WO2020040287A1 - 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法 - Google Patents

炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法 Download PDF

Info

Publication number
WO2020040287A1
WO2020040287A1 PCT/JP2019/033031 JP2019033031W WO2020040287A1 WO 2020040287 A1 WO2020040287 A1 WO 2020040287A1 JP 2019033031 W JP2019033031 W JP 2019033031W WO 2020040287 A1 WO2020040287 A1 WO 2020040287A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
prepreg
sheet material
resin
fiber sheet
Prior art date
Application number
PCT/JP2019/033031
Other languages
English (en)
French (fr)
Inventor
徹 近藤
Original Assignee
阿波製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿波製紙株式会社 filed Critical 阿波製紙株式会社
Priority to JP2020538485A priority Critical patent/JP7425731B2/ja
Priority to CN201980055527.5A priority patent/CN112638998A/zh
Publication of WO2020040287A1 publication Critical patent/WO2020040287A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres

Definitions

  • the present invention relates to a carbon fiber sheet material, a prepreg, a molded product, a method for producing a carbon fiber sheet material, a method for producing a prepreg, and a method for producing a molded product.
  • Fiber reinforced sheet materials and fiber reinforced resin moldings using the same are used in various fields such as vehicles and aircraft.
  • FRP fiber-reinforced plastic
  • the plastic can achieve excellent strength that cannot be realized with plastic alone.
  • CFRP Carbon Fiber Reinforced Plastic
  • such a CFRP has a problem that the formability when manufacturing a molded body having a predetermined three-dimensional structure from a sheet material such as a prepreg is poor. Further, in the manufactured molded body, undesired variation is likely to occur in the distribution of the fiber and the resin material.For example, in the vicinity of the surface of the molded body, a region where a large amount of carbon fiber is exposed, There is a case where a small amount of the resin material and a region where a large amount of the resin material is exposed coexist, and there is a problem that the local strength is reduced.
  • An object of the present invention is to provide a molded article having excellent strength and reliability, and to provide a prepreg that can be used to produce a molded article having excellent strength and reliability with excellent moldability.
  • Such an object is achieved by the present invention described in the following (1) to (19).
  • the carbon fiber sheet material, wherein the average length of the carbon fiber is 1.0 mm or more and 10 mm or less.
  • a plurality of recycled carbon fibers Including a plurality of resin fibers, The carbon fiber, a binder that binds the resin fiber, A prepreg, wherein the average length of the carbon fibers is 1.0 mm or more and 10 mm or less.
  • a method for producing a carbon fiber sheet material comprising a step of mixing a plurality of recycled carbon fibers having an average length of 1.0 mm or more and 10 mm or less with a binder that binds the carbon fibers.
  • a method for producing a prepreg comprising a step of impregnating a carbon fiber sheet material produced by the method according to the above (16) with a resin material.
  • a method for producing a prepreg comprising:
  • a method for producing a molded body comprising a step of heating and pressing a prepreg produced using the method according to the above (17) or (18).
  • a prepreg that can be used to produce a molded article having excellent strength and reliability, and a molded article having excellent strength and reliability.
  • a carbon fiber sheet material that has excellent strength and reliability, and can be used to produce molded products with excellent strength and reliability with excellent moldability.
  • the manufacturing method which can be performed can be provided.
  • FIG. 1 is a plan view schematically showing a preferred embodiment of the carbon fiber sheet material of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing a preferred embodiment of the carbon fiber sheet material of the present invention.
  • FIG. 3 is a plan view schematically showing the first embodiment of the prepreg of the present invention.
  • FIG. 4 is a plan view schematically showing a second embodiment of the prepreg of the present invention.
  • sheet material is used to mean a single sheet material as well as a laminate, a mat shape, and a bulk shape in which these are laminated in a plurality of layers.
  • Carbon fiber sheet material First, the carbon fiber sheet material of the present invention will be described.
  • FIG. 1 is a plan view schematically showing a preferred embodiment of the carbon fiber sheet material of the present invention
  • FIG. 2 is a longitudinal sectional view schematically showing a preferred embodiment of the carbon fiber sheet material of the present invention.
  • the illustration of the deposit 2 and the binder 20 is omitted.
  • the carbon fiber sheet material 100 includes a plurality of recycled carbon fibers 1 and a binder 20 that binds the carbon fibers 1. And the average length of the carbon fiber 1 is 1.0 mm or more and 10 mm or less.
  • the carbon fiber sheet material 100 excellent in strength and reliability can be provided. Further, such a carbon fiber sheet material 100 can be suitably used for producing a molded article having excellent strength and reliability with excellent moldability.
  • the details are as follows. That is, since the carbon fiber 1 has a length in a predetermined range, the strength and the like of the carbon fiber sheet material 100 and the molded body are sufficiently improved, and the formability (bending) at the time of the heat and pressure molding is performed. Workability). Further, since the carbon fiber 1 is not longer than necessary, it is possible to effectively prevent the occurrence of defects during molding (for example, a local decrease in strength due to an undesired variation in distribution between the fiber and the resin material, a poor appearance, etc.). Can be prevented. Further, since molding defects are unlikely to occur, the present invention can be suitably applied to the production of a molded article having a fine structure or a molded article having a portion having a small radius of curvature.
  • the recycled carbon fiber generally has a relatively rough broken portion formed at the time of recycling, and is liable to be entangled or caught by fibers, and adheres to a resin material such as the binder 20. It is easy to become excellent.
  • the recycled amount of the carbon fiber can suitably control the amount of the attached matter 2 (coverage), the constituent material, the formation of the bundle 10 having a predetermined shape, and the like, as described later, according to the recycling conditions.
  • the quality of the carbon fiber sheet material 100 and the molded product can be stably and easily improved.
  • the effect of using recycled carbon fiber as the carbon fiber and the effect of adjusting the average length of the carbon fiber to a predetermined range act synergistically to provide the above-described excellent properties. It is considered that the effect can be obtained.
  • the use of the recycled carbon fiber 1 is preferable from the viewpoint of resource saving and reduction of environmental load.
  • the average length of the fibers for example, 100 fibers randomly included in the visual field of the microscope observation selected at random, 100 fibers are randomly extracted, and the average value of these lengths is adopted. Can be. When 100 fibers are not included in one visual field, a total of 100 fibers are randomly extracted in a plurality of different visual fields, and the average value of these lengths is adopted as the average length. be able to.
  • the carbon fiber sheet material 100 includes the recycled carbon fiber 1.
  • the average length of the carbon fiber 1 (the same applies to the prepreg 200 described later and the average length of the carbon fiber 1 contained in the molded article) may be 1.0 mm or more and 10 mm or less, but is 1.5 mm or more and 9.0 mm or less. It is preferably at most 2.0 mm, more preferably at most 2.0 mm, and even more preferably at least 2.5 mm and at most 7.5 mm. Thereby, the effect as described above is more remarkably exhibited.
  • the average width of the carbon fibers 1 (the same applies to the prepreg 200 described later and the average width of the carbon fibers 1 contained in the molded article) is preferably 1.0 ⁇ m or more and 20 ⁇ m or less, and 2.0 ⁇ m or more and 18 ⁇ m or less. Is more preferably 3.0 ⁇ m or more and 15 ⁇ m or less.
  • the average width of the fibers for example, 100 fibers randomly included in the visual field of the microscope observation selected at random are extracted at random, and the average value of these widths may be adopted. it can.
  • 100 fibers are not included in one visual field, a total of 100 fibers may be randomly extracted in a plurality of different visual fields, and the average value of these widths may be adopted as the average width. it can.
  • the carbon fiber 1 may be recycled, but is preferably recycled from carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastics: CFRP).
  • CFRP Carbon Fiber Reinforced Plastics
  • high-quality carbon fiber is used for CFRP, and by using the carbon fiber 1 recycled from CFRP, the quality of the carbon fiber sheet material 100, the molded article, and the like can be further improved.
  • CFRP as a recycled material, formation of a bundle 10 described later and adjustment of the composition and amount of the attached matter 2 can be more appropriately controlled.
  • the carbon fiber 1 may be recycled by any method.
  • the carbon fiber 1 can be suitably obtained by subjecting the crushed / crushed recycled raw material to a heat treatment.
  • the heat treatment conditions for the recycled material are not particularly limited, for example, a first heat treatment at a temperature of 300 ° C. or more and 400 ° C. or less in an air atmosphere (mainly a heat treatment for the purpose of thermal decomposition of a resin material) and air
  • a second heat treatment mainly a heat treatment for removing carbonized residues
  • carbon fibers satisfying the above conditions 1 can be suitably obtained.
  • the carbon fibers 1 a plurality of types of carbon fibers recycled under different conditions may be used.
  • the carbon fiber 1 has an organic component and / or a carbide of the organic component derived from a recycled material (for example, CFRP) of the carbon fiber 1 adhered to the surface thereof as the deposit 2.
  • a recycled material for example, CFRP
  • Such a deposit 2 generally has better adhesion to carbon fibers than a deposit attached to virgin carbon fibers as a post-treatment. Further, such attached matter 2 is excellent in affinity with the binder 20, the resin material (impregnated resin) 30, and the like. Therefore, it is advantageous in further improving the strength and reliability of the carbon fiber sheet material 100, the molded body and the like. In addition, since the deposit 2 is attached to the surface of the carbon fiber 1, the bundle 10 described later can be more suitably formed, and the strength and stability of the bundle 10 can be further improved. can do.
  • the organic component include a sizing agent and a matrix resin.
  • the coverage of the deposit 2 on the surface of the carbon fiber 1 (the same applies to the coverage of the deposit 2 on the surface of the second carbon fiber 11 included in the prepreg 200 and the molded body described later) is not particularly limited. It is preferably from 2% to 40%, more preferably from 4% to 30%, even more preferably from 6% to 20%.
  • the bundle 10 includes a bundle 10 in which a plurality of carbon fibers 1 are combined.
  • the plurality of carbon fibers 1 are bonded by the attached matter 2 to include the bundle 10 in a bundle.
  • the strength and stability of the bundle 10 itself can be improved, and the strength and reliability of the carbon fiber sheet material 100 and the molded body can be further improved.
  • the aspect ratio which is the ratio (L / W) of the length L to the width W of the bundle 10 (the same applies to the prepreg 200 described later and the bundle 10 included in the molded body) is 2 or more and 500 or less. Is preferably 10 or more and 450 or less, and more preferably 20 or more and 400 or less.
  • the strength and reliability of the carbon fiber sheet material 100 and the molded body are further improved while improving the moldability (workability such as bending) during the production of the molded body. Can be done.
  • the carbon fiber sheet material 100 (the same applies to a prepreg 200 and a molded body described later) includes a plurality of bundles 10, the average value of the aspect ratios of the plurality of bundles 10 is as described above. It is preferable to satisfy the following condition.
  • the average value of the aspect ratio is, for example, an average value obtained when 100 pieces of bundles 10 included in the visual field of the microscope observation selected at random are extracted at random and the aspect ratios thereof are obtained. Values can be adopted. When 100 bundles are not included in one visual field, a total of 100 bundles 10 are randomly extracted in a plurality of different visual fields, and an average value of aspect ratios of these is adopted. can do.
  • the carbon fiber sheet material 100 (the same applies to the prepreg 200, which will be described later), and carbon fibers not forming the bundle 10. 1 is also included.
  • the content of the carbon fiber 1 in the carbon fiber sheet material 100 is preferably 40% by mass or more and 99% by mass or less, more preferably 50% by mass or more and 98% by mass or less, and 60% by mass or more and 97% by mass. % Is more preferable.
  • the binder 20 has a function of binding the carbon fibers 1.
  • the binder 20 may constitute a part of the matrix resin in the molded product.
  • the binder 20 may directly bond the carbon fibers 1, or may bond the carbon fibers 1 to each other via another component (for example, the attachment 2 or other components described later). It may be.
  • binder 20 examples include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polylactic acid; polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6, nylon 6, and 6; polyvinyl alcohol (PVA), polyvinyl acetate, and polyphenylene sulfide.
  • Thermoplastic resins such as polyether ketone, polycarbonate, and phenoxy resins; thermosetting resins such as epoxy resins, phenolic resins, melamine resins, and unsaturated polyesters; and copolymers thereof, modified resins, and polymer alloys. And one or more selected from these can be used in combination.
  • the binder 20 is preferably polyvinyl alcohol. Thereby, the binder 20 can more suitably bind and fix the carbon fibers 1 to each other, and can impart a suitable drape property to the carbon fiber sheet material 100.
  • the content of the binder 20 in the carbon fiber sheet material 100 is preferably 0.5% by mass or more and 50% by mass or less, more preferably 1.0% by mass or more and 45% by mass or less, and 1.5% by mass or less. It is more preferable that the content be from 35% by mass to 35% by mass.
