WO2013147300A1 - ヒドロキシアルキル化ポリロタキサンの製造方法 - Google Patents
ヒドロキシアルキル化ポリロタキサンの製造方法 Download PDFInfo
- Publication number
- WO2013147300A1 WO2013147300A1 PCT/JP2013/059909 JP2013059909W WO2013147300A1 WO 2013147300 A1 WO2013147300 A1 WO 2013147300A1 JP 2013059909 W JP2013059909 W JP 2013059909W WO 2013147300 A1 WO2013147300 A1 WO 2013147300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- polyrotaxane
- mol
- cyclodextrin
- cyclic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/007—Polyrotaxanes; Polycatenanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0009—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
- C08B37/0012—Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
- C08B37/0015—Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/005—Dendritic macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/16—Cyclodextrin; Derivatives thereof
Definitions
- the present invention relates to a method for producing a hydroxyalkylated polyrotaxane by reacting a polyrotaxane with a specific cyclic ether.
- polyrotaxane which is a constituent component of a crosslinked polyrotaxane known as a topological gel, includes a linear molecule (axis: axis) included in a skewered manner at the opening of a cyclic molecule (rotor), A compound in which blocking groups are arranged at both ends of a linear molecule so that a cyclic molecule is not released (see, for example, Patent Documents 1 to 5).
- Patent Document 1 discloses a polyrotaxane having cyclodextrin as a cyclic molecule. Hydropropylation of cyclodextrin is carried out by reacting propylene oxide in a 1N sodium hydroxide aqueous solution. A method for producing a polyrotaxane is disclosed. Patent Document 2 describes a method for synthesizing a crosslinked polyrotaxane obtained by crosslinking a blocked polyrotaxane using a crosslinking agent such as cyanuric chloride. Further, in Patent Documents 3 and 4, it is reported that a material subjected to secondary processing using hydroxypropylated polyrotaxane is useful for, for example, medical materials and paints.
- the present inventors tried to obtain a hydroxypropylated polyrotaxane by reacting a polyrotaxane having cyclodextrin as a cyclic molecule with propylene oxide in a 1N aqueous sodium hydroxide solution according to the method described in Patent Document 1, for example.
- a polyrotaxane having cyclodextrin as a cyclic molecule with propylene oxide in a 1N aqueous sodium hydroxide solution according to the method described in Patent Document 1, for example.
- insoluble matter was precipitated during the reaction, and it was difficult to obtain a polyrotaxane having a desired hydroxypropylation modification rate with high purity.
- this insoluble matter is mixed in the obtained hydroxypropylated polyrotaxane, this insoluble matter will continue to be contained in the secondary processing material using this as a production raw material.
- Patent Document 4 When used in a paint application, this seems to cause blisters (eg, protrusions).
- Patent Document 1 and Patent Document 4 as a treatment method after reacting polyrotaxane and propylene oxide in an aqueous sodium hydroxide solution, the alkali used is neutralized, and the resulting salt is removed by dialysis, Although a method for obtaining a target hydroxypropylated polyrotaxane by lyophilizing a treatment solution after dialysis has been disclosed, the treatment method for removing this salt is complicated and requires an enormous amount of treatment time. As a manufacturing method, it was hard to say that it was a suitable method.
- An object of the present invention is to provide an industrially suitable method for producing a hydroxyalkylated polyrotaxane. More specifically, it is to provide a method for producing a polyrotaxane having a desired hydroxyalkylation modification rate with high purity by suppressing the formation of insoluble substances during the reaction by a simple operation.
- the present inventors have found the following as a method for solving the above problems.
- the present invention 1 includes a cyclic molecule having a hydroxy group, a linear molecule clasped into the cyclic molecule, and both ends of the linear molecule so that the cyclic molecule is not detached from the linear molecule.
- a polyrotaxane having a arranged blocking group and the general formula (1): (Wherein R 1 to R 4 are each independently a hydrogen atom, an alkyl group that is unsubstituted or substituted by a fluorine atom, a nitro group, a cyano group, an alkoxy group, or a hydroxy group, A cycloalkyl group, an aryl group or an aralkyl group, R 1 and R 2 , or R 3 and R 4 , together with the carbon atom to which they are bonded, may form a 3-12 membered carbocycle (eg, oxaspiroalkylenes, etc.) Often, R 1 or R 2 and R 3 or R 4 may combine with the carbon atom to which they are attached to form a 3 to 12 membered carbocycle (eg, oxabicycloalkanes).
- R 1 or R 2 and R 3 or R 4 may combine with the carbon atom to which they are attached to form a 3
- L is a single bond or an alkylene group having 1 to 12 carbon atoms which is unsubstituted or substituted with a fluorine atom, a nitro group, a cyano group, an alkoxy group or a hydroxy group,
- a hydroxyalkylated polyrotaxane comprising reacting the cyclic ether represented by the general formula (1) with a cyclic ether represented by the formula (1) in the presence of water and an organic base.
- the organic base is an aliphatic tertiary amine, aromatic tertiary amine, alicyclic tertiary amine and heteroalicyclic tertiary amine, pyridine, imidazole, and It is related with the manufacturing method of this invention 1 which is 1 or more types selected from the group which consists of triazoles.
- the present invention 3 relates to the production method of the present invention 2, wherein the organic base is at least one selected from the group consisting of trialkylamines and pyridines.
- the present invention 4 relates to the production method according to any one of the present inventions 1 to 3, wherein the organic base is used in an amount of 0.10 mol or more and less than 1 mol with respect to 1 mol of a hydroxy group in a polyrotaxane as a production raw material.
- the cyclic ether represented by the general formula (1) is selected from the group consisting of oxiranes, monosubstituted oxiranes having 3 to 24 carbon atoms and disubstituted oxiranes having 4 to 24 carbon atoms.
- the present invention relates to a production method according to any one of the first to fourth aspects of the present invention.
- Invention 6 is the invention in which the cyclic ether represented by the general formula (1) is at least one selected from the group consisting of oxirane, methyloxirane, ethyloxirane, propyloxirane, butyloxirane, phenyloxirane and glycidol.
- 5 relates to the manufacturing method.
- the present invention 7 relates to the production method of any one of the present inventions 1 to 6, wherein the cyclic molecule having a hydroxy group is ⁇ -cyclodextrin.
- the present invention 8 includes the process according to any one of the present inventions 1 to 7, comprising removing at least part of the organic base by decantation after the reaction between the polyrotaxane and the cyclic ether represented by the general formula (1).
- the cyclic ether represented by the general formula (1) is at least one selected from the group consisting of oxirane, methyloxirane, ethyloxirane, propyloxirane, butyl
- an industrially suitable method for producing a hydroxyalkylated polyrotaxane is provided. More specifically, a method for producing a polyrotaxane having a desired hydroxyalkylation modification rate with high purity by suppressing the production of insoluble substances during the reaction by a simple operation is provided.
- the hydroxyalkylated polyrotaxane thus obtained can be suitably used without any problems in various applications.
- the present invention relates to a method for producing a hydroxyalkylated polyrotaxane by reacting a polyrotaxane with a specific cyclic ether.
- the polyrotaxane includes both a cyclic molecule having a hydroxy group, a linear molecule clasped into the cyclic molecule, and a linear molecule so that the cyclic molecule is not detached from the linear molecule. It has a blocking group located at the end.
- the specific cyclic ether is a compound represented by the general formula (1).
- the production method of the present invention includes a step of reacting a hydroxy group of a cyclic molecule in a polyrotaxane with a specific cyclic ether in the presence of water and an organic base.
- the present invention may further include a step of removing at least a part of the used organic base without neutralizing the solution containing the hydroxyalkylated polyrotaxane obtained in the above step.
- the polyrotaxane in the present invention includes a cyclic molecule having a hydroxy group, a linear molecule clasped into the cyclic molecule, and both molecular ends of the linear molecule so that the cyclic molecule is not detached from the linear molecule. Having a blocking group.
- a polyrotaxane can be produced, for example, by the method described in Patent Literature 1, 2, or 4 or the like.
- linear molecule in the present invention is a molecule or substance that is included in a cyclic molecule and can be integrated non-covalently, and is not particularly limited as long as it is linear. The following are mentioned.
- Polyalkylene glycols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polypentamethylene glycol, polyhexamethylene glycol (for example, polyalkylene glycols having 2 to 14 carbon atoms in the alkylene moiety in the repeating unit); Aliphatic polyesters such as polybutyrolactone and polycaprolactone (for example, aliphatic polyesters having 1 to 14 carbon atoms in the alkylene moiety in the repeating unit); Polyolefins such as polyethylene, polypropylene, polybutene (for example, polyolefins having 2 to 12 carbon atoms in the olefin unit); Polydialkylsiloxanes such as polydimethylsiloxane (eg, polydialkylsiloxanes having 1 to 4 carbon atoms in the alkyl moiety bonded to the silicon atom; Polydienes such as polybutadiene and polyisoprene (for example, polydienes
- the linear molecules in the present invention are preferably polyalkylene glycols, polyesters, polyolefins, polydienes or polydialkylsiloxanes; more preferably polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutyrolactone, poly Caprolactone, polyethylene, polypropylene, polybutene, polyisoprene, polybutadiene, polydimethylsiloxane; particularly preferred are polyethylene glycol, polypropylene glycol, polyethylene, polypropylene, polydimethylsiloxane.
- the number average molecular weight of the linear molecule in the present invention is not particularly limited, but is preferably 200 to 200,000, more preferably 1,000 to 100,000, more preferably 3,000 to 50,000. Particularly preferred is 5,000 to 45,000.
- the number average molecular weight of the linear molecule is a value measured by, for example, gel permeation chromatography (GPC: Gel Permeation Chromatography, standard substance: polystyrene, pullulan or polyethylene oxide).
- GPC Gel Permeation Chromatography, standard substance: polystyrene, pullulan or polyethylene oxide.
- the blocking group in the present invention is provided at both molecular ends of the linear molecule so as not to desorb the cyclic molecule from the linear molecule, and is not particularly limited as long as it can cause such an action. .
- blocking groups include groups derived from dinitrobenzenes (for example, 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, etc.), groups derived from cyclodextrins, groups derived from adamantanes (for example, Adamantyl group, etc.), a group derived from triphenylmethanes (eg, trityl group, etc.), a group derived from fluoresceins, a group derived from pyrenes, a group derived from substituted benzenes, an optionally substituted polynuclear aromatic group, Examples include groups derived from steroids.
- the blocking group is preferably a group derived from dinitrobenzenes, a group derived from cyclodextrins, a group derived from adamantanes, a group derived from triphenylmethanes, a group derived from fluoresceins or a group derived from pyrenes, and more Preferably, 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, 2,4-diphenylphenyl group, 2,4-diisopropylphenyl group, 2,4-di-t-butylphenyl group, 4-diphenyl Aminophenyl group, 4-diphenylphosphinylphenyl group, adamantyl group or trityl group, particularly preferably 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, adamantyl group or trityl group.
- the blocking groups provided at both molecular ends of the polyrotaxane of the present invention may be the same as or different from each other.
- amines containing the blocking group can be used as the blocking agent for disposing the blocking group at both molecular ends of the linear molecule in the present invention.
- the amines containing the blocking group are, for example, hydrates, inorganic acid salts (hydrochlorides, hydrobromides, etc.), or organic acid salts (methanesulfonates, toluenesulfonates, etc.). May be.
- this amine can be reacted with the end of a linear molecule in which both molecular ends are carboxylated to introduce a blocking group.
- adamantylamine or a hydrochloride thereof as a specific blocking agent.
- the cyclic molecule in the present invention has a hydroxy group (OH group) that can react with the cyclic ether represented by the general formula (1), has a cyclic molecular structure, and includes a linear molecule. As long as it has a pulley effect, it is not particularly limited.
- the cyclic molecular structure does not necessarily have a closed molecular shape, and includes, for example, a substantially cyclic structure in which a part of the ring is opened, such as a “C” shape.
- the cyclic molecule only needs to have one or more hydroxy groups, and may have other substituents that do not adversely affect the hydroxyalkylation reaction such as nitro group, cyano group, and alkoxy group. .
- cyclic molecule examples include cyclodextrins, crown ethers, benzocrowns, dibenzocrowns and dicyclohexanocrowns, all of which have one or more hydroxy groups.
