WO2014187104A1 - 显示面板及其制造方法、显示装置 - Google Patents

显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2014187104A1
WO2014187104A1 PCT/CN2013/088723 CN2013088723W WO2014187104A1 WO 2014187104 A1 WO2014187104 A1 WO 2014187104A1 CN 2013088723 W CN2013088723 W CN 2013088723W WO 2014187104 A1 WO2014187104 A1 WO 2014187104A1
Authority
WO
WIPO (PCT)
Prior art keywords
array substrate
display panel
spacer
substrate
color filter
Prior art date
Application number
PCT/CN2013/088723
Other languages
English (en)
French (fr)
Inventor
张莹
李京鹏
李鑫
唐磊
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/387,665 priority Critical patent/US20160139444A1/en
Publication of WO2014187104A1 publication Critical patent/WO2014187104A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes

Definitions

  • Display panel manufacturing method thereof, and display device
  • Embodiments of the present invention relate to a display panel, a method of manufacturing the same, and a display device. Background technique
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • a conventional TFT-LCD display panel is usually formed by pairing an array substrate and a color filter substrate with a liquid crystal injected therein.
  • the planar structure of the array substrate is as shown in FIG. 1, and includes a plurality of pixel units arranged in a matrix defined by horizontally intersecting gate lines 11 and data lines 12, and the intersection of the gate lines 11 and the data lines 12 in each pixel unit
  • a thin film transistor TFT13 is disposed at a position, a gate 131 of the TFT 13 is formed on the gate line 11, a source 132 is connected to the data line 12, and a drain 133 is connected to the first transparent electrode 14.
  • 2 shows a cross-sectional structure of the display panel taken along line ⁇ , - ⁇ in FIG. 1.
  • Each pixel unit further includes a second transparent electrode 15 and a source/drain metal layer and gate of the TFT 13 as shown in FIG.
  • a passivation layer 18 is provided between the first transparent electrode 14 and the second transparent electrode 15.
  • a color film substrate is disposed above the array substrate. As shown in FIG. 2, a black matrix 21 and a color filter structure 22 are formed on the color filter substrate, and the two or more color filter structures 22 are provided with a columnar shape at intervals.
  • a spacer 20 for maintaining a distance between the array substrate and the color filter substrate.
  • the top end of the column spacer 20 is in contact with the TFT 13, so that since the contact position of the column spacer 20 with the array substrate is above the TFT 13, it belongs to the highest position in the array substrate, and the panel is squeezed. Or when impacting, the column spacer 20 will automatically move to a lower position, and it is difficult to return to the original position, which may cause light leakage, which seriously restricts the quality of the liquid crystal panel and lowers the liquid crystal display device. The display effect. Summary of the invention
  • Embodiments of the present invention provide a display panel, a manufacturing method thereof, and a display device, to avoid The light leakage phenomenon occurs when the display panel is squeezed and impacted, thereby improving the quality of the display panel and improving the display effect.
  • an embodiment of the present invention provides a display panel, including: an array substrate including horizontally intersecting gate lines and data lines, an intersection of the gate lines and the data lines including a thin film transistor; a color filter substrate, a pair of the array substrate; and a spacer between the array substrate and the color filter substrate, wherein a contact surface of the spacer and the array substrate is outside a region where the thin film transistor is located The gate line region and/or the data line region.
  • an embodiment of the invention provides a display device comprising a display panel as described above.
  • a method for manufacturing a display panel includes: fabricating an array substrate, the array substrate includes horizontally and vertically intersecting gate lines and data lines, and the intersection of the gate lines and the data lines
  • the region includes a thin film transistor TFT; the color filter substrate and the array substrate are formed into a box, and the spacer substrate and the color filter substrate have a spacer therebetween, wherein a contact surface of the spacer and the array substrate The gate line region and/or the data line region outside the TFT region.
  • 1 is a plan view showing a structure of a conventional pixel unit
  • Figure 2 is a cross-sectional view of the conventional display panel taken along line A, -A of Figure 1;
  • FIG. 3 is a schematic vertical cross-sectional structural view of a display panel according to an embodiment of the present invention.
  • FIG. 4 is a plan structural view of an array substrate according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a concave structure according to an embodiment of the present invention.
  • FIG. 6 is another cross-sectional view of a concave structure according to an embodiment of the present invention.
  • FIG. 7 is a plan structural view of a color filter substrate according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention provides a display panel, as shown in FIG. 3, which may include an array substrate 30 and a color filter substrate 31, and a spacer 20 between the array substrate 30 and the color filter substrate 31.
  • the array substrate 30 may include laterally intersecting gate lines 11 and data lines 12, and the intersection regions 40 of the gate lines 11 and the data lines 12 may include a thin film transistor TFT13.
  • the contact surface 50 of the spacer 20 and the array substrate 30 may be located in the area of the gate line 11 and/or the data line 12 outside the area of the TFT 13.
  • the spacers 50 may be respectively formed on the color filter substrate.
  • the spacers 20 are formed on the surface of the color filter substrate 31 as an example.
  • the spacers 20 may be formed on the color film substrate 31 corresponding to the TFT13 region on the array substrate 30.
  • the surface of the black matrix 21 of the area of the gate line 11 and/or the area of the data line 12, since the color filter substrate 31 is structurally simple with respect to the array substrate 30, such a spacer 20 is designed to effectively avoid the fabrication of the spacer 20
  • the spacers 20 can also be selectively formed on the surface of the array substrate 30, which is not limited by the embodiment of the present invention.
  • the spacer may be a structure integrally formed with the black matrix of the color filter substrate, which is not limited herein.
  • a display panel includes an array substrate and a color filter substrate, and a spacer between the array substrate and the color filter substrate, wherein the array substrate includes horizontally and vertically intersecting gate lines and data lines.
  • the intersection of the gate line and the data line includes a thin film transistor TFT.
  • the contact surface of the spacer and the array substrate is located in a gate line region and/or a data line region outside the TFT region.
  • the spacer since the contact position of the spacer and the array substrate is located in the gate line region and/or the data line region of the thickness, when the display panel is pressed or impacted, the spacer The positional movement does not occur due to the step difference existing on the array substrate, thereby effectively preventing the light leakage caused by the positional movement of the spacer when the display panel is squeezed and impacted, thereby improving the quality of the display panel and significantly improving the quality of the display panel. display effect.
  • the contact surface 50 of the spacer 20 and the array substrate 30 is located in the area of the gate line 11 and/or the data line 12 outside the area of the TFT 13, and may, for example, include the spacer 20 and the array substrate.
  • the contact surface 50 of 30 is only located in the area where the gate line 11 is located, or the contact surface 50 is located only The area where the data line 12 is located, or the contact surface 50 may also be located at the intersection of the gate line 11 and the data line 12.
  • the contact surface 50 of the spacer 20 with the array substrate 30 may be located at an intersection of the gate line 11 and the data line 12.
  • the intersection region 40 of the gate line 11 and the data line 12 includes the thin film transistor TFT13, the contact surface of the spacer 20 and the array substrate 30 is located at the intersection of the gate line 11 and the data line 12.
  • the area refers to a non-TFT area in which the contact surface 50 of the spacer 20 and the array substrate 30 is located in the intersection area of the gate line 11 and the data line 12.
  • the area of the contact surface 50 is limited by the line width of the gate line 11 and the data line 12 when the contact surface 50 is separately located in the gate line 11 region or the data line 12 region, when the contact surface 50 is located on the gate line 11 and When the intersection area of the data line 12 is increased, the area of the contact surface 50 is relatively increased, so that the support area of the spacer can be increased without affecting the aperture ratio of the display panel, thereby enabling better performance.
  • the role of support is provided.
  • the array substrate 30 may further include a concave structure 60 located in the area of the gate line 11 and/or the data line 12; the spacer 20 is located in the concave structure 60.
  • a concave structure 60 when the display panel is pressed, the movement of the spacer can be further restricted, thereby avoiding the phenomenon of light leakage of the display panel.
