WO2018214759A1 - 一种曲面显示装置及其制作方法 - Google Patents

一种曲面显示装置及其制作方法 Download PDF

Info

Publication number
WO2018214759A1
WO2018214759A1 PCT/CN2018/086562 CN2018086562W WO2018214759A1 WO 2018214759 A1 WO2018214759 A1 WO 2018214759A1 CN 2018086562 W CN2018086562 W CN 2018086562W WO 2018214759 A1 WO2018214759 A1 WO 2018214759A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
piezoelectric
curved display
array substrate
opposite substrate
Prior art date
Application number
PCT/CN2018/086562
Other languages
English (en)
French (fr)
Inventor
贺芳
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/321,953 priority Critical patent/US10585302B2/en
Publication of WO2018214759A1 publication Critical patent/WO2018214759A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133394Piezoelectric elements associated with the cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits

Definitions

  • Embodiments of the present disclosure relate to a curved display device and a method of fabricating the same.
  • Liquid crystal display has the characteristics of small size, low power consumption, no radiation, etc. It has been rapidly developed in recent years and has occupied a dominant position in the current flat panel display market.
  • LCD liquid crystal display
  • the embodiment of the present disclosure provides a curved display device and a manufacturing method thereof for solving the problem of uneven thickness of a liquid crystal layer of a curved display device existing in the prior art.
  • the embodiment of the present disclosure provides a curved display device, including: an array substrate and an opposite substrate disposed opposite to each other, and a liquid crystal layer between the array substrate and the opposite substrate;
  • the array substrate and/or the side of the opposite substrate away from the liquid crystal layer is provided with a plurality of strip-shaped piezoelectric sensors parallel to each other, and piezoelectric electrodes respectively connected to the electrical signals of the piezoelectric sensors.
  • Control chip
  • the display area of the curved display device includes: two curved first edges and two second edges extending in a linear direction; each of the piezoelectric sensors and the second edge extending in the same direction;
  • the piezoelectric control chip is configured to detect a voltage value of each of the piezoelectric sensors, and apply a compensation voltage to each of the piezoelectric sensors according to the detected voltage values of the piezoelectric sensors to make each of the voltages
  • the voltage values of the electrical sensors are equal.
  • the piezoelectric sensor includes: a piezoelectric film, and a ground electrode and a voltage control electrode which are in the same layer as the piezoelectric film and are located on both sides of the piezoelectric film;
  • the ground electrodes of each of the piezoelectric sensors are grounded, and the voltage control electrodes are electrically connected to the piezoelectric control chip.
  • the curved display device is bent toward one side of the opposite substrate;
  • a compensation voltage corresponding to the piezoelectric sensor on the array substrate gradually increases in a direction from a center to an edge of the curved display device
  • the compensation voltage corresponding to the piezoelectric sensor on the opposite substrate gradually decreases in the direction from the center to the edge of the curved display device.
  • the curved display device is bent toward one side of the array substrate;
  • a compensation voltage corresponding to the piezoelectric sensor on the array substrate gradually decreases in a direction from a center to an edge of the curved display device
  • the compensation voltage corresponding to the piezoelectric sensor on the opposite substrate gradually increases in the direction from the center to the edge of the curved display device.
  • the method further includes: a plurality of spacers between the array substrate and the opposite substrate;
  • the height of the spacers is the same in the extending direction of the second edge
  • the height of the spacer gradually decreases from the center to the edge of the curved display device in a direction perpendicular to the extending direction of the second edge.
  • the array substrate or the opposite substrate includes: a color filter layer of sub-pixel color resistance of at least three colors, and is used for separating each of the sub-pixels Black matrix of color resistance;
  • the piezoelectric sensor and the spacer are disposed in a region where the black matrix is located;
  • the spacer is composed of the sub-pixel color resistance of different colors.
  • the embodiment of the present disclosure further provides a method for fabricating the above curved display device, including:
  • the method before the pairing of the array substrate and the opposite substrate, the method further includes:
  • the height of the spacers is the same in the extending direction of the second edge of the curved display device to be formed;
  • the height of the spacer gradually decreases from the center to the edge of the curved display device in a direction perpendicular to the extending direction of the second edge of the curved display device to be formed.
  • the method before the forming a plurality of spacers on the array substrate or the opposite substrate, the method further includes:
  • a color filter layer of sub-pixel color resistance of at least three colors is formed on the array substrate or the opposite substrate, and a black matrix for separating each of the sub-pixel color resistances.
  • the color filter layer includes: a first sub-pixel color resistance, a second sub-pixel color resistance, and a third sub-pixel color resistance;
  • Forming a plurality of spacers on the array substrate or the opposite substrate specifically including:
  • FIG. 1a to 1c are schematic structural views of a curved display device before and after bending
  • FIG. 2a and 2b respectively show a schematic diagram of light delay distribution at different positions on the opposite substrate and the array substrate in the structure shown in FIG. 1b;
  • FIG. 3 is a schematic structural view of a piezoelectric sensor disposed on an array substrate
  • FIG. 4 is a schematic diagram showing electrical connection between each piezoelectric sensor and a piezoelectric control chip
  • Figure 5 and Figure 6 are schematic diagrams showing the principle of piezoelectric effect and inverse piezoelectric effect, respectively;
  • FIG. 7 is a schematic structural view of a spacer disposed on a counter substrate
  • FIG. 8 is a flowchart of a method for fabricating the curved display device according to an embodiment of the present disclosure
  • Figures 9a and 9b are images of spacers obtained by scanning electron microscopy.
  • the liquid crystal display controls the luminous flux through the liquid crystal as a light valve to realize display, and the control of the liquid under the electric field is related to the thickness of the liquid crystal layer.
  • the control of the liquid under the electric field is related to the thickness of the liquid crystal layer.
  • a commonly used method for maintaining the thickness of the cell is to use a column spacer which is uniformly distributed in the black matrix (BM) region of the color filter substrate and corresponds to a thin film transistor (TFT) on the lower substrate.
  • BM black matrix
  • TFT thin film transistor
  • Fig. 1a shows a liquid crystal display device before bending
  • Fig. 1b shows a liquid crystal display device after bending
  • Fig. 1b is illustrated as an example of bending toward the opposite substrate 12, as is apparent from Fig. 1a and Fig. 1b, after bending
  • the liquid crystal layer 13 of the liquid crystal display device is thinner in the middle and thicker on both sides.
  • FIG. 2a shows a distribution of light delay at different positions on the opposite substrate 12
  • FIG. 2b shows light delay at different positions on the array substrate 11.
  • the embodiment of the present disclosure provides a curved display device, as shown in FIG. 3, comprising: an array substrate 11 and an opposite substrate 12 disposed opposite to each other, and a liquid crystal layer 13 between the array substrate 11 and the opposite substrate 12; ,
  • the array substrate 11 and/or the side of the counter substrate 12 remote from the liquid crystal layer 13 are provided with a plurality of strip-shaped piezoelectric sensors 14 that are parallel to each other, and piezoelectric control chips 15 that are electrically connected to the piezoelectric sensors 14 respectively. ;
  • the display area 16 of the curved display device includes: two curved first edges 161 and two second edges 162 extending in a linear direction; each piezoelectric sensor 14 and the second edge 162 extend in the same direction;
  • the piezoelectric control chip 15 detects a voltage value of each piezoelectric sensor 14, and applies a compensation voltage to each piezoelectric sensor 14 based on the detected voltage value of each piezoelectric sensor 14, so that the voltage value of each piezoelectric sensor 14 is obtained. equal.
  • the curved surface display device detects a voltage value of each piezoelectric sensor by providing a plurality of piezoelectric sensors parallel to each other on a side of the array substrate and/or the opposite substrate away from the liquid crystal layer, according to each detected
  • the voltage value of the piezoelectric sensor applies a compensation voltage to each piezoelectric sensor, so that the voltage values of the piezoelectric sensors are equal, so that the stresses at the piezoelectric sensors are equal, and the stress on the array substrate or the opposite substrate is more uniform and relieved.
  • the phenomenon that the liquid crystal layer is uneven.
  • the stress on the array substrate 11 is a tensile force
  • the stress on the opposite substrate 12 is a compressive force
  • the stress direction of the stress is parallel to the display panel (array)
  • the stress on the opposite substrate 12 is a tensile force
  • the stress direction of the stress is parallel to the display panel. flat.
  • the upper and lower edges of the display region 16 of the curved display device are curved first.
  • the edge 161, the left and right edges are exemplified by the second edge 162 extending in the linear direction.
  • the stress at each position on each straight line is the same, for example, The stress at each position on the AA' is the same.
  • the stress at each position on each straight line is different, for example, the stress at each position on BB' in the figure is different.
