1 (zh) 液晶面板的制造方法以及液晶玻璃
WO2017206241A1 (zh) 液晶面板、液晶显示器及液晶面板的制备方法
WO2015043055A1 (zh) 阵列基板及其制作方法、液晶面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13993365

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18-02-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12873826

Country of ref document: EP

Kind code of ref document: A1