  • the contact surface 50 of the spacer 20 and the array substrate 30 is located at the intersection of the gate line 11 and the data line 12, and the concave structure 60 is along the CC in FIG.
  • a cross-sectional view of the line can be as shown in FIG. 5, wherein one side of the concave structure 60 formed by the mask and the etching process includes the second transparent electrode 15, the passivation layer 18, the data line 12, and the gate insulating layer 16, respectively. The other side includes a second transparent electrode 15, a passivation layer 18, a gate insulating layer 16, and a gate line 11; the concave structure 60 is along DD in FIG. 4, and a cross-sectional view of the line can be as shown in FIG.
  • One side of the concave structure 60 formed by the mask and the etching process includes a second transparent electrode 15, a passivation layer 18, a data line 12, and a gate insulating layer 16, respectively; the other side includes a second transparent electrode 15, respectively, and is passivated.
  • the layer 18 and the gate insulating layer 16 it can be seen that a small portion of the intersection position can be etched away at the intersection of the gate line 11 and the data line 12 to form the concave structure 60, thereby not affecting the signal line electrical connection.
  • pixel open Concave structure 60 is formed having a predetermined depth on the basis of the rate.
  • the bottom of the concave structure 60 may be a transparent substrate 10.
  • the concave structure 60 is formed by an etching process at a position where the contact surface 50 of the spacer 20 and the array substrate 30 is located. Therefore, the concave structure 60 is different due to the etching depth. The level of the bottom of the bottom is also different. The gate insulating layer 16 and the passivation layer 18 may not be removed or partially removed, for example, during the etching process. In this way, the person skilled in the art can make the concave structure 60 conforming to the specific depth requirement according to the actual situation during the process of performing the processing.
  • the bottom of the concave structure 60 is the transparent substrate 10, so that the step difference between the concave structure 60 and the peripheral structure can be minimized, and the concave portion is effectively limited. Movement of the spacer 20 in the structure 60.
  • the shape of the opening of the concave structure may be a diamond shape. In this way, the intersection area of the gate line 11 and the data line 12 can be more fully utilized.
  • the spacer can be made. The area of the contact surface 50 of the object 20 and the array substrate 30 is maximized. In this way, the support area of the spacer 20 is increased while effectively restricting the movement of the spacer 20. Thereby, the pixel aperture ratio is ensured while further restricting the movement of the spacer and enhancing the supporting effect of the spacer 20.
  • the side length of the diamond may be 5-8 ⁇ m, so that when the four angles of the diamond are 90 degrees, that is, when the opening shape of the structure 60 is square, the diagonal length of the square may be 7 -10 ⁇ m, thereby maximizing the area of the contact surface 50 of the spacer 20 and the array substrate 30, and more effectively enhancing the supporting effect of the spacer 20.
  • the above description is only an example of the position and shape of the concave structure 60.
  • the concave structure 60 can be adjusted according to the actual structure of the substrate, which is not limited in the embodiment of the present invention.
  • the vertical cross section of the spacer 20 is an isosceles trapezoidal structure.
  • the long side of the isosceles trapezoid can be in contact with the color filter substrate 31, and the short side of the isosceles trapezoid can be in contact with the array substrate 30; or, the long side of the isosceles trapezoid can be in contact with the array substrate 30, isosceles trapezoidal The short side may be in contact with the color filter substrate 31;
  • the long side of the isosceles trapezoid is parallel to the short side, and the length of the long side is greater than or equal to the length of the short side.
  • the spacers 20 can be formed on the color filter substrate 31 or on the array substrate 30. This makes the production process more flexible.
  • the spacer 20 can be formed on the color filter substrate 31. In this way, the influence of the fabrication of the spacers 20 on the pixel structure on the array substrate 30 can be effectively avoided, and at the same time, the process can be finished to improve the production efficiency.
  • the vertical cross section of the spacer 20 is an isosceles trapezoid, and such an isosceles trapezoidal structure uniformly distributes the force received by the spacer 20 to both sides of the trapezoid, thereby enabling The support effect of the spacer 20 is raised.
  • the upper and lower faces of the spacer 20 may adopt any pattern such as a circle, a quadrangle or other polygons.
  • the spacer 20 can adopt the same shape as the opening of the concave structure 60, and the opening size is slightly smaller, so that the spacer 20 can be better restricted. The movement.
  • the long side of the isosceles trapezoid may be 1-20 ⁇ m, and the short side of the isosceles trapezoid may be 1-10 ⁇ .
  • the display panel provided by the embodiment of the present invention can be applied to Twisted Nematic (Twisted Nematic), IPS (In-Plane Switching), FFS (Fringe Field Switching), and FFS (Fringe Field Switching).
  • Twisted Nematic Transmission Nematic
  • IPS In-Plane Switching
  • FFS Ringe Field Switching
  • FFS Field Switching
  • ADS ADvanced Super Dimension Switch
  • the ADS mode is a planar electric field wide viewing angle core technology, and its core technical characteristics are described as: forming an electric field generated by the edge of the slit electrode in the same plane and an electric field generated between the slit electrode layer and the plate electrode layer to form a multi-dimensional electric field, All the aligned liquid crystal molecules between the slit electrodes in the liquid crystal cell and directly above the electrodes can be rotated, thereby improving the liquid crystal working efficiency and increasing the light transmission efficiency.
  • ADS mode switching technology can improve the picture quality of TFT-LCD products, with high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, and no push mura. . Improvements to ADS technology for different applications include high-transmittance I-ADS technology, high aperture ratio H-ADS and high-resolution S-ADS.
  • the liquid crystal display panel structure in the ADS mode is taken as an example, wherein the array substrate 30 includes a planar first transparent electrode 14 and a strip-shaped second layer disposed in different layers.
  • the transparent electrode 15 has a larger viewing angle and a higher contrast ratio than the TN type liquid crystal display device.
  • the spacer 20 may be formed on the surface of the color filter substrate 31, and the spacer 20 may be formed on the gate line 11 region and/or data outside the region of the TFT 13 on the array substrate 30 of the color filter substrate 31.
  • the surface of the black matrix 21 in the region of the line 12 for example, when the concave structure on the array substrate 30 is a diamond-shaped structure at the intersection of the gate line 11 and the data line 12, the spacer 20 may be recessed on the array substrate 30
  • the spacer 20 can also be disposed in a rhombic structure disposed at a position where the gate line 11 and the data line 12 intersect.
  • the color film substrate 31 is structurally simple with respect to the array substrate 30, such a spacer 20 is designed to effectively avoid the influence of the spacer material on the pixel structure on the array substrate.
  • the shape of the upper and lower bottom surfaces of the spacer 20 causes the shape of the pixel opening region 70 in the color filter substrate 31 to change correspondingly, when the spacer 20 is up and down.
  • the shape of the bottom surface is a rhombus, the upper left corner of the pixel opening area 70 corresponding to the position of the spacer 20 is blocked by a part of the diamond.
  • the contact position of the spacer 20 with the array substrate 30 is located in the area of the gate line 11 and/or the data line 12 of which the thickness is uniform, when the display panel is pressed or impacted, the spacer 20 does not move in position due to the step difference existing on the array substrate 30, thereby effectively preventing light leakage caused by the positional movement of the spacer when the display panel is pressed and impacted, thereby improving the display panel. Quality, significantly improved display.
  • Embodiments of the present invention provide a display device including any of the display panels described above.
  • the display device may be: a liquid crystal panel, an electronic paper, an OLED panel, a liquid crystal television, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, and the like, or any display product or component.
  • the display panel has the same advantages as the display panel provided by the foregoing embodiments of the present invention. Since the display panel has been described in detail in the foregoing embodiments, details are not described herein again.
  • a display device provided by an embodiment of the invention includes a display panel.
  • the display panel includes an array substrate and a color filter substrate, and a spacer between the array substrate and the color filter substrate, the array substrate includes horizontally intersecting gate lines and data lines, and the intersection of the gate lines and the data lines
  • a thin film transistor TFT is included.