  • the piezoelectric sensor 14 needs to be disposed as a plurality of strip-shaped piezoelectric sensors 14 that are parallel to each other, and the extension of the piezoelectric sensor 14 and the second edge 162 The directions are the same, so that the stress on the entire straight line parallel to the extending direction of the second edge 162 can be adjusted, so that the stress on the array substrate 11 or the opposite substrate 12 can be made more uniform without causing new stress unevenness. . Further, the length of the piezoelectric sensor 14 is the same as the length of the second edge 162.
  • the piezoelectric sensor and the piezoelectric control chip may be disposed on the array substrate, or disposed on the opposite substrate, or may be provided with piezoelectric sensors and piezoelectric control on the array substrate and the opposite substrate. chip.
  • the piezoelectric sensor and the piezoelectric control chip are disposed on the array substrate and the opposite substrate, the stress on the array substrate and the opposite substrate can be adjusted to be uniform, so that the liquid crystal layer reaches a relatively uniform state, for example, the array substrate.
  • the piezoelectric control chip on the upper side controls only the piezoelectric sensor on the array substrate, and the piezoelectric control chip on the opposite substrate controls only the piezoelectric sensor on the array substrate.
  • the piezoelectric sensor uses the piezoelectric effect to detect the stress at the corresponding position, and adjusts the stress at the corresponding position according to the inverse piezoelectric effect.
  • the principle of the piezoelectric effect and the inverse piezoelectric effect will be described below with reference to FIG. 5:
  • Piezoelectric effect means that when some dielectric materials (such as piezoelectric materials) are deformed by an external force in a certain direction, polarization occurs inside, and positive and negative opposites appear on two opposite surfaces thereof. The charge. When the external force is removed, it will return to the uncharged state. As shown in (a) of Fig. 5, when there is no stress on the piezoelectric material, no charge appears at both ends of the piezoelectric material, as shown in (b) of Fig. 5, the direction of the force applied to the piezoelectric material is shown. When the tensile force is indicated by the middle arrow, a positive and negative opposite charge is exerted on the two opposite surfaces of the piezoelectric material, as shown in (c) of FIG.
  • the inverse piezoelectric effect means that when an electric field is applied in the polarization direction of the dielectric, these dielectrics are also deformed, and the deformation of the dielectric disappears after the electric field is removed.
  • Fig. 6 (a) a state in which no voltage is applied to the piezoelectric material, as shown in (b) of Fig. 6, when a voltage in a certain direction is applied to the piezoelectric material, internal tension is generated inside the piezoelectric material, and piezoelectric The material undergoes tensile deformation, as shown in (c) of FIG.
  • the piezoelectric control chip detects the voltage value of each piezoelectric sensor, and according to the properties of the piezoelectric material in the piezoelectric sensor, the stress value at each piezoelectric sensor can be obtained by combining the piezoelectric effect. Then, according to the detected voltage values of the piezoelectric sensors, a compensation voltage is applied to each piezoelectric sensor. After the compensation voltage is applied to the piezoelectric sensor due to the inverse piezoelectric effect, the stress on the piezoelectric sensor changes correspondingly, so that The voltage values of the piezoelectric sensors are equal, and thus the stresses at the respective piezoelectric sensors are adjusted to be equal.
  • the compensation voltage of each piezoelectric sensor may be 1, 0, -1, 0, 1, after adjustment, the stress at each piezoelectric sensor is the same.
  • the piezoelectric sensor 14 may include a piezoelectric film 141, and the same layer as the piezoelectric film 141 and located on both sides of the piezoelectric film 141.
  • the ground electrodes 142 of the piezoelectric sensors 14 are all grounded, and the voltage control electrodes 143 are electrically connected to the piezoelectric control chip 15.
  • the piezoelectric film 141 is made of a piezoelectric material, and may be, for example, a piezoelectric crystal or a piezoelectric ceramic.
  • the material for forming the piezoelectric film 141 is not limited. Since the direction of the stress on the display panel (the array substrate 11 or the opposite substrate 12) is parallel to the plane in which the display panel is located, the ground electrode 142 and the voltage control electrode 143 are disposed in the same layer as the piezoelectric film 141 to Achieve adjustment of stress on the display panel. Referring to FIG.
  • the ground electrode 142 of each piezoelectric sensor 14 is grounded, and the voltage control electrode 143 is electrically connected to the piezoelectric control chip 15, so that when the stress is adjusted, if the stress tensile force needs to be adjusted, the corresponding force is applied.
  • the compensation voltage is a positive voltage. If the stress to be adjusted is a compression force, the corresponding compensation voltage is applied as a negative voltage, and the circuit is simple and easy to operate.
  • the piezoelectric sensor 14 can be set to other numbers according to actual needs.
  • the number of piezoelectric sensors 14 is not limited.
  • the piezoelectric sensor 14 is disposed on the array substrate 11, and the piezoelectric sensor 14 is disposed on the opposite substrate 12.
  • the array substrate 11 may be the opposite substrate 12. No more drawing is shown here.
  • the curved display device has two bending modes:
  • Method 1 the curved display device is bent toward one side of the opposite substrate 12, as shown in FIG. 1b;
  • the compensation voltage corresponding to the piezoelectric sensor 14 on the array substrate 11 gradually increases in the direction from the center to the edge of the curved display device;
  • the compensation voltage corresponding to the piezoelectric sensor 14 on the opposite substrate 12 gradually decreases in the direction from the center to the edge of the curved display device.
  • the stress on the array substrate 11 is a tensile force, and the tensile force gradually decreases in the direction from the center to the edge of the curved display device.
  • the compensation voltage is in the direction from the center to the edge of the curved display device.
  • the upper portion is gradually increased; the stress on the opposite substrate 12 is a compressive force, and the compressive force is gradually decreased in the direction from the center to the edge of the curved display device.
  • Method 2 The curved display device is bent toward one side of the array substrate 11, as shown in FIG. 1c;
  • the compensation voltage corresponding to the piezoelectric sensor 14 on the array substrate 11 gradually decreases in the direction from the center to the edge of the curved display device;
  • the compensation voltage corresponding to the piezoelectric sensor 14 on the opposite substrate 12 gradually increases in the direction from the center to the edge of the curved display device.
  • the stress on the array substrate 11 is a compressive force, and the compressive force is gradually decreased in the direction from the center to the edge of the curved display device, in order to make the array
  • the stress on the substrate 11 is substantially the same, and a compressive force which is gradually increased in the direction from the center to the edge of the curved display device is required to be applied to the array substrate 11, that is, the compensation voltage is gradually decreased in the direction from the center to the edge of the curved display device.
  • the stress on the opposite substrate 12 is a tensile force, and the tensile force gradually decreases in the direction from the center to the edge of the curved display device, and in order to make the stress on the opposite substrate 12 substantially the same, it is necessary to face the opposite direction.
  • a tensile force that gradually increases in the direction from the center to the edge of the curved display device is applied to the substrate 12, and thus the compensation voltage on the opposite substrate 12 gradually increases in the direction from the center to the edge of the curved display device.
  • the curved display device may further include: a plurality of spacers between the array substrate and the opposite substrate;
  • the height of the spacers is the same in the extending direction of the second edge
  • the height of the spacer gradually decreases from the center to the edge of the curved display device in a direction perpendicular to the extending direction of the second edge.
  • the array substrate and the opposite substrate are parallel to the extending direction of each of the second edges during the bending process.
  • the stress of the straight line is the same, and therefore, the height of the spacer in the extending direction of the second edge can be set to be the same.
  • the stress at each position on each straight line is different, gradually decreasing from the center to both sides, and thus, in a direction perpendicular to the extending direction of the second edge,
  • the height of the spacer in the middle is set to be large, and the array substrate and the opposite substrate are supported to buffer a part of the stress, the height of the spacer on the edge is small, and the buffering effect on the stress is small, so that the surface display is performed.
  • the thickness of the device is relatively uniform, that is, the thickness of the liquid crystal layer is relatively uniform.
  • the array substrate 11 or the opposite substrate 12 may include a color filter layer of sub-pixel color resists 18 of at least three colors. And a black matrix 19 for separating each sub-pixel color resist 18;
  • the piezoelectric sensor 14 and the spacer 17 are disposed in a region where the black matrix 19 is located;
  • the spacer 17 is composed of sub-pixel color resistors 18 of different colors.
  • the color filter layer is disposed on the opposite substrate 12 as an example, that is, the opposite substrate 12 is a color filter substrate.
  • the substrate may also be located on the array substrate 11 , where the color filter layer is not disposed.
  • the piezoelectric sensor 14 and the spacer 17 are both disposed in the region where the black matrix 19 is located, and the influence of the piezoelectric sensor 14 and the spacer 17 on the aperture ratio can be avoided, and the piezoelectric sensor 14 and the spacer 17 can also be used. It is set as a transparent material, which is not limited here, as long as it does not affect the normal display of the curved display device. Further, a wire connecting the piezoelectric sensors 14 and the piezoelectric control chip 15 may be disposed in a region of the black matrix 19, and the piezoelectric control chip 15 may be disposed in the non-display region 16.
