WO2013147086A1 - 硬化性樹脂組成物及びその製造方法、高熱伝導性樹脂組成物及び高熱伝導性積層基板 - Google Patents

硬化性樹脂組成物及びその製造方法、高熱伝導性樹脂組成物及び高熱伝導性積層基板 Download PDF

Info

Publication number
WO2013147086A1
WO2013147086A1 PCT/JP2013/059384 JP2013059384W WO2013147086A1 WO 2013147086 A1 WO2013147086 A1 WO 2013147086A1 JP 2013059384 W JP2013059384 W JP 2013059384W WO 2013147086 A1 WO2013147086 A1 WO 2013147086A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
compound
phosphoric acid
acid ester
curable resin
Prior art date
Application number
PCT/JP2013/059384
Other languages
English (en)
French (fr)
Inventor
大野 秀樹
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201380017342.8A priority Critical patent/CN104204084B/zh
Priority to KR20147023817A priority patent/KR20140148372A/ko
Priority to JP2014508061A priority patent/JP6192635B2/ja
Priority to US14/387,494 priority patent/US20150079401A1/en
Priority to EP13767287.9A priority patent/EP2832792A4/en
Publication of WO2013147086A1 publication Critical patent/WO2013147086A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4284Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • Y10T428/31522Next to metal

Definitions

  • the present invention relates to a high thermal conductivity resin composition used for heat dissipation applications of electronic materials.
  • Power semiconductors are used for transforming and modulating the power supply of electronic devices.
  • the power density of power devices using power semiconductors has been rapidly increasing with the demand for downsizing and high efficiency of electronic devices.
  • Metals such as copper on the substrate of insulating ceramics with high thermal conductivity such as aluminum nitride, silicon nitride, and alumina for heat dissipation of devices with particularly high output, such as devices with an output of 1 kW or more, even for such power devices It is general to use a metallized ceramic substrate on which a wiring is formed.
  • a brazing material represented by silver solder
  • this method is a method of firmly bonding the ceramic and metal by heating the substrate at a temperature higher than the melting point of the brazing material (Patent Literature 1). If higher accuracy is required, a brazing material is applied to the entire surface of the ceramic substrate, then a metal layer such as copper is formed on the substrate surface by plating or sticking, and then the metal layer is etched. It was common (patent document 2).
  • the raw material cost is high, the melting point of the brazing material is usually 600 ° C. or more, the energy cost for manufacturing is also high, and when the metal layer is thick, ceramics and Due to the difference in thermal expansion coefficient between metals, there have been problems such as exfoliation may occur between ceramics and metals in severe thermal cycling tests.
  • the use of LED elements is rapidly expanding with the improvement of their luminance.
  • high heat dissipation is also required for the circuit board.
  • the output of the LED element is up to about several hundred watts, while the output of the above-mentioned power semiconductor is usually several hundreds W or more, and there are also some power semiconductors having an output of 1 kW or more. Therefore, the characteristics required of the circuit substrate are different between the circuit substrate for the power semiconductor and the circuit substrate for the LED element. That is, in the case of a power device, the operating temperature of the device is generally one hundred and several tens of degrees C. under the conditions of use.
  • the bond strength is required to withstand thermal cycling over the temperature range up to below freezing.
  • the circuit board for the LED element is required to have excellent heat dissipation so as to make the operating temperature of the element as low as possible.
  • the operating temperature of the LED is usually 100 ° C. or less, so the ceramic-metal joint strength in the circuit board for LED elements is not imposed the severe conditions required for the board mounting high power semiconductor. .
  • an adhesion layer is formed by depositing or sputtering a metal such as titanium on an insulating substrate such as aluminum nitride, and nickel, gold or the like is formed on the adhesion layer.
  • Patent Document 3 The method of forming a conductive layer by plating, sputtering or vapor deposition is employed (Patent Document 3).
  • reduction of manufacturing cost is an important issue for full-fledged widespread use of LEDs, and therefore cost reduction is required for all parts and manufacturing processes.
  • heat is dissipated using a large area substrate whose thermal conductivity is not so high. Things are common.
  • a metal-based substrate particularly an aluminum-based substrate employing aluminum as the metal has been used.
  • the aluminum base substrate is a laminated substrate having a metal foil for circuit formation, an organic-inorganic composite resin as an insulating layer, and an aluminum substrate.
  • the thermal conductivity of the composite resin is insufficient at present, the thermal conductivity of the entire laminated substrate can not be increased.
  • the temperature of the LED element may be increased, which may cause problems such as a decrease in the effective efficiency and the life. is there. Therefore, although it is necessary to increase the thermal conductivity of the composite resin, a highly heat-conductive insulating resin which can be manufactured by a simple and low-cost process and which can withstand practical use has not been developed so far.
  • thermosetting high thermal conductivity resins have a wide range of applications as semiconductor sealing materials, underfills for bonding semiconductor elements to substrates, die bonding materials, and other adhesives.
  • the required level of heat radiation performance is rapidly increasing with the miniaturization and high output of semiconductor devices, so that further improvement of the thermal conductivity of the thermosetting high thermal conductivity resin is required. It is done.
  • the thermal conductivity of a resin filled with inorganic particles increases with the increase in the loading amount of inorganic particles, and the curve has a larger slope as the loading amount is higher. Therefore, in order to obtain a high thermal conductivity resin, it is necessary to disperse a large amount of high thermal conductivity inorganic particles in the resin, and for this purpose it is necessary to keep the viscosity of the inorganic particle loaded resin low.
  • various techniques have been proposed such as combining spherical particles different in particle diameter (Patent Document 4) and adding a high boiling point solvent (Patent Document 5). However, even if these techniques were applied to epoxy resin, the effect was insufficient.
