WO2013147257A1 - 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法 - Google Patents

炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法 Download PDF

Info

Publication number
WO2013147257A1
WO2013147257A1 PCT/JP2013/059736 JP2013059736W WO2013147257A1 WO 2013147257 A1 WO2013147257 A1 WO 2013147257A1 JP 2013059736 W JP2013059736 W JP 2013059736W WO 2013147257 A1 WO2013147257 A1 WO 2013147257A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
thermoplastic resin
prepreg
composite material
resin
Prior art date
Application number
PCT/JP2013/059736
Other languages
English (en)
French (fr)
Inventor
正雄 冨岡
崇寛 林
沙紀 藤田
石川 健
圭吾 吉田
拓也 寺西
高橋 厚
渡辺 賢一
守雄 片桐
章亘 佐々木
大須賀 正宏
裕史 立垣
貴幸 小林
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020147027086A priority Critical patent/KR20140129311A/ko
Priority to US14/387,008 priority patent/US10370506B2/en
Priority to KR1020167021106A priority patent/KR101902087B1/ko
Priority to JP2013517499A priority patent/JP5842916B2/ja
Priority to CN201380016564.8A priority patent/CN104321373B/zh
Priority to EP13768627.5A priority patent/EP2832778B1/en
Publication of WO2013147257A1 publication Critical patent/WO2013147257A1/ja
Priority to US15/499,128 priority patent/US10370507B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • B29C70/506Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands and impregnating by melting a solid material, e.g. sheet, powder, fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/18Polymers of nitriles
    • B29K2033/20PAN, i.e. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2233/00Use of polymers of unsaturated acids or derivatives thereof, as reinforcement
    • B29K2233/18Polymers of nitriles
    • B29K2233/20PAN, i.e. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a carbon fiber thermoplastic resin prepreg containing carbon fibers and a thermoplastic resin, a carbon fiber composite material, and a production method.
  • This application claims priority based on Japanese Patent Application No. 2012-075986 filed in Japan on March 29, 2012 and Japanese Patent Application No. 2012-093950 filed in Japan on April 17, 2012. , The contents of which are incorporated herein.
  • a reinforcing fiber prepreg containing reinforcing fibers such as carbon fibers and a thermoplastic resin
  • thermoplastic resin prepreg containing a reinforcing fiber such as carbon fiber and a thermoplastic resin
  • the thermoplastic resin at the time of impregnation is used.
  • a low viscosity is desired.
  • a high temperature is generally used.
  • the thermal decomposition (lower molecular weight) of the thermoplastic resin may be promoted by increasing the temperature. Therefore, such a thermoplastic resin is unsuitable as a material for obtaining a composite material (molded product) by heating again.
  • Patent Document 1 describes that a prepreg is produced using a thermoplastic resin having a viscosity of 5 to 500 Pa ⁇ s at a temperature 10 ° C. lower than the thermal decomposition start temperature.
  • thermoplastic resin prepreg As another method for producing a thermoplastic resin prepreg containing a reinforcing fiber such as carbon fiber and a thermoplastic resin, a reinforcing fiber bundle is immersed in a suspension of fine particles of a thermoplastic resin, and the resin fine particles are used as a reinforcing fiber.
  • a method of manufacturing a prepreg by impregnating a thermoplastic resin between reinforcing fibers by adhering to the fiber and heating and melting Patent Document 2
  • attaching a thermoplastic resin fine particle to a reinforcing fiber bundle and using a binder resin solution There is a method of manufacturing a prepreg (Patent Document 3).
  • thermoplastic resin prepreg containing reinforced fibers such as carbon fiber and thermoplastic resin as an intermediate base material is made by laminating prepreg or prepreg pieces formed by cutting prepreg. Thereafter, this is performed by heating, further pressure-cooling, and integrating the thermoplastic resin contained in the prepreg.
  • a fiber-reinforced composite material using a thermoplastic resin as a matrix resin is excellent in impact resistance and can be molded in a short time, and is therefore optimal for automotive parts and the like.
  • a method for forming a fiber reinforced composite material using a thermoplastic resin as a matrix resin is also known as an injection molding method using pellets such as long fiber pellets (LFP) (Patent Document 5).
  • LFP long fiber pellets
  • the viscosity of the resin at a temperature 10 ° C. lower than the thermal decomposition start temperature described in Patent Document 1 is the viscosity measured at the time of actual prepreg manufacturing and the actual press molding viscosity measured only with the resin. May be different. For this reason, it may not be sufficient to specify the viscosity of the resin at a temperature 10 ° C. lower than the thermal decomposition start temperature.
  • Patent Document 1 does not particularly describe the flexural modulus and flexural strength of the thermoplastic resin used as the matrix resin. In the method of Patent Document 2 or 3, it is necessary to make the thermoplastic resin into fine particles or suspension, and it may be difficult to uniformly disperse the resin fine particles in the reinforcing fiber bundle. Is desired.
  • thermoplastic resin it is relatively easy to form a thermoplastic resin into a film. If the thermoplastic resin is used in a uniform film state, the resin is uniformly supplied when the reinforcing fiber is impregnated with the thermoplastic resin. It is easy to manufacture a prepreg having a uniform thickness. However, a thermoplastic resin having excellent mechanical properties generally has a high viscosity and may not be uniformly dispersed in the prepreg from which the reinforcing fiber is obtained. Therefore, development of a method for producing a prepreg in which both a thermoplastic resin and a reinforcing fiber are uniformly dispersed has been desired.
  • thermoplastic resin prepreg containing a reinforced fiber such as carbon fiber and a thermoplastic resin as an intermediate substrate is an injection molding method using LFP or the like in that the fiber orientation of the fiber can be arbitrarily designed It is superior compared to However, when the thermoplastic resin prepreg is heated and then cooled and integrated, there is a problem in that the fibers meander due to the shrinkage of the matrix resin during cooling and the strength expression rate decreases.
  • the heat resistance temperature of fiber reinforced composite materials using thermoplastic resin as a matrix depends on the heat resistance temperature of the matrix resin, but prepregs using a matrix resin with a high heat resistance temperature also require a high temperature during molding. There is a problem that this micro meander becomes larger. It is an object of the present invention to provide a carbon fiber thermoplastic resin prepreg and a carbon fiber reinforced composite material that have few fiber meandering and excellent strength development.
  • thermoplastic resin having excellent mechanical properties such as polymethyl methacrylate resin (PMMA resin), acrylonitrile styrene copolymer resin (AS resin), polyamide 12 resin (PA12 resin), etc. is used as the matrix resin.
  • PMMA resin polymethyl methacrylate resin
  • AS resin acrylonitrile styrene copolymer resin
  • PA12 resin polyamide 12 resin
  • a carbon fiber thermoplastic resin prepreg that provides a carbon fiber composite material in which carbon fibers are uniformly dispersed to exhibit high bending strength, a manufacturing method thereof, and a carbon fiber composite material using the prepreg are provided. The purpose is to do.
  • the present invention has the following aspects.
  • a carbon fiber thermoplastic resin prepreg formed by impregnating a thermoplastic resin composition into a carbon fiber bundle composed of a plurality of carbon fibers having an average single fiber fineness of 1.0 to 2.4 dtex.
  • thermoplastic resin composition is a thermoplastic resin satisfying the following formula (1). 20 ⁇ (FM / FS) ⁇ 40 (1)
  • FM represents the bending elastic modulus (MPa) of the resin plate which consists only of this thermoplastic resin composition
  • FS represents the bending strength (MPa) of this resin plate).
  • thermoplastic resin composition is a thermoplastic resin composition satisfying the following formula (2). 25 ⁇ (FM / FS) ⁇ 35 (2)
  • FM represents the bending elastic modulus (MPa) of the resin plate which consists only of this thermoplastic resin composition
  • FS represents the bending strength (MPa) of this resin plate).
  • thermoplastic resin prepreg including a step of obtaining a carbon fiber prepreg by impregnating a PAN-based carbon fiber bundle having an average single fiber fineness of 1.0 dtex or more and 2.4 dtex or less with a thermoplastic resin composition
  • FM represents the bending elastic modulus (MPa) of the resin plate which consists only of this thermoplastic resin composition
  • FS represents the bending strength (MPa) of this resin plate).
  • thermoplastic resin composition is a film.
  • thermoplastic resin composition is any one of [7] to [9], wherein the thermoplastic resin composition is at least one resin selected from polypropylene resin, polyamide resin, modified resin of polypropylene resin, and modified resin of polyamide resin.
  • thermoplastic resin having excellent mechanical properties such as polymethyl methacrylate (PMMA), acrylonitrile styrene copolymer resin (AS resin), polyamide 12 (PA12), etc. is used as the matrix resin.
  • a carbon fiber thermoplastic resin prepreg that provides a carbon fiber composite material in which carbon fibers are uniformly dispersed to exhibit high bending strength, a method for producing the same, and a carbon fiber composite material using the prepreg are provided.
  • a carbon fiber thermoplastic resin prepreg that is excellent in impact resistance, has a short molding time, and has a small amount of fine fiber meandering can be obtained, and the carbon fiber thermoplastic resin.
  • a carbon fiber reinforced composite material obtained by using a prepreg and an automotive part can be provided.
  • the carbon fiber thermoplastic resin prepreg according to the first aspect of the present invention is formed by impregnating a thermoplastic fiber composition into a carbon fiber bundle composed of a plurality of carbon fibers having an average single fiber fineness of 1.0 to 2.4 dtex.
  • Carbon fiber thermoplastic resin prepreg For example, a carbon fiber having a structure in which a carbon fiber bundle having an average single fiber fineness of 1.0 dtex or more and 2.4 dtex or less is excellent in mechanical properties, that is, impregnated with a thermoplastic resin satisfying the following formula (1)
  • a thermoplastic resin prepreg is preferred.
  • the carbon fiber thermoplastic resin prepreg of the present invention is composed of this thermoplastic resin as a matrix resin and this carbon fiber.
  • dtex represents the mass of the fiber per 10,000 m in length in grams. 20 ⁇ (FM / FS) ⁇ 40
  • FM represents the bending elastic modulus (MPa) of the resin plate which consists only of this thermoplastic resin
  • FS represents the bending strength (MPa) of this resin plate. Note that both FM and FS can be obtained by sufficiently measuring the thermoplastic resin to be measured and measuring a test piece molded by injection molding at a temperature of 23 ⁇ 2 ° C. in accordance with ISO 178. it can.
  • the carbon fiber thermoplastic resin prepreg of the present invention is not only the impregnation prepreg in the state where the carbon fiber bundle is completely impregnated with the thermoplastic resin, but also the carbon fiber bundle is completely impregnated with the thermoplastic resin. It may also include a semi-impregnated prepreg (semi-preg) in which the two are integrated in a state where they are not.
  • a plurality of the above carbon fiber bundles can be used for one prepreg. In that case, only one type of carbon fiber bundle may be used, or a plurality of types may be used in combination.
  • the carbon fiber bundles may be used regularly in a prepreg or may be used in an irregular manner. However, when the carbon fiber thermoplastic resin prepreg is used for applications that require high specific strength and specific modulus in a specific direction, it is usually most preferable to use a prepreg in which carbon fiber bundles are arranged in a single direction. .
  • the orientation direction of the carbon fiber in the carbon fiber thermoplastic resin prepreg is a cut surface obtained by cutting the carbon fiber thermoplastic resin prepreg substantially perpendicular to the fiber axis direction, and an SEM (scanning electron microscope) or optical This can be confirmed by observing with a microscope.
  • the carbon fiber thermoplastic resin prepreg of the present invention is obtained by impregnating the above-mentioned thermoplastic resin between adjacent carbon fiber bundles of the plurality of carbon fiber bundles or inside the plurality of carbon fiber bundles. Arco.
  • the carbon fiber thermoplastic resin prepreg can have a structure in which the thermoplastic resin is attached to the surface of the plurality of carbon fiber bundles.
  • the carbon fiber used in the carbon fiber thermoplastic resin prepreg of the present invention is preferably a continuous fiber from the viewpoint that the obtained carbon fiber composite material exhibits high elastic modulus and strength.
  • the continuous fiber is a fiber having a fiber length of 100 mm or more in a state where the fibers are connected without being regularly or irregularly cut.
  • the carbon fibers used in the present invention are particularly preferably continuous fibers and oriented in a single direction (UD) in the carbon fiber thermoplastic resin prepreg.
  • a plurality of carbon fibers can be bundled, that is, a carbon fiber bundle (usually called a carbon fiber tow) can be used.
  • the number of carbon fibers (single fibers) constituting the carbon fiber bundle can be set as appropriate, and can be, for example, 1000 to 60000.
  • a carbon fiber can also be used in the state of the carbon fiber sheet which arranged many carbon fibers on the same plane, and was made into the sheet form.
  • carbon fibers can also be used in the state of a carbon fiber sheet in which the carbon fiber bundles are arranged at equal intervals and on the same plane to form a sheet.
  • the carbon fiber basis weight (FAW) of the carbon fiber sheet is preferably 50 g / m 2 or more from the viewpoint of opening the fiber, and the carbon fiber thermoplastic resin prepreg obtained is easy to impregnate with a thermoplastic resin. From the viewpoint of handleability, it is preferably 500 g / m 2 or less. Furthermore, 100 g / m 2 or more is more preferable from the viewpoint of easy prepreg lamination, and 250 g / m 2 or less is more preferable from the viewpoint of impregnation of the high viscosity resin.
  • the basis weight FAW of the carbon fiber cuts out a certain area (for example, 100 cm 2 ) from the carbon fiber sheet, measures its mass, and converts it per 1 m 2 of the carbon fiber sheet. This can be calculated. Further, the basis weight (TAW: Total Real Weight) of the carbon fiber thermoplastic resin prepreg of the present invention is 75 g / m 2 or more from the viewpoint of opening the fiber, and the obtained carbon fiber heat is easily impregnated with the thermoplastic resin. From the viewpoint of handleability of the plastic resin prepreg, 1000 g / m 2 or less is preferable.
  • TAW is more preferably 150 g / m 2 or more from the viewpoint of easy prepreg lamination, and 500 g / m 2 or less from the viewpoint of impregnation of the high viscosity resin.
  • the basis weight TAW of the carbon fiber prepreg can be calculated by measuring the mass of the carbon fiber prepreg cut into a certain area and converting the value per 1 m 2 . Specifically, 75 to 1000 g / m 2 is preferable, and 150 to 500 g / m 2 is more preferable.
  • the mass content (Wf) of the PAN-based carbon fiber in the carbon fiber thermoplastic resin prepreg with respect to the total mass of the carbon fiber thermoplastic resin prepreg can be calculated as FAW / TAW ⁇ 100 (mass%).
  • This Wf is preferably 30% by mass or more from the viewpoint of obtaining high mechanical properties in the obtained carbon fiber composite material, and 70% by mass or less from the viewpoint of obtaining a composite material with few voids, and a composite material with less fiber meandering is obtained.
  • 60% by mass or less is more preferable.
  • 30 to 70% by mass is preferable, and 40 to 60% by mass is more preferable.
  • thermoplastic resin composition used for the carbon fiber thermoplastic resin prepreg of the present invention is preferably a thermoplastic resin satisfying the above formula (1): 20 ⁇ (FM / FS) ⁇ 40.
  • thermoplastic resins are used as matrix resins in carbon fiber thermoplastic resin prepregs.
  • polycarbonate resin polyester resin, polyamide (PA) resin, liquid crystal polymer resin, polyether sulfone resin, polyether ether ketone resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide (PPS) resin, polyacetal resin, polysulfone Resin, polyimide resin, polyolefin resin, polystyrene resin, modified polystyrene resin, AS resin (a copolymer of acrylonitrile and styrene), ABS resin (a copolymer of acrylonitrile, butadiene and styrene), modified ABS resin, MBS resin (methyl methacrylate, butadiene and Copolymer of styrene), modified MBS resin, polymethyl methacrylate (PMMA) resin, modified polymethyl methacrylate resin, etc.
  • PA polyamide
  • PPS polyphenylene sulfide
  • thermoplastic resin that can be used for the carbon fiber thermoplastic resin prepreg of the present invention
  • a thermoplastic resin having excellent mechanical properties satisfying the above formula (1): 20 ⁇ (FM / FS) ⁇ 40 is used as the thermoplastic resin that can be used for the carbon fiber thermoplastic resin prepreg of the present invention. It is preferable. If the ratio (FM / FS) of the flexural modulus FM (MPa) to the flexural strength FS (MPa) of this thermoplastic resin is 20 or more, a high strength can be obtained when it is made into a composite material.
  • this ratio (FM / FS) is preferably 25 or more from the viewpoint of obtaining a high elastic modulus when it is a composite material, and is 35 or less from the viewpoint that delamination hardly occurs when it is a composite material. It is preferable to do. That is, it is preferable that the thermoplastic resin satisfies the formula (2): 25 ⁇ (FM / FS) ⁇ 35.
  • thermoplastic resin that satisfies the above formula (1) include the following resins. That is, PMMA resin (specifically, manufactured by Mitsubishi Rayon Co., Ltd., trade names: TF8, TF9, etc.), AS resin (specifically, UMG ABS, trade name: AP-H, etc.), PA12 resin (specifically, Specifically, Arkema, AMN-O-TLD, etc.), PPS resin (specifically, Toray, product name: A900, etc.), PA6 resin (specifically, Ube Industries, product name) : 1013B, manufactured by Toyobo Co., Ltd., trade name: T803, etc.) and PP (polypropylene) resin (specifically, manufactured by Mitsubishi Chemical Corporation, trade name: Modic (registered trademark) P958, etc.).
  • PMMA resin specifically, manufactured by Mitsubishi Rayon Co., Ltd., trade names: TF8, TF9, etc.
  • AS resin specifically, UMG ABS, trade name: AP-H, etc.
  • PA12 resin
  • thermoplastic resin satisfying the above formula (2) examples include the following resins. That is, PMMA resin (specifically, manufactured by Mitsubishi Rayon Co., Ltd., trade names: TF8, TF9, etc.), AS resin (specifically, UMG ABS, trade name: AP-H, etc.), PA12 resin (specifically, Specifically, Arkema, AMN-O-TLD, etc.), PPS resin (specifically, Toray, product name: A900, etc.), and PA6 resin (specifically, manufactured by Toyobo Co., Ltd.) Name: T803 etc.).
  • PMMA resin specifically, manufactured by Mitsubishi Rayon Co., Ltd., trade names: TF8, TF9, etc.
  • AS resin specifically, UMG ABS, trade name: AP-H, etc.
  • PA12 resin specifically, Specifically, Arkema, AMN-O-TLD, etc.
  • PPS resin specifically, Toray, product name: A900, etc.
  • PA6 resin specifically, manufactured by Toyobo Co.,
  • the said bending elastic modulus (FM) and the said bending strength (FS) can be suitably set according to the thermoplastic resin used in the range with which the said Formula (1) is satisfy
  • the bending elastic modulus can be set to, for example, 3000 MPa to 3500 MPa, and the bending strength can be set to, for example, 90 MPa to 120 MPa.
  • AS resin is used as a thermoplastic resin
  • a bending elastic modulus can be 3300 Mpa or more and 3600 Mpa or less, for example, and bending strength can be 90 Mpa or more and 110 Mpa or less.
  • the thermoplastic resin composition that can be used for the carbon fiber thermoplastic resin prepreg of the present invention includes a molding minimum temperature Tc (° C.), a linear expansion coefficient ⁇ (1 / ° C.) of the thermoplastic resin composition, and the carbon fiber. It is preferable that the value of the following formula (5) obtained from the fiber volume content Vf (volume%) of the thermoplastic resin prepreg exceeds 0.5.
  • the molding lower limit temperature is the melting point when the thermoplastic resin composition is a crystalline resin having a melting point, and when the thermoplastic resin composition is an amorphous resin having no melting point.
  • thermoplastic resin contained in the thermoplastic resin composition is not particularly limited as long as the carbon fiber thermoplastic resin prepreg satisfies the above formula (5).
  • polycarbonate resin polyester resin, polyamide resin , Liquid crystal polymer resin, polyether sulfone resin, polyether ether ketone resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide resin, polyacetal resin, polysulfone resin, polyimide resin, polyolefin resin, polystyrene resin, modified polystyrene resin, ABS Examples thereof include resins, modified ABS resins, MBS resins, polymethyl methacrylate resins, modified resins thereof, and polymer alloy resins thereof.
  • any of these may be used alone or in combination of two or more. Two or more types are preferably used in combination. Of these, polypropylene resins, polyamide resins, polycarbonate resins, and modified resins of these resins are preferred. More preferred are acid-modified polypropylene resin, polyamide 6 resin, polyamide 610 resin, or polycarbonate resin. Of these, polyamide 6 resin is preferred.
  • the PAN-based carbon fiber used in the present invention has an average single fiber fineness of 1.0 dtex to 2.4 dtex.
  • the average single fiber fineness is 1.1 to 2.0 dtex, and a further preferable range of the average single fiber fineness is 1.2 to 1.6 dtex.
  • the average single fiber fineness can be determined by the method described in ⁇ Measurement of average single fiber fineness of carbon fiber bundle> described later.
  • the average single fiber fineness of the PAN-based carbon fiber can be adjusted by the average single fiber fineness of the PAN-based fiber (PAN-based carbon fiber precursor fiber) serving as a precursor.
  • the roundness of single fibers of carbon fibers constituting the carbon fiber bundle used in the present invention is preferably 0.70 to 0.90.
  • the roundness is less than 0.70, local stress concentration in the single fiber (filament) causes remarkable micro-meandering of the fibers in the carbon fiber reinforced composite material, and the mechanical properties of the carbon fiber reinforced composite material are reduced. descend.
  • the roundness exceeds 0.90, the mechanical properties of the carbon fiber reinforced composite material decrease due to the decrease in the interfacial bond strength due to the decrease in the interfacial bond area between the fibers and the matrix resin.
  • a more preferable range of the roundness of the single fiber is 0.75 to 0.88, and a more preferable range of the roundness of the single fiber is 0.8 to 0.86.
  • roundness is a value obtained by the following formula (4)
  • S and L are obtained by image analysis of the cross section perpendicular to the fiber axis of the single fiber by SEM observation.
  • Roundness 4 ⁇ S / L 2 (4)
  • the maximum ferret diameter of a single carbon fiber constituting the carbon fiber bundle used in the present invention is preferably 8 to 20 ⁇ m.
  • the thickness is preferably 8 to 20 ⁇ m.
  • the bending rigidity of each single fiber is high, and the single fibers are less likely to be entangled due to disturbance in the prepreg manufacturing process, so that the number of entangled single fibers in the fiber bundle is reduced.
  • the carbon fiber bundle is preferable because it can be easily opened even if the number of fibers is large.
  • the existence probability of defects increases in proportion to an increase in the volume per unit length of the monofilament, and the strength of the carbon fiber decreases.
  • the maximum ferret diameter is preferably 20 ⁇ m or less.
  • a more preferable range of the maximum ferret diameter of the single fiber is 9 to 17 ⁇ m, and further preferable is 10 to 15 ⁇ m.
  • the value obtained by dividing the minimum ferret diameter of the single carbon fiber constituting the carbon fiber bundle used in the present invention by the maximum ferret diameter is preferably 0.40 to 0.75.
  • the value obtained by dividing the minimum ferret diameter of the single fiber by the maximum ferret diameter is closer to 1, the single fibers are more likely to have a close-packed structure, and when the carbon fiber thermoplastic resin prepreg is formed, the dispersion and heat of the carbon fiber Although there is a problem that impregnation of the plastic resin is difficult, if it is 0.75 or less, dispersion of carbon fibers and impregnation of the thermoplastic resin are easy.
  • the maximum ferret diameter and the minimum ferret diameter of the single fiber can be obtained by image analysis of the cross section perpendicular to the fiber axis of the single fiber by optical microscope observation or SEM observation.
  • the carbon fiber single fiber constituting the carbon fiber bundle used in the present invention has no cross-section perpendicular to the fiber longitudinal direction, and when observed with an SEM, no bright and dark stripes are observed (that is, the brightness is uniform). It is preferable that the brightness gradually decreases from the outside to the inside as shown in FIG. 6A.
  • carbon fibers having a maximum ferret diameter of a known single fiber of 7 ⁇ m or more are liable to produce firing spots in the cross-sectional direction derived from the firing process of carbon fibers, and these firing spots are bright as shown in FIG. 6B in SEM observation.
