WO2020087682A1 - 液晶面板及其制作方法 - Google Patents

液晶面板及其制作方法 Download PDF

Info

Publication number
WO2020087682A1
WO2020087682A1 PCT/CN2018/121356 CN2018121356W WO2020087682A1 WO 2020087682 A1 WO2020087682 A1 WO 2020087682A1 CN 2018121356 W CN2018121356 W CN 2018121356W WO 2020087682 A1 WO2020087682 A1 WO 2020087682A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
inorganic
liquid crystal
color filter
Prior art date
Application number
PCT/CN2018/121356
Other languages
English (en)
French (fr)
Inventor
杨超群
黄长治
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/497,631 priority Critical patent/US11067845B2/en
Publication of WO2020087682A1 publication Critical patent/WO2020087682A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01791Quantum boxes or quantum dots

Definitions

  • the invention relates to the field of displays and the like, in particular to a liquid crystal panel and a manufacturing method thereof.
  • Thin film transistor liquid crystal displays have been rapidly developed and widely used in recent years.
  • Most of the liquid crystal display devices on the existing market are backlight type liquid crystal display devices, which include a liquid crystal display panel and a backlight module (backlight module).
  • the liquid crystal display panel is composed of a color filter (CF) substrate and a thin film transistor (Thin Film Transistor (TFT) substrate, liquid crystal (Liquid) sandwiched between color film substrate and thin film transistor substrate Crystal, LC) and sealant (Sealant); its working principle is to control the rotation of the liquid crystal molecules of the liquid crystal layer by applying a driving voltage to the two glass substrates, refracting the light of the backlight module to produce a picture.
  • CF color filter
  • TFT Thifilm Transistor
  • the backlight technology based on quantum dots that has been mass-produced so far can enable LCDs to achieve a 110% NTSC color gamut. Far higher than the 90% -100% NTSC color gamut level of traditional LCD displays.
  • the direct application of quantum dots in the color film substrate can further improve the color gamut to greater than 90% BT2020.
  • the color gamut and color purity are better than existing OLED display panels.
  • the quantum dot material is a self-luminous material, the light emitted by it cannot be turned on or off even if a polarizer is attached outside the liquid crystal panel.
  • the present invention provides a liquid crystal panel and a manufacturing method thereof, by adding a thinned substrate to ensure that the substrate is sufficiently flat before nano-imprinting, reducing the difficulty of nano-imprinting;
  • the color film substrate is processed before the process to reduce the difficulty of the process.
  • the technical solution for solving the above technical problems is to provide a liquid crystal panel including a color filter substrate; an array substrate opposite to the color filter substrate; and a built-in polarizer, including a substrate, covering the color filter substrate toward the One side of the array substrate; a first inorganic layer covering the substrate; a metal wire grid layer covering the first inorganic layer, the metal wire grid layer having a plurality of parallel metal lines; a second inorganic The layer has a plurality of inorganic wires parallel to each other; each of the inorganic wires is correspondingly coated on one of the metal wires.
  • the material used for the substrate is polyimide or glass; the thickness of the substrate is 0.1-1 mm.
  • the color filter substrate includes a quantum dot color filter, which is disposed on a side of the substrate away from the first inorganic layer; and an encapsulation layer, which covers the quantum dot color filter On-chip; the transmittance of the encapsulation layer to water vapor and oxygen is less than 1 ⁇ 10 -2 .
  • the liquid crystal panel further includes a liquid crystal layer disposed between the array substrate and the color filter substrate; and a spacer layer disposed on the built-in polarizer toward the array substrate Side.
  • the height of the metal wire grid layer is 180-250 nm, and the spacing between two adjacent metal wires is 60-80 nm.
  • the material of the metal wire grid layer includes at least one of aluminum, copper, silver, chromium, gold, and nickel; the materials used for the first inorganic layer and the second inorganic layer are materials respectively Including one or more of silicon oxide, silicon nitride, aluminum oxide, silicon oxynitride and hafnium oxide.