  • a new bonding method is required to realize an adhesive layer having a necessary and sufficient ceramic-metal bond strength and a high thermal conductivity at low cost.
  • a composite resin with high thermal conductivity capable of forming an insulating layer with low thermal resistance at low cost is required.
  • the present invention provides a curable resin composition capable of forming an insulating adhesive layer having necessary and sufficient bonding strength and having high thermal conductivity at low cost, and a method for producing the same. Do. Further, the present invention provides a high thermal conductivity resin composition, a high thermal conductivity multilayer substrate, and a method for producing the same.
  • a first aspect of the present invention is a curable resin composition
  • a curable resin composition comprising an aluminum nitride particle, an epoxy resin, a curing agent, and an acidic phosphoric acid ester represented by the following general formula (1), wherein the curable resin composition
  • the composition is a curable resin composition in which aluminum nitride particles, an epoxy resin, a curing agent, and an acidic phosphoric acid ester represented by the following general formula (1) are mutually mixed.
  • the aluminum nitride particles, the epoxy resin, the curing agent, and the acidic phosphoric acid ester represented by the following general formula (1) are mutually mixed” means “the epoxy resin,
  • the aluminum nitride particles can be rephrased as “in a mixture containing a curing agent and an acidic phosphoric acid ester represented by the following general formula (1)”.
  • R 1 a saturated or unsaturated hydrocarbyl group having 4 to 20 carbon atoms
  • R 2 a saturated hydrocarbylene group having 1 to 20 carbon atoms
  • R 3 a saturated hydrocarbylene group having 2 or 3 carbon atoms
  • R 4 a carbon number 1 to 8 saturated or unsaturated hydrocarbylene groups
  • k an integer of 0 to 20 an integer of 0 to 20 m: an integer of 0 to 20 n: 1 or 2
  • the plurality of R 1 may be the same or different
  • the plurality of R 2 may be the same or different
  • the plurality of R 3 may be the same or different
  • the plurality of R 4 may be the same or different
  • a second aspect of the present invention is a process for producing a curable resin composition comprising the steps of mutually mixing an aluminum nitride particle, an epoxy resin, a curing agent, and an acidic phosphoric acid ester represented by the above general formula (1). It is a method.
  • a third aspect of the present invention is a high thermal conductivity resin composition obtained by curing the curable resin composition according to the first aspect of the present invention.
  • a fourth aspect of the present invention there is provided a high thermal conductivity laminate, wherein a metal foil, a high thermal conductivity resin composition according to the third aspect of the present invention, and a metal substrate or high thermal conductivity ceramic substrate are laminated in this order. It is a substrate.
  • a fifth aspect of the present invention is a process of laminating a metal foil and a metal substrate or a high thermal conductivity ceramic substrate via the curable resin composition according to the first aspect of the present invention, and the curable resin It is a manufacturing method of the high thermal conductivity laminated substrate which has the process of hardening a composition in this order.
  • the first aspect of the present invention it is possible to provide a curable resin composition which can be obtained at low cost by curing a high thermal conductive resin composition having enhanced bond strength and thermal conductivity.
  • the curable resin composition can be preferably produced by the production method according to the second aspect of the present invention.
  • the curable resin composition according to the first aspect of the present invention, and the high thermal conductivity resin composition according to the third aspect of the present invention obtained by curing the curable resin composition are for electronic materials In particular, it is useful in obtaining the insulating adhesive layer of the high thermal conductivity laminated substrate according to the fourth aspect of the present invention.
  • the high thermal conductivity laminate substrate according to the fourth aspect of the present invention can be manufactured at low cost and has an enhanced thermal conductivity, and is therefore preferably used as a circuit substrate for LED elements or a circuit substrate for low output power semiconductors. It can be adopted.
  • the high thermal conductivity laminated substrate can be preferably manufactured by the manufacturing method according to the fifth aspect of the present invention.
  • Embodiment S1 of the manufacturing method of the curable resin composition which concerns on the 2nd aspect of this invention. It is a flowchart explaining other embodiment S2 of the manufacturing method of the curable resin composition which concerns on the 2nd aspect of this invention. It is a flowchart explaining other embodiment S3 of the manufacturing method of the curable resin composition which concerns on the 2nd aspect of this invention. It is a flowchart explaining other embodiment S4 of the manufacturing method of the curable resin composition which concerns on the 2nd aspect of this invention. It is sectional drawing which demonstrates typically the state before hardening the curable resin composition in the high thermal conductivity laminated substrate which concerns on the 4th aspect of this invention.
  • the notation "A to B" for the numerical values A and B means “A or more and B or less” unless otherwise specified.
  • the unit attached to the numerical value B is applied as the unit of the numerical value A.
  • the "average particle diameter” means a sphere equivalent diameter (volume average value D50) giving an intermediate value of the volume distribution measured by the laser diffraction method.
  • the measurement of the volume distribution of particles by the laser diffraction method can be preferably performed using a micro track manufactured by Nikkiso Co., Ltd.
  • the curable resin composition according to the first aspect of the present invention will be described.
  • (Aluminum nitride particles) As aluminum nitride particles in the curable resin composition of the present invention, known aluminum nitride particles can be adopted without particular limitation.
  • the production method is also not particularly limited, and may be a direct nitriding method or a reduction nitriding method.
  • the average particle size of the aluminum nitride particles is not particularly limited, and for example, aluminum nitride particles having an average particle size of 10 nm to 100 ⁇ m can be employed.
  • an embodiment in which aluminum nitride particles having different average particle sizes are mixed and used can be exemplified.
  • the viscosity of the curable resin composition can be suppressed to a lower level, and therefore aluminum nitride particles in the curable resin composition It is possible to further increase the filling amount.