  • the carbon fiber bundle used in the present invention is a carbon fiber reinforced composite material
  • the cross section perpendicular to the fiber longitudinal direction of the single fiber constituting the carbon fiber bundle is mirror-finished, and when observed with an SEM, the brightness is uniform.
  • it is made of carbon fibers whose brightness gradually decreases from the outside toward the inside.
  • “brightness is uniform” means that the horizontal axis of the chart is the diameter direction of the fiber, the vertical axis is the brightness of the image, and there is no valley on the chart.
  • “Slightly darker toward the surface” means a state where one or more valleys exist on the chart, with the horizontal axis of the chart indicating the diameter direction of the fiber and the vertical axis indicating the brightness of the image.
  • the strand strength of the PAN-based carbon fiber used in the present invention is preferably 3500 MPa or more from the viewpoint of obtaining high mechanical properties (for example, high strength) when a composite material is obtained. Further, the strand elastic modulus of the PAN-based carbon fiber used in the present invention is preferably 200 GPa or more from the viewpoint of obtaining high mechanical properties when made into a composite material. There is no preferred upper limit for the strand strength, and the higher the strand strength, the better. If the strand elastic modulus is 200 GPa or more, it can be properly used depending on the application. The strand strength and strand elastic modulus of the PAN-based carbon fiber can be determined by measuring the tensile properties of the epoxy resin-impregnated strand in accordance with ASTM D4018.
  • the number of carbon fiber single fibers contained in the carbon fiber bundle used in the present invention is not particularly limited, one type may be used alone, or two or more types may be used in combination.
  • the preferred number of filaments is 3000 to 60000.
  • the number of filaments is 60000 or less, the handleability is good and the fibers can be spread uniformly.
  • a more preferable range of the number of filaments is 120,000 to 40,000, and a more preferable range of the number of filaments is 20000 to 30,000.
  • the PAN-based carbon fiber used in the present invention can be produced by a known method as long as the average single fiber fineness can be in the range of 1.0 to 2.4 dtex.
  • This PAN-based carbon fiber can be manufactured, for example, by a manufacturing method including the following steps.
  • a PAN-based carbon fiber precursor fiber obtained by spinning a PAN-based polymer is subjected to a heat treatment (hereinafter, referred to as 200 to 300 ° C.) in an oxidizing atmosphere (for example, an atmosphere in which oxygen such as air exists).
  • a PAN-based carbon fiber is obtained by heat-treating the flame-resistant fiber in an inert atmosphere (for example, nitrogen or argon) at, for example, 1000 to 1500 ° C. (hereinafter also referred to as “carbonization treatment”). Process.
  • an inert atmosphere for example, nitrogen or argon
  • this carbon fiber is subjected to a heat treatment (hereinafter also referred to as “graphitizing treatment”) in an inert atmosphere, for example, at 2000 to 3000 ° C. to obtain a carbon fiber having high tensile modulus (graphitized fiber).
  • graphitizing treatment a heat treatment
  • the PAN-based carbon fiber used in the present invention may be a fiber obtained by carbonization treatment (hereinafter also referred to as “carbon fiber”), or a fiber obtained by graphitization treatment (hereinafter referred to as “graphite”). May also be referred to as a “modified fiber”.
  • a PAN-based carbon fiber bundle can be produced by performing a flameproofing treatment, a carbonization treatment, or the like after the PAN-based polymer is spun into a fiber bundle state.
  • the number of single fibers constituting the fiber bundle does not change through these treatments (each process).
  • PAN polymer A PAN polymer (that is, a polyacrylonitrile polymer) that is a raw material for a PAN-based carbon fiber contains a structure derived from acrylonitrile in the molecular structure (hereinafter referred to as “acrylonitrile unit”), and the carbon fiber. It is sufficient that the average single fiber fineness described above is satisfied, and those known in the field of carbon fibers can be used. In other words, as long as the PAN-based polymer includes an acrylonitrile unit, the PAN-based polymer may include a structural unit derived from another monomer (for example, acrylic acid, methacrylic acid, or acrylamide). The content rate of the acrylonitrile unit in it is not specifically limited.
  • the polymerization method for obtaining the PAN polymer is not particularly limited, and for example, solution polymerization or suspension polymerization can be used.
  • the PAN-based carbon fiber precursor fiber which is a precursor of the PAN-based carbon fiber used in the present invention, can be obtained, for example, by the following spinning method using the PAN-based polymer as a raw material.
  • a coagulated yarn is prepared by discharging a spinning stock solution in which the PAN-based polymer is dissolved in a solvent into a coagulation bath, and the coagulated yarn is produced, for example, 0.3 to 0.4 times the discharge linear velocity of the spinning stock solution. Take it out of the coagulation bath at a rate of
  • the solvent for dissolving the PAN-based polymer is not particularly limited as long as the polymer can be dissolved.
  • organic solvents such as dimethylacetamide, dimethylsulfoxide, dimethylformamide, and inorganic solvents such as zinc chloride and sodium thiocyanate.
  • An aqueous solution of the compound can be used.
  • the concentration of the PAN polymer in the spinning dope can be, for example, 10 to 35% by mass with respect to the total mass of the spinning dope.
  • a solvent aqueous solution in which the concentration of the solvent (for example, dimethylacetamide) used in the spinning dope is 50 to 70% by mass with respect to the total mass of the coagulation bath and the temperature is 30 to 50 ° C. be able to.
  • the coagulated yarn (hereinafter also referred to as “swelling yarn”) obtained above is washed and stretched.
  • cleaning method The method of immersing in water (especially warm water) generally used is good.
  • a stretching method a method of stretching while being immersed in water or warm water, a dry heat stretching method in the air using a hot plate, a roller or the like, or stretching in a box furnace in which hot air circulates is also possible.
  • a box furnace in which hot air circulates is also possible.
  • the temperature of the hot water is preferably 40 ° C or higher and 80 ° C or lower.
  • the stretching ratio is preferably 1.1 to 7.0 times. However, it is desirable that the total draw ratio is 5 to 9 times. Therefore, when secondary stretching is performed later (that is, when stretching is performed in two steps), the stretching ratio is set in consideration. It is preferable to do.
  • the draw ratio means the ratio of the speed before and after stretching (speed after stretching / speed before stretching).
  • an oil agent attaching process, a drying process, or the like can be performed. From the above, a PAN-based carbon fiber precursor fiber can be obtained.
  • This PAN-based carbon fiber precursor fiber does not contain surface defects such as impurities, internal voids, crazes and cracks from the viewpoint of obtaining high strand strength and high carbon fiber composite material (molded product) mechanical properties. It is preferable.
  • the obtained precursor fiber is subjected to flameproofing treatment and carbonization treatment, and specific treatment conditions (for example, treatment temperature and treatment time) are PAN-based carbon fibers satisfying the above fineness. It can set suitably in the range obtained.
  • the carbon fiber bundle used in the present invention is preferably subjected to surface treatment.
  • the surface treatment may be performed by a known method. For example, by performing electrolytic oxidation treatment in an electrolytic solution, or by performing oxidation treatment in a gas phase or a liquid phase, the carbon fiber when the carbon fiber composite material is obtained Affinity and adhesion with the matrix resin can be improved.
  • the degree of surface treatment is preferably such that the iPa value obtained by an electrochemical measurement method (cyclic voltametry) is in the range of 0.05 to 0.6 ⁇ A / cm 2 . This iPa value is affected by the number of oxygen-containing functional groups of carbon fibers, the degree of surface irregularities involved in the formation of the electric double layer, and the fine structure.
  • a large value is obtained when an intercalated intercalation compound is formed.
  • the interface between carbon fiber and resin is important, and in particular has a surface on which an appropriate polar functional group exists, and forms a small electric double layer. It has been found that carbon fibers form an optimal interface.
  • the iPa value is 0.05 ⁇ A / cm 2 or more, the number of polar functional groups introduced is sufficient, and excellent interfacial adhesion is exhibited.
  • it is 0.5 ⁇ A / cm 2 or less, excessive surface edging and formation of intercalation compounds can be suppressed, and the interfacial adhesiveness is good.
  • a more preferable iPa value range is 0.06 to 0.3 ⁇ A / cm 2
  • a further preferable iPa value range is 0.07 to 0.15 ⁇ A / cm 2 .
  • the oxygen-containing functional group amount (O1S / C1S) on the carbon fiber surface determined by X-ray photoelectron spectroscopy is in the range of 0.03 to 0.5.
  • a more preferable range of the oxygen-containing functional group amount (O1S / C1S) on the carbon fiber surface is 0.04 to 0.10.
  • the nitrogen-containing functional group amount (N1S / C1S) on the carbon fiber surface determined by X-ray photoelectron spectroscopy is in the range of 0.02 to 0.08.
  • a more preferable range of the nitrogen-containing functional group amount (N1S / C1S) on the carbon fiber surface is 0.03 to 0.06.
  • a sizing agent-containing PAN-based carbon fiber is prepared by attaching a sizing agent to the obtained PAN-based carbon fiber, and then the sizing agent-containing PAN-based carbon fiber and the above-described thermoplastic resin. Therefore, the carbon fiber thermoplastic resin prepreg of the present invention may be produced.
  • the sizing agent can be appropriately selected and used from sizing agents known in the carbon fiber field.
  • an epoxy resin an epoxy-modified polyurethane resin, a polyolefin resin, an acid-modified polyolefin resin, a polyester resin, Phenol resin, polyamide resin, polyurethane resin, polycarbonate resin, polyetherimide resin, polyamideimide resin, polyimide resin, bismaleimide resin, urethane-modified epoxy resin, polyvinyl alcohol resin, polyvinylpyrrolidone resin, polyethersulfone resin, polyhydroxy compound Etc.
  • preferred sizing agent types are epoxy resins, polyolefin resins, acid-modified polyolefin resins, and polyhydroxy compounds.
  • the amount of sizing agent attached is 0.3% by mass or more with respect to the total mass of the PAN-based carbon fiber from the viewpoint of modification and chemical modification of the carbon fiber surface, and 5.0 mass from the viewpoint of impregnation and handling properties. % Or less is preferable, and 0.4% by mass or more is more preferable from the viewpoint of convergence and difficulty in generating fluff, and 3.0% by mass or less is more preferable from the viewpoint of impregnation of the high viscosity resin. Further, from the viewpoint of sufficiently imparting a desired function to the carbon fiber bundle, the content is preferably 0.1 to 20% by mass. By setting the adhesion amount of the sizing agent to 0.1% by mass or more, a desired function can be sufficiently imparted to the carbon fiber bundle.
  • the adhesion amount of the sizing agent 20% by mass or less, it is easy to impregnate the matrix resin into the carbon fiber bundle when the carbon fiber thermoplastic resin prepreg is manufactured.
  • a preferable range of the sizing agent is 0.2 to 2.0% by mass, and a more preferable range of the sizing agent is 0.3 to 0.6% by mass.
  • the adhesion amount (mass%) of the sizing agent is expressed as a percentage of the sizing agent mass with respect to the mass of the PAN-based carbon fiber to which the sizing agent is adhered (after the sizing agent is adhered).
  • the carbon fiber single fiber constituting the carbon fiber bundle that can be used in the present invention has a plurality of surface uneven structures extending over 2 ⁇ m or more in the fiber longitudinal direction, and the peripheral length of the single fiber is 2000 nm ⁇ fiber axis. It is preferable that the height difference (Rp ⁇ v) between the highest part and the lowest part is in the range of 30 to 200 nm in the direction length range of 2000 nm. When the height difference (Rp ⁇ v) is 30 nm or more, the anchor effect produces a good interfacial adhesive strength between the carbon fiber and the thermoplastic resin, and the mechanical properties when the carbon fiber composite material is obtained are excellent.
  • the height difference (Rp-v) is extremely large, that is, when the surface smoothness of the single fiber surface is extremely low, when the carbon fiber composite material is formed, the interface between the carbon fiber and the thermoplastic resin having low toughness.
  • the range of the preferred height difference (Rp ⁇ v) is 45 to 150 nm, more preferably 60 to 125 nm.
  • the carbon fiber single fiber constituting the carbon fiber bundle that can be used in the present invention has a plurality of surface uneven structures extending over 2 ⁇ m or more in the fiber longitudinal direction, and the peripheral length of the single fiber is 2000 nm ⁇ fiber axis. It is preferable that the average unevenness Ra is 5 to 35 nm in the direction length range of 2000 nm. If the average unevenness Ra is 5 nm or more, the anchor effect produces good interfacial adhesive strength between the carbon fiber and the thermoplastic resin, and the mechanical properties are excellent when a carbon fiber composite material is obtained.
  • the average unevenness Ra is extremely large, that is, when the surface smoothness of the single fiber surface is extremely low, when the carbon fiber composite material is used, the interfacial unevenness between the low-toughness carbon fiber and the thermoplastic resin is formed.
  • the range of the average roughness Ra is preferably 10 to 30 nm, more preferably 15 to 25 nm.
  • the carbon fiber single fiber constituting the carbon fiber bundle that can be used in the present invention has a plurality of surface irregularities extending in the longitudinal direction of the fiber by 2 ⁇ m or more, and the number of irregularities Rn per 2 ⁇ m circumferential length of the single fiber. Is preferably 5 to 30 times / 2 ⁇ m. If Rn is 5 times / 2 ⁇ m or more, a good interfacial adhesive strength between the carbon fiber and the thermoplastic resin is exhibited due to the anchor effect, and the mechanical properties when the carbon fiber composite material is obtained are excellent.
  • Rn is extremely large, that is, when the surface smoothness of the single fiber surface is extremely low, when the carbon fiber composite material is used, stress is concentrated on the unevenness of the interface between the carbon fiber and the thermoplastic resin having low toughness.
  • Rn is 30 times / 2 ⁇ m or less, stress concentration on the interface irregularities can be prevented, and the mechanical properties of the carbon fiber composite material are excellent.
  • the range of Rn is preferably 7 to 25 times / 2 ⁇ m, more preferably 10 to 20 times / 2 ⁇ m.
  • the height difference (Rp ⁇ v), Ra and Rn can be obtained by scanning the surface of a single fiber using a scanning atomic force microscope (AFM).
  • the carbon fiber bundle that can be used in the present invention preferably has a strand tensile strength of 306 kgf / mm 2 (3000 MPa) or more. If the strand strength is extremely low, it will be unusable in most fields where carbon fibers are currently used, such as structural materials, but if the strand tensile strength is 306 kgf / mm 2 (3000 MPa) or more, it is suitable as a structural material. Is possible. Preferably it is 357 kgf / mm 2 (3500 MPa) or more, more preferably 408 kgf / mm 2 (4000 MPa) or more.
  • the strand tensile strength is extremely high, there is a problem that when the carbon fiber composite material is used, the stress concentrates on the compression side in the bending test, the compression failure is remarkable and the bending strength is lowered.
  • the tensile strength is 551 kgf / mm 2 (5400 MPa) or less, the balance between the tensile strength and the compressive strength is appropriate, and the bending strength when the carbon fiber composite material is obtained is excellent.
  • the pressure is preferably 509.9 kgf / mm 2 (5000 MPa) or less, more preferably 479.3 kgf / mm 2 (4700 MPa) or less.
  • the carbon fiber bundle that can be used in the present invention preferably has a strand tensile elastic modulus of 20.4 tonf / mm 2 (200 GPa) or more. If the tensile modulus is extremely low, it will be unusable in most fields where carbon fibers are currently used, such as structural materials, but if the strand tensile modulus is 20.4 tonf / mm 2 (200 GPa) or more. It can be applied as a structural material. It is preferably 21.4 tonf / mm 2 (210 GPa) or more, more preferably 22.4 tonf / mm 2 (220 GPa) or more. The strand strength and strand modulus can be measured according to JIS R7601 (1986).
  • ⁇ Method for producing carbon fiber thermoplastic resin prepreg> As a method for producing the carbon fiber thermoplastic resin prepreg in the second aspect of the present invention, as a result, a carbon fiber prepreg having a structure in which the thermoplastic resin is impregnated in the PAN-based carbon fiber bundle is obtained.
  • the method is not particularly limited as long as it can be used, and a known method can be used as appropriate. Specifically, for example, the following method can be used. a) A method in which a PAN-based carbon fiber bundle used in the present invention is impregnated with a thermoplastic resin (molten resin) heated and melted by an extruder.
  • thermoplastic resin is dispersed both inside and outside a sheet made of a large number of PAN-based carbon fibers and then the powdered thermoplastic resin is melted.
  • a thermoplastic resin is formed into a film, and is laminated with a sheet made of a large number of single fibers of PAN-based carbon fiber, followed by thermocompression bonding.
  • a thermoplastic resin is dissolved in a solvent, impregnated into a PAN-based carbon fiber bundle in a solution state, and then the solvent is volatilized.
  • thermoplastic resin A method in which a thermoplastic resin is fiberized to form a mixed yarn of the fiberized thermoplastic resin and PAN-based carbon fiber, and then heated to melt the fiber of the thermoplastic resin.
  • the said method a has the advantage that it is not necessary to process a thermoplastic resin, it may be difficult to manufacture the stable prepreg.
  • the method b has an advantage that the thermoplastic resin is easily impregnated, but it may be difficult to uniformly disperse the powder in the sheet.
  • the method c it is necessary to film-process a thermoplastic resin.
  • a thermoplastic resin excellent in mechanical properties is relatively easy to form into a film, and a prepreg having a relatively high quality is easily produced.
  • the solvent is likely to remain in the thermoplastic resin of the prepreg, and there are cases where it is necessary to use a solvent that is dangerous to handle.
  • the method e requires a step of fiberizing the thermoplastic resin and a step of making a mixed yarn with the PAN-based carbon fiber, which increases the number of steps.
  • the above method f is not inexpensive because many of the methods f are difficult to be polymerized after impregnating a monomer for forming a thermoplastic resin into a PAN-based carbon fiber bundle.
  • the carbon fiber thermoplastic resin prepreg of the present invention is particularly preferably produced by using the method c in which a film-formed thermoplastic resin is laminated on a sheet composed of a large number of PAN-based carbon fibers.
  • a method c of laminating a film-formed thermoplastic resin on a sheet made of a large number of PAN-based carbon fibers specifically, carbon obtained by heat-melting a resin by a known method and arranging it in one direction is used.
  • This is a method of laminating the fiber sheet while heating it on both sides or one side.
  • the thickness of the film is determined by the basis weight (g / m 2 ) of the carbon fiber sheet and the carbon fiber content, but is preferably 10 to 100 ⁇ m.
  • the production conditions are such that the prepreg can be produced by impregnating the resin by applying pressure in a heating zone heated to the melting point or softening point of the filmed resin or higher, and solidifying at or below the melting point or softening point of the resin.
  • pressurizing it is common to pressurize with a roll or flat body.
  • the pressure during heating and cooling is preferably 100 to 2000 kPa.
  • the method of melting a thermoplastic resin by heating and impregnating the PAN-based carbon fiber bundle can use a combination of a heating press and a cooling press.
  • the prepreg can also be solidified after melting and impregnating the thermoplastic resin into the carbon fiber bundle.
  • an intermittent press or a double belt press can be used.
  • a heating zone and a cooling zone can be provided, and after the PAN-based carbon fiber bundle is melted and impregnated with a thermoplastic resin, the prepreg can be solidified.
  • the method of combining the heating press and the cooling press it is easy to increase the time for impregnating the resin, and it is easy to obtain a good impregnation state.
  • the method using a double belt press is excellent in productivity because it can be produced continuously.
  • the carbon fiber thermoplastic resin prepreg of the fourth aspect of the present invention can be used as the carbon fiber thermoplastic resin prepreg piece of the fifth aspect of the present invention.
  • the carbon fiber thermoplastic resin prepreg piece is obtained by cutting a carbon fiber thermoplastic resin prepreg.
  • the carbon fiber thermoplastic resin prepreg in the present invention can be cut by a known method. As an example, a technique using a cutting plotter or a technique using a slitter and a rotary cutter together can be mentioned.
  • the width and length of the carbon fiber thermoplastic resin prepreg pieces are not particularly limited, but those having a width of 1 to 50 mm are preferred, those having a length of 6 to 50 mm are preferred, and thicknesses of 0.1 to 0.5 mm are preferred. Those are preferred.
  • the carbon fiber reinforced composite material according to the third aspect and the sixth aspect of the present invention is obtained by heating and pressure-cooling the carbon fiber thermoplastic resin prepreg and / or the carbon fiber thermoplastic resin prepreg piece. It is done.
  • the heating temperature in the heat treatment is preferably 150 to 320 ° C.
  • the heating time is preferably 1 to 10 minutes.
  • the temperature for pressure cooling is preferably 15 to 130 ° C., and the pressure is preferably 100 to 2000 kPa.
  • the carbon fiber composite material of the present invention uses the above-described carbon fiber prepreg and / or carbon fiber thermoplastic resin prepreg piece of the present invention.
  • the form of the carbon fiber composite material can be appropriately set according to its use (for example, aerospace, sports, leisure use, etc.).
  • Specific examples of the carbon fiber composite material include a composite panel obtained by stacking and baking a carbon fiber prepreg and then performing autoclave molding or stamping molding in which a material is heated with an IR heater and then cooled. it can.
  • the carbon fiber composite material of the present invention a tape-like woven fabric or assembly in which the carbon fiber thermoplastic resin prepreg of the present invention is slit in a predetermined width parallel to the fiber axis direction can also be used.
  • the carbon fiber composite material of the present invention can be a random sheet in which small pieces obtained by cutting the carbon fiber thermoplastic resin prepreg of the present invention into a predetermined size are randomly arranged, and a press-molded product thereof.
  • the volume content (Vf) of the PAN-based carbon fiber in the carbon fiber composite material produced using the carbon fiber thermoplastic resin prepreg of the present invention is 30% by volume or more and 60% volume with respect to the total volume of the carbon fiber composite material. The following is preferred. If the content of PAN-based carbon fibers is 30% by volume or more, a composite material having high mechanical properties can be obtained, and if it is 60% by volume or less, a composite material having few voids can be obtained.
  • the volume content of the matrix resin (thermoplastic resin) in the carbon fiber composite material produced using the carbon fiber thermoplastic resin prepreg of the present invention is based on the total volume of the carbon fiber composite material. 40 volume% or more and 70 volume% or less are preferable.
  • volume content of the PAN-based carbon fiber and the thermoplastic resin in the carbon fiber composite material can be specified by a method based on SACMA SRM 10R-94.
  • the carbon fiber composite material produced using the carbon fiber thermoplastic resin prepreg of the present invention may have a higher 0 ° bending strength than conventional molded products due to the characteristics of the PAN-based carbon fiber and thermoplastic resin used. it can.
  • Sa (unit: mm 2 ) is a cross-sectional area parallel to the thickness direction represented by (thickness) ⁇ (1 mm width) of the carbon fiber reinforced composite material
  • the volume content of the thermoplastic resin obtained from the image is Vr (unit: volume%)
  • the cross section of the carbon fiber extends over 15 ⁇ m or more parallel to the thickness direction of the carbon fiber reinforced composite material that can be drawn on the cross section (plane).