  • the contact surface of the spacer and the array substrate is located in a gate line region and/or a data line region outside the TFT region.
  • the spacer since the contact position of the spacer and the array substrate is located in the gate line region and/or the data line region of the thickness, when the display panel is pressed or impacted, the spacer The positional movement does not occur due to the step difference existing on the array substrate, thereby effectively preventing the light leakage caused by the positional movement of the spacer when the display panel is squeezed and impacted, thereby improving the quality of the display panel and significantly improving the quality of the display panel. display effect.
  • the embodiment of the invention provides a method for manufacturing a display panel. Referring to FIG. 3 and FIG. 4, the method includes:
  • the array substrate 30 is fabricated.
  • the array substrate 30 may include laterally intersecting gate lines 11 and data lines 12, and the intersection regions 40 of the gate lines 11 and the data lines 12 may include a thin film transistor TFT13.
  • the color film substrate 31 and the array substrate 30 are formed into a box, the array substrate 30 and the color film substrate 31 may have a spacer 20;
  • the contact surface 50 of the spacer 20 and the array substrate 30 may be located outside the area of the TFT 13 The gate line 11 area and/or the data line 12 area.
  • the display panel includes an array substrate and a color filter substrate, and a spacer between the array substrate and the color filter substrate, the array substrate includes horizontally intersecting gate lines and data lines, and the intersection of the gate lines and the data lines A thin film transistor TFT is included.
  • the contact surface of the spacer and the array substrate is located in a gate line region and/or a data line region outside the TFT region.
  • the spacer since the contact position of the spacer and the array substrate is located in the gate line region and/or the data line region of the thickness, when the display panel is pressed or impacted, the spacer The positional movement does not occur due to the step difference existing on the array substrate, thereby effectively avoiding the light leakage caused by the positional movement of the spacer by the display panel, thereby improving the quality of the display panel and significantly improving the display effect.
  • the display panel provided by the embodiment of the present invention can be applied to a liquid crystal display product of various modes such as TN, IPS, FFS, and ADS, which is not limited by the embodiment of the present invention.
  • fabricating the array substrate 30 includes:
  • a surface of the gate insulating layer 16 is formed by a patterning process including a pattern of the active layer 17;
  • FIG. 3 is an example of the structure of the ADS product. Therefore, the array substrate 30 has two transparent electrodes, including: a first transparent electrode 14 and a second transparent electrode 15.
  • the step of fabricating the array substrate 30 there are more than four methods for fabricating the concave structure, for example, the above step S205, and the mask plate prepared in advance may be used to make the bending as shown in FIG. Part of the gate line 11 and the data line 12, such that the gate line 11 and the data line 12
  • the intersection area forms a concave structure, and of course, there are many ways to form a concave structure.
  • a display panel having a concave structure in the area of the gate line 11 or the data line 12 should be within the protection scope of the embodiment of the present invention.
  • the array substrate 30 having the concave structure can be completed, so that the spacer 20 can be placed in the concave structure, thereby restricting the movement of the spacer 20 to avoid light leakage of the display panel, for example, as shown in FIG.
  • the bottom of the concave structure 60 may be a transparent substrate 10.
  • the concave structure 60 is formed by an etching process at a position where the contact surface 50 of the spacer 20 and the array substrate 30 is located. Therefore, the level of the bottom of the concave structure 60 is different due to the difference in etching depth. The location is also different. For example, the gate insulating layer 16 and the passivation layer 18 may not be removed or partially removed during the etching process. In this way, the person skilled in the art can make the concave structure 60 conforming to the specific depth requirement according to the actual situation during the processing.
  • the bottom of the concave structure 60 is the transparent substrate 10, so that the step difference between the concave structure 60 and the peripheral structure can be minimized, and the concave portion is effectively limited. Movement of the spacer 20 in the structure 60.
  • the shape of the opening of the concave structure may be a diamond shape.
  • the intersection area of the gate line 11 and the data line 12 can be more fully utilized.
  • the spacer can be made.
  • the area of the contact surface 50 of the object 20 and the array substrate 30 is maximized.
  • the support area of the spacer 20 is increased while effectively restricting the movement of the spacer 20.
  • the pixel aperture ratio is ensured while further restricting the movement of the spacer and enhancing the supporting effect of the spacer 20.
  • the side length of the diamond can be 5-8 ⁇ , so that when the four angles of the diamond are 90 degrees, when the opening shape of the structure is square, the diagonal length of the square can be 7-10 ⁇ Thereby, the area of the contact surface 50 of the spacer 20 and the array substrate 30 is maximized, and the supporting effect of the spacer 20 is more effectively improved.
  • the above description is only an example of the position and shape of the concave structure.
  • the concave structure can be adjusted accordingly according to the actual structure of the substrate, which is not limited by the embodiment of the present invention.
  • the vertical cross section of the spacer 20 is an isosceles trapezoidal structure.
  • the long side of the isosceles trapezoid can be in contact with the color filter substrate 31, and the short side of the isosceles trapezoid can be in contact with the array substrate 30; or, the long side of the isosceles trapezoid can be in contact with the array substrate 30, the isosceles ladder
  • the short side of the shape may be in contact with the color filter substrate 31;
  • the long side of the isosceles trapezoid is parallel to the short side, and the length of the long side is greater than or equal to the length of the short side.
  • the spacers 20 can be formed on the color filter substrate 31 or on the array substrate 30. This makes the production process more flexible.
  • the spacer 20 can be formed on the color filter substrate 31. In this way, the influence of the fabrication of the spacers 20 on the pixel structure on the array substrate 30 can be effectively avoided, and at the same time, the process can be finished to improve the production efficiency.
  • the vertical cross section of the spacer 20 is an isosceles trapezoid, and such an isosceles trapezoidal structure uniformly disperses the force applied by the spacer 20 to both sides of the trapezoid, thereby enabling the spacer to be lifted.
  • the support effect of the object 20 may be of any shape such as a circle, a quadrangle or other polygons.
  • the spacer 20 can adopt the same shape as the opening of the concave structure 60, and the opening size is slightly smaller, so that the spacer 20 can be better restricted. The movement.
  • the long side of the isosceles trapezoid may be 1-20 ⁇ m, and the short side of the isosceles trapezoid may be 1-10 ⁇ m.
  • FIG. 3 the manufacturing method of the array substrate 30 will be described in detail by taking an ADS display panel as an example.
  • a metal film having a thickness of 1000-7000 A on the transparent substrate 10 for example, by magnetron sputtering.
  • a pattern including the gate line 11 and the gate electrode 131 is formed by the first masking and etching process.
  • a gate insulating layer 16 having a thickness of 1000-6000 A on a substrate of the above structure for example, by a method of chemical vapor deposition, and forming a pattern including the gate insulating layer 16.
  • an active layer material is formed (for example, by a deposition method), and a pattern including the active layer 17 is formed by a second masking and etching process.
  • a transparent conductive electrode material for example, by using a deposition method
  • the first transparent electrode 14 by a third masking and etching process
  • the material of the first transparent electrode 14 It may be ITO, and the thickness of the first transparent electrode 14 may be 100-1000A.
  • a source/drain material for example, by using a deposition method
  • a drain of the data line 12 and the TFT through a fourth mask and an etching process by using a reticle of the source and the drain.
  • a passivation layer material is formed (for example, by a deposition method) to form a pattern including the passivation layer 18.
  • the recessed structure mask is used in the intersection with the gate line 11, and the gate insulating layer 16 and the passivation layer 18 are completely removed by the fifth mask and etching process to form the Concave structure 60.
  • the opening of the concave structure 60 is diamond-shaped as shown in FIG.
  • the spacer The object 20 does not move in position due to the step difference existing on the array substrate 30, thereby effectively avoiding light leakage caused by the positional movement of the spacer 20 when the display panel is pressed and impacted, thereby improving the quality of the display panel. , significantly improved the display.