  • the average particle diameter of the aluminum nitride particles is preferably 100 nm to 100 ⁇ m.
  • water resistance obtained by subjecting aluminum nitride particles to water resistance treatment in advance May be mentioned an embodiment in which the metallic aluminum nitride particles are mixed with an epoxy resin or the like.
  • treatment agents used for such water resistance treatment include metal phosphates such as phosphoric acid and aluminum phosphate, acidic phosphate esters, and phosphonic acid A compound, a silane coupling agent, an organic acid etc. can be illustrated.
  • the water resistance treatment agent may be used alone or in combination of two or more.
  • one or more selected from metal phosphates such as phosphoric acid and aluminum phosphate, and acidic phosphate esters can be preferably used.
  • metal phosphates such as phosphoric acid and aluminum phosphate
  • grains necessarily satisfy
  • the aluminum nitride particles are subjected to the water resistance treatment
  • known methods can be adopted without particular limitation. For example, after mixing aluminum nitride particles and a water resistant treatment agent in a solvent (wet) or without a solvent (dry), it is common to form a film on the surface of individual aluminum nitride particles by heat treatment. However, in order to simultaneously increase the thermal conductivity and the water resistance, it is desirable to form a uniform thin film, and therefore it is preferable to treat the aluminum nitride particles dispersed in the solvent with a water resistant treatment agent. .
  • Examples of the solvent for the water resistance treatment include water; alcohols such as methanol and ethanol; esters such as ethyl acetate; ketones such as acetone and ethyl methyl ketone; ethers such as diethyl ether and tert-butyl methyl ether; From the above, a solvent in which the water resistant treatment agent dissolves can be appropriately adopted.
  • the curable resin composition of the present invention may further contain ceramic particles other than aluminum nitride particles as necessary.
  • the curable resin composition of the present invention in the form of further containing ceramic particles other than aluminum nitride particles, aluminum nitride particles, ceramic particles other than aluminum nitride particles, epoxy resin, curing agent, and the above general formula (1)
  • the acidic phosphate esters represented are mixed with one another.
  • aluminum nitride particles and ceramic particles other than aluminum nitride particles are dispersed in a mixture containing an epoxy resin, a curing agent, and an acidic phosphoric acid ester represented by the above general formula (1).
  • ceramic particles other than aluminum nitride particles that can be used in the curable resin composition of the present invention
  • alumina particles, magnesia particles, zinc oxide particles, silica particles, silicon nitride particles, boron nitride particles, silicon carbide particles, etc. are exemplified. It can.
  • the ceramic particles other than the aluminum nitride particles may be used alone or in combination of two or more.
  • the range of the preferable average particle size of the ceramic particles other than the aluminum nitride particles is not particularly limited as in the case of the aluminum nitride particles described above.
  • particles having an average particle diameter of 10 nm to 100 ⁇ m can be employed, and when high water resistance is required, particles having an average particle diameter of 100 nm to 100 ⁇ m can be preferably employed.
  • ceramic particles having different average particle diameters are mixed and used can be exemplified.
  • ceramic particles is a concept including aluminum nitride particles unless it is defined as “other than aluminum nitride particles”.
  • Mixed particles containing ceramic particles with an average particle diameter of 100 nm or more and less than 1 ⁇ m in a proportion of 3 to 30% by mass (however, one or more of the ceramic particles of (1), (2) and (3) above contain aluminum nitride particles) According to the contained ceramic particles), the viscosity of the curable resin composition can be suppressed to a lower level, so that the filling amount of the ceramic particles in the curable resin composition can be further increased.
  • the content of particles of alumina, magnesia or zinc oxide is the total content of these particles.
  • the surface area is preferably twice or less the total surface area of the aluminum nitride particles, and more preferably one time or less.
  • the content of silica particles is preferably such that the total surface area is 1 times or less of the total surface area of the aluminum nitride particles, and is 1/2 times or less It is more preferable that Silicon nitride and silicon carbide have high thermal conductivity, so the content of silicon nitride or silicon carbide particles is such that the total surface area of these particles is 4 times or less of the total surface area of aluminum nitride particles. Is more preferable, and the amount which is 3 times or less is more preferable. In the case of boron nitride particles, the thermal conductivity may increase with the increase of the content, while the viscosity of the composition increases.
  • the amount is preferably 4 times or less of the total surface area of
  • the “total surface area” of a particle is a value obtained by multiplying the specific surface area (BET specific surface area) (m 2 / g) according to the BET method of the particle by the total mass (g) of the particle. Shall be meant.
  • epoxy resin As the epoxy resin in the curable resin composition of the present invention, a known epoxy resin can be adopted without particular limitation. Specific examples thereof include bisphenol A type or bisphenol F type epoxy resin, polyfunctional epoxy resin such as phenol novolac type epoxy resin or cresol novolac type epoxy resin, or polyfunctional epoxy resin added to bisphenol A type or bisphenol F type epoxy resin Are listed.
  • a curing agent known as a curing agent for epoxy resin can be adopted without particular limitation.
  • Specific examples thereof include: amines; polyamides; imidazoles; acid anhydrides; boron trifluoride-amine complexes called latent curing agents; dicyandiamides; organic acid hydrazides; phenols such as phenol novolac resins, bisphenol novolac resins, cresol novolac resins, etc.
  • photo-curing agents such as diphenyliodonium hexafluorophosphate and triphenylsulfonium hexafluorophosphate.
  • amines, imidazoles and acid anhydrides are preferable.
  • amines include linear aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine; And aliphatic aromatic amines such as xylene diamine; and aromatic amines such as meta-phenylene diamine, diaminodiphemylmethane and diaminodiphenyl sulfone.
  • imidazole include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, epoxyimidazole adduct and the like.