  • the carbon fiber sheet material 100 may include components (other components) other than those described above.
  • Such components include, for example, plasticizers, colorants, antioxidants, ultraviolet absorbers, light stabilizers, softeners, modifiers, rust inhibitors, fillers, surface lubricants, corrosion inhibitors, heat resistance Stabilizer, lubricant, primer, antistatic agent, polymerization inhibitor, crosslinking agent, catalyst, leveling agent, thickener, dispersant, antioxidant, flame retardant, hydrolysis inhibitor, corrosion inhibitor, virgin carbon fiber (Carbon fibers that are not recycled carbon fibers), carbon nanotubes, carbon nanofibers, cellulose nanofibers, fullerene, graphite, and the like.
  • the characteristics of the carbon fiber sheet material 100 and the molded product can be more appropriately controlled. More specifically, it is necessary to improve the strength and the like of the carbon fiber sheet material 100 and the molded body while sufficiently improving the moldability (workability such as bending) at the time of the heat and pressure molding. it can.
  • the content of virgin carbon fibers in the carbon fiber sheet material 100 is preferably 0.5% by mass or more and 40% by mass or less, more preferably 1.0% by mass or more and 30% by mass or less. More preferably, it is not less than 0.5% by mass and not more than 20% by mass. Thereby, the effect as described above is more remarkably exhibited.
  • the sum of the contents of the carbon fibers 1 (recycled carbon fibers) and the virgin carbon fibers in the carbon fiber sheet material 100 is preferably 50% by mass or more and 99.5% by mass or less, and more preferably 54% by mass or more.
  • the content is more preferably 99% by mass or less, further preferably 63% by mass or more and 98.5% by mass or less.
  • As the virgin carbon fiber, a plurality of types of carbon fibers manufactured under different conditions may be used.
  • the thickness of the carbon fiber sheet material 100 is not particularly limited, but is preferably 0.15 mm or more and 2.5 mm or less, more preferably 0.20 mm or more and 2.0 mm or less, and 0.25 mm or more. More preferably, it is 5 mm or less.
  • the carbon fiber sheet material 100 is not particularly limited.
  • the carbon fiber sheet material 100 can be used as a material used for manufacturing a prepreg or a molded body described later, or as a heat dissipation sheet / fin, a conductive sheet, an electromagnetic wave shielding material, an electrode material, or the like. .
  • the prepreg of the present invention is a sheet-like member that can be used for manufacturing a molded article of a predetermined shape by heat and pressure molding, and a plurality of recycled prepregs having an average length of 1.0 mm or more and 10 mm or less. It contains carbon fiber and resin material.
  • the resin material may be either a thermoplastic resin or a thermosetting resin.
  • the prepreg is a concept including a semi-preg imperfectly impregnated with a resin material.
  • FIG. 3 is a plan view schematically showing the first embodiment of the prepreg of the present invention.
  • the prepreg 200 of the present embodiment is obtained by impregnating the carbon fiber sheet material 100 with a resin material (impregnated resin) 30.
  • the resin material (impregnated resin) 30 constitutes a matrix resin in a molded article.
  • Examples of the resin material (impregnated resin) 30 include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polylactic acid; polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6, nylon 6,6; polyvinyl alcohol (PVA); Thermoplastic resins such as vinyl acetate, polyphenylene sulfide, polyether ketone, polycarbonate, phenoxy resin, epoxy resin, phenol resin, melamine resin, unsaturated polyester and the like, and copolymers and modified resins thereof, Polymer alloys and the like can be mentioned, and one or more selected from these can be used in combination.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polylactic acid
  • polyolefins such as polyethylene and polypropylene
  • polyamides such as nylon 6, nylon 6,6
  • PVA polyvinyl alcohol
  • Thermoplastic resins such as vinyl acetate, poly
  • the resin material (impregnated resin) 30 is preferably a thermosetting resin. Thereby, the strength, durability and the like of the molded body can be made particularly excellent.
  • the content of the resin material (impregnated resin) 30 in the prepreg 200 is preferably 3.0% by mass or more and 70% by mass or less, more preferably 4.0% by mass or more and 68% by mass or less.
  • the content is more preferably from 0.0% by mass to 65% by mass.
  • the strength and reliability of the molded body manufactured using the prepreg 200 are sufficiently improved, and the moldability at the time of manufacturing the molded body is further improved. be able to.
  • the content of the carbon fibers 1 in the prepreg 200 is preferably from 15% by mass to 90% by mass, more preferably from 18% by mass to 88% by mass, and from 22% by mass to 85% by mass. More preferably, there is.
  • the strength and reliability of the molded body manufactured using the prepreg 200 are sufficiently improved, and the moldability at the time of manufacturing the molded body is further improved. be able to.
  • the content of the carbon fiber 1 in the prepreg 200 is X RCF [mass%] and the content of the resin material (impregnated resin) 30 in the prepreg 200 is X IR [mass%], 0.035 ⁇ X it is more preferred that they satisfy the relationship of IR / X RCF ⁇ 5.7, more preferably satisfy the relation of 0.045 ⁇ X IR / X RCF ⁇ 4.4, 0.060 ⁇ X IR / X RCF ⁇ It is more preferable to satisfy the relationship of 3.0.
  • the prepreg 200 may include components (other components) other than those described above.
  • Such components include, for example, plasticizers, colorants, antioxidants, ultraviolet absorbers, light stabilizers, softeners, modifiers, rust inhibitors, fillers, surface lubricants, corrosion inhibitors, heat resistance Stabilizer, lubricant, primer, antistatic agent, polymerization inhibitor, crosslinking agent, catalyst, leveling agent, thickener, dispersant, antioxidant, flame retardant, hydrolysis inhibitor, corrosion inhibitor, virgin carbon fiber (Carbon fibers that are not recycled carbon fibers), carbon nanotubes, carbon nanofibers, cellulose nanofibers, fullerene, graphite, and the like.
  • the thickness of the prepreg 200 is not particularly limited, but is preferably 0.15 mm or more and 2.5 mm or less, more preferably 0.20 mm or more and 2.0 mm or less, and 0.25 mm or more and 1.5 mm or less. More preferably, there is.
  • the prepreg 200 can be more easily handled, easily manufactured, and more excellent in moldability when forming a molded body.
  • FIG. 4 is a plan view schematically showing a second embodiment of the prepreg of the present invention.
  • differences from the above-described embodiment will be mainly described, and description of the same items will be omitted.
  • the prepreg 200 of the present embodiment includes a plurality of recycled carbon fibers 1 and a plurality of resin fibers 40, a binder 20 that binds the carbon fibers 1 and the resin fibers 40, and an average length of the carbon fibers 1. Is 1.0 mm or more and 10 mm or less.
  • the resin fibers 40 constitute a matrix resin in the molded body.
  • the same conditions as those described for the carbon fiber sheet material 100 are satisfied for the carbon fiber 1, the attached matter 2, and the binder 20 except for the following conditions. Is preferred.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polylactic acid
  • polyolefins such as polyethylene and polypropylene
  • polyamides such as nylon 6, nylon 6,6
  • polyethers such as polyether ether ketone
  • thermoplastic resins such as polyvinyl acetate, polyphenylene sulfide, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene resin (ABS resin), polyvinyl chloride resin, phenoxy resin, epoxy resin, phenol resin, melamine resin, unsaturated
  • thermosetting resins such as polyester, copolymers thereof, modified resins, and polymer alloys, and one or more selected from these can be used in combination.
  • polypropylene polycarbonate, polyamide, polyetheretherketone, and polyphenylene sulfide are preferable.
  • the handling of the prepreg 200 becomes easier, and the moldability and the characteristics (strength, reliability, etc.) of the molded body at the time of production of the molded body can be compatible at a higher level.
  • the average length of the resin fiber 40 is not particularly limited, but is preferably 2.0 mm or more and 20 mm or less, more preferably 3.0 mm or more and 18 mm or less, and further preferably 4.0 mm or more and 16 mm or less. preferable.
  • the prepreg 200 can be more easily handled, the strength and reliability of the molded article manufactured using the prepreg 200, the moldability during the production of the molded article, and the like can be further improved.
  • the average length of the carbon fiber 1 is L RCF [mm] and the average length of the resin fiber 40 is L RF [mm], it is preferable that the relationship of 0.4 ⁇ L RF / L RCF ⁇ 20 is satisfied. , 0.8 ⁇ L RF / L RCF ⁇ 10, and more preferably 1.5 ⁇ L RF / L RCF ⁇ 6.0.
  • the prepreg 200 can be more easily handled, the strength and reliability of the molded article manufactured using the prepreg 200, the moldability during the production of the molded article, and the like can be further improved.
  • the content of the carbon fibers 1 in the prepreg 200 is preferably from 15% by mass to 90% by mass, more preferably from 18% by mass to 88% by mass, and from 22% by mass to 85% by mass. More preferably, there is.
  • the prepreg 200 can be more easily handled, the strength and reliability of the molded article manufactured using the prepreg 200, the moldability during the production of the molded article, and the like can be further improved.
  • the content of the binder 20 in the prepreg 200 is preferably 0.2% by mass or more and 20% by mass or less, more preferably 0.3% by mass or more and 15% by mass or less, and 0.6% by mass or more. More preferably, the content is 10% by mass or less.
  • the prepreg 200 can be more easily handled, the strength and reliability of the molded article manufactured using the prepreg 200, the moldability during the production of the molded article, and the like can be further improved.
  • the content of the resin fibers 40 in the prepreg 200 is preferably from 3.0% by mass to 75% by mass, more preferably from 4.0% by mass to 72% by mass, and more preferably 5.0% by mass. More preferably, it is at least 70% by mass.
  • the prepreg 200 can be more easily handled, the strength and reliability of the molded article manufactured using the prepreg 200, the moldability during the production of the molded article, and the like can be further improved.
  • the content of the carbon fiber 1 in the prepreg 200 is X RCF [mass%] and the content of the resin fiber 40 in the prepreg 200 is X RF [mass%], 0.22 ⁇ X RCF / X RF ⁇ 28. Is preferably satisfied, more preferably 0.28 ⁇ X RCF / X RF ⁇ 20, and even more preferably 0.35 ⁇ X RCF / X RF ⁇ 15. .
  • the prepreg 200 can be easily handled, the strength and reliability of the molded article manufactured using the prepreg 200, the moldability during the production of the molded article, and the like can be further improved.
  • the prepreg 200 may include components (other components) other than those described above.
  • Such components include, for example, plasticizers, colorants, antioxidants, ultraviolet absorbers, light stabilizers, softeners, modifiers, rust inhibitors, fillers, surface lubricants, corrosion inhibitors, heat resistance Stabilizer, lubricant, primer, antistatic agent, polymerization inhibitor, crosslinking agent, catalyst, leveling agent, thickener, dispersant, antioxidant, flame retardant, hydrolysis inhibitor, corrosion inhibitor, virgin carbon fiber (Carbon fibers that are not recycled carbon fibers), carbon nanotubes, carbon nanofibers, cellulose nanofibers, fullerene, graphite, and the like.
  • a plurality of carbon fibers are combined into a bundle as compared to a case where virgin carbon fibers are not used, for example. It is possible to more suitably adjust the ratio of the formed bundle to the non-bundle carbon fiber and the distribution of the length of the carbon fiber. As a result, the characteristics of the molded body can be more appropriately controlled. More specifically, the moldability (workability such as bending) at the time of hot press molding can be sufficiently improved, and the strength and the like of the molded article can be further improved.
  • the content of the virgin carbon fiber in the prepreg 200 is preferably 0.2% by mass or more and 35% by mass or less, more preferably 0.3% by mass or more and 26% by mass or less, and 0.6% by mass or less. % Or more and 17% by mass or less. Thereby, the effect as described above is more remarkably exhibited.
  • the relationship of VCF / XRCF ⁇ 1.0 is satisfied, more preferably, the relationship of 0.015 ⁇ XVCF / XRCF ⁇ 0.60 is satisfied, and 0.020 ⁇ XVCF / XRCF ⁇ . More preferably, the relationship of 0.33 is satisfied. Thereby, the effect as described above is more remarkably exhibited.
  • As the virgin carbon fiber, a plurality of types of carbon fibers manufactured under different conditions may be used.
  • the gap between the fibers may be impregnated with the resin material (impregnated resin) described in the first embodiment.
  • the molded article of the present invention is formed by heating and pressing the prepreg of the present invention. Thereby, a molded article excellent in strength and reliability can be provided.
  • the molded article of the present invention may have a portion formed by heating and pressing the prepreg of the present invention, and may further have a configuration such as a coating film.
  • the molded article of the present invention may be used for any purpose.
  • Examples of the application of the molded article of the present invention include constituent members of vehicles (eg, automobiles, bicycles, trains, aircraft, rockets, elevators, etc.). , Components of electronic and electric parts (for example, housing parts for portable terminals such as personal computers, mobile phones (including smartphones and PHSs), tablets, etc.), architectural and civil engineering structural members, furniture and the like. No.
  • the above-described carbon fiber sheet material 100 includes, for example, a process of mixing a plurality of recycled carbon fibers 1 having an average length of 1.0 mm or more and 10 mm or less and a binder 20 that binds the carbon fibers 1 (papermaking process). ) Can be produced.
  • a manufacturing method capable of stably manufacturing the carbon fiber sheet material 100 which is excellent in strength and reliability and can be used to manufacture a molded body having excellent strength and reliability with excellent moldability. can be provided.
  • At least a part of the surface of the carbon fiber 1 may be treated with a sizing agent or the like.
