WO2016171060A1 - 繊維強化熱可塑性樹脂組成物 - Google Patents

繊維強化熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2016171060A1
WO2016171060A1 PCT/JP2016/061962 JP2016061962W WO2016171060A1 WO 2016171060 A1 WO2016171060 A1 WO 2016171060A1 JP 2016061962 W JP2016061962 W JP 2016061962W WO 2016171060 A1 WO2016171060 A1 WO 2016171060A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
mass
thermoplastic resin
resin composition
reinforced thermoplastic
Prior art date
Application number
PCT/JP2016/061962
Other languages
English (en)
French (fr)
Inventor
松本 隆宏
掛谷 文彰
泰隆 福永
亜希 香取
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201680022299.8A priority Critical patent/CN107531968A/zh
Priority to JP2017514086A priority patent/JP6750616B2/ja
Priority to US15/566,051 priority patent/US20180127558A1/en
Priority to KR1020177033529A priority patent/KR20170139108A/ko
Publication of WO2016171060A1 publication Critical patent/WO2016171060A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles

Definitions

  • the present invention relates to a fiber reinforced thermoplastic resin composition suitably used for aircraft members, spacecraft members, automobile members, ship members, civil engineering and building materials, electronic equipment members, sports-related members, and the like.
  • Carbon fiber, glass fiber, and aramid fiber are low in specific gravity compared to metal and have excellent elastic modulus and strength. Therefore, composite materials combining them with various matrix resins are aircraft members, spacecraft members, It is used in many fields such as automobile members, ship members, civil engineering and building materials, electronic device members, and sports equipment.
  • thermosetting carbon fiber reinforced composite materials in which carbon fibers and thermosetting resins such as epoxy resins and unsaturated polyester resins are combined are widely used.
  • thermosetting carbon fiber reinforced composite materials have the drawback of requiring a great deal of time for thermosetting. Therefore, in recent years, a carbon fiber reinforced thermoplastic composite material (hereinafter sometimes referred to as “CFRTP”) using a thermoplastic resin as a matrix is expected and developed as a composite material capable of high cycle molding. Short fiber reinforced thermoplastic composite materials capable of forming complex shapes have already been put to practical use. However, since the fiber length of the reinforced fibers is short, there is a problem that the elastic modulus is remarkably lower than that of light metal. For this reason, a thermoplastic resin composition reinforced with continuous fibers is strongly desired.
  • CFRTP carbon fiber reinforced thermoplastic composite material
  • CFRTP CFRTP-co-styrene
  • inexpensive general-purpose plastics such as polypropylene (PP), acrylonitrile butadiene styrene (ABS) are expected, but mechanical properties of composite materials of these thermoplastic resins and particularly carbon fibers, In particular, the bending strength was not sufficient.
  • Patent Document 1 proposes a method for improving the interlaminar shear strength, which is an index of interfacial adhesion, by subjecting carbon fibers to electrolytic treatment, and a thermoplastic resin composite material reinforced with the carbon fibers. The mechanical properties were not sufficient.
  • Patent Documents 2 and 3 propose a method of applying a sizing agent to carbon fibers, but the sizing agent sufficiently imparts the adhesion of the carbon fibers to the thermosetting resin.
  • the interfacial adhesiveness with the thermoplastic resin is still low, and the mechanical properties of the thermoplastic resin composite material reinforced with the sized reinforced fiber are not sufficient.
  • thermoplastic carbon fiber composite material with sufficient bending strength can be achieved with existing technology. There wasn't.
  • An object of the present invention is to provide a fiber-reinforced thermoplastic resin composition having excellent mechanical properties in view of the problems in the above-described conventional technology.
  • thermoplastic resin contains a copolymer of a cyano group-containing vinyl monomer and an aromatic vinyl monomer, and It has been found that the above object can be achieved by setting the content of the conjugated diene component to a certain value or less. That is, the present invention is as follows.
  • thermoplastic resin composition containing a continuous reinforcing fiber (A) and a thermoplastic resin (B), wherein the thermoplastic resin (B) is a cyano group-containing vinyl monomer (c1) and an aromatic