  • the acid anhydride examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bis trimellitate, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride Methyl end methylene tetrahydrophthalic anhydride, methylbutenyl tetrahydrophthalic anhydride, dodecenyl succinic anhydride, hexahydrophthalic anhydride, succinic anhydride, methylcyclohexene dicarboxylic anhydride, alkylstyrene-maleic anhydride copolymer, chlorendic acid Anhydride, polyazelaic acid anhydride, etc. are mentioned.
  • the acidic phosphoric acid ester in the curable resin composition of the present invention has a structure represented by the following general formula (1).
  • R 1 a saturated or unsaturated hydrocarbyl group having 4 to 20 carbon atoms
  • R 2 a saturated hydrocarbylene group having 1 to 20 carbon atoms
  • R 3 a saturated hydrocarbylene group having 2 or 3 carbon atoms
  • R 4 a carbon number 1 to 8 saturated or unsaturated hydrocarbylene groups
  • k an integer of 0 to 20 an integer of 0 to 20 m: an integer of 0 to 20 n: 1 or 2
  • the plurality of R 1 may be the same or different
  • the plurality of R 2 may be the same or different
  • the plurality of R 3 may be the same or different
  • the plurality of R 4 may be the same or different
  • R 1 is not particularly limited as long as it is a saturated or unsaturated hydrocarbyl group having 4 to 20 carbon atoms.
  • R 2 is a saturated hydrocarbylene group having 1 to 20 carbon atoms.
  • the carbon number of R 2 is preferably 1 to 16.
  • Specific examples of R 2 include a methylene group, an ethylene group, a pentylene group, a tetradecylene group, a pentadecylene group and the like.
  • R 3 is a saturated hydrocarbylene group having 2 or 3 carbon atoms.
  • the number of carbon atoms of R 3 is 2, and more preferably an ethylene group.
  • R 4 is a saturated or unsaturated hydrocarbylene group having 1 to 8 carbon atoms.
  • the carbon number of R 4 is preferably 1 to 6.
  • Specific examples of R 4 include saturated hydrocarbons such as methylene, ethylene, propylene, butylene and pentylene; and unsaturated hydrocarbons such as phenyl.
  • k is not particularly limited as long as it is an integer of 0 to 20. However, preferably it is an integer of 0 to 10.
  • l is not particularly limited as long as it is an integer of 0 to 20. However, preferably it is an integer of 0 to 10.
  • m is not particularly limited as long as it is an integer of 0 to 20. However, preferably it is an integer of 0 to 10.
  • n 1 or 2.
  • the acidic phosphoric acid ester represented by General formula (1) in the curable resin composition of this invention requires one or more acidic hydroxyl groups. The reason for this is not clear, but the present inventors speculate that the filler aluminum nitride is a solid base, and an acid group is required for adsorption onto the surface.
  • the molecular weight of the acidic phosphoric acid ester represented by the general formula (1) is not particularly limited, but is preferably 5000 or less, more preferably 2000 or less, and most preferably 1500 or less. It is considered that this is because the shorter side chains of the acidic phosphoric acid ester adsorbed on the aluminum nitride surface advantageously work in reducing the interface thermal resistance between the aluminum nitride particles and the epoxy resin.
  • acidic phosphoric acid ester having such a structure it becomes easy to further enhance the thermal conductivity of the resin composition obtained by curing the curable resin composition of the present invention.
  • R 1 saturated or unsaturated hydrocarbyl group having 4 to 20 carbon atoms
  • R 3 saturated hydrocarbylene group having 2 or 3 carbon atoms 1: integer of 0 to 20 n: 1 or 2
  • the plurality of R 1 may be the same or different
  • the plurality of R 3 may be the same or different.
  • R 1 is not particularly limited as long as it is a saturated or unsaturated hydrocarbyl group having 4 to 20 carbon atoms.
  • R 1 as a saturated hydrocarbyl group, alkyls such as butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, undecyl, dodecyl, hexadecyl, octadecyl and the like And the like.
  • unsaturated hydrocarbyl groups include phenyl, nonylphenyl and oleyl groups.
  • the carbon number of R 1 is preferably 6 to 18, and in particular when 1 is 0, the carbon number of R 1 is preferably 10 to 18.
  • particularly preferred groups as R 1 include decyl, undecyl and dodecyl.
  • R 3 is a saturated hydrocarbylene group having 2 or 3 carbon atoms.
  • the carbon number of R 3 is preferably 2.
  • an ethylene group can be mentioned.
  • l is not particularly limited as long as it is an integer of 0 to 20. However, preferably it is an integer of 0 to 10.
  • n is 1 or 2.
  • the content of the aluminum nitride particles in the curable resin composition of the present invention is not particularly limited.
  • the content of the aluminum nitride particles is the total of the epoxy resin, the curing agent and the acidic phosphate ester.
  • the amount is preferably 50 parts by mass or more, more preferably 100 parts by mass or more, and most preferably 200 parts by mass or more with respect to 100 parts by mass.
  • it is preferable that it is 900 mass parts or less from a viewpoint of the viscosity of a curable resin composition, fluidity, and workability, and it is more preferable that it is 600 mass parts or less.
  • the content of the curing agent in the curable resin composition of the present invention is appropriately determined by those skilled in the art, taking into consideration the characteristics of the curing agent, the epoxy equivalent of the epoxy resin, the content of acidic phosphoric acid ester and aluminum nitride particles, can do. Generally, it is 0.1 to 200 parts by weight, and more preferably 0.4 to 150 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the content of the acidic phosphoric acid ester represented by the general formula (1) in the curable resin composition of the present invention takes into consideration the characteristics of the epoxy resin, the characteristics of the curing agent, and the specific surface area of the aluminum nitride particles. Those skilled in the art can make appropriate decisions. However, from the viewpoint of exhibiting the physical properties inherent to the epoxy resin while maintaining sufficient affinity between the aluminum nitride particles and the epoxy resin, the acidic phosphoric acid represented by the general formula (1) with respect to 100 parts by mass of the epoxy resin 0.4 to 5 parts by mass of ester is preferable, and 0.6 to 4 parts by mass is more preferable.