- the cyclic molecule is preferably a cyclodextrin and a cyclodextrin derivative.
- the type of cyclodextrin in cyclodextrin and cyclodextrin derivatives is not particularly limited and may be any of ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ -type.
- cyclodextrin derivatives examples include cyclodextrin derivatives in which a part of the hydroxy group in the cyclodextrin is converted to a methoxy group, an acetyloxy group, a benzoyloxy group, an alkylsulfonyloxy group, a toluenesulfonyloxy group, or the like. .
- the cyclic molecule is preferably ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, or a derivative thereof (for example, part or all of the hydroxy group is substituted).
- Compound more preferably ⁇ -cyclodextrin or a derivative thereof (for example, a compound in which a part or all of the hydroxy group is substituted), particularly preferably ⁇ -cyclodextrin.
- the polyrotaxane in the present invention may have only one kind of cyclic molecule or may have plural kinds of cyclic molecules.
- the number average molecular weight of the polyrotaxane in the present invention is preferably 10,000 to 500,000, more preferably 30,000 to 400,000, more preferably 50,000 to 300,000, particularly preferably 90,000 to 200. 1,000, most preferably 100,000 to 160,000.
- the number average molecular weight of the polyrotaxane is a value measured by, for example, gel permeation chromatography (GPC: Gel Permeation Chromatography, standard substance: polystyrene, pullulan or polyethylene oxide).
- the introduction ratio (inclusion rate) of the cyclic molecule that includes the linear molecule is not particularly limited, and can be appropriately selected depending on the dispersibility in a desired solvent, the type of the modifying group, and the like.
- the inclusion rate which is the introduction ratio of the cyclic molecules that include the linear molecules, is 1.0 when the cyclic molecules are included in the linear molecules most closely (filling rate: 100%). Usually, it is 0.05 to 0.80.
- the inclusion rate is preferably 0.05 to 0.65, more preferably 0.10 to 0.60, even more It is preferably 0.15 to 0.55, particularly preferably 0.20 to 0.40.
- the inclusion ratio is within this range, when a crosslinked polyrotaxane as described in Patent Document 2 is produced using the hydroxyalkylated polyrotaxane obtained by the production method of the present invention, the pulley effect derived from the cyclic molecule Is sufficiently expressed, and the mobility of the cyclic molecule is also good.
- the maximum inclusion amount of the cyclic molecule can be determined by the length of the linear molecule and the thickness of the cyclic molecule.
- the maximum inclusion amount is described in, for example, Patent Document 4 and / or Macromolecules, 1993, Vol. 26, 5698-5703.
- the maximum inclusion rate is estimated, for example, that 2 units of —CH 2 —CH 2 —O— repeating unit of PEG corresponds to the thickness of one molecule of ⁇ -CD, and ⁇ -The amount of CD (maximum inclusion amount) is expressed as 1.0 (filling rate: 100%).
- the inclusion rate was measured by dissolving the obtained polyrotaxane in the measurement solvent (DMSO-d 6 ) and measuring with a 1 H-NMR measurement apparatus (AVANCE500 type Bruker BioSpin), and the chemical shift was 4 to 6 ppm. It can be calculated by comparing the integrated value of the proton derived from cyclodextrin and the integrated value of the proton derived from 3 to 4 ppm of PEG.
- the cyclic ether in the present invention is a compound represented by the following general formula (1) and having 50 or less carbon atoms.
- R 1 to R 4 are each independently a hydrogen atom, an alkyl group that is unsubstituted or substituted by a fluorine atom, a nitro group, a cyano group, an alkoxy group, or a hydroxy group,
- a cycloalkyl group, an aryl group or an aralkyl group, R 1 and R 2 , or R 3 and R 4 , together with the carbon atom to which they are bonded, may form a 3-12 membered carbocycle (eg, oxaspiroalkylenes, etc.)
- R 1 or R 2 and R 3 or R 4 may combine with the carbon atom to which they are attached to form a 3 to 12 membered carbocycle (eg, oxabicycloalkanes).
- L is a single bond or an alkylene group having 1 to 12 carbon atoms which is unsubstituted or substituted with a fluorine atom, a nitro group, a cyano group, an alkoxy group or a hydroxy group.
- the number of carbon atoms in the general formula (1) should not exceed 50.
- cyclic ether represented by the general formula (1) in the present invention preferably one selected from the group consisting of oxiranes represented by the following general formula (2) and oxetanes represented by the following general formula (3) These are the above cyclic ethers.
- R 1 to R 4 are the same as those in the general formula (1), R 5 and R 6 are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which is unsubstituted or substituted with a fluorine atom, a nitro group, a cyano group, an alkoxy group or a hydroxy group, However, the number of carbon atoms in general formula (2) or general formula (3) should not exceed 50. )
- R 1 to R 6 examples include a linear or branched alkyl group having 1 to 12 carbon atoms, and a linear or branched alkyl group having 1 to 8 carbon atoms is preferable.
- branched alkyl groups include positional isomers and optical isomers.
- the alkyl group of R 5 and R 6 has 1 to 4 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl Group, sec-butyl group and tert-butyl group.
- cycloalkyl group examples include cycloalkyl groups having 3 to 12 carbon atoms, and preferred are cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclododecyl group and the like.
- aryl group examples include aryl groups having 6 to 18 carbon atoms, and preferred are a phenyl group, a naphthyl group, a biphenyl group, and the like.
- aralkyl group examples include aralkyl groups having 7 to 18 carbon atoms, preferably benzyl group and phenethyl group.
- alkyl group, aryl group, cycloalkyl group, and aralkyl group may be one selected from the group consisting of a fluorine atom, a nitro group, a cyano group, an alkoxy group, and a hydroxy group, even if they are unsubstituted. It may be substituted with the above substituents.
- a fluorine atom is preferable as a substituent.
- examples of the alkylene group having 1 to 12 carbon atoms in L include a methylene group, an ethylene group, and the like. It may be substituted with one or more substituents selected from the group consisting of a group, a cyano group, an alkoxy group and a hydroxy group. In addition, as a substituent, a fluorine atom is preferable. L is preferably a single bond or a methylene group.
- Oxirane ethylene oxide
- Monosubstituted oxiranes preferably monosubstituted oxiranes having 3 to 26 carbon atoms, more preferably 3 to 24 carbon atoms.
- methyloxirane (propylene oxide), ethyloxirane (1,2 -Butylene oxide), propyloxirane (1,2-pentylene oxide), butyloxirane (1,2-hexylene oxide), phenyloxirane, methoxymethyloxirane and the like (alkoxymethyl having 1 to 8 carbon atoms) oxirane, Glycidol (2,3-epoxymethanol), etc .
- Disubstituted oxiranes preferably disubstituted oxiranes having 4 to 26 carbon atoms, more preferably 4 to 24 carbon atoms.
- 2,3-dimethyloxirane and 2,2-dimethyloxirane include 2,3-dimethyloxirane and 2,2-dimethyloxirane.
- Examples thereof include 2,2,3-trimethyloxirane, 2,2,3-triethyloxirane, 2,2, 2,2,3-tris (carbon atoms) such as 3-tripropyloxirane, 2,2,3-tributyloxirane, 2,2,3-triphenyloxirane, 2,2,3-tris (methoxymethyl) oxirane 1-8 alkoxymethyl) oxiranes, etc .; Tetrasubstituted oxiranes, preferably tetrasubstituted oxiranes having 6 to 26 carbon atoms such as 2,2,3,3-tetramethyloxirane, 2,2,3,3-tetraethyloxirane, 2,2,3, 3-tetrapropyloxirane, 2,2,3,3-tetrabutyloxirane, 2,2,3,3-tetraphenyloxirane, 2,2,3,3-tetrakis (alkoxymethyl having 1 to 8 carbon atoms)
- Examples include oxirane.
- oxetanes represented by the general formula (3) examples include oxetane, 3-methyloxetane, 3-ethyloxetane, 3-ethyl-3-hydroxyethyloxetane, and the like.
- an oxaspiro having a 3- to 12-membered carbon ring together with the carbon atom to which R 1 and R 2 , or R 3 and R 4 are bonded examples include 1-oxaspiro [2.4] heptane and 1-oxaspiro [2.5] octane.
- R 1 or R 2 and R 3 or R 4 together with the carbon atom to which they are bonded include oxabicycloalkanes having a 3 to 12 membered carbocyclic ring.
- the cyclic ether represented by the general formula (1) is preferably oxirane, monosubstituted oxirane having 3 to 24 carbon atoms or disubstituted oxirane having 4 to 24 carbon atoms; more preferably, oxirane (ethylene oxide). ), Methyl oxirane (propylene oxide), ethyl oxirane (1,2-butylene oxide), propyl oxirane (1,2-pentylene oxide), butyl oxirane (1,2-hexylene oxide), phenyl oxirane, glycidol (2 , 3-epoxymethanol); particularly preferred are oxirane (ethylene oxide) and methyloxirane (propylene oxide).
- the cyclic ether shown by General formula (1) may be used independently, or multiple types may be used together.
- the amount of the cyclic ether represented by the general formula (1) in the present invention can be increased or decreased depending on the degree of hydroxyalkylation, and is not particularly limited.
- the amount of the cyclic ether represented by the general formula (1) in the present invention can be usually 0.01 to 100 g, preferably 0.10 to 50 g, with respect to 1 g of the polyrotaxane as the production raw material. More preferably, it is 0.50 g to 25 g, more preferably 1 g to 15 g, particularly preferably 1 g to 10 g, and most preferably 1 g to 5 g.
- the amount of cyclic ether used can be 0.015 mol to 150 mol, preferably 0.15 mol to 75 mol, relative to 1 mol of the hydroxy group in the polyrotaxane as the production raw material.
- Mole more preferably 0.50 mole to 35 mole, more preferably 1.0 mole to 20 mole, particularly preferably 1.0 mole to 15 mole, and most preferably 1.25 to 7.5 mole.
- the modification rate (%) of the hydroxyalkylated polyrotaxane of the present invention described later can be controlled to 0.01 to 100%, and the modification rate is preferably 1 to 80%, More preferably, 10 to 80%, particularly preferably 25 to 55% of hydroxyalkylated polyrotaxane can be obtained.
- the hydroxyalkylation reaction is carried out in the presence of an organic base.
- the organic base is preferably an organic base having a boiling point of 200 ° C. or less from the viewpoint of separation and purification after the reaction.
- Organic bases include amines (preferably tertiary tertiary amines, aromatic tertiary amines, alicyclic tertiary amines, heteroalicyclic tertiary amines, etc.
- amines preferably tertiary tertiary amines, aromatic tertiary amines, alicyclic tertiary amines, heteroalicyclic tertiary amines, etc.
- One or more basic organic compounds selected from the group consisting of amine), pyridines, imidazoles, and triazoles can be used.
- the organic base is preferably represented by the following general formula (4).
- aliphatic tertiary amines and aromatic tertiary amines alicyclic tertiary amines, heteroalicyclic Tertiary amines such as tertiary amines can be mentioned.
- R a , R b and R c are each independently of each other an alkyl group, a cycloalkyl group, an aryl group, unsubstituted or substituted with a fluorine atom, a nitro group, a cyano group, an alkoxy group or a hydroxy group, And a tertiary amine represented by (aralkyl group or trialkylsilyl group).
- R a , R b and R c examples include linear or branched alkyl groups having 1 to 18 carbon atoms, and preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group.
- the cycloalkyl group include a cycloalkyl group having 3 to 18 carbon atoms, and a cyclopentyl group, a cyclohexyl group, and the like are preferable.
- Examples of the aryl group include aryl groups having 6 to 18 carbon atoms, and a phenyl group, a naphthyl group, an anthranyl group, and the like are preferable.
- Examples of the aralkyl group include aralkyl groups having 7 to 18 carbon atoms, preferably benzyl group and phenethyl group.
- As the trialkylsilyl group those in which the alkyl group is each independently a linear or branched alkyl group having 1 to 18 carbon atoms are preferable, for example, a trimethylsilyl group, a triethylsilyl group, a tert-butyl group. Examples thereof include a dimethylsilyl group.