  • the patterning process may include only a photolithography process, or may include a photolithography process and an etching process, and may also include other processes for forming a predetermined pattern, such as printing, inkjet, etc.; Refers to a process of forming a pattern using a photoresist, a mask, an exposure machine, or the like, including a photoresist coating, exposure, development, and the like.
  • the corresponding patterning process can be selected in accordance with the structure formed in the embodiments of the present invention.
  • the display panel includes an array substrate and a color filter substrate, and a spacer between the array substrate and the color filter substrate, the array substrate includes a horizontal and vertical cross a gate line and a data line, the intersection of the gate line and the data line including a thin film transistor TFT.
  • the contact surface of the spacer and the array substrate is located in a gate line region and/or a data line region outside the TFT region.
  • the spacer since the contact position of the spacer and the array substrate is located in the gate line region and/or the data line region of the thickness, when the display panel is pressed or impacted, the spacer The positional movement does not occur due to the step difference existing on the array substrate, thereby effectively avoiding the light leakage caused by the positional movement of the spacer by the display panel, thereby improving the quality of the display panel and significantly improving the display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板包括阵列基板,其包括横纵交叉的栅线和数据线以及置于栅线和数据线的交叉区域的薄膜晶体管;彩膜基板,与阵列基板对盒;以及隔垫物,位于阵列基板和彩膜基板之间,其中隔垫物与阵列基板的接触面位于薄膜晶体管区域之外的栅线区域和/或数据线区域。还披露了一种显示面板的制造方法和包括显示面板的显示装置。

Description

显示面板及其制造方法、 显示装置 技术领域
本发明的实施例涉及一种显示面板及其制造方法、 显示装置。 背景技术
随着显示技术的飞速发展,薄膜晶体管液晶显示器(TFT-LCD, Thin Film Transistor Liquid Crystal Display )作为一种平板显示装置, 因其具有体积小、 功耗低、 无辐射以及制作成本相对较低等特点, 而被越来越广泛地使用。
现有的 TFT-LCD显示面板通常是由阵列基板和彩膜基板进行对盒并在 其中注入液晶而形成的。 阵列基板的平面结构如图 1所示, 包括由横纵交叉 的栅线 11以及数据线 12限定的矩阵形式排列的多个像素单元, 在每个像素 单元中栅线 11与数据线 12的交叉位置处设置有薄膜晶体管 TFT13,该 TFT13 的栅极 131制作在栅线 11上, 源极 132与数据线 12相连接, 漏极 133连接 第一透明电极 14。图 2示出了沿图 1中 Α,-Α线剖取的显示面板的截面结构, 如图 1所示每个像素单元还包括第二透明电极 15以及位于 TFT13的源漏极 金属层与栅极金属层之间的栅极绝缘层 16和有源层 17。第一透明电极 14与 第二透明电极 15之间具有钝化层 18。阵列基板的上方具有彩膜基板,如图 2 所示, 该彩膜基板上形成有黑矩阵 21以及彩色滤光结构 22, 两个或多个彩 色滤光结构 22的间隔处均勾设置有柱状隔垫物 20,该柱状隔垫物 20用于保 持对盒后阵列基板和彩膜基板之间的距离。 图 2中,柱状隔垫物 20的顶端与 TFT13相接触, 这样一来, 由于柱状隔垫物 20与阵列基板的接触位置处于 TFT13的上方, 属于阵列基板中最高的位置, 当面板受到挤压或沖击时, 柱 状隔垫物 20会自动向较低位置移动,并且 4艮难回复到原有位置,从而会导致 漏光, 这种漏光现象严重制约了液晶面板的质量, 并降低液晶显示器件的显 示效果。 发明内容
本发明的实施例提供一种显示面板及其制造方法、 显示装置, 用以避免 显示面板受到挤压、 沖击时出现的漏光现象, 从而提高显示面板的质量, 提 升显示效果。
一方面, 本发明实施例的提供一种显示面板, 包括: 阵列基板, 包括横 纵交叉的栅线和数据线,所述栅线和所述数据线的交叉区域包括薄膜晶体管; 彩膜基板, 与所述阵列基板对盒; 以及隔垫物, 位于所述阵列基板和所述彩 膜基板之间, 其中所述隔垫物与所述阵列基板的接触面位于所述薄膜晶体管 所在区域之外的所述栅线区域和 /或所述数据线区域。
另一方面, 本发明实施例的提供一种显示装置, 包括如上所述的显示面 板。
再一方面, 本发明实施例的提供一种显示面板的制造方法, 包括: 制作 阵列基板, 所述阵列基板包括横纵交叉的栅线和数据线, 所述栅线和所述数 据线的交叉区域包括薄膜晶体管 TFT;将彩膜基板与所述阵列基板对盒成型, 所述阵列基板和所述彩膜基板之间具有隔垫物, 其中所述隔垫物与所述阵列 基板的接触面位于所述 TFT区域之外的所述栅线区域和 /或所述数据线区域。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有的像素单元的平面结构图;
图 2为沿图 1中的 A,-A线剖取的现有的显示面板的截面图;
图 3为本发明实施例提供的显示面板的垂直截面结构示意图;
图 4为本发明实施例提供的阵列基板的平面结构图;
图 5为本发明实施例提供的凹形结构的一种剖视图;
图 6为本发明实施例提供的凹形结构的另一种剖视图; 以及
图 7为本发明实施例提供的彩膜基板的平面结构图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种显示面板, 如图 3 所示, 可以包括阵列基板 30 和彩膜基板 31以及位于阵列基板 30和彩膜基板 31之间的隔垫物 20。其中, 如图 4所示,阵列基板 30可以包括横纵交叉的栅线 11和数据线 12,栅线 11 和数据线 12的交叉区域 40可以包括薄膜晶体管 TFT13。
其中, 隔垫物 20与阵列基板 30的接触面 50可以位于 TFT13区域之外 的栅线 11区域和 /或数据线 12区域。
需要说明的是,对于显示面板而言, 隔垫物 50可以分别形成于彩膜基板