  • the curable resin composition of the present invention may contain components other than the above as required.
  • Such components include monofunctional or polyfunctional isocyanate compounds such as hexyl isocyanate, octyl isocyanate, decyl isocyanate, dodecyl isocyanate and hexamethylene diisocyanate; and said monofunctional or polyfunctional isocyanate compounds according to blocking agents such as phenol, alcohol and oxime And a terminally protected blocked isocyanate compound; a carbodiimide compound; a urethane compound; and a Lewis acid compound such as aluminum acetylacetone.
  • Lewis acid compounds are effective for extending the pot life of the curable resin composition of the present invention.
  • the addition amount of these components is usually 50 parts by mass or less, preferably 40 parts by mass or less, with respect to 100 parts by mass of the epoxy resin. If the content exceeds the above upper limit value, the physical properties of the epoxy resin may be reduced, and for example, the adhesive strength of the laminated substrate may be reduced.
  • the method for producing a curable resin composition according to the second aspect of the present invention will be described.
  • the curable resin composition of the present invention can be produced by mixing aluminum nitride particles, an epoxy resin, a curing agent, and an acidic phosphoric acid ester represented by the above general formula (1).
  • the order in which the components of the curable resin composition are mixed is not particularly limited.
  • the aluminum nitride particles, the acidic phosphoric acid represented by the whole or a part of the epoxy resin and the above general formula (1) It is preferable to go through the step of mixing with a mixture containing an ester (Step S11) in that high heat conductivity can be imparted to the resin composition after curing.
  • Step S11 a mixture containing an ester
  • the reason is that by mixing the acidic phosphoric acid ester represented by the above general formula (1) and the epoxy resin in advance, the side chains of the acidic phosphoric acid ester are sufficiently extended, and as a result, it is possible to obtain an epoxy resin It is presumed that this is because the affinity is good.
  • the content of the epoxy resin in “a mixture containing all or part of the epoxy resin and the acidic phosphoric acid ester represented by the above general formula (1)” is not particularly limited, The amount is usually 70 parts by mass or more, preferably 100 parts by mass or more, and more preferably 150 parts by mass or more based on 100 parts by mass of the acidic phosphoric acid ester represented by the above general formula (1) in the mixture. And particularly preferably 200 parts by mass or more.
  • “a mixture containing all or part of the epoxy resin and the acidic phosphoric acid ester represented by the above general formula (1)” may contain a curing agent and does not contain a curing agent. Although it is preferable, it is preferable not to contain aluminum nitride particles.
  • step S11 If the mixing of all the materials to be mixed has been completed after step S11 (if an affirmative determination is made in determination step S12), manufacturing method S1 ends.
  • step S11 if there is an unmixed material to be mixed (for example, the remainder of the epoxy resin, a curing agent, etc.) (if a negative determination is made in determination step S12), the mixture obtained in step S11 And the unmixed material to be mixed (Step S13).
  • an unmixed material to be mixed for example, the remainder of the epoxy resin, a curing agent, etc.
  • the curable resin composition of the present invention can be preferably produced by mixing (step S22) with other components (aluminum nitride particles and a curing agent).
  • aluminum nitride particles and the above general formula (1) are used as a table before contacting the curing agent with the acidic phosphoric acid ester represented by the above general formula (1). It is preferable to contact with the acidic phosphoric acid ester. This is particularly noticeable when using a basic curing agent such as amine or imidazole. Specifically, for example, as shown in the flowchart S3 of FIG.
  • step S31 the acidic phosphoric acid ester and the whole or a part of the epoxy resin are mixed (step S31); the mixture obtained in the step S31, and aluminum nitride The particles are mixed (Step S32); thereafter, it is preferable to mix the mixture obtained in Step S32, the remainder of the epoxy resin, and the curing agent (Step S33).
  • step S33 the remainder of the epoxy resin and the curing agent may be mixed simultaneously or sequentially.
  • Step S41 the acidic phosphoric acid ester and the whole or a part of the epoxy resin are mixed (step S41); obtained in the step S41
  • the mixture and the aluminum nitride particles are mixed (step S42); the mixture obtained in step S42 and the remainder of the epoxy resin are mixed (step S43); finally, the mixture obtained in step S43 and the curing
  • the order of mixing the agent (basic curing agent) (Step S44) can be preferably adopted. Also, after the step of mixing the aluminum nitride particles, that is, between S32 and S33 in the flowchart S3 of FIG. 3, and between S42 and S43 in the flowchart S4 of FIG.
  • save process in (3) is also preferably employable.
  • the general heating temperature in the curing step is 40 to 100 ° C., and the general heating time is 1 to 72 hours.
  • the effect of the acidic phosphoric acid ester represented by the above general formula (1) can be sufficiently achieved by first promoting adsorption of acidic phosphoric acid ester molecules to the surface of aluminum nitride particles. It is considered that the side effects to other basic components and components having a basic reaction site that is not basic as a whole can be suppressed. And according to the aspect which performs a curing process after mixing of aluminum nitride particle
  • the method of mixing is not particularly limited.
  • a known mixing apparatus can be used without particular limitation.
  • Specific examples of the mixing device include a planetary mixer, a kneader such as trimix, a roll kneader such as a triple roll, and a grinder.