  • the invention also provides a method for manufacturing a liquid crystal panel, including the following steps: manufacturing a built-in polarizer, including the steps of: providing a substrate; depositing a first inorganic layer on one side of the substrate; depositing a metal wire grid layer on the Depositing a second inorganic layer on the metal wire grid layer; coating to form a photoresist layer on the second inorganic layer; providing a nano-imprint template, using the nano-imprint template Printing the photoresist layer, obtaining a photoresist pattern from the photoresist layer, the photoresist pattern having a plurality of parallel photoresist strips; using the photoresist pattern as a shielding layer, etching the second inorganic layer And a metal wire grid layer, corresponding to the plurality of photoresist strips, a plurality of parallel spaced metal lines and a plurality of parallel spaced inorganic lines are etched on the metal wire grid layer and the second inorganic layer, respectively, to remove all The photores
  • the substrate in the step of manufacturing the built-in polarizer, is further thinned so that the thickness of the substrate is between 0.1-1 mm.
  • the step of assembling the array substrate and the built-in polarizer includes: forming a spacer layer on a side of the second inorganic layer facing the array substrate.
  • the method in the step of manufacturing the color filter substrate, includes manufacturing a quantum dot color filter on the side of the substrate far away from the first inorganic layer; On the chip, the transmittance of the encapsulation layer to water vapor and oxygen should be less than 1 ⁇ 10 -2 ; after the step of making the color filter substrate, the method further includes the following steps: filling liquid crystal on the color filter substrate and the array substrate In between, a liquid crystal layer is formed; a quantum dot color filter is made on the side of the substrate away from the first inorganic layer.
  • the liquid crystal panel and the manufacturing method of the present invention by adding a glass substrate or polyimide substrate as a substrate, directly making a metal wire grid layer on the substrate, etc., together with the substrate to form a built-in polarizer, which effectively reduces nanoimprint Difficulty; changed the position of the existing built-in polarizer in the LCD panel, directly made the color filter substrate on the substrate with the built-in polarizer, and set the process of the built-in polarizer before the process of the color filter substrate to reduce The difficulty of the process; effectively solves the problem that the light emitted by the quantum dot color film substrate cannot be controlled by the light.
  • FIG. 1 is a structural diagram of a liquid crystal panel according to an embodiment of the invention.
  • 2 to 5 are layered structure diagrams corresponding to various steps in the manufacturing process of the built-in polarizer according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of steps of a method for manufacturing a liquid crystal panel according to an embodiment of the invention.
  • FIG. 7 is a flow chart of a step of a method for manufacturing a built-in polarizer according to an embodiment of the invention.
  • FIG. 8 is a flowchart of another step of a method for manufacturing a built-in polarizer according to an embodiment of the present invention.
  • the first inorganic layer 230 metal wire grid layer;
  • this embodiment also provides a liquid crystal panel 1 including a color filter substrate 10, a built-in polarizer 20, a liquid crystal layer 30, a spacer layer 40, and an array substrate 50.
  • the color filter substrate 10 is opposite to the color filter substrate 10.
  • the built-in polarizer 20 includes a substrate 210, a first inorganic layer 220, a metal wire grid layer 230 and a second inorganic layer 240.
  • the material used for the substrate 210 is polyimide or glass, that is, the substrate 210 is a polyimide substrate or a glass substrate; the thickness of the substrate 210 is 0.1-1 mm.
  • the first inorganic layer 220 is overlaid on the substrate 210; the material used for the first inorganic layer 220 is one or more of silicon oxide, silicon nitride, aluminum oxide, silicon oxynitride, and hafnium oxide, respectively Species. In this embodiment, the material used for the first inorganic layer 220 is silicon oxide.
  • the metal wire grid layer 230 covers the first inorganic layer 220, and the metal wire grid layer 230 has a plurality of metal lines 231 parallel to each other.
  • the material of the metal wire grid layer 230 includes at least one of aluminum, copper, silver, chromium, gold, and nickel.
  • aluminum used for the metal wire grid layer 230 is selected; the height of the metal wire grid layer 230 is 180-250 nm, and the spacing between two adjacent metal wires 231 is 60-80 nm.
  • the second inorganic layer 240 has a plurality of inorganic wires 241 parallel to each other; each of the inorganic wires 241 is correspondingly coated on a metal wire 231.
  • the material used for the second inorganic layer 240 is one or more of silicon oxide, silicon nitride, aluminum oxide, silicon oxynitride, and hafnium oxide, respectively.
  • the material used for the first inorganic layer 220 is silicon oxide.