  • the total area of the region (resin region) occupied by innumerable line segments that do not pass through (that is, the value obtained by integrating innumerable line segments that do not pass through the cross section of the carbon fiber over 15 ⁇ m or more parallel to the thickness direction of the carbon fiber reinforced composite material) )
  • Is St (unit: mm 2 )
  • the value of the following formula (6) is preferably 0.40 or less.
  • the thickness of the resin region in the cross-sectional area parallel to the thickness direction represented by (thickness) ⁇ (1 mm width) of the carbon fiber reinforced composite material is Tt (unit: : Mm) and regions other than the resin regions between the resin regions that are adjacent to each other on one straight line parallel to the thickness direction of the carbon fiber reinforced composite material (hereinafter referred to as “fiber reinforced region”)
  • the ratio of the maximum value max (Tt) of Tt and the average value ave (Tf) of Tf, that is, the value of the following formula (7) is 1.0 or less. It is preferable that
  • the thickness of the resin region and the thickness of the region other than the resin region are thicknesses in a direction parallel to the thickness of the carbon fiber reinforced composite material.
  • the value of the formula (6) and the value of the formula (7) are large, that is, when the dispersion of the carbon fiber in the carbon fiber composite material is poor, there is a problem that the strength of the carbon fiber composite material is lowered. If the value is 0.40 or less and the value of formula (7) is 1.0 or less, the stress can be appropriately dispersed in the carbon fiber composite material, and the mechanical properties of the carbon fiber composite material are excellent.
  • a more preferable value of the formula (6) is 0.25 or less, and further preferably 0.20 or less.
  • a more preferable value of the formula (7) is 0.8 or less, and further preferably 0.6 or less.
  • the cross-sectional area Sa (unit: mm 2 ) parallel to the thickness direction represented by (thickness) ⁇ (1 mm width) of the carbon fiber reinforced composite material, the total area St of the resin region, the thickness of the resin region
  • the thickness Tt and the thickness Tf of the fiber reinforced region can be obtained by image analysis of an image obtained by observing an optical microscope or SEM after mirror-polishing a cross section parallel to the thickness direction of the carbon fiber composite material. .
  • the thickness Tt of the resin region observed in the cross section of the carbon fiber reinforced composite material is always 15 ⁇ m or more by its definition.
  • Tt at a position where one resin region exists on one straight line parallel to the thickness direction of the carbon fiber reinforced composite material and has two or more line segments of 15 ⁇ m or more that do not overlap each other is on the one straight line. It is defined as the sum of the lengths of all the existing line segments of 15 ⁇ m or more that do not overlap each other.
  • the thickness Tf of the fiber reinforced region observed in the cross section of the carbon fiber reinforced composite material is only the upper limit of the thickness of the carbon fiber composite material according to the above definition. When the thickness of the prepreg used for production is known, the thickness of the prepreg is set as the upper limit.
  • Tf is the length of each line segment.
  • the length of the fiber reinforced region in the direction perpendicular to the thickness direction used to calculate ave (Tf) is integrated by overlapping the number of line segments.
  • ave (Tf) is a value obtained by dividing “integrated value of Tf” by “the sum of the lengths of the fiber reinforced regions in the direction perpendicular to the thickness direction obtained by integrating by the number of Tf”. It is.
  • the automotive part in the seventh aspect of the present invention in which the carbon fiber composite material in the sixth aspect of the present invention is preferably used, is partly or entirely constituted by the carbon fiber reinforced composite material of the present invention.
  • PAN-based carbon fiber PAN-based carbon fiber 1 (CF1) (average single fiber fineness: 1.2 dtex, strand strength: 4218 MPa, strand elastic modulus: 236 GPa) PAN-based carbon fiber 2 (CF2) (average single fiber fineness: 2.4 dtex, strand strength: 3477 MPa, strand elastic modulus: 230 Pa) PAN-based carbon fiber 3 (CF3) (manufactured by Mitsubishi Rayon Co., Ltd., trade name: TR50S, average single fiber fineness: 0.67 dtex, strand strength: 4900 MPa, strand elastic modulus: 240 GPa) PAN-based carbon fiber 4 (CF4) (average single fiber fineness: 1.4 dtex, roundness: 0.82, filament number: 24000, strand strength: 435.9 kgf / mm 2 (4274 MPa), strand elastic modulus: 23.5 tonf / mm 2 (230 GPa), maximum ferret diameter: 12.8 ⁇ m, s
  • Method for producing PAN-based carbon fiber 4 A copolymer containing polyacrylonitrile as a main component and containing 2 mol% of 2-hydroxyethyl methacrylate is dissolved in dimethylacetamide and spun by a wet spinning method. The average single fiber fineness is 2.5 dtex and the total number of single yarns.
  • a flameproofing treatment was performed by air oxidation in a hot air circulation type flameproofing furnace at 250 to 290 ° C. for 60 minutes, and at 660 ° C. for 90 seconds in a nitrogen atmosphere.
  • sizing treatment is performed so that the adhesion amount becomes 0.4 mass% using epoxy resin as a sizing agent.
  • PAN-based carbon fiber 4 was obtained.
  • a PAN-based carbon fiber 5 was obtained in the same manner as the manufacturing method of the PAN-based carbon fiber 4 except that the total number of single yarns of the carbon fiber precursor was 28,000 and the sizing agent adhesion amount was 1.2% by mass. .
  • a PAN-based carbon fiber 6 was obtained in the same manner as the method for producing the PAN-based carbon fiber 5 except that the average single fiber fineness of the carbon fiber precursor was 4.5 dtex and the total number of single yarns was 12,000.
  • Method for producing PAN-based carbon fiber 7 A copolymer containing polyacrylonitrile as a main component and containing 2 mol% of 2-hydroxyethyl methacrylate is dissolved in dimethylacetamide and spun by a wet spinning method. The average single fiber fineness is 2.5 dtex and the total number of single yarns.
  • a flameproofing treatment was performed by air oxidation in a hot air circulation type flameproofing furnace at 250 to 290 ° C. for 70 minutes, and at 660 ° C. for 90 seconds in a nitrogen atmosphere.
  • sizing treatment is performed so that the adhesion amount becomes 1.2% by mass using epoxy resin as a sizing agent.
  • PAN-based carbon fiber 7 was obtained.
  • a PAN-based carbon fiber 8 was obtained in the same manner as the method for manufacturing the PAN-based carbon fiber 7 except that the average single fiber fineness of the carbon fiber precursor was 4.5 dtex and the total number of single yarns was 12,000.
  • Thermoplastic resin composition Modified polypropylene (Product name: Modic (registered trademark) P958, manufactured by Mitsubishi Chemical Corporation) Polyamide 6 (product name: UBE nylon 1013B, manufactured by Ube Industries, Ltd.) Polyamide 610 (Product name: Vestamide R Terra HS16, manufactured by Daicel Evonik) Polycarbonate (Product name: Revarex M7020, manufactured by Mitsubishi Engineering Plastics)
  • the average single fiber fineness is the weight per unit length of one fiber. Take two 1m long fiber bundles from any part of the carbon fiber bundle, measure the mass of each, divide these values by the number of filaments, multiply by 10000, and average the two fiber bundles Was calculated as the average single fiber fineness. The evaluation results are shown in Table 3.
  • the iPa value was measured by the following method.
  • the electrolyte to be used is adjusted to pH 3 with a 5% phosphoric acid aqueous solution, and nitrogen is bubbled to eliminate the influence of dissolved oxygen.
  • a carbon fiber as a sample is immersed in an electrolytic solution as one electrode, and an Ag / AgCl electrode is used as a reference electrode using a platinum electrode having a sufficient surface area as a counter electrode.
  • the sample form was 12000 filament tow with a length of 50 mm.
  • the scanning range of the potential applied between the carbon fiber electrode and the platinum electrode was ⁇ 0.2 V to +0.8 V, and the scanning speed was 2.0 mV / sec.
  • IPa the current value i with the potential at +0.4 V as the reference potential with respect to the Ag / AgCl standard electrode.
  • IPa was calculated according to The evaluation results are shown in Table 3.
  • iPa 1 ( ⁇ A) / sample length (cm) ⁇ (4 ⁇ ⁇ weight per unit area (g / cm) ⁇ number of filaments / density (g / cm 3 )) 1/2
  • the apparent surface area was calculated from the sample length and the sample density and the basis weight determined by the method described in JIS R7601, and the current value i was divided into ipa. This measurement was performed using a cyclic voltametry analyzer (manufactured by Yanagimoto Seisakusho, product name: P-1100 type).
  • X-ray photoelectron spectrometer (product name: ESCALAB, 220iXL, manufactured by VG) Measurement method: Carbon fiber was fixed on a sample table, and measurement was performed by a conventional method. The oxygen concentration ranges from 524 eV to 538 eV, the nitrogen concentration ranges from 397 eV to 402 eV, and the carbon concentration ranges from 280 eV to 293 eV.
  • the ratio to the C1S peak area was evaluated as the nitrogen-containing functional group amount (N1S / ClS).
  • the correction was made by using a sensitivity correction coefficient of 2.93 for O and a sensitivity correction coefficient unique to the apparatus. The evaluation results are shown in Table 3.
  • a single fiber of a carbon fiber bundle is measured under the following conditions to obtain one image.
  • the obtained shape image was subjected to “tilt correction: curved surface fitting” to obtain an image obtained by fitting the curved surface to a flat surface. This is shown in FIG. In FIG. 7, the vertical axis represents the height direction, and the horizontal axis represents the scanning direction (perpendicular to the fiber axis).
  • the average surface roughness (Ra), the maximum in-plane height difference (P ⁇ V), and the number of uneven peaks (Rn) per 2 ⁇ m were determined from the surface roughness analysis of the flattened image.
  • the average surface roughness (Ra), the maximum in-plane height difference (P ⁇ V), and the number of ridges (Rn) per 2 ⁇ m are calculated from the surface roughness analysis.
  • the circumferential length is 2 ⁇ m ⁇ the fiber axis direction. Data with a scanning range of 2 ⁇ m in length was used.
  • Rn as shown in FIG. 7, an occurrence of height of 2 nm or more was regarded as one mountain and counted.
  • the measurement was performed by measuring the shape of five single yarns per sample with a scanning probe microscope. For each measurement image, the average surface roughness (Ra), the maximum height difference (PV), and the number of uneven peaks per 2 ⁇ m ( Rn) was determined, and the average value was defined as the average surface roughness (Ra) of the sample, the maximum height difference (Rp ⁇ v), and the number of ridges (Rn) per 2 ⁇ m. Regarding the presence or absence of a surface uneven structure extending 2 ⁇ m or more in the longitudinal direction of the fiber on the surface of the single fiber, the range of 2 ⁇ m in the circumferential direction of the single fiber in the AFM mode is gradually shifted over the length of 2 ⁇ m in the fiber axis direction. Scanning was repeated, and the presence or absence was determined from the obtained measurement image. The evaluation results are shown in Table 3.
  • Example 1 A carbon fiber prepreg and a carbon fiber composite material were prepared using the PAN-based carbon fiber 1 (CF1) and the PMMA resin 1. This will be specifically described below.
  • the PAN-based carbon fiber 1 was wound with a drum wind, and a carbon fiber sheet having a carbon fiber basis weight (FAW: mass per unit area) of 248 g / m 2 was produced.
  • the PAN-based carbon fibers 1 were handled in a fiber bundle (tow) state, and the number of PAN-based carbon fibers 1 constituting each fiber bundle was 24,000. Appropriate tension was applied to the produced carbon fiber sheet, and the resin film, the fluororesin film (manufactured by Nitto Denko Corporation, trade name: NITOFLON film 970-4UL), and an aluminum flat plate were applied to both sides of the carbon fiber sheet.
  • the carbon fibers are oriented in a single direction (UD) under the conditions of 230 to 240 ° C., 5 minutes, 20 kPa on the heating plate of the heating / cooling two-stage press, and 5 minutes, 20 kPa on the cooling plate.
  • a semi-impregnated prepreg was prepared.
  • the basis weight (TAW) of this prepreg was 432 g / m 2 .
  • unidirectional carbon fiber composite material plate 7ply
  • the obtained unidirectional prepreg was made into a length (length of 0 ° direction (direction parallel to the fiber axis direction of carbon fiber)) 150 mm ⁇ width (90 °
  • the pattern was cut into a direction (length in the direction perpendicular to the fiber axis direction of the carbon fiber) of 150 mm.
  • 7 sheets were laminated (7 ply), bagged, and then subjected to autoclaving under a 0.7 MPa nitrogen pressure and elevated temperature conditions as shown in FIG. A 2 mm unidirectional carbon fiber composite plate was obtained.
  • VH analyzer volume content of the PAN-based carbon fiber in the unidirectional carbon fiber composite material molded plate from the photographed image of the cut surface 1a and The coefficient of variation of Vf was analyzed.
  • an arbitrary place (image analysis area 3) was selected from the image of the cut surface 1a taken. And this image analysis area
  • group carbon fiber part contained in the area of the 1 division for every 1 division is calculated as a volume content rate of PAN type
  • the coefficient of variation (%) ([standard deviation / average value] ⁇ 100) of the volume content (Vf) of the PAN-based carbon fiber was calculated. It can be said that the smaller the coefficient of variation, the better the dispersion state (dispersion degree) of the carbon fibers in the unidirectional carbon fiber composite material plate.
  • Example 2 As PAN-based carbon fiber, PAN-based carbon fiber 2 (CF2) having an average single-fiber fineness of 2.4 dtex was used, and the number of single fibers constituting the fiber bundle was changed to 12,000. Thus, a carbon fiber prepreg and a unidirectional carbon fiber composite material plate were produced.
  • PAN-based carbon fiber 2 CF2 having an average single-fiber fineness of 2.4 dtex was used, and the number of single fibers constituting the fiber bundle was changed to 12,000.
  • Example 1 As PAN-based carbon fiber, the same as Example 1 except that the number of single fibers constituting the fiber bundle was changed to 15000 using PAN-based carbon fiber 3 (CF3) having an average single fiber fineness of 0.67 dtex. Thus, a carbon fiber prepreg and a unidirectional carbon fiber composite material plate were produced.
  • CF3 PAN-based carbon fiber 3
  • Examples 3 to 4, Comparative Example 2 A carbon fiber prepreg and a unidirectional carbon fiber composite material plate were prepared in the same manner as in Examples 1 and 2 and Comparative Example 1 except that the matrix resin was changed to PMMA resin 2.
  • Examples 5 to 6, Comparative Example 3 Except for changing the matrix resin to AS resin 1 and changing the temperature raising / lowering temperature conditions for producing the unidirectional carbon fiber composite material plate to the temperature raising / lowering temperature conditions shown in FIG. Similarly, a carbon fiber prepreg and a unidirectional carbon fiber composite material plate were produced.
  • Example 7 Comparative Example 7
  • the matrix resin was changed to PA12, and carbon dioxide was produced in the same manner as in Example 1 and Comparative Example 1 except that the temperature rise / fall temperature conditions for producing the unidirectional carbon fiber composite material plate were changed to the temperature rise / fall temperature conditions shown in FIG.
  • a fiber prepreg and a unidirectional carbon fiber composite plate were prepared.
  • Tables 1 and 2 show the physical properties of PAN-based carbon fiber, thermoplastic resin, carbon fiber sheet, carbon fiber thermoplastic resin prepreg, and unidirectional carbon fiber composite material plate in each example.
  • Comparative Examples 4 to 6 show the 0 ° bending strength and the coefficient of variation of Vf in the carbon fiber composite material when the thermoplastic resin (AS resin 2) that does not satisfy the formula (1), that is, has low mechanical properties, is used. It is a comparison. As a result, Comparative Examples 4 and 5 that satisfy the requirements for the fineness of the single fibers in the present invention showed values equivalent to Comparative Example 6 that did not satisfy these requirements for the 0 ° bending strength, but were measured by image analysis. The variation coefficient of Vf was smaller than that of Comparative Example 6, and the dispersion state (dispersion degree) of the carbon fiber was improved.
  • thermoplastic resins used in Comparative Examples 4 to 6 did not satisfy the formula (1) as described above, resulting in low 90 ° bending strength and low resin bending strength (FS). For this reason, when an impact is applied to the composite material, delamination of the prepreg occurs, and impact resistance performance such as energy absorption performance is likely to be insufficient.
  • the dispersion state (dispersion degree) of the carbon fiber is good because the coefficient of variation of Vf measured by image analysis is small. Moreover, since the 0 ° bending strength and the 90 ° bending strength were also high, the mechanical properties were also good.
  • the ratio (FM / FS) of the flexural modulus FM (MPa) to the flexural strength FS (MPa) is 20 to
  • the carbon fiber prepreg of the present invention produced by impregnating a thermoplastic resin No. 40 can have a good fiber dispersion state (dispersion degree) in the prepreg or in a carbon fiber composite material molded article using the prepreg. Furthermore, it can have high mechanical properties (for example, 0 ° bending strength and impact resistance).
  • the carbon fiber sheet After producing a carbon fiber sheet having a carbon fiber basis weight of 145 g / m 2 by the drum wind method, the carbon fiber sheet is moderately tensioned, and the resin film and the fluororesin film (Nitto Denko Corporation) are applied from both sides of the carbon fiber sheet.
  • Co., Ltd., product name: Nitoflon film 970-4UL sandwiched in the order of aluminum flat plate, 230 ° C, 5 minutes, 20 kPa, 5 minutes, 30 kPa with a cooling plate at 230 ° C, 5 minutes, 20 kPa with heating plate Under the conditions, a carbon fiber thermoplastic resin prepreg having a fiber volume content of about 50% by volume was obtained.
  • the manufacturing method 4 of the carbon fiber thermoplastic resin prepreg of Example 14 and Comparative Example 12> The raw material polyamide 6 was changed to polycarbonate, the film thickness was changed to 36 ⁇ m, and the carbon fiber basis weight was changed to 97 g / m 2 in the same manner as in the production method 2 of the carbon fiber thermoplastic resin prepreg. A volume% carbon fiber thermoplastic resin prepreg was obtained.
  • thermoplastic resin the bending elastic modulus and bending strength of the thermoplastic resin are determined by a test method based on ISO178 at a temperature of 23 ⁇ 2 ° C. after sufficiently drying the thermoplastic resin to be measured. It is the value obtained by measuring.
  • the carbon fiber composite material plate having a thickness of 1 mm was obtained by molding with an autoclave under conditions of 0.7 MPa and a pressure in the bag of ⁇ 100 kPa.
  • thermoplastic resin volume content of thermoplastic resin in carbon fiber reinforced composite material The carbon fiber composite material plates obtained by the carbon fiber composite material plate production methods 1 to 4 were cut into 3 cm squares, and the thermoplastic resin volume content Vr was measured in accordance with JIS K7075. The evaluation results are shown in Tables 5 and 6.
  • Example 8 Using the CF4 and the modified polypropylene, a carbon fiber composite material plate was produced according to the carbon fiber thermoplastic resin prepreg production method 1 and the carbon fiber composite material plate production method 1, and the physical properties were evaluated.
  • Comparative Example 8 A carbon fiber composite material plate was prepared in the same manner as in Example 8 except that CF9 was used instead of CF4, and the physical properties were evaluated. The compressive strength of the carbon fiber composite material obtained in Comparative Example 8 was lower than that in Example 8.
  • Example 9 A carbon fiber composite material plate was prepared in the same manner as in Example 8 except that CF5 was used instead of CF4, and the physical properties were evaluated.
  • Example 3 A carbon fiber composite material plate was prepared in the same manner as in Example 8 except that CF6 was used instead of CF4, and the physical properties were evaluated.
  • Comparative Example 9 A carbon fiber composite material plate was produced in the same manner as in Example 8 except that CF10 was used instead of CF4, and the physical properties were evaluated. The compressive strength of the carbon fiber composite material obtained in Comparative Example 9 was lower than that in Examples 9 and 10.
  • Example 11 Using the CF5 and the polyamide 6, a carbon fiber composite material plate was produced according to the carbon fiber thermoplastic resin prepreg production method 2 and the carbon fiber composite material plate production method 2, and the physical properties were evaluated.
  • Example 12 A carbon fiber composite material plate was prepared in the same manner as in Example 11 except that CF6 was used instead of CF5, and physical properties were evaluated.
  • Comparative Example 10 A carbon fiber composite material plate was produced in the same manner as in Example 11 except that CF10 was used instead of CF5, and the physical properties were evaluated. The compressive strength of the carbon fiber composite material obtained in Comparative Example 10 was lower than that in Examples 11-12.
  • Example 13 Using the CF4 and the polyamide 610, a carbon fiber composite material plate was produced according to the carbon fiber thermoplastic resin prepreg production method 3 and the carbon fiber composite material plate production method 3, and the physical properties were evaluated.
  • Comparative Example 11 A carbon fiber composite material plate was prepared in the same manner as in Example 13 except that CF9 was used instead of CF4, and the physical properties were evaluated. The compressive strength of the carbon fiber composite material obtained in Comparative Example 11 was lower than that in Example 13.
  • Example 14 Using the CF4 and the polycarbonate, a carbon fiber composite material plate was prepared according to the carbon fiber thermoplastic resin prepreg manufacturing method 4 and the carbon fiber composite material plate manufacturing method 4, and the physical properties were evaluated.
  • Comparative Example 12 A carbon fiber composite material plate was prepared in the same manner as in Example 14 except that CF9 was used instead of CF4, and the physical properties were evaluated. The compressive strength of the carbon fiber composite material obtained in Comparative Example 12 was lower than that in Example 14.
  • the temperature was lowered to 60 ° C., 1.33 parts by mass of dichlorophenyldimethylurea (manufactured by Hodogaya Chemical Co., Ltd., product name: DCMU99), and 5.33 of dicyandiamide (manufactured by Mitsubishi Chemical Corporation, product name: DICY15). Mass parts were added and kneaded to obtain an epoxy resin composition.
  • the obtained epoxy resin composition was formed into a film with a comma coater (manufactured by Hirano Techseed Co., Ltd., product name: M-500) to obtain a resin film (hot melt film) having a resin basis weight of 50 g / m 2 .
  • This resin film is bonded to both surfaces of the PAN-based carbon fiber 7 aligned by the drum wind method and impregnated with a heating roll to obtain a carbon fiber prepreg having a basis weight of 200 g / m 2 and a resin content of 32% by mass. It was.
  • a test piece was prepared by cutting into a length (0 ° direction) of 80 mm and a width of 12.7 mm with a wet diamond cutter. The obtained test piece was subjected to a 0 ° compression test in accordance with SACMA-94 using a universal testing machine (product name: instron 5882) and analysis software (product name: Bluehill). The elastic modulus was calculated as a converted value of Vf 56 volume%. Table 7 shows the evaluation results.
  • Comparative Example 14 A carbon fiber composite material plate was prepared in the same manner as in Comparative Example 13 except that CF7 was used instead of CF10, and the physical properties were evaluated. Table 7 shows the evaluation results.
  • Comparative Example 15 A carbon fiber composite material plate was produced in the same manner as in Comparative Example 13 except that CF8 was used instead of CF10, and the physical properties were evaluated. Table 7 shows the evaluation results. The compressive strength of the carbon fiber composite materials obtained in Comparative Examples 13 to 15 did not change regardless of the average single fiber fineness of the carbon fiber bundle.
  • thermoplastic resin having excellent mechanical properties such as polymethyl methacrylate (PMMA), acrylonitrile styrene copolymer resin (AS resin), polyamide 12 (PA12), etc. is used as the matrix resin.
  • a carbon fiber thermoplastic resin prepreg that provides a carbon fiber composite material in which carbon fibers are uniformly dispersed to exhibit high bending strength, a method for producing the same, and a carbon fiber composite material using the prepreg are provided.
  • a carbon fiber thermoplastic resin prepreg that is excellent in impact resistance, has a short molding time, and has a small amount of fine fiber meandering can be obtained, and the carbon fiber thermoplastic resin.
  • a carbon fiber reinforced composite material obtained by using a prepreg and an automotive part can be provided.