  • the adhesion to the resin material such as the binder 20 can be improved, and the strength and reliability of the carbon fiber sheet material 100 and the molded body can be further improved.
  • the sizing agent examples include an epoxy resin, a phenol resin, a polyethylene glycol, a polyurethane, a polyester, an emulsifier, and a surfactant.
  • the bundle 10 can be efficiently formed by setting the content to 0.01% by mass or more and 0.3% by mass or less. Can be.
  • the prepreg 200 according to the first embodiment described above uses, for example, a method having a step (impregnation step) of impregnating the carbon fiber sheet material 100 obtained through the above-described papermaking step with the resin material (impregnated resin) 30. And can be manufactured stably.
  • a sheet material made of a material containing an uncured (B-stage) thermosetting resin or a thermoplastic resin as the resin material (impregnated resin) 30 is thermally transferred to the carbon fiber sheet material 100. And a method of impregnating the carbon fiber sheet material 100 with a liquid resin material (impregnated resin) 30.
  • the prepreg 200 according to the second embodiment described above can be stably used, for example, by using a method including a step of mixing a plurality of carbon fibers 1, a plurality of resin fibers 40, and a binder 20 (papermaking step). Can be manufactured.
  • the carbon fiber sheet material 100 obtained through the paper making step is impregnated.
  • the carbon fiber 1 and the resin are mixed in the paper making step.
  • the use of the fibers 40 and the binder 20 does not require a subsequent impregnation step. Therefore, the productivity of the prepreg 200 can be improved.
  • the above-described molded body can be stably manufactured by using, for example, a method having a step (molding step) of heating and pressing the prepreg 200 manufactured as described above.
  • a plurality of prepregs 200 may be stacked.
  • the number of layers is not particularly limited, but is preferably 2 or more and 50 or less, and more preferably 3 or more and 30 or less.
  • these prepregs 200 may have different conditions or may have the same conditions.
  • an intermediate layer may be provided between adjacent prepregs 200.
  • a process of joining a plurality of prepregs 200 may be performed prior to the joining step. Examples of a method of joining a plurality of prepregs 200 include welding (including solvent welding and polymerization welding), fusion, and adhesion.
  • the heating temperature in the molding step varies depending on the type and content of the resin material (impregnated resin) 30 and the resin fiber 40, and is not particularly limited, but is preferably 100 ° C or more and 380 ° C or less, and 110 ° C or more and 350 ° C or less. Is more preferable, and the temperature is more preferably 120 ° C. or more and 300 ° C. or less.
  • the molding pressure in the molding step varies depending on the type and content of the resin material (impregnated resin) 30 and the resin fiber 40, and is not particularly limited, but is preferably 0.1 MPa or more and 15 MPa or less, and 0.2 MPa or more.
  • the pressure is more preferably 12 MPa or less, and even more preferably 0.3 MPa or more and 10 MPa or less.
  • the curing reaction of the thermosetting resin proceeds by heating in the molding step, and the obtained molded article also has excellent heat resistance and the like.
  • the method for producing a carbon fiber sheet material, the method for producing a prepreg, and the method for producing a molded article further include other steps (a pretreatment step, an intermediate treatment step, a post-treatment step, etc.) in addition to the above-described steps. May be.
  • the carbon fiber sheet material, prepreg, and molded article of the present invention are not limited to those manufactured by the above-described method, and may be manufactured by any method.
  • the configuration including the carbon fibers not forming the bundle is typically described. A configuration including only one of these may be included.
  • Example A1 First, 95 parts by mass of recycled carbon fiber (average fiber diameter (average width) 7.0 ⁇ m, average length 5.0 mm) and polyvinyl alcohol fiber as a binder (fineness 1.1 dtex, average length 3. The composition comprising 0 mm, weighted average density: 1.20 g / cm 3 ): 5.0 parts by mass was mixed and dispersed in water to prepare a papermaking slurry having a solid content of 0.03% by mass.
  • the humidified sheet produced in the papermaking step was heated and dried at 120 ° C., the polyvinyl alcohol fiber was melted, and the carbon fibers were bonded at intersections to obtain a carbon fiber sheet material.
  • the crushed and pulverized CFRP is subjected to a first heat treatment at 350 ° C. in an air atmosphere, and further to a second heat treatment at 550 ° C. in an air atmosphere. The obtained one was used.
  • Examples A2 and A3 A carbon fiber sheet material was manufactured in the same manner as in Example A1, except that the conditions of the recycled carbon fiber and the binder were changed as shown in Table 1.
  • Example A4 As a composition used for preparing a papermaking slurry, recycled carbon fibers (average fiber diameter (average width) 7.0 ⁇ m, average length 5.0 mm): 75 parts by mass, and polyvinyl alcohol fibers (fineness 1 0.1 decitex, average length 3.0 mm, weighted average density: 1.20 g / cm 3 ): 5.0 parts by mass, and virgin carbon fiber (fiber average diameter (average width) 7.0 ⁇ m, average length 6) 0.0mm): A carbon fiber sheet material was produced in the same manner as in Example A1, except that the composition consisted of 20 parts by mass.
  • Examples A5 and A6 A carbon fiber sheet material was produced in the same manner as in Example A1, except that the conditions of the recycled carbon fiber, binder, and virgin carbon fiber were changed as shown in Table 1.
  • Example A1 A carbon fiber sheet material was manufactured in the same manner as in Example A1, except that virgin carbon fibers were used instead of the recycled carbon fibers.
  • Example A2 A carbon fiber sheet material was manufactured in the same manner as in Example A1, except that a recycled carbon fiber having a length of 0.9 mm was used.
  • Example A3 A carbon fiber sheet material was produced in the same manner as in Example A1, except that the length of the recycled carbon fiber was 11 mm.
  • Table 1 summarizes the configurations of the carbon fiber sheet materials of the above Examples and Comparative Examples.
  • the recycled carbon fibers used in each of the above Examples and Comparative Examples A2 and A3 deposits derived from recycled materials were attached to a part of the surface.
  • the carbon fiber sheet material of each of the above Examples and Comparative Examples A2 and A3 contained not only a bundle containing a plurality of carbon fibers but also carbon fibers that did not constitute the bundle.
  • the thickness of the carbon fiber sheet material of each of the above Examples and Comparative Examples was 0.5 mm or more and 0.8 mm or less.
  • Example B1 First, a methanol solution (40% by mass) of a phenol resin as an uncured thermosetting resin was prepared.
  • the methanol solution was applied to the carbon fiber sheet material of Example A1 and impregnated. Thereafter, the mixture was heated to 80 ° C. to remove methanol, and further subjected to a heat treatment at 150 ° C. for 15 minutes to cure the phenol resin, thereby obtaining a prepreg.
  • Examples B2 to B6 A prepreg was manufactured in the same manner as in Example B1 except that the carbon fiber sheet material used in Examples A2 to A6 was used instead of the one manufactured in Example A1.
  • Example B7 First, recycled carbon fiber (average fiber diameter (average width) 7.0 ⁇ m, average length 5.0 mm): 40.2 parts by mass, and polyvinyl alcohol fiber as a binder (fineness 1.1 dtex, average length 3.0 mm, weighted average density: 1.20 g / cm 3 ): 2.9 parts by mass, and nylon 6 fiber as resin fiber (fineness 1.1 decitex, average length 6.0 mm): 56.9 parts by mass Was mixed and dispersed in water to prepare a papermaking slurry having a solid content of 0.03% by mass.
  • the humidified sheet produced in the papermaking process was dried by heating at 120 ° C., and the polyvinyl alcohol fiber was melted and the carbon fiber was bonded at the intersection to obtain a prepreg.
  • the nylon 6 fiber did not melt and maintained the fiber state.
  • the crushed and pulverized CFRP is subjected to a first heat treatment at 350 ° C. in an air atmosphere, and further to a second heat treatment at 550 ° C. in an air atmosphere. The obtained one was used.
  • Example B8 and B9 A prepreg was manufactured in the same manner as in Example B7, except that the conditions of the recycled carbon fiber, binder, and resin fiber were changed as shown in Table 2.
  • Example B10 As a composition used for preparing a papermaking slurry, recycled carbon fibers (average fiber diameter (average width) 7.0 ⁇ m, average length 5.0 mm): 35.2 parts by mass, and polyvinyl alcohol fiber ( Fineness 1.1 dtex, average length 3.0 mm, weighted average density: 1.20 g / cm 3 ): 2.9 parts by mass, and nylon 6 fiber as resin fiber (fineness 1.1 dtex, average length 6) 2.0 mm): 56.9 parts by mass and virgin carbon fiber (average fiber diameter (average width) 7.0 ⁇ m, average length 6.0 mm): 5.0 parts by mass, except that A prepreg was produced in the same manner as in Example B7.
  • Example B11 and B12 A prepreg was produced in the same manner as in Example B10, except that the conditions of the recycled carbon fiber, binder, resin fiber, and virgin carbon fiber were changed as shown in Table 2.
  • Comparative Examples B1 to B3 A prepreg was manufactured in the same manner as in Example B1, except that the carbon fiber sheet material used in Comparative Example A1 to A3 was used instead of the carbon fiber sheet material manufactured in Example A1.
  • Example B4 A prepreg was produced in the same manner as in Example B7, except that virgin carbon fiber was used instead of recycled carbon fiber.
  • Example B5 A prepreg was manufactured in the same manner as in Example B7, except that a recycled carbon fiber having a length of 0.9 mm was used.
  • Example B6 A prepreg was manufactured in the same manner as in Example B7, except that the length of the recycled carbon fiber was 11 mm.
  • Table 2 summarizes the structure of the prepreg of each of the above Examples and Comparative Examples.
  • the recycled carbon fibers used in each of the above Examples and Comparative Examples B2, B3, B5, and B6 had attached substances derived from recycled materials adhered to a part of their surfaces.
  • the prepregs of the respective Examples and Comparative Examples B2, B3, B5, and B6 contained not only a bundle containing a plurality of carbon fibers but also carbon fibers that did not constitute the bundle.
  • the thickness of the prepregs of each of the examples and comparative examples was 0.8 mm or more and 1.4 mm or less.
  • Example C1 First, 15 prepregs produced in Example B1 were laminated.
  • the prepreg laminate was subjected to a heat and pressure treatment under the conditions of 50 kg / cm 2 and 150 ° C.
  • the thermosetting resin contained in the prepreg was cured, and a flat molded body A in which a plurality of prepregs were bonded to each other between layers was obtained.
  • a molded body B was manufactured in the same manner as the molded body A except that the outer peripheral surface was formed into an L-shaped bent plate.
  • Examples C2 to C6 Molded articles (molded articles A and B) were produced in the same manner as in Example C1 except that the prepregs produced in Examples B2 to B6 were used instead of those produced in Example B1. .
  • Example C7 First, 15 prepregs produced in Example B4 were laminated.
  • the prepreg laminate was subjected to a heat and pressure treatment under the conditions of 50 kg / cm 2 and 250 ° C.
  • the thermoplastic resin contained in the prepreg was softened and melted, and a flat molded body A in which a plurality of prepregs were bonded to each other between layers was obtained.
  • a molded body B was manufactured in the same manner as the molded body A except that the outer peripheral surface was formed into an L-shaped bent plate.
  • Examples C8 to C12 Molded articles (molded articles A and B) were produced in the same manner as in Example C7 except that the prepregs produced in Examples B8 to B12 were used instead of those produced in Example B7. .
  • Molded articles (molded articles A and B) were produced in the same manner as in Example C1 except that the prepregs produced in Comparative Examples B1 to B3 were used instead of those produced in Example B1. .
  • Molded articles (molded articles A and B) were produced in the same manner as in Example C7 except that the prepregs produced in Comparative Examples B4 to B6 were used instead of those produced in Example B7. .
  • the compacts of the above Examples and Comparative Examples C2, C3, C5, and C6 contained not only a bundle containing a plurality of carbon fibers but also carbon fibers that did not constitute the bundle.
  • A The bending strength is 250 MPa or more.
  • B The bending strength is 200 MPa or more and less than 250 MPa.
  • C Flexural strength is 150 MPa or more and less than 200 MPa.
  • D The bending strength is 100 MPa or more and less than 150 MPa.
  • E Flexural strength is less than 100 MPa.
  • A There is no variation in the amount of exposed carbon fiber.
  • B A region where a large amount of carbon fiber is exposed coexists with a region where a small amount of carbon fiber is exposed and a large amount of resin material is exposed, and slight variations in the amount of carbon fiber exposure are observed.
  • C A region where a large amount of carbon fiber is exposed and a region where a small amount of carbon fiber is exposed and a large amount of resin material is exposed coexist, and the variation in the amount of carbon fiber exposed is clearly recognized.
  • D A region where a large amount of carbon fiber is exposed coexists with a region where a small amount of carbon fiber is exposed and a large amount of resin material is exposed, and variation in the amount of carbon fiber exposure is remarkably recognized.
  • the carbon fiber sheet material of the present invention includes a plurality of recycled carbon fibers and a binder that binds the carbon fibers, and the carbon fibers have an average length of 1.0 mm or more and 10 mm or less. Therefore, it is possible to provide a carbon fiber sheet material which is excellent in its own strength and reliability and can be used for producing a molded article having excellent strength and reliability with excellent moldability. Therefore, the carbon fiber sheet material of the present invention has industrial applicability.
  • REFERENCE SIGNS LIST 100 carbon fiber sheet material 200 prepreg 1 carbon fiber 2 adherent 10 bundled body 20 binder 30 resin material (impregnated resin) 40 ... resin fiber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Abstract

本発明の素繊維シート材は、複数本のリサイクルされた炭素繊維と、前記炭素繊維を結合するバインダーとを含み、前記炭素繊維の平均長さが1.0mm以上10mm以下であることを特徴とする。前記炭素繊維は、その表面に、当該炭素繊維のリサイクル原料由来の有機成分および/または当該有機成分の炭化物が付着物として付着したものであるのが好ましい。前記炭素繊維の表面への前記付着物の被覆率は2%以上40%以下であるのが好ましい。

Description

炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法
 本発明は、炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法に関する。
 繊維強化シート材やこれを用いた繊維強化樹脂成形体は、車両や航空機等の各種分野に使用されている。特に、繊維強化プラスチック(FRP)は、埋設される強化繊維でプラスチックが補強されることから、プラスチック単体では到底に実現できない優れた強度を実現することができる。
 中でも、特に優れた物性を有する炭素繊維を用いた炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics:CFRP)が注目されている(特許文献1参照)。
 従来のCFRPでは、炭素繊維の優れた物性を生かすため、長い炭素繊維が用いられ、炭素繊維を織物として用いることが多かった。
 しかしながら、このようなCFRPでは、プリプレグ等のシート材から、所定の三次元構造を有する成形体を製造する際の成形性に劣るという問題があった。また、製造された成形体においては、繊維と樹脂材料との分布に不本意なばらつきを生じやすく、例えば、成形体の表面付近に、炭素繊維が多く露出している領域と、炭素繊維の露出量が少なく樹脂材料が多く露出している領域とが併存する場合があり、局所的な強度が低下する等の問題があった。
 また、資源の有効利用等の観点から、炭素繊維についてもリサイクルを行うことが求められている。
 しかしながら、従来においては、リサイクルされた炭素繊維を用いた場合、満足のいく強度や信頼性が得られないという問題があった。
特開2014-077209号公報
 本発明の目的は、強度、信頼性に優れた成形体を提供すること、強度、信頼性に優れた成形体を優れた成形性で製造するのに用いることができるプリプレグを提供すること、それ自身の強度、信頼性に優れるとともに、強度、信頼性に優れた成形体を優れた成形性で製造するのに用いることができる炭素繊維シート材を提供すること、また、これらを安定的に製造することができる製造方法を提供することにある。
 このような目的は、下記(1)~(19)に記載の本発明により達成される。
 (1) 複数本のリサイクルされた炭素繊維と、
 前記炭素繊維を結合するバインダーとを含み、
 前記炭素繊維の平均長さが1.0mm以上10mm以下であることを特徴とする炭素繊維シート材。
 (2) 前記炭素繊維は、その表面に、当該炭素繊維のリサイクル原料由来の有機成分および/または当該有機成分の炭化物が付着物として付着したものである上記(1)に記載の炭素繊維シート材。
 (3) 前記炭素繊維の表面への前記付着物の被覆率が2%以上40%以下である上記(2)に記載の炭素繊維シート材。
 (4) 前記付着物により、複数本の前記炭素繊維が結合し、束状になった束状体を含む上記(2)または(3)に記載の炭素繊維シート材。
 (5) 前記束状体の幅に対する長さの比率であるアスペクト比が2以上500以下である上記(4)に記載の炭素繊維シート材。
 (6) 上記(1)ないし(5)のいずれかに記載の炭素繊維シート材に、樹脂材料を含浸させてなることを特徴とするプリプレグ。
 (7) 複数本のリサイクルされた炭素繊維と、
 複数本の樹脂繊維とを含み、
 前記炭素繊維、前記樹脂繊維を結合するバインダーと、
 前記炭素繊維の平均長さが1.0mm以上10mm以下であることを特徴とするプリプレグ。
 (8) 前記樹脂繊維の平均長さが2.0mm以上20mm以下である上記(7)に記載のプリプレグ。
 (9) 前記炭素繊維の含有率をXRCF[質量%]、前記樹脂繊維の含有率をXRF[質量%]としたとき、0.22≦XRCF/XRF≦28の関係を満足する上記(7)または(8)に記載のプリプレグ。
 (10) 前記炭素繊維の平均長さをLRCF[mm]、前記樹脂繊維の平均長さをLRF[mm]としたとき、0.4≦LRF/LRCF≦20の関係を満足する上記(7)ないし(9)のいずれかに記載のプリプレグ。
 (11) 前記炭素繊維は、その表面に、当該炭素繊維のリサイクル原料由来の有機成分および/または当該有機成分の炭化物が付着物として付着したものである上記(7)ないし(10)のいずれかに記載のプリプレグ。
 (12) 前記炭素繊維の表面への前記付着物の被覆率が2%以上40%以下である上記(11)に記載のプリプレグ。
 (13) 前記付着物により、複数本の前記炭素繊維が結合し、束状になった束状体を含む上記(11)または(12)に記載のプリプレグ。
 (14) 前記束状体の幅に対する長さの比率であるアスペクト比が2以上500以下である上記(13)に記載のプリプレグ。
 (15) 上記(6)ないし(14)のいずれかに記載プリプレグを加熱加圧成形してなることを特徴とする成形体。
 (16) 平均長さが1.0mm以上10mm以下である複数本のリサイクルされた炭素繊維と、該炭素繊維を結合するバインダーとを混抄する工程を有することを特徴とする炭素繊維シート材の製造方法。
 (17) 上記(16)に記載の方法を用いて製造された炭素繊維シート材に、樹脂材料を含浸させる工程を有することを特徴とするプリプレグの製造方法。
 (18) 平均長さが1.0mm以上10mm以下である複数本のリサイクルされた炭素繊維と、複数本の樹脂繊維と、前記炭素繊維、前記樹脂繊維を結合するバインダーとを混抄する工程を有することを特徴とするプリプレグの製造方法。
 (19) 上記(17)または(18)に記載の方法を用いて製造されたプリプレグを加熱加圧成形する工程を有することを特徴とする成形体の製造方法。
 本発明によれば、強度、信頼性に優れた成形体を提供すること、強度、信頼性に優れた成形体を優れた成形性で製造するのに用いることができるプリプレグを提供すること、それ自身の強度、信頼性に優れるとともに、強度、信頼性に優れた成形体を優れた成形性で製造するのに用いることができる炭素繊維シート材を提供すること、また、これらを安定的に製造することができる製造方法を提供することができる。
図1は、本発明の炭素繊維シート材の好適な実施形態を模式的に示す平面図である。 図2は、本発明の炭素繊維シート材の好適な実施形態を模式的に示す縦断面図である。 図3は、本発明のプリプレグの第1実施形態を模式的に示す平面図である。 図4は、本発明のプリプレグの第2実施形態を模式的に示す平面図である。
 以下、本発明の好適な実施形態について詳細に説明する。
 以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。また、本明細書において、「シート材」とは、単体のシート材のほか、これらを複数層に積層した積層体、マット状、塊状の形態のものを含む意味で使用する。
 [炭素繊維シート材]
 まず、本発明の炭素繊維シート材について説明する。
 図1は、本発明の炭素繊維シート材の好適な実施形態を模式的に示す平面図、図2は、本発明の炭素繊維シート材の好適な実施形態を模式的に示す縦断面図である。なお、図2中、付着物2、バインダー20の図示は省略した。
 炭素繊維シート材100は、複数本のリサイクルされた炭素繊維1と、炭素繊維1を結合するバインダー20とを含む。そして、炭素繊維1の平均長さが1.0mm以上10mm以下である。
 このような構成により、強度、信頼性に優れた炭素繊維シート材100を提供することができる。また、このような炭素繊維シート材100は、強度、信頼性に優れた成形体を優れた成形性で製造するのに好適に用いることができる。
 より詳しく説明すると以下のとおりである。すなわち、炭素繊維1が所定の範囲の長さを有していることにより、炭素繊維シート材100や成形体の強度等を十分に優れたものとしつつ、加熱加圧成形時の成形性(曲げ等の加工性)を優れたものとすることができる。また、炭素繊維1が必要以上に長くないため、成形時における不良の発生(例えば、繊維と樹脂材料との分布の不本意なばらつきによる局所的な強度の低下、外観不良等)を効果的に防止することができる。また、成形不良を生じにくいため、微細な構造を有する成形体や曲率半径の小さい部位を有する成形体の製造にも好適に適用することができる。また、熱履歴を受けた場合でも内部応力がたまりにくく、寸法精度を優れたものとすることができ、また、成形体の使用時における不本意な変形等も生じにくい。また、リサイクルされた炭素繊維は、一般に、リサイクル時に形成された破断部が比較的荒れた状態になりやすく、繊維同士の絡み、引っ掛かり等が起こりやすくなるとともに、バインダー20等の樹脂材料との密着性も優れたものになりやすい。また、リサイクルされた炭素繊維は、そのリサイクル条件により、後述するような付着物2の付着量(被覆率)や構成材料、所定の形状の束状体10の形成等を好適に制御することができ、炭素繊維シート材100や成形体等の品質を安定的かつ容易に優れたものとすることができる。このように、炭素繊維としてリサイクルされた炭素繊維を用いることによる効果と、炭素繊維の平均長さを所定の範囲に調整することによる効果とが相乗的に作用して、上記のような優れた効果が得られるものと考えられる。
 また、成形体の製造時に優れた成形性が得られるため、成形体の製造条件(例えば、温度、圧力等)を緩和することができる。したがって、製造装置として簡易な構成のものを用いたり、製造装置への負荷を抑制し、製造装置の長寿命化を図ったりすることができる。また、成形体の生産コスト抑制の観点からも有利である。
 また、炭素繊維の含有率を高めても、優れた成形性を維持することができるため、樹脂材料の含有率を低くすることができ、成形体において、炭素繊維が有している優れた性質(例えば、強度、熱伝導性、導電性等)をより効果的に発揮させることができる。
 また、リサイクルされた炭素繊維1を用いることにより、省資源、環境負荷の低減等の観点からも好ましい。
 これに対し、上記のような条件を満足しないと上記のような優れた効果は得られない。
 例えば、リサイクルされた炭素繊維を用いないで、その代わりにバージンの炭素繊維を用いた場合、炭素繊維の端部の形状を好適なものに制御することや束状体の形成が困難であり、また、炭素繊維の表面に強固に付着物を付着させることが困難である。
 また、炭素繊維の平均長さが前記下限値未満であると、炭素繊維シート材、成形体等の強度を十分に優れたものとすることができない。
 また、炭素繊維の平均長さが前記上限値を超えると、成形時における不良等が発生しやすくなり、炭素繊維シート材、成形体等の信頼性を十分に優れたものとすることができない。
 なお、本発明において、繊維の平均長さとしては、例えば、無作為に選択した顕微鏡観察の視野中に含まれる繊維を無作為に100本抽出し、これらの長さの平均値を採用することができる。なお、1つの視野中に100本の繊維が含まれない場合、異なる複数の視野において、合計100本の繊維を無作為に抽出し、これらの長さの平均値を、平均長さとして採用することができる。
(リサイクルされた炭素繊維)
 前述したように、炭素繊維シート材100は、リサイクルされた炭素繊維1を含むものである。
 炭素繊維1の平均長さ(後述するプリプレグ200、成形体に含まれる炭素繊維1の平均長さについても同様)は、1.0mm以上10mm以下であればよいが、1.5mm以上9.0mm以下であるのが好ましく、2.0mm以上8.0mm以下であるのがより好ましく、2.5mm以上7.5mm以下であるのがさらに好ましい。
 これにより、前述したような効果がより顕著に発揮される。
 炭素繊維1の平均幅(後述するプリプレグ200、成形体に含まれる炭素繊維1の平均幅についても同様)は、1.0μm以上20μm以下であるのが好ましく、2.0μm以上18μm以下であるのがより好ましく、3.0μm以上15μm以下であるのがさらに好ましい。
 なお、本明細書において、繊維の平均幅としては、例えば、無作為に選択した顕微鏡観察の視野中に含まれる繊維を無作為に100本抽出し、これらの幅の平均値を採用することができる。なお、1つの視野中に100本の繊維が含まれない場合、異なる複数の視野において、合計100本の繊維を無作為に抽出し、これらの幅の平均値を、平均幅として採用することができる。
 炭素繊維1は、リサイクルされたものであればよいが、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics:CFRP)からリサイクルされたものであるのが好ましい。
 CFRPには、一般に良質の炭素繊維が用いられており、CFRPからリサイクルされた炭素繊維1を用いることにより、炭素繊維シート材100、成形体等の品質をより優れたものとすることができる。また、CFRPをリサイクル原料として用いることにより、後述する束状体10の形成や、付着物2の組成や付着量等の調整をより好適に制御することができる。
 炭素繊維1は、いかなる方法でリサイクルしてもよいが、例えば、破砕・粉砕したリサイクル原料に熱処理を施すことにより、好適に得ることができる。