  • the liquid crystal layer 30 is disposed between the color filter substrate 10 and the array substrate 50; the spacer layer 40 is disposed on a side of the built-in polarizer 20 facing the array substrate 50, specifically disposed on the
  • the second inorganic layer 240 faces one side of the array substrate 50.
  • the color filter substrate 10 is directly disposed on a side of the substrate 210 away from the array substrate 50.
  • the color filter substrate 10 includes a black matrix layer 110, a quantum dot color filter 120, and an encapsulation layer 130.
  • the quantum dot color filter 120 and the black matrix layer 110 are disposed on the substrate 210 away from the first One side of an inorganic layer 220; the encapsulation layer 130 covers the quantum dot color filter 120.
  • the encapsulation layer 130 needs to meet water and oxygen resistance, and the transmission rate to water vapor and oxygen should be less than 1 ⁇ 10 ⁇ 2 .
  • the encapsulation layer 130 has a certain hardness to protect the quantum dot color filter 120.
  • the material used for the encapsulation layer 130 may be polyvinylpyrrolidone or polymethylmethacrylate, and the thickness thereof is 0.5 ⁇ m or more.
  • the common array substrate includes a barrier layer, an active layer, a first gate insulating layer, a first gate layer, a second gate insulating layer, a second gate layer, a dielectric Electrical layer, anode, pixel defining layer, light emitting layer, etc.
  • the main improvement of the present invention lies in the built-in polarizer and the position structure of the built-in polarizer and the color filter substrate and the array substrate. Specifically, the color filter substrate is directly fabricated on the built-in polarizer. Therefore, for the structure of the array substrate I will not repeat them one by one.
  • the present invention also provides a method for manufacturing the liquid crystal panel 1, including steps S10) -S40).
  • S10) fabricating a built-in polarizer, specifically including steps S101) to S107) and step S110).
  • S101) provides a substrate 210 whose material is polyimide or glass, that is, the substrate 210 is a polyimide substrate or a glass substrate; the thickness of the substrate 210 is 0.1-1 mm.
  • S102) depositing a first inorganic layer 220 on one side of the substrate 210, the material used for the first inorganic layer 220 is one of silicon oxide, silicon nitride, aluminum oxide, silicon oxynitride and hafnium oxide or Multiple.
  • the material used for the first inorganic layer 220 is silicon oxide.
  • the step S110) further includes thinning the substrate 210 so that the thickness of the substrate is between 0.1-1 mm.
  • the thinning process of the substrate 210 may be performed before providing a substrate 210, or after step S107).
  • the common array substrate 50 includes a barrier layer, an active layer, a first gate insulating layer, a first gate layer, a second gate insulating layer, and a second gate layer in order from top to bottom. Dielectric layer, anode, pixel defining layer, light emitting layer, etc. Specifically, the second inorganic layer 240 in the built-in polarizer 20 faces the light emitting layer of the array substrate 50.
  • the step S20) further includes forming a spacer layer 40 on the side of the built-in polarizer 20 facing the array substrate 50.
  • the step S30) includes manufacturing a black matrix layer 110 and a quantum dot color filter 120 on the side of the substrate 210 away from the first inorganic layer 220, and forming the quantum dot color filter
  • An encapsulation layer 130 is formed on 120; the encapsulation layer 130 needs to meet water and oxygen resistance, and the permeability to water vapor and oxygen should be less than 1 ⁇ 10 -2 .
  • the encapsulation layer 130 has a certain hardness to protect the quantum dot color filter 120.
  • the material used for the encapsulation layer 130 may be polyvinylpyrrolidone or polymethylmethacrylate, and the thickness thereof is 0.5 ⁇ m or more.
  • liquid crystal between the color filter substrate 10 and the array substrate 50 to form a liquid crystal layer 30.
  • the liquid crystal panel 1 is placed in a vacuum chamber, and then the liquid crystal panel 1 is evacuated to infuse liquid crystal with atmospheric pressure, and the liquid crystal is a compound substance between solid and liquid, which has the characteristics of regular molecular arrangement .
  • the quantum dot color filter 120 in this embodiment is located in the outer layer, and the protection of the quantum dot color filter 120 can be achieved through the encapsulation layer 130.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶面板(1)及其制作方法;液晶面板(1)包括彩膜基板(10);阵列基板(50),与彩膜基板(10)相对设置;以及内置偏光片(20),包括基板(210),覆于彩膜基板(10)朝向阵列基板(50)的一面;第一无机层(220),覆于基板(210)上;金属线栅层(230),覆于第一无机层(220)上,金属线栅层(230)中具有若干相互平行的金属线(231);第二无机层(240),具有若干条相互平行的无机线(241);每一无机线(241)对应的覆于一金属线(231)上。将内置偏光片(20)的制程设置在彩膜基板(10)的制程之前进行,以降低制程的难度;有效解决了由量子点彩膜基板(10)发出的光无法进行光通断控制的问题。