Abstract

平均単繊維繊度が1.0dtex以上2.4dtex以下であるPAN系炭素繊維に熱可塑性樹脂を含浸させてなる炭素繊維プリプレグであって、該熱可塑性樹脂が、20≦(FM/FS)≦40(FM:この熱可塑性樹脂のみからなる樹脂板の曲げ弾性率(MPa)、FS:該樹脂板の曲げ強度(MPa))を満たす熱可塑性樹脂である炭素繊維熱可塑性樹脂プリプレグ、その製造方法、及びその炭素繊維プリプレグを使用する炭素繊維複合材料。

Description

炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法
 本発明は、炭素繊維と熱可塑性樹脂とを含む炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法に関する。
 本願は、2012年3月29日に、日本に出願された特願2012-075986号、及び2012年4月17日に、日本に出願された特願2012-093950号に基づき優先権を主張し、その内容をここに援用する。
 炭素繊維等の強化繊維と熱可塑性樹脂とを含む強化繊維プリプレグは、その中に強化繊維を均一に分散させることが重要である。これは、プリプレグ中での繊維分散度が低いために熱可塑性樹脂の多い領域や繊維の多い領域が存在すると、そのプリプレグを使用した複合材料成形品に応力がかかった場合に、不均一部分に応力が集中して破壊の起点となってしまう可能性が高いためである。
 炭素繊維等の強化繊維と熱可塑性樹脂とを含む熱可塑性樹脂プリプレグを溶融法にて製造する際には、熱可塑性樹脂を強化繊維束に均一に含浸させるために、含浸時の熱可塑性樹脂を低粘度にすることが望まれる。熱可塑性樹脂の粘度を下げるには、高温にすることが一般的であるが、高温にすることによって熱可塑性樹脂の熱分解(低分子量化)が進むことがある。そのため、このような熱可塑性樹脂は、再度加熱することによって複合材料(成形品)を得る材料としては不適なものである。
 なお、特許文献1では、熱分解開始温度から10℃低い温度での粘度が5~500Pa・sの熱可塑性樹脂を用いてプリプレグを製造することが記載されている。
 また、炭素繊維等の強化繊維と熱可塑性樹脂とを含む熱可塑性樹脂プリプレグを製造する他の方法としては、熱可塑性樹脂の微粒子のサスペンジョンに強化繊維束を浸漬して、この樹脂微粒子を強化繊維に付着させ、加熱溶融することで、熱可塑性樹脂を強化繊維間に含浸させてプリプレグを製造する方法(特許文献2)や、強化繊維束に熱可塑性樹脂微粒子を付着させ、バインダー樹脂溶液を用いてプリプレグを製造する方法(特許文献3)がある。
 炭素繊維等の強化繊維と熱可塑性樹脂とを含む熱可塑性樹脂プリプレグを中間基材として用いた繊維強化複合材料の成形は、プリプレグを積層、もしくプリプレグを裁断してなるプリプレグ片を分散積層した後、これを加熱し、さらに加圧冷却して、プリプレグに含まれる熱可塑性樹脂を一体化させることによって行われている。熱可塑性樹脂をマトリックス樹脂とする繊維強化複合材料は耐衝撃性が優れ、かつ短時間で成形できるため、自動車用部品等に最適である。(特許文献4)
 また熱可塑性樹脂をマトリックス樹脂とする繊維強化複合材料の成形手法はプリプレグを用いる手法以外にも、ロングファイバーペレット(LFP)等のペレットを用いた射出成形法も知られている(特許文献5)。しかし射出成形法では繊維体積含有率30体積%以上の繊維強化複合材料の製造は困難であり、高強度・高剛性が求められる部材には適応が困難であるという課題がある。
特開2011-6578号公報 特開2008-44999号公報 特許第3681127号 特開平9-155862号公報 特開2002-212383号公報
 しかしながら、特許文献1に記載された、熱分解開始温度から10℃低い温度での樹脂の粘度は、実際のプリプレグ製造時の粘度や実際のプレス成形時の粘度が、樹脂のみで測定した粘度とは異なることがある。そのため、この熱分解開始温度から10℃低い温度での樹脂の粘度を規定するだけでは不十分な場合があった。また、特許文献1には、マトリックス樹脂とする熱可塑性樹脂の曲げ弾性率及び曲げ強度に関しては特に記載されていない。特許文献2または3の方法では、熱可塑性樹脂を微粒子にしたり、サスペンジョンにしたりする必要があり、さらに樹脂微粒子を強化繊維束中へ均一に分散させることが困難な場合があるため、更なる改良が望まれている。一方、熱可塑性樹脂をフィルム化することは比較的容易であり、均一にフィルム化した状態で熱可塑性樹脂を用いれば、強化繊維に熱可塑性樹脂を含浸させる際に、この樹脂を均一に供給しやすく、均一な厚みのプリプレグが製造しやすくなる。しかし、機械的特性に優れた熱可塑性樹脂は、一般的に粘度が高く、強化繊維が得られたプリプレグ中に均一に分散しない場合があった。そのため、熱可塑性樹脂及び強化繊維がいずれも均一に分散したプリプレグを製造する方法の開発が望まれた。
 炭素繊維等の強化繊維と熱可塑性樹脂と含む熱可塑性樹脂プリプレグを中間基材として用いた繊維強化複合材料の成形は、繊維の繊維配向を任意に設計できる点でLFP等を用いた射出成形法などと比較して優れている。しかし、熱可塑性樹脂プリプレグを加熱後、加圧冷却して一体化させる際、冷却時のマトリックス樹脂の収縮によって繊維が微小蛇行し、強度発現率が低下する問題がある。また、一般に熱可塑性樹脂をマトリックスとした繊維強化複合材料の耐熱温度はマトリックス樹脂の耐熱温度に依存するが、耐熱温度の高いマトリックス樹脂を用いたプリプレグは、成形の際に必要とされる温度も高くなり、この微小蛇行は大きくなる問題がある。本発明では繊維の微小蛇行の少ない、強度発現性に優れた炭素繊維熱可塑性樹脂プリプレグおよび炭素繊維強化複合材料を提供することを目的とするものである。
 また、本発明では、マトリックス樹脂に、ポリメチルメタクリレート樹脂(PMMA樹脂)、アクリロニトリルスチレン共重合樹脂(AS樹脂)、ポリアミド12樹脂(PA12樹脂)等の機械的特性に優れた熱可塑性樹脂を用いた場合であっても、炭素繊維が均一に分散して高い曲げ強度を発現する炭素繊維複合材料を与える炭素繊維熱可塑性樹脂プリプレグと、その製造方法、及びそのプリプレグを用いた炭素繊維複合材料を提供することを目的とする。
 本発明者らは上記目的を達成すべく、鋭意検討を重ねた結果、本発明を完成するに至った。本発明は以下の態様を有する。
[1]平均単繊維繊度が1.0~2.4dtexである複数の炭素繊維からなる炭素繊維束に熱可塑性樹脂組成物を含浸させて形成される炭素繊維熱可塑性樹脂プリプレグ。
[2]前記熱可塑性樹脂組成物が、以下の式(1)を満たす熱可塑性樹脂である[1]に記載の炭素繊維熱可塑性樹脂プリプレグ。
   20≦(FM/FS)≦40 ・・・(1)
(式(1)中、FMはこの熱可塑性樹脂組成物のみからなる樹脂板の曲げ弾性率(MPa)を表し、FSは該樹脂板の曲げ強度(MPa)を表す)。
[3]前記熱可塑性樹脂組成物が、以下の式(2)を満たす熱可塑性樹脂組成物である[1]または[2]に記載の炭素繊維熱可塑性樹脂プリプレグ。
   25≦(FM/FS)≦35 ・・・(2)
(式(2)中、FMはこの熱可塑性樹脂組成物のみからなる樹脂板の曲げ弾性率(MPa)を表し、FSは該樹脂板の曲げ強度(MPa)を表す)。
[4]平均単繊維繊度が1.0dtex以上2.4dtex以下であるPAN系炭素繊維束に、熱可塑性樹脂組成物を含浸させて炭素繊維プリプレグを得る工程を含む炭素繊維熱可塑性樹脂プリプレグの製造方法であって、
 該熱可塑性樹脂組成物が、以下の式(3)を満たす熱可塑性樹脂組成物である炭素繊維熱可塑性樹脂プリプレグの製造方法。
   20≦(FM/FS)≦40 ・・・(3)
(式(1)中、FMはこの熱可塑性樹脂組成物のみからなる樹脂板の曲げ弾性率(MPa)を表し、FSは該樹脂板の曲げ強度(MPa)を表す)。
[5]前記熱可塑性樹脂組成物がフィルム状である[4]に記載の炭素繊維熱可塑性樹脂プリプレグの製造方法。
[6][1]~[3]のいずれか1項に記載の炭素繊維熱可塑性樹脂プリプレグから形成される炭素繊維複合材料。
[7]前記炭素繊維束を構成する炭素繊維の単繊維の真円度が0.70~0.90である[1]に記載の炭素繊維熱可塑性樹脂プリプレグ。
 ただし、真円度は下記式(4)にて求められる。式中、Sは、単繊維の断面積、Lは、単繊維の断面の周長である。
 真円度=4πS/L ・・・(4)
[8]前記炭素繊維束がPAN系炭素繊維束である[1]または[7]に記載の炭素繊維熱可塑性樹脂プリプレグ。
[9]下記式(5)を満たす[7]または[8]に記載の炭素繊維熱可塑性樹脂プリプレグ。
 β×(Tc-25)×(100-Vf) > 0.5  ・・・(5)
 (式中、βは熱可塑性樹脂組成物の線膨張係数(1/℃)であり、Tcは該熱可塑性樹脂組成物の成形下限温度(℃)である。成形下限温度とは、熱可塑性樹脂組成物が融点を有する場合はその融点、熱可塑性樹脂組成物が融点を有さない場合はその粘度が1×10Pa・sとなる温度を表す。また、Vfは炭素繊維熱可塑性樹脂プリプレグの繊維体積含有率(体積%)である。)
[10]前記熱可塑性樹脂組成物が、ポリプロピレン樹脂、ポリアミド樹脂、ポリプロピレン樹脂の変性樹脂、ポリアミド樹脂の変性樹脂から選ばれる少なくとも1種類の樹脂である[7]~[9]のいずれか一項に記載の炭素繊維熱可塑性樹脂プリプレグ。
[11][7]~[10]のいずれか一項に記載の炭素繊維プリプレグを用いた炭素繊維熱可塑性樹脂プリプレグ片。
[12][7]~[10]のいずれか一項に記載の炭素繊維熱可塑性樹脂プリプレグを用いた炭素繊維強化複合材料。
[13][11]に記載の炭素繊維熱可塑性樹脂プリプレグ片を用いた炭素繊維強化複合材料。
[14][12]または[13]に記載の炭素繊維強化複合材料を用いた自動車用部品。
 本発明によれば、マトリックス樹脂に、ポリメチルメタクリレート(PMMA)、アクリロニトリルスチレン共重合樹脂(AS樹脂)、ポリアミド12(PA12)等の機械的特性に優れた熱可塑性樹脂を用いた場合であっても、炭素繊維が均一に分散して高い曲げ強度を発現する炭素繊維複合材料を与える炭素繊維熱可塑性樹脂プリプレグと、その製造方法、及びそのプリプレグを用いた炭素繊維複合材料が提供される。また、本発明によれば、耐衝撃性に優れ、かつ成形時間が短く、繊維の微小蛇行が少ない炭素繊維強化複合材料を得ることができる炭素繊維熱可塑性樹脂プリプレグ、ならびに該炭素繊維熱可塑性樹脂プリプレグを用いて得られる炭素繊維強化複合材料および自動車用部品を提供できる。
熱可塑性樹脂としてPMMA樹脂を用いて、炭素繊維複合材料(成形品)を製造する際の昇降温度条件例を示すグラフである。 熱可塑性樹脂としてAS樹脂を用いて、炭素繊維複合材料(成形品)を製造する際の昇降温度条件例を示すグラフである。 熱可塑性樹脂としてPA12樹脂を用いて、炭素繊維複合材料(成形品)を製造する際の昇降温度条件例を示すグラフである。 繊維分散度の測定において、一方向強化炭素繊維複合材料成形板をポリエステル樹脂で包埋する例を示す概念図である。 繊維分散度の測定において、炭素繊維およびマトリックス樹脂のそれぞれの面積を求める例を示す概念図である。 炭素繊維束を構成する単繊維の繊維長手方向に垂直な断面を鏡面処理した後、SEMで観察した像を示す図である。 炭素繊維束を構成する単繊維の繊維長手方向に垂直な断面を鏡面処理した後、SEMで観察した像を示す図である。 画像解析条件を示す図である。
 <炭素繊維熱可塑性樹脂プリプレグ>
 本発明の第一の態様における炭素繊維熱可塑性樹脂プリプレグは、平均単繊維繊度が1.0~2.4dtexである複数の炭素繊維からなる炭素繊維束に熱可塑性樹脂組成物を含浸させて形成される炭素繊維熱可塑性樹脂プリプレグである。例えば、平均単繊維繊度が1.0dtex以上2.4dtex以下である炭素繊維束に、機械的特性に優れた、即ち、下記の式(1)を満たす熱可塑性樹脂が含浸した構造を有する炭素繊維熱可塑性樹脂プリプレグが好ましいものとして挙げられる。即ち、本発明の炭素繊維熱可塑性樹脂プリプレグは、マトリックス樹脂となるこの熱可塑性樹脂と、この炭素繊維とからなる。なお、dtexとは、長さ10,000m当たりの繊維の質量をグラム単位で表したものである。
   20≦(FM/FS)≦40 ・・・(1)
式(1)中、FMは、この熱可塑性樹脂のみからなる樹脂板の曲げ弾性率(MPa)を表し、FSは、この樹脂板の曲げ強度(MPa)を表す。なお、このFM及びFSはいずれも、測定する熱可塑性樹脂を十分に乾燥後、射出成形により成形した試験片を23±2℃の温度下でISO178に準拠した方法により測定することで求めることができる。
 なお、本発明の炭素繊維熱可塑性樹脂プリプレグは、上記炭素繊維束に上記熱可塑性樹脂を完全に含浸させた状態の含浸プリプレグだけでなく、上記炭素繊維束に上記熱可塑性樹脂を完全に含浸させていない状態で両者を一体化させた半含浸プリプレグ(セミプレグ)も含むものであってもよい。
 本発明では、1つのプリプレグについて、複数本の上記炭素繊維束を用いることができる。その際、炭素繊維束は1種類のみを使用しても良いし、複数種類を併用しても良い。また、炭素繊維束は、プリプレグにおいて、規則的に並べて使用しても良いし、不規則に並べて使用しても良い。しかしながら、特定方向に比強度、比弾性率が高いことを要求される用途に炭素繊維熱可塑性樹脂プリプレグを用いる場合は、通常、炭素繊維束が単一方向に配列したプリプレグを用いることが最も好ましい。
 なお、炭素繊維熱可塑性樹脂プリプレグにおける炭素繊維の配向方向は、繊維軸方向に対してほぼ垂直にこの炭素繊維熱可塑性樹脂プリプレグを切断して得られる切断面をSEM(走査型電子顕微鏡)や光学顕微鏡で観察することにより確認することができる。
 本発明の炭素繊維熱可塑性樹脂プリプレグは、この複数本の炭素繊維束のうちの隣り合う炭素繊維束間や、この複数本の炭素繊維束の内部に、上記熱可塑性樹脂を含浸させたものであるこ。さらに、炭素繊維熱可塑性樹脂プリプレグは、この複数本の炭素繊維束の表面に上記熱可塑性樹脂が付着した構造を有することができる。
 また、本発明の炭素繊維熱可塑性樹脂プリプレグに用いる炭素繊維は、得られた炭素繊維複合材料が高い弾性率や強度を発現する観点から、連続繊維であることが好ましい。連続繊維とは、繊維が定期的または不定期的に切れておらず繋がっている状態で、繊維長が100mm以上のもののことである。
 本発明に用いる炭素繊維は、連続繊維であって、かつ炭素繊維熱可塑性樹脂プリプレグ中において単一方向(UD)に配向していることが特に好ましい。
 本発明では、炭素繊維熱可塑性樹脂プリプレグを製造する際に、炭素繊維を複数本束ねた状態、即ち、炭素繊維束(通常、炭素繊維トウと呼ばれる)の状態で用いることができる。炭素繊維束を構成する炭素繊維(単繊維)の本数は適宜設定することができるが、例えば、1000~60000本とすることができる。
 また、炭素繊維熱可塑性樹脂プリプレグを製造する際に、多数の炭素繊維を同一平面上に配列してシート状とした炭素繊維シートの状態で炭素繊維を用いることもできる。さらに、上記炭素繊維束を等間隔かつ同一平面上に配列してシート状とした炭素繊維シートの状態で炭素繊維を用いることもできる。この炭素繊維シートにおける炭素繊維の目付け(FAW:Fiber Areal Weight)は、繊維を開繊させる観点から50g/m以上が好ましく、熱可塑性樹脂の含浸しやすさと得られた炭素繊維熱可塑性樹脂プリプレグの取扱性の観点から500g/m以下が好ましい。さらにプリプレグの積層し易さの観点から、100g/m以上がさらに好ましく、高粘度樹脂の含浸性の観点から250g/m以下がさらに好ましい。
 本発明の炭素繊維熱可塑性樹脂プリプレグにおいて、この炭素繊維の目付FAWは、炭素繊維シートから一定の面積(例えば、100cm)を切り出してその質量を測定し、炭素繊維シート1mあたりに換算することにより算出することができる。
 また、本発明の炭素繊維熱可塑性樹脂プリプレグの目付け(TAW:Total Areal Weight)は、繊維を開繊させる観点から75g/m以上、熱可塑性樹脂の含浸しやすさやと得られた炭素繊維熱可塑性樹脂プリプレグの取扱性の観点から1000g/m以下が好ましい。また、TAWは、プリプレグの積層し易さの観点から150g/m以上、高粘度樹脂の含浸性の観点から500g/m以下がより好ましい。この炭素繊維プリプレグの目付TAWは、一定面積にカットした炭素繊維プリプレグの質量を測定し、その値を1mあたりに換算することにより算出することができる。具体的には、75~1000g/mが好ましく、150~500g/mがより好ましい。
 なお、炭素繊維熱可塑性樹脂プリプレグ中のPAN系炭素繊維の、炭素繊維熱可塑性樹脂プリプレグの全質量に対する質量含有率(Wf)は、FAW/TAW×100(質量%)として算出することができる。
このWfは、得られた炭素繊維複合材料に高い機械特性が得られる観点から30質量%以上、空隙の少ない複合材料が得られる観点から70質量%以下が好ましく、繊維蛇行が少ない複合材料が得られる観点から40質量%以上、高粘度樹脂においても空隙の少ない複合材料が得られる観点から60質量%以下がより好ましい。具体的には、30~70質量%が好ましく、40~60質量%がより好ましい。
<熱可塑性樹脂組成物>
 (熱可塑性樹脂)
 本発明の炭素繊維熱可塑性樹脂プリプレグに用いる熱可塑性樹脂組成物は、上記式(1):20≦(FM/FS)≦40を満たす熱可塑性樹脂を用いることが好ましい。一般に、炭素繊維熱可塑性樹脂プリプレグには、マトリックス樹脂として、例えば、以下の熱可塑性樹脂が用いられている。即ち、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド(PA)樹脂、液晶ポリマー樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリアセタール樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、変性ポリスチレン樹脂、AS樹脂(アクリロニトリルとスチレンとのコポリマー)、ABS樹脂(アクリロニトリル、ブタジエン及びスチレンのコポリマー)、変性ABS樹脂、MBS樹脂(メチルメタクリレート、ブタジエン及びスチレンのコポリマー)、変性MBS樹脂、ポリメチルメタクリレート(PMMA)樹脂、変性ポリメチルメタクリレート樹脂等及びこれらのポリマーアロイ樹脂等である。これらは耐熱性、耐薬品性、力学特性により適切な樹脂を選択することが出来る。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよい。2種類以上を併用することが好ましい。
 しかしながら、本発明の炭素繊維熱可塑性樹脂プリプレグに用いることができる熱可塑性樹脂としては、上記式(1):20≦(FM/FS)≦40を満たす機械的特性の優れた熱可塑性樹脂を用いることが好ましい。この熱可塑性樹脂の曲げ強度FS(MPa)に対する曲げ弾性率FM(MPa)の比(FM/FS)が、20以上であれば複合材料とした際に高い強度を得ることができ、40以下であれば複合材料とした際に高い耐衝撃性能を得ることができる。また、この比(FM/FS)は、複合材料とした時に高い弾性率を得ることができる観点から25以上とすることが好ましく、複合材料とした時に層間剥離が発生しにくい観点から35以下とすることが好ましい。即ち、熱可塑性樹脂が、式(2):25≦(FM/FS)≦35を満たすことが好ましい。
 上記式(1)を満たす具体的な熱可塑性樹脂としては、例えば、以下の樹脂を挙げることができる。即ち、PMMA樹脂(具体的には、三菱レイヨン社製、商品名:TF8、TF9等)、AS樹脂(具体的には、UMG ABS社製、商品名:AP-H等)、PA12樹脂(具体的には、アルケマ社製、AMN-O-TLD等)、PPS樹脂(具体的には、東レ社製、商品名:A900等)、PA6樹脂(具体的には、宇部工業社製、商品名:1013B、東洋紡績社製、商品名:T803等)、及びPP(ポリプロピレン)樹脂(具体的には、三菱化学社製、商品名:モディック(登録商標)P958等)等である。
 また、上記式(2)を満たす熱可塑性樹脂としては、例えば、以下の樹脂を挙げることができる。即ち、PMMA樹脂(具体的には、三菱レイヨン社製、商品名:TF8、TF9等)、AS樹脂(具体的には、UMG ABS社製、商品名:AP-H等)、PA12樹脂(具体的には、アルケマ社製、AMN-O-TLD等)、PPS樹脂(具体的には、東レ社製、商品名:A900等)、及びPA6樹脂(具体的には、東洋紡績社製、商品名:T803等)等である。
 この中でも、高いFMを有する観点から、熱可塑性樹脂として、上記式(1)を満たす、AS樹脂またはPMMA樹脂を用いることが好ましい。
 なお、上記曲げ弾性率(FM)や上記曲げ強度(FS)は、上記式(1)を満たす範囲で用いる熱可塑性樹脂に応じて適宜設定することができる。例えば、熱可塑性樹脂としてPMMA樹脂を用いた場合、曲げ弾性率は例えば3000MPa以上3500MPa以下とすることができ、曲げ強度は例えば90MPa以上120MPa以下とすることができる。また、熱可塑性樹脂としてAS樹脂を用いた場合、曲げ弾性率は例えば3300MPa以上3600MPa以下とすることができ、曲げ強度は例えば90MPa以上110MPa以下とすることができる。
 <熱可塑性樹脂組成物> 
本発明の炭素繊維熱可塑性樹脂プリプレグに用いることができる熱可塑性樹脂組成物は、該熱可塑性樹脂組成物の成形下限温度Tc(℃)、線膨張係数β(1/℃)、および前記炭素繊維熱可塑性樹脂プリプレグの繊維体積含有率Vf(体積%)から求められる下記式(5)の値が0.5を超えることが好ましい。ここで、成形下限温度とは、熱可塑性樹脂組成物が融点を有する結晶性樹脂である場合は融点のことであり、熱可塑性樹脂組成物が融点を有さない非晶性樹脂である場合はゼロせん断粘度が2×10Pa・sとなる温度Tx(℃)である。
   β×(Tc-25)×(100-Vf) ・・・(5)
 式(5)の値が0.5を超える場合には、この熱可塑性樹脂組成物を用いて炭素繊維強化複合材料を製造する過程で、25℃から成形下限温度まで加熱し、引き続き、25℃まで冷却する際に、炭素繊維束と熱可塑性樹脂組成物の膨張・収縮挙動の違いに起因して、炭素繊維強化複合材料中の炭素繊維の微小蛇行が生じ易い領域となっている。しかしながら、本発明の炭素繊維熱可塑性樹脂プリプレグを用いた炭素繊維強化複合材料では、炭素繊維の微小蛇行が生じないので、炭素繊維強化複合材料の機械物性の低下が抑制されるので、好ましい。なお、線膨張係数βはJIS K7197(1991)に従って測定することができる。