 リサイクル原料に対する熱処理条件は、特に限定されないが、例えば、空気雰囲気下での300℃以上400℃以下の温度の第1の加熱処理(主として、樹脂材料の熱分解を目的とする熱処理)と、空気雰囲気下での400℃以上600℃以下の温度の第2の加熱処理(主に、炭化した残留物の除去を目的とする熱処理)とを行うことにより、上記のような条件を満足する炭素繊維1を好適に得ることができる。
 なお、炭素繊維1としては、異なる条件でリサイクルした複数種の炭素繊維を用いてもよい。
 本実施形態では、炭素繊維1は、その表面に、炭素繊維1のリサイクル原料(例えば、CFRP等)由来の有機成分および/または当該有機成分の炭化物が付着物2として付着したものである。
 このような付着物2は、一般に、バージンの炭素繊維に後処理として付着させた付着物に比べて、炭素繊維に対する密着性に優れている。また、このような付着物2は、バインダー20や樹脂材料(含浸樹脂)30等との親和性に優れている。したがって、炭素繊維シート材100、成形体等の強度、信頼性のさらなる向上を図る上で有利である。また、炭素繊維1の表面に付着物2が付着していることにより、後述する束状体10をより好適に形成することができ、束状体10の強度、安定性をより優れたものとすることができる。
 前記有機成分としては、例えば、サイジング剤、マトリックス樹脂等が挙げられる。
 炭素繊維1の表面への付着物2の被覆率(後述するプリプレグ200、成形体に含まれる第2の炭素繊維11の表面への付着物2の被覆率についても同様)は、特に限定されないが、2%以上40%以下であるのが好ましく、4%以上30%以下であるのがより好ましく、6%以上20%以下であるのがさらに好ましい。
 これにより、炭素繊維シート材100や成形体の強度、信頼性をより向上させることができる。
 また、本実施形態では、複数本の炭素繊維1が結合し、束状になった束状体10を含んでいる。
 これにより、炭素繊維シート材100や成形体の強度、信頼性をより向上させることができる。
 特に、本実施形態では、付着物2により、複数本の炭素繊維1が結合し、束状になった束状体10を含んでいる。
 これにより、束状体10自体の強度、安定性を向上させることができ、炭素繊維シート材100や成形体の強度、信頼性をさらに向上させることができる。
 束状体10の幅Wに対する長さLの比率(L/W)であるアスペクト比(後述するプリプレグ200、成形体中に含まれる束状体10についても同様)は、2以上500以下であるのが好ましく、10以上450以下であるのがより好ましく、20以上400以下であるのがさらに好ましい。
 このような条件を満足することにより、成形体の製造時における成形性(曲げ等の加工性)等をより優れたものとしつつ、炭素繊維シート材100や成形体の強度、信頼性をさらに向上させることができる。
 なお、炭素繊維シート材100(後述するプリプレグ200、成形体についても同様)が複数個の束状体10を含んでいる場合、これら複数個の束状体10についてのアスペクト比の平均値が前記のような条件を満足するのが好ましい。
 なお、アスペクト比の平均値は、例えば、無作為に選択した顕微鏡観察の視野中に含まれる束状体10を無作為に100個抽出し、これらについてのアスペクト比を求めた場合のこれらの平均値を採用することができる。なお、1つの視野中に100個の束状体が含まれない場合、異なる複数の視野において、合計100個の束状体10を無作為に抽出し、これらについてのアスペクト比の平均値を採用することができる。
 また、図示の構成では、炭素繊維シート材100(後述するプリプレグ200、成形体についても同様)には、束状体10を構成する炭素繊維1に加えて、束状体10を構成しない炭素繊維1も含まれている。
 これにより、優れた強度と取り扱いのし易さ(成形性を含む)とをより高いレベルで両立することができる。
 炭素繊維シート材100中における炭素繊維1の含有率は、40質量%以上99質量%以下であるのが好ましく、50質量%以上98質量%以下であるのがより好ましく、60質量%以上97質量%以下であるのがさらに好ましい。
 このような条件を満足することにより、炭素繊維1が本来有している特徴がより効果的に発揮され、炭素繊維シート材100や成形体の強度、信頼性等をより優れたものとすることができる。
(バインダー)
 バインダー20は、炭素繊維1を結合する機能を有している。また、バインダー20が、炭素繊維シート材100を用いて製造される成形体中に残存するものである場合、成形体においてマトリックス樹脂の一部を構成するものであってもよい。
 なお、バインダー20は、炭素繊維1を直接結合するものであってもよいし、他の成分(例えば、付着物2や後述するその他の成分等)を介して、炭素繊維1同士を結合するものであってもよい。
 バインダー20としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ナイロン6、ナイロン6,6等のポリアミド;ポリビニルアルコール(PVA)、ポリ酢酸ビニル、ポリフェニレンサルファイド、ポリエーテルケトン、ポリカーボネート、フェノキシ樹脂等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル等の熱硬化性樹脂や、これらの共重合体や、変性樹脂、ポリマーアロイ等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 中でも、バインダー20は、ポリビニルアルコールであるのが好ましい。
 これにより、バインダー20が炭素繊維1同士をより好適に結合、固定化することができ、炭素繊維シート材100に、好適なドレープ性を付与することができる。
 炭素繊維シート材100中におけるバインダー20の含有率は、0.5質量%以上50質量%以下であるのが好ましく、1.0質量%以上45質量%以下であるのがより好ましく、1.5質量%以上35質量%以下であるのがさらに好ましい。
 このような条件を満足することにより、炭素繊維1が本来有している特徴がより効果的に発揮され、炭素繊維シート材100や成形体の強度、信頼性等をより優れたものとすることができる。
(その他の成分)
 炭素繊維シート材100は、前述した以外の成分(その他の成分)を含んでいてもよい。
 このような成分としては、例えば、可塑剤、着色剤、酸化防止剤、紫外線吸収剤、光安定剤、軟化剤、改質剤、防錆剤、充填剤、表面潤滑剤、腐食防止剤、耐熱安定剤、滑剤、プライマー、帯電防止剤、重合禁止剤、架橋剤、触媒、レベリング剤、増粘剤、分散剤、老化防止剤、難燃剤、加水分解防止剤、腐食防止剤、バージンの炭素繊維(リサイクルされた炭素繊維ではない炭素繊維)、カーボンナノチューブ、カーボンナノファイバー、セルロースナノファイバー、フラーレン、グラファイト等が挙げられる。
 特に、リサイクルされた炭素繊維1とともに、バージンの炭素繊維(図示せず)を含むことにより、例えば、バージンの炭素繊維を用いない場合に比べて、複数本の炭素繊維が結合して束状になった束状体と束状になっていない炭素繊維との比率や、炭素繊維の長さの分布をより好適に調整することができる。その結果、炭素繊維シート材100や成形体の特性をより好適に制御することができる。より具体的には、加熱加圧成形時の成形性(曲げ等の加工性)を十分に優れたものとしつつ、炭素繊維シート材100や成形体の強度等をより優れたものとすることができる。
 炭素繊維シート材100中におけるバージンの炭素繊維の含有率は、0.5質量%以上40質量%以下であるのが好ましく、1.0質量%以上30質量%以下であるのがより好ましく、1.5質量%以上20質量%以下であるのがさらに好ましい。
 これにより、前述したような効果がより顕著に発揮される。
 また、炭素繊維シート材100中におけるリサイクルされた炭素繊維1の含有率をXRCF[質量%]、炭素繊維シート材100中におけるバージンの炭素繊維の含有率をXVCF[質量%]としたとき、0.006≦XVCF/XRCF≦1.0の関係を満足するのが好ましく、0.015≦XVCF/XRCF≦0.60の関係を満足するのがより好ましく、0.020≦XVCF/XRCF≦0.33の関係を満足するのがさらに好ましい。
 これにより、前述したような効果がより顕著に発揮される。
 炭素繊維シート材100中における炭素繊維1(リサイクルされた炭素繊維)とバージンの炭素繊維との含有率の和は、50質量%以上99.5質量%以下であるのが好ましく、54質量%以上99質量%以下であるのがより好ましく、63質量%以上98.5質量%以下であるのがさらに好ましい。
 なお、バージンの炭素繊維としては、異なる条件で製造した複数種の炭素繊維を用いてもよい。
 炭素繊維シート材100の厚さは、特に限定されないが、0.15mm以上2.5mm以下であるのが好ましく、0.20mm以上2.0mm以下であるのがより好ましく、0.25mm以上1.5mm以下であるのがさらに好ましい。
 これにより、炭素繊維シート材100の取り扱いのし易さ、プリプレグ200等の製造のし易さ、成形体とする時の成形性等をより優れたものとすることができる。
 炭素繊維シート材100の用途は、特に限定されず、例えば、後述するプリプレグや成形体の製造に用いるものや、放熱シート・フィン、導電性シート、電磁波シールド材、電極材等として用いることができる。
 [プリプレグ]
 次に、本発明のプリプレグについて説明する。
 本発明のプリプレグは、加熱加圧成形により、所定の形状の成形体の製造に用いることができるシート状の部材であり、平均長さが1.0mm以上10mm以下である複数本のリサイクルされた炭素繊維を含むとともに、樹脂材料を含んでいる。樹脂材料は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。なお、本発明において、プリプレグには、樹脂材料が不完全に含浸しているセミプレグも含む概念である。
<第1実施形態>
 図3は、本発明のプリプレグの第1実施形態を模式的に示す平面図である。
 本実施形態のプリプレグ200は、炭素繊維シート材100に、樹脂材料(含浸樹脂)30を含浸させてなるものである。
 これにより、強度、信頼性に優れた成形体を優れた成形性で製造するのに用いることができるプリプレグ200を提供することができる。
 また、成形体の製造時に優れた成形性が得られるため、成形体の製造条件(例えば、温度、圧力等)を緩和することができる。したがって、製造装置として簡易な構成のものを用いたり、製造装置への負荷を抑制し、製造装置の長寿命化を図ったりすることができる。また、成形体の生産コスト抑制の観点からも有利である。
 また、炭素繊維の含有率を高めても、優れた成形性を維持することができるため、樹脂材料の含有率を低くすることができ、成形体において、炭素繊維が有している優れた性質(例えば、強度、熱伝導性、導電性等)をより効果的に発揮させることができる。
 また、リサイクルされた炭素繊維1を用いることにより、省資源、環境負荷の低減等の観点からも好ましい。
 なお、樹脂材料(含浸樹脂)30は、成形体においてマトリックス樹脂を構成するものである。
 樹脂材料(含浸樹脂)30としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ナイロン6、ナイロン6,6等のポリアミド;ポリビニルアルコール(PVA)、ポリ酢酸ビニル、ポリフェニレンサルファイド、ポリエーテルケトン、ポリカーボネート、フェノキシ樹脂等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル等の熱硬化性樹脂や、これらの共重合体や、変性樹脂、ポリマーアロイ等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 中でも、樹脂材料(含浸樹脂)30は、熱硬化性樹脂であるのが好ましい。
 これにより、成形体の強度、耐久性等を特に優れたものとすることができる。
 プリプレグ200中における樹脂材料(含浸樹脂)30の含有率は、3.0質量%以上70質量%以下であるのが好ましく、4.0質量%以上68質量%以下であるのがより好ましく、5.0質量%以上65質量%以下であるのがさらに好ましい。
 このような条件を満足することにより、プリプレグ200を用いて製造される成形体の強度、信頼性を十分に優れたものとしつつ、成形体を製造する際の成形性をより優れたものとすることができる。
 プリプレグ200中における炭素繊維1の含有率は、15質量%以上90質量%以下であるのが好ましく、18質量%以上88質量%以下であるのがより好ましく、22質量%以上85質量%以下であるのがさらに好ましい。
 このような条件を満足することにより、プリプレグ200を用いて製造される成形体の強度、信頼性を十分に優れたものとしつつ、成形体を製造する際の成形性をより優れたものとすることができる。
 また、プリプレグ200中における炭素繊維1の含有率をXRCF[質量%]、プリプレグ200中における樹脂材料(含浸樹脂)30の含有率をXIR[質量%]としたとき、0.035≦XIR/XRCF≦5.7の関係を満足するのが好ましく、0.045≦XIR/XRCF≦4.4の関係を満足するのがより好ましく、0.060≦XIR/XRCF≦3.0の関係を満足するのがさらに好ましい。
 このような条件を満足することにより、プリプレグ200を用いて製造される成形体の強度、信頼性を十分に優れたものとしつつ、成形体を製造する際の成形性をより優れたものとすることができる。
 プリプレグ200は、前述した以外の成分(その他の成分)を含んでいてもよい。
 このような成分としては、例えば、可塑剤、着色剤、酸化防止剤、紫外線吸収剤、光安定剤、軟化剤、改質剤、防錆剤、充填剤、表面潤滑剤、腐食防止剤、耐熱安定剤、滑剤、プライマー、帯電防止剤、重合禁止剤、架橋剤、触媒、レベリング剤、増粘剤、分散剤、老化防止剤、難燃剤、加水分解防止剤、腐食防止剤、バージンの炭素繊維(リサイクルされた炭素繊維ではない炭素繊維)、カーボンナノチューブ、カーボンナノファイバー、セルロースナノファイバー、フラーレン、グラファイト等が挙げられる。
 プリプレグ200の厚さは、特に限定されないが、0.15mm以上2.5mm以下であるのが好ましく、0.20mm以上2.0mm以下であるのがより好ましく、0.25mm以上1.5mm以下であるのがさらに好ましい。
 これにより、プリプレグ200の取り扱いのし易さ、製造のし易さ、成形体とする時の成形性等をより優れたものとすることができる。
<第2実施形態>
 図4は、本発明のプリプレグの第2実施形態を模式的に示す平面図である。以下の説明では、前述した実施形態との相違点について中心的に説明し、同様の事項についての説明は省略する。
 本実施形態のプリプレグ200は、複数本のリサイクルされた炭素繊維1と、複数本の樹脂繊維40とを含み、炭素繊維1や樹脂繊維40を結合するバインダー20と、炭素繊維1の平均長さが1.0mm以上10mm以下である。
 これにより、強度、信頼性に優れた成形体を優れた成形性で製造するのに用いることができるプリプレグ200を提供することができる。
 また、成形体の製造時に優れた成形性が得られるため、成形体の製造条件(例えば、温度、圧力等)を緩和することができる。したがって、製造装置として簡易な構成のものを用いたり、製造装置への負荷を抑制し、製造装置の長寿命化を図ったりすることができる。また、成形体の生産コスト抑制の観点からも有利である。
 また、炭素繊維の含有率を高めても、優れた成形性を維持することができるため、樹脂材料の含有率を低くすることができ、成形体において、炭素繊維が有している優れた性質(例えば、強度、熱伝導性、導電性等)をより効果的に発揮させることができる。
 また、リサイクルされた炭素繊維1を用いることにより、省資源、環境負荷の低減等の観点からも好ましい。
 なお、樹脂繊維40は、成形体においてマトリックス樹脂を構成するものである。
 また、本実施形態のプリプレグ200においては、炭素繊維1、付着物2、バインダー20に関しては、以下に述べる条件以外の条件については、炭素繊維シート材100で述べたのと同様の条件を満足するのが好ましい。
 樹脂繊維40の構成材料としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ナイロン6、ナイロン6,6等のポリアミド;ポリエーテルエーテルケトン等のポリエーテルケトン;ポリ酢酸ビニル、ポリフェニレンサルファイド、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン系樹脂(ABS樹脂)、ポリ塩化ビニル系樹脂、フェノキシ樹脂等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル等の熱硬化性樹脂や、これらの共重合体や、変性樹脂、ポリマーアロイ等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 中でも、樹脂繊維40の構成材料としては、ポリプロピレン、ポリカーボネート、ポリアミド、ポリエーテルエーテルケトン、ポリフェニレンサルファイドが好ましい。
 これにより、プリプレグ200の取り扱いがより容易になるとともに、成形体の製造時における成形性と成形体の特性(強度、信頼性等)とを、より高いレベルで両立することができる。
 樹脂繊維40の平均長さは、特に限定されないが、2.0mm以上20mm以下であるのが好ましく、3.0mm以上18mm以下であるのがより好ましく、4.0mm以上16mm以下であるのがさらに好ましい。
 これにより、プリプレグ200の取り扱いのし易さ、プリプレグ200を用いて製造される成形体の強度、信頼性、成形体の製造時における成形性等をより優れたものとすることができる。
 炭素繊維1の平均長さをLRCF[mm]、樹脂繊維40の平均長さをLRF[mm]としたとき、0.4≦LRF/LRCF≦20の関係を満足するのが好ましく、0.8≦LRF/LRCF≦10の関係を満足するのがより好ましく、1.5≦LRF/LRCF≦6.0の関係を満足するのがさらに好ましい。
 これにより、プリプレグ200の取り扱いのし易さ、プリプレグ200を用いて製造される成形体の強度、信頼性、成形体の製造時における成形性等をより優れたものとすることができる。
 プリプレグ200中における炭素繊維1の含有率は、15質量%以上90質量%以下であるのが好ましく、18質量%以上88質量%以下であるのがより好ましく、22質量%以上85質量%以下であるのがさらに好ましい。
 これにより、プリプレグ200の取り扱いのし易さ、プリプレグ200を用いて製造される成形体の強度、信頼性、成形体の製造時における成形性等をより優れたものとすることができる。
 プリプレグ200中におけるバインダー20の含有率は、0.2質量%以上20質量%以下であるのが好ましく、0.3質量%以上15質量%以下であるのがより好ましく、0.6質量%以上10質量%以下であるのがさらに好ましい。
 これにより、プリプレグ200の取り扱いのし易さ、プリプレグ200を用いて製造される成形体の強度、信頼性、成形体の製造時における成形性等をより優れたものとすることができる。
 プリプレグ200中における樹脂繊維40の含有率は、3.0質量%以上75質量%以下であるのが好ましく、4.0質量%以上72質量%以下であるのがより好ましく、5.0質量%以上70質量%以下であるのがさらに好ましい。
 これにより、プリプレグ200の取り扱いのし易さ、プリプレグ200を用いて製造される成形体の強度、信頼性、成形体の製造時における成形性等をより優れたものとすることができる。
 プリプレグ200中における炭素繊維1の含有率をXRCF[質量%]、プリプレグ200中における樹脂繊維40の含有率をXRF[質量%]としたとき、0.22≦XRCF/XRF≦28の関係を満足するのが好ましく、0.28≦XRCF/XRF≦20の関係を満足するのがより好ましく、0.35≦XRCF/XRF≦15の関係を満足するのがさらに好ましい。
 これにより、プリプレグ200の取り扱いのし易さ、プリプレグ200を用いて製造される成形体の強度、信頼性、成形体の製造時における成形性等をより優れたものとすることができる。
 プリプレグ200は、前述した以外の成分(その他の成分)を含んでいてもよい。
 このような成分としては、例えば、可塑剤、着色剤、酸化防止剤、紫外線吸収剤、光安定剤、軟化剤、改質剤、防錆剤、充填剤、表面潤滑剤、腐食防止剤、耐熱安定剤、滑剤、プライマー、帯電防止剤、重合禁止剤、架橋剤、触媒、レベリング剤、増粘剤、分散剤、老化防止剤、難燃剤、加水分解防止剤、腐食防止剤、バージンの炭素繊維(リサイクルされた炭素繊維ではない炭素繊維)、カーボンナノチューブ、カーボンナノファイバー、セルロースナノファイバー、フラーレン、グラファイト等が挙げられる。
 特に、リサイクルされた炭素繊維1とともに、バージンの炭素繊維(図示せず)を含むことにより、例えば、バージンの炭素繊維を用いない場合に比べて、複数本の炭素繊維が結合して束状になった束状体と束状になっていない炭素繊維との比率や、炭素繊維の長さの分布をより好適に調整することができる。その結果、成形体の特性をより好適に制御することができる。より具体的には、加熱加圧成形時の成形性(曲げ等の加工性)を十分に優れたものとしつつ、成形体の強度等をより優れたものとすることができる。
 プリプレグ200中におけるバージンの炭素繊維の含有率は、0.2質量%以上35質量%以下であるのが好ましく、0.3質量%以上26質量%以下であるのがより好ましく、0.6質量%以上17質量%以下であるのがさらに好ましい。
 これにより、前述したような効果がより顕著に発揮される。
 また、プリプレグ200中におけるリサイクルされた炭素繊維1の含有率をXRCF[質量%]、プリプレグ200中におけるバージンの炭素繊維の含有率をXVCF[質量%]としたとき、0.006≦XVCF/XRCF≦1.0の関係を満足するのが好ましく、0.015≦XVCF/XRCF≦0.60の関係を満足するのがより好ましく、0.020≦XVCF/XRCF≦0.33の関係を満足するのがさらに好ましい。
 これにより、前述したような効果がより顕著に発揮される。
 なお、バージンの炭素繊維としては、異なる条件で製造した複数種の炭素繊維を用いてもよい。
 また、繊維同士の隙間には、前記第1実施形態で説明した樹脂材料(含浸樹脂)が含浸されていてもよい。
 [成形体]
 次に、本発明の成形体について説明する。
 本発明の成形体は、本発明のプリプレグを加熱加圧成形してなるものである。
 これにより、強度、信頼性に優れた成形体を提供することができる。
 本発明の成形体は、本発明のプリプレグを加熱加圧成形してなる部位を有していればよく、例えば、塗膜等の構成をさらに有していてもよい。
 本発明の成形体は、いかなる用途のものであってもよいが、本発明の成形体の用途としては、例えば、乗物(例えば、自動車、自転車、列車、航空機、ロケット、エレベーター等)の構成部材、電子、電気部品の構成部材(例えば、パーソナルコンピューター、携帯電話(スマートフォン、PHS等を含む)、タブレット等の携帯用端末用の筐体部等)、建築、土木構造体用部材、家具等が挙げられる。
 [炭素繊維シート材の製造方法]
 次に、本発明の炭素繊維シート材の製造方法について説明する。
 前述した炭素繊維シート材100は、例えば、平均長さが1.0mm以上10mm以下である複数本のリサイクルされた炭素繊維1と、炭素繊維1を結合するバインダー20とを混抄する工程(抄紙工程)を有する方法を用いて製造することができる。
 これにより、強度、信頼性に優れるとともに、強度、信頼性に優れた成形体を優れた成形性で製造するのに用いることができる炭素繊維シート材100を安定的に製造することができる製造方法を提供することができる。
 抄紙工程に際して、例えば、少なくとも一部の炭素繊維1の表面を、サイジング剤等で処理してもよい。
 これにより、バインダー20等の樹脂材料との密着性を向上させ、炭素繊維シート材100や成形体の強度、信頼性をより優れたものとすることができる。
 サイジング剤としては、例えば、エポキシ樹脂、フェノール樹脂、ポリエチレングリコール、ポリウレタン、ポリエステル、乳化剤、界面活性剤等が挙げられる。
 抄紙用組成物中における炭素繊維1の含有率は、特に限定されないが、0.01質量%以上0.3質量%以下とすることにより、前述したような束状体10を効率よく形成することができる。
 [プリプレグの製造方法]
 次に、本発明のプリプレグの製造方法について説明する。
<第1実施形態>
 前述した第1実施形態に係るプリプレグ200は、例えば、前述した抄紙工程を経て得られた炭素繊維シート材100に、樹脂材料(含浸樹脂)30を含浸させる工程(含浸工程)を有する方法を用いて安定的に製造することができる。
 含浸工程は、例えば、樹脂材料(含浸樹脂)30としての未硬化状態(Bステージ)の熱硬化性樹脂または熱可塑性樹脂を含む材料で構成されたシート材を、炭素繊維シート材100に熱転写する方法や、液状の樹脂材料(含浸樹脂)30を炭素繊維シート材100に含浸させる方法等が挙げられる。
<第2実施形態>
 前述した第2実施形態に係るプリプレグ200は、例えば、複数本の炭素繊維1と、複数本の樹脂繊維40と、バインダー20とを混抄する工程(抄紙工程)を有する方法を用いて安定的に製造することができる。
 また、前述した第1実施形態の製造方法では、抄紙工程を経て得られた炭素繊維シート材100に含浸工程を行うのに対し、本実施形態の製造方法では、抄紙工程で炭素繊維1と樹脂繊維40とバインダー20とを用い、その後の含浸工程を行う必要がない。したがって、プリプレグ200の生産性を高めることができる。
 [成形体の製造方法]
 次に、本発明の成形体の製造方法について説明する。
 前述した成形体は、例えば、上記のようにして製造したプリプレグ200を加熱加圧成形する工程(成形工程)を有する方法を用いて安定的に製造することができる。
 成形体を製造する際には、複数枚のプリプレグ200を積層してもよい。
 積層枚数は、特に限定されないが、2枚以上50枚以下であるのが好ましく、3枚以上30枚以下であるのがより好ましい。
 なお、複数枚のプリプレグ200を用いる場合、これらのプリプレグ200は、互いに異なる条件のものであってもよいし、同一の条件のものであってもよい。
 また、隣り合うプリプレグ200の間に、中間層を設けてもよい。
 また、接合工程に先立ち、複数枚のプリプレグ200を接合する処理を施してもよい。複数枚のプリプレグ200を接合する方法としては、例えば、溶着(溶剤溶着、重合溶着等を含む)、融着、接着等が挙げられる。
 成形工程における加熱温度は、樹脂材料(含浸樹脂)30や樹脂繊維40の種類、含有率等により異なり、特に限定されないが、100℃以上380℃以下であるのが好ましく、110℃以上350℃以下であるのがより好ましく、120℃以上300℃以下であるのがさらに好ましい。
 また、成形工程における成形圧力は、樹脂材料(含浸樹脂)30や樹脂繊維40の種類、含有率等により異なり、特に限定されないが、0.1MPa以上15MPa以下であるのが好ましく、0.2MPa以上12MPa以下であるのがより好ましく、0.3MPa以上10MPa以下であるのがさらに好ましい。
 プリプレグ200が熱硬化性樹脂を含むものである場合、成形工程による加熱により、当該熱硬化性樹脂の硬化反応が進行し、得られる成形体は、耐熱性等にも優れたものとなる。
 以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されるものではない。
 例えば、炭素繊維シート材の製造方法、プリプレグの製造方法、成形体の製造方法においては、前述した工程に加え、他の工程(前処理工程、中間処理工程、後処理工程等)をさらに有していてもよい。
 また、本発明の炭素繊維シート材、プリプレグ、成形体は、前述した方法で製造されたものに限定されず、いかなる方法で製造されたものであってよい。
 また、前述した実施形態では、炭素繊維シート材、プリプレグ、成形体において、束状体を構成する炭素繊維に加え、束状体を構成しない炭素繊維が含まれる構成について代表的に説明したが、これらのうち一方のみが含まれる構成であってもよい。
 以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。なお、特に温度条件を示していない処理、測定については、20℃で行った。
 《1》炭素繊維シート材の製造
 各実施例および各比較例の炭素繊維シート材を以下のようにして製造した。
(実施例A1)
 まず、リサイクルされた炭素繊維(繊維平均径(平均幅)7.0μm、平均長さ5.0mm):95質量部と、バインダーとしてのポリビニルアルコール繊維(繊度1.1デシテックス、平均長さ3.0mm、加重平均密度:1.20g/cm):5.0質量部とからなる組成物を、水中に混合分散し、固形分0.03質量%の抄紙用スラリーを調製した。
 次に、抄紙用スラリー:100質量部に対し、分散剤としてのアニオン系ポリアクリルアミド:0.001質量部を添加して分散液を得、この分散液を、網目の隙間が0.2mmのメッシュコンベアの抄紙面に吸引して堆積してシート化した(抄紙工程)。
 その後、抄紙工程で製造された加湿状態のシートを120℃で加熱乾燥し、ポリビニルアルコール繊維を溶融して炭素繊維を交点で結合して炭素繊維シート材を得た。
 なお、リサイクルされた炭素繊維としては、破砕・粉砕したCFRPに、空気雰囲気下で350℃の第1の加熱処理を施し、さらに、空気雰囲気下で550℃の第2の加熱処理を施すことにより得られたものを用いた。
(実施例A2、A3)
 リサイクルされた炭素繊維、バインダーの条件を表1に示すように変更した以外は、前記実施例A1と同様にして炭素繊維シート材を製造した。
(実施例A4)
 抄紙用スラリーの調製に用いる組成物として、リサイクルされた炭素繊維(繊維平均径(平均幅)7.0μm、平均長さ5.0mm):75質量部と、バインダーとしてのポリビニルアルコール繊維(繊度1.1デシテックス、平均長さ3.0mm、加重平均密度:1.20g/cm):5.0質量部と、バージンの炭素繊維(繊維平均径(平均幅)7.0μm、平均長さ6.0mm):20質量部とからなるものを用いた以外は、前記実施例A1と同様にして炭素繊維シート材を製造した。
(実施例A5、A6)
 リサイクルされた炭素繊維、バインダー、バージンの炭素繊維の条件を表1に示すように変更した以外は、前記実施例A1と同様にして炭素繊維シート材を製造した。
(比較例A1)
 リサイクルされた炭素繊維の代わりにバージンの炭素繊維を用いた以外は、前記実施例A1と同様にして炭素繊維シート材を製造した。
(比較例A2)
 リサイクルされた炭素繊維として長さが0.9mmのものを用いた以外は、前記実施例A1と同様にして炭素繊維シート材を製造した。
(比較例A3)
 リサイクルされた炭素繊維として長さが11mmのものを用いた以外は、前記実施例A1と同様にして炭素繊維シート材を製造した。
 前記各実施例および各比較例の炭素繊維シート材の構成を表1にまとめて示す。なお、前記各実施例および比較例A2、A3で用いたリサイクルされた炭素繊維は、その表面の一部にリサイクル原料由来の付着物が付着していた。また、前記各実施例および比較例A2、A3の炭素繊維シート材には、複数本の炭素繊維を含む束状体とともに、束状体を構成しない炭素繊維も含まれていた。また、前記各実施例および各比較例の炭素繊維シート材の厚さは、いずれも、0.5mm以上0.8mm以下であった。
Figure JPOXMLDOC01-appb-T000001
 《2》プリプレグの製造
 各実施例および各比較例のプリプレグを以下のようにして製造した。
(実施例B1)
 まず、未硬化の熱硬化性樹脂としてのフェノール樹脂のメタノール溶液(40質量%)を用意した。
 次に、当該メタノール溶液を前記実施例A1の炭素繊維シート材に塗布し、含浸させた。その後、80℃に加熱してメタノールを除去し、さらに、150℃で15分間の加熱処理を施すことにより、フェノール樹脂を硬化させて、プリプレグを得た。
(実施例B2~B6)
 炭素繊維シート材として、前記実施例A1で製造したものの代わりに、前記実施例A2~A6で製造したものを用いた以外は、前記実施例B1と同様にしてプリプレグを製造した。
(実施例B7)
 まず、リサイクルされた炭素繊維(繊維平均径(平均幅)7.0μm、平均長さ5.0mm):40.2質量部と、バインダーとしてのポリビニルアルコール繊維(繊度1.1デシテックス、平均長さ3.0mm、加重平均密度:1.20g/cm):2.9質量部と、樹脂繊維としてのナイロン6繊維(繊度1.1デシテックス、平均長さ6.0mm):56.9質量部とからなる組成物を、水中に混合分散し、固形分0.03質量%の抄紙用スラリーを調製した。
 次に、抄紙用スラリー:100質量部に対し、分散剤としてのアニオン系ポリアクリルアミド:0.001質量部を添加して分散液を得、この分散液を、網目の隙間が0.3mmのメッシュコンベアの抄紙面に吸引して堆積してシート化した(抄紙工程)。
 その後、抄紙工程で製造された加湿状態のシートを120℃で加熱乾燥し、ポリビニルアルコール繊維を溶融して炭素繊維を交点で結合してプリプレグを得た。得られたプリプレグにおいて、ナイロン6繊維は溶融せず、繊維の状態を保持していた。
 なお、リサイクルされた炭素繊維としては、破砕・粉砕したCFRPに、空気雰囲気下で350℃の第1の加熱処理を施し、さらに、空気雰囲気下で550℃の第2の加熱処理を施すことにより得られたものを用いた。
(実施例B8、B9)
 リサイクルされた炭素繊維、バインダー、樹脂繊維の条件を表2に示すように変更した以外は、前記実施例B7と同様にしてプリプレグを製造した。
(実施例B10)
 抄紙用スラリーの調製に用いる組成物として、リサイクルされた炭素繊維(繊維平均径(平均幅)7.0μm、平均長さ5.0mm):35.2質量部と、バインダーとしてのポリビニルアルコール繊維(繊度1.1デシテックス、平均長さ3.0mm、加重平均密度:1.20g/cm):2.9質量部と、樹脂繊維としてのナイロン6繊維(繊度1.1デシテックス、平均長さ6.0mm):56.9質量部と、バージンの炭素繊維(繊維平均径(平均幅)7.0μm、平均長さ6.0mm):5.0質量部とからなるものを用いた以外は、前記実施例B7と同様にしてプリプレグを製造した。
(実施例B11、B12)
 リサイクルされた炭素繊維、バインダー、樹脂繊維、バージンの炭素繊維の条件を表2に示すように変更した以外は、前記実施例B10と同様にしてプリプレグを製造した。
(比較例B1~B3)
 炭素繊維シート材として、前記実施例A1で製造したものの代わりに、前記比較例A1~A3で製造したものを用いた以外は、前記実施例B1と同様にしてプリプレグを製造した。
(比較例B4)
 リサイクルされた炭素繊維の代わりにバージンの炭素繊維を用いた以外は、前記実施例B7と同様にしてプリプレグを製造した。
(比較例B5)
 リサイクルされた炭素繊維として長さが0.9mmのものを用いた以外は、前記実施例B7と同様にしてプリプレグを製造した。
(比較例B6)
 リサイクルされた炭素繊維として長さが11mmのものを用いた以外は、前記実施例B7と同様にしてプリプレグを製造した。
 前記各実施例および各比較例のプリプレグの構成を表2にまとめて示す。なお、前記各実施例および比較例B2、B3、B5、B6で用いたリサイクルされた炭素繊維は、その表面の一部にリサイクル原料由来の付着物が付着していた。また、前記各実施例および比較例B2、B3、B5、B6のプリプレグには、複数本の炭素繊維を含む束状体とともに、束状体を構成しない炭素繊維も含まれていた。また、前記各実施例および各比較例のプリプレグの厚さは、いずれも、0.8mm以上1.4mm以下であった。
Figure JPOXMLDOC01-appb-T000002
 《3》成形体の製造
 各実施例および各比較例の成形体を以下のようにして製造した。
(実施例C1)
 まず、前記実施例B1で製造したプリプレグを15枚積層した。
 次に、プリプレグの積層体を、50kg/cm、150℃の条件で加熱加圧処理を行った。これにより、プリプレグ中に含まれる熱硬化性樹脂が硬化し、複数枚のプリプレグが層間で互いに結合した平板状の成形体Aが得られた。
 また、外周面の曲率半径がL字状の曲げ板に成形した以外は、前記成形体Aと同様にして成形体Bを製造した。
(実施例C2~C6)
 プリプレグとして、前記実施例B1で製造したものの代わりに、前記実施例B2~B6で製造したものを用いた以外は、前記実施例C1と同様にして成形体(成形体AおよびB)を製造した。
(実施例C7)
 まず、前記実施例B4で製造したプリプレグを15枚積層した。
 次に、プリプレグの積層体を、50kg/cm、250℃の条件で加熱加圧処理を行った。これにより、プリプレグ中に含まれる熱可塑性樹脂が軟化、溶融し、複数枚のプリプレグが層間で互いに結合した平板状の成形体Aが得られた。
 また、外周面の曲率半径がL字状の曲げ板に成形した以外は、前記成形体Aと同様にして成形体Bを製造した。
(実施例C8~C12)
 プリプレグとして、前記実施例B7で製造したものの代わりに、前記実施例B8~B12で製造したものを用いた以外は、前記実施例C7と同様にして成形体(成形体AおよびB)を製造した。
(比較例C1~C3)
 プリプレグとして、前記実施例B1で製造したものの代わりに、前記比較例B1~B3で製造したものを用いた以外は、前記実施例C1と同様にして成形体(成形体AおよびB)を製造した。
(比較例C4~C6)
 プリプレグとして、前記実施例B7で製造したものの代わりに、前記比較例B4~B6で製造したものを用いた以外は、前記実施例C7と同様にして成形体(成形体AおよびB)を製造した。
 なお、前記各実施例および比較例C2、C3、C5、C6の成形体には、複数本の炭素繊維を含む束状体とともに、束状体を構成しない炭素繊維も含まれていた。
 《4》評価
 《4-1》曲げ強度評価
 前記実施例C1~C12および比較例C1~C6の成形体Aについて、JIS K7074に準じた曲げ試験により求められる曲げ強度を測定し、以下の基準にした従い評価した。
 A:曲げ強度が250MPa以上。
 B:曲げ強度が200MPa以上250MPa未満。
 C:曲げ強度が150MPa以上200MPa未満。
 D:曲げ強度が100MPa以上150MPa未満。
 E:曲げ強度が100MPa未満。
 《4-2》外観評価
 (目視による評価)
 前記実施例C1~C12および比較例C1~C6の成形体Bについて、目視による観察を行い、以下の基準に従い評価した。
 A:外観不良が全く認められない。
 B:外観不良がほとんど認められない。
 C:外観不良がわずかに認められる。
 D:外観不良がはっきりと認められる。
 E:外観不良が顕著に認められる。
 (顕微鏡による評価)
 前記実施例C1~C12および比較例C1~C6の成形体Bの屈曲部付近について、顕微鏡による観察を行い、以下の基準に従い評価した。
 A:炭素繊維の露出量にばらつきが認められない。
 B:炭素繊維が多く露出している領域と炭素繊維の露出量が少なく樹脂材料が多く露出している領域とが併存しており、炭素繊維の露出量のばらつきがわずかに認められる。
 C:炭素繊維が多く露出している領域と炭素繊維の露出量が少なく樹脂材料が多く露出している領域とが併存しており、炭素繊維の露出量のばらつきがはっきりと認められる。
 D:炭素繊維が多く露出している領域と炭素繊維の露出量が少なく樹脂材料が多く露出している領域とが併存しており、炭素繊維の露出量のばらつきが顕著に認められる。
 これらの結果を表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、本発明では優れた結果が得られたのに対し、比較例では満足のいく結果が得られなかった。
 本発明の炭素繊維シート材は、複数本のリサイクルされた炭素繊維と、前記炭素繊維を結合するバインダーとを含み、前記炭素繊維の平均長さが1.0mm以上10mm以下である。そのため、それ自身の強度、信頼性に優れるとともに、強度、信頼性に優れた成形体を優れた成形性で製造するのに用いることができる炭素繊維シート材を提供することができる。従って、本発明の炭素繊維シート材は、産業上の利用可能性を有する。
 100…炭素繊維シート材
 200…プリプレグ
 1…炭素繊維
 2…付着物
 10…束状体
 20…バインダー
 30…樹脂材料(含浸樹脂)
 40…樹脂繊維

Claims (19)

  1.  複数本のリサイクルされた炭素繊維と、
     前記炭素繊維を結合するバインダーとを含み、
     前記炭素繊維の平均長さが1.0mm以上10mm以下であることを特徴とする炭素繊維シート材。
  2.  前記炭素繊維は、その表面に、当該炭素繊維のリサイクル原料由来の有機成分および/または当該有機成分の炭化物が付着物として付着したものである請求項1に記載の炭素繊維シート材。
  3.  前記炭素繊維の表面への前記付着物の被覆率が2%以上40%以下である請求項2に記載の炭素繊維シート材。
  4.  前記付着物により、複数本の前記炭素繊維が結合し、束状になった束状体を含む請求項2または3に記載の炭素繊維シート材。
  5.  前記束状体の幅に対する長さの比率であるアスペクト比が2以上500以下である請求項4に記載の炭素繊維シート材。
  6.  請求項1ないし5のいずれか1項に記載の炭素繊維シート材に、樹脂材料を含浸させてなることを特徴とするプリプレグ。
  7.  複数本のリサイクルされた炭素繊維と、
     複数本の樹脂繊維とを含み、
     前記炭素繊維、前記樹脂繊維を結合するバインダーと、
     前記炭素繊維の平均長さが1.0mm以上10mm以下であることを特徴とするプリプレグ。
  8.  前記樹脂繊維の平均長さが2.0mm以上20mm以下である請求項7に記載のプリプレグ。
  9.  前記炭素繊維の含有率をXRCF[質量%]、前記樹脂繊維の含有率をXRF[質量%]としたとき、0.22≦XRCF/XRF≦28の関係を満足する請求項7または8に記載のプリプレグ。
  10.  前記炭素繊維の平均長さをLRCF[mm]、前記樹脂繊維の平均長さをLRF[mm]としたとき、0.4≦LRF/LRCF≦20の関係を満足する請求項7ないし9のいずれか1項に記載のプリプレグ。
  11.  前記炭素繊維は、その表面に、当該炭素繊維のリサイクル原料由来の有機成分および/または当該有機成分の炭化物が付着物として付着したものである請求項7ないし10のいずれか1項に記載のプリプレグ。
  12.  前記炭素繊維の表面への前記付着物の被覆率が2%以上40%以下である請求項11に記載のプリプレグ。
  13.  前記付着物により、複数本の前記炭素繊維が結合し、束状になった束状体を含む請求項11または12に記載のプリプレグ。
  14.  前記束状体の幅に対する長さの比率であるアスペクト比が2以上500以下である請求項13に記載のプリプレグ。
  15.  請求項6ないし14のいずれか1項に記載のプリプレグを加熱加圧成形してなることを特徴とする成形体。
  16.  平均長さが1.0mm以上10mm以下である複数本のリサイクルされた炭素繊維と、該炭素繊維を結合するバインダーとを混抄する工程を有することを特徴とする炭素繊維シート材の製造方法。
  17.  請求項16に記載の方法を用いて製造された炭素繊維シート材に、樹脂材料を含浸させる工程を有することを特徴とするプリプレグの製造方法。
  18.  平均長さが1.0mm以上10mm以下である複数本のリサイクルされた炭素繊維と、複数本の樹脂繊維と、前記炭素繊維、前記樹脂繊維を結合するバインダーとを混抄する工程を有することを特徴とするプリプレグの製造方法。
  19.  請求項17または18に記載の方法を用いて製造されたプリプレグを加熱加圧成形する工程を有することを特徴とする成形体の製造方法。
PCT/JP2019/033031 2018-08-24 2019-08-23 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法 WO2020040287A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020538485A JP7425731B2 (ja) 2018-08-24 2019-08-23 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法
CN201980055527.5A CN112638998A (zh) 2018-08-24 2019-08-23 碳纤维片材、预浸料、成型体、碳纤维片材的制造方法、预浸料的制造方法以及成型体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157704 2018-08-24
JP2018-157704 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040287A1 true WO2020040287A1 (ja) 2020-02-27

Family

ID=69593197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033031 WO2020040287A1 (ja) 2018-08-24 2019-08-23 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法

Country Status (3)

Country Link
JP (1) JP7425731B2 (ja)
CN (1) CN112638998A (ja)
WO (1) WO2020040287A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900417A (zh) * 2020-07-31 2020-11-06 齐鲁工业大学 一种高碳含量燃料电池气体扩散层用碳纸的制备方法
WO2022265099A1 (ja) * 2021-06-18 2022-12-22 三菱ケミカル株式会社 自己組織化炭素繊維束及びその製造方法と、プリプレグ及びその製造方法
WO2023182354A1 (ja) * 2022-03-23 2023-09-28 三菱ケミカル株式会社 プリプレグ、成形体、圧力容器、プリプレグの製造方法、及び成形体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7254401B1 (ja) * 2021-06-01 2023-04-10 株式会社ワークスタジオ 再生ボードの製造方法、及び再生ボード

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097436A1 (ja) * 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法
WO2012086682A1 (ja) * 2010-12-24 2012-06-28 東レ株式会社 炭素繊維集合体の製造方法および炭素繊維強化プラスチックの製造方法
JP2014051023A (ja) * 2012-09-07 2014-03-20 Toray Ind Inc スタンパブルシートおよびそれらの製造方法
JP2017128705A (ja) * 2016-01-22 2017-07-27 阿波製紙株式会社 炭素繊維シート材、プリプレグ、積層体、成形体及びそれらの製造方法
JP2017133131A (ja) * 2016-01-29 2017-08-03 三菱製紙株式会社 リサイクル炭素短繊維不織布及び複合体
JP2017160559A (ja) * 2016-03-09 2017-09-14 住友ベークライト株式会社 抄造体の製造方法および成形体の製造方法
JP2018028151A (ja) * 2016-08-15 2018-02-22 三菱製紙株式会社 炭素短繊維不織布の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834917B2 (ja) * 2010-12-13 2015-12-24 東レ株式会社 炭素繊維プリプレグの製造方法、炭素繊維強化複合材料の製造方法
WO2013147257A1 (ja) * 2012-03-29 2013-10-03 三菱レイヨン株式会社 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097436A1 (ja) * 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法
WO2012086682A1 (ja) * 2010-12-24 2012-06-28 東レ株式会社 炭素繊維集合体の製造方法および炭素繊維強化プラスチックの製造方法
JP2014051023A (ja) * 2012-09-07 2014-03-20 Toray Ind Inc スタンパブルシートおよびそれらの製造方法
JP2017128705A (ja) * 2016-01-22 2017-07-27 阿波製紙株式会社 炭素繊維シート材、プリプレグ、積層体、成形体及びそれらの製造方法
JP2017133131A (ja) * 2016-01-29 2017-08-03 三菱製紙株式会社 リサイクル炭素短繊維不織布及び複合体
JP2017160559A (ja) * 2016-03-09 2017-09-14 住友ベークライト株式会社 抄造体の製造方法および成形体の製造方法
JP2018028151A (ja) * 2016-08-15 2018-02-22 三菱製紙株式会社 炭素短繊維不織布の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900417A (zh) * 2020-07-31 2020-11-06 齐鲁工业大学 一种高碳含量燃料电池气体扩散层用碳纸的制备方法
CN111900417B (zh) * 2020-07-31 2022-03-29 齐鲁工业大学 一种高碳含量燃料电池气体扩散层用碳纸的制备方法
WO2022265099A1 (ja) * 2021-06-18 2022-12-22 三菱ケミカル株式会社 自己組織化炭素繊維束及びその製造方法と、プリプレグ及びその製造方法
WO2023182354A1 (ja) * 2022-03-23 2023-09-28 三菱ケミカル株式会社 プリプレグ、成形体、圧力容器、プリプレグの製造方法、及び成形体の製造方法

Also Published As

Publication number Publication date
JPWO2020040287A1 (ja) 2021-08-26
JP7425731B2 (ja) 2024-01-31
CN112638998A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2020040287A1 (ja) 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法
KR102265768B1 (ko) 유동층에서 열가소성 중합체로 사전함침된 섬유 재료의 제조 방법
KR102404545B1 (ko) 일방향성의 연속섬유와 열가소성 수지를 포함하는 복합재료
US20100218890A1 (en) Methods for preparing nanoparticle-containing thermoplastic composite laminates
US20130052897A1 (en) Interlaminar toughening of thermoplastics
CN108431098B (zh) 结构体
JP6721883B2 (ja) 強化繊維及び樹脂を含む複合材料からなる中間基材及び成形体並びに当該成形体の製造方法
JP6700049B2 (ja) 炭素繊維シート材、プリプレグ、積層体、成形体及びそれらの製造方法
JP6816382B2 (ja) プレス成形材料
TW201414615A (zh) 用於提高複合材料的浸漬性的功能性膜及利用上述膜的複合材料的製備方法
JPWO2018203552A1 (ja) 繊維強化樹脂を含む積層体、繊維強化複合樹脂材およびこれらの製造方法
WO2017145883A1 (ja) 不連続繊維強化複合材料
WO2019189384A1 (ja) 成形品の製造方法
JP6000497B1 (ja) 繊維強化複合材料及びその製造方法
JP6890141B2 (ja) 炭素繊維シート材、成形体、炭素繊維シート材の製造方法および成形体の製造方法
WO2020040289A1 (ja) 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法
CN108883587B (zh) 碳纤维片状模塑料的制造方法和设备
KR20220110179A (ko) 샌드위치 구조체 및 그 제조 방법
TW202113180A (zh) 炭纖維片材,預浸材,成形體,炭纖維片材之製造方法,預浸材之製造方法及成形體之製造方法
TWI828774B (zh) 炭纖維片材,預浸材,成形體,炭纖維片材之製造方法,預浸材之製造方法及成形體之製造方法
KR101263976B1 (ko) 경제성 및 기계적 물성이 뛰어난 복합시트의 제조방법, 제조장치 및 이로부터 제조된 복합시트
EP3511153A1 (en) Porous fiber reinforced composite material and method for preparing same
WO2021106649A1 (ja) 繊維強化複合材料およびサンドイッチ構造体
JP6972876B2 (ja) 成形用材料および成形体
WO2023176540A1 (ja) 粒子付き繊維束、粒子付き繊維束集合体及び繊維強化複合材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851228

Country of ref document: EP

Kind code of ref document: A1