  • thermoplastic resin composition comprising a copolymer (C) of a vinyl monomer (c2), wherein the proportion of the conjugated diene component in 100% by mass of the copolymer (C) is 10% by mass or less.
  • the continuous reinforcing fiber (A) is contained in an amount of 1% by mass to 80% by mass, and the thermoplastic resin (B) is contained in an amount of 20% by mass to 99% by mass.
  • thermoplastic according to any one of [1] to [4], wherein the proportion of the copolymer (C) in 100% by mass of the thermoplastic resin (B) is 50 to 100% by mass. Resin composition.
  • the copolymer (C) is a copolymer composed of a cyano group-containing vinyl monomer (c1) and an aromatic vinyl monomer (c2).
  • the fiber reinforced thermoplastic resin composition as described.
  • a fiber-reinforced thermoplastic resin composition having excellent mechanical properties can be obtained by the effect of improving the bending strength of the composite material due to the cyano group and the reinforcing effect of continuous fibers.
  • the fiber-reinforced thermoplastic resin composition of the present invention is a fiber-reinforced thermoplastic resin composition containing continuous reinforcing fibers and a thermoplastic resin, wherein the thermoplastic resin is a cyano group-containing vinyl monomer and an aromatic vinyl monomer. It is the fiber reinforced thermoplastic resin composition containing the copolymer of these.
  • Continuous reinforcing fiber (A) examples include glass fiber, carbon fiber (for example, PAN-based carbon fiber, pitch-based carbon fiber, etc.) or aramid fiber. Is preferred.
  • the fiber length of the continuous reinforcing fiber (A) is preferably 10 mm or more on average, and it is more preferable to use a fiber longer than the molded product after molding.
  • Examples of the continuous reinforcing fiber include a unidirectional sheet, a woven sheet, a multiaxial laminated sheet, and the like. Specific examples are shown below, but the present invention is not limited thereto.
  • the ratio of the continuous reinforcing fiber (A) of the present invention may be 1% by mass to 80% by mass with respect to 100% by mass of the fiber reinforced thermoplastic resin composition, and the viewpoint of the mechanical properties of the fiber reinforced thermoplastic resin composition. To 40% by mass to 75% by mass, more preferably 50% by mass to 75% by mass.
  • the thermoplastic resin (B) used in the present invention contains a copolymer (C) of a cyano group-containing vinyl monomer (c1) and an aromatic vinyl monomer (c2).
  • the copolymer (C) of the cyano group-containing vinyl monomer (c1) and the aromatic vinyl monomer (c2) is a copolymer produced from a monomer mixture containing the monomer (c1) and the monomer (c2). This means that the monomer sequence is not particularly limited, and may be random, block, graft, alternating, and the like.
  • the cyano group-containing vinyl monomer (c1) is a vinyl monomer having a cyano group, and examples thereof include acrylonitrile and methacrylonitrile. From the viewpoint of mechanical properties, acrylonitrile is preferred.
  • the proportion of the cyano group-containing vinyl monomer (c1) may be 15% by mass to 45% by mass, and is 20% by mass to 40% by mass for reasons of mechanical properties. It is preferable. That is, the proportion of the cyano group-containing vinyl monomer (c1) may be 15% by mass to 45% by mass and 20% by mass with respect to the total of the monomer components in the monomer mixture that forms the copolymer (C). It is preferably ⁇ 40% by mass.
  • the aromatic vinyl monomer (c2) is a vinyl monomer having an aromatic ring, and examples thereof include styrene, bromostyrene, and ⁇ -methylstyrene. Styrene is preferred from the viewpoint of availability.
  • the proportion of the aromatic vinyl monomer (c2) in 100% by mass of the copolymer (C) may be 55% by mass to 85% by mass, and 60% by mass to 80% by mass from the viewpoint of mechanical properties. Is preferred. That is, the proportion of the aromatic vinyl monomer (c2) may be 55% by mass to 85% by mass and 60% by mass with respect to the total of the monomer components in the monomer mixture that forms the copolymer (C). It is preferably ⁇ 80% by mass.
  • the monomer mixture for forming the copolymer (C) may contain any vinyl monomer.
  • vinyl monomers include ethylene propylene diene, acrylic acid ester, 2-chloroethyl vinyl ether and the like.
  • the copolymer (C) is a copolymer produced only from the cyano group-containing vinyl monomer (c1) and the aromatic vinyl monomer (c2).