31或阵列基板 30的表面。 在本发明实施例中, 均是以隔垫物 20形成于彩膜 基板 31 的表面为例进行的说明, 其中, 隔垫物 20可以形成于彩膜基板 31 对应阵列基板 30上 TFT13区域之外的栅线 11区域和 /或数据线 12区域的黑 矩阵 21的表面, 由于彩膜基板 31相对阵列基板 30结构筒单,这样一种隔垫 物 20设计可以有效避免隔垫物 20的制作对阵列基板 30上像素结构造成的影 响。 当然, 隔垫物 20同样可以选择制作在阵列基板 30的表面, 本发明实施 例对此并不做限定。 当然, 所述隔垫物可以是与彩膜基板的黑矩阵一体成型 的结构, 在此不做限定。
本发明实施例提供的一种显示面板, 该显示面板包括阵列基板和彩膜基 板以及位于阵列基板和彩膜基板之间的隔垫物, 该阵列基板包括横纵交叉的 栅线和数据线,该栅线和所述数据线的交叉区域包括薄膜晶体管 TFT。其中, 隔垫物与阵列基板的接触面位于该 TFT 区域之外的栅线区域和 /或数据线区 域。 这样一来, 与现有技术相比, 由于隔垫物与阵列基板的接触位置位于厚 度平齐的栅线区域和 /或数据线区域, 当显示面板受到挤压或沖击时, 隔垫物 不会因为阵列基板上存在的段差而发生位置移动, 有效避免了显示面板受到 挤压、 沖击时由于隔垫物的位置移动而引起的漏光现象, 从而提高了显示面 板的质量, 显著提升了显示效果。
在本发明实施例中, 隔垫物 20与阵列基板 30的接触面 50位于 TFT13 区域之外的栅线 11 区域和 /或数据线 12 区域, 示例性地, 可以包括隔垫物 20与阵列基板 30的接触面 50仅位于栅线 11所在区域,或接触面 50仅位于 数据线 12所在区域, 或者接触面 50还可以位于栅线 11和数据线 12的交叉 区域。
例如, 隔垫物 20与阵列基板 30的接触面 50可以位于栅线 11和数据线 12的交叉区域。 在如图 4所示的阵列基板 30中, 由于栅线 11和数据线 12 的交叉区域 40包括薄膜晶体管 TFT13 , 隔垫物 20与阵列基板 30的接触面 位于栅线 11和数据线 12的交叉区域是指隔垫物 20与阵列基板 30的接触面 50位于栅线 11和数据线 12的交叉区域中的非 TFT区域。 由于当接触面 50 单独位于栅线 11 区域或数据线 12区域时, 该接触面 50的面积会受到栅线 11和数据线 12的线宽尺寸的限制, 所以当接触面 50位于栅线 11和数据线 12的交叉区域时, 该接触面 50的面积会相对增大, 这样一来, 在不影响显 示面板开口率的同时可以使得隔垫物的支撑面积变大, 从而能够更好地起到 支撑的作用。
例如, 如图 5及图 6所示, 阵列基板 30还可以包括凹型结构 60, 凹型 结构 60位于栅线 11区域和 /或数据线 12区域; 隔垫物 20位于凹型结构 60 内。 采用这样一种凹型结构 60时, 当显示面板受到挤压时, 可以进一步限制 隔垫物的移动, 从而避免显示面板的漏光的现象。
示例性地, 参见图 3和图 4所示, 阵列基板中, 隔垫物 20与阵列基板 30的接触面 50位于栅线 11和数据线 12交叉位置处, 该凹型结构 60沿图 4 中 C-C,线的剖视图可以如图 5所示, 其中, 通过掩模、 刻蚀工艺形成的凹型 结构 60的一侧分别包括第二透明电极 15、 钝化层 18、 数据线 12、 栅极绝缘 层 16; 另一侧分别包括第二透明电极 15、 钝化层 18、 栅极绝缘层 16、 栅线 11 ; 该凹型结构 60沿图 4中 D-D,线的剖视图可以如图 6所示, 其中, 通过 掩模、 刻蚀工艺形成的凹型结构 60的一侧分别包括第二透明电极 15、 钝化 层 18、 数据线 12、 栅极绝缘层 16; 另一侧分别包括第二透明电极 15、 钝化 层 18、栅极绝缘层 16; 可以看到, 在栅线 11和数据线 12交叉位置处可以分 别刻蚀掉该交叉位置的一小部分以形成凹型结构 60,从而在不影响信号线电 连接以及像素开口率的基础上形成具有一定深度的凹型结构 60。
进一步地, 如图 5所示, 凹型结构 60的底部可以为透明基板 10。
需要说明的是,凹型结构 60是通过在隔垫物 20与阵列基板 30的接触面 50所在的位置采用刻蚀工艺形成的, 因此由于刻蚀深度的不同, 凹型结构 60 的底部所处的层级位置也相应不同。 例如在进行刻蚀工艺时可以将栅极绝缘 层 16和钝化层 18不去除或者部分去除。 这样一来, 本领域技术人员在实施 加工的过程中可以根据实际情况制作符合具体深度需求的凹型结构 60。 当将 接触面 50所在位置处的层级结构完全刻蚀掉时, 凹型结构 60的底部即为透 明基板 10, 这样一来, 可以最大限度的减少凹型结构 60与周边结构的段差, 有效限制位于凹型结构 60中隔垫物 20的移动。
进一步地, 如图 4所示, 凹型结构(图中未示出)开口形状可以为菱形。 这样一来可以更充分的利用栅线 11和数据线 12交叉区域,当隔垫物 20的上、 下底面采用与凹型结构的开口形状相同, 且开口尺寸略小的菱形时, 可以使 得隔垫物 20与阵列基板 30的接触面 50的面积最大化。这样一来,在有效限 制隔垫物 20移动的同时增大隔垫物 20的支撑面积。 从而保证像素开口率的 同时进一步限制隔垫物的移动, 并提升隔垫物 20的支撑效果。
进一步地, 菱形的边长可以为 5-8μηι, 这样一来, 当菱形的四个夹角为 90度时, 即 型结构 60的开口形状为正方形时, 该正方形的对角线长度可 以为 7-10μηι,从而使得隔垫物 20与阵列基板 30的接触面 50的面积最大化, 更有效的提升隔垫物 20的支撑效果。应当理解,以上叙述也仅是对凹型结构 60所在位置及形状的举例说明, 凹型结构 60可以根据基板的实际结构相应 地进行调整, 本发明实施例对此并不作限制。
进一步地, 如图 5所示, 隔垫物 20的垂直截面为等腰梯形结构。
等腰梯形的长边可以与彩膜基板 31相接触,该等腰梯形的短边可以与阵 列基板 30相接触; 或, 等腰梯形的长边可以与阵列基板 30相接触, 等腰梯 形的短边可以与彩膜基板 31相接触;
其中, 所述等腰梯形的长边与短边平行, 且长边的长度大于等于短边的 长度。 这样一来, 隔垫物 20可以制作在彩膜基板 31上, 也可以制作在阵列 基板 30上。 从而使得制作工艺更加的灵活。 相比较而言, 如图 5所示, 由于 彩膜基板 31的层级结构相对筒单,所以可以将隔垫物 20制作在彩膜基板 31 上。 这样一来, 可以有效避免隔垫物 20的制作对阵列基板 30上的像素结构 造成的影响, 同时还可以筒化工艺, 提高生产效率。
需要说明的是, 隔垫物 20的垂直截面为等腰梯形,采用这样一种等腰梯 形结构,会将隔垫物 20受到的作用力均匀的分散到梯形的两侧,从而能够提 升隔垫物 20的支撑效果。 进一步地, 隔垫物 20的上、 下两个面可以采用任 意图形, 例如圓形、 四边形或其它多边形等。 示例性地, 当凹型结构 60的开 口形状为菱形时, 隔垫物 20可以采用与凹型结构 60的开口形状相同, 开口 尺寸略小的菱形, 这样一来, 可以更好地限制隔垫物 20的移动。
进一步地, 例如, 等腰梯形的长边可以为 1-20μηι, 等腰梯形的短边可以 为 1-10μηι„
需要说明的是, 本发明实施例提供的显示面板可以适用于 ΤΝ ( Twisted Nematic,扭曲向歹 'J )、 IPS ( In-Plane Switching,平面转换)、 FFS ( Fringe Field Switching, 边缘场开关) 以及 ADS ( ADvanced Super Dimension Switch, 高 级超维场转换)等多种模式的液晶显示产品中, 本发明的实施例对此并不做 限定。其中, ADS模式是平面电场宽视角核心技术,其核心技术特性描述为: 通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极层间 产生的电场形成多维电场, 使液晶盒内狭缝电极间、 电极正上方所有取向液 晶分子都能够产生旋转, 从而提高了液晶工作效率并增大了透光效率。 ADS 模式的开关技术可以提高 TFT-LCD产品的画面品质, 具有高分辨率、 高透 过率、 低功耗、 宽视角、 高开口率、 低色差、 无挤压水波纹(push Mura )等 优点。 针对不同应用, ADS技术的改进技术有高透过率 I-ADS技术、 高开口 率 H-ADS和高分辨率 S-ADS技术等。
在如图 3所示的显示面板中, 是以 ADS模式的液晶显示面板结构为例 进行的说明, 其中, 阵列基板 30包括异层设置的面状的第一透明电极 14和 条状的第二透明电极 15, 与 TN型的液晶显示装置相比, ADS模式的液晶显 示装置具有更大的视角以及更高的对比度。