- the alkyl group, aryl group, cycloalkyl group, aralkyl group, and trialkylsilyl group may be one or more selected from the group consisting of a fluorine atom, a nitro group, a cyano group, and an alkoxy group, even if they are unsubstituted. It may be substituted with a group.
- the substituent is preferably a fluorine atom, a nitro group, or an alkoxy group.
- the tertiary amine represented by the general formula (4) includes trialkylamines having 3 to 24 carbon atoms such as trimethylamine, triethylamine, tri-n-propylamine, diisopropylmethylamine, tri-n-butylamine and the like.
- a trialkylsilyl group-containing aliphatic amine preferably a trialkylsilyl group-containing aliphatic amine containing a trialkylsilyl group having 5 to 24 carbon atoms, such as N-trimethylsilyldimethylamine, N-triethylsilyldimethyl Amine, N-tert-butyldimethylsilyldimethylamine, N-trimethylsilyldiethylamine, N-triethylsilyldiethylamine, N-tert-butyldimethylsilyldiethylamine, N-trimethylsilyldi-n-propylamine, N-triethylsilyl Di -n- propylamine, N-tert-butyl-dimethylsilyl -n- propylamine, N- trimethylsilyl diisopropylamine, N- triethylsilyl diisopropylamine, N-tert-buty
- the tertiary amine represented by the general formula (4) includes aromatic tertiary amines having 8 to 24 carbon atoms such as dimethylphenylamine, ethylmethylphenylamine, diethylphenylamine, dipropylphenyl.
- Amines diphenylmethylamine, diphenylethylamine, n-propyldiphenylamine, isopropyldiphenylamine, triphenylamine and the like; aromatic amines containing a trialkylsilyl group having 15 to 24 carbon atoms, such as N-trimethylsilyldiphenylamine, N- And triethylsilyldiphenylamine, N-tert-butyldimethylsilyldiphenylamine, and the like.
- Cyclic tertiary amines can also be used as the tertiary amine, such as diazabicycloundecene (DBU), diazabicyclononene (DBN), 1,4-diazabicyclo [2.2.2] octane. (DABCO), cycloaliphatic tertiary amines such as quinuclidine, N-substituted pyrrolidines, N-substituted piperidines, N, N′-disubstituted piperazines, and N-substituted morpholines Tertiary amines can be mentioned.
- DBU diazabicycloundecene
- DBN diazabicyclononene
- DABCO 1,4-diazabicyclo [2.2.2] octane.
- cycloaliphatic tertiary amines such as quinuclidine, N-substituted pyrrolidines
- N-substituted piperidines are preferably N-alkyl substituted piperidines having 6 to 24 carbon atoms, and examples include N-methyl piperidines and N-ethyl piperidines.
- N-substituted morpholines are preferably N-alkyl-substituted morpholines having 5 to 24 carbon atoms, and include N-methylmorpholine.
- the N, N′-disubstituted piperazines are preferably N, N′-dialkyl substituted piperazines having 6 to 24 carbon atoms, such as N, N′-dimethylpiperazine.
- organic base of the present invention the following pyridines, imidazoles, triazoles and the like can also be used.
- Pyridines are preferably pyridines having 5 to 24 carbon atoms, and examples thereof include pyridine, picoline, lutidine, collidine, dimethylaminopyridine, 4-pyrrolidinopyridine and the like.
- Examples of imidazoles include imidazole and N-substituted imidazoles having 4 to 24 carbon atoms.
- N-substituted imidazoles can be N-alkyl substituted imidazoles, N-aryl substituted imidazoles, N-trialkylsilyl substituted imidazoles, such as N-phenylimidazole, N-trimethylsilylimidazole, N-triethylsilylimidazole, N-tert-butyldimethylsilylimidazole may be mentioned.
- triazoles and triazole derivatives examples include triazoles and N-substituted triazoles having 3 to 24 carbon atoms.
- the N-substituted triazoles can be N-alkyl substituted triazoles, N-aryl substituted triazoles, N-trialkylsilyl substituted triazoles, for example, preferably N-phenyltriazole and the like.
- organic base 1,8-bis (dimethylamino) naphthalene (proton sponge), phosphazene, etc.
- Tetraalkylguanidine having 4 to 24 carbon atoms can also be used, and examples thereof include 1,1,3,3-tetramethylguanidine.
- the organic base in the present invention is preferably trialkylamines, alicyclic tertiary amines, pyridines or imidazoles; more preferably trialkylamines or pyridines; more preferably carbon atoms. 3 to 12 trialkylamines, pyridine, 2-picoline, 3-picoline, 4-picoline or 2,6-lutidine; particularly preferred triethylamine, tri-n-propylamine, diisopropylmethylamine, tri-n -Butylamine or pyridine.
- the above organic base may be used alone, or a plurality of types may be used in combination.
- the amount of the organic base used in the present invention can be 0.01 mol to 500 mol, preferably 0.05 mol to 50 mol, based on 1 mol of the hydroxy group in the polyrotaxane that is the production raw material. More preferably, it is 0.10 mol to 10 mol, more preferably 0.10 mol to 5 mol, and particularly preferably 0.10 mol or more and less than 1 mol.
- the reaction proceeds satisfactorily, sufficient productivity can be obtained, and a desired hydroxyalkylation modification rate can be achieved. Furthermore, since the removal of the used organic base is easy after completion
- the amount of water used in the present invention can be 0.01 g to 200 g, preferably 0.1 g to 150 g, and more preferably 1.0 g to 100 g, with respect to 1 g of polyrotaxane as a raw material for production. More preferably, it is 3.0 g to 50 g, particularly preferably 4.0 g to 30 g, and most preferably 4.0 g to 20 g.
- a polyrotaxane that is a raw material for production is a polyrotaxane prepared by the method described in Patent Document 1 (linear molecule: polyethylene glycol having an average molecular weight of 35,000, cyclic molecule: ⁇ -cyclodextrin ( ⁇ -CD), blocking group: a polyrotaxane comprising an adamantyl group, and the inclusion rate is 0.25), the theoretical hydroxy group amount of the polyrotaxane is 13.6 mmol / g.
- the amount of water used can be 0.05 to 800 mol with respect to 1 mol of hydroxy groups in the polyrotaxane that is the production raw material. If the amount of water used is within this range, the hydroxyalkylation reaction proceeds well, sufficient productivity is obtained, and a desired hydroxyalkylation modification rate can be achieved. Furthermore, since the removal of the used organic base is easy after completion
- the production method of the present invention includes a step of reacting a hydroxy group of a cyclic molecule in a polyrotaxane with a cyclic ether represented by the general formula (1) in the presence of water and an organic base.
- the reaction can be carried out by mixing the polyrotaxane and the cyclic ether represented by the general formula (1) in the presence of water and an organic base, and stirring, shaking or the like.
- the reaction temperature can be appropriately determined depending on the physical properties of the cyclic ether represented by the general formula (1) used. That is, the reaction temperature in the production method of the present invention is not particularly limited as long as it is not lower than the glass transition temperature of the polyrotaxane used and not higher than the boiling point of the cyclic ether represented by the general formula (1). It can be set to ° C. Within this temperature range, the cyclic ether represented by the general formula (1) tends to stay in the reaction system, and the reactivity with the hydroxy group of the cyclic molecule of the polyrotaxane is good, so that a high reaction yield is expected. it can.
- the reaction temperature is preferably ⁇ 10 to 80 ° C., more preferably 10 to 60 ° C., and particularly preferably 25 to 60 ° C.
- the reaction time can be appropriately changed, and examples thereof include 1 to 48 hours, preferably 3 to 30 hours.
- reaction pressure can be appropriately determined depending on the type of cyclic ether represented by the general formula (1) to be used, the reaction temperature, and the like, and is not particularly limited, but is preferably performed under atmospheric pressure.
- the reaction can be performed under an inert gas such as nitrogen or argon, or under an atmosphere, or the reaction can be performed in an open system (under atmospheric pressure).
- reaction solvent In the production method of the present invention, since the reaction is carried out in the presence of water and an organic base, it is not necessary to use a separate reaction solvent. However, when the solubility of the polyrotaxane used in the present invention in water and / or organic base is low, a reaction solvent can be appropriately used.
- the reaction solvent is not particularly limited as long as it does not adversely affect the hydroxyalkylation reaction.
- a liquid reaction mixture is obtained.
- the obtained reaction mixture can be obtained, for example, as a solid substance after the reprecipitation operation, by a separation / purification operation such as decantation or filtration. That is, in the production method of the present invention, since the used organic base can be easily removed by the above-described method without neutralization, it is very convenient and suitable for an industrial production method.
- the reaction mixture containing the hydroxyalkylated polyrotaxane is subjected to a reprecipitation operation as it is or after adding an addition solvent (for example, a reprecipitation solvent) described below, and this is then subjected to decantation and / or Alternatively, it is preferable to obtain a hydroxyalkylated polyrotaxane as a solid by performing a separation operation such as filtration.
- a reprecipitation solvent for example, a reprecipitation solvent
- a reprecipitation operation After completion of the reaction of the polyrotaxane with the cyclic ether represented by the general formula (1), a reprecipitation operation is performed to obtain the target hydroxyalkylated polyrotaxane as a solid substance with high purity and yield from the obtained reaction mixture. May be performed.
- the reprecipitation operation includes phase separation of the liquid containing the hydroxyalkylated polyrotaxane from the reaction mixture in addition to phase separation of the hydroxyalkylated polyrotaxane as a solid from the reaction mixture.
- the reprecipitation solvent used for the reprecipitation operation is not particularly limited as long as it is a poor solvent for the target hydroxyalkylated polyrotaxane.
- the reprecipitation solvent is preferably water; acetonitrile; ketones such as acetone, butanone, methyl isobutyl ketone, and cyclohexanone; alcohols such as methanol, ethanol, isopropanol, and ethylene glycol; tetrahydrofuran, tetrahydropyran, 1,2- Ethers such as dimethoxyethane and dioxane, and mixed solvents thereof are used, and more preferably water; acetonitrile; ketones such as acetone, butanone, methyl isobutyl ketone, cyclohexanone; methanol, ethanol, isopropanol, ethylene glycol, etc. Alcohols and mixed solvents thereof are used, particularly preferably water; ketones such as acetone,
- the amount of the reprecipitation solvent can be used to separate the target hydroxyalkylated polyrotaxane from the resulting reaction mixture as a solid or a liquid containing it, and other impurities can be separated from the solid or liquid.
- the amount is not particularly limited as long as it can be separated as a solution.
- the amount of the reprecipitation solvent used can be 0.1 g to 1000 g, preferably 0.5 g to 100 g, more preferably 1 g to 50 g, more preferably 1 g of the reaction mixture obtained after completion of the reaction. 1 to 20 g, particularly preferably 1 to 10 g, most preferably 1 to 5 g.
- the decantation applicable to the production method of the present invention is obtained by removing a hydroxyalkylated polyrotaxane from a reaction mixture containing a hydroxyalkylated polyrotaxane separated into two liquids separated into a solid and a liquid, or two layers.
- the hydroxyalkylated polyrotaxane is separated and purified as a solid by an operation of removing a liquid (for example, a supernatant solution) that is not contained.
- a liquid for example, a supernatant solution
- the operation of separating the solid and the liquid or the two liquids separated into two layers is not particularly limited.
- the reaction mixture or the addition solvent for example, the reprecipitation solvent
- the reaction mixture subjected to the reprecipitation operation is left as it is (standing), or using a centrifuge or the like.
- the apparatus used for decantation is not specifically limited, For example, it can determine suitably with the isolation
- decantation is as follows. After the reaction of the polyrotaxane with the cyclic ether represented by the general formula (1), in order to precipitate or separate a solid or liquid from the obtained reaction mixture, for example, it is left as it is (standing) or added solvent Separation of solid or liquid and supernatant by a method such as adding (for example, reprecipitation solvent) and allowing to stand (standing) or by centrifuging in a centrifuge Obtain a liquid. In this case, the leaving time is not particularly limited.
- the added solvent used is the same solvent type as the reprecipitation solvent described in the above (Reprecipitation operation) section, and these solvents are used alone. Or a plurality of types may be used in combination. Further, the use amount of the added solvent is the same as that described in the above section (Reprecipitation operation).
- the supernatant solution is removed from the obtained separated liquid by using, for example, a gradient method and / or a method using an instrument such as a pipette or a dropper to obtain a separated solid or liquid.
- the separated solid or liquid may be further purified, if necessary, for example, by adding the used additive solvent again and stirring appropriately, followed by decantation. The decantation operation may be repeated.
- the hydroxyalkylated polyrotaxane can be obtained as a solid material by removing the solvent contained in the liquid material.
- the solid hydroxyalkylated polyrotaxane obtained by decantation may be subjected to, for example, a filtration operation described later to remove the adhering solvent, or may be reconstituted in a normal polymer purification operation. Further purification may be performed by performing a precipitation operation.
- Filtration applicable to the production method of the present invention is not particularly limited as long as the hydroxyalkylated polyrotaxane is filtered off as a solid from the reaction mixture containing the hydroxyalkylated polyrotaxane.
- Filtration can be performed using a filter such as a filter paper, a filter cloth, a glass filter, or a membrane filter.
- the type of filter can be appropriately determined depending on the type of organic base and solvent used.
- a filter may use only 1 type or may use it in combination of multiple types.
- Filtration of the reaction mixture containing the hydroxyalkylated polyrotaxane may be performed under normal pressure, reduced pressure, or increased pressure, and under normal temperature, cooled, or heated conditions. Filtration may be performed.
- a filtration apparatus is not specifically limited, It can determine suitably with conditions or operation content.
- the hydroxyalkylated polyrotaxane of the present invention obtained by filtration is performed, for example, by an ordinary polymer purification operation such as rinsing with a used solvent (water, organic base, and / or reprecipitation solvent). Further purification may be carried out by performing such operations.
- an ordinary polymer purification operation such as rinsing with a used solvent (water, organic base, and / or reprecipitation solvent). Further purification may be carried out by performing such operations.
- the number average molecular weight of the hydroxyalkylated polyrotaxane obtained by the production method of the present invention can be 30,000 to 500,000. However, when considering the intended use of the hydroxyalkylated polyrotaxane, its number average molecular weight is preferably 60,000 to 400,000, more preferably 80,000 to 300,000, particularly preferably 100,000 to 200,000. 000, most preferably 130,000 to 160,000.
- the number average molecular weight of the hydroxyalkylated polyrotaxane is a value measured by, for example, gel permeation chromatography (GPC: Gel Permeation Chromatography, standard substance: polystyrene, pullulan or polyethylene oxide).
- the hydroxyalkylated polyrotaxane obtained by the production method of the present invention is the production raw material.
- the inclusion rate substantially the same as that of the polyrotaxane can be maintained.
- the modification rate (hydroxyalkylation modification rate) by hydroxyalkylation on the hydroxy group of the cyclic molecule is not particularly limited. For example, dispersibility in a desired solvent, etc.
- the type and amount of the cyclic ether represented by the general formula (1) described above the amount of the reaction solvent, the amount of organic base, the reaction temperature, and / or the reaction time are determined. It is controlled by adjusting as appropriate.
- the hydroxyalkylation modification rate of the hydroxyalkylated polyrotaxane is the ratio of the number of hydroxy groups of the hydroxyalkylated cyclic molecule to the total number of hydroxy groups of the cyclic molecule of the polyrotaxane as the production raw material. It is.
- the modification rate (%) of the hydroxyalkylated polyrotaxane can be 0.01 to 100%. If it is this range, when forming a coating film using a hydroxyalkylated polyrotaxane, it can suppress that an insoluble matter (protrusion derived from foreign material adhesion etc.) mixes.
- a hydroxyalkylated polyrotaxane having a modification rate (%) of preferably 20 to 100%, more preferably 40 to 100%, particularly preferably 60 to 100% can be obtained.
- the modification rate (%) of the above hydroxyalkylated polyrotaxane can be specifically calculated as follows. For example, it is assumed that the polyrotaxane has a theoretical hydroxy group amount of 13.6 mmol / g. Therefore, for example, when a hydroxypropyl group (—CH 2 CH (CH 3 ) OH) is added as a modifying group to a part of ⁇ -CD, as in the case of calculating the inclusion ratio, 1 H-NMR (500 MHz; DMSO-d 6 ) In a chart of spectral analysis, protons having a chemical shift value of 4 to 6 ppm (A: the sum of protons of hydroxy group of ⁇ -CD and protons bonded to anomeric carbon) were actually measured.
- A the sum of protons of hydroxy group of ⁇ -CD and protons bonded to anomeric carbon
- the modification rate of the hydroxypropyl group is calculated based on the integrated value and the measured integrated value of the proton (B) of the methyl group of the hydroxypropyl group having a chemical shift of about 0.5 to 1 ppm. In the calculation of the modification rate, it is used that when the modification rate is 100%, the theoretical value of (A) is 24 protons and the theoretical value of (B) is 54 protons.
- a so-called crosslinked polyrotaxane is produced by reacting this with a diisocyanate compound and further crosslinking the hydroxy group in the hydroxyalkylated polyrotaxane. be able to.
- This crosslinked polyrotaxane is useful as a topological gel material excellent in flexibility and durability.
- the formation of insoluble matter is suppressed by performing a hydroxyalkylation reaction in the presence of water and an organic base, and therefore a polyrotaxane having a desired hydroxyalkylation modification rate can be obtained with high purity. Can do.
- the hydroxyalkylated polyrotaxane thus obtained can be suitably used without any problems in various applications. For example, when a coating film is formed using a crosslinked polyrotaxane made from a hydroxyalkylated polyrotaxane as a raw material, protrusions derived from insoluble matters or foreign matter adhesion, which have been problems until now, are suppressed. The Therefore, since the reduction of defective products is expected, the hydroxyalkylated polyrotaxane is a material that is easy to use economically and industrially.
- the polyrotaxane which is a manufacturing raw material of this invention is a compound which has the following characteristics manufactured by the method similar to the method as described in patent document 1, patent document 4, etc., for example.
- Example 1 Production of hydroxypropylated polyrotaxane: organic base; triethylamine, cyclic ether; propylene oxide
- a glass flask having an internal volume of 200 ml equipped with a stirrer, a heating device, a dropping device, and a thermometer
- 20.0 g of polyrotaxane hydroxy group amount in polyrotaxane: 0.272 mol
- 5.7 g of triethylamine 0.056 mol, 0.21 mol used with respect to 1 mol of hydroxy groups in polyrotaxane
- 100.0 g of water were added, and the liquid temperature was adjusted to 40 ° C. while stirring.
- Example 2 Production of hydroxypropylated polyrotaxane: organic base; triethylamine, cyclic ether; propylene oxide
- the reaction was performed in the same manner as in Example 1 except that the amount of propylene oxide used was 40.0 g (0.69 mol, 2.53 mol used per 1 mol of the hydroxy group in the polyrotaxane). After the completion of the reaction, the obtained reaction mixture was confirmed. As a result, it was clear and formation of insoluble matter was not observed.
- Example 3 Production of hydroxypropylated polyrotaxane: organic base; triethylamine, cyclic ether; propylene oxide
- the reaction was performed in the same manner as in Example 1 except that the amount of propylene oxide used was 32.2 g (0.55 mol, 2.04 mol used per 1 mol of the hydroxy group in the polyrotaxane). After the completion of the reaction, the obtained reaction mixture was confirmed. As a result, it was clear and formation of insoluble matter was not observed.
- Example 4 Production of hydroxypropylated polyrotaxane: organic base; triethylamine, cyclic ether; propylene oxide
- the amount of triethylamine used was 6.4 g (0.063 mol, 0.23 mol used per mol of hydroxy group in the polyrotaxane), and the amount of propylene oxide used was 37.0 g (0.64 mol, polyrotaxane in the polyrotaxane).
- the reaction was performed in the same manner as in Example 1 except that 2.34 mol was used per 1 mol of the hydroxy group. After the completion of the reaction, the obtained reaction mixture was confirmed. As a result, it was clear and formation of insoluble matter was not observed.
- Example 5 Production of hydroxypropylated polyrotaxane: organic base; triethylamine, cyclic ether; propylene oxide
- the amount of triethylamine used is 7.0 g (0.068 mol, 0.25 mol used relative to 1 mol of hydroxy group in the polyrotaxane)
- the amount of propylene oxide used is 37.0 g (0.63 mol, in the polyrotaxane).
- the reaction was performed in the same manner as in Example 1 except that 2.34 mol was used per 1 mol of the hydroxy group. After the completion of the reaction, the obtained reaction mixture was confirmed. As a result, it was clear and formation of insoluble matter was not observed.
- Example 6 Production of hydroxypropylated polyrotaxane: organic base; triethylamine, cyclic ether; propylene oxide
- the amount of triethylamine used was 8.4 g (0.083 mol, 0.31 mol used per mol of hydroxy group in the polyrotaxane), and the amount of propylene oxide used was 40.0 g (0.69 mol, in the polyrotaxane).
- the reaction was performed in the same manner as in Example 1 except that 2.53 mol was used per 1 mol of the hydroxy group. After the completion of the reaction, the obtained reaction mixture was confirmed. As a result, it was clear and formation of insoluble matter was not observed.
- Example 7 Production of hydroxypropylated polyrotaxane: reaction temperature: 30 ° C., reaction time: 24 hours
- the reaction was performed in the same manner as in Example 1 except that the reaction temperature was 40 ° C to 30 ° C and the reaction time was 24 hours. After the completion of the reaction, the obtained reaction mixture was confirmed. As a result, it was clear and formation of insoluble matter was not observed.
- Example 8 Production of hydroxybutylated polyrotaxane: organic base; triethylamine, cyclic ether; butylene oxide
- the amount of triethylamine used was 8.4 g (0.083 mol, 0.31 mol used per 1 mol of hydroxy group in the polyrotaxane), but 40.0 g of butylene oxide (0.55 mol, polyrotaxane was used instead of propylene oxide).
- the reaction was carried out in the same manner as in Example 1 except that 2.04 mol was used per 1 mol of the hydroxy group therein. After the completion of the reaction, the obtained reaction mixture was confirmed. As a result, it was clear and formation of insoluble matter was not observed.
- Example 9 Production of hydroxypropylated polyrotaxane: organic base; pyridine, cyclic ether; propylene oxide
- the reaction was carried out in the same manner as in Example 1, except that the organic base was changed from triethylamine to 4.4 g of pyridine (0.056 mol, 0.20 mol used per 1 mol of the hydroxy group in the polyrotaxane). After the completion of the reaction, the obtained reaction mixture was confirmed. As a result, it was clear and no insoluble matter was observed.
- the upper layer was removed as a supernatant.
- 140.0 g of water and 710.0 g of acetone were added to the obtained lower layer, and the operation of removing the supernatant was performed twice.
- the resulting lower layer was concentrated and dried using an evaporator to obtain 20.7 g of the target hydroxypropylated polyrotaxane as a white solid.
- the sodium chloride residual rate in the obtained hydroxypropylated polyrotaxane was 0.04%.
- an industrially suitable method for producing a hydroxyalkylated polyrotaxane is provided. More specifically, it is possible to obtain a polyrotaxane having a desired hydroxyalkylation modification rate with high purity by suppressing the formation of insoluble substances during the reaction by a simple operation.
- the production method of the present invention is a method using an organic base, and avoids the occurrence of problems in terms of decomposition of the target product, corrosion of the apparatus, safety, etc., as in the case of using sodium hydroxide or the like. Further, neutralization treatment using an acid or the like and dialysis treatment of the salt after neutralization can be made unnecessary.
- the production method of the present invention is combined with filtration and / or decantation, so that not only the organic base used, but also other impurities (reaction products between cyclic ethers, etc.), and the desired hydroxyalkylation modification rate can be obtained.
- Hydroxyalkylated polyrotaxanes outside the range can also be removed, and hydroxyalkylated polyrotaxanes having a certain hydroxyalkylation modification rate can be obtained with good yield and purity.
- the hydroxyalkylated polyrotaxane can be crosslinked to form a crosslinked polyrotaxane, and this crosslinked polyrotaxane exhibits excellent flexibility, durability, etc., which are unique properties as a topological gel.
- a packing material for example, a packing material, a cushioning material, Buffer materials for automobiles and various devices, coating materials for friction parts of devices, adhesives, adhesives, sealing materials, materials for soft contact lenses, materials for tires, gels for electrophoresis, biocompatible materials, poultice materials, coatings Medical materials used outside the body such as materials or wound dressings, drug delivery systems, photographic photosensitive materials, components of coating materials including various paints and the above coating materials, separation functional membranes, water-swelling rubber, waterproofing tape , Hygroscopic gelling agent, fireproof coating material for buildings, heat dissipation material, waste mud gelling agent, chromatograph Chromatography carrier material, is useful as a bioreactor carrier material, various battery materials of the fuel cell or electrolytes, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Polyethers (AREA)
Abstract
Description
さらに、特許文献3及び4では、ヒドロキシプロピル化ポリロタキサンを用いて二次加工された材料が、例えば、医療用材料や塗料等に有用であることが報告されている。
本発明1は、ヒドロキシ基を有する環状分子、環状分子に串刺し状に包接される直鎖状分子、及び直鎖状分子から環状分子が脱離しないように直鎖状分子の両分子末端に配置されるブロック基を有するポリロタキサンと、一般式(1):
R1とR2、又はR3とR4は、それらが結合している炭素原子と一緒になって、3~12員の炭素環(例えば、オキサスピロアルキレン類等)を形成していてもよく、
R1又はR2とR3又はR4は、それらが結合している炭素原子と一緒になって、3~12員の炭素環(例えば、オキサビシクロアルカン類等)を形成していてもよく、
Lは、単結合、あるいは非置換又はフッ素原子、ニトロ基、シアノ基、アルコキシ基若しくはヒドロキシ基で置換されている、炭素原子数1~12のアルキレン基であるが、
ただし、一般式(1)の炭素原子数は、50を越えないこととする)で示される環状エーテルとを、水及び有機塩基の存在下にて反応させることを含む、ヒドロキシアルキル化ポリロタキサンの製造方法に関する。
本発明2は、有機塩基が、脂肪族第三級アミン類、芳香族第三級アミン類、脂環式第三級アミン類及び複素脂環式第三級アミン類、ピリジン類、イミダゾール類並びにトリアゾール類からなる群より選択される1種以上である、本発明1の製造方法に関する。
本発明3は、有機塩基が、トリアルキルアミン及びピリジン類からなる群より選択される1種以上である、本発明2の製造方法に関する。
本発明4は、有機塩基の使用量が、製造原料であるポリロタキサン中のヒドロキシ基1モルに対して0.10モル以上1モル未満である、本発明1~3のいずれかの製造方法に関する。
本発明5は、一般式(1)で示される環状エーテルが、オキシラン、炭素原子数3~24の一置換オキシラン類及び炭素原子数4~24の二置換オキシラン類からなる群より選択される1種以上である、本発明1~4のいずれかの製造方法に関する。
本発明6は、一般式(1)で示される環状エーテルが、オキシラン、メチルオキシラン、エチルオキシラン、プロピルオキシラン、ブチルオキシラン、フェニルオキシラン及びグリシドールからなる群より選択される1種以上である、本発明5の製造方法に関する。
本発明7は、ヒドロキシ基を有する環状分子が、α-シクロデキストリンである、本発明1~6のいずれかの製造方法に関する。
本発明8は、ポリロタキサンと一般式(1)で示される環状エーテルとの反応後に、デカンテーションにより、有機塩基の少なくとも一部を除去することを含む、本発明1~7のいずれかの製造方法に関する。
本発明におけるポリロタキサンは、ヒドロキシ基を有する環状分子、環状分子に串刺し状に包接される直鎖状分子、及び直鎖状分子から環状分子が脱離しないように直鎖状分子の両分子末端に配置されるブロック基を有する。このようなポリロタキサンは、例えば、前記特許文献1、2又は4等に記載の方法にて製造することができる。
本発明における直鎖状分子は、環状分子に包接され、非共有結合的に一体化することができる分子又は物質であって、直鎖状のものであれば、特に限定されず、例えば、以下が挙げられる。
ポリブチロラクトン、ポリカプロラクトン等の脂肪族ポリエステル類(例えば、繰り返し単位中のアルキレン部分の炭素原子数が1~14の脂肪族ポリエステル類);
ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン類(例えば、オレフィン単位の炭素原子数が2~12のポリオレフィン類);
ポリジメチルシロキサン等のポリジアルキルシロキサン類(例えば、ケイ素原子に結合しているアルキル部分の炭素原子数が1~4のポリジアルキルシロキサン類;
ポリブタジエン、ポリイソプレン等のポリジエン類(例えば、ジエン単位の炭素原子数が4~12のポリジエン類);
ポリエチレンカーボネート、ポリプロピレンカーボネート、ポリテトラメチレンカーボネート、ポリペンタメチレンカーボネート、ポリヘキサメチレンカーボネート、ポリフェニレンカーボネート等のポリカーボネート類(例えば、繰り返し単位中の炭化水素部分の炭素原子数が2~12のポリカーボネート類);
カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のセルロース類;
ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル(例えば、ポリメチルメタクリレート、ポリメチルアクリレート等)、ポリ(メタ)アクリルアミド、ポリ(メタ)アクリロニトリル、並びに(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミド及び(メタ)アクリロニトリルから選ばれる複数種類のモノマーを共重合させて得られるコポリマー等の(メタ)アクリル系ポリマー類;
ポリアミド類(例えば、ナイロン6、ナイロン66等)、ポリイミド類、ポリスルホン酸類、ポリイミン類、ポリ尿素類、ポリスルフィド類、ポリフォスファゼン類、ポリケトン類、ポリエーテルエーテルケトン類、ポリフェニレン類(例えば、ポリフェニレンエーテル類等)、ポリテトラヒドロフラン類(例えば、クラブレスコール等)等。
前記直鎖状分子の重量平均分子量が200以上であると、得られるポリロタキサンを用いて、例えば、架橋ポリロタキサンを構成した場合に、特性がより良好になる傾向がある。一方、前記直鎖状分子の重量平均分子量が200,000以下であると、ポリロタキサンを調製することがより容易になる傾向がある。
本発明におけるブロック基は、環状分子を直鎖状分子から脱離させないように直鎖状分子の両分子末端に設けられるものであり、このような作用を生じ得るものであれば、特に限定されない。
ここで、本発明においてブロック基を直鎖状分子の両分子末端に配置させるブロック化剤としては、上記ブロック基を含むアミン類を使用することができる。なお、上記ブロック基を含むアミン類は、例えば、水和物、無機酸塩(塩酸塩、臭化水素酸塩等)、又は有機酸塩(メタンスルホン酸塩、トルエンスルホン酸塩等)であってもよい。
本発明における反応方法によれば、このアミン類を、両分子末端をカルボキシ基化した直鎖状分子の末端と反応させ、ブロック基を導入することができる。ここで、具体的なブロック化剤として、アダマンチルアミン、又はその塩酸塩を使用することが好ましい。
本発明における環状分子は、一般式(1)で示される環状エーテルと反応し得るヒドロキシ基(OH基)を有するものであって、かつ環状の分子構造を有し、直鎖状分子を包接して滑車効果を奏するものであれば、特に限定されない。環状の分子構造は、必ずしも閉環した分子形状である必要はなく、例えば、「C」字状のように、一部が開環している実質的に環状である構造も含む。環状分子は、ヒドロキシ基を1個以上有していればよく、その他に、例えばニトロ基、シアノ基、アルコキシ基等のヒドロキシアルキル化反応に、悪影響を及ぼさない置換基を有していてもよい。
本発明におけるポリロタキサンの数平均分子量は、好ましくは10,000~500,000、さらに好ましくは30,000~400,000、より好ましくは50,000~300,000、特に好ましくは90,000~200,000、最も好ましくは100,000~160,000である。なお、ポリロタキサンの数平均分子量は、例えば、ゲル浸透クロマトグラフィー(GPC:Gel Permeation Chromatography、標準物質:ポリスチレン、プルラン又はポリエチレンオキシド)によって測定される値である。
本発明におけるポリロタキサンについて、直鎖状分子を包接する環状分子の導入割合(包接率)は、特に限定されず、所望の溶媒への分散性、修飾基の種類等によって適宜選択することができる。ここで、直鎖状分子を包接する環状分子の導入割合である包接率は、直鎖状分子に環状分子が最密に包接された場合(充填率:100%)を1.0として、通常、0.05~0.80である。例えば、直線状分子がポリエチレングリコールで、環状分子がシクロデキストリンの場合の包接率は、好ましくは0.05~0.65であり、より好ましくは0.10~0.60であり、さらにより好ましくは0.15~0.55であり、特に好ましくは0.20~0.40である。包接率がこの範囲であると、本発明の製造方法で得られるヒドロキシアルキル化ポリロタキサンを使用して、前記特許文献2に記載されたような架橋ポリロタキサンを製造した場合、環状分子由来の滑車効果が十分に発現し、また、環状分子の可動性も良好である。
本発明における環状エーテルは、下記一般式(1)で示される、炭素原子数が50を越えない化合物である。
R1とR2、又はR3とR4は、それらが結合している炭素原子と一緒になって、3~12員の炭素環(例えば、オキサスピロアルキレン類等)を形成していてもよく、
R1又はR2とR3又はR4は、それらが結合している炭素原子と一緒になって、3~12員の炭素環(例えば、オキサビシクロアルカン類等)を形成していてもよく、
Lは、単結合、あるいは非置換又はフッ素原子、ニトロ基、シアノ基、アルコキシ基若しくはヒドロキシ基で置換されている、炭素原子数1~12のアルキレン基である。
ただし、一般式(1)の炭素原子数は、50を越えないこととする。)
R5及びR6は、水素原子であるか、あるいは非置換又はフッ素原子、ニトロ基、シアノ基、アルコキシ基若しくはヒドロキシ基で置換されている、炭素原子数1~4のアルキル基であるが、
ただし、一般式(2)又は一般式(3)の炭素原子数は50を越えないこととする。)
アルキル基としては、炭素原子数1~12の直鎖状又は分岐鎖状のアルキル基が挙げられ、好ましくは、炭素原子数1~8の直鎖状又は分岐鎖状のアルキル基であり、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等である。なお、これらのアルキル基のうち分岐鎖状アルキル基は、位置異性体や光学異性体を含む。ただし、一般式(3)中、R5及びR6のアルキル基は、炭素原子数1~4であり、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基である。
オキシラン(エチレンオキシド);
一置換オキシラン類、好ましくは炭素原子数3~26、より好ましくは炭素原子数3~24の一置換オキシラン類であり、その具体例としては、メチルオキシラン(プロピレンオキシド)、エチルオキシラン(1,2-ブチレンオキシド)、プロピルオキシラン(1,2-ペンチレンオキシド)、ブチルオキシラン(1,2-ヘキシレンオキシド)、フェニルオキシラン、メトキシメチルオキシラン等の(炭素原子数1~8のアルコキシメチル)オキシラン、グリシドール(2,3-エポキシメタノール)等;
二置換オキシラン類、好ましくは炭素原子数4~26、より好ましくは炭素原子数4~24の二置換オキシラン類であり、その具体例としては、2,3-ジメチルオキシラン、2,2-ジメチルオキシラン、2,3-ジエチルオキシラン、2,2-ジエチルオキシラン、2,3-ジプロピルオキシラン、2,2-ジプロピルオキシラン、2,3-ジブチルオキシラン、2,2-ジブチルオキシラン、2,3-ジフェニルオキシラン、2,2-ジフェニルオキシラン、2,3-ビス(炭素原子数1~8アルコキシメチル)オキシラン、2,2-ビス(メトキシメチル)オキシラン等の2,2-ビス(炭素原子数1~8のアルコキシメチル)オキシラン等;
三置換オキシラン類、好ましくは炭素原子数5~26の三置換のオキシラン類であり、その具体例としては、2,2,3-トリメチルオキシラン、2,2,3-トリエチルオキシラン、2,2,3-トリプロピルオキシラン、2,2,3-トリブチルオキシラン、2,2,3-トリフェニルオキシラン、2,2,3-トリス(メトキシメチル)オキシラン等の2,2,3-トリス(炭素原子数1~8のアルコキシメチル)オキシラン等;
四置換オキシラン類、好ましくは炭素原子数6~26の四置換オキシラン類、例えば、2,2,3,3-テトラメチルオキシラン、2,2,3,3-テトラエチルオキシラン、2,2,3,3-テトラプロピルオキシラン、2,2,3,3-テトラブチルオキシラン、2,2,3,3-テトラフェニルオキシラン、2,2,3,3-テトラキス(炭素原子数1~8のアルコキシメチル)オキシラン等が挙げられる。
オキセタン、3-メチルオキセタン、3-エチルオキセタン、3-エチル-3-ヒドロキシエチルオキセタン等が挙げられる。
本発明における一般式(1)で示される環状エーテルの使用量は、ヒドロキシアルキル化の程度によって増減させることができ、特に限定されない。例えば、本発明における一般式(1)で示される環状エーテルの使用量は、製造原料であるポリロタキサン1gに対して、通常、0.01g~100gとすることができ、好ましくは0.10g~50gであり、さらに好ましくは0.50g~25gであり、より好ましくは1g~15gであり、特に好ましくは1g~10gであり、最も好ましくは1g~5gである。
(ヒドロキシ基数[mmol/g]=(1/平均分子量)×(35000/88×0.25×18)、平均分子量:35000+(35000/88×0.25×972))。
上記の使用量範囲であれば、後述する本発明のヒドロキシアルキル化ポリロタキサンの修飾率(%)を、0.01~100%に制御することができ、修飾率が、好ましくは1~80%、より好ましくは10~80%、特に好ましくは25~55%のヒドロキシアルキル化ポリロタキサンを取得することができる。
本発明においては、有機塩基の存在下で、ヒドロキシアルキル化反応を行う。有機塩基は、反応後の分離精製の点から、沸点が200℃以下である有機塩基が好ましい。
アルキル基としては、炭素原子数1~18の直鎖状又は分岐状のアルキル基が挙げられ、好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基等である。
シクロアルキル基としては、炭素原子数3~18シクロアルキル基が挙げられ、好ましくは、シクロペンチル基、シクロへキシル基等である。
アリール基としては、炭素原子数6~18アリール基が挙げられ、好ましくは、フェニル基、ナフチル基、アントラニル基等である。
アラルキル基としては、炭素原子数7~18アラルキル基が挙げられ、好ましくは、ベンジル基、フェネチル基等である。
トリアルキルシリル基としては、アルキル基が、それぞれ独立して、炭素原子数1~18の直鎖状又は分岐状のアルキル基であるものが好ましく、例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基等が挙げられる。
前記アルキル基、アリール基、シクロアルキル基、アラルキル基及びトリアルキルシリル基は、非置換であっても、フッ素原子、ニトロ基、シアノ基、及びアルコキシ基からなる群より選ばれる1個以上の置換基で置換されていてもよい。置換基として、好ましくはフッ素原子、ニトロ基、又はアルコキシ基である。
N-置換モルホリン類としては、炭素原子数5~24のN-アルキル置換モルホリン類が好ましく、N-メチルモルホリンが挙げられる。
N,N’-ジ置換ピペラジン類としては、炭素原子数6~24のN,N’-ジアルキル置換ピペラジン類が好ましく、N,N’-ジメチルピペラジンが挙げられる。
イミダゾール類(イミダゾール及びイミダゾール誘導体)としては、イミダゾール、炭素原子数4~24のN-置換イミダゾール類が挙げられる。N-置換イミダゾール類は、N-アルキル置換イミダゾール、N-アリール置換イミダゾール、N-トリアルキルシリル置換イミダゾールであることができ、例えば、N-フェニルイミダゾール、N-トリメチルシリルイミダゾール、N-トリエチルシリルイミダゾール、N-tert-ブチルジメチルシリルイミダゾールが挙げられる。
本発明における有機塩基の使用量は、製造原料であるポリロタキサン中のヒドロキシ基1モルに対して、0.01モル~500モルとすることができ、好ましくは0.05モル~50モルであり、さらに好ましくは0.10モル~10モルであり、より好ましくは0.10モル~5モルであり、特に好ましくは0.10モル以上1モル未満である。
本発明においては、水の存在下で、ヒドロキシアルキル化反応を行う。
本発明の製造方法は、水及び有機塩基の存在下にて、ポリロタキサン中の環状分子のヒドロキシ基と一般式(1)で示される環状エーテルとを反応させる工程を含む。反応は、水及び有機塩基の存在下、ポリロタキサンと一般式(1)で示される環状エーテルとを混合し、攪拌、振とう等をすることにより行なうことができる。具体的には、水及び有機塩基にポリロタキサンを加え、次いで一般式(1)で示される環状エーテルを添加しながら攪拌を行って反応させることが好ましい。
本発明の製造方法において、反応温度は、使用する一般式(1)で示される環状エーテルの物性等によって適宜決めることができる。すなわち、本発明の製造方法における反応温度は、使用するポリロタキサンのガラス転移温度以上であって、一般式(1)で示される環状エーテルの沸点以下であれば、特に限定されないが、-20~100℃とすることができる。この温度範囲であれば、一般式(1)で示される環状エーテルも反応系中に留まりやすく、かつポリロタキサンの環状分子のヒドロキシ基との反応性も良好であることから、高い反応収率が期待できる。反応温度は、好ましくは-10~80℃であり、より好ましくは10~60℃であり、特に好ましくは25~60℃である。反応時間は、適宜、変更することができ、例えば、1~48時間が挙げられ、好ましくは3~30時間である。
本発明の製造方法において、反応圧力は、使用する一般式(1)で示される環状エーテルの種類、反応温度等によって適宜決めることができ、特に限定されないが、大気圧下で行われることが好ましい。例えば、窒素、アルゴン等の不活性ガス流通下、又は雰囲気下として、反応を行うこともでき、あるいは開放系(大気圧下)として、反応を行なうこともできる。
本発明の製造方法において、反応は、水及び有機塩基の存在下にて行なわれるため、別途反応溶媒を使用する必要はない。しかしながら、本発明で使用するポリロタキサンの水及び/又は有機塩基への溶解度が低い等場合、適宜、反応溶媒を使用することができる。反応溶媒は、ヒドロキシアルキル化反応に悪影響を与えないものであれば、特にその溶媒種及び使用量は限定されない。
本発明のポリロタキサンと一般式(1)で示される環状エーテルとの反応終了後、液体状態の反応混合物が得られる。得られた反応混合物は、例えば、再沈殿操作後、デカンテーション又はろ過等の分離・精製操作により、目的とするヒドロキシアルキル化ポリロタキサンを固形物として取得することができる。すなわち、本発明の製造方法では、使用した有機塩基を、中和処理することなく、上記の方法で容易に除去することができるため、非常に便利であり、工業的製造方法に好適である。
ポリロタキサンと一般式(1)で示される環状エーテルの反応終了後、得られた反応混合物から目的物であるヒドロキシアルキル化ポリロタキサンを固形物として、かつ純度及び収率よく取得するために、再沈殿操作を行なってもよい。ここで再沈殿操作は、反応混合物からヒドロキシアルキル化ポリロタキサンを固形物として相分離することに加えて、ヒドロキシアルキル化ポリロタキサンを含む液状物を反応混合物から相分離することを含む。
なお、再沈殿溶媒として、好ましくは、水;アセトニトリル;アセトン、ブタノン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、イソプロパノール、エチレングリコール等のアルコール類;テトラヒドロフラン、テトラヒドロピラン、1,2-ジメトキシエタン、ジオキサン等のエーテル類、及びこれらの混合溶媒が使用され、より好ましくは、水;アセトニトリル;アセトン、ブタノン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、イソプロパノール、エチレングリコール等のアルコール類、及びこれらの混合溶媒が使用され、特に好ましくは、水;アセトン、ブタノン、メチルイソブチルケトン、シクロヘキサノン等のケトン類及びこれらの混合溶媒が使用される。
本発明の製造方法に適用できるデカンテーションは、固形物と液体とに、又は2層に分離される2種の液体に分離されたヒドロキシアルキル化ポリロタキサンを含有する反応混合物から、ヒドロキシアルキル化ポリロタキサンを含まない液体(例えば、上澄み溶液)を除く操作により、固形物として、ヒドロキシアルキル化ポリロタキサンを分離・精製して取得する操作である。ここで、固形物と液体とに、又は2層に分離される2種の液体に分離する操作は、特に限定されず、例えば、反応混合物、又は前記添加溶媒(例えば、再沈殿溶媒)を加えて再沈殿操作を行なった反応混合物を、そのまま放置(静置)するか、又は遠心分離機等を使用して行なう。なお、デカンテーションに使用する装置は、特に限定されず、例えば、固形物と液体との分離状態又は2種の液体の分離状態等によって適宜決めることができる。
また、デカンテーションによって液状物が得られる場合は、液状物に含まれる溶媒を除去することで、固形物としてヒドロキシアルキル化ポリロタキサンを得ることができる。
本発明の製造方法に適用できるろ過は、ヒドロキシアルキル化ポリロタキサンを含有する反応混合物から、ヒドロキシアルキル化ポリロタキサンが固形物としてろ別されるような方法であれば、特に限定されない。ろ過は、例えば、ろ紙、ろ布、ガラスフィルター又はメンブレンフィルター等のフィルターを用いて行なうことができる。またフィルターの種類は、使用した有機塩基、溶媒の種類等によって適宜決めることができる。なお、フィルターは、1種のみを使用しても、複数種類を組み合わせて使用してもよい。ヒドロキシアルキル化ポリロタキサンを含有する反応混合物のろ過は、常圧下、減圧下、又は加圧下のいずれの条件下で行ってもよく、また、常温下、冷却下、又は加熱下のいずれの条件下でろ過を行ってもよい。また、ろ過装置は、特に限定されず、条件や操作内容によって適宜決めることができる。
(分子量)
本発明の製造方法によって得られるヒドロキシアルキル化ポリロタキサンの数平均分子量は、30,000~500,000であることができる。しかしながら、ヒドロキシアルキル化ポリロタキサンの使用用途を考慮した場合、その数平均分子量は、好ましくは60,000~400,000、より好ましくは80,000~300,000、特に好ましくは100,000~200,000、最も好ましくは130,000~160,000となるように製造する。なお、ヒドロキシアルキル化ポリロタキサンの数平均分子量は、例えば、ゲル浸透クロマトグラフィー(GPC:Gel Permeation Chromatography、標準物質:ポリスチレン、プルラン又はポリエチレンオキシド)によって測定される値である。
本発明の製造方法では、製造原料として使用したポリロタキサン中のシクロデキストリンの包接率に影響を与えることが抑制されているため、本発明の製造方法で得られるヒドロキシアルキル化ポリロタキサンは、製造原料のポリロタキサンと、実質的に同じ包接率を維持することができる。
本発明の製造方法により得られるヒドロキシアルキル化ポリロタキサンについて、環状分子のヒドロキシ基に対するヒドロキシアルキル化による修飾率(ヒドロキシアルキル化修飾率)は、特に限定されず、例えば、所望の溶媒への分散性等のヒドロキシアルキル化ポリロタキサンの使用目的に応じて、上述した一般式(1)で示される環状エーテルの種類とその使用量、反応溶媒の量、有機塩基の量、反応温度、及び/又は反応時間を適宜調節して制御される。なお、本明細書において、ヒドロキシアルキル化ポリロタキサンのヒドロキシアルキル化修飾率とは、製造原料のポリロタキサンの環状分子のヒドロキシ基の総個数に占める、ヒドロキシアルキル化された環状分子のヒドロキシ基の個数の割合である。本発明の製造方法によれば、ヒドロキシアルキル化ポリロタキサンの修飾率(%)を、0.01~100%とすることができる。この範囲であれば、ヒドロキシアルキル化ポリロタキサンを用いて塗膜を形成した時に不溶物(異物付着等に由来する突出物)が混入することを抑制することができる。本発明の製造方法によれば、修飾率(%)が、好ましくは20~100%、より好ましくは40~100%、特に好ましくは60~100%のヒドロキシアルキル化ポリロタキサンを取得することができる。
直鎖状分子:ポリエチレングリコール(数平均分子量(GPC*1:Mn):35,000)
環状分子:α-シクロデキストリン
ブロック基:アダマンチル基(両分子末端はアミド結合)
包接率:0.25
理論ヒドロキシ基量:13.6mmol/g
ポリロタキサンの数平均分子量(GPC*1:Mn):130,000*1
*1:GPC分析におけるピークトップの数平均分子量値を使用した。
窒素雰囲気下、撹拌装置、加熱装置、滴下装置、及び温度計を備えた内容積200mlのガラス製フラスコに、ポリロタキサン20.0g(ポリロタキサン中のヒドロキシ基量:0.272モル)、トリエチルアミン5.7g(0.056モル、ポリロタキサン中のヒドロキシ基1モルに対して0.21モル使用)、及び水100.0gを加え、撹拌しながら液温を40℃にした。次いで、この混合物にプロピレンオキシド43.4g(0.75モル、ポリロタキサン中のヒドロキシ基1モルに対して2.75モル使用)を40分かけて滴下した。滴下後、さらに6時間撹拌したところ、反応混合物中のプロピレンオキシドの残存率が、10%を下回ったので反応を終了した。このとき、得られた反応混合物を確認したところ、澄明で、不溶物の生成は認めらなかった。
なお、得られたヒドロキシプロピル化ポリロタキサン中のトリエチルアミン残存率は0.47%であった。
プロピレンオキシドの使用量を40.0g(0.69モル、ポリロタキサン中のヒドロキシ基1モルに対して2.53モル使用)とした以外は、実施例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、澄明で、不溶物の生成は認めらなかった。
プロピレンオキシドの使用量を32.2g(0.55モル、ポリロタキサン中のヒドロキシ基1モルに対して2.04モル使用)とした以外は、実施例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、澄明で、不溶物の生成は認めらなかった。
トリエチルアミンの使用量を6.4g(0.063モル、ポリロタキサン中のヒドロキシ基1モルに対して0.23モル使用)とし、プロピレンオキシドの使用量を37.0g(0.64モル、ポリロタキサン中のヒドロキシ基1モルに対して2.34モル使用)とした以外は、実施例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、澄明で、不溶物の生成は認めらなかった。
トリエチルアミンの使用量を7.0g(0.068モル、ポリロタキサン中のヒドロキシ基1モルに対して0.25モル使用)とし、プロピレンオキシドの使用量を37.0g(0.63モル、ポリロタキサン中のヒドロキシ基1モルに対して、2.34モル使用)とした以外は、実施例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、澄明で、不溶物の生成は認めらなかった。
トリエチルアミンの使用量を8.4g(0.083モル、ポリロタキサン中のヒドロキシ基1モルに対して0.31モル使用)とし、プロピレンオキシドの使用量を40.0g(0.69モル、ポリロタキサン中のヒドロキシ基1モルに対して、2.53モル使用)とした以外は、実施例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、澄明で、不溶物の生成は認めらなかった。
反応温度を40℃から30℃とし、反応時間を24時間とした以外は、実施例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、澄明で、不溶物の生成は認めらなかった。
トリエチルアミンの使用量を8.4g(0.083モル、ポリロタキサン中のヒドロキシ基1モルに対して、0.31モル使用)とし、プロピレンオキシドに代えてブチレンオキシド40.0g(0.55モル、ポリロタキサン中のヒドロキシ基1モルに対して2.04モル使用)を使用した以外は、実施例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、澄明で、不溶物の生成は認めらなかった。
有機塩基をトリエチルアミンからピリジン4.4g(0.056モル、ポリロタキサン中のヒドロキシ基1モルに対して0.20モル使用)とした以外は、実施例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、澄明で、不溶物の生成は認めらなかった
窒素雰囲気下、撹拌装置、加熱装置、及び温度計を備えた内容積200mlのガラス製フラスコに、ポリロタキサン20.0g(ポリロタキサン中のヒドロキシ基量:0.272モル)及び水酸化ナトリウム6.2g(0.155モル、ポリロタキサン中のヒドロキシ基1モルに対して0.56モル使用)、水100.0gを加え、撹拌しながら40℃に昇温した。次いで、この混合物にプロピレンオキシド40.0g(0.69モル、ポリロタキサン中のヒドロキシ基1モルに対して2.53モル使用)を40分かけて滴下した。滴下後、さらに6時間撹拌したところ、反応混合物中のプロピレンオキシドの残存率が、10%を下回ったので反応を終了した。このとき、得られた反応混合物を確認したところ、白色の不溶物の生成が認められた。
反応終了後、得られた反応混合物に20%塩酸26.7gを加えて中和を行い、次いでアセトン710.0gを加えて、しばらく攪拌を行なった。その後、攪拌を止めてこの溶液を静置したところ2層に分離したので、上澄み液として上層を除去した。次に、得られた下層に、水140.0g、アセトン710.0gを加え、上澄み液を除去する操作を2度行なった。最後に、得られた下層を、エバポレーターを用いて濃縮乾燥し、白色固形物として目的物であるヒドロキシプロピル化ポリロタキサンを20.7g取得した。
なお、得られたヒドロキシプロピル化ポリロタキサン中の塩化ナトリウム残存率は0.04%であった。
水酸化ナトリウム使用量を3.3g(0.083モル、ポリロタキサン中のヒドロキシ基1モルに対して0.30モル使用)とし、プロピレンオキシドの使用量を29.0g(0.50モル、ポリロタキサン中のヒドロキシ基1モルに対して、1.84モル使用)とした以外は、比較例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、白色の不溶物の生成が認められた。
水酸化ナトリウム使用量を3.3g(0.083モル、ポリロタキサン中のヒドロキシ基1モルに対して0.30モル使用)とし、プロピレンオキシドの使用量を25.8g(0.44モル、ポリロタキサン中のヒドロキシ基1モルに対して1.63モル使用)とした以外は、比較例1と同様の方法で反応を行った。反応終了後、得られた反応混合物を確認したところ、白色の不溶物の生成が認められた。
本発明の製造方法は、ろ過及び/又はデカンテーションと組み合わせることにより、使用した有機塩基のみならず、その他の不純物(環状エーテル同士の反応物等)のほか、所望とするヒドロキシアルキル化修飾率の範囲外のヒドロキシアルキル化ポリロタキサンをも除去することができ、一定のヒドロキシアルキル化修飾率を有するヒドロキシアルキル化ポリロタキサンを収率よく、また純度よく取得することができ、各種用途に不具合なく、好適に使用することができる。ヒドロキシアルキル化ポリロタキサンは架橋させ、架橋ポリロタキサンとすることができ、この架橋ポリロタキサンは、トポロジカルゲルとしての特有の性質である優れた柔軟性、耐久性等を示すため、例えば、パッキング材料、クッション材、自動車や種々の装置の緩衝材、装置の摩擦部分のコーティング材、接着剤、粘着剤、シール材料、ソフトコンタクトレンズ用材料、タイヤ用材料、電気泳動用ゲル、生体適合性材料、湿布材料、塗布材料又は創傷被覆材等の体外に用いる医療用材料、ドラッグデリバリーシステム、写真用感光材料、種々の塗料及び上記コーティング材料を含むコーティング材料の構成成分等、分離機能膜、水膨潤ゴム、止水テープ、吸湿ゲル化剤、建築物用耐火被覆材、放熱材料、廃泥ゲル化剤、クロマトグラフィー担体用材料、バイオリアクター担体用材料、燃料電池又は電解質等の種々の電池材料等として有用である。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
Claims (8)
- ヒドロキシ基を有する環状分子、環状分子に串刺し状に包接される直鎖状分子、及び直鎖状分子から環状分子が脱離しないように直鎖状分子の両分子末端に配置されるブロック基を有するポリロタキサンと、一般式(1):
R1とR2、又はR3とR4は、それらが結合している炭素原子と一緒になって、3~12員の炭素環を形成していてもよく、
R1又はR2とR3又はR4は、それらが結合している炭素原子と一緒になって、3~12員の炭素環を形成していてもよく、
Lは、単結合、あるいは非置換又はフッ素原子、ニトロ基、シアノ基、アルコキシ基若しくはヒドロキシ基で置換されている、炭素原子数1~12のアルキレン基であるが、
ただし、一般式(1)の炭素原子数は、50を越えないこととする)で示される環状エーテルとを、水及び有機塩基の存在下にて反応させることを含む、ヒドロキシアルキル化ポリロタキサンの製造方法。 - 有機塩基が、脂肪族第三級アミン類、芳香族第三級アミン類、脂環式第三級アミン類及び複素脂環式第三級アミン類、ピリジン類、イミダゾール類並びにトリアゾール類からなる群より選択される1種以上である、請求項1に記載の製造方法。
- 有機塩基が、トリアルキルアミン及びピリジン類からなる群より選択される1種以上である、請求項2に記載の製造方法。
- 有機塩基の使用量が、製造原料であるポリロタキサン中のヒドロキシ基1モルに対して0.10モル以上1モル未満である、請求項1~3のいずれか1項に記載の製造方法。
- 一般式(1)で示される環状エーテルが、オキシラン、炭素原子数3~24の一置換オキシラン類及び炭素原子数4~24の二置換オキシラン類からなる群より選択される1種以上である、請求項1~4のいずれか1項に記載の製造方法。
- 一般式(1)で示される環状エーテルが、オキシラン、メチルオキシラン、エチルオキシラン、プロピルオキシラン、ブチルオキシラン、フェニルオキシラン及びグリシドールからなる群より選択される1種以上である、請求項5に記載の製造方法。
- ヒドロキシ基を有する環状分子が、α-シクロデキストリンである、請求項1~6のいずれか1項に記載の製造方法。
- ポリロタキサンと一般式(1)で示される環状エーテルとの反応後に、デカンテーションにより、有機塩基の少なくとも一部を除去することを含む、請求項1~7のいずれか1項に記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/389,477 US20150094463A1 (en) | 2012-03-30 | 2013-04-01 | Hydroxyalkylated polyrotaxane production method |
EP13770318.7A EP2832750A4 (en) | 2012-03-30 | 2013-04-01 | PROCESS FOR PREPARING HYDROXYALKYLATED POLYROTAXANE |
KR1020147029758A KR102011170B1 (ko) | 2012-03-30 | 2013-04-01 | 히드록시알킬화 폴리로탁산의 제조 방법 |
CN201380017453.9A CN104203984B (zh) | 2012-03-30 | 2013-04-01 | 羟基烷基化聚轮烷的制造方法 |
JP2014508254A JP6196964B2 (ja) | 2012-03-30 | 2013-04-01 | ヒドロキシアルキル化ポリロタキサンの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012082226 | 2012-03-30 | ||
JP2012-082226 | 2012-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013147300A1 true WO2013147300A1 (ja) | 2013-10-03 |
Family
ID=49260532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/059909 WO2013147300A1 (ja) | 2012-03-30 | 2013-04-01 | ヒドロキシアルキル化ポリロタキサンの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150094463A1 (ja) |
EP (1) | EP2832750A4 (ja) |
JP (1) | JP6196964B2 (ja) |
KR (1) | KR102011170B1 (ja) |
CN (1) | CN104203984B (ja) |
WO (1) | WO2013147300A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016194026A (ja) * | 2015-04-02 | 2016-11-17 | 株式会社トクヤマ | フォトクロミック組成物の製造方法 |
JPWO2018225704A1 (ja) * | 2017-06-06 | 2020-04-09 | アドバンスト・ソフトマテリアルズ株式会社 | 環状分子にポリアルキレンオキシド鎖又はその誘導体を有する置換基を有するポリロタキサン及びその製造方法 |
WO2021230268A1 (ja) * | 2020-05-13 | 2021-11-18 | 株式会社Asm | 環状分子にプロピレンオキシ繰り返し単位を有して形成される鎖を有する基を有するポリロタキサン |
JP7601763B2 (ja) | 2019-06-19 | 2024-12-17 | 株式会社Asm | 環状分子に長鎖アルキル基を有するポリロタキサン、該ポリロタキサンを有する組成物、及び該ポリロタキサンの製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105683334B (zh) * | 2013-11-11 | 2018-04-10 | 株式会社德山 | 光致变色组合物 |
EP3687548A4 (en) | 2017-09-29 | 2021-05-26 | The Regents of the University of California | MULTI-ARM POLYROTAXANE PLATFORM FOR PROTECTED NUCLEIC ACID ADMINISTRATION |
WO2020045325A1 (ja) | 2018-08-27 | 2020-03-05 | アドバンスト・ソフトマテリアルズ株式会社 | ポリロタキサン、該ポリロタキサンを有する熱硬化性組成物、及び熱硬化架橋体、並びにポリロタキサンの製造方法及び熱硬化架橋体の製造方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS495193A (ja) * | 1972-05-02 | 1974-01-17 | ||
JPS59104334A (ja) | 1982-11-17 | 1984-06-16 | ベペ・シミイ・ソシエテ・アノニム | エポキシドとヒドロキシル化化合物との付加生成物の製造法 |
JPH09227174A (ja) * | 1996-02-28 | 1997-09-02 | Nichiden Kagaku Kk | 硝子繊維集束剤用化工澱粉 |
JPH10306104A (ja) | 1997-05-08 | 1998-11-17 | Hokuriku Sentan Kagaku Gijutsu Daigakuin Univ | 超分子構造の血液適合性材料 |
JP2001083566A (ja) | 1999-09-16 | 2001-03-30 | Seiko Precision Inc | 絞り装置 |
JP2002212125A (ja) | 2001-01-24 | 2002-07-31 | Nippon Nyukazai Kk | 制御された低臭性グリコールエーテルの製造法 |
JP2005080469A (ja) | 2003-09-02 | 2005-03-24 | Japan Radio Co Ltd | 蓄電器の充電装置 |
WO2005080469A1 (ja) * | 2004-01-08 | 2005-09-01 | The University Of Tokyo | 架橋ポリロタキサンを有する化合物及びその製造方法 |
JP2006233144A (ja) * | 2005-02-28 | 2006-09-07 | Sanyo Chem Ind Ltd | セルロース誘導体の製造方法 |
WO2009069605A1 (ja) * | 2007-11-27 | 2009-06-04 | Advanced Softmaterials Inc. | ポリロタキサン又は架橋ポリロタキサン及び多成分分散媒体を含有する組成物 |
JP2011509998A (ja) | 2008-01-17 | 2011-03-31 | ライオンデル ケミカル テクノロジー、 エル.ピー. | プロピレングリコールモノアルキルエーテルの製造 |
JP2011178931A (ja) | 2010-03-02 | 2011-09-15 | Nissan Motor Co Ltd | 修飾ポリロタキサンおよびその製造方法ならびにこれを用いた溶液、溶剤系塗料、溶剤系塗膜 |
JP2012082226A (ja) | 2012-01-25 | 2012-04-26 | Suntory Holdings Ltd | 皮膚疾患経口治療または予防剤 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3699141B2 (ja) * | 1994-09-24 | 2005-09-28 | 伸彦 由井 | 超分子構造の生体内分解性医薬高分子集合体及びその調製方法 |
DE19545257A1 (de) * | 1995-11-24 | 1997-06-19 | Schering Ag | Verfahren zur Herstellung von morphologisch einheitlichen Mikrokapseln sowie nach diesem Verfahren hergestellte Mikrokapseln |
US6100329A (en) * | 1998-03-12 | 2000-08-08 | Virginia Tech Intellectual Properties, Inc. | Reversible, mechanically interlocked polymeric networks which self-assemble |
CA2407290C (en) * | 2000-04-28 | 2011-01-18 | Center For Advanced Science And Technology Incubation, Ltd. | Compound comprising crosslinked polyrotaxane |
US7220755B2 (en) * | 2003-11-12 | 2007-05-22 | Biosensors International Group, Ltd. | 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same |
US7309500B2 (en) * | 2003-12-04 | 2007-12-18 | The Board Of Trustees Of The University Of Illinois | Microparticles |
US7622527B2 (en) * | 2004-03-31 | 2009-11-24 | The University Of Tokyo | Polymeric material having polyrotaxane and process for producing the same |
JP5145548B2 (ja) * | 2005-09-02 | 2013-02-20 | 国立大学法人 東京大学 | ポリロタキサン含有溶液及びその使用 |
JP2007092024A (ja) * | 2005-09-02 | 2007-04-12 | Univ Of Tokyo | ポリロタキサンのポリマーブレンド及びその使用 |
JP6111072B2 (ja) * | 2010-12-16 | 2017-04-05 | 住友精化株式会社 | 精製ポリロタキサンの製造方法 |
-
2013
- 2013-04-01 JP JP2014508254A patent/JP6196964B2/ja active Active
- 2013-04-01 KR KR1020147029758A patent/KR102011170B1/ko active IP Right Grant
- 2013-04-01 US US14/389,477 patent/US20150094463A1/en not_active Abandoned
- 2013-04-01 WO PCT/JP2013/059909 patent/WO2013147300A1/ja active Application Filing
- 2013-04-01 CN CN201380017453.9A patent/CN104203984B/zh active Active
- 2013-04-01 EP EP13770318.7A patent/EP2832750A4/en not_active Withdrawn
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS495193A (ja) * | 1972-05-02 | 1974-01-17 | ||
JPS59104334A (ja) | 1982-11-17 | 1984-06-16 | ベペ・シミイ・ソシエテ・アノニム | エポキシドとヒドロキシル化化合物との付加生成物の製造法 |
JPH09227174A (ja) * | 1996-02-28 | 1997-09-02 | Nichiden Kagaku Kk | 硝子繊維集束剤用化工澱粉 |
JPH10306104A (ja) | 1997-05-08 | 1998-11-17 | Hokuriku Sentan Kagaku Gijutsu Daigakuin Univ | 超分子構造の血液適合性材料 |
JP2001083566A (ja) | 1999-09-16 | 2001-03-30 | Seiko Precision Inc | 絞り装置 |
JP2002212125A (ja) | 2001-01-24 | 2002-07-31 | Nippon Nyukazai Kk | 制御された低臭性グリコールエーテルの製造法 |
JP2005080469A (ja) | 2003-09-02 | 2005-03-24 | Japan Radio Co Ltd | 蓄電器の充電装置 |
WO2005080469A1 (ja) * | 2004-01-08 | 2005-09-01 | The University Of Tokyo | 架橋ポリロタキサンを有する化合物及びその製造方法 |
JP2006233144A (ja) * | 2005-02-28 | 2006-09-07 | Sanyo Chem Ind Ltd | セルロース誘導体の製造方法 |
WO2009069605A1 (ja) * | 2007-11-27 | 2009-06-04 | Advanced Softmaterials Inc. | ポリロタキサン又は架橋ポリロタキサン及び多成分分散媒体を含有する組成物 |
JP2011509998A (ja) | 2008-01-17 | 2011-03-31 | ライオンデル ケミカル テクノロジー、 エル.ピー. | プロピレングリコールモノアルキルエーテルの製造 |
JP2011178931A (ja) | 2010-03-02 | 2011-09-15 | Nissan Motor Co Ltd | 修飾ポリロタキサンおよびその製造方法ならびにこれを用いた溶液、溶剤系塗料、溶剤系塗膜 |
JP2012082226A (ja) | 2012-01-25 | 2012-04-26 | Suntory Holdings Ltd | 皮膚疾患経口治療または予防剤 |
Non-Patent Citations (4)
Title |
---|
APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 104, 2011, pages 54 - 63 |
ARAKI.J. ET AL.: "Polyrotaxane derivatives. I. Preparation of modified polyrotaxanes with nonionic functional groups and their solubility in organic solvents", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 44, 2006, pages 6312 - 6323, XP055170455 * |
MACROMOLECULES, vol. 26, 1993, pages 5698 - 5703 |
See also references of EP2832750A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016194026A (ja) * | 2015-04-02 | 2016-11-17 | 株式会社トクヤマ | フォトクロミック組成物の製造方法 |
JPWO2018225704A1 (ja) * | 2017-06-06 | 2020-04-09 | アドバンスト・ソフトマテリアルズ株式会社 | 環状分子にポリアルキレンオキシド鎖又はその誘導体を有する置換基を有するポリロタキサン及びその製造方法 |
JP7133227B2 (ja) | 2017-06-06 | 2022-09-08 | 株式会社Asm | 環状分子にポリアルキレンオキシド鎖又はその誘導体を有する置換基を有するポリロタキサン及びその製造方法 |
JP7601763B2 (ja) | 2019-06-19 | 2024-12-17 | 株式会社Asm | 環状分子に長鎖アルキル基を有するポリロタキサン、該ポリロタキサンを有する組成物、及び該ポリロタキサンの製造方法 |
WO2021230268A1 (ja) * | 2020-05-13 | 2021-11-18 | 株式会社Asm | 環状分子にプロピレンオキシ繰り返し単位を有して形成される鎖を有する基を有するポリロタキサン |
CN115551899A (zh) * | 2020-05-13 | 2022-12-30 | 株式会社Asm | 在环状分子中具有包含具有环氧丙烷重复单元而形成的链的基团的聚轮烷 |
CN115551899B (zh) * | 2020-05-13 | 2023-09-29 | 株式会社Asm | 在环状分子中具有包含具有环氧丙烷重复单元而形成的链的基团的聚轮烷 |
Also Published As
Publication number | Publication date |
---|---|
CN104203984B (zh) | 2018-02-16 |
JPWO2013147300A1 (ja) | 2015-12-14 |
JP6196964B2 (ja) | 2017-09-13 |
EP2832750A1 (en) | 2015-02-04 |
KR20150002688A (ko) | 2015-01-07 |
US20150094463A1 (en) | 2015-04-02 |
CN104203984A (zh) | 2014-12-10 |
KR102011170B1 (ko) | 2019-08-14 |
EP2832750A4 (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6196964B2 (ja) | ヒドロキシアルキル化ポリロタキサンの製造方法 | |
EP1710269B1 (en) | Crosslinked polyrotaxane and process for producing the same | |
JP6013459B2 (ja) | ブロック基を有するポリロタキサンの製造方法 | |
EP1932886B1 (en) | Polyrotaxane-containing solution and use thereof | |
EP2287206A1 (en) | Polyrotaxane, aqueous polyrotaxane dispersion composition, crosslinked body of polyrotaxane and polymer and method for producing the same | |
EP2687544B1 (en) | Production method for hydrophilic modified polyrotaxane | |
JP4467262B2 (ja) | 架橋体及びその製造方法、並びにそのリサイクル方法 | |
JP6286362B2 (ja) | 新規ポリロタキサン及びその製造方法 | |
JP2017110211A (ja) | 修飾ポリロタキサン、その組成物、及びその製造方法 | |
Řezanka | Synthesis of cyclodextrin derivatives | |
JP2015143311A (ja) | シクロデキストリングラフトキトサンの製造法 | |
JP6286439B2 (ja) | 環状分子が重合鎖を有するポリロタキサン及びその製造方法 | |
CN108929433B (zh) | 一种末端为环糊精的星形聚合物的制备方法 | |
Ouhib et al. | Biodegradable amylose-g-PLA glycopolymers from renewable resources | |
JP2008184583A (ja) | 擬ポリロタキサンおよびポリロタキサンならびにそれらの製造方法 | |
JP6794662B2 (ja) | 修飾ポリロタキサン、その組成物、及びその製造方法 | |
JP7017090B2 (ja) | 修飾ポリロタキサン、その組成物、及びその製造方法 | |
Fornaciari et al. | Solvent-free thiol-Ene/-Yne click reactions for the synthesis of alkoxysilyl telechelic poly (propylene oxide) s | |
EP3026068B1 (en) | Composition, curable composition, production method therefor, and cured product | |
CN103920163B (zh) | 一种紫杉醇复合物、制备方法及其应用 | |
CN103788233A (zh) | 一种丙基化-β-环糊精的绿色合成新工艺 | |
WO2014188605A1 (en) | Synthesis of pdms-based polyrotaxane, purified pdms-based polyrotaxane and pdms-based polyrotaxane derivatives | |
Duan et al. | Polypseudorotaxane-based multiblock copolymers prepared via in situ ATRP of NIPAAm initiated by inclusion complex having a feeding ratio of 4 β-CDs to ferrocene containing initiator | |
KR100730237B1 (ko) | 사중 수소결합을 갖는 고분자의 제조방법 | |
EP3702393B1 (en) | Production method for low inclusion rate polyrotaxane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13770318 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014508254 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14389477 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147029758 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013770318 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013770318 Country of ref document: EP |