  • Examples of such a copolymer (C) include acrylonitrile styrene (AS) resin, acrylonitrile ethylene propylene diene styrene (AES) resin, and acrylate styrene acrylonitrile (ASA) resin. More specifically, Liteac-A 100PCF / 120PCF manufactured by Nippon A & L Co., Sanrex SAN-C / SAN-R / SAN-H / SAN-L / SAN-T manufactured by Technopolymer Co., and Sebian-N manufactured by Daicel Polymer Co., Ltd.
  • AS acrylonitrile styrene
  • AES acrylonitrile ethylene propylene diene styrene
  • ASA acrylate styrene acrylonitrile
  • the proportion of the copolymer (C) in 100% by mass of the thermoplastic resin (B) may be 50% by mass to 100% by mass, and 80% by mass to 100% by mass provides an inexpensive composite material. Therefore, it is preferable.
  • the thermoplastic resin (B) may contain components other than the copolymer (C) as long as the effects of the invention are exhibited, and other resins and various types such as a release agent, a flame retardant, and an antioxidant. Additives can be blended. For example, engineering plastics and super engineering plastics (polycarbonate, polyamide, polyester, etc.) for the purpose of improving heat resistance and chemical resistance can be added and used as an alloy of AS resin, AES resin, ASA resin and the like. The proportion of these components in 100% by mass of the thermoplastic resin (B) may be 0 to 50% by mass, and 0 to 20% by mass is preferable because an inexpensive composite material can be obtained.
  • the conjugated diene component in the copolymer (C) is 10% by mass or less. That is, it means that the ratio of the conjugated diene component is 10% by mass or less with respect to the total of the monomer components in the monomer mixture for producing the copolymer (C).
  • the conjugated diene component is a monomer having a double bond separated by a single bond and having a conjugated diene, and examples thereof include butadiene and isoprene. If the conjugated diene component in the copolymer (C) is more than 10% by mass, the bending strength is lowered.
  • the ratio of the continuous reinforcing fiber (A) and the thermoplastic resin (B) in the fiber reinforced thermoplastic resin composition of the present invention is 1% by mass of the continuous reinforcing fiber (A) in 100% by mass of the fiber reinforced thermoplastic resin composition.
  • 40% by mass of the continuous reinforcing fiber (A) may be 80% by mass and 20% by mass to 99% by mass of the thermoplastic resin (B). 75% by mass and 25% by mass to 60% by mass of the thermoplastic resin (B).
  • the proportion of reinforcing fibers is less than this range, the mechanical properties of the fiber-reinforced thermoplastic resin composition will be equal to or less than that of light metals, and when the proportion of reinforcing fibers is more than this range, the amount of resin is small, The bundling action of the reinforcing fibers by the matrix resin does not function and the mechanical properties are deteriorated.
  • the method for producing the fiber reinforced thermoplastic resin composition is not particularly limited, for example, a method of pouring a molten resin of the thermoplastic resin (B) from a T die of an extruder, and joining the impregnated continuous fiber sheet to impregnate, There are a method in which a powder resin is dispersed on continuous fibers and heated and melted, a method in which the resin is formed into a film and heat-laminated, a method in which the resin is dissolved in a solvent and then impregnated into the continuous fibers and dried.
  • MEK methyl ethyl ketone
  • Example 1 Comparative Examples 1 to 3
  • the matrix resin is an AS resin in CFRTP
  • the bending strength is improved as compared with the case where the matrix resin is a PS resin (Example 1, Comparative Example 2).
  • the matrix resin is AS resin in CFRTP
  • the bending strength is improved as compared with the case where the matrix resin is ABS resin (Example 1, Comparative Example 1). This is considered that the conjugated diene component contained in the ABS resin decreases the bending strength of the composite material.
  • the elastic modulus is greatly improved as compared with the case where the reinforcing fiber is a short fiber (Example 1, Comparative Example 3). Even when PA66, which has a higher bending strength of the composite material, is used as the matrix resin, it is difficult to obtain an elastic modulus equivalent to that of light metal when the reinforcing fibers are short fibers. I understand the importance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、連続強化繊維(A)及び熱可塑性樹脂(B)を含有する繊維強化熱可塑性樹脂組成物であって、前記熱可塑性樹脂(B)が、シアノ基含有ビニルモノマー(c1)及び芳香族系ビニルモノマー(c2)の共重合体(C)を含み、かつ前記共重合体(C)100質量%中の共役ジエン成分の割合が10質量%以下である、繊維強化熱可塑性樹脂組成物を提供する。

Description

繊維強化熱可塑性樹脂組成物
 本発明は、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材、電子機器部材及びスポーツ関連部材などに好適に用いられる繊維強化熱可塑性樹脂組成物に関する。
 炭素繊維・ガラス繊維・アラミド繊維は、金属と比較して低比重でありながら、弾性率及び強度に優れるため、それらと種々のマトリックス樹脂とを組み合わせた複合材料は、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材、電子機器部材及びスポーツ用品等の多くの分野に用いられている。特に炭素繊維とエポキシ樹脂や不飽和ポリエステル樹脂などの熱硬化性樹脂とを組み合わせた熱硬化性炭素繊維強化複合材料が広く用いられている。
 従来の熱硬化性炭素繊維強化複合材料は熱硬化に多大な時間を要する欠点があった。そこで近年では、熱可塑性樹脂をマトリックスとする炭素繊維強化熱可塑性複合材料(以下“CFRTP”と称する場合がある)がハイサイクル成形可能な複合材料として期待され開発がなされている。
 複雑形状の成形が可能な短繊維強化熱可塑性複合材料は既に実用化されているが、強化繊維の繊維長が短いため、軽金属と比較すると著しく低弾性率になってしまう問題がある。この為、連続繊維で強化した熱可塑性樹脂組成物が強く望まれている。
 このCFRTPに用いるマトリックス樹脂として安価な汎用プラスチック、例えばポリプロピレン(PP)、アクリロニトリル・ブタジエン・スチレン(ABS)が期待されているが、これら熱可塑性樹脂と特に炭素繊維との複合材料の機械的特性、特に曲げ強度は充分と言えるものではなかった。
 機械的特性の改善を目的として、炭素繊維に気相酸化や液相酸化等の酸化処理を施し、炭素繊維表面に酸素含有官能基を導入し炭素繊維とマトリックス樹脂との界面密着性を向上させる提案が行われている。
 例えば、特許文献1には炭素繊維に電解処理を施すことにより、界面接着性の指標である層間剪断強度を向上させる方法が提案されているが、該炭素繊維で強化された熱可塑性樹脂複合材料の機械的特性は、充分とは言えないものであった。
 更に、炭素繊維自体の問題としては脆く、集束性及び耐摩擦性に乏しいことが挙げられ、高次加工工程において毛羽や糸切れが発生しやすい。この問題改善を目的として、特許文献2及び3には炭素繊維にサイジング剤を塗布する方法が提案されているが、サイジング剤により、熱硬化性樹脂に対する炭素繊維の接着性は充分に付与することができるものの、依然として熱可塑性樹脂との界面接着性は低く、またサイジング処理された強化繊維で強化された熱可塑性樹脂複合材料の機械的特性は充分とは言えなかった。
 上述の通り、曲げ強度などの機械的特性を改善するためには、炭素繊維側の処理だけでは充分ではなく、十分な曲げ強度を持つ熱可塑性炭素繊維複合材料を既存技術で達成することはできなかった。
特開平04-361619号公報 米国特許第3,957,716号明細書 特公昭62-056266公報
 本発明の目的は、上記の従来技術における問題点に鑑み、機械的特性に優れた繊維強化熱可塑性樹脂組成物を提供することである。
 本発明者らは、連続強化繊維と熱可塑性樹脂を含有する繊維強化熱可塑性樹脂組成物において、前記熱可塑性樹脂が、シアノ基含有ビニルモノマー及び芳香族系ビニルモノマーの共重合体を含み、かつ共役ジエン成分の含有量を一定以下にすることにより、上記の目的を達成できることを見出した。
 すなわち本発明は、以下に示すものである。
[1] 連続強化繊維(A)及び熱可塑性樹脂(B)を含有する繊維強化熱可塑性樹脂組成物であって、前記熱可塑性樹脂(B)が、シアノ基含有ビニルモノマー(c1)及び芳香族系ビニルモノマー(c2)の共重合体(C)を含み、かつ前記共重合体(C)100質量%中の共役ジエン成分の割合が10質量%以下である、繊維強化熱可塑性樹脂組成物。
[2] 前記繊維強化熱可塑性樹脂組成物100質量%において、連続強化繊維(A)を1質量%~80質量%、及び熱可塑性樹脂(B)を20質量%~99質量%含有する、[1]に記載の繊維強化熱可塑性樹脂組成物。
[3] 前記連続強化繊維(A)の繊維長の平均が10mm以上である、[1]又は[2]に記載の繊維強化熱可塑性樹脂組成物。
[4] 前記連続強化繊維が、炭素繊維、ガラス繊維及びアラミド繊維からなる群より選択される何れかの1を含有する、[1]~[3]のいずれかの一に記載の繊維強化熱可塑性樹脂組成物。
[5] 前記熱可塑性樹脂(B)100質量%における共重合体(C)の割合が50~100質量%である、[1]~[4]のいずれかの一に記載の繊維強化熱可塑性樹脂組成物。
[6] 前記共重合体(C)100質量%におけるシアノ基含有ビニルモノマー(c1)の割合が15質量%~45質量%、かつ芳香族系ビニルモノマー(c2)の割合が55質量%~85質量%である、[1]~[5]のいずれか一項に記載の繊維強化熱可塑性樹脂組成物。
[7] 前記共重合体(C)が、シアノ基含有ビニルモノマー(c1)及び芳香族系ビニルモノマー(c2)からなる共重合体である、[1]~[6]のいずれかの一に記載の繊維強化熱可塑性樹脂組成物。
[8] 前記共重合体(C)がアクリロニトリル-スチレンである、[1]~[7]のいずれかの一に記載の繊維強化熱可塑性樹脂組成物。
 [9] [1]~[8]のいずれかの一に記載の繊維強化熱可塑性樹脂組成物を用いた成形体。
[10] 最大曲げ強度が300MPa以上である、[9]に記載の成形体。
 シアノ基に起因する複合材料の曲げ強度向上の効果及び連続繊維による補強効果により、機械的特性の優れた繊維強化熱可塑性樹脂組成物が得られる。
 本発明の繊維強化熱可塑性樹脂組成物は、連続強化繊維と熱可塑性樹脂を含有する繊維強化熱可塑性樹脂組成物であって、前記熱可塑性樹脂が、シアノ基含有ビニルモノマー及び芳香族系ビニルモノマーの共重合体を含む繊維強化熱可塑性樹脂組成物である。
 <連続強化繊維(A)>
 本発明で使用される、連続強化繊維(A)には、ガラス繊維、炭素繊維(例えば、PAN系炭素繊維、ピッチ系炭素繊維など)又はアラミド繊維等が挙げられ、弾性率の点から炭素繊維が好ましい。
 連続強化繊維(A)の繊維長は平均10mm以上であるものが好ましく、成形後の成形品よりも長い繊維を使用することがより好ましい。
 また、連続強化繊維の形態としては、一方向シート、織物シート、多軸積層シート等が挙げられ、具体例としては以下に示されるが、本発明を限定するものではない。
 ガラス繊維:(日東紡績社製)WF 350 100 BS6
 アラミド繊維:(帝人社製)トワロン
 炭素繊維:(有沢製作所社製)CFP3113
 本発明の連続強化繊維(A)の割合は、繊維強化熱可塑性樹脂組成物100質量%において、1質量%~80質量%であってよく、繊維強化熱可塑性樹脂組成物の機械的特性の観点から好ましくは40質量%~75質量%、より好ましくは50質量%~75質量%である。
 <熱可塑性樹脂(B)>
 本発明に用いられる熱可塑性樹脂(B)は、シアノ基含有ビニルモノマー(c1)及び芳香族系ビニルモノマー(c2)の共重合体(C)を含有する。ここで、シアノ基含有ビニルモノマー(c1)及び芳香族系ビニルモノマー(c2)の共重合体(C)とは、モノマー(c1)及びモノマー(c2)を含むモノマー混合物より生成する共重合体を意味し、そのモノマーの配列には、特に限定はなく、ランダム、ブロック、グラフト、交互などであってよい。
 シアノ基含有ビニルモノマー(c1)とは、シアノ基を有するビニルモノマーであり、例えばアクリロニトリル、メタクリロニトリルなどが挙げられる。機械的特性の観点からアクリロニトリルが好ましい。
 共重合体(C)100質量%において、シアノ基含有ビニルモノマー(c1)の割合は、15質量%~45質量%であってよく、機械的特性の理由から20質量%~40質量%であることが好ましい。すなわち、共重合体(C)を生成するモノマー混合物中のモノマー成分の合計に対して、シアノ基含有ビニルモノマー(c1)の割合が、15質量%~45質量%であってよく、20質量%~40質量%であることが好ましい。
 芳香族系ビニルモノマー(c2)とは、芳香環を有するビニルモノマーであり、例えばスチレン、ブロモスチレン、α-メチルスチレンなどが挙げられる。入手容易性の観点からスチレンが好ましい。
 共重合体(C)100質量%において芳香族系ビニルモノマー(c2)の割合は、55質量%~85質量%であってよく、機械的特性の観点から60質量%~80質量%であることが好ましい。すなわち、共重合体(C)を生成するモノマー混合物中のモノマー成分の合計に対して、芳香族系ビニルモノマー(c2)の割合が、55質量%~85質量%であってよく、60質量%~80質量%であることが好ましい。
 共重合体(C)を生成するモノマー混合物には、任意のビニル系モノマーを含んでいてもよい。そのようなビニル系モノマーとして、エチレンプロピレンジエン、アクリル酸エステル、2-クロロエチルビニルエーテルなどが挙げられる。好ましくは、共重合体(C)は、シアノ基含有ビニルモノマー(c1)及び芳香族系ビニルモノマー(c2)のみから生成される共重合体である。
 このような共重合体(C)しては例えば、アクリロニトリルスチレン(AS)樹脂、アクリロニトリルエチレンプロピレンジエンスチレン(AES)樹脂、アクリレートスチレンアクリロニトリル(ASA)樹脂が挙げられる。
 より具体的には、日本エイアンドエル社製ライタック-A 100PCF/120PCF、テクノポリマー社製サンレックス SAN-C/SAN-R/SAN-H/SAN-L/SAN-T、ダイセルポリマー社製セビアン-N 020/020SF/050/050SF/070SF/080SF、旭化成ケミカルズ社製スライタックAS 767/T8701/769/789/783/T8707/CS747、東レ社製トヨラックA20C-300/A25C-300などのいわゆるAS樹脂もしくはSAN樹脂が挙げられ、市販品を容易に入手することができる。ただし、発明の効果を奏する限りにおいて、これらに限定されない。
 熱可塑性樹脂(B)100質量%中の上記共重合体(C)の割合は50質量%~100質量%であってよく、80質量%~100質量%のものが安価な複合材料が得られるため好ましい。
 熱可塑性樹脂(B)には発明の効果を奏する限りにおいて前記共重合体(C)以外の成分を含んでいてもよく、その他の樹脂及び、離型剤、難燃剤、酸化防止剤などの各種添加剤を配合することができる。
 例えば耐熱性や耐薬性などの改善を目的としたエンジニアリングプラスチックやスーパーエンジニアリングプラスチックなど(ポリカーボネート、ポリアミド、ポリエステルなど)を加えてAS樹脂、AES樹脂、ASA樹脂などのアロイとして用いることが出来る。
 これらの成分の熱可塑性樹脂(B)100質量%中の割合は0~50質量%であってよく、0~20質量%のものが安価な複合材料が得られるため好ましい。
 一方、共重合体(C)中の共役ジエン成分は、10質量%以下である。すなわち、共重合体(C)を生成するモノマー混合物中のモノマー成分の合計に対して、共役ジエン成分の割合が、10質量%以下であることを意味する。
 共役ジエン成分とはひとつの単結合によって二重結合が隔てられ、共役したジエンを持つモノマーであり、例えばブタジエン、イソプレンなどが挙げられる。
 共重合体(C)中の共役ジエン成分が10質量%より多いと、曲げ強度が低下する。
 共重合体(C)としては特にAS樹脂が、安価かつ機械的特性に優れる複合材料が得られるため好ましく、AS樹脂中の組成(モノマー比)がアクリロニトリル/スチレン=20/80質量%~40/60質量%の範囲にあると特に好ましい。
<繊維強化熱可塑性樹脂組成物>
 本発明の繊維強化熱可塑性樹脂組成物中の連続強化繊維(A)と熱可塑性樹脂(B)の割合は、繊維強化熱可塑性樹脂組成物100質量%において、連続強化繊維(A)1質量%~80質量%、熱可塑性樹脂(B)20質量%~99質量%であってよく、繊維強化熱可塑性樹脂組成物の機械的特性の観点から、好ましくは、連続強化繊維(A)40質量%~75質量%、熱可塑性樹脂(B)25質量%~60質量%である。
 この範囲よりも強化繊維の割合が少ない場合、繊維強化熱可塑性樹脂組成物の機械的特性は軽金属と同等以下となってしまい、強化繊維割合がこの範囲よりも多い場合では、樹脂量が少なく、マトリックス樹脂による強化繊維の集束作用が機能せず、機械的特性が低下する。
 繊維強化熱可塑性樹脂組成物を製造する方法は特に限定されず、例えば、熱可塑性樹脂(B)の溶融樹脂を押出機のTダイから流し、繰り出された連続繊維シートと合流させ含浸させる方法、粉末樹脂を連続繊維上に分散し加熱溶融させる方法、樹脂をフィルム化して熱ラミネートする方法、樹脂を溶剤に溶解させた後に連続繊維に含浸・乾燥させる方法などがある。
 以下、実施例及び比較例により本発明を具体的に説明する。尚、発明の効果を奏する限りにおいて、適宜実施形態を変更することが出来る。
[実施例1]
 平織炭素繊維クロス(有沢製作所製、CFP-3113:質量200g/m、厚み0.2mm、繊維長タテ210mm、ヨコ300mm)を、AS樹脂(テクノポリマー社製「SANREX  290FF」(アクリロニトリル/スチレン=24/76質量%))25質量部とメチルエチルケトン(以下、単にMEKと表すこともある。)75質量部を含むワニスに30秒含浸させた後、100℃で1時間の乾燥を行うことにより溶剤を除去し、AS樹脂中に炭素繊維クロスが配されたプリプレグを得た。
 このプリプレグ材を6枚準備し、これらを重ねたものを、150℃に加熱された状態の平板形状の金型を用いてプレス時間5分、成形圧力1.0MPaの条件でプレス成形を行い、連続繊維強化AS樹脂シートを得た。
 得られたシートをJIS K 7074に従い曲げ特性を評価し、結果を表1に示した。
[比較例1]
 平織炭素繊維クロス(有沢製作所製、CFP-3113:質量200g/m、厚み0.2mm、繊維長タテ210mm、ヨコ300mm)を、ABS樹脂(テクノポリマー社製「テクノABS  DP611」(アクリロニトリル/ブタジエン/スチレン=16/40/44質量%))25質量部とMEK75質量部を含むワニスに30秒含浸させた後、100℃で1時間の乾燥を行うことにより溶剤を除去し、ABS樹脂中に炭素繊維クロスが配されたプリプレグを得た。
 このプリプレグ材を6枚準備し、これらを重ねたものを、150℃に加熱された状態の平板形状の金型を用いてプレス時間5分、成形圧力1.0MPaの条件でプレス成形を行い、連続繊維強化ABS樹脂シートを得た。
 得られたシートをJIS K 7074に従い曲げ特性を評価し、結果を表1に示した。
[比較例2]
 平織炭素繊維クロス(有沢製作所製、CFP-3113:質量200g/m、厚み0.2mm、繊維長タテ210mm、ヨコ300mm)を、PS樹脂(PSジャパン社製、PSJ-ポリスチレン)25質量部とMEK75質量部を含むワニスに30秒含浸させた後、100℃で1時間の乾燥を行うことにより溶剤を除去し、PS樹脂中に炭素繊維クロスが配されたプリプレグを得た。
 このプリプレグ材を6枚準備し、これらを重ねたものを、150℃に加熱された状態の平板形状の金型を用いてプレス時間5分、成形圧力1.0MPaの条件でプレス成形を行い、連続繊維強化PS樹脂シートを得た。
 得られたシートをJIS K 7074に従い曲げ特性を評価し、結果を表1に示した。
[比較例3]
 炭素短繊維強化ポリアミド(PA)66(東レ社製、トレカ短繊維ペレット、3101T40、繊維長1mm以下)を用いて射出成形により厚み1mm、幅15mm、長さ60mmの曲げ試験片を作成し、短繊維強化PA66樹脂シートを得た。シリンダー温度は290℃、金型温度は80℃とした。得られたシートをJIS K 7074に従い曲げ特性を評価し、結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 上記の実施例1及び比較例1~3から以下のことが言える。
 CFRTPにおいてマトリックス樹脂をAS樹脂にした場合、マトリックス樹脂がPS樹脂である場合と比較して、曲げ強度が向上する(実施例1、比較例2)。これは、AS樹脂に含まれるシアノ基が曲げ強度の向上に寄与していると考えられる。
 CFRTPにおいてマトリックス樹脂をAS樹脂にした場合、マトリックス樹脂がABS樹脂である場合と比較して、曲げ強度が向上する(実施例1、比較例1)。これは、ABS樹脂に含まれる共役ジエン成分が、複合材料の曲げ強度を低下させていると考えられる。
 CFRTPにおいて強化繊維を連続繊維とした場合、強化繊維が短繊維である場合と比較して、弾性率が大幅に向上する(実施例1、比較例3)。マトリックス樹脂に、複合材料の曲げ強度が高くなるPA66を使用しても、強化繊維が短繊維の場合に軽金属と同等の弾性率を得ることは困難であり、強化繊維を連続繊維とすることの重要性がわかる。

Claims (10)

  1.  連続強化繊維(A)及び熱可塑性樹脂(B)を含有する繊維強化熱可塑性樹脂組成物であって、前記熱可塑性樹脂(B)が、シアノ基含有ビニルモノマー(c1)及び芳香族系ビニルモノマー(c2)の共重合体(C)を含み、かつ前記共重合体(C)100質量%中の共役ジエン成分の割合が10質量%以下である、繊維強化熱可塑性樹脂組成物。
  2.  前記繊維強化熱可塑性樹脂組成物100質量%において、連続強化繊維(A)を1質量%~80質量%、及び熱可塑性樹脂(B)を20質量%~99質量%含有する、請求項1に記載の繊維強化熱可塑性樹脂組成物。
  3.  前記連続強化繊維(A)の繊維長の平均が10mm以上である、請求項1又は2に記載の繊維強化熱可塑性樹脂組成物。
  4.  前記連続強化繊維が、炭素繊維、ガラス繊維及びアラミド繊維からなる群より選択される何れかの1を含有する、請求項1~3のいずれか一項に記載の繊維強化熱可塑性樹脂組成物。
  5.  前記熱可塑性樹脂(B)100質量%における共重合体(C)の割合が50~100質量%である、請求項1~4のいずれか一項に記載の繊維強化熱可塑性樹脂組成物。
  6.  前記共重合体(C)100質量%におけるシアノ基含有ビニルモノマー(c1)の割合が15質量%~45質量%、かつ芳香族系ビニルモノマー(c2)の割合が55質量%~85質量%である、請求項1~5のいずれか一項に記載の繊維強化熱可塑性樹脂組成物。
  7.  前記共重合体(C)が、シアノ基含有ビニルモノマー(c1)及び芳香族系ビニルモノマー(c2)からなる共重合体である、請求項1~6のいずれか一項に記載の繊維強化熱可塑性樹脂組成物。
  8.  前記共重合体(C)がアクリロニトリル-スチレンである、請求項1~7のいずれか一項に記載の繊維強化熱可塑性樹脂組成物。
  9.  請求項1~8のいずれかの一に記載の繊維強化熱可塑性樹脂組成物を用いた成形体。
  10.  最大曲げ強度が300MPa以上である、請求項9に記載の成形体。
PCT/JP2016/061962 2015-04-21 2016-04-14 繊維強化熱可塑性樹脂組成物 WO2016171060A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680022299.8A CN107531968A (zh) 2015-04-21 2016-04-14 纤维强化热塑性树脂组合物
JP2017514086A JP6750616B2 (ja) 2015-04-21 2016-04-14 繊維強化熱可塑性樹脂組成物
US15/566,051 US20180127558A1 (en) 2015-04-21 2016-04-14 Fiber-reinforced thermoplastic resin composition
KR1020177033529A KR20170139108A (ko) 2015-04-21 2016-04-14 섬유 강화 열가소성 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015086990 2015-04-21
JP2015-086990 2015-04-21

Publications (1)

Publication Number Publication Date
WO2016171060A1 true WO2016171060A1 (ja) 2016-10-27

Family

ID=57144427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061962 WO2016171060A1 (ja) 2015-04-21 2016-04-14 繊維強化熱可塑性樹脂組成物

Country Status (6)

Country Link
US (1) US20180127558A1 (ja)
JP (1) JP6750616B2 (ja)
KR (1) KR20170139108A (ja)
CN (1) CN107531968A (ja)
TW (1) TWI692498B (ja)
WO (1) WO2016171060A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150978A1 (ja) * 2017-02-17 2018-08-23 日東紡績株式会社 樹脂付着強化繊維織物、及び繊維強化樹脂成形品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102563871B1 (ko) 2021-07-12 2023-08-09 재단법인 한국탄소산업진흥원 미분 셀룰로스섬유를 포함하는 고효율 섬유강화열가소성수지 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120155A (ja) * 1990-09-10 1992-04-21 Asahi Chem Ind Co Ltd 耐熱性に優れた軟質樹脂アロイ
JPH08120158A (ja) * 1994-10-27 1996-05-14 Polyplastics Co 長繊維強化樹脂構造体及びその成形品
JPH10330503A (ja) * 1997-05-28 1998-12-15 Chuo Puratetsuku Kk 繊維強化熱可塑性樹脂材料及び該材料を使用した成形用樹脂組成物
JP2005336368A (ja) * 2004-05-28 2005-12-08 Toray Ind Inc 熱可塑性樹脂組成物
WO2008102893A1 (ja) * 2007-02-23 2008-08-28 Daicel Polymer Ltd. 長繊維強化熱可塑性樹脂組成物
WO2013147257A1 (ja) * 2012-03-29 2013-10-03 三菱レイヨン株式会社 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812343A (en) * 1988-01-27 1989-03-14 W. H. Brady Co. Pultruded fiber reinforced plastic marking devices
JPH081698A (ja) * 1994-06-15 1996-01-09 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂成形体の製造方法およびそれに用いる金型
JP4120155B2 (ja) * 2000-11-13 2008-07-16 富士ゼロックス株式会社 ログデータ記録装置及びログデータ記録方法
CN1318700C (zh) * 2001-05-17 2007-05-30 东丽株式会社 纤维增强塑料制防音壁用板材及其防音壁
JP4272153B2 (ja) * 2002-07-29 2009-06-03 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 防炎ポリカーボネート成形組成物
US7432327B2 (en) * 2004-12-30 2008-10-07 Sabic Innovative Plastics Ip B.V. Transparent polymeric compositions comprising polysiloxane-polycarbonate copolymer, articles made therefrom and methods of making same
DK2148907T3 (da) * 2007-05-23 2012-07-23 Hexcel Composites Ltd Adhæsionsfremmende lag til kompositsamlinger
US7915329B2 (en) * 2008-12-30 2011-03-29 Sabic Innovative Plastics Ip B.V. Flame retardant resinous compositions and process
JP4558091B1 (ja) * 2009-10-29 2010-10-06 株式会社イノアックコーポレーション 繊維強化成形体及びその製造方法
JP2012240610A (ja) * 2011-05-23 2012-12-10 Kaneka Corp 航空機用構造材料及びその利用
CN104781316A (zh) * 2012-07-05 2015-07-15 帝人株式会社 复合基材
TWM470753U (zh) * 2013-10-08 2014-01-21 Hsin Yung Chien Co Ltd 纖維強化板材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120155A (ja) * 1990-09-10 1992-04-21 Asahi Chem Ind Co Ltd 耐熱性に優れた軟質樹脂アロイ
JPH08120158A (ja) * 1994-10-27 1996-05-14 Polyplastics Co 長繊維強化樹脂構造体及びその成形品
JPH10330503A (ja) * 1997-05-28 1998-12-15 Chuo Puratetsuku Kk 繊維強化熱可塑性樹脂材料及び該材料を使用した成形用樹脂組成物
JP2005336368A (ja) * 2004-05-28 2005-12-08 Toray Ind Inc 熱可塑性樹脂組成物
WO2008102893A1 (ja) * 2007-02-23 2008-08-28 Daicel Polymer Ltd. 長繊維強化熱可塑性樹脂組成物
WO2013147257A1 (ja) * 2012-03-29 2013-10-03 三菱レイヨン株式会社 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150978A1 (ja) * 2017-02-17 2018-08-23 日東紡績株式会社 樹脂付着強化繊維織物、及び繊維強化樹脂成形品の製造方法
TWI750319B (zh) * 2017-02-17 2021-12-21 日商日東紡績股份有限公司 附著樹脂之強化纖維織物及纖維強化樹脂成形品之製造方法

Also Published As

Publication number Publication date
TW201704315A (zh) 2017-02-01
JPWO2016171060A1 (ja) 2018-02-15
KR20170139108A (ko) 2017-12-18
JP6750616B2 (ja) 2020-09-02
US20180127558A1 (en) 2018-05-10
CN107531968A (zh) 2018-01-02
TWI692498B (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
JP2020114931A (ja) 繊維強化樹脂材料、それを用いた繊維強化樹脂成形体及び繊維強化樹脂材料の製造方法
CN101351583B (zh) 改进碳纤维与有机基质间的粘合性的方法
WO2016017080A1 (ja) 成形体及びその製造方法
TWI517966B (zh) 用於液體樹脂灌注成型應用之改質樹脂系統及與其有關之加工方法
JP2007016121A (ja) 複合材料用プリプレグおよび複合材料
WO2020040287A1 (ja) 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法
JP6750616B2 (ja) 繊維強化熱可塑性樹脂組成物
Jang et al. Influence of processing method on the fracture toughness of thermoplastic-modified, carbon-fiber-reinforced epoxy composites
WO2011148619A1 (ja) 繊維強化複合材料
JP6884983B2 (ja) 繊維強化熱可塑性樹脂組成物複合材料および成形体
JP2012206348A (ja) 繊維強化abs系樹脂材料及び成形体
JP2006249395A (ja) 炭素繊維強化樹脂
JP6922154B2 (ja) 繊維強化熱可塑性樹脂複合材料および成形体
JP2012224762A (ja) 繊維強化abs系樹脂成型体及びその製造方法
JP7360511B2 (ja) 熱可塑性樹脂エマルジョン、繊維集束用組成物、及びこれを用いた樹脂含浸繊維、成形品
JP7312888B2 (ja) 繊維集束用組成物、及びこれを用いた樹脂含浸繊維、熱可塑性樹脂組成物、成形品
JP7312887B2 (ja) 共重合体エマルジョン、繊維集束用組成物、及びこれを用いた樹脂含浸繊維、熱可塑性樹脂組成物、成形品
JP2015048450A (ja) ポリカーボネート樹脂成形材料およびその成形品
JP7312889B2 (ja) 繊維集束用組成物、及びこれを用いた樹脂含浸繊維、成形品
Bayraktar et al. A new approach to fabricate carbon fiber reinforced polymer with roller pre‐stretching method and characterization of their mechanical properties
KR20170143230A (ko) 절단된 섬유다발 프리프레그를 이용한 복합재료 성형물의 제조방법
TW202337982A (zh) 預浸體、預製件和纖維強化樹脂成形品
JP2006077202A (ja) 難燃性プリプレグ
CN115135474A (zh) 片状模塑料和成形品的制造方法
JP2024088819A (ja) 成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514086

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15566051

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177033529

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16783081

Country of ref document: EP

Kind code of ref document: A1