在本发明实施例中, 隔垫物 20可以形成于彩膜基板 31的表面, 隔垫物 20可以形成于彩膜基板 31对应阵列基板 30上 TFT13区域之外的栅线 11区 域和 /或数据线 12区域的黑矩阵 21的表面, 例如, 当阵列基板 30上的凹型 结构为位于栅线 11和数据线 12交叉位置处的菱形结构时,隔垫物 20可以与 阵列基板 30上的凹型结构相对应, 如图 7所示, 隔垫物 20同样可以采用设 置于位于栅线 11和数据线 12交叉位置处的菱形结构。由于彩膜基板 31相对 阵列基板 30结构筒单, 这样一种隔垫物 20设计可以有效避免隔垫物的制作 对阵列基板上像素结构造成的影响。 需要说明的是, 如图 7所示, 隔垫物 20的上、 下底面的形状会使得彩膜 基板 31中的像素开口区 70的形状发生相应的变化, 当隔垫物 20的上、下底 面的形状为菱形时, 隔垫物 20对应位置的像素开口区 70的左上角被该菱形 的一部分所遮挡。
在这样一种结构的显示面板中, 由于隔垫物 20与阵列基板 30的接触位 置位于厚度平齐的栅线 11区域和 /或数据线 12区域, 当显示面板受到挤压或 沖击时, 隔垫物 20不会因为阵列基板 30上存在的段差而发生位置移动, 有 效避免了显示面板受到挤压、 沖击时由于隔垫物的位置移动而引起的漏光现 象, 从而提高了显示面板的质量, 显著提升了显示效果。
本发明实施例提供一种显示装置, 包括如上所述的任意一种显示面板。 所述显示装置可以为: 液晶面板、 电子纸、 OLED面板、 液晶电视、 液晶显 示器、 数码相框、 手机、 平板电脑等任何具有显示功能的产品或部件。 具有 与本发明前述实施例提供的显示面板相同的有益效果, 由于显示面板在前述 实施例中已经进行了详细说明, 此处不再赘述。
本发明实施例提供的一种显示装置, 该显示装置包括显示面板。 该显示 面板包括阵列基板和彩膜基板以及位于阵列基板和彩膜基板之间的隔垫物, 该阵列基板包括横纵交叉的栅线和数据线, 该栅线和所述数据线的交叉区域 包括薄膜晶体管 TFT。 其中, 隔垫物与阵列基板的接触面位于该 TFT区域之 外的栅线区域和 /或数据线区域。 这样一来, 与现有技术相比, 由于隔垫物与 阵列基板的接触位置位于厚度平齐的栅线区域和 /或数据线区域, 当显示面板 受到挤压或沖击时,隔垫物不会因为阵列基板上存在的段差而发生位置移动, 有效避免了显示面板受到挤压、 沖击时由于隔垫物的位置移动而引起的漏光 现象, 从而提高了显示面板的质量, 显著提升了显示效果。
本发明实施例提供了一种显示面板的制造方法, 参照图 3和图 4所示, 该方法包括:
5101、制作阵列基板 30, 该阵列基板 30可以包括横纵交叉的栅线 11和 数据线 12,栅线 11和数据线 12的交叉区域 40可以包括薄膜晶体管 TFT13。
5102、 将彩膜基板 31与阵列基板 30对盒成型, 该阵列基板 30和彩膜 基板 31之间可以具有隔垫物 20;
其中, 隔垫物 20与阵列基板 30的接触面 50可以位于 TFT13区域之外 的栅线 11区域和 /或数据线 12区域。
本发明实施例提供的一种显示面板的制造方法。 该显示面板包括阵列基 板和彩膜基板以及位于阵列基板和彩膜基板之间的隔垫物, 该阵列基板包括 横纵交叉的栅线和数据线, 该栅线和所述数据线的交叉区域包括薄膜晶体管 TFT。 其中, 隔垫物与阵列基板的接触面位于该 TFT区域之外的栅线区域和 /或数据线区域。 这样一来, 与现有技术相比, 由于隔垫物与阵列基板的接触 位置位于厚度平齐的栅线区域和 /或数据线区域, 当显示面板受到挤压或沖击 时, 隔垫物不会因为阵列基板上存在的段差而发生位置移动, 有效避免了显 示面板由于隔垫物的位置移动而引起的漏光现象, 从而提高了显示面板的质 量, 显著提升了显示效果。
需要说明的是,本发明实施例提供的显示面板可以适用于 TN、 IPS, FFS 以及 ADS等多种模式的液晶显示产品中, 本发明的实施例对此并不做限定。
例如, 如图 3所示, 以 ADS模式的液晶显示装置为例, 制作阵列基板 30包括:
S201、 在透明基板 10的表面通过一次构图工艺形成包括所述栅线 11以 及所述 TFT的栅极 131的图案;
5202、在 TFT的栅极 131的表面通过一次构图工艺形成包括栅极绝缘层 16的图案;
5203、 栅极绝缘层 16的表面通过一次构图工艺形成包括有源层 17的图 案;
5204、 形成有上述结构的基板上通过一次构图工艺形成包括透明电极的 图案;
5205、在形成有上述结构的基板上通过一次构图工艺形成包括 TFT的源 极 132、 TFT的漏极 133以及数据线的图案;
S206、 栅线 11和数据线 12的交叉区域 40刻蚀形成凹型结构。
需要说明的是, 图 3是以 ADS产品的结构图为例进行的说明, 所以阵 列基板 30中有两层透明电极, 包括: 第一透明电极 14和第二透明电极 15。
需要说明的是,在制作阵列基板 30的步骤中,制作凹型结构的方法有 4艮 多种, 例如上述步骤 S205 ,还可以采用事先设计好的掩模板制成如图 4所示 的具有弯折部分的栅线 11和数据线 12, 这样一来, 栅线 11和数据线 12的 交叉区域就形成了凹型结构、 当然形成凹型结构的方法有 ^艮多种, 这里不再
——举例, 但是在栅线 11或数据线 12的区域内具有凹型结构的显示面板都 应当在本发明实施例的保护范围之内。
这样一来, 就可以完成具有凹型结构的阵列基板 30, 使得隔垫物 20能 够放置在凹型结构中, 从而限制隔垫物 20 的移动避免显示面板的漏光的现 例如, 如图 5所示, 凹型结构 60的底部可以为透明基板 10。
需要说明的是,凹型结构 60是通过在隔垫物 20与阵列基板 30的接触面 50所在的位置采用刻蚀工艺形成的, 因此由于刻蚀深度的不同, 凹型结构 60 的底部所处的层级位置也相应不同。 例如在进行刻蚀工艺时可以将栅极绝缘 层 16和钝化层 18不去除或者部分去除。 这样一来, 本领域技术人员在实施 加工的过程中可以根据实际情况制作符合具体深度需求的凹型结构 60。 当将 接触面 50所在位置处的层级结构完全刻蚀掉时, 凹型结构 60的底部即为透 明基板 10, 这样一来, 可以最大限度的减少凹型结构 60与周边结构的段差, 有效限制位于凹型结构 60中隔垫物 20的移动。
例如, 如图 4所示, 凹型结构 (图中未示出) 的开口形状可以为菱形。 这样一来可以更充分的利用栅线 11和数据线 12交叉区域,当隔垫物 20的上、 下底面采用与凹型结构的开口形状相同, 且开口尺寸略小的菱形时, 可以使 得隔垫物 20与阵列基板 30的接触面 50的面积最大化。这样一来,在有效限 制隔垫物 20移动的同时增大隔垫物 20的支撑面积。 从而保证像素开口率的 同时进一步限制隔垫物的移动, 并提升隔垫物 20的支撑效果。
例如, 菱形的边长可以为 5-8μηι, 这样一来, 当菱形的四个夹角为 90 度时, 即 型结构的开口形状为正方形时, 该正方形的对角线长度可以为 7-10μηι, 从而使得隔垫物 20与阵列基板 30的接触面 50的面积最大化, 更 有效的提升隔垫物 20的支撑效果。应当理解,以上叙述也仅是对凹型结构所 在位置及形状的举例说明, 凹型结构可以根据基板的实际结构相应地进行调 整, 本发明实施例对此并不作限制。
例如, 如图 5所示, 隔垫物 20的垂直截面为等腰梯形结构。
等腰梯形的长边可以与彩膜基板 31相接触,该等腰梯形的短边可以与阵 列基板 30相接触; 或, 等腰梯形的长边可以与阵列基板 30相接触, 等腰梯 形的短边可以与彩膜基板 31相接触;
其中, 所述等腰梯形的长边与短边平行, 且长边的长度大于等于短边的 长度。 这样一来, 隔垫物 20可以制作在彩膜基板 31上, 也可以制作在阵列 基板 30上。 从而使得制作工艺更加的灵活。 相比较而言, 如图 5所示, 由于 彩膜基板 31的层级结构相对筒单,所以可以将隔垫物 20制作在彩膜基板 31 上。 这样一来, 可以有效避免隔垫物 20的制作对阵列基板 30上的像素结构 造成的影响, 同时还可以筒化工艺, 提高生产效率。
需要说明的是, 隔垫物 20的垂直截面为等腰梯形,采用这样一种等腰梯 形结构,会将隔垫物 20受到的作用力均匀的分散到梯形的两侧,从而能够提 升隔垫物 20的支撑效果。 进一步地, 而隔垫物的 20的上下两个面可以采用 任意图形, 例如圓形、 四边形或其它多边形。 示例性地, 当凹型结构 60的开 口形状为菱形时, 隔垫物 20可以采用与凹型结构 60的开口形状相同, 开口 尺寸略小的菱形, 这样一来, 可以更好地限制隔垫物 20的移动。