Description

液晶面板及其制作方法 技术领域
本发明涉及显示器等领域,具体为一种液晶面板及其制作方法。
背景技术
薄膜晶体管液晶显示器(Thin Film Transistor-LCD,TFT-LCD)近年来得到了飞速的发展和广泛的应用。现有市场上的液晶显示装置大部分为背光型液晶显示装置,其包括液晶显示面板及背光模组 (backlight module)。通常液晶显示面板由彩膜 (ColorFilter,CF)基板、薄膜晶体管(Thin Film Transistor,TFT)基板、夹于彩膜基板与薄膜晶体管基板之间的液晶(Liquid Crystal,LC)及密封框胶(Sealant)组成;其工作原理是通过在两片玻璃基板上施加驱动电压来控制液晶层的液晶分子的旋转,将背光模组的光线折射出来产生画面。
随着人们对显示面板的用户体验的更高追求,开发和生产更高色域更高亮度的显示器成为各家面板厂竞相追逐的目标。目前已经量产的基于量子点的背光源技术,可以使LCD实现110% NTSC色域。远高于传统LCD显示器的90%-100%NTSC色域水准。而直接将量子点应用在彩膜基板中则可以进一步提升色域至大于90% BT2020。在色域和色纯度上均较现有的OLED显示面板更优。然而由于量子点材料是自发光材料,由其发出的光即使在液晶面板外贴加偏光片也无法实现光的通断。
现有方案中,也有提出一种通过纳米压印技术,在彩膜基板内制备线栅偏光片的方法以解决当前量子点彩膜基板无法进行光通断的难题。但是,在实际制程中,仍然存在一定的困难:一般情况下,在纳米压印的偏光片的制程中,对于金属线栅中的金属线的高度以及金属线之间的间距具有一定的要求,因此,这就要求在进行纳米压印之前其基底层必须足够平整。现有的纳米压印金属线栅是安排在制作彩膜基板的黄光制程之后进行的,但是黄光制程后的平坦度要达到纳米级是非常困难的。
技术问题
为了解决上述技术问题:本发明提供一种液晶面板及其制作方法,通过增加一薄化的基板以确保纳米压印之前基底足够平整,降低纳米压印难度;同时将内置偏光片的制程设置在彩膜基板的制程之前进行,以降低制程的难度。
技术解决方案
解决上述技术问题的技术方案是:提供一种液晶面板,包括彩膜基板;阵列基板,与所述彩膜基板相对设置;以及内置偏光片,包括基板,覆于所述彩膜基板朝向所述阵列基板的一面;第一无机层,覆于所述基板上;金属线栅层,覆于所述第一无机层上,所述金属线栅层中具有若干相互平行的金属线;第二无机层,具有若干条相互平行的无机线;每一所述无机线对应的覆于一所述金属线上。
在本发明一实施例中,所述基板所用材料为聚酰亚胺或玻璃;所述基板的厚度为0.1-1mm。
在本发明一实施例中,所述彩膜基板包括量子点彩色滤光片,设于所述基板远离所述第一无机层的一侧;以及封装层,覆于所述量子点彩色滤光片上;所述封装层对水汽和氧气的透过率小于1×10 -2
在本发明一实施例中,所述的液晶面板还包括液晶层,设于所述阵列基板与所述彩膜基板之间;以及间隔物层,设于所述内置偏光片朝向所述阵列基板的一侧。
在本发明一实施例中,所述金属线栅层的高度为180-250nm,相邻两根所述金属线之间的间距为60-80nm。
在本发明一实施例中,所述金属线栅层的材料包括铝、铜、银、铬、金及镍中的至少一种;所述第一无机层和第二无机层所用材料为材料分别包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种。
本发明还提供了一种液晶面板的制作方法,包括以下步骤:制作内置偏光片,包括以下步骤:提供一基板;沉积第一无机层于所述基板的一面;沉积金属线栅层于所述第一无机层上;沉积第二无机层于所述金属线栅层上;涂布形成一层光阻层于第二无机层上;提供纳米压印模板,采用所述纳米压印模板纳米压印所述光阻层,由所述光阻层得到光阻图案,所述光阻图案具有并列间隔的多条光阻条;以所述光阻图案为遮蔽层,蚀刻所述第二无机层和金属线栅层,对应的所述多条光阻条在所述金属线栅层上和第二无机层上分别蚀刻出多条并列间隔的金属线和多条并列间隔的无机线,去除所述光阻图案,所述基板、所述金属线栅层和所述金属线栅层两侧的所述第一无机保护层、所述第二无机保护层共同构成内置偏光片;提供阵列基板,并组装所述阵列基板和所述内置偏光片,其中所述第二无机层朝向所述阵列基板;制作彩膜基板于所述内置偏光片的所述基板上。
在本发明一实施例中,在制作内置偏光片步骤中,还包括薄化处理所述基板,使所述基板的厚度在0.1-1mm之间。