 熱可塑性樹脂組成物に含まれる熱可塑性樹脂の種類は炭素繊維熱可塑性樹脂プリプレグとした際に、上記式(5)を満たしていれば特に限定されず、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、液晶ポリマー樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、変性ポリスチレン樹脂、ABS樹脂、変性ABS樹脂、MBS樹脂、ポリメチルメタクリレート樹脂、及びこれらの変性樹脂、及びこれらのポリマーアロイ樹脂が挙げられる。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよい。2種類以上を併用することが好ましい。中でもポリプロピレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂と、それぞれの樹脂の変性樹脂が好ましい。また、より好ましくは酸変性ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド610樹脂、もしくは、ポリカーボネート樹脂である。なかでもポリアミド6樹脂が好ましい。
 (PAN系炭素繊維)
 本発明で用いるPAN系炭素繊維は、平均単繊維繊度が1.0dtex以上2.4dtex以下である。平均単繊維繊度を1.0dtex以上とすることで、炭素繊維強化複合材料中の繊維の微小蛇行を抑え、強度発現性に優れた炭素繊維強化複合材料が得られる。より好ましい平均単繊維繊度の範囲は1.1~2.0dtexであり、更に好ましい平均単繊維繊度の範囲は1.2~1.6dtexである。ここで、平均単繊維繊度は、後述の<炭素繊維束の平均単繊維繊度の測定>に記載された方法により求めることができる。なお、PAN系炭素繊維の平均単繊維繊度は、プレカーサーとなるPAN系繊維(PAN系炭素繊維前駆体繊維)の平均単繊維繊度により調整することができる。
 本発明で用いる炭素繊維束を構成する炭素繊維の単繊維の真円度は0.70~0.90であることが好ましい。真円度が0.70未満であると単繊維(フィラメント)内での局部的な応力集中により、炭素繊維強化複合材料中の繊維の微小蛇行が顕著となり、炭素繊維強化複合材料の機械物性が低下する。真円度が0.90を超えると、繊維とマトリックス樹脂の界面接着面積の低下による界面接着強度の低下によって炭素繊維強化複合材料の機械物性が低下する。より好ましい単繊維の真円度の範囲は0.75~0.88であり、更に好ましい単繊維の真円度の範囲は0.8~0.86である。
ここで、真円度は下記式(4)にて求められる値であって、S及びLは、単繊維の繊維軸に垂直な断面をSEM観察にて画像解析することによって得られる、単繊維の断面積および周長である。
   真円度=4πS/L ・・・(4)
 本発明で用いる炭素繊維束を構成する炭素繊維の単繊維の最大フェレ径は、8~20μmが好ましい。8μm以上とすることで、各単繊維の曲げ剛性が高く、プリプレグ製造工程における外乱により単繊維同士が絡み合うことが少ないので、繊維束内の単繊維の交絡数が減少し、さらに、単繊維の最大フェレ径が大きい場合は炭素繊維束は繊維数が多くても開繊し易く好ましい。ただし、炭素繊維の単繊維が太い場合は、単繊維の単位長さあたりの体積が増えることに比例して欠陥の存在確率が増加して炭素繊維の強度が低下する。炭素繊維の強度を低下させない観点から、最大フェレ径は20μm以下であることが好ましい。より好ましい単繊維の最大フェレ径の範囲は9~17μmであり、更に好ましくは10~15μmである。
 本発明で用いる炭素繊維束を構成する炭素繊維の単繊維の最小フェレ径を最大フェレ径で除した値は、0.40~0.75が好ましい。単繊維の最小フェレ径を最大フェレ径で除した値が1に近いほど、単繊維同士はより最密充填構造をとり易く、炭素繊維熱可塑性樹脂プリプレグとする際に、炭素繊維の分散および熱可塑性樹脂の含浸が困難となる問題があるが、0.75以下であれば、炭素繊維の分散および熱可塑性樹脂の含浸が容易である。また単繊維の最小フェレ径を最大フェレ径で除した値が極端に小さい場合は、単繊維内での局部的な応力集中により、炭素繊維強化複合材料中の繊維の微小蛇行が顕著となり、炭素繊維強化複合材料の機械物性が低下するが、0.40以上であれば、炭素繊維複合材料の機械物性は良好である。より好ましい単繊維の最小フェレ径を最大フェレ径で除した値は0.50~0.70であり、更に好ましいくは0.55~0.65である。
なお、単繊維の最大フェレ径および最小フェレ径は、単繊維の繊維軸に垂直な断面を光学顕微鏡観察またはSEM観察にて画像解析することによって得られる。
 本発明で用いる炭素繊維束を構成する炭素繊維の単繊維は、繊維長手方向に垂直な断面を鏡面処理した後、SEMで観察した際、明暗縞模様が観察されないこと(つまり、明るさが均一である)か、もしくは図6Aの様に明るさが外側から内側に向かって徐々に暗くなっていることが好ましい。一般的に、公知の単繊維の最大フェレ径が7μm以上の炭素繊維は、炭素繊維の焼成過程に由来する断面方向に焼成斑が生じ易く、この焼成斑はSEM観察において図6Bの様に明るさが縞模様に観察される(即ち、焼成斑が生じた部分が暗い部分となり、焼成斑が生じていない部分が明るい部分として視認される)。本発明に用いる炭素繊維束は、炭素繊維強化複合材料とした際、炭素繊維束を構成する単繊維の繊維長手方向に垂直な断面を鏡面処理した後、SEMで観察した際、明るさが均一である、もしくは明るさが外側から内側に向かって徐々に暗くなっている炭素繊維からなることが好ましい。ここで「明るさが均一」とは、チャートで横軸に繊維の直径方向、縦軸に画像の明るさをとり、そのチャート上に谷がない状態であり、「明るさが外側から内側に向かって徐々に暗くなっている」とは、チャートで横軸に繊維の直径方向、縦軸に画像の明るさをとり、そのチャート上に谷が一つ以上存在する状態である。
 本発明に用いるPAN系炭素繊維のストランド強度は、複合材料とした際に高い機械特性(例えば、高い強度)が得られる観点から3500MPa以上が好ましい。
 また、本発明に用いるPAN系炭素繊維のストランド弾性率は、複合材料とした際に高い機械特性が得られる観点から200GPa以上が好ましい。
ストランド強度の好ましい上限値はなく、高ければ高いほど好ましい。ストランド弾性率は200GPa以上であれば用途によって使い分けられるものである。このPAN系炭素繊維のストランド強度およびストランド弾性率は、ASTM D4018に準拠してエポキシ樹脂含浸ストランドの引張物性を測定することで求めることができる。
 本発明で用いる炭素繊維束に含まれる炭素繊維の単繊維の数、即ち、フィラメント数は特に限定せず、1種を単独で使用してもよく、2種類以上を併用してもよいが、好ましいフィラメント数の範囲は3000本~60000本である。炭素繊維熱可塑性樹脂プリプレグとする際、フィラメント数の少ない繊維束を複数本引きそろえて、繊維目付を合わせると、製造工程に必要な櫛(コーム)のピッチが小さくなり、引き揃えるための手間が増えてしまう。しかし、フィラメント数が3000本以上の炭素繊維束を用いることで、容易に、品質が良好な炭素繊維熱可塑性樹脂プリプレグが得られる。一方、フィラメント数が60000本以下であれば、取り扱い性が良好で、また均一に開繊することができる。より好ましいフィラメント数の範囲は120000~40000本であり、更に好ましいフィラメント数の範囲は20000~30000本である。
 (PAN系炭素繊維の製造方法)
 本発明に用いるPAN系炭素繊維は、平均単繊維繊度を1.0~2.4dtexの範囲内とすることができるのであれば、公知の方法を用いて製造することができる。このPAN系炭素繊維は、例えば、以下の工程を含む製造方法により製造することができる。
(1)PAN系重合体を紡糸して得られるPAN系炭素繊維前駆体繊維を、酸化性雰囲気(例えば空気のような酸素が存在する雰囲気)中、例えば200~300℃で加熱処理(以下、「耐炎化処理」ともいう)することにより、耐炎化繊維を得る工程。
(2)前記耐炎化繊維を、不活性雰囲気(例えば、窒素やアルゴン)中、例えば1000~1500℃で加熱処理(以下、「炭素化処理」ともいう)することにより、PAN系炭素繊維を得る工程。
 また、この炭素繊維に対して、不活性雰囲気中、例えば2000~3000℃で加熱処理(以下、「黒鉛化処理」ともいう)を行い、引張弾性率の高い炭素繊維(黒鉛化繊維)とすることもできる。なお、本発明に用いるPAN系炭素繊維は、炭素化処理によって得られた繊維(以下、「炭素繊維」ともいう)であっても良いし、黒鉛化処理によって得られた繊維(以下、「黒鉛化繊維」ともいう)であっても良い。
 なお、本発明では、PAN系重合体を紡糸した際に繊維束の状態としてから耐炎化処理や炭素化処理等を行うことで、PAN系炭素繊維束を作製することができる。また、繊維束を構成する単繊維数は、これらの処理(各工程)を通して変化しない。
(PAN系重合体)
 PAN系炭素繊維の原料となるPAN系重合体(即ち、ポリアクリロニトリル系重合体)は、分子構造中にアクリロニトリルから誘導される構成(以下、「アクリロニトリル単位」という)を含有し、かつ、炭素繊維とした際に上述した平均単繊維繊度を満たすものであれば良く、炭素繊維の分野で公知のものを使用することができる。即ち、このPAN系重合体には、アクリロニトリル単位が含まれていれば、他のモノマー(例えば、アクリル酸やメタクリル酸やアクリルアミド)から誘導される構成単位を含んでいても良く、PAN系重合体中のアクリロニトリル単位の含有率は特に限定されない。また、PAN系重合体を得る際の重合方法も特に限定されず、例えば溶液重合や縣濁重合を用いることができる。
(PAN系炭素繊維前駆体繊維)
 本発明に用いるPAN系炭素繊維の前駆体となるPAN系炭素繊維前駆体繊維は、上記PAN系重合体を原料として、例えば以下の紡糸方法によって得ることができる。
 まず、上記PAN系重合体を溶剤に溶解させた紡糸原液を凝固浴中に吐出することによって凝固糸を作製し、この凝固糸を紡糸原液の吐出線速度の例えば0.3~0.4倍の速度で凝固浴中から引き取る。
 PAN系重合体を溶解させる溶剤は、この重合体を溶解させることができれば特に制限は無いが、例えば、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミドなどの有機溶剤や、塩化亜鉛、チオシアン酸ナトリウムなどの無機化合物の水溶液を用いることができる。また、紡糸原液中のPAN系重合体の濃度は、紡糸原液の全質量に対して、例えば、10~35質量%とすることができる。
 また、上記凝固浴は、例えば、紡糸原液に用いた溶剤(例えばジメチルアセトアミド)の濃度が、凝固浴の全質量に対して、50~70質量%、温度が30~50℃の溶剤水溶液を用いることができる。
 次に、上記で得られた凝固糸(以下、「膨潤糸条」ともいう)を洗浄及び延伸する。洗浄の方法としては、特に制限はないが、一般的に用いられている、水中(特に温水中)に浸漬させる方法がよい。延伸の方法としては、水中、または温水中に浸漬させながら延伸する方法、熱板、ローラー等のよる空気中での乾熱延伸法、また熱風が循環している箱型炉内での延伸でも良く、これらに限定されるものではない。なかでも経済的な観点から、延伸は温水中で行うことが好ましい。温水の温度は40℃以上80℃以下が好ましい。延伸の倍率は、1.1~7.0倍とすることが好ましい。ただし、トータルの延伸倍率は5~9倍であることが望ましいので、後に二次延伸を行う場合は(すなわち、延伸を2回に分けて行う場合には)、その延伸倍率を考慮して設定することが好ましい。ここで延伸の倍率とは、延伸前後の速度の比(延伸後の速度/延伸前の速度)を意味する。なお、上記洗浄と延伸の順番については、洗浄を先に行っても良く、また同時に行っても良い。さらに、洗浄及び延伸の後に、油剤付着処理や、乾燥処理等を行うこともできる。以上より、PAN系炭素繊維前駆体繊維を得ることができる。
 なお、このPAN系炭素繊維前駆体繊維は、高いストランド強度や高い炭素繊維複合材料(成形品)の機械的特性が得られる観点から、不純物、内部ボイド、クレーズやクラック等の表面欠陥を含まないことが好ましい。続いて、得られた前駆体繊維に対して、耐炎化処理及び炭素化処理を行うが、その具体的な処理条件(例えば、処理温度や処理時間)は、上記繊度を満たすPAN系炭素繊維が得られる範囲で適宜設定することができる。
 本発明に用いる炭素繊維束は、表面処理が行われていることが好ましい。表面処理は公知の手法で良いが、例えば、電解液中で電解酸化処理を施したり、気相または液相での酸化処理をほどこしたりすることによって、炭素繊維複合材料とした際の炭素繊維とマトリックス樹脂との親和性および接着を向上させることができる。表面処理の程度としては、電気化学的測定法(サイクリック・ボルタ・メトリー)により求められるiPa値が0.05~0.6μA/cmの範囲であることが好ましい。このiPa値は、炭素繊維の酸素含有官能基数量と電気二重層形成に関与する表面凹凸度と微細構造の影響を受け、特に表層のエッチングを大きく受けた炭素繊維やアニオンイオンが黒鉛結晶に層間に入り込んだ層間化合物を形成している場合、大きな値となる。優れた機械的性能を発現する複合材料において、炭素繊維と樹脂との界面は重要であり、特に適当な極性官能基が存在する表面であって、小さな電気二重層を形成するような表面を有する炭素繊維が最適な界面を形成することがわかっている。iPa値が0.05μA/cm以上であれば、極性官能基の導入数量が十分であり、優れた界面接着性を発現する。一方、0.5μA/cm以下であれば、過度な表面エッジングや層間化合物の形成が抑制できており、界面接着性が良好である。より好ましいiPa値の範囲は0.06~0.3μA/cmであり、更に好ましいiPa値の範囲は0.07~0.15μA/cmである。
 さらに、本発明に用いる炭素繊維束において、X線光電子分光法により求められる炭素繊維表面の酸素含有官能基量(O1S/C1S)が0.03~0.5の範囲であることが好ましい。より好ましい炭素繊維表面の酸素含有官能基量(O1S/C1S)の範囲は0.04~0.10である。また、本発明に用いる炭素繊維束(A)において、X線光電子分光法により求められる炭素繊維表面の窒素含有官能基量(N1S/C1S)が0.02~0.08の範囲であることが好ましい。より好ましい炭素繊維表面の窒素含有官能基量(N1S/C1S)の範囲は0.03~0.06である。
 また、本発明では、得られたPAN系炭素繊維に対して、サイジング剤を付着させて、サイジング剤含有PAN系炭素繊維を作製した後、このサイジング剤含有PAN系炭素繊維と上述した熱可塑性樹脂とから、本発明の炭素繊維熱可塑性樹脂プリプレグを作製しても良い。なお、このサイジング剤は、炭素繊維分野で公知のサイジング剤から適宜選択して用いることができるが、具体的には、エポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリオレフィン樹脂、酸変性ポリオレフィン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ウレタン変性エポキシ樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリエーテルサルフォン樹脂、ポリヒドロキシ化合物などが挙げられる。好ましいサイジング剤の種類の例としては、エポキシ樹脂、ポリオレフィン樹脂、酸変性ポリオレフィン樹脂、ポリヒドロキシ化合物である。さらに、用いる熱可塑性樹脂に対して濡れ性が良く接触角の小さいサイジング剤を用いることが好ましい。具体的にはマトリックス樹脂に応じて適切に選択することが好ましい。
 サイジング剤の付着量は、炭素繊維表面の改質及び化学修飾の観点から、PAN系炭素繊維の全質量に対して、0.3質量%以上、含浸性や取扱性の観点から5.0質量%以下が好ましく、収束性や毛羽の発生しにくさの観点から0.4質量%以上、高粘度樹脂の含浸性の観点から3.0質量%以下がより好ましい。また、炭素繊維束に所望する機能を充分に付与する点からは、0.1~20質量%であることが好ましい。サイジング剤の付着量を0.1質量%以上とすることで、炭素繊維束に所望する機能を充分に付与することができる。また、サイジング剤の付着量を20質量%以下とすることで、炭素繊維熱可塑性樹脂プリプレグを製造する際の炭素繊維束中へのマトリックス樹脂の含浸が容易となる。好ましいサイジング剤の付着量の範囲は0.2~2.0質量%であり、より好ましいサイジング剤の付着量の範囲は0.3~0.6質量%である。なお、このサイジング剤の付着量(質量%)は、サイジング剤が付着している(サイジング剤付着後の)PAN系炭素繊維の質量に対するサイジング剤質量の百分率で表記する。
 本発明で用いることができる炭素繊維束を構成する炭素繊維の単繊維は、繊維長手方向に2μm以上にわたり延在する複数本の表面凹凸構造を有し、単繊維の周長さ2000nm×繊維軸方向長さ2000nmの範囲で最高部と最低部の高低差(Rp-v)が30~200nmの範囲であることが好ましい。高低差(Rp-v)が30nm以上であれば、アンカー効果により、炭素繊維と熱可塑性樹脂との良好な界面接着強度が発現し、炭素繊維複合材料とした際の機械物性に優れる。一方、高低差(Rp-v)が極端に大きい場合、つまり、単繊維表面の表面平滑性が極端に低い場合は、炭素繊維複合材料とした際、靭性の低い炭素繊維と熱可塑性樹脂の界面凹凸部に応力が集中して破壊する問題があるが、高低差(Rp-v)が200nm以下であれば、界面凹凸部への応力集中を防ぐことができ、炭素繊維複合材料の機械物性に優れる。好ましい高低差(Rp-v)の範囲は45~150nmであり、更に好ましくは60~125nmである。
 本発明で用いることができる炭素繊維束を構成する炭素繊維の単繊維は、繊維長手方向に2μm以上にわたり延在する複数本の表面凹凸構造を有し、単繊維の周長さ2000nm×繊維軸方向長さ2000nmの範囲で、平均凹凸度Raが5~35nmであることが好ましい。平均凹凸度Raが5nm以上であれば、アンカー効果により、炭素繊維と熱可塑性樹脂との良好な界面接着強度が発現し、炭素繊維複合材料とした際の機械物性に優れる。一方、平均凹凸度Raが極端に大きい場合、つまり、単繊維表面の表面平滑性が極端に低い場合は、炭素繊維複合材料とした際、靭性の低い炭素繊維と熱可塑性樹脂の界面凹凸部に応力が集中して破壊する問題があるが、平均凹凸度Raが35nm以下であれば、界面凹凸部への応力集中を防ぐことができ、炭素繊維複合材料の機械物性に優れる。好ましい平均凹凸度Raの範囲は10~30nmであり、更に好ましくは15~25nmである。
 本発明で用いることができる炭素繊維束を構成する炭素繊維の単繊維は、繊維長手方向に2μm以上延びる複数本の表面凹凸構造を有し、単繊維の周長さ2μmあたりの凹凸の回数Rnが5~30回/2μmであることが好ましい。Rnが5回/2μm以上であれば、アンカー効果により、炭素繊維と熱可塑性樹脂との良好な界面接着強度が発現し、炭素繊維複合材料とした際の機械物性に優れる。一方、Rnが極端に多い場合、つまり、単繊維表面の表面平滑性が極端に低い場合は、炭素繊維複合材料とした際、靭性の低い炭素繊維と熱可塑性樹脂の界面凹凸部に応力が集中して破壊する問題があるが、Rnが30回/2μm以下であれば、界面凹凸部への応力集中を防ぐことができ、炭素繊維複合材料の機械物性に優れる。好ましいRnの範囲は7~25回/2μmであり、更に好ましくは10~20回/2μmである。なお、高低差(Rp-v)、RaおよびRnは走査型原子間力顕微鏡(AFM)を用いて単繊維の表面を走査して得ることができる。
 本発明に用いることができる炭素繊維束は、ストランド引張強度306kgf/mm2(3000MPa)以上であることが好ましい。ストランド強度が著しく低い場合、構造材など現在炭素繊維が使用されているほとんどの分野において、使用できないものとなってしまうが、ストランド引張強度306kgf/mm2(3000MPa)以上であれば構造材として適応可能である。好ましくは357kgf/mm2(3500MPa)以上であり、より好ましくは408kgf/mm2(4000MPa)以上である。一方、ストランド引張強度が極端に高い場合は、炭素繊維複合材料とした際、曲げ試験において圧縮側に応力が集中して、圧縮破壊が顕著に起こり曲げ強度が低下するといった問題があるが、ストランド引張強度551kgf/mm2(5400MPa)以下であれば、引張強度と圧縮強度のバランスが適度であり、炭素繊維複合材料とした際の曲げ強度に優れる。好ましくは509.9kgf/mm2(5000MPa)以下であり、より好ましくは479.3kgf/mm2(4700MPa)以下である。
 本発明に用いることができる炭素繊維束は、ストランド引張弾性率は20.4tonf/mm2(200GPa)以上であることが好ましい。引張弾性率が著しく低い場合、構造材など現在炭素繊維が使用されているほとんどの分野において、使用できないものとなってしまうが、ストランド引張弾性率が20.4tonf/mm2(200GPa)以上であれば構造材として適応可能である。好ましくは21.4tonf/mm2(210GPa)以上であり、より好ましくは22.4tonf/mm2(220GPa)以上である。なお、ストランド強度およびストランド弾性率はJIS R7601(1986)に従って測定することができる。
 <炭素繊維熱可塑性樹脂プリプレグの製造方法>
 本発明の第二の態様における炭素繊維熱可塑性樹脂プリプレグを製造する方法としては、結果的に、上記PAN系炭素繊維束に上記熱可塑性樹脂を含浸させた構造を有する炭素繊維プリプレグを得ることができる方法であれば特に限定されず、公知の方法を適宜用いることができる。具体的には、例えば以下の方法を用いることができる。
a)加熱して溶融させた熱可塑性樹脂(溶融樹脂)を押出機によって本発明に用いるPAN系炭素繊維束に含浸させる方法。
b)粉末の熱可塑性樹脂を、PAN系炭素繊維の多数の単繊維からなるシートの内部と外部にともに分散させた後、粉末の熱可塑性樹脂を溶融させる方法。
c)熱可塑性樹脂をフィルム化してPAN系炭素繊維の多数の単繊維からなるシートと重ねて加熱圧着する方法。
d)熱可塑性樹脂を溶剤に溶かして溶液の状態でPAN系炭素繊維束に含浸させた後、その溶剤を揮発させる方法。
e)熱可塑性樹脂を繊維化して、繊維化した熱可塑性樹脂とPAN系炭素繊維との混合糸を形成した後、加熱して熱可塑性樹脂の繊維を溶融させる方法。
f)熱可塑性樹脂を形成するためのモノマーを、PAN系炭素繊維束に含浸した後に、そのモノマーを重合させてポリマー(熱可塑性樹脂)を形成する方法。