例如, 例如, 等腰梯形的长边可以为 1-20μηι, 等腰梯形的短边可以为 1-10μηι。
示例性地, 结合图 3、 图 4和图 5 , 以 ADS显示面板为例对阵列基板 30 的制造方法进行详细的描述。
5301、 在透明基板 10上形成(例如可以使用磁控溅射方法)一层厚度 可以为 1000-7000A的金属薄膜。 通过第一次掩模、 刻蚀工艺, 形成包括栅 线 11及栅极 131的图案。
5302、 在上述结构的基板上形成(例如可以采用化学气相沉积的方法) 厚度为 1000-6000A的栅极绝缘层 16, 并形成包括栅极绝缘层 16的图案。
5303、 在形成有上述结构的基板上, 形成(例如采用沉积的方法)有源 层材料, 通过第二次掩模、 刻蚀工艺形成包括有源层 17的图案。
S304、 在形成有上述结构的基板上, 形成(例如采用沉积的方法)透明 导电电极材料, 通过第三次掩模、 刻蚀工艺形成第一透明电极 14, 制作为第 一透明电极 14的材料可以为 ITO,第一透明电极 14的厚度可以为 100-1000A。
S305、 在形成有上述结构的基板上, 形成(例如采用沉积的方法) 源漏 极材料, 利用源漏极的掩模版通过第四次掩模、 刻蚀工艺, 形成数据线 12 和 TFT的漏极 132、 漏极 133。 5306、 在形成有上述结构的基板上, 形成(例如采用沉积的方法)钝化 层材料, 形成包括钝化层 18的图案。
5307、 在形成有上述结构的基板上, 形成(例如采用沉积的方法)透明 导电电极材料, 通过第五次掩模、 刻蚀工艺形成第二透明电极 15, 如图 3所 示。
5308、 在形成的数据线 12的图案, 与栅线 11交叉区域采用凹型结构掩 模板, 通过第五次掩模、 刻蚀工艺将栅极绝缘层 16和钝化层 18完全去除, 形成所述凹型结构 60。 该凹型结构 60的开口如图 4所示为菱形。
在这样一种结构的显示面板中, 由于隔垫物 20与阵列基板 30的接触位 置位于厚度平齐的栅线 11区域或数据线 12区域, 当显示面板受到挤压或沖 击时, 隔垫物 20不会因为阵列基板 30上存在的段差而发生位置移动, 有效 避免了显示面板受到挤压、沖击时由于隔垫物 20的位置移动而引起的漏光现 象, 从而提高了显示面板的质量, 显著提升了显示效果。
在本发明的实施例中, 构图工艺, 可只包括光刻工艺, 或, 包括光刻工 艺以及刻蚀步骤, 同时还可以包括打印、 喷墨等其他用于形成预定图形的工 艺; 光刻工艺, 是指包括光刻胶涂敷、 曝光、 显影等工艺过程的利用光刻胶、 掩模板、 曝光机等形成图形的工艺。 可根据本发明实施例中所形成的结构选 择相应的构图工艺。
本发明实施例提供的一种显示面板及其制造方法、 显示装置, 该显示面 板包括阵列基板和彩膜基板以及位于阵列基板和彩膜基板之间的隔垫物, 该 阵列基板包括横纵交叉的栅线和数据线, 该栅线和所述数据线的交叉区域包 括薄膜晶体管 TFT。 其中, 隔垫物与阵列基板的接触面位于该 TFT区域之外 的栅线区域和 /或数据线区域。 这样一来, 与现有技术相比, 由于隔垫物与阵 列基板的接触位置位于厚度平齐的栅线区域和 /或数据线区域, 当显示面板受 到挤压或沖击时, 隔垫物不会因为阵列基板上存在的段差而发生位置移动, 有效避免了显示面板由于隔垫物的位置移动而引起的漏光现象, 从而提高了 显示面板的质量, 显著提升了显示效果。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求书
1、 一种显示面板, 包括:
阵列基板, 包括横纵交叉的栅线和数据线, 所述栅线和所述数据线的交 叉区域包括薄膜晶体管;
彩膜基板, 与所述阵列基板对盒; 以及
隔垫物, 位于所述阵列基板和所述彩膜基板之间, 其中所述隔垫物与所 述阵列基板的接触面位于所述薄膜晶体管所在区域之外的所述栅线区域和 / 或所述数据线区域。
2、根据权利要求 1所述的显示面板,其中所述隔垫物与所述阵列基板的 接触面位于所述栅线和所述数据线的交叉区域。
3、根据权利要求 1或 2所述的显示面板,其中所述阵列基板还包括凹型 结构, 所述凹型结构位于所述栅线区域和 /或所述数据线区域; 所述隔垫物位 于所述 型结构内。
4、根据权利要求 3所述的显示面板,其中所述凹型结构的底部为所述阵 列基板的衬底基板的透明基板。
5、根据权利要求 3所述的显示面板,其中所述凹型结构的开口形状为菱 形。
6、 根据权利要求 5所述的显示面板, 其中所述菱形的边长为 5-8μηι。
7、根据权利要求 1所述的显示面板,其中所述隔垫物的垂直截面为等腰 梯形结构;
所述等腰梯形的长边与所述彩膜基板相接触, 所述等腰梯形的短边与所 述阵列基板相接触; 或, 所述等腰梯形的长边与所述阵列基板相接触, 所述 等腰梯形的短边与所述彩膜基板相接触;
其中, 所述等腰梯形的长边与短边平行, 且所述长边的长度大于等于所 述短边的长度。
8、 根据权利要求 7 所述的显示面板, 其中所述等腰梯形的长边为 1-20μηι, 所述等腰梯形的短边为 1-10μηι。
9、根据权利要求 1所述的显示面板,其中所述隔垫物可以形成在阵列基 板上或彩膜基板上。
10、 根据权利要求 9所述的显示面板, 其中当所述隔垫物形成在所述彩 膜基板上时, 所述隔垫物与所述彩膜基板的黑矩阵一体成型。
11、 根据权利要求 3所述的显示面板, 其中所述凹型结构的底部为所述 阵列基板的栅极绝缘层。
12、 根据权利要求 1或 2所述的显示面板, 其中所述隔垫物的上下截面 形 ^大为圓形、 四边形。
13、 一种显示装置, 包括权利要求 1-12任一项所述的显示面板。
14、 一种显示面板的制造方法, 包括:
制作阵列基板, 所述阵列基板包括横纵交叉的栅线和数据线, 所述栅线 和所述数据线的交叉区域包括薄膜晶体管;
将彩膜基板与所述阵列基板对盒成型, 所述阵列基板和所述彩膜基板之 间具有隔垫物,
其中所述隔垫物与所述阵列基板的接触面位于所述薄膜晶体管所在区域 之外的所述栅线区域和 /或所述数据线区域。
15、 根据权利要求 14所述的制造方法, 其中所述制作阵列基板包括: 在透明基板的表面通过一次构图工艺形成包括所述栅线以及所述薄膜晶 体管的栅极的图案;
在所述薄膜晶体管的栅极的表面通过一次构图工艺形成包括栅极绝缘层 的图案;
在所述栅极绝缘层的表面通过一次构图工艺形成包括有源层的图案; 在形成有上述结构的基板上通过一次构图工艺形成包括透明电极的图 案;
在形成有上述结构的基板上通过一次构图工艺形成包括所述薄膜晶体管 的源漏极以及所述数据线的图案;
在所述栅线和所述数据线的交叉区域刻蚀形成凹型结构。
16、根据权利要求 15所述的制造方法,其中所述凹型结构的底部为所述 透明基板。
17、 根据权利要求 15或 16所述的制造方法, 其中所述凹型结构的开口 形状为菱形。
18、 根据权利要求 17所述的制造方法, 其中所述菱形的边长为 5-8μηι。
19、根据权利要求 14所述的制造方法,其中所述隔垫物的垂直截面为等 腰梯形结构;
所述等腰梯形的长边与所述彩膜基板相接触, 所述等腰梯形的短边与所 述阵列基板相接触; 或, 所述等腰梯形的长边与所述阵列基板相接触, 所述 等腰梯形的短边与所述彩膜基板相接触;
其中, 所述等腰梯形的长边与短边平行, 且所述长边的长度大于等于所 述短边的长度。
20、 根据权利要求 19 所述的制造方法, 其中所述等腰梯形的长边为 1-20μηι, 所述等腰梯形的短边为 1-10μηι。
PCT/CN2013/088723 2013-05-24 2013-12-06 显示面板及其制造方法、显示装置 WO2014187104A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/387,665 US20160139444A1 (en) 2013-05-24 2013-12-06 Display panel, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310196426.4 2013-05-24
CN2013101964264A CN103323981A (zh) 2013-05-24 2013-05-24 一种显示面板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2014187104A1 true WO2014187104A1 (zh) 2014-11-27

Family

ID=49192820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088723 WO2014187104A1 (zh) 2013-05-24 2013-12-06 显示面板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US20160139444A1 (zh)
CN (1) CN103323981A (zh)
WO (1) WO2014187104A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323981A (zh) * 2013-05-24 2013-09-25 北京京东方光电科技有限公司 一种显示面板及其制造方法、显示装置
CN106158917A (zh) * 2014-01-29 2016-11-23 青岛海信电器股份有限公司 发光显示背板、有机发光显示器及其制作方法
TW201602648A (zh) * 2014-07-01 2016-01-16 群創光電股份有限公司 顯示面板
CN207164424U (zh) * 2017-09-30 2018-03-30 合肥鑫晟光电科技有限公司 阵列基板、显示面板及显示装置
CN209343106U (zh) * 2018-12-04 2019-09-03 惠科股份有限公司 一种显示面板和显示装置
TWI707174B (zh) * 2019-05-06 2020-10-11 友達光電股份有限公司 顯示面板
CN113867056B (zh) * 2020-06-30 2023-01-10 京东方科技集团股份有限公司 显示基板、显示面板和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174062A (zh) * 2006-11-03 2008-05-07 三星电子株式会社 显示基底及具有该显示基底的显示面板
KR20090012169A (ko) * 2007-07-26 2009-02-02 어플라이드 머티어리얼스, 인코포레이티드 전기적 우회 요소를 이용하여 감소된 전기적 스큐를 갖는플라즈마 반응기
CN101398580A (zh) * 2007-09-26 2009-04-01 北京京东方光电科技有限公司 液晶显示装置及制造方法
CN100573288C (zh) * 2007-05-30 2009-12-23 北京京东方光电科技有限公司 一种薄膜晶体管液晶显示器结构
CN102566148A (zh) * 2010-11-04 2012-07-11 乐金显示有限公司 液晶显示面板及其制造方法
CN103323981A (zh) * 2013-05-24 2013-09-25 北京京东方光电科技有限公司 一种显示面板及其制造方法、显示装置
CN203241670U (zh) * 2013-05-24 2013-10-16 北京京东方光电科技有限公司 一种显示面板及显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9052550B2 (en) * 2006-11-29 2015-06-09 Beijing Boe Optoelectronics Technology Co., Ltd Thin film transistor liquid crystal display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174062A (zh) * 2006-11-03 2008-05-07 三星电子株式会社 显示基底及具有该显示基底的显示面板
CN100573288C (zh) * 2007-05-30 2009-12-23 北京京东方光电科技有限公司 一种薄膜晶体管液晶显示器结构
KR20090012169A (ko) * 2007-07-26 2009-02-02 어플라이드 머티어리얼스, 인코포레이티드 전기적 우회 요소를 이용하여 감소된 전기적 스큐를 갖는플라즈마 반응기
CN101398580A (zh) * 2007-09-26 2009-04-01 北京京东方光电科技有限公司 液晶显示装置及制造方法
CN102566148A (zh) * 2010-11-04 2012-07-11 乐金显示有限公司 液晶显示面板及其制造方法
CN103323981A (zh) * 2013-05-24 2013-09-25 北京京东方光电科技有限公司 一种显示面板及其制造方法、显示装置
CN203241670U (zh) * 2013-05-24 2013-10-16 北京京东方光电科技有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
US20160139444A1 (en) 2016-05-19
CN103323981A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4532231B2 (ja) 液晶表示装置及びその製造方法
WO2014187104A1 (zh) 显示面板及其制造方法、显示装置
CN101663612B (zh) 液晶显示装置
TWI506350B (zh) 陣列基板以及包含該陣列基板之液晶顯示裝置
CN103151359B (zh) 一种显示装置、阵列基板及其制作方法
US9530807B2 (en) Thin film transistor array substrate, manufacturing method thereof, and display device
US9134572B2 (en) Liquid crystal panel and methods for fabricating liquid crystal panel, array substrate, and color filter substrate
KR20130055622A (ko) 화소 유닛, 어레이 기판, 액정 패널 및 어레이 기판의 제조 방법
JP6572388B2 (ja) Ips型tft−lcdアレイ基板の製造方法及びips型tft−lcdアレイ基板
JP2007334003A (ja) 液晶表示装置及びその製造方法
TW200921221A (en) Display and method of manufacturing the same
WO2015081732A1 (zh) 彩膜基板及其制作方法、显示装置
WO2014169525A1 (zh) 阵列基板及其制备方法、显示装置
WO2019100430A1 (zh) 一种tft阵列基板、制作方法以及液晶显示面板
TWI664472B (zh) Array substrate and display device
WO2015010397A1 (zh) 阵列基板及其制造方法、显示装置
WO2018196438A1 (zh) 显示面板及其制作方法、显示装置
KR20120032375A (ko) 액정표시장치 및 액정표시장치용 컬러필터기판의 제조방법
CN104932152A (zh) 液晶显示面板及液晶显示面板的制造方法
WO2014131238A1 (zh) 阵列基板及其制作方法、显示面板及其制作方法
US10101615B2 (en) Array substrate and manufacturing method thereof, liquid crystal panel and display device
WO2015180302A1 (zh) 阵列基板及其制备方法、显示装置
WO2014205987A1 (zh) 一种阵列基板及其制造方法、显示装置
CN102681277B (zh) 阵列基板及其制造方法和液晶显示面板
WO2019062320A1 (zh) 阵列基板及其制备方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14387665

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13885295

Country of ref document: EP

Kind code of ref document: A1