在本发明一实施例中,在组装所述阵列基板和所述内置偏光片的步骤中,包括:在所述第二无机层朝向所述阵列基板的一侧形成间隔物层。
在本发明一实施例中,在制作彩膜基板步骤中,包括制作量子点彩色滤光片于所述基板远离所述第一无机层的一侧;制作封装层于所述量子点彩色滤光片上,所述封装层对水汽和氧气的透过率应小于1×10 -2;在制作彩膜基板步骤之后,还包括以下步骤:填充液晶于所述彩膜基板与所述阵列基板之间,形成液晶层;制作量子点彩色滤光片于所述基板远离所述第一无机层的一侧。
有益效果
本发明的液晶面板及其制作方法,通过增设一玻璃基板或聚酰亚胺基板作为基板,直接在基板上制作金属线栅层等,与基板一同形成内置偏光片,有效的降低了纳米压印的难度;改变了现有的内置偏光片在液晶面板中的位置,直接将彩膜基板制作在内置偏光片的基板上,将内置偏光片的制程设置在彩膜基板的制程之前进行,以降低制程的难度;有效解决了由量子点彩膜基板发出的光无法进行光的通断的控制的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
下面结合附图和实施例对本发明作进一步解释。
图1是本发明实施例的液晶面板结构图。
图2至图5是本发明实施例的内置偏光片制作过程中对应各步骤的层状结构图。
图6是本发明实施例的液晶面板制作方法的步骤流程图。
图7是本发明实施例的内置偏光片制作方法的一种步骤流程图。
图8是本发明实施例的内置偏光片制作方法的另一种步骤流程图。
其中,
1液晶面板;                      10彩膜基板;
20内置偏光片;                   30液晶层;
40间隔物层;                     50阵列基板;
110黑色矩阵层;                  120量子点彩色滤光片;
130封装层;                      210基板;
220第一无机层;                  230金属线栅层;
240第二无机层;                  231金属线;
241无机线;
6光阻层;                        60光阻图案;
610光阻条;                      7纳米压印模板。
本发明的实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
以下实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
如图1所示,本实施例还提供了一种液晶面板1,包括彩膜基板10、内置偏光片20、液晶层30、间隔物层40、阵列基板50。其中,所述彩膜基板10与所述彩膜基板10相对设置。
如图5所示,所述内置偏光片20包括基板210、第一无机层220、金属线栅层230、第二无机层240。
所述基板210所用材料为聚酰亚胺或玻璃,即所述基板210为聚酰亚胺基板或玻璃基板;所述基板210的厚度为0.1-1mm。
所述第一无机层220覆于所述基板210上;所述第一无机层220所用材料为材料分别包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种。本实施例中,所述第一无机层220所用材料选择氧化硅。
所述金属线栅层230覆于所述第一无机层220上,所述金属线栅层230中具有若干相互平行的金属线231。所述金属线栅层230的材料包括铝、铜、银、铬、金及镍中的至少一种。本实施例中,所述金属线栅层230所用选择铝;所述金属线栅层230的高度为180-250nm,相邻两条所述金属线231之间的间距为60-80nm。
所述第二无机层240具有若干条相互平行的无机线241;每一所述无机线241对应的覆于一所述金属线231上。所述第二无机层240所用材料为材料分别包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种。本实施例中,所述第一无机层220所用材料选择氧化硅。
所述液晶层30设于所述彩膜基板10与所述阵列基板50之间;所述间隔物层40设于所述内置偏光片20朝向所述阵列基板50的一侧,具体设置在所述第二无机层240朝向所述阵列基板50的一面。