 なお、上記方法aは、熱可塑性樹脂を加工する必要が無いという利点があるが、安定したプリプレグを製造するのが難しい場合がある。また、上記方法bは、熱可塑性樹脂が含浸し易いという利点はあるが、粉末を均一にシートに分散させるのが困難な場合がある。上記方法cは熱可塑性樹脂をフィルム加工する必要があるが、上述したように機械的特性に優れた熱可塑性樹脂はフィルム化が比較的容易であり、比較的品質の良いプリプレグが作り易い。また、上記方法dは溶剤がプリプレグの熱可塑性樹脂の中に残存する可能性が高く、また取り扱いが危険な溶剤を用いる必要がある場合がある。上記方法eは熱可塑性樹脂を繊維化する工程及びPAN系炭素繊維との混合糸にする工程が必要であり、工程数が増加してしまう。そして、上記方法fは熱可塑性樹脂を形成するためのモノマーをPAN系炭素繊維束に含浸させた後にポリマー化を行う環境にするのが困難であるものが多く、安価ではない。
 上述のように、本発明の炭素繊維熱可塑性樹脂プリプレグは、フィルム化した熱可塑性樹脂をPAN系炭素繊維の多数の単繊維からなるシートにラミネートする方法cを用いて製造することが特に好ましい。
 フィルム化した熱可塑性樹脂をPAN系炭素繊維の多数の単繊維からなるシートにラミネートする方法cとしては、具体的には、樹脂を公知の方法で加熱溶融させ、それを一方向に並べた炭素繊維シートの両面または片面に加熱しながら張り合わせる方法である。フィルムの厚さは炭素繊維シートの目付け(g/m)や炭素繊維含有率により決定されるものであるが、10~100μmが好ましい。製造条件はフィルム化した樹脂の融点または軟化点以上まで加熱した加熱ゾーンで圧力を掛けて樹脂を含浸し、樹脂の融点または軟化点以下で固化することによりプリプレグを製造することが出来る。加圧する方法はロール状体または平面体で加圧するのが一般的である。加熱及び冷却時の圧力としては100~2000kPaが好ましい。
 なお、上記方法b、c及びeのように、熱可塑性樹脂を加熱により溶融させ、PAN系炭素繊維束に含浸させる方法には、加熱プレスと冷却プレスとを組合せて用いることができ、PAN系炭素繊維束に熱可塑性樹脂を溶融させて含浸させた後、プリプレグを固化させることもできる。また、間欠プレスやダブルベルトプレスを使用することもでき、加熱ゾーンや冷却ゾーンを設けて、PAN系炭素繊維束に熱可塑性樹脂を溶融させて含浸させた後、プリプレグを固化させることもできる。加熱プレスと冷却プレスとを組み合わせる方法は、樹脂を含浸する時間を長くすることが容易で良好な含浸状態を得やすい。ダブルベルトプレスを使用する方法は連続的に生産できるため生産性に優れている。
 <炭素繊維熱可塑性樹脂プリプレグ片>
 本発明の第四の態様の炭素繊維熱可塑性樹脂プリプレグは、本発明の第五の態様の炭素繊維熱可塑性樹脂プリプレグ片として用いることができる。炭素繊維熱可塑性樹脂プリプレグ片は炭素繊維熱可塑性樹脂プリプレグを裁断して得られる。本発明における炭素繊維熱可塑性樹脂プリプレグは公知の手法で裁断することができる。例として、カッティングプロッターを使用する手法や、スリッターとロータリーカッターを併用する手法が上げられる。
 炭素繊維熱可塑性樹脂プリプレグ片の幅や長さは特に限定しないが、幅が1~50mmのものが好ましく、長さが6~50mmのものが好ましく、厚さが0.1~0.5mmのものが好ましい。
<炭素繊維強化複合材料>
 本発明の第三の態様、及び第六の態様の炭素繊維強化複合材料は、前記炭素繊維熱可塑性樹脂プリプレグおよび/または炭素繊維熱可塑性樹脂プリプレグ片を加熱後して加圧冷却することによって得られる。加熱処理における加熱温度としては150~320℃が好ましい。加熱時間としては1~10分が好ましい。加圧冷却における温度としては15~130℃が好ましく、圧力としては100~2000kPaがこのましい。
 本発明の炭素繊維複合材料は、上述した本発明の炭素繊維プリプレグおよび/または炭素繊維熱可塑性樹脂プリプレグ片を使用するものである。この炭素繊維複合材料の形態は、その用途(例えば、航空宇宙、スポーツ、レジャー用途等)に応じて適宜設定することができる。炭素繊維複合材料としては、具体的には、炭素繊維プリプレグを積層させてバキングした後、オートクレーブ成形やIRヒーターで材料を加熱した後に冷却プレスを行うスタンピング成形により得られるコンポジットパネル等を挙げることができる。
 また、本発明の炭素繊維複合材料には、本発明の炭素繊維熱可塑性樹脂プリプレグを繊維軸方向に平行に所定の幅でスリットしたテープ状物の織物や組物等も用いることができる。さらに、本発明の炭素繊維複合材料には、本発明の炭素繊維熱可塑性樹脂プリプレグを所定の大きさに裁断した小片をランダムに配置したランダムシート及びそのプレス成形品等も用いることができる。
 本発明の炭素繊維熱可塑性樹脂プリプレグを用いて作製した炭素繊維複合材料中のPAN系炭素繊維の体積含有率(Vf)は、炭素繊維複合材料の全体積に対し、30体積%以上60%体積以下が好ましい。PAN系炭素繊維の含有率が30体積%以上であれば、高い機械的特性を有する複合材料とすることができ、60体積%以下であれば、空隙の少ない複合材料とすることができる。
 また、同様の理由から、本発明の炭素繊維熱可塑性樹脂プリプレグを用いて作製した炭素繊維複合材料中のマトリックス樹脂(熱可塑性樹脂)の体積含有率は、炭素繊維複合材料の全体積に対し、40体積%以上70体積%以下が好ましい。
 なお、この炭素繊維複合材中のPAN系炭素繊維及び熱可塑性樹脂の体積含有率は、SACMA SRM 10R-94に準拠する方法により特定することができる。
 なお、炭素繊維複合材料中のPAN系炭素繊維の体積含有率(Vf)における変動係数は小さければ小さい程好ましい。変動係数が小さければ、炭素繊維複合材料に応力がかかった際に均等に応力が分散するため、高い機械特性が得られる。
 本発明の炭素繊維熱可塑性樹脂プリプレグを用いて作製した炭素繊維複合材料は用いるPAN系炭素繊維及び熱可塑性樹脂の特性から、従来の成形品と比較して、高い0°曲げ強度を有することができる。
 本発明の炭素繊維強化複合材料は、炭素繊維強化複合材料の(厚さ)×(1mm幅)で表される厚さ方向に平行な断面積をSa(単位:mm)とし、その断面の画像から得られる熱可塑性樹脂体積含有率をVr(単位:体積%)とし、その断面(平面)上に引くことができる炭素繊維強化複合材料の厚さ方向に平行で15μm以上にわたって炭素繊維の断面を通過しない無数の線分によって占められる領域(樹脂領域)の総面積(つまり炭素繊維強化複合材料の厚さ方向に平行で15μm以上にわたって炭素繊維の断面を通過しない無数の線分を積分した値)をSt(単位:mm)とした場合の下記式(6)の値が0.40以下であることが好ましい。
   St/(Sa×Vr)・・・(6)
 本発明の炭素繊維強化複合材料は、上記炭素繊維強化複合材料の(厚さ)×(1mm幅)で表される厚さ方向に平行な断面積において、上記樹脂領域の厚さをTt(単位:mm)とし、また炭素繊維強化複合材料の厚さ方向に平行な1本の直線上に隣接して存在する互いに独立した樹脂領域間の樹脂領域以外の領域(以下、「繊維強化領域」ともいう)の厚さをTf(単位:mm)とした場合の、Ttの最大値max(Tt)およびTfの平均値ave(Tf)の比、すなわち下記式(7)の値が1.0以下であることが好ましい。
 なお、ここで言う樹脂領域の厚さおよび樹脂領域以外の領域の厚さとは、いずれも炭素繊維強化複合材料の厚さに平行な方向の厚さを言う。
   max(Tt)/ave(Tf)・・・(7)
 式(6)の値および式(7)の値が大きい場合、つまり炭素繊維複合材料中の炭素繊維の分散が悪いと、炭素繊維複合材料の強度が低下する問題があるが、式(6)の値が0.40以下かつ式(7)の値が1.0以下であれば、炭素繊維複合材料中で適度に応力を分散させることができ、炭素繊維複合材料の機械物性に優れる。より好ましい式(6)値は0.25以下であり、さらに好ましくは0.20以下である。より好ましい式(7)値は0.8以下であり、さらに好ましくは0.6以下である。
 なお、上記の炭素繊維強化複合材料の(厚さ)×(1mm幅)で表される厚さ方向に平行な断面積Sa(単位:mm)、樹脂領域の総面積St、樹脂領域の厚さTtおよび、繊維強化領域の厚さTfは、炭素繊維複合材料の厚さ方向に平行な断面を鏡面研磨した後、光学顕微鏡観察もしくはSEM観察して得た画像の画像解析により求めることができる。
 炭素繊維強化複合材料の断面において観察される上記の樹脂領域の厚さTtは、その定義により常に15μm以上である。1つの樹脂領域が炭素繊維強化複合材料の厚さ方向に平行な1本の直線上に存在する互いに重ならない15μm以上の線分を2本以上有する位置におけるTtは、その1本の直線上に存在する互いに重ならない15μm以上の線分の全ての線分の長さの合計と定義する。
 炭素繊維強化複合材料の断面において観察される上記の繊維強化領域の厚さTfは、上記の定義のみによれば炭素繊維複合材料の厚さを上限とするのみであるが、炭素繊維複合材料の製造に用いたプリプレグの厚さが既知の場合は該プリプレグの厚さを上限とする。1つの繊維強化領域が炭素繊維強化複合材料の厚さ方向に平行な1本の直線上に存在する互いに重ならない2本以上の線分を有する場合においても、Tfはそれぞれの線分の長さでかつ上述の上限以下の値を採用し、ave(Tf)を算出するために用いる厚さ方向に垂直な方向の繊維強化領域の長さは、その線分の数だけ重複して積分して得るものとする。つまりave(Tf)は、“Tfの積分値”を、“Tfの数だけ重複して積分して得られた厚さ方向に垂直な方向の繊維強化領域の長さの総和”で除した値である。
 <自動車用部品>
 本発明の第六の態様における炭素繊維複合材料が好ましく用いられる本発明の第七の態様における自動車用部品は、本発明の炭素繊維強化複合材料で一部または全部が構成されるものである。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 以下の実施例および比較例においては、原材料として下記のものを用いた。
 (PAN系炭素繊維:CF)
・PAN系炭素繊維1(CF1)(平均単繊維繊度:1.2dtex、ストランド強度:4218MPa、ストランド弾性率:236GPa)
・PAN系炭素繊維2(CF2)(平均単繊維繊度:2.4dtex、ストランド強度:3477MPa、ストランド弾性率:230Pa)
・PAN系炭素繊維3(CF3)(三菱レイヨン社製、商品名:TR50S、平均単繊維繊度:0.67dtex、ストランド強度:4900MPa、ストランド弾性率:240GPa)
・PAN系炭素繊維4(CF4)(平均単繊維繊度:1.4dtex、真円度:0.82、フィラメント数:24000本、ストランド強度:435.9kgf/mm(4274MPa)、ストランド弾性率:23.5tonf/mm(230GPa)、最大フェレ径:12.8μm、サイズ剤種:エポキシ樹脂、サイズ剤付着量:0.4質量%)
・PAN系炭素繊維5(CF5)(平均単繊維繊度:1.4dtex、真円度:0.82、フィラメント数:28000本、ストランド強度:414kgf/mm(4059MPa)、ストランド弾性率:24.5tonf/mm(240GPa)、最大フェレ径:12.8μm、サイズ剤種:エポキシ樹脂、サイズ剤付着量:1.2質量%)
・PAN系炭素繊維6(CF6)(平均単繊維繊度:2.4dtex、真円度:0.83、フィラメント数:12000本、ストランド強度:367kgf/mm(3598MPa)、ストランド弾性率:23.7tonf/mm(232GPa)、最大フェレ径:16.4μm、サイズ剤種:エポキシ樹脂、サイズ剤付着量:1.2質量%)
・PAN系炭素繊維7(CF7)(平均単繊維繊度:1.2dtex、真円度:0.75、フィラメント数:24000本、ストランド強度:431kgf/mm(4225MPa)、ストランド弾性率:23.4tonf/mm(229GPa)、最大フェレ径:11.9μm、サイズ剤種:エポキシ樹脂、サイズ剤付着量:1.2質量%)
・PAN系炭素繊維8(CF8)平均単繊維繊度:2.0dtex、真円度:0.83、フィラメント数:12000本、ストランド強度:356kgf/mm(3490MPa)、ストランド弾性率:25.1tonf/mm(246GPa)、最大フェレ径:15.6μm、サイズ剤種:エポキシ樹脂、サイズ剤付着量:1.2質量%)
・PAN系炭素繊維9(CF9)(三菱レイヨン(株)社製 製品名:パイロフィル(登録商標)TR50S 15L AD、平均単繊維繊度:0.7dtex、真円度:0.95、フィラメント数:15000本、ストランド強度:500kgf/mm(4900MPa)、ストランド弾性率:24.5tonf/mm(240GPa)、最大フェレ径:7.5μm、サイズ剤種:エポキシ樹脂、サイズ剤付着量:0.4質量%)
・PAN系炭素繊維10(CF10)(三菱レイヨン(株)社製 製品名:パイロフィル(登録商標)TR50S 12L AL、平均単繊維繊度:0.7dtex、真円度:0.95、フィラメント数:12000本、ストランド強度:500kgf/mm(4900MPa)、ストランド弾性率:24.5tonf/mm(240GPa)、最大フェレ径:7.5μm、サイズ剤種:エポキシ樹脂、サイズ剤付着量:1.2質量%)
・PAN系炭素繊維11(CF11)(東レ(株)社製 製品名:トレカ(登録商標)T700SC-12000 50C)
 (PAN系炭素繊維4の製造方法)
 ポリアクリロニトリルを主成分し、メタクリル酸2-ヒドロキシエチルを2モル%含有する共重合体をジメチルアセトアミドに溶解して、湿式紡糸法にて紡糸して、平均単繊維繊度2.5dtex、総単糸数24,000本の炭素繊維前駆体を得た後、250~290℃の熱風循環式耐炎化炉にて60分間空気酸化することで耐炎化処理を行い、窒素雰囲気下において660℃で90秒間および1350℃で90秒間高温熱処理炉にて炭素化処理を行い、電解液中で表面酸化処理を行った後、エポキシ樹脂をサイジング剤として付着量が0.4質量%となる様にサイジング処理して、PAN系炭素繊維4を得た。
 (PAN系炭素繊維5の製造方法)
 炭素繊維前駆体の総単糸数を28,000本とし、サイジング剤付着量を1.2質量%とした以外はPAN系炭素繊維4の製造方法と同様にして、PAN系炭素繊維5を得た。
(PAN系炭素繊維6の製造方法)
 炭素繊維前駆体の平均単繊維繊度4.5dtex、総単糸数を12,000本とした以外はPAN系炭素繊維5の製造方法と同様にして、PAN系炭素繊維6を得た。
(PAN系炭素繊維7の製造方法)
 ポリアクリロニトリルを主成分し、メタクリル酸2-ヒドロキシエチルを2モル%含有する共重合体をジメチルアセトアミドに溶解して、湿式紡糸法にて紡糸して、平均単繊維繊度2.5dtex、総単糸数24,000本の炭素繊維前駆体を得た後、250~290℃の熱風循環式耐炎化炉にて70分間空気酸化することで耐炎化処理を行い、窒素雰囲気下において660℃で90秒間および1350℃で90秒間高温熱処理炉にて炭素化処理を行い、電解液中で表面酸化処理を行った後、エポキシ樹脂をサイジング剤として付着量が1.2質量%となる様にサイジング処理して、PAN系炭素繊維7を得た。
(PAN系炭素繊維8の製造方法)
 炭素繊維前駆体の平均単繊維繊度4.5dtex、総単糸数を12,000本とした以外はPAN系炭素繊7の製造方法と同様にして、PAN系炭素繊維8を得た。
 (熱可塑性樹脂組成物)
・PMMA樹脂1(三菱レイヨン社製、商品名:TF8、曲げ弾性率3300MPa、曲げ強度120MPa)
・PMMA樹脂2(三菱レイヨン社製、商品名:TF9、曲げ弾性率3300MPa、曲げ強度95MPa)
・AS樹脂1(UMG ABS社製、商品名:AP-H、曲げ弾性率3520MPa、曲げ強度108MPa)
・AS樹脂2(UMG ABS社製、商品名:AP-F、曲げ弾性率3460MPa、曲げ強度69MPa)
・PA12樹脂(アルケマ社製、商品名:AMN-O-TLD、曲げ弾性率1100MPa、曲げ強度47MPa)
 熱可塑性樹脂組成物
 変性ポリプロピレン(三菱化学(株)社製 製品名:モディック(登録商標)P958)
 ポリアミド6(宇部興産(株)社製 製品名:UBEナイロン 1013B)
ポリアミド610(ダイセルエボニック(株)社製 製品名:ベスタミドRテラHS16)
ポリカーボネート(三菱エンジニアリングプラスチック(株)社製 製品名:レバレックスM7020)
 <炭素繊維束の平均単繊維繊度の測定>
 平均単繊維繊度とは、繊維1本の単位長当りの重さである。炭素繊維束の任意の箇所から長さ1mの繊維束を2本とり、各々の質量を測定し、これらの各値をフィラメント数で除した後、10000倍し、2本の繊維束の平均値を算出し、これを平均単繊維繊度とした。評価結果を表3に示す。
<炭素繊維束の単繊維真円度およびフェレ径の測定および断面の明暗縞模様の有無の確認>
(サンプルの作製)
 長さ5cmに切断した炭素繊維束をエポキシ樹脂(エポマウント主剤:エポマウント硬化剤=100:9(質量比))に包埋し、2cmに切断して横断面を露出させ、鏡面処理をした。
(観察面のエッチング処理)
 更に、繊維の外形を明瞭にするため、サンプルの横断面を下記の条件でエッチング処理した。
装置:日本電子(株)社製 プラズマエッチング装置(製品名:JP-170)
雰囲気ガス:Ar/O=75/25
プラズマ出力:50W
真空度:約120Pa
処理時間:5min
(SEM観察)
エッチング処理したサンプルの横断面をSEM(PHILIPS社製 製品名:FEI-WL20)で観察し、画面上に5個以上の繊維断面が写っている写真を任意に5枚撮影した。
(真円度測定)
 各サンプルについて5枚のSEM写真から任意に20個、ただし、1枚の写真から3個以上の単繊維断面を選んで、画像解析ソフトウェア(日本ローパー(株)社製 製品名:Image-Pro PLUS)を用いて繊維断面の外形をトレースし、各々の周長Lおよび面積Sを計測し、(4πS/L)の式により得られた値の平均値を真円度とした。評価結果を表3に示す。
(フェレ径測定)
 各サンプルについて5枚のSEM写真から任意に20個、ただし、1枚の写真から3個以上の単繊維断面を選んで、画像解析ソフトウェア(日本ローパー(株)社製 製品名:Image-Pro PLUS)を用いて繊維断面の外形をトレースし、単繊維断面の最大フェレ径および最小フェレ径を計測した。評価結果を表3に示す。
(断面の明暗縞模様の有無の確認)
 各サンプルについて、撮影した写真を確認し、明暗縞模様の有無を記録した。評価結果を表3に示す。
<炭素繊維束のiPaの測定>
 iPa値は次の方法により測定した。用いる電解液は5%りん酸水溶液でpH3とし、窒素をバブリングさせ溶存酸素の影響を除く。試料である炭素繊維を一方の電極として電解液に浸漬し、対極として充分な表面積を有する白金電極を参照電極としてAg/AgCl電極を用いる。試料形態は長さ50mmの12000フイラメントトウとした。炭素繊維電極と白金電極の間にかける電位の走査範囲は-0.2Vから+0.8Vとし、走査速度は2.0mV/secとした。X-Yレコーダーにより電流-電圧曲線を描き、3回以上掃引させ曲線が安定した段階で、Ag/AgCl標準電極に対して+0.4Vでの電位を基準電位として電流値iを読み取り、次式に従ってiPaを算出した。評価結果を表3に示す。
iPa =1(μA)/試料長(cm)×(4π×目付(g/cm)×フィラメント数/密度(g/cm))1/2
 試料長とJIS R7601に記載されている方法によって求められた試料密度と目付から見掛けの表面積を算出し、電流値iを除してipaとした。本測定はサイクリック・ボルタ・メトリー・アナライザー(柳本製作所製、製品名:P-1100型)を用いて行った。
 <X線光電子分光法による酸素含有官能基量(O1S/ClS)および窒素含有官能基量(N1S/ClS)の測定)
 X線光電子分光機:(VG社製、製品名:ESCALAB、220iXL)
 測定方法:炭素繊維をサンプル台にのせて固定し、常法により測定を行った。
 酸素濃度は524eV~538eV、窒素濃度は397eV~402eV、炭素濃度は280eV~293eVまでの範囲を積分し、O1SピークのC1Sピーク面積に対する割合を酸素含有官能基量(O1S/ClS)、N1SピークのC1Sピーク面積に対する割合を窒素含有官能基量(N1S/ClS)として評価した。なおOの感度補正係数2.93および装置固有の感度補正係数により補正した。評価結果を表3に示す。
<炭素繊維束を構成する単繊維表面のRp-v、Ra、Rnの測定>
 炭素繊維束の単繊維1本に対し、以下条件で測定を行い、1画像得る。
(走査型プローブ顕微鏡測定条件)
装置:オリンパス株式会社製 ナノサーチ顕微鏡LEXT OLS-3500
モード:コンタクトモード
探針:カンチレバー OMCL-AC240TS-C2
走査範囲:2μm×2μm
走査角度:繊維軸方向に対して垂直方向にスキャン
走査速度:1.0Hz
ピクセル数:268×268
測定環境:室温、大気中
得られた画像を走査型プローブ顕微鏡付属の画像解析ソフトを用い、以下の条件にて画像解析を行った。
(画像解析条件)
 得られた形状像を「傾き補正:曲面フィット」を行い、曲面を平面にフィッティング補正した画像を得た。これを図7に示す。図7中、縦軸は高さ方向を表し、横軸はスキャン方向(繊維軸に対して垂直方向)を表す。平面補正した画像の表面粗さ解析より平均面粗さ(Ra)と面内の最大高低差(P-V)と2μmあたりの凹凸の山の数(Rn)を求めた。ここで、表面粗さ解析より平均面粗さ(Ra)と面内の最大高低差(P-V)と2μmあたりの凹凸の山の数(Rn)は、円周長さ2μm×繊維軸方向長さ2μmの走査範囲のデータを用いた。Raは下記式で算出されるものである。
   Ra={1/(Lx×Ly)}∫Ly0∫LX0|f(x,y)|dxdy
中央面: 実表面との高さの偏差が最小となる平面に平行で、 かつ実表面を等しい体積で2分割する平面
f(x,y): 実表面と中央面との高低差
Lx、Ly: XY平面の大きさ
なおRn算出において、図7に記載の通り、2nm以上の高低が生じたものを1つの山としてみなして数えた。
 測定は1サンプルについて単糸5本を走査型プローブ顕微鏡で形状測定し、各測定画像について、平均面粗さ(Ra)、最大高低差(P-V)と2μmあたりの凹凸の山の数(Rn)を求め、その平均値をサンプルの平均面粗さ(Ra)、最大高低差(Rp-v)と2μmあたりの凹凸の山の数(Rn)とした。単繊維の表面に繊維の長手方向に2μm以上延びる表面凹凸構造の有無については、AFMモードにて単繊維の円周方向に2μmの範囲を繊維軸方向長さ2μmに渡り、少しずつ、ずらしながら繰り返し走査し、得られた測定画像から有無を判断した。評価結果を表3に示す。
<炭素繊維束のストランド強度およびストランド弾性率の測定>
 JIS R7601に準拠して、炭素繊維束のストランド物性(ストランド強度およびストランド弾性率)を測定した。評価結果を表3に示す。
<樹脂線膨張係数βの測定>
 熱機械測定装置(TMA)(TAインスツルメント社製、製品名:Q400)を用いて、JIS K7197に準拠して樹脂線膨張係数βを測定した。評価結果を表4に示す。