  • the spacers 17 are composed of sub-pixel color resistors 18 of different colors, which means that the spacers 17 are composed of structures arranged in the same layer as the sub-pixel color resistors 18 of different colors, and are color filtered.
  • the layer includes a sub-pixel color resistor 18 of three colors of red (R), green (G), and blue (B), and the spacer 17 includes: the first process formed by the same process as the red sub-pixel color resist 18
  • the raised structure 171 the second raised structure 172 formed by the same process as the green sub-pixel color resist 18, and the support structure 173 of the same process as the blue sub-pixel color resist 18, as shown in FIG.
  • the pattern of a raised structure 171 and the second raised structure 172 may substantially coincide with the pattern of the black matrix 19, and the support structure 173 may be disposed such that the spacer 17 is at a distance from the curved surface in a direction perpendicular to the extending direction of the second edge 162.
  • the spacer 17 makes the thickness of the curved display device more Add evenly.
  • several spacers 17 near the outermost edge may not be provided with the support structure 173.
  • the curved surface display device detects a voltage value of each piezoelectric sensor 14 by providing a plurality of piezoelectric sensors 14 that are parallel to each other on a side of the array substrate 11 and/or the opposite substrate 12 away from the liquid crystal layer 13. Applying a compensation voltage to each piezoelectric sensor 14 according to the detected voltage value of each piezoelectric sensor 14 so that the voltage values of the piezoelectric sensors 14 are equal, so that the stresses at the piezoelectric sensors 14 are equal, so that the array substrate 11 or The stress on the counter substrate 12 is more uniform, and the phenomenon that the liquid crystal layer 13 is uneven is alleviated. Further, the thickness of the liquid crystal layer 13 is made more uniform by providing the spacers 17 having different heights.
  • Embodiments of the present disclosure also provide a method of fabricating the above curved display device. Since the principle of solving the problem is similar to the above-mentioned curved display device, the implementation of the manufacturing method can be referred to the implementation of the curved display device described above, and the repeated description will not be repeated.
  • the method for manufacturing the curved display device provided by the embodiment of the present disclosure includes:
  • a plurality of strip-shaped piezoelectric sensors that are parallel to each other are formed on the array substrate and/or the opposite substrate, and voltages respectively connected to the piezoelectric signals are electrically connected.
  • the electric control chip can control the piezoelectric control chip to detect the voltage value of each piezoelectric sensor, and apply a compensation voltage to each piezoelectric sensor according to the detected voltage values of the piezoelectric sensors, so that the respective voltages The voltage values of the electric sensors are equal, so that the stresses at the piezoelectric sensors are equal, the stress on the array substrate or the opposite substrate is more uniform, and the phenomenon that the liquid crystal layer is uneven is alleviated.
  • the piezoelectric sensor and the piezoelectric control chip are usually formed on the uppermost layer of the array substrate or the opposite substrate, that is, after the overcoat (OC) is formed on the array substrate or the opposite substrate, the protection is performed.
  • a piezoelectric sensor and a piezoelectric control chip are fabricated on the layer.
  • the piezoelectric sensor is generally formed in a region where the black matrix is located, and the piezoelectric control chip is formed in the non-display region.
  • the array substrate and the counter substrate are paired, and the side on which the piezoelectric sensor is provided faces outward.
  • the curved display device when the curved display device is formed, it may be bent toward the opposite substrate or may be bent toward the array substrate, and the bending direction is not limited here.
  • the principle of controlling the piezoelectric control chip to adjust the stress on the array substrate or the opposite substrate is the same as that in the above curved display device, and details are not described herein again.
  • the method may further include:
  • the height of the spacers is the same in the extending direction of the second edge of the curved display device to be formed;
  • the height of the spacer gradually decreases from the center to the edge of the curved display device in a direction perpendicular to the extending direction of the second edge of the curved display device to be formed.
  • the array substrate 11 and the opposite substrate 12 are bent during the process.
  • the stresses of the straight lines in which the extending directions of the second edges 162 are parallel are the same, and therefore, the heights of the spacers 17 in the extending direction of the second edges 162 may be set to be the same.
  • the stress at each position on each straight line is different, gradually decreasing from the center toward both sides, and thus, in a direction perpendicular to the extending direction of the second edge 162
  • the height of the spacer 17 in the middle is large, and the array substrate 11 and the opposite substrate 12 are supported to buffer a part of the stress.
  • the height of the spacer 17 is small, and the buffering effect on the stress is relatively small. Small, so that the thickness of the curved display device is relatively uniform, that is, the thickness of the liquid crystal layer 13 is relatively uniform.
  • the foregoing manufacturing method provided by the embodiment of the present disclosure may further include: before forming the plurality of spacers 17 on the array substrate 11 or the opposite substrate 12, the method further includes:
  • a color filter layer of sub-pixel color resists 18 of at least three colors is formed on the array substrate 11 or the opposite substrate 12, and a black matrix 19 for separating the sub-pixel color resists 18 is provided.
  • the color filter layer may include: a first sub-pixel color resistance 18, a second sub-pixel color resistance 18, and a third sub-pixel color resistance 18;
  • Forming a plurality of spacers 17 on the array substrate 11 or the opposite substrate 12, referring to FIG. 7, may include:
  • the same process is used as the third sub-pixel color resist 18 to form the support structure 173;
  • the spacer 17 is formed on the black matrix 19 to prevent the spacer 17 from affecting the aperture ratio.
  • the film layers of the spacers 17 are formed by the same process as the sub-pixel color resists 18 of different colors. By changing the mask for fabricating the sub-pixel color resists 18, the process steps for fabricating the curved display device can be reduced, and the cost is saved. .
  • the patterns of the first convex structure 171 and the second convex structure 172 may substantially coincide with the pattern of the black matrix 19, and the support structure 173 may be disposed in a direction perpendicular to the extending direction of the second edge 162.
  • the formed layers are not due to process reasons and size.
  • a raised structure having a lower height on both sides that is, a pattern of the first raised structure and the second raised structure, which may be formed by the same process as the sub-pixel color resist, if the raised structure is formed
  • the height cannot meet the demand, and it can be processed accordingly.
  • 9a and 9b are images of a spacer obtained by a scanning electron microscope (SEM). As can be seen from FIG. 9a and FIG. 9b, protrusions can be formed by the same process as sub-pixel color resistance of different colors.
  • the film layers of the spacers can also be seen from FIG. 9b, and the support structure can be formed on the gentle slope of the second convex structure, and thus, can be formed in a direction perpendicular to the extending direction of the second edge. The farther the spacer is from the center of the curved display device, the further the support structure is from the center of the corresponding second raised structure.
  • the curved surface display device and the method for fabricating the same by setting a plurality of piezoelectric sensors parallel to each other on the side of the array substrate and/or the opposite substrate away from the liquid crystal layer, detecting the voltage values of the piezoelectric sensors, according to The detected voltage values of the piezoelectric sensors apply a compensation voltage to each piezoelectric sensor so that the voltage values of the piezoelectric sensors are equal, so that the stresses at the piezoelectric sensors are equal, and the stress on the array substrate or the opposite substrate is made. More uniform, alleviating the phenomenon of uneven liquid crystal layer. Further, the thickness of the liquid crystal layer is made more uniform by providing spacers having different heights.
  • the curved surface display device and the method for fabricating the same include: an array substrate and an opposite substrate disposed opposite to each other, and a liquid crystal layer between the array substrate and the opposite substrate; wherein the array substrate and/or Or a side of the opposite substrate away from the liquid crystal layer, a plurality of piezoelectric sensors parallel to each other and a piezoelectric control chip respectively connected to the electrical signals of the piezoelectric sensors; the display area of the curved display device includes: a curved first edge and two second edges extending in a straight line direction; each piezoelectric sensor and the second edge extending in the same direction; a piezoelectric control chip for detecting the voltage value of each piezoelectric sensor, according to the detection The voltage value of each piezoelectric sensor applies a compensation voltage to each piezoelectric sensor so that the voltage values of the respective piezoelectric sensors are equal.
  • the voltage values of the piezoelectric sensors are detected, and the piezoelectric voltages are detected according to the voltage values of the piezoelectric sensors.
  • the sensor applies a compensation voltage so that the voltage values of the piezoelectric sensors are equal, so that the stresses at the piezoelectric sensors are equal, the stress on the array substrate or the opposite substrate is more uniform, and the phenomenon that the liquid crystal layer is uneven is alleviated.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种曲面显示装置及其制作方法,该曲面显示装置包括:相对设置的阵列基板(11)及对向基板(12),以及位于阵列基板(11)和对向基板(12)之间的液晶层(13);阵列基板(11)和/或对向基板(12)远离液晶层(13)的一侧,设有多个相互平行的条状的压电传感器(14),以及分别与各压电传感器(14)电信号连接的压电控制芯片(15)。该曲面显示装置能够实现对阵列基板(11)或对向基板(12)上的应力的调整,使阵列基板(11)或对向基板(12)上的应力更加均匀,缓解了液晶层(13)不均匀的现象。