所述彩膜基板10直接设于所述基板210远离所述阵列基板50的一面。所述彩膜基板10包括黑色矩阵层110、量子点彩色滤光片120和封装层130,所述量子点彩色滤光片120和所述黑色矩阵层110设于所述基板210远离所述第一无机层220的一面;所述封装层130覆于所述量子点彩色滤光片120上,所述封装层130需满足耐水氧性,对水汽和氧气的透过率应小于1×10 -2。同时,所述封装层130具备一定的硬度,以保护量子点彩色滤光片120。一般来说,所述封装层130所用材料可以为聚乙烯吡咯烷酮或聚甲基丙烯酸甲酯,其厚度为0.5μm以上。
一般情况下,常见的所述阵列基板由上至下依次包括阻隔层、有源层、第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层、介电层、阳极、像素限定层、发光层等。本发明的主要改进点在于内置偏光片以及内置偏光片与彩膜基板和阵列基板的位置结构,具体的是将彩膜基板直接制作在内置偏光片的结构,因此,对于所述阵列基板的结构就不一一赘述了。
如图6所示,本发明还提供了一种所述的液晶面板1的制作方法,包括步骤S10)- 步骤S40)。
如图7或图8,同时参见图2-图5所示,S10)制作内置偏光片,具体包括步骤S101)- S107)以及步骤S110)。其中,S101) 提供一基板210,所述基板210所用材料为聚酰亚胺或玻璃,即所述基板210为聚酰亚胺基板或玻璃基板;所述基板210的厚度为0.1-1mm。S102) 沉积第一无机层220于所述基板210的一面,所述第一无机层220所用材料为材料分别包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种。本实施例中,所述第一无机层220所用材料选择氧化硅。S103) 沉积金属线栅层230于所述第一无机层220上,所述金属线栅层230的材料包括铝、铜、银、铬、金及镍中的至少一种。本实施例中,所述金属线栅层230所用选择铝。S104) 沉积第二无机层210于所述金属线栅层230上,所述第二无机层240所用材料为材料分别包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种。本实施例中,所述第一无机层220所用材料选择氧化硅。S105)涂布形成一层光阻层6于所述第二无机层210上;S106) 提供纳米压印模板7,采用所述纳米压印模板7纳米压印所述光阻层6,由所述光阻层6得到光阻图案60,所述光阻图案60具有并列间隔的多条光阻条610。S107)以所述光阻图案60为遮蔽层,对所述第二无机层240和金属线栅层230进行蚀刻,对应所述多条光阻条610在金属线栅层230上和第二无机层240上分别蚀刻出多条并列间隔的金属线231和多条并列间隔的无机线241,去除所述光阻图案60,所述基板210、所述金属线栅层230和所述金属线栅层230两侧的所述第一无机保护层、所述第二无机保护层共同构成内置偏光片20。
参见图7和图8,在制作内置偏光片步骤S10)中,还包括步骤S110)薄化处理所述基板210,使所述基板的厚度在0.1-1mm之间。薄化处理所述基板210可以选择在提供一基板210之前进行,也可以在步骤S107)之后进行。
S20)提供一阵列基板50,组装所述阵列基板50和所述内置偏光片20。一般情况下,常见的所述阵列基板50由上至下依次包括阻隔层、有源层、第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层、介电层、阳极、像素限定层、发光层等。具体的,所述内置偏光片20中的第二无机层240朝向所述阵列基板50的发光层。在所述步骤S20)中还包括在所述内置偏光片20朝向所述阵列基板50的一侧形成间隔物层40。
S30) 制作彩膜基板10于所述内置偏光片20的所述基板210上,在所述内置偏光片20中的所述基板210远离所述第一无机层220的一侧直接制作所述彩膜基板10。具体的,在所述步骤S30)中包括在所述基板210远离所述第一无机层220的一侧制作黑色矩阵层110和量子点彩色滤光片120以及在所述量子点彩色滤光片120上形成封装层130;所述封装层130需满足耐水氧性,对水汽和氧气的透过率应小于1×10 -2。同时,所述封装层130具备一定的硬度,以保护量子点彩色滤光片120。一般来说,所述封装层130所用材料可以为聚乙烯吡咯烷酮或聚甲基丙烯酸甲酯,其厚度为0.5μm以上。
S40) 填充液晶于所述彩膜基板10与所述阵列基板50之间,形成液晶层30。具体的,将液晶面板1放到真空室,然后对液晶面板1抽真空,籍助大气压力灌入液晶,而液晶是一种介于固体和液体之间的化合物质,具有规则分子排列的特性。
本实施例中的量子点彩色滤光片120位于外层,通过所述封装层130可实现对于量子点彩色滤光片120的保护。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种液晶面板,其包括
    彩膜基板;
    阵列基板,与所述彩膜基板相对设置;以及
    内置偏光片,包括
    基板,覆于所述彩膜基板朝向所述阵列基板的一面;
    第一无机层,覆于所述基板上;
    金属线栅层,覆于所述第一无机层上,所述金属线栅层中具有若干相互平行的金属线;
    第二无机层,具有若干条相互平行的无机线;每一所述无机线对应的覆于一所述金属线上。
  2. 根据权利要求1所述的液晶面板,其中,所述基板所用材料为聚酰亚胺或玻璃;所述基板的厚度为0.1-1mm。
  3. 根据权利要求1所述的液晶面板,其中,所述彩膜基板包括
    量子点彩色滤光片,设于所述基板远离所述第一无机层的一侧;以及
    封装层,覆于所述量子点彩色滤光片上;所述封装层对水汽和氧气的透过率小于1×10 -2
  4. 根据权利要求1所述的液晶面板,其还包括
    液晶层,设于所述阵列基板与所述彩膜基板之间;以及
    间隔物层,设于所述内置偏光片朝向所述阵列基板的一侧。
  5. 根据权利要求1所述的液晶面板,其中,所述金属线栅层的高度为180-250nm,相邻两根所述金属线之间的间距为60-80nm。
  6. 根据权利要求1所述的液晶面板,其特征在于,所述金属线栅层的材料包括铝、铜、银、铬、金及镍中的至少一种;所述第一无机层和第二无机层所用材料为材料分别包括氧化硅、氮化硅、氧化铝、氮氧化硅及氧化铪中的一种或多种。
  7. 一种液晶面板的制作方法,其包括以下步骤:
    制作内置偏光片,包括以下步骤:
    提供一基板;
    沉积第一无机层于所述基板的一面;
    沉积金属线栅层于所述第一无机层上;
    沉积第二无机层于所述金属线栅层上;
    涂布形成一层光阻层于第二无机层上;
    提供纳米压印模板,采用所述纳米压印模板纳米压印所述光阻层,由所述光阻层得到光阻图案,所述光阻图案具有并列间隔的多条光阻条;以所述光阻图案为遮蔽层,蚀刻所述第二无机层和金属线栅层,对应的所述多条光阻条在所述金属线栅层上和第二无机层上分别蚀刻出多条并列间隔的金属线和多条并列间隔的无机线,去除所述光阻图案,所述基板、所述金属线栅层和所述金属线栅层两侧的所述第一无机保护层、所述第二无机保护层共同构成内置偏光片;
    提供阵列基板,并组装所述阵列基板和所述内置偏光片,其中所述第二无机层朝向所述阵列基板;
    制作彩膜基板于所述内置偏光片的所述基板上。
  8. 根据权利要求7所述的内置偏光片的制作方法,其中,在制作内置偏光片步骤中,还包括薄化处理所述基板,使所述基板的厚度在0.1-1mm之间。
  9. 根据权利要求7所述的液晶面板的制作方法,其中,在组装所述阵列基板和所述内置偏光片的步骤中,包括:在所述第二无机层朝向所述阵列基板的一侧形成间隔物层。
  10. 根据权利要求7所述的液晶面板的制作方法,其中,
    在制作彩膜基板步骤中,包括
    制作量子点彩色滤光片于所述基板远离所述第一无机层的一侧;
    制作封装层于所述量子点彩色滤光片上,所述封装层对水汽和氧气的透过率应小于1×10 -2
    在制作彩膜基板步骤之后,还包括以下步骤:
    填充液晶于所述彩膜基板与所述阵列基板之间,形成液晶层;
    制作量子点彩色滤光片于所述基板远离所述第一无机层的一侧。
PCT/CN2018/121356 2018-10-30 2018-12-15 液晶面板及其制作方法 WO2020087682A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/497,631 US11067845B2 (en) 2018-10-30 2018-12-15 Liquid crystal panel and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811279025.4A CN109375411B (zh) 2018-10-30 2018-10-30 液晶面板及其制作方法
CN201811279025.4 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020087682A1 true WO2020087682A1 (zh) 2020-05-07

Family

ID=65390536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121356 WO2020087682A1 (zh) 2018-10-30 2018-12-15 液晶面板及其制作方法

Country Status (3)

Country Link
US (1) US11067845B2 (zh)
CN (1) CN109375411B (zh)
WO (1) WO2020087682A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375411B (zh) * 2018-10-30 2023-10-31 武汉华星光电技术有限公司 液晶面板及其制作方法
CN111785170B (zh) * 2020-07-16 2022-04-29 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160124265A1 (en) * 2014-10-30 2016-05-05 Samsung Display Co., Ltd. Polarizer, method for manufacturing polarizer and display panel
US20180017829A1 (en) * 2016-07-14 2018-01-18 Samsung Display Co., Ltd. Liquid crystal display device and method of manufacturing the same
CN107884978A (zh) * 2016-09-30 2018-04-06 三星显示有限公司 显示装置及显示装置的制造方法
CN107918227A (zh) * 2016-10-07 2018-04-17 三星显示有限公司 颜色转换显示面板和包括其的显示装置
CN108535904A (zh) * 2018-05-23 2018-09-14 武汉华星光电技术有限公司 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000009884A (ko) * 1998-07-29 2000-02-15 윤종용 액정표시장치용 편광판 형성방법
KR100904520B1 (ko) * 2002-10-31 2009-06-25 엘지디스플레이 주식회사 액정표시장치용 컬러필터 기판과 그 제조방법
KR20070037864A (ko) * 2005-10-04 2007-04-09 엘지.필립스 엘시디 주식회사 액정 표시패널과 그의 제조방법
KR101771138B1 (ko) * 2011-05-13 2017-08-25 삼성전자주식회사 와이어 그리드 편광자, 상기 와이어 그리드 편광자의 제조 방법 및 상기 와이어 그리드 편광자를 포함하는 디스플레이 패널
CN102654675A (zh) * 2011-08-19 2012-09-05 京东方科技集团股份有限公司 彩色滤光片及其制作方法
JP2013104992A (ja) * 2011-11-14 2013-05-30 Seiko Epson Corp 偏光素子、偏光素子の製造方法、プロジェクター、液晶装置、および電子機器
KR101336097B1 (ko) * 2012-05-11 2013-12-03 연세대학교 산학협력단 와이어 그리드 편광자를 구비하는 액정 디스플레이 장치
US9599869B2 (en) * 2013-01-23 2017-03-21 Samsung Display Co., Ltd. Display apparatus
KR102069179B1 (ko) * 2013-06-26 2020-02-12 삼성디스플레이 주식회사 편광 소자, 이를 포함하는 표시 패널 및 이의 제조 방법
KR102241418B1 (ko) * 2014-09-12 2021-04-19 삼성디스플레이 주식회사 와이어 그리드 편광자 및 이의 제조방법
KR101691340B1 (ko) * 2014-10-16 2016-12-29 도판 인사츠 가부시키가이샤 양자 도트 보호 필름, 그것을 사용한 양자 도트 필름 및 백라이트 유닛
JP6117828B2 (ja) * 2015-01-08 2017-04-19 デクセリアルズ株式会社 無機偏光板
KR102269877B1 (ko) * 2015-03-18 2021-06-29 삼성디스플레이 주식회사 광경화성 수지 조성물 및 이를 이용한 미세 패턴의 형성 방법
US10818652B2 (en) * 2016-07-15 2020-10-27 Samsung Display Co., Ltd. Display device and manufacturing method thereof
CN106526952A (zh) * 2016-12-26 2017-03-22 南京中电熊猫液晶显示科技有限公司 彩膜基板及其制造方法、以及液晶显示器
WO2018147279A1 (ja) * 2017-02-09 2018-08-16 Jsr株式会社 反射偏光層、波長変換層及び液晶表示装置
KR102282060B1 (ko) * 2017-05-23 2021-07-27 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN107632449A (zh) * 2017-10-10 2018-01-26 青岛海信电器股份有限公司 一种量子点液晶显示面板及其制作方法
CN109375411B (zh) * 2018-10-30 2023-10-31 武汉华星光电技术有限公司 液晶面板及其制作方法
CN209446923U (zh) * 2018-10-30 2019-09-27 武汉华星光电技术有限公司 液晶面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160124265A1 (en) * 2014-10-30 2016-05-05 Samsung Display Co., Ltd. Polarizer, method for manufacturing polarizer and display panel
US20180017829A1 (en) * 2016-07-14 2018-01-18 Samsung Display Co., Ltd. Liquid crystal display device and method of manufacturing the same
CN107884978A (zh) * 2016-09-30 2018-04-06 三星显示有限公司 显示装置及显示装置的制造方法
CN107918227A (zh) * 2016-10-07 2018-04-17 三星显示有限公司 颜色转换显示面板和包括其的显示装置
CN108535904A (zh) * 2018-05-23 2018-09-14 武汉华星光电技术有限公司 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法

Also Published As

Publication number Publication date
US20200409209A1 (en) 2020-12-31
CN109375411A (zh) 2019-02-22
US11067845B2 (en) 2021-07-20
CN109375411B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2019184769A1 (zh) 液晶显示面板、其制作方法及显示装置
US9599859B2 (en) Liquid crystal lens panel and method of manufacturing the same
WO2017008370A1 (zh) 阵列彩膜集成式液晶显示面板的制作方法及其结构
WO2016086539A1 (zh) 液晶面板及其制作方法
WO2019019618A1 (zh) 阵列基板及其制备方法、显示面板、显示装置
WO2017008369A1 (zh) Coa型液晶显示面板及其制作方法
JP4615510B2 (ja) 液晶表示装置用カラーフィルター基板及びその製造方法
WO2014190727A1 (zh) 阵列基板及其制造方法、显示装置
KR20170079529A (ko) 유기 발광 표시 장치 및 이의 제조 방법
CN106842687B (zh) 彩膜基板及其制作方法
WO2015081732A1 (zh) 彩膜基板及其制作方法、显示装置
WO2019223203A1 (zh) 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法
EP3505981B1 (en) Display device and filter thereof
JP2005266011A (ja) カラーフィルタ基板及びそれを用いた表示装置
WO2015085772A1 (zh) 基板的制作方法
WO2020220554A1 (zh) 有机发光二极管显示屏及其制作方法
WO2014131238A1 (zh) 阵列基板及其制作方法、显示面板及其制作方法
WO2014015617A1 (zh) 阵列基板及显示装置
WO2020087682A1 (zh) 液晶面板及其制作方法
US20050019679A1 (en) [color filter substrate and fabricating method thereof]
JP2005301268A (ja) カラーフィルター基板、これを有する表示装置及びこれの製造方法。
CN209446923U (zh) 液晶面板
WO2017031779A1 (zh) 阵列基板的制作方法及阵列基板
TWI225941B (en) Color filter structure
CN109037485B (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938598

Country of ref document: EP

Kind code of ref document: A1