  • the mixing device include a planetary mixer, a kneader such as trimix, a roll kneader such as a triple roll, and a grinder.
  • the mixing device include a planetary mixer, a kneader such as trimix, a roll kneader such as a triple roll, and a grinder.
  • the solid components may be mixed in a state of being dissolved in a solvent, and then the solvent may be removed by drying if necessary.
  • High thermal conductivity resin composition The high thermal conductivity resin composition according to the third aspect of the present invention will be described.
  • a high thermal conductivity resin composition according to the third aspect of the present invention can be obtained.
  • heat curing is common in the production of laminated substrates.
  • the heating temperature in the case of heat curing is usually 120 ° C. to 220 ° C., preferably 140 ° C. to 200 ° C.
  • the thermal conductivity of the high thermal conductivity resin composition of the present invention is not particularly limited, but from the viewpoint of reducing the thermal resistance of the high thermal conductivity multilayer substrate according to the fourth aspect of the present invention described later, 4 W / m ⁇ K It is preferable that it is more than, and it is more preferable that it is 5 W / m * K or more.
  • High thermal conductivity laminated substrate The high thermal conductivity laminated substrate according to the fourth aspect of the present invention will be described.
  • the curable resin composition according to the first aspect of the present invention can be used as a resin adhesive.
  • a metal substrate or a high thermal conductivity ceramic substrate 1 hereinafter sometimes simply referred to as “substrate 1”
  • a metal foil 2 for circuit formation according to the present invention Lamination is performed via the curable resin composition 3. Thereafter, by curing the curable resin composition 3, as shown in FIG.
  • laminated substrate 10 a high thermal conductivity laminated substrate 10 (hereinafter sometimes abbreviated as “laminated substrate 10”) in which the high thermal conductivity ceramic substrate 1 is laminated in the above order.
  • the substrate 1 in the multilayer substrate 10 of the present invention is a metal substrate
  • a metal substrate generally used as a heat dissipation substrate can be used without particular limitation as the metal substrate.
  • Preferred examples of the material of the metal substrate include copper, aluminum, a copper-tungsten alloy, a copper-molybdenum alloy, and Al-SiC in which SiC is impregnated with aluminum.
  • the high thermal conductivity ceramic substrate is a ceramic substrate having a thermal conductivity sufficient to release the heat generated from the semiconductor element.
  • the ceramic substrate preferably has a thermal conductivity of 30 W / m ⁇ K or more, more preferably 70 W / m ⁇ K or more.
  • An aluminum nitride substrate, a silicon nitride substrate, an alumina substrate etc. can be mentioned as a specific example of the high thermal conductivity ceramic substrate which can be used in this invention. Among them, particularly when high heat dissipation is required, it is particularly preferable to use an aluminum nitride substrate or a silicon nitride substrate.
  • the thickness of the substrate 1 in the laminated substrate 10 of the present invention is not particularly limited. However, from the viewpoint of reducing the thermal resistance of the substrate, it is not preferable to make the thickness unnecessarily large. Therefore, the thickness of the metal substrate or the high thermal conductivity ceramic substrate 1 is preferably 0.3 to 10 mm.
  • Metal foil As metal foil 2 in laminated board 10 of the present invention, publicly known metal foils, such as gold foil, silver foil, copper foil, aluminum foil, etc., can be adopted without particular restriction. However, copper foil is preferably used from the viewpoint of electrical conductivity and cost. The thickness of the copper foil is not particularly limited, but is generally 5 to 105 ⁇ m, preferably 8 to 35 ⁇ m. Although the manufacturing method of copper foil is not specifically limited, The copper foil generally used is a rolled copper foil or an electrolytic copper foil.
  • the thickness of the high thermal conductivity resin composition layer 4 in the laminated substrate 10 of the present invention is not particularly limited, and can be appropriately determined by those skilled in the art in consideration of the insulating property, adhesive strength, durability, and the like.
  • the substrate 1 is a metal substrate
  • the high thermal conductivity resin composition layer 4 is required to have properties as an insulating layer, so the thickness of the high thermal conductivity resin composition layer 4 is usually 20 to 300 ⁇ m, Preferably, it is 40 to 250 ⁇ m, more preferably 50 to 200 ⁇ m. If the thickness of the high thermal conductivity resin composition layer 4 is less than the above lower limit value, the insulation may be reduced.
  • the thermal conductivity of the laminated substrate 10 may be reduced.
  • the thickness of the high thermal conductivity resin composition layer 4 is preferably 1 to 20 ⁇ m from the viewpoint of reducing the thermal resistance at the interface, more preferably It is 2 to 10 ⁇ m.
  • the thermal conductivity of the high thermal conductive laminated substrate 10 in the present invention is preferably evaluated in the absence of the metal foil 2 because the thermal conductivity of the entire substrate changes largely depending on the thickness of the metal foil 2.
  • the thermal conductivity of the composite layer 5 (see FIG. 6; hereinafter may be simply abbreviated as “composite layer 5”) consisting of the substrate 1 and the high thermal conductivity resin composition layer 4 is the thermal conductivity and thickness of each layer.
  • d 1 the composite layer 5 with a thickness of d 2: thickness of the high thermal conductive resin composition layer 4 d 3: thickness of lambda 1 metal substrate, or a high thermal conductivity ceramic substrate 1: thermal conductivity of the composite layer 5 lambda 2 : thermal conductivity of the high thermal conductive resin composition layer 4 lambda 3: a metal substrate or a thermal conductivity of the high thermal conductivity ceramic substrate 1.
  • the thermal conductivity ⁇ 1 of the composite layer 5 can be theoretically obtained by the following equation (4).
  • the thermal conductivity of the composite layer 5 is preferably 20 W / m ⁇ K or more, and more preferably 30 W / m ⁇ K.