<樹脂融点の測定>
 DSC(TAインスツルメント社製、製品名:Q1000)を用いて、窒素流量50ml/min、昇温速度10℃/minの測定条件で、吸発熱量を測定し、融解吸熱ピークを記録し、これを融点とした。評価結果を表4に示す。
<樹脂粘度の測定>
 レオメータ(TAインスツルメント社製、製品名:AR-G2)を用いて、周波数0.01~10rad/sec、ストレス300Paで、測定温度2℃ずつずらして測定し、ゼロせん断粘度が2×10Pa・sとなる温度Txを記録した。評価結果を表4に示す。
(実施例1)
 上記PAN系炭素繊維1(CF1)と、上記PMMA樹脂1を用いて炭素繊維プリプレグ及び炭素繊維複合材料を作製した。以下、具体的に説明する。
(樹脂フィルムの作製)
 まず、加熱冷却二段プレス(神藤金属工業所社製、商品名:F-37)を用いて、PMMA樹脂1からなる樹脂ペレット約2.5gを230~240℃の加熱盤で挟み込み、加圧して薄く引き延ばした。その後、冷却盤で冷却することにより厚み約69μmのPMMA樹脂1からなる樹脂フィルムを作製した。なお、作製した樹脂フィルムの厚みは、後述する炭素繊維シートに作製した樹脂フィルムを両面から貼り合わせて、この樹脂フィルムを完全に炭素繊維に含浸させたプリプレグで炭素繊維複合材料作製した場合に、この炭素繊維複合材料中の炭素繊維の含有率が50体積%となるように樹脂フィルムの厚みを設定した。
 (炭素繊維シート及び炭素繊維熱可塑性樹脂プリプレグの作製)
 PAN系炭素繊維1をドラムワインドにて巻き付け、炭素繊維の目付(FAW:単位面積当たりの質量)が248g/mの一方向の炭素繊維シートを作製した。なお、PAN系炭素繊維1は、繊維束(トウ)の状態で取り扱い、各繊維束を構成するPAN系炭素繊維1の本数は、24000本であった。
作製した炭素繊維シートに適度に張力を掛け、炭素繊維シートに両面から、前記樹脂フィルム、フッ素樹脂製フィルム(日東電工社製、商品名:ニトフロンフィルム970-4UL)、及びアルミ製の平板の順に挟み、前記加熱冷却二段プレスの加熱盤で230~240℃、5分、20kPa、さらに、冷却盤で5分、20kPaの条件で、炭素繊維が単一方向(UD)に配向している半含浸プリプレグを作製した。ここで、このプリプレグの目付(TAW)は、432g/mであった。
 一方向炭素繊維複合材料板(7ply)の成形
 得られた一方向プリプレグを、長さ(0°方向(炭素繊維の繊維軸方向に対して平行な方向)の長さ)150mm×幅(90°方向(炭素繊維の繊維軸方向に直交する方向)の長さ)150mmにパターンカットした。次いで、パターンカットした一方向プリプレグを、0°方向に揃えて7枚積層(7ply)し、バギングした後、0.7MPaの窒素圧下、図1に示す昇降温度条件でオートクレーブ成形を行い、厚み約2mmの一方向炭素繊維複合材料板を得た。
 (0°曲げ試験)
 上記で得られた一方向炭素繊維複合材料板を湿式ダイヤモンドカッターにより長さ(0°方向の長さ)120mm×幅(90°方向の長さ)12.7mmの寸法に切断して試験片を作製した。万能試験機(Instron社製、商品名:Instron5565)と、解析ソフト(商品名:Bluehill)とを用いて、ASTM D790に準拠(圧子R=5.0、L/D=40)した方法で得られた試験片に対して3点曲げ試験を行い、0°曲げ強度を算出した。結果を表1、2に示す。
(90°曲げ試験)
 上記で得られた一方向炭素繊維複合材料板を湿式ダイヤモンドカッターにより長さ(90°方向の長さ)60mm×幅(0°方向の長さ)12.7mmの寸法に切断して試験片を作製した。万能試験機(Instron社製、商品名:Instron5565)と、解析ソフト(商品名:Bluehill)とを用いて、ASTM D790に準拠(圧子R=5.0、L/D=16)した方法で得られた試験片に対して3点曲げ試験を行い、90°曲げ強度を算出した。結果を表1、2に示す。
 (繊維分散度の測定)
 図4に示すように、上記で得られた一方向炭素繊維複合材料板1中の炭素繊維の繊維軸方向に対して垂直な切断面(観察面)1aを観察するために、一方向炭素繊維複合材料成形板1の周りをポリエステル樹脂2(クルツァー社製、商品名:テクノビット4000)で包埋し、研磨して測定試料を作製した。その後に、この測定試料から、デジタルマイクロスコープ(キーエンス社製、商品名:VHX-100)を用いて、炭素繊維の繊維軸方向に対して垂直な切断面1aを撮影した。そして、画像解析ソフト(キーエンス社製、商品名:VHアナライザー)を用いて、撮影した切断面1aの画像から一方向炭素繊維複合材料成形板中のPAN系炭素繊維の体積含有率(Vf)及び、このVfの変動係数を解析した。
 具体的には、まず、図5に示すように、撮影した切断面1aの画像から任意の場所(画像解析領域3)を選択した。そして、この画像解析領域3を200μm角に30分割(一方向炭素繊維複合材料板の厚み方向に10点、幅方向に3点)した。なお、この200μmは、図4の画像解析領域3における1区画の1辺の長さdに対応する。そして、この30区画について、1区画毎に、その1区画の面積中に含まれるPAN系炭素繊維部分の領域の面積の割合を、PAN系炭素繊維の体積含有率として算出し、この30区画におけるPAN系炭素繊維の体積含有率(Vf)の変動係数(%)([標準偏差/平均値]×100)を算出した。なお、この変動係数が小さければ小さい程、一方向炭素繊維複合材料板中の炭素繊維の分散状態(分散度)が良いと言える。
(実施例2)
 PAN系炭素繊維として、平均単繊維繊度が2.4dtexのPAN系炭素繊維2(CF2)を用いて、繊維束を構成する単繊維数を12000本に変更した以外は、実施例1と同様にして炭素繊維プリプレグ及び一方向炭素繊維複合材料板を作製した。
(比較例1)
 PAN系炭素繊維として、平均単繊維繊度が0.67dtexのPAN系炭素繊維3(CF3)を用いて、繊維束を構成する単繊維数を15000本に変更した以外は、実施例1と同様にして炭素繊維プリプレグ及び一方向炭素繊維複合材料板を作製した。
(実施例3~4、比較例2)
 マトリックス樹脂をPMMA樹脂2に変更した以外は、それぞれ実施例1~2及び比較例1と同様にして炭素繊維プリプレグ及び一方向炭素繊維複合材料板を作製した。
(実施例5~6、比較例3)
 マトリックス樹脂をAS樹脂1に変更し、一方向炭素繊維複合材料板を作製する際の昇降温度条件を図2に示す昇降温度条件に変更した以外は、それぞれ実施例1~2及び比較例1と同様にして炭素繊維プリプレグ及び一方向炭素繊維複合材料板を作製した。
(比較例4~6)
 マトリックス樹脂をAS樹脂2に変更し、一方向炭素繊維複合材料板を作製する際の昇降温度条件を図2に示す昇降温度条件に変更した以外は、それぞれ実施例1~2及び比較例1と同様にして炭素繊維プリプレグ及び一方向炭素繊維複合材料板を作製した。
(実施例7、比較例7)
 マトリックス樹脂をPA12に変更し、一方向炭素繊維複合材料板を作製する際の昇降温度条件を図3に示す昇降温度条件に変更した以外は、それぞれ実施例1及び比較例1と同様にして炭素繊維プリプレグ及び一方向炭素繊維複合材料板を作製した。
 各例のPAN系炭素繊維、熱可塑性樹脂、炭素繊維シート、炭素繊維熱可塑性樹脂プリプレグ及び一方向炭素繊維複合材料板の物性を表1、2に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 実施例1及び2はいずれも、単繊維の繊度が本発明の要件を満たさない比較例1と比べて、画像解析によって測定したVfの変動係数が小さいことから炭素繊維の分散状態(分散度)が良く、また、0°曲げ強度及び90°曲げ強度も高いことから機械物性も良好であった。
 実施例3及び4はいずれも、単繊維の繊度が本発明の要件を満たさない比較例2と比べて、画像解析によって測定したVfの変動係数が小さいことから炭素繊維の分散状態(分散度)が良く、また、0°曲げ強度及び90°曲げ強度も高いことから機械物性も良好であった。
 実施例5及び6はいずれも、単繊維の繊度が本発明の要件を満たさない比較例3と比べて、画像解析によって測定したVfの変動係数が小さいことから炭素繊維の分散状態(分散度)が良く、また、0°曲げ強度及び90°曲げ強度も高いことから機械物性も良好であった。
 比較例4~6は、式(1)を満たさない、即ち、機械的特性が低い熱可塑性樹脂(AS樹脂2)を用いた場合の炭素繊維複合材料における0°曲げ強度及びVfの変動係数を比較したものである。その結果、本発明における単繊維の繊度の要件を満たす比較例4及び5は、0°曲げ強度については、これらの要件を満たさない比較例6と同等の値を示したが、画像解析によって測定したVfの変動係数は比較例6と比べて小さくなり炭素繊維の分散状態(分散度)が良くなっていた。しかしながら、比較例4~6で使用した熱可塑性樹脂は、上述したように式(1)を満たしておらず、90°曲げ強度及び樹脂の曲げ強度(FS)が低い結果であった。このことから、複合材料として衝撃が加わった際にプリプレグの層間剥離が発生し、エネルギー吸収性能等の耐衝撃性能も不十分となる可能性が高い。
 実施例7はいずれも、単繊維の繊度が本発明の要件を満たさない比較例7と比べて、画像解析によって測定したVfの変動係数が小さいことから炭素繊維の分散状態(分散度)が良く、また、0°曲げ強度及び90°曲げ強度も高いことから機械物性も良好であった。
 以上より、平均単繊維繊度が1.0~2.4dtexであるPAN系炭素繊維に対して、曲げ弾性率FM(MPa)と曲げ強度FS(MPa)との比(FM/FS)が20~40である熱可塑性樹脂を含浸させて作製した本発明の炭素繊維プリプレグは、プリプレグ中やこのプリプレグを使用した炭素繊維複合材料成形品中で良好な繊維分散状態(分散度)を有することができ、さらに、高い機械的特性(例えば、0°曲げ強度や耐衝撃性)を有することができる。
<実施例8~10、比較例8,9の炭素繊維熱可塑性樹脂プリプレグの製造方法1>
 原料の変性ポリプロピレンを単軸押出機(IKG(株)社製、製品名:PMS30)を用いて、厚み40μmである樹脂フィルムを得た。
 ドラムワインド方式にて、炭素繊維目付145g/mの炭素繊維シートを作製した後、この炭素繊維シートに適度に張力を掛け、炭素繊維シートの両面から前記樹脂フィルム、フッ素樹脂製フィルム(日東電工(株)社製、製品名:ニトフロンフィルム970-4UL)、アルミ製の平板の順に挟み、加熱冷却二段プレスの加熱盤で230℃、5分、20kPa、冷却盤で5分、30kPaの条件で繊維体積含有率約50体積%の炭素繊維熱可塑性樹脂プリプレグを得た。
<実施例11,12、比較例10の炭素繊維熱可塑性樹脂プリプレグの製造方法2>
 原料の変性ポリプロピレンをポリアミド6に変更し、加熱冷却二段プレスの加熱盤の条件を260℃、10分に変更した以外は前記炭素繊維熱可塑性樹脂プリプレグの製造方法1と同様にして、繊維体積含有率約50体積%の炭素繊維熱可塑性樹脂プリプレグを得た。
<実施例13、比較例11の炭素繊維熱可塑性樹脂プリプレグの製造方法3>
 原料のポリアミド6をポリアミド610に変更し、フィルム厚みを47μm、炭素繊維目付を115g/mに変更した以外は前記炭素繊維熱可塑性樹脂プリプレグの製造方法2と同様にして、繊維体積含有率約40体積%の炭素繊維熱可塑性樹脂プリプレグを得た。
<実施例14、比較例12の炭素繊維熱可塑性樹脂プリプレグの製造方法4>
 原料のポリアミド6をポリカーボネートに変更し、フィルム厚みを36μm、炭素繊維目付を97g/mに変更した以外は前記炭素繊維熱可塑性樹脂プリプレグの製造方法2と同様にして、繊維体積含有率約43体積%の炭素繊維熱可塑性樹脂プリプレグを得た。
<炭素繊維熱可塑性樹脂プリプレグの繊維体積含有率Vfの測定>
 前記炭素繊維熱可塑性樹脂プリプレグの製造方法1~4で得られた実施例8~14、比較例8~12の炭素繊維熱可塑性樹脂プリプレグを適当なサイズにカットし、JIS K7075に準拠して炭素繊維熱可塑性樹脂プリプレグの繊維体積含有率Vfを測定した。評価結果を表5,6に示す。
 なお、上記熱可塑性樹脂の曲げ弾性率及び曲げ強度は、測定する熱可塑性樹脂を十分に乾燥後、射出成形により成形した試験片を23±2℃の温度下でISO178に準拠した試験方法にて測定することにより求めた値である。
 <炭素繊維複合材料板作製方法1>
 前記炭素繊維熱可塑性樹脂プリプレグの製造方法1で得られた炭素繊維熱可塑性樹脂プリプレグを適当なサイズにカットし、繊維方向が[0°]=0°/0°/0°/0°/0°/0°となるように12枚積み重ね、バギングした後、230℃×15分、昇温速度4℃/分、圧力0.7MPa、バック内の圧力を-100kPaの条件でオートクレーブにて成形して、1mm厚の炭素繊維複合材料板を得た。
<炭素繊維複合材料板作製方法2>
 前記炭素繊維熱可塑性樹脂プリプレグの製造方法2で得られた炭素繊維熱可塑性樹脂プリプレグを適当なサイズにカットし、繊維方向が[0°]12=0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°となるように12枚積み重ね、バギングした後、300℃×30分、昇温速度4℃/分、圧力0.7MPa、バック内の圧力を-100kPaの条件でオートクレーブにて成形して、1mm厚の炭素繊維複合材料板を得た。
<炭素繊維複合材料板作製方法3>
 前記炭素繊維熱可塑性樹脂プリプレグの製造方法3で得られた炭素繊維熱可塑性樹脂プリプレグを適当なサイズにカットし、繊維方向が[0°]=0°/0°/0°/0°/0°/0°/0°/0°となるように8枚積み重ね、バギングした後、300℃×30分、昇温速度4℃/分、圧力0.7MPa、バック内の圧力を-100kPaの条件でオートクレーブにて成形して、1mm厚の炭素繊維複合材料板を得た。
<炭素繊維複合材料板作製方法4>
 前記炭素繊維熱可塑性樹脂プリプレグの製造方法3で得られた炭素繊維熱可塑性樹脂プリプレグを適当なサイズにカットし、繊維方向が[0°]=0°/0°/0°/0°/0°/0°/0°/0°/0°となるように9枚積み重ね、バギングした後、300℃×30分、昇温速度4℃/分、圧力0.7MPa、バック内の圧力を-100kPaの条件でオートクレーブにて成形して、1mm厚の炭素繊維複合材料板を得た。
<炭素繊維強化複合材料の熱可塑性樹脂体積含有率の測定>
 炭素繊維複合材料板作成方法1~4で得た炭素繊維複合材料板を3cm角に切断し、JIS K7075に準拠して熱可塑性樹脂体積含有率Vrを測定した。評価結果を表5,6に示す。
<炭素繊維強化複合材料の断面のSt、Sa、Tt、Tf測定>
(サンプル作製)
炭素繊維複合材料板作成方法1~4で得た炭素繊維複合材料板を3cm角に切断し、kulzer社製テクノビット4000に包埋し、テクノビット4000が硬化した後、鏡面処理をした。
(顕微鏡観察)
包埋したサンプルを下記条件で撮影し、1画像を得た。
装置:(株)キーエンス社製 デジタルマイクロスコープ VHX-100
レンズ倍率:150倍
ピクセル数:1600×1200
ドットピッチ:1.3μm
(画像処理)
 得られた画像において、(厚さ)×(厚さ方向に垂直な方向に1mm幅)の範囲(つまり厚さがXmmであった場合、面積Xmmの範囲)でソフトウェア:(株)キーエンス社製 デジタル画像計測・解析ソフト VH-H1A5を用いて、「色抽出」により、得られた画像の強化繊維不含領域を色公差5で2値化した後、必要に応じて「ネガ・ポジ反転」で強化繊維不含領域を白、繊維強化領域を黒で表示させた。「小粒子除去」で120ピクセル以下の面積の強化繊維不含領域を除去した。
(計測)
 デジタル画像計測・解析ソフト((株)キーエンス社製、製品名:VH-H1A5)を用いて、「面積計測」により全ての強化繊維不含層の面積を求め、その総和をSt、(厚さ)×1mm幅の観察面積の全体をSaとして記録した。また「メイン計測(2点間)」により全ての強化繊維不含層および繊維強化層を厚みを幅方向50μm間隔で計測し、強化繊維不含層の厚みの最大値をmax(Tt)、繊維強化層を厚みの平均値をAve(Tf)として記録した。評価結果を表5,6に示す。
<炭素繊維複合材料板の圧縮試験>
 炭素繊維複合材料板作成方法1~4で得た炭素繊維複合材料板に前記炭素繊維複合材料板と同じ材料で作成したタブを接着した後、湿式ダイヤモンドカッターにより長さ(0°方向)80mm、幅12.7mmの寸法に切断して試験片を作製した。得られた試験片をデシケーター内で48時間乾燥させ、23±1℃・50±2%RHの環境下で96時間コンディショニングした後、万能試験機(instron社製、製品名:instron5882)と解析ソフト(製品名:Bluehill)を用い、SACMA-94準拠で0°圧縮試験を行い、0°圧縮強度および弾性率を用いた炭素繊維熱可塑性樹脂プリプレグのVf換算値として算出した。評価結果を表5,6に示す。
(実施例8)
 前記CF4と前記変性ポリプロピレンを用いて、前記炭素繊維熱可塑性樹脂プリプレグの製造方法1および前記炭素繊維複合材料板作製方法1に従い、炭素繊維複合材料板を作製し、物性を評価した。
(比較例8)
 CF4の代わりに前記CF9を用いた以外は実施例8と同様に炭素繊維複合材料板を作製し、物性を評価した。比較例8で得られた炭素繊維複合材料の圧縮強度は実施例8と比較して、低い値をとなった。
(実施例9)
 CF4の代わりに前記CF5を用いた以外は実施例8と同様に炭素繊維複合材料板を作製し、物性を評価した。
(実施例3)
 CF4の代わりに前記CF6を用いた以外は実施例8と同様に炭素繊維複合材料板を作製し、物性を評価した。
(比較例9)
 CF4の代わりに前記CF10を用いた以外は実施例8と同様に炭素繊維複合材料板を作製し、物性を評価した。比較例9で得られた炭素繊維複合材料の圧縮強度は実施例9,10と比較して、低い値をとなった。
(実施例11)
 前記CF5と前記ポリアミド6を用いて、前記炭素繊維熱可塑性樹脂プリプレグの製造方法2および前記炭素繊維複合材料板作製方法2に従い、炭素繊維複合材料板を作製し、物性を評価した。
(実施例12)
 CF5の代わりに前記CF6を用いた以外は実施例11と同様に炭素繊維複合材料板を作製し、物性を評価した。
(比較例10)
 CF5の代わりに前記CF10を用いた以外は実施例11と同様に炭素繊維複合材料板を作製し、物性を評価した。比較例10で得られた炭素繊維複合材料の圧縮強度は実施例11~12と比較して、低い値をとなった。
(実施例13)
 前記CF4と前記ポリアミド610を用いて、前記炭素繊維熱可塑性樹脂プリプレグの製造方法3および前記炭素繊維複合材料板作製方法3に従い、炭素繊維複合材料板を作製し、物性を評価した。
(比較例11)
 CF4の代わりに前記CF9を用いた以外は実施例13と同様に炭素繊維複合材料板を作製し、物性を評価した。比較例11で得られた炭素繊維複合材料の圧縮強度は実施例13と比較して、低い値をとなった。
(実施例14)
 前記CF4と前記ポリカーボネートを用いて、前記炭素繊維熱可塑性樹脂プリプレグの製造方法4および前記炭素繊維複合材料板作製方法4に従い、炭素繊維複合材料板を作製し、物性を評価した。
(比較例12)
 CF4の代わりに前記CF9を用いた以外は実施例14と同様に炭素繊維複合材料板を作製し、物性を評価した。比較例12で得られた炭素繊維複合材料の圧縮強度は実施例14と比較して、低い値をとなった。
(比較例13)
 液状ビスフエノールA型エポキシ樹脂(三菱化学(株)社製、製品名:jER828)を55質量部、オキサゾリドン型エポキシ樹脂(旭化成イーマテリアルズ(株)社製、製品名:AER4152)を45質量部、ポリビニルホルマール樹脂(チッソ(株)社製、製品名:ビニレックE)2質量部を容器に計量し、オイルバスを用いて160℃に加熱し溶解混合した。60℃まで降温させ、ジクロロフェニルジメチルウレア(保土ヶ谷化学工業(株)社製、製品名:DCMU99)を1.33質量部、ジシアンジアミド(三菱化学(株)社製、製品名:DICY15)を5.33質量部加え、混練し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、コンマコーター((株)ヒラノテクシード製、製品名:M-500)でフィルム状にし、樹脂目付け50g/mのレジンフィルム(ホットメルトフィルム)を得た。このレジンフィルムを、ドラムワインド方式によって引き揃えられた前記PAN系炭素繊維7の両面に張り合わせ、加熱ロールで含浸させて、繊維目付け200g/m、樹脂含有率32質量%の炭素繊維プリプレグを得た。得られた炭素繊維プリプレグを適当なサイズにカットし、繊維方向が[0°]6=0°/0°/0°/0°/0°/0°となるように6枚積み重ね、バギングした後、90℃×120分、昇温速度0.5℃/分、バック内圧力を-100kPaとした条件でオーブンにて硬化成形して、2mm厚の炭素繊維複合材料板を得た。得られた炭素繊維複合材料板と同じ材料で作成したタブを接着した後、湿式ダイヤモンドカッターにより長さ(0°方向)80mm、幅12.7mmの寸法に切断して試験片を作製した。得られた試験片にて、万能試験機(instron社製、製品名:instron5882)と解析ソフト(製品名:Bluehill)を用い、SACMA-94準拠で0°圧縮試験を行い、0°圧縮強度および弾性率をVf56体積%換算値として算出した。評価結果を表7に示す。
(比較例14)
 CF10の代わりに前記CF7を用いた以外は比較例13と同様に炭素繊維複合材料板を作製し、物性を評価した。評価結果を表7に示す。
(比較例15)
 CF10の代わりに前記CF8を用いた以外は比較例13と同様に炭素繊維複合材料板を作製し、物性を評価した。評価結果を表7に示す。
比較例13~15で得られた炭素繊維複合材料の圧縮強度は、炭素繊維束の平均単繊維繊度に関わらず、変化はみられなかった。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
 本発明によれば、マトリックス樹脂に、ポリメチルメタクリレート(PMMA)、アクリロニトリルスチレン共重合樹脂(AS樹脂)、ポリアミド12(PA12)等の機械的特性に優れた熱可塑性樹脂を用いた場合であっても、炭素繊維が均一に分散して高い曲げ強度を発現する炭素繊維複合材料を与える炭素繊維熱可塑性樹脂プリプレグと、その製造方法、及びそのプリプレグを用いた炭素繊維複合材料が提供される。また、本発明によれば、耐衝撃性に優れ、かつ成形時間が短く、繊維の微小蛇行が少ない炭素繊維強化複合材料を得ることができる炭素繊維熱可塑性樹脂プリプレグ、ならびに該炭素繊維熱可塑性樹脂プリプレグを用いて得られる炭素繊維強化複合材料および自動車用部品を提供できる。
1  一方向炭素繊維複合材料成形板
1a 繊維軸方向に対して垂直な切断面(観察面)
2  ポリエステル樹脂
3  画像解析領域
d  1区画の1辺の長さ