Description

一种曲面显示装置及其制作方法
本申请要求于2017年5月24日递交的中国专利申请第201710374652.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种曲面显示装置及其制作方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有体积小、功耗低、无辐射等特点,近年来得到了迅速地发展,在当前的平板显示器市场中占据了主导地位,目前,液晶显示器在各种大中小尺寸的产品上得到了广泛的应用,几乎涵盖了当今信息社会的主要电子产品,如液晶电视、高清晰度数字电视、电脑(台式和笔记本)、手机、车载显示、投影显示、摄像机、数码相机、电子手表、计算器、电子仪器、仪表、公共显示和虚幻显示等。
发明内容
本公开实施例提供一种曲面显示装置及其制作方法,用以解决已知技术中存在的曲面显示装置的液晶层的厚度不均匀的问题。
本公开实施例提供了一种曲面显示装置,包括:相对设置的阵列基板及对向基板,以及位于所述阵列基板和所述对向基板之间的液晶层;其中,
所述阵列基板和/或所述对向基板远离所述液晶层的一侧,设有多个相互平行的条状的压电传感器,以及分别与各所述压电传感器电信号连接的压电控制芯片;
所述曲面显示装置的显示区域包括:两个弯曲的第一边缘和两个沿直线方向延伸的第二边缘;各所述压电传感器与所述第二边缘的延伸方向相同;
所述压电控制芯片,用于检测各所述压电传感器的电压值,根据检测到的各所述压电传感器的电压值向各所述压电传感器施加补偿电压,以使各所 述压电传感器的电压值相等。
在本公开实施例提供的上述曲面显示装置中,所述压电传感器包括:压电膜,以及与所述压电膜同层且位于所述压电膜两侧的接地电极和电压控制电极;
各所述压电传感器的所述接地电极均接地,所述电压控制电极均与所述压电控制芯片电信号连接。
在本公开实施例提供的上述曲面显示装置中,所述曲面显示装置向所述对向基板的一侧弯曲;
位于所述阵列基板上的所述压电传感器对应的补偿电压,在所述曲面显示装置的中心到边缘的方向上逐渐增大;
位于所述对向基板上的所述压电传感器对应的补偿电压,在所述曲面显示装置的中心到边缘的方向上逐渐减小。
在本公开实施例提供的上述曲面显示装置中,所述曲面显示装置向所述阵列基板的一侧弯曲;
位于所述阵列基板上的所述压电传感器对应的补偿电压,在所述曲面显示装置的中心到边缘的方向上逐渐减小;
位于所述对向基板上的所述压电传感器对应的补偿电压,在所述曲面显示装置的中心到边缘的方向上逐渐增大。
在本公开实施例提供的上述曲面显示装置中,还包括:位于所述阵列基板和所述对向基板之间的多个隔垫物;
在所述第二边缘的延伸方向上,所述隔垫物的高度相同;
在与所述第二边缘的延伸方向垂直的方向上,所述隔垫物的高度从所述曲面显示装置的中心到边缘逐渐减小。
在本公开实施例提供的上述曲面显示装置中,所述阵列基板或所述对向基板包括:由至少三种颜色的亚像素色阻的彩色滤光层,以及用于分隔各所述亚像素色阻的黑矩阵;
所述压电传感器和所述隔垫物设置于所述黑矩阵所在的区域内;
所述隔垫物由不同颜色的所述亚像素色阻构成。
本公开实施例还提供了一种上述曲面显示装置的制作方法,包括:
在阵列基板和/或对向基板上,形成多个相互平行的条状的压电传感器, 以及分别与各所述压电传感器电信号连接的压电控制芯片;
对所述阵列基板和所述对向基板进行对盒,并在所述阵列基板和所述对向基板之间注入液晶层;
弯曲对盒后所述阵列基板和所述对向基板,以形成曲面显示装置;
控制所述压电控制芯片检测各所述压电传感器的电压值,根据检测到的各所述压电传感器的电压值向各所述压电传感器施加补偿电压,以使各所述压电传感器的电压值相等。
在本公开实施例提供的上述制作方法中,所述对所述阵列基板和所述对向基板进行对盒之前,还包括:
在所述阵列基板或所述对向基板背离所述压电传感器的一侧,形成多个隔垫物;其中,
在将要形成的所述曲面显示装置的第二边缘的延伸方向上,所述隔垫物的高度相同;
在与将要形成的所述曲面显示装置的第二边缘的延伸方向垂直的方向上,所述隔垫物的高度从所述曲面显示装置的中心到边缘逐渐减小。
在本公开实施例提供的上述制作方法中,所述在所述阵列基板或所述对向基板上形成多个隔垫物之前,还包括:
在所述阵列基板或所述对向基板上形成由至少三种颜色的亚像素色阻的彩色滤光层,以及用于分隔各所述亚像素色阻的黑矩阵。
在本公开实施例提供的上述制作方法中,所述彩色滤光层包括:第一亚像素色阻、第二亚像素色阻,以及第三亚像素色阻;
所述在所述阵列基板或所述对向基板上形成多个隔垫物,具体包括:
在所述黑矩阵之上,与所述第一亚像素色阻采用同一工艺,形成第一凸起结构;
在所述第一凸起结构之上,与所述第二亚像素色阻采用同一工艺,形成第二凸起结构;
在所述第二凸起结构之上,与所述第三亚像素色阻采用同一工艺,形成支撑结构;其中,
在与将要形成的所述曲面显示装置的第二边缘的延伸方向垂直的方向上,所述隔垫物距离所述曲面显示装置的中心越远,所述支撑结构距离对应 的所述第二凸起结构的中心越远。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1a~图1c为一种曲面显示装置弯曲前与弯曲后的结构示意图;
图2a和图2b分别表示图1b所示的结构中,对向基板和阵列基板上不同位置处的光延迟分布示意图;
图3为在阵列基板上设置压电传感器的结构示意图;
图4为各压电传感器与压电控制芯片的电信号连接示意图;
图5和图6分别为压电效应和逆压电效应的原理示意图;
图7为在对向基板上设置隔垫物的结构示意图;
图8为本公开实施例提供的上述曲面显示装置的制作方法的流程图;
图9a和图9b为扫描电子显微镜得到的隔垫物的图像。
附图标记:11、阵列基板;12、对向基板;13、液晶层;14、压电传感器;141、压电膜;142接地电极;143、电压控制电极;15、压电控制芯片;16、显示区域;161、第一边缘;162、第二边缘;17、隔垫物;171、第一凸起结构;172、第二凸起结构;173、支撑结构;18、亚像素色阻;19、黑矩阵。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
液晶显示器通过液晶作为光阀来控制光通量进而实现显示,液晶在电场作用下对光的控制与液晶层的厚度有关。为了实现好的显示效果,保持均匀的液晶盒厚非常重要。目前常用的维持盒厚的方法是采用柱形隔垫物,隔垫 物均匀的分布在彩膜基板的黑矩阵(BM)区,并和下基板上的薄膜晶体管(TFT)相对应。
在曲面液晶显示器中,基板在弯曲后由于曲面的中心位置和边缘因为受力不同导致不同位置具有不同的盒厚,即液晶层13的厚度不均匀。图1a表示弯曲前的液晶显示器件,图1b表示弯曲后的液晶显示器件,图1b中以向对向基板12一侧弯曲为例进行示意,从图1a和图1b可以明显看出,弯曲后的液晶显示器件的液晶层13,中间比较薄,两边比较厚,这是由于显示面板在弯曲时,中心位置处形变最多,受力最大,盒厚变小,面板远离中心的位置处受力最小,形变最小,盒厚变大,即盒厚从中心位置向边缘位置依次递增,图2a表示对向基板12上不同位置处光延迟的分布示意图,图2b表示阵列基板11上不同位置处光延迟的分布示意图,由于光延迟=应力*SOC*厚度,从图2a和图2b可以看出,由于盒厚的不均匀导致的光延迟分布不均匀,因而导致液晶显示器件的亮度不均匀,引起色偏,从而影响显示效果。
本公开实施例提供了一种曲面显示装置,如图3所示,包括:相对设置的阵列基板11及对向基板12,以及位于阵列基板11和对向基板12之间的液晶层13;其中,
阵列基板11和/或对向基板12远离液晶层13的一侧,设有多个相互平行的条状的压电传感器14,以及分别与各压电传感器14电信号连接的压电控制芯片15;
曲面显示装置的显示区域16包括:两个弯曲的第一边缘161和两个沿直线方向延伸的第二边缘162;各压电传感器14与第二边缘162的延伸方向相同;
压电控制芯片15,用于检测各压电传感器14的电压值,根据检测到的各压电传感器14的电压值向各压电传感器14施加补偿电压,以使各压电传感器14的电压值相等。
本公开实施例提供的曲面显示装置,通过在阵列基板和/或对向基板远离液晶层的一侧设置多个相互平行的压电传感器,检测各压电传感器的电压值,根据检测到的各压电传感器的电压值向各压电传感器施加补偿电压,以使各压电传感器电压值相等,从而使各压电传感器处的应力相等,使阵列基板或对向基板上的应力更加均匀,缓解了液晶层不均匀的现象。
参照图1b,当曲面显示装置向对向基板12一侧弯曲,阵列基板11上的应力为拉伸力,对向基板12上应力为压缩力,且应力的受力方向平行于显示面板(阵列基板11或对向基板12)所在的平面。如图1c所示,当曲面显示装置向阵列基板11一侧弯曲,阵列基板11上的应力为压缩力,对向基板12上应力为拉伸力,应力的受力方向平行于显示面板所在的平面。
图4为阵列基板11或对向基板12上的各压电传感器14和压电控制芯片15的分布示意图,参照图4,以曲面显示装置的显示区域16的上下两个边缘为弯曲的第一边缘161,左右两个边缘为沿直线方向延伸的第二边缘162为例,在与第二边缘162的延伸方向平行的各个直线中,每一条直线上的各位置处的应力相同,例如,图中AA'上各位置的应力相同。在与垂直于第二边缘162的延伸方向平行的各个直线中,每一条直线上的各位置处的应力不同,例如,图中BB'上各位置的应力不同。因此,为了便于调整阵列基板11或对向基板12上的应力,需要将压电传感器14设置为多个相互平行的条状的压电传感器14,且压电传感器14与第二边缘162的延伸方向相同,这样,可以调整与第二边缘162的延伸方向平行的整条直线上的应力,既可以使阵列基板11或对向基板12上的应力更加均匀,又不会导致新的应力不均。此外,压电传感器14的长度为与第二边缘162的长度相同。
本公开实施例中,上述压电传感器和压电控制芯片,可以设置于阵列基板上,或设置于对向基板上,也可以在阵列基板和对向基板上均设置压电传感器和压电控制芯片。当阵列基板和对向基板上均设置压电传感器和压电控制芯片时,可以调整阵列基板和对向基板上的应力都达到均匀的状态,使液晶层达到比较均匀的状态,例如,阵列基板上的压电控制芯片为仅控制阵列基板上的压电传感器,对向基板上的压电控制芯片为仅控制阵列基板上的压电传感器。
上述压电传感器利用压电效应来检测对应位置处的应力,并根据逆压电效应来对对应位置处的应力进行调整,以下结合图5对压电效应和逆压电效应的原理进行说明:
压电效应指的是,某些电介质(例如压电材料)在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态。如图5中 (a)所示,当压电材料上没有应力时,压电材料的两端没有出现电荷,如图5中(b)所示,在压电材料上施加受力方向沿图中箭头所示的拉伸力时,在压电材料的两个相对的表面上出项了正负相反的电荷,如图5中(c)所示,在压电材料上施加受力方向沿图中箭头所示的压缩力时,在压电材料的两个相对的表面上也会出现正负相反的电荷,且受力的方向改变时,电荷的极性也会随之改变,如图5中的(b)和(c)所示,(b)中由电荷形成的电压的方向与(c)中电荷形成的电压的方向相反。
逆压电效应指的是,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失。如图6中(a)为压电材料上没有施加电压时的状态,如图6中(b)所示,当向压电材料施加一定方向的电压,压电材料内部产生内应张力,压电材料产生拉伸形变,如图6中的(c)所示,当向压电材料施加反方向的电压,压电材料内部产生内应缩力,压电材料产生压缩形变。在具体实施时,向压电材料施加一定方向的电压时,产生拉伸形变还是压缩形变,要根据压电材料的性质而定。
例如,压电控制芯片检测各压电传感器的电压值,根据压电传感器中压电材料的性质,结合压电效应可以得到各压电传感器处的应力值。再根据检测到的各压电传感器的电压值向各压电传感器施加补偿电压,由于逆压电效应,向压电传感器施加补偿电压后,压电传感器上的应力会发生相应的变化,以使各压电传感器的电压值相等,因而各压电传感器处的应力调整为相等。以设有5个压电传感器为例,若检测到个压电传感器的电压值分别为3、4、5、4、3,则各压电传感器的补偿电压可以为1、0、-1、0、1,调整后使各压电传感器处的应力相同。
例如,本公开实施例提供的上述曲面显示装置中,参照图3和图4,上述压电传感器14可以包括:压电膜141,以及与压电膜141同层且位于压电膜141两侧的接地电极142和电压控制电极143;
各压电传感器14的接地电极142均接地,电压控制电极143均与压电控制芯片15电信号连接。
上述压电膜141由压电材料构成,例如可以是压电晶体,也可以是压电陶瓷,此处不对形成压电膜141的材料进行限定。由于显示面板(阵列基板11或对向基板12)上的应力的受力方向平行于该显示面板所在的平面,因而 将接地电极142和电压控制电极143设置为与压电膜141同层,以实现对显示面板上应力的调整。参照图4,将各压电传感器14的接地电极142均接地,电压控制电极143均与压电控制芯片15电性连接,这样在调整应力时,若需要调整的应力拉伸力,则施加对应的补偿电压为正电压,若需要调整的应力为压缩力,则施加对应的补偿电压为负电压即可,电路简单且操作容易。
为了更清楚的示意上述压电传感器14的结构,图3和图4中仅画出了四个压电传感器14,在具体实施时,可以根据实际需要将压电传感器14设置为其他数量,此处不对压电传感器14的数量进行限定。图3中以在阵列基板11上设置压电传感器14为例进行示意,在对向基板12上设置压电传感器14的情况与图3类似,将阵列基板11该为对向基板12即可,此处不再单独画图示意。
在具体实施时,本公开实施提供的上述曲面显示装置中,上述曲面显示装置中有两种弯曲方式:
方式一:曲面显示装置向对向基板12的一侧弯曲,如图1b所示;
位于阵列基板11上的压电传感器14对应的补偿电压,在曲面显示装置的中心到边缘的方向上逐渐增大;
位于对向基板12上的压电传感器14对应的补偿电压,在曲面显示装置的中心到边缘的方向上逐渐减小。
参照图1b,当曲面显示装置向对向基板12的一侧弯曲时,阵列基板11上的应力为拉伸力,且该拉伸力在曲面显示装置的中心到边缘的方向上逐渐减小,为了使阵列基板11上的应力大致相同,需要向阵列基板11上施加在曲面显示装置的中心到边缘的方向上逐渐增大的拉伸力,即补偿电压在曲面显示装置的中心到边缘的方向上逐渐增大;在对向基板12上的应力为压缩力,且该压缩力在曲面显示装置的中心到边缘的方向上逐渐减小,为了使对向基板12上的应力大致相同,需要向对向基板12上施加在曲面显示装置的中心到边缘的方向上逐渐增大的压缩力,而调整拉伸力和压缩力的补偿电压的电性相反,因而对向基板12上的补偿电压在曲面显示装置的中心到边缘的方向上逐渐减小。
方式二:曲面显示装置向阵列基板11的一侧弯曲,如图1c所示;
位于阵列基板11上的压电传感器14对应的补偿电压,在曲面显示装置 的中心到边缘的方向上逐渐减小;
位于对向基板12上的压电传感器14对应的补偿电压,在曲面显示装置的中心到边缘的方向上逐渐增大。
参照图1c,当曲面显示装置向阵列基板11的一侧弯曲时,阵列基板11上的应力为压缩力,且该压缩力在曲面显示装置的中心到边缘的方向上逐渐减小,为了使阵列基板11上的应力大致相同,需要向阵列基板11上施加在曲面显示装置的中心到边缘的方向上逐渐增大的压缩力,即补偿电压在曲面显示装置的中心到边缘的方向上逐渐减小;在对向基板12上的应力为拉伸力,且该拉伸力在曲面显示装置的中心到边缘的方向上逐渐减小,为了使对向基板12上的应力大致相同,需要向对向基板12上施加在曲面显示装置的中心到边缘的方向上逐渐增大的拉伸力,因而对向基板12上的补偿电压在曲面显示装置的中心到边缘的方向上逐渐增大。
进一步地,本公开实施例提供的上述曲面显示装置中,还可以包括:位于阵列基板和对向基板之间的多个隔垫物;
在第二边缘的延伸方向上,隔垫物的高度相同;
在与第二边缘的延伸方向垂直的方向上,隔垫物的高度从曲面显示装置的中心到边缘逐渐减小。
由于在与第二边缘的延伸方向平行的各个直线中,每一条直线上的各位置处的应力相同,所以阵列基板和对向基板在弯曲过程中,对每一条与第二边缘的延伸方向平行的直线的应力是相同的,因此,可以设置隔垫物在第二边缘的延伸方向上的高度相同。与垂直于第二边缘的延伸方向平行的各个直线中,每一条直线上的各位置处的应力不同,从中心向两边逐渐减小,因而,在与第二边缘的延伸方向垂直的方向上,设置中间的隔垫物的高度较大,对阵列基板和对向基板起到支撑的作用,缓冲一部分应力,边缘的隔垫物的高度较小,对应力的缓冲作用较小,从而使曲面显示装置的盒厚较均匀,即液晶层的厚度比较均匀。
在具体实施时,本公开实施例提供的上述曲面显示装置中,如图7所示,阵列基板11或对向基板12可以包括:由至少三种颜色的亚像素色阻18的彩色滤光层,以及用于分隔各亚像素色阻18的黑矩阵19;
压电传感器14和隔垫物17设置于黑矩阵19所在的区域内;
隔垫物17由不同颜色的亚像素色阻18构成。
图7中以彩色滤光层位于对向基板12为例进行示意,即对向基板12为彩膜基板,在实际应用中,也可以位于阵列基板11上,此处不对彩色滤光层的位置进行示意。将压电传感器14和隔垫物17均设置在黑矩阵19所在的区域内,可以避免压电传感器14和隔垫物17对开口率的影响,也可以将压电传感器14和隔垫物17设置为透明材料,此处不做限定,只要不影响曲面显示装置的正常显示即可。此外,连接各压电传感器14与压电控制芯片15的导线也可以设置在黑矩阵19的区域内,压电控制芯片15可以设置在非显示区域16。
参照图7,上述隔垫物17由不同颜色的亚像素色阻18构成,指的是隔垫物17是由与不同颜色的亚像素色阻18同层设置的各结构组成,以彩色滤光层包括红(R)、绿(G)、蓝(B)三种颜色的亚像素色阻18为例,上述隔垫物17包括:与红色的亚像素色阻18采用同一工艺形成的第一凸起结构171,与绿色的亚像素色阻18采用同一工艺形成的第二凸起结构172,以及与蓝色的亚像素色阻18采用同一工艺的支撑结构173,如图7所示,第一凸起结构171和第二凸起结构172的图形可以与黑矩阵19的图形大致一致,支撑结构173可以设置为在与第二边缘162的延伸方向垂直的方向上,隔垫物17距离曲面显示装置的中心越远,支撑结构173距离对应的第二凸起结构172的中心越远,这样,可以在制作彩色滤光层的同时形成隔垫物17的图形,而且能够制作出高低不同的隔垫物17,使曲面显示装置的盒厚更加均匀。在具体实施时,为了实现隔垫物17的高低不同,参照图7,靠近最外侧边缘的几个隔垫物17也可以不设置支撑结构173。
本公开实施例提供的曲面显示装置,通过在阵列基板11和/或对向基板12远离液晶层13的一侧设置多个相互平行的压电传感器14,检测各压电传感器14的电压值,根据检测到的各压电传感器14的电压值向各压电传感器14施加补偿电压,以使各压电传感器14电压值相等,从而使各压电传感器14处的应力相等,使阵列基板11或对向基板12上的应力更加均匀,缓解了液晶层13不均匀的现象。此外,通过设置高度不同的隔垫物17,使液晶层13的厚度更加均匀。
本公开实施例还提供了一种上述曲面显示装置的制作方法。由于该制作 方法解决问题的原理与上述曲面显示装置相似,因此该制作方法的实施可以参见上述曲面显示装置的实施,重复之处不再赘述。
本公开实施例提供的上述曲面显示装置的制作方法,如图8所示,包括:
S201、在阵列基板和/或对向基板上,形成多个相互平行的条状的压电传感器,以及分别与各压电传感器电信号连接的压电控制芯片;
S202、对阵列基板和对向基板进行对盒,并在阵列基板和对向基板之间注入液晶层;
S203、弯曲对盒后阵列基板和对向基板,以形成曲面显示装置;
S204、控制压电控制芯片检测各压电传感器的电压值,根据检测到的各压电传感器的电压值向各压电传感器施加补偿电压,以使各压电传感器的电压值相等。
本公开实施例提供的上述曲面显示装置的制作方法,在阵列基板和/或对向基板上,形成多个相互平行的条状的压电传感器,以及分别与各压电传感器电信号连接的压电控制芯片,在形成曲面显示装置之后,可以控制压电控制芯片检测各压电传感器的电压值,根据检测到的各压电传感器的电压值向各压电传感器施加补偿电压,以使各压电传感器电压值相等,从而使各压电传感器处的应力相等,使阵列基板或对向基板上的应力更加均匀,缓解了液晶层不均匀的现象。
在上述步骤S201中,通常将压电传感器和压电控制芯片形成于阵列基板或对向基板的最上层,即在阵列基板或对向基板上形成保护层(over coat,OC)之后,在保护层上制作压电传感器和压电控制芯片,为了不影响曲面显示装置的开口率,一般讲压电传感器形成于黑矩阵所在的区域,将压电控制芯片形成于非显示区域。
在上述步骤S202中,对阵列基板和对向基板进行对盒,设有压电传感器的一侧朝外。在上述步骤S203中,在形成曲面显示装置时,可以向对向基板弯曲,也可以向阵列基板弯曲,此处不对弯曲方向进行限定。上述步骤S204中,控制压电控制芯片调整阵列基板或对向基板上的应力的原理与上述曲面显示装置中的原理相同,此处不再赘述。
进一步地,本公开实施例提供的上述制作方法中,上述步骤S202之前,还可以包括:
在阵列基板或对向基板背离压电传感器的一侧,形成多个隔垫物;其中,
在将要形成的曲面显示装置的第二边缘的延伸方向上,隔垫物的高度相同;
在与将要形成的曲面显示装置的第二边缘的延伸方向垂直的方向上,隔垫物的高度从曲面显示装置的中心到边缘逐渐减小。
参照图4,由于在与第二边缘162的延伸方向平行的各个直线中,每一条直线上的各位置处的应力相同,所以阵列基板11和对向基板12在弯曲过程中,对每一条与第二边缘162的延伸方向平行的直线的应力是相同的,因此,可以设置隔垫物17在第二边缘162的延伸方向上的高度相同。与垂直于第二边缘162的延伸方向平行的各个直线中,每一条直线上的各位置处的应力不同,从中心向两边逐渐减小,因而,在与第二边缘162的延伸方向垂直的方向上,设置中间的隔垫物17的高度较大,对阵列基板11和对向基板12起到支撑的作用,缓冲一部分应力,边缘的隔垫物17的高度较小,对应力的缓冲作用较小,从而使曲面显示装置的盒厚较均匀,即液晶层13的厚度比较均匀。
在实际应用中,本公开实施例提供的上述制作方法中,在阵列基板11或对向基板12上形成多个隔垫物17之前,还可以包括:
在阵列基板11或对向基板12上形成由至少三种颜色的亚像素色阻18的彩色滤光层,以及用于分隔各亚像素色阻18的黑矩阵19。
更进一步地,本公开实施例提供的上述制作方法中,彩色滤光层可以包括:第一亚像素色阻18、第二亚像素色阻18,以及第三亚像素色阻18;
在阵列基板11或对向基板12上形成多个隔垫物17,参照图7,可以包括:
在黑矩阵19之上,与第一亚像素色阻18采用同一工艺,形成第一凸起结构171;
在第一凸起结构171之上,与第二亚像素色阻18采用同一工艺,形成第二凸起结构172;
在第二凸起结构172之上,与第三亚像素色阻18采用同一工艺,形成支撑结构173;其中,
在与将要形成的曲面显示装置的第二边缘162的延伸方向垂直的方向 上,隔垫物17距离曲面显示装置的中心越远,支撑结构173距离对应的第二凸起结构172的中心越远。
上述隔垫物17形成于黑矩阵19之上,可以避免隔垫物17对开口率产生影响。此外,上述隔垫物17的各膜层与不同颜色的亚像素色阻18采用同一工艺形成,通过改变制作亚像素色阻18的掩模板,可以减少制作曲面显示装置的工艺步骤,节约了成本。如图7所示,第一凸起结构171和第二凸起结构172的图形可以与黑矩阵19的图形大致一致,支撑结构173可以设置为在与第二边缘162的延伸方向垂直的方向上,隔垫物17距离曲面显示装置的中心越远,支撑结构173距离对应的第二凸起结构172的中心越远,这样,可以在制作彩色滤光层的同时形成隔垫物17的图形,而且能够制作出高低不同的隔垫物17,使曲面显示装置的盒厚更加均匀。
在具体实施时,由于隔垫物的尺寸比较小,在与不同颜色的亚像素色阻采用同一工艺制作隔垫物的各膜层时,由于工艺原因和尺寸原因,形成的各膜层并不是绝对平坦的,而是中间高一些两边低一些的凸起结构,即第一凸起结构和第二凸起结构的图形,可以是与亚像素色阻采用同一工艺形成,如果形成的凸起结构的高度不能满足需求,也可以再进行相应的处理。图9a和图9b为扫描电子显微镜(scanning electron microscope,SEM)得到的隔垫物的图像,从图9a和图9b可以看出,可以通过与不同颜色的亚像素色阻采用同一工艺形成凸起状的隔垫物的各膜层,从图9b也可以看出,在第二凸起结构的缓坡上可以形成支撑结构,因而,可以制作出在与第二边缘的延伸方向垂直的方向上,隔垫物距离曲面显示装置的中心越远,支撑结构距离对应的第二凸起结构的中心越远。
本公开实施例提供的曲面显示装置及其制作方法,通过在阵列基板和/或对向基板远离液晶层的一侧设置多个相互平行的压电传感器,检测各压电传感器的电压值,根据检测到的各压电传感器的电压值向各压电传感器施加补偿电压,以使各压电传感器电压值相等,从而使各压电传感器处的应力相等,使阵列基板或对向基板上的应力更加均匀,缓解了液晶层不均匀的现象。此外,通过设置高度不同的隔垫物,使液晶层的厚度更加均匀。
本公开有益效果如下:
本公开实施例提供的曲面显示装置及其制作方法,该曲面显示装置包括: 相对设置的阵列基板及对向基板,以及位于阵列基板和对向基板之间的液晶层;其中,阵列基板和/或对向基板远离液晶层的一侧,设有多个相互平行的条状的压电传感器,以及分别与各压电传感器电信号连接的压电控制芯片;曲面显示装置的显示区域包括:两个弯曲的第一边缘和两个沿直线方向延伸的第二边缘;各压电传感器与第二边缘的延伸方向相同;压电控制芯片,用于检测各压电传感器的电压值,根据检测到的各压电传感器的电压值向各压电传感器施加补偿电压,以使各压电传感器的电压值相等。通过在阵列基板和/或对向基板远离液晶层的一侧设置多个相互平行的压电传感器,检测各压电传感器的电压值,根据检测到的各压电传感器的电压值向各压电传感器施加补偿电压,以使各压电传感器电压值相等,从而使各压电传感器处的应力相等,使阵列基板或对向基板上的应力更加均匀,缓解了液晶层不均匀的现象。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (10)

  1. 一种曲面显示装置,包括:相对设置的阵列基板及对向基板,以及位于所述阵列基板和所述对向基板之间的液晶层;其中,
    所述阵列基板和/或所述对向基板远离所述液晶层的一侧,设有多个相互平行的条状的压电传感器,以及分别与各所述压电传感器电信号连接的压电控制芯片;
    所述曲面显示装置的显示区域包括:两个弯曲的第一边缘和两个沿直线方向延伸的第二边缘;各所述压电传感器与所述第二边缘的延伸方向相同;
    所述压电控制芯片,用于检测各所述压电传感器的电压值,根据检测到的各所述压电传感器的电压值向各所述压电传感器施加补偿电压,以使各所述压电传感器的电压值相等。
  2. 如权利要求1所述的曲面显示装置,其中,所述压电传感器包括:压电膜,以及与所述压电膜同层且位于所述压电膜两侧的接地电极和电压控制电极;
    各所述压电传感器的所述接地电极均接地,所述电压控制电极均与所述压电控制芯片电信号连接。
  3. 如权利要求2所述的曲面显示装置,其中,所述曲面显示装置向所述对向基板的一侧弯曲;
    位于所述阵列基板上的所述压电传感器对应的补偿电压,在所述曲面显示装置的中心到边缘的方向上逐渐增大;
    位于所述对向基板上的所述压电传感器对应的补偿电压,在所述曲面显示装置的中心到边缘的方向上逐渐减小。
  4. 如权利要求2所述的曲面显示装置,其中,所述曲面显示装置向所述阵列基板的一侧弯曲;
    位于所述阵列基板上的所述压电传感器对应的补偿电压,在所述曲面显示装置的中心到边缘的方向上逐渐减小;
    位于所述对向基板上的所述压电传感器对应的补偿电压,在所述曲面显示装置的中心到边缘的方向上逐渐增大。
  5. 如权利要求1~4任一项所述的曲面显示装置,还包括:位于所述阵 列基板和所述对向基板之间的多个隔垫物;
    在所述第二边缘的延伸方向上,所述隔垫物的高度相同;
    在与所述第二边缘的延伸方向垂直的方向上,所述隔垫物的高度从所述曲面显示装置的中心到边缘逐渐减小。
  6. 如权利要求5所述的曲面显示装置,其中,所述阵列基板或所述对向基板包括:由至少三种颜色的亚像素色阻的彩色滤光层,以及用于分隔各所述亚像素色阻的黑矩阵;
    所述压电传感器和所述隔垫物设置于所述黑矩阵所在的区域内;
    所述隔垫物由不同颜色的所述亚像素色阻构成。
  7. 一种如权利要求1~6任一项所述的曲面显示装置的制作方法,包括:
    在阵列基板和/或对向基板上,形成多个相互平行的条状的压电传感器,以及分别与各所述压电传感器电信号连接的压电控制芯片;
    对所述阵列基板和所述对向基板进行对盒,并在所述阵列基板和所述对向基板之间注入液晶层;
    弯曲对盒后所述阵列基板和所述对向基板,以形成曲面显示装置;
    控制所述压电控制芯片检测各所述压电传感器的电压值,根据检测到的各所述压电传感器的电压值向各所述压电传感器施加补偿电压,以使各所述压电传感器的电压值相等。
  8. 如权利要求7所述的制作方法,其中,所述对所述阵列基板和所述对向基板进行对盒之前,还包括:
    在所述阵列基板或所述对向基板背离所述压电传感器的一侧,形成多个隔垫物;其中,
    在将要形成的所述曲面显示装置的第二边缘的延伸方向上,所述隔垫物的高度相同;
    在与将要形成的所述曲面显示装置的第二边缘的延伸方向垂直的方向上,所述隔垫物的高度从所述曲面显示装置的中心到边缘逐渐减小。
  9. 如权利要求8所述的制作方法,其中,所述在所述阵列基板或所述对向基板上形成多个隔垫物之前,还包括:
    在所述阵列基板或所述对向基板上形成由至少三种颜色的亚像素色阻的彩色滤光层,以及用于分隔各所述亚像素色阻的黑矩阵。
  10. 如权利要求9所述的制作方法,其中,所述彩色滤光层包括:第一亚像素色阻、第二亚像素色阻,以及第三亚像素色阻;
    所述在所述阵列基板或所述对向基板上形成多个隔垫物,具体包括:
    在所述黑矩阵之上,与所述第一亚像素色阻采用同一工艺,形成第一凸起结构;
    在所述第一凸起结构之上,与所述第二亚像素色阻采用同一工艺,形成第二凸起结构;
    在所述第二凸起结构之上,与所述第三亚像素色阻采用同一工艺,形成支撑结构;其中,
    在与将要形成的所述曲面显示装置的第二边缘的延伸方向垂直的方向上,所述隔垫物距离所述曲面显示装置的中心越远,所述支撑结构距离对应的所述第二凸起结构的中心越远。
PCT/CN2018/086562 2017-05-24 2018-05-11 一种曲面显示装置及其制作方法 WO2018214759A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/321,953 US10585302B2 (en) 2017-05-24 2018-05-11 Curved display device and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710374652.5A CN106950742B (zh) 2017-05-24 2017-05-24 一种曲面显示装置及其制作方法
CN201710374652.5 2017-05-24

Publications (1)

Publication Number Publication Date
WO2018214759A1 true WO2018214759A1 (zh) 2018-11-29

Family

ID=59479929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086562 WO2018214759A1 (zh) 2017-05-24 2018-05-11 一种曲面显示装置及其制作方法

Country Status (3)

Country Link
US (1) US10585302B2 (zh)
CN (1) CN106950742B (zh)
WO (1) WO2018214759A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950742B (zh) * 2017-05-24 2019-08-27 京东方科技集团股份有限公司 一种曲面显示装置及其制作方法
CN108447433A (zh) * 2018-02-28 2018-08-24 厦门天马微电子有限公司 曲面显示面板及其应力检测及电压调节方法
CN112213876B (zh) * 2020-10-29 2021-08-24 Tcl华星光电技术有限公司 可调式曲面液晶显示面板试验装置及其操作方法
CN113920875B (zh) * 2021-10-18 2023-12-01 京东方科技集团股份有限公司 贴合治具
CN114326193B (zh) * 2021-12-30 2024-01-26 惠科股份有限公司 柔性彩膜基板、显示面板、显示装置及电子设备
CN114675454A (zh) * 2022-02-28 2022-06-28 绵阳惠科光电科技有限公司 阵列基板、柔性液晶显示面板及其像素补偿方法
CN114898660B (zh) * 2022-04-26 2023-11-10 昆山国显光电有限公司 显示装置以及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163613A1 (en) * 2001-05-04 2002-11-07 Wei-Chih Chang Multi-domain vertically aligned liquid crystal display
CN104299525A (zh) * 2014-11-03 2015-01-21 京东方科技集团股份有限公司 曲面显示面板、装置及其制造方法
CN104347009A (zh) * 2013-08-02 2015-02-11 三星显示有限公司 曲面显示装置
CN104766870A (zh) * 2015-04-21 2015-07-08 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN105278175A (zh) * 2015-11-12 2016-01-27 深圳市华星光电技术有限公司 曲面液晶显示面板及液晶显示面板
CN105652528A (zh) * 2016-01-27 2016-06-08 京东方科技集团股份有限公司 一种显示面板、显示装置及其驱动方法
CN105911774A (zh) * 2016-06-30 2016-08-31 京东方科技集团股份有限公司 隔垫物及其制造方法、显示装置
CN105929577A (zh) * 2016-04-22 2016-09-07 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制造方法
CN106950742A (zh) * 2017-05-24 2017-07-14 京东方科技集团股份有限公司 一种曲面显示装置及其制作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467157B2 (ja) * 1996-11-28 2003-11-17 ブラザー工業株式会社 インクジェットヘッドの形成方法
KR100977942B1 (ko) * 2002-09-20 2010-08-24 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 보상 장치 및 방법, 가요성 디스플레이 및 휴대형 장치
KR100577696B1 (ko) * 2003-12-15 2006-05-10 삼성전자주식회사 균일한 셀갭을 가질 수 있는 화상액정표시장치
FR2955938B1 (fr) * 2010-01-29 2012-08-03 Commissariat Energie Atomique Dispositif electronique de pilotage et d'amplification pour une sonde locale piezoelectrique de mesure de force sous un faisceau de particules
EP2864836B1 (en) * 2012-06-20 2017-05-24 E Ink California, LLC Piezo electrophoretic display
CN104956244B (zh) * 2013-02-01 2017-07-21 株式会社村田制作所 带按压传感器的显示面板及带按压输入功能的电子设备
JP6435631B2 (ja) * 2014-04-23 2018-12-12 株式会社デンソー 角速度センサ
KR102491287B1 (ko) * 2016-01-14 2023-01-25 삼성전자주식회사 전자 장치
CN105629592B (zh) * 2016-01-15 2019-01-22 京东方科技集团股份有限公司 液晶面板及其制备方法
CN109155356A (zh) * 2016-05-18 2019-01-04 皇家飞利浦有限公司 基于电活性聚合物的致动器设备
CN106338851B (zh) * 2016-10-31 2019-12-24 深圳市华星光电技术有限公司 曲面液晶面板及曲面液晶显示器
CN106951130B (zh) * 2017-03-28 2019-09-03 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示设备及阵列基板制备方法
KR102430582B1 (ko) * 2017-11-28 2022-08-08 엘지디스플레이 주식회사 표시 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163613A1 (en) * 2001-05-04 2002-11-07 Wei-Chih Chang Multi-domain vertically aligned liquid crystal display
CN104347009A (zh) * 2013-08-02 2015-02-11 三星显示有限公司 曲面显示装置
CN104299525A (zh) * 2014-11-03 2015-01-21 京东方科技集团股份有限公司 曲面显示面板、装置及其制造方法
CN104766870A (zh) * 2015-04-21 2015-07-08 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN105278175A (zh) * 2015-11-12 2016-01-27 深圳市华星光电技术有限公司 曲面液晶显示面板及液晶显示面板
CN105652528A (zh) * 2016-01-27 2016-06-08 京东方科技集团股份有限公司 一种显示面板、显示装置及其驱动方法
CN105929577A (zh) * 2016-04-22 2016-09-07 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制造方法
CN105911774A (zh) * 2016-06-30 2016-08-31 京东方科技集团股份有限公司 隔垫物及其制造方法、显示装置
CN106950742A (zh) * 2017-05-24 2017-07-14 京东方科技集团股份有限公司 一种曲面显示装置及其制作方法

Also Published As

Publication number Publication date
US10585302B2 (en) 2020-03-10
CN106950742A (zh) 2017-07-14
CN106950742B (zh) 2019-08-27
US20190219849A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
WO2018214759A1 (zh) 一种曲面显示装置及其制作方法
US9405143B2 (en) Liquid crystal panel, liquid crystal display and method for manufacturing the same
US20160370633A1 (en) Curved display device
US9817263B2 (en) Liquid crystal display
US7710530B2 (en) Color filter substrate and display apparatus using the same
US9606392B2 (en) Display panel and liquid crystal display including the same
WO2016086539A1 (zh) 液晶面板及其制作方法
US10295713B2 (en) Color filter substrate, preparing method thereof, and display device
KR100781477B1 (ko) 액정 표시 장치
CN108761925B (zh) 显示面板及其制作方法和显示装置
CN109188813B (zh) 像素结构、阵列基板、显示面板
JP4011725B2 (ja) 液晶表示装置
US20070188690A1 (en) Liquid crystal display device
WO2020156040A1 (zh) 彩膜基板、显示装置以及彩膜基板制备方法
US20160062171A1 (en) Liquid crystal display and manufacturing method thereof
US7742139B2 (en) Array substrate and liquid crystal display panel
CN112198723A (zh) 液晶显示屏、液晶显示装置
US8654284B2 (en) Display substrate, method of manufacturing the same and display device having the same
JP4562021B2 (ja) カラーフィルタ基板およびその製造方法、表示装置
WO2017206241A1 (zh) 液晶面板、液晶显示器及液晶面板的制备方法
CN107065315B (zh) 一种显示面板及显示装置
WO2020087682A1 (zh) 液晶面板及其制作方法
WO2021258929A1 (zh) 显示面板、其制作方法和显示装置
CN104570458B (zh) 液晶显示面板及液晶显示装置
CN107065288B (zh) 彩膜基板及其制作方法和液晶显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18806525

Country of ref document: EP

Kind code of ref document: A1