  • the manufacturing method of the high thermal conductivity laminated substrate according to the fifth aspect of the present invention will be described.
  • a process for producing the high thermal conductive laminate substrate 10 of the present invention for example, a known process can be adopted without particular limitation as a process for producing a laminate substrate such as a metal base substrate.
  • the curable resin composition of the present invention is applied to the surface of the substrate 1 (step S101), and the metal foil 2 and the substrate 1 are pressure bonded (step S102).
  • FIG. 5) the method of hardening
  • step S101 if the viscosity of the curable resin composition is high, a solution obtained by dissolving the curable resin composition in a solvent can be applied as shown in the flowchart S11 of FIG. 8 (step S111). In that case, after applying the solution of the curable resin composition, the solvent is removed by drying before pressing the metal foil 2 (step S112).
  • the heating temperature in step S112 can be appropriately determined by the composition of the curable resin composition. However, the temperature is generally 120 ° C. to 220 ° C., preferably 140 ° C. to 200 ° C.
  • the metal foil 2 and the substrate 1 are pressure bonded (step S113 and FIG. 5) as in the above-mentioned production method S10, and the resin layer composed of the curable resin composition 3 is cured by heating (step S114 and FIG. 6) ),
  • the high thermal conductivity laminated substrate 10 can be manufactured.
  • the method S10 of the embodiment in which the metal foil 2 and the substrate 1 are pressure bonded after the curable resin composition 3 of the present invention is applied to the surface of the substrate 1 And S11 are illustrated.
  • the method for producing the high thermal conductivity laminated substrate of the present invention is not limited to the above embodiment. It is also possible to use a method of producing a form in which the curable resin composition layer is formed on the metal foil surface in advance. For example, as shown in the flowchart S12 of FIG.
  • a layer of the curable resin composition 3 is formed on the surface of the metal foil 2 by applying the curable resin composition of the present invention to the metal foil 2 (step S121)
  • the metal foil 2 having the layer of the curable resin composition 3 formed on the surface is pressure-bonded to the substrate 1 (step S122 and FIG. 5), and the layer of the curable resin composition 3 is cured by heating (step By S123 and FIG. 6), the high thermal conductivity laminated substrate 10 can be manufactured.
  • a silane coupling agent, a titanate coupling agent, an anionic surfactant, a nonionic surfactant may be contained in the curable resin composition of the present invention.
  • an adhesion promoting component such as an agent, an organic acidic phosphoric acid ester compound or a phosphonic acid compound may be contained in the curable resin composition of the present invention.
  • the adhesion promoting components are applied to the surface of the substrate 1 and / or the surface of the metal foil 2, and thereafter the adhesion promoting components and curing are carried out. May be brought into contact with the resin composition.
  • a primer solution is prepared by diluting the adhesion promoting component with a solvent (step S131), and the primer solution is sprayed, spun, dipped, etc.
  • the solution is applied onto the surface of the foil 2 (step S132), and the applied primer solution is dried to remove the solvent (step S133).
  • the curable resin composition of the present invention is applied to the surface of the substrate 1 or the surface of the metal foil 2 to form a layer of the curable resin composition 3 (step S134).
  • step S135 heating
  • the high thermal conductivity laminated substrate 10 of the present invention can be manufactured.
  • the primer solution may contain an epoxy resin and a curing agent in addition to the solvent and the adhesion promoting component.
  • an epoxy resin and a curing agent in addition to the solvent and the adhesion promoting component.
  • the substrate 1 is an aluminum substrate, an alumina substrate or an aluminum nitride substrate, an organic acidic phosphoric acid ester compound or a phosphonic acid compound is used as an adhesion promoting component, and the primer solution is applied to the surface of the substrate 1 preferable.
  • the application of the high thermal conductive laminated substrate of the present invention is not particularly limited.
  • the highly thermally conductive laminate substrate of the present invention can be used without particular limitation in a known application as an electronic circuit substrate requiring heat dissipation and insulation.
  • Examples of applications of the high thermal conductive laminated substrate of the present invention include power electronics applications such as converters and inverters, LED applications such as LEDs for lighting, industrial LEDs, and automotive LEDs, and substrates for ICs and LSIs. .
  • Viscosity of curable resin composition The obtained curable resin composition was measured using a dynamic viscoelasticity measuring apparatus (STRESS TECH: Seiko Instruments Inc.), a parallel plate with a diameter of 20 mm, a gap width of 1.00 mm. The viscosity after 120 seconds from the start of the measurement was determined at a measurement temperature of 25 ° C., a frequency of 0.1 Hz, and a steady-state stress of 1000 Pa.
  • STRESS TECH Seiko Instruments Inc.
  • Examples 1 to 20 and Comparative Examples 1 to 8 They are the Example which manufactured the curable resin composition which concerns on the 1st aspect of this invention, and the comparative example which tried manufacture of a curable resin composition.
  • Example 1 5 g of bisphenol A type epoxy resin (JER 1004: manufactured by Mitsubishi Chemical Corporation), 5 g of o-cresol novolac type epoxy resin (YDCN 703: manufactured by Toto Kasei Co., Ltd.), 1-cyanoethyl-2-phenylimidazolium trimellitate (2PZCN-PW: Shikoku A uniform solution was prepared by mixing 0.2 g of a product manufactured by Kasei Chemical Co., Ltd.
  • Table 1 shows the results of measuring the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 2 0.3 g of acidic phosphoric acid ester (Phosphorol RS-610: manufactured by Toho Chemical Co., Ltd.) is dissolved in 2 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), and aluminum nitride particles (grade H: manufactured by Tokuyama) ) And 45g. A homogeneous mixture of 8 g of bisphenol F epoxy resin (EXA-830 CRP: manufactured by DIC) and 0.2 g of 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei Co., Ltd.) was added to this mixture, and the mixture was further kneaded.
  • EXA-830 CRP manufactured by DIC
  • 2-ethyl-4-methylimidazole 2E4MZ: manufactured by Shikoku Kasei Co., Ltd.
  • Table 1 shows the results of measuring the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 3 Bisphenol F type epoxy resin (EXA-830CRP: made by DIC) 10 g, 2-ethyl-4-methylimidazole (2E4MZ: made by Shikoku Kasei Co., Ltd.) 0.2 g, and acidic phosphoric acid ester (phosphanol RA-600: Toho 0.2g manufactured by Kagaku Co., Ltd. was mixed to obtain a uniform solution. 40 g of aluminum nitride particles (grade H: manufactured by Tokuyama) was added to this solution and kneaded.
  • Table 1 shows the results of measuring the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • a curable resin composition was obtained in the same manner as in Example 3, except that the water-resistant aluminum nitride particles C were used and no acidic phosphate was added.
  • Table 1 shows the results of measuring the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 4 Acidic phosphoric acid ester (Phosphanol RS-710: Toho Chemical Co., Ltd.) 0.35 g is dissolved in 1 g of bisphenol A type epoxy resin (EXA-4850-150: made by DIC), and aluminum nitride particles (grade H: Tokuyama) And 20 g of spherical alumina particles (DAW-45, BET specific surface area 0.2 m 2 / g: manufactured by Electrochemical Corporation) and 30 g of the spherical alumina particles.
  • EXA-4850-150 bisphenol A type epoxy resin
  • DAW-45 spherical alumina particles
  • Table 1 shows the results of measuring the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 5 10 g of bisphenol A type epoxy resin (EXA-4850-150: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei Co., Ltd.), and acidic phosphoric acid ester (phosphanol RA-600) : A uniform solution was prepared by mixing 0.25 g of Toho Chemical Co., Ltd.). To this solution, 25 g of aluminum nitride particles (grade H: manufactured by Tokuyama Corp.) was added and kneaded.
  • EXA-4850-150 manufactured by DIC
  • 2E4MZ 2-ethyl-4-methylimidazole
  • phosphanol RA-600 acidic phosphoric acid ester
  • Table 1 shows the results of measuring the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 6 10 g of bisphenol A type epoxy resin (EXA-4850-150: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei Co., Ltd.), and acidic phosphoric acid ester (phosphanol RA-600) : A uniform solution was prepared by mixing 0.25 g of Toho Chemical Co., Ltd.). To this solution, 30 g of aluminum nitride particles (grade F, BET specific surface area 3.4 m 2 / g: manufactured by Tokuyama Corp.) was added and kneaded.
  • EXA-4850-150 manufactured by DIC
  • 2E4MZ 2-ethyl-4-methylimidazole
  • acidic phosphoric acid ester phosphanol RA-600
  • Table 1 shows the results of measuring the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 7 7.7 g of bisphenol F type epoxy resin (EXA-830 CRP: made by DIC), 2.3 g of polyamine curing agent (JER cure 113: made by Mitsubishi Chemical), and acidic phosphoric acid ester (phosphonol GF-199: Toho Chemical Made into a homogeneous solution. 35 g of aluminum nitride particles (grade UM, BET specific surface area 1.1 m 2 / g: manufactured by Toyo Aluminum Co., Ltd.) were added to this solution and kneaded.
  • EXA-830 CRP made by DIC
  • JER cure 113 made by Mitsubishi Chemical
  • acidic phosphoric acid ester phosphonol GF-199: Toho Chemical Made into a homogeneous solution.
  • 35 g of aluminum nitride particles grade UM, BET specific surface area 1.1 m 2 / g: manufactured by Toyo Aluminum Co., Ltd.
  • Example 8 5 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), 5 g of acid anhydride (B-570: manufactured by DIC), 0.8 g of N, N-dimethylbenzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) as an accelerator And 0.1 g of acidic phosphoric acid ester (Phosphanol ML-200: manufactured by Toho Chemical Co., Ltd.) to obtain a uniform solution. 40 g of aluminum nitride particles (grade JD, BET specific surface area 2.2 m 2 / g: manufactured by Toyo Aluminum Co., Ltd.) was added to this solution and kneaded.
  • EXA-830 CRP manufactured by DIC
  • B-570 manufactured by DIC
  • N, N-dimethylbenzylamine manufactured by Wako Pure Chemical Industries, Ltd.
  • acidic phosphoric acid ester Phosphanol ML-200: manufactured by Toho Chemical Co.
  • Example 9 10 g of bisphenol A type epoxy resin (EXA-4850-150: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei Co., Ltd.), and acidic phosphoric acid ester (Phosphanol ML-200) : Toho Chemical Co., Ltd. product 0.1g was mixed and it was set as the uniform solution. To this solution, 30 g of aluminum nitride particles (grade JD: manufactured by Toyo Aluminum Co., Ltd.) and boron nitride (HCPL, BET specific surface area 7 m 2 / g: manufactured by Momentive, Inc.) were added and kneaded.
  • EXA-4850-150 manufactured by DIC
  • 2E4MZ 2-ethyl-4-methylimidazole
  • Phosphanol ML-200 acidic phosphoric acid ester
  • Example 10 10 g of bisphenol F type epoxy resin (EXA-830 CRP: made by DIC), 5 g of acid anhydride (B-570: made by DIC), 0.8 g of N, N-dimethylbenzylamine (made by Wako Pure Chemical Industries, Ltd.) as an accelerator And 0.1 g of acidic phosphoric acid ester (Phosphor BH-650: manufactured by Toho Chemical Co., Ltd.) to obtain