Claims (14)

  1.  平均単繊維繊度が1.0~2.4dtexである複数の炭素繊維からなる炭素繊維束に熱可塑性樹脂組成物を含浸させて形成される炭素繊維熱可塑性樹脂プリプレグ。
  2.  前記熱可塑性樹脂組成物が、以下の式(1)を満たす熱可塑性樹脂である請求項1に記載の炭素繊維熱可塑性樹脂プリプレグ。
       20≦(FM/FS)≦40 ・・・(1)
    (式(1)中、FMはこの熱可塑性樹脂組成物のみからなる樹脂板の曲げ弾性率(MPa)を表し、FSは該樹脂板の曲げ強度(MPa)を表す)。
  3.  前記熱可塑性樹脂組成物が、以下の式(2)を満たす熱可塑性樹脂組成物である請求項1または2に記載の炭素繊維熱可塑性樹脂プリプレグ。
       25≦(FM/FS)≦35 ・・・(2)
    (式(2)中、FMはこの熱可塑性樹脂組成物のみからなる樹脂板の曲げ弾性率(MPa)を表し、FSは該樹脂板の曲げ強度(MPa)を表す)。
  4.  平均単繊維繊度が1.0dtex以上2.4dtex以下であるPAN系炭素繊維束に、熱可塑性樹脂組成物を含浸させて炭素繊維プリプレグを得る工程を含む炭素繊維熱可塑性樹脂プリプレグの製造方法であって、
     該熱可塑性樹脂組成物が、以下の式(3)を満たす熱可塑性樹脂組成物である炭素繊維熱可塑性樹脂プリプレグの製造方法。
       20≦(FM/FS)≦40 ・・・(3)
    (式(1)中、FMはこの熱可塑性樹脂組成物のみからなる樹脂板の曲げ弾性率(MPa)を表し、FSは該樹脂板の曲げ強度(MPa)を表す)。
  5.  前記熱可塑性樹脂組成物がフィルム状である請求項4に記載の炭素繊維熱可塑性樹脂プリプレグの製造方法。
  6.  請求項1~3のいずれか1項に記載の炭素繊維熱可塑性樹脂プリプレグから形成される炭素繊維複合材料。
  7.  前記炭素繊維束を構成する炭素繊維の単繊維の真円度が0.70~0.90である請求項1に記載の炭素繊維熱可塑性樹脂プリプレグ。
     ただし、真円度は下記式(4)にて求められる。式中、Sは、単繊維の断面積、Lは、単繊維の断面の周長である。
     真円度=4πS/L ・・・(4)
  8.  前記炭素繊維束がPAN系炭素繊維束である請求項1または7に記載の炭素繊維熱可塑性樹脂プリプレグ。
  9.  下記式(5)を満たす請求項7または8に記載の炭素繊維熱可塑性樹脂プリプレグ。
     β×(Tc-25)×(100-Vf) > 0.5  ・・・(5)
     (式中、βは熱可塑性樹脂組成物の線膨張係数(1/℃)であり、Tcは該熱可塑性樹脂組成物の成形下限温度(℃)である。成形下限温度とは、熱可塑性樹脂組成物が融点を有する場合はその融点、熱可塑性樹脂組成物が融点を有さない場合はその粘度が1×10Pa・sとなる温度を表す。また、Vfは炭素繊維熱可塑性樹脂プリプレグの繊維体積含有率(体積%)である。)
  10.  前記熱可塑性樹脂組成物が、ポリプロピレン樹脂、ポリアミド樹脂、ポリプロピレン樹脂の変性樹脂、ポリアミド樹脂の変性樹脂から選ばれる少なくとも1種類の樹脂である請求項7~9のいずれか一項に記載の炭素繊維熱可塑性樹脂プリプレグ。
  11.  請求項7~10のいずれか一項に記載の炭素繊維プリプレグを用いた炭素繊維熱可塑性樹脂プリプレグ片。
  12.  請求項7~10のいずれか一項に記載の炭素繊維熱可塑性樹脂プリプレグを用いた炭素繊維強化複合材料。
  13.  請求項11に記載の炭素繊維熱可塑性樹脂プリプレグ片を用いた炭素繊維強化複合材料。
  14.  請求項12または13に記載の炭素繊維強化複合材料を用いた自動車用部品。
PCT/JP2013/059736 2012-03-29 2013-03-29 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法 WO2013147257A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147027086A KR20140129311A (ko) 2012-03-29 2013-03-29 탄소 섬유 열가소성 수지 프리프레그, 탄소 섬유 복합 재료 및 제조 방법
US14/387,008 US10370506B2 (en) 2012-03-29 2013-03-29 Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
KR1020167021106A KR101902087B1 (ko) 2012-03-29 2013-03-29 탄소 섬유 열가소성 수지 프리프레그, 탄소 섬유 복합 재료 및 제조 방법
JP2013517499A JP5842916B2 (ja) 2012-03-29 2013-03-29 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法
CN201380016564.8A CN104321373B (zh) 2012-03-29 2013-03-29 碳纤维热塑性树脂预浸料、碳纤维复合材料以及制造方法
EP13768627.5A EP2832778B1 (en) 2012-03-29 2013-03-29 Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
US15/499,128 US10370507B2 (en) 2012-03-29 2017-04-27 Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-075986 2012-03-29
JP2012075986 2012-03-29
JP2012-093950 2012-04-17
JP2012093950 2012-04-17

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/387,008 Continuation US10370506B2 (en) 2012-03-29 2013-03-29 Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
US14/387,008 A-371-Of-International US10370506B2 (en) 2012-03-29 2013-03-29 Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
US15/499,128 Continuation US10370507B2 (en) 2012-03-29 2017-04-27 Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method

Publications (1)

Publication Number Publication Date
WO2013147257A1 true WO2013147257A1 (ja) 2013-10-03

Family

ID=49260496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059736 WO2013147257A1 (ja) 2012-03-29 2013-03-29 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法

Country Status (7)

Country Link
US (2) US10370506B2 (ja)
EP (1) EP2832778B1 (ja)
JP (1) JP5842916B2 (ja)
KR (2) KR20140129311A (ja)
CN (1) CN104321373B (ja)
TW (1) TWI565739B (ja)
WO (1) WO2013147257A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180785A (ja) * 2014-03-05 2015-10-15 三菱レイヨン株式会社 樹脂強化用炭素繊維束、並びに、樹脂強化用炭素繊維束、炭素繊維強化熱可塑性樹脂組成物及び成形体の製造方法
EP3078486A1 (en) * 2013-12-03 2016-10-12 Mitsubishi Rayon Co., Ltd. Fiber-reinforced resin laminate
WO2016171060A1 (ja) * 2015-04-21 2016-10-27 三菱瓦斯化学株式会社 繊維強化熱可塑性樹脂組成物
JP2016216565A (ja) * 2015-05-18 2016-12-22 三菱瓦斯化学株式会社 連続繊維強化ポリカーボネート樹脂製プリプレグ
KR20180083372A (ko) * 2015-12-24 2018-07-20 미쯔비시 케미컬 주식회사 섬유 강화 수지 재료 성형체, 섬유 강화 수지 재료 성형체의 제조 방법 및 섬유 강화 수지 재료의 제조 방법
JP2018161800A (ja) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 繊維強化樹脂成形品と金属のハイブリット構造部材
WO2019017057A1 (ja) * 2017-07-18 2019-01-24 東レ株式会社 一方向に配向したテープ状プリプレグ、およびその成形品

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999721B2 (ja) * 2014-10-17 2016-09-28 株式会社日本製鋼所 繊維強化樹脂中間体及びその製造方法
JP6106810B2 (ja) * 2015-03-24 2017-04-05 帝人株式会社 炭素繊維強化樹脂複合材料
US10316443B2 (en) * 2015-04-17 2019-06-11 Auburn University Composite braided open structure without inter-yarn bonding, and structures made therefrom
JP6535218B2 (ja) * 2015-05-22 2019-06-26 株式会社神戸製鋼所 テープ状プリプレグ及び繊維強化成形体
CN105733259B (zh) * 2016-02-19 2019-01-08 深圳市夸克纳米材料有限公司 一种碳纤维增强聚酰胺酰亚胺预浸料及其制备方法
EP3560985A4 (en) * 2016-12-22 2020-07-22 Toray Industries, Inc. STRUCTURE AND MANUFACTURING METHOD THEREFOR
KR101878102B1 (ko) * 2017-06-26 2018-07-12 현대제철 주식회사 탄소 섬유 강화 플라스틱의 faw 분석 방법
RU2020118556A (ru) * 2017-11-07 2021-12-08 Торэй Индастриз, Инк. Филамент из фиброармированной термопластической смолы и профилированный продукт из него
US20210108040A1 (en) * 2017-11-29 2021-04-15 Teijin Limited Composite material and production method therefor
WO2020004638A1 (ja) * 2018-06-29 2020-01-02 三菱ケミカル株式会社 繊維強化樹脂プリプレグ、成形体、繊維強化熱可塑性樹脂プリプレグ
WO2020040289A1 (ja) * 2018-08-24 2020-02-27 阿波製紙株式会社 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法
CN112638998A (zh) * 2018-08-24 2021-04-09 阿波制纸株式会社 碳纤维片材、预浸料、成型体、碳纤维片材的制造方法、预浸料的制造方法以及成型体的制造方法
KR20210132133A (ko) * 2019-03-13 2021-11-03 주식회사 쿠라레 공간 충전재 및 공간 충전 구조체, 그리고 그것들의 사용 방법
CN112208172A (zh) * 2019-07-12 2021-01-12 大赛璐美华株式会社 复合成型体及其制造方法
JPWO2021132321A1 (ja) * 2019-12-27 2021-07-01
CN114571747B (zh) * 2022-03-02 2024-01-16 哈尔滨工业大学(威海) 一种脉冲电流固化碳纤维复合材料的成型方法
CN114621584B (zh) * 2022-04-25 2023-12-19 福建工程学院 一种连续纤维增强热塑性聚酰胺弹性体复合材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155862A (ja) 1995-12-01 1997-06-17 Toyobo Co Ltd 繊維強化熱可塑性樹脂シ−ト
JP2001226855A (ja) * 2000-02-10 2001-08-21 Mitsubishi Chemicals Corp ピッチ系炭素繊維織物
JP2002212383A (ja) 2001-01-17 2002-07-31 Toray Ind Inc 熱可塑性樹脂組成物
JP2002266173A (ja) * 2001-03-09 2002-09-18 Mitsubishi Rayon Co Ltd 炭素繊維および炭素繊維強化複合材料
JP3681127B2 (ja) 1995-05-29 2005-08-10 東邦テナックス株式会社 成形材料及びその製造方法
JP2008044999A (ja) 2006-08-11 2008-02-28 Toho Tenax Co Ltd 均一性に優れたプリプレグの製造方法
JP2010235779A (ja) * 2009-03-31 2010-10-21 Toray Ind Inc プリプレグ、プリフォームおよび成形品
JP2011006578A (ja) 2009-06-25 2011-01-13 Mitsubishi Plastics Inc 繊維・樹脂複合化シート及びfrp成形体
JP2011122255A (ja) * 2009-12-09 2011-06-23 Toray Ind Inc 炭素繊維前駆体繊維束および炭素繊維束とそれらの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3145267A1 (de) * 1981-11-14 1983-05-19 Hasso von 4000 Düsseldorf Blücher Aktivkohle-stapelfasern enthaltendes mischgarn und daraus hergestelltes gewebe
KR0156870B1 (ko) * 1989-09-05 1998-12-01 마에다 가쓰노스케 비원형단면 탄소섬유의 제조방법 및 이를 이용한 복합재료
JPH06146120A (ja) * 1992-10-31 1994-05-27 Tonen Corp 高強度、高弾性率ピッチ系炭素繊維及びその製造方法
KR100383455B1 (ko) * 1995-01-09 2004-04-03 도레이 가부시끼가이샤 프리프래그및탄소섬유강화복합재료
JP2004076246A (ja) * 2002-06-18 2004-03-11 Toray Ind Inc 炭素繊維束
JP2005036320A (ja) 2003-07-15 2005-02-10 Toho Tenax Co Ltd ポリアクリロニトリル系酸化繊維フィラメント織物
JP4360233B2 (ja) 2004-03-11 2009-11-11 東レ株式会社 ゴルフシャフト
US8283403B2 (en) 2006-03-31 2012-10-09 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
JP2008202207A (ja) * 2007-01-26 2008-09-04 Toray Ind Inc 炭素繊維束およびその製造方法
CA2731283C (en) * 2008-07-31 2016-08-23 Toray Industries, Inc. Prepreg, preform, molded product, and method for manufacturing prepreg
TWI396786B (zh) 2009-06-10 2013-05-21 Mitsubishi Rayon Co 發現機械性能優異的碳纖維束
JP5708965B2 (ja) 2009-06-10 2015-04-30 三菱レイヨン株式会社 アクリロニトリル系前駆体繊維束および炭素繊維束の製造方法
US20120088104A1 (en) * 2009-06-10 2012-04-12 Mitsubishi Rayon Co., Ltd. Acrylonitrile swollen fiber for carbon fiber, precursor fiber bundle, stabilized fiber bundle, carbon fiber bundle and production methods thereof
JP5134594B2 (ja) 2009-07-08 2013-01-30 三井化学株式会社 炭素繊維強化プロピレン系複合材料およびその成形体
HUE052010T2 (hu) * 2010-10-13 2021-04-28 Mitsubishi Chem Corp Szénszál roving és annak alkalmazásai
PT2735575T (pt) 2011-07-22 2016-11-14 Mitsubishi Rayon Co Copolímero à base de poliacrilonitrilo, fibra precursora à base de poliacrilonitrilo para fibra de carbono, feixes de fibra de carbono, processo de produção de feixes de fibras ignífugas e processo de produção feixes de fibra de carbono

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681127B2 (ja) 1995-05-29 2005-08-10 東邦テナックス株式会社 成形材料及びその製造方法
JPH09155862A (ja) 1995-12-01 1997-06-17 Toyobo Co Ltd 繊維強化熱可塑性樹脂シ−ト
JP2001226855A (ja) * 2000-02-10 2001-08-21 Mitsubishi Chemicals Corp ピッチ系炭素繊維織物
JP2002212383A (ja) 2001-01-17 2002-07-31 Toray Ind Inc 熱可塑性樹脂組成物
JP2002266173A (ja) * 2001-03-09 2002-09-18 Mitsubishi Rayon Co Ltd 炭素繊維および炭素繊維強化複合材料
JP2008044999A (ja) 2006-08-11 2008-02-28 Toho Tenax Co Ltd 均一性に優れたプリプレグの製造方法
JP2010235779A (ja) * 2009-03-31 2010-10-21 Toray Ind Inc プリプレグ、プリフォームおよび成形品
JP2011006578A (ja) 2009-06-25 2011-01-13 Mitsubishi Plastics Inc 繊維・樹脂複合化シート及びfrp成形体
JP2011122255A (ja) * 2009-12-09 2011-06-23 Toray Ind Inc 炭素繊維前駆体繊維束および炭素繊維束とそれらの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Testing method for linear thermal expansion coefficient of plastics by thermomechanical analysis", JIS K7197, 1991
See also references of EP2832778A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078486A1 (en) * 2013-12-03 2016-10-12 Mitsubishi Rayon Co., Ltd. Fiber-reinforced resin laminate
EP3078486A4 (en) * 2013-12-03 2017-05-10 Mitsubishi Rayon Co., Ltd. Fiber-reinforced resin laminate
JP2020073750A (ja) * 2014-03-05 2020-05-14 三菱ケミカル株式会社 炭素繊維束、並びに、炭素繊維束、炭素繊維強化熱可塑性樹脂組成物及び成形体の製造方法
CN106029975A (zh) * 2014-03-05 2016-10-12 三菱丽阳株式会社 树脂增强用碳纤维束、以及树脂增强用碳纤维束、碳纤维增强热塑性树脂组合物和成形体的制造方法
JP7020571B2 (ja) 2014-03-05 2022-02-16 三菱ケミカル株式会社 炭素繊維束
JP2021073389A (ja) * 2014-03-05 2021-05-13 三菱ケミカル株式会社 炭素繊維束
CN106029975B (zh) * 2014-03-05 2018-11-02 三菱化学株式会社 树脂增强用碳纤维束、以及树脂增强用碳纤维束、碳纤维增强热塑性树脂组合物和成形体的制造方法
JP2015180785A (ja) * 2014-03-05 2015-10-15 三菱レイヨン株式会社 樹脂強化用炭素繊維束、並びに、樹脂強化用炭素繊維束、炭素繊維強化熱可塑性樹脂組成物及び成形体の製造方法
WO2016171060A1 (ja) * 2015-04-21 2016-10-27 三菱瓦斯化学株式会社 繊維強化熱可塑性樹脂組成物
JPWO2016171060A1 (ja) * 2015-04-21 2018-02-15 三菱瓦斯化学株式会社 繊維強化熱可塑性樹脂組成物
JP2016216565A (ja) * 2015-05-18 2016-12-22 三菱瓦斯化学株式会社 連続繊維強化ポリカーボネート樹脂製プリプレグ
KR20210019130A (ko) * 2015-12-24 2021-02-19 미쯔비시 케미컬 주식회사 시트 몰딩 컴파운드
KR20200057111A (ko) * 2015-12-24 2020-05-25 미쯔비시 케미컬 주식회사 섬유 강화 수지 재료 성형체, 섬유 강화 수지 재료 성형체의 제조 방법 및 섬유 강화 수지 재료의 제조 방법
KR102115739B1 (ko) * 2015-12-24 2020-05-27 미쯔비시 케미컬 주식회사 섬유 강화 수지 재료 성형체, 섬유 강화 수지 재료 성형체의 제조 방법 및 섬유 강화 수지 재료의 제조 방법
KR102216832B1 (ko) * 2015-12-24 2021-02-17 미쯔비시 케미컬 주식회사 시트 몰딩 컴파운드
US10933563B2 (en) 2015-12-24 2021-03-02 Mitsubishi Chemical Corporation Fiber-reinforced resin material molding, method for manufacturing fiber-reinforced resin material molding, and method for manufacturing fiber-reinforced resin material
KR102337938B1 (ko) * 2015-12-24 2021-12-09 미쯔비시 케미컬 주식회사 시트 몰딩 컴파운드
KR20180083372A (ko) * 2015-12-24 2018-07-20 미쯔비시 케미컬 주식회사 섬유 강화 수지 재료 성형체, 섬유 강화 수지 재료 성형체의 제조 방법 및 섬유 강화 수지 재료의 제조 방법
JP2018161800A (ja) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 繊維強化樹脂成形品と金属のハイブリット構造部材
JP2021142757A (ja) * 2017-03-27 2021-09-24 三菱ケミカル株式会社 繊維強化樹脂成形品と金属のハイブリット構造部材
JP7005917B2 (ja) 2017-03-27 2022-02-10 三菱ケミカル株式会社 繊維強化樹脂成形品と金属のハイブリット構造部材
WO2019017057A1 (ja) * 2017-07-18 2019-01-24 東レ株式会社 一方向に配向したテープ状プリプレグ、およびその成形品

Also Published As

Publication number Publication date
US10370506B2 (en) 2019-08-06
JPWO2013147257A1 (ja) 2015-12-14
US10370507B2 (en) 2019-08-06
TW201343742A (zh) 2013-11-01
KR101902087B1 (ko) 2018-09-27
US20170226297A1 (en) 2017-08-10
KR20160096724A (ko) 2016-08-16
CN104321373A (zh) 2015-01-28
JP5842916B2 (ja) 2016-01-13
TWI565739B (zh) 2017-01-11
KR20140129311A (ko) 2014-11-06
EP2832778A1 (en) 2015-02-04
CN104321373B (zh) 2018-04-06
EP2832778B1 (en) 2018-01-03
US20150044470A1 (en) 2015-02-12
EP2832778A4 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5842916B2 (ja) 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法
CA2764662C (en) Carbon fiber bundle that develops high mechanical performance
KR101841797B1 (ko) 탄소 섬유 프리프레그 및 그의 제조 방법, 탄소 섬유 강화 복합 재료
JP2018145541A (ja) 炭素繊維束及びその製造方法
JP2010285710A (ja) 炭素繊維束およびその製造方法
JP7414000B2 (ja) 繊維強化樹脂プリプレグ、成形体、繊維強化熱可塑性樹脂プリプレグ
US20130130028A1 (en) Method for preparing carbon fiber precursor
JP2015096664A (ja) 炭素繊維束
US20100266827A1 (en) Carbon fiber and composite material using the same
JP2010037667A (ja) 炭素繊維ウェブの製造方法および炭素繊維ウェブ
CN111801450A (zh) 碳纤维及其制造方法
JP2012122164A (ja) 機械的特性発現に優れた炭素繊維
JP2009046770A (ja) アクリロニトリル系炭素繊維前駆体繊維
JP5999462B2 (ja) 機械的特性発現に優れた炭素繊維
JP2018048437A (ja) 炭素繊維束
WO2020071445A1 (ja) 前駆体繊維束の製造方法及び炭素繊維束の製造方法並びに炭素繊維束
JP5842343B2 (ja) 炭素繊維前駆体アクリル繊維束の製造方法
JP6590040B2 (ja) 機械的特性発現に優れた炭素繊維
JP2016194191A (ja) 機械的特性発現に優れた炭素繊維
JP2006188782A (ja) 炭素繊維束およびその製造方法
JP4715386B2 (ja) 炭素繊維束の製造方法
JP2546810B2 (ja) ポリシアノアリールエーテル被覆炭素繊維とその製造方法
JP2022157833A (ja) 繊維強化複合材及び繊維強化複合材の製造方法
JP2022096210A (ja) 炭素繊維の製造方法
JP2024003966A (ja) 炭素繊維束、炭素繊維束の製造方法、炭素繊維強化複合材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013517499

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013768627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14387008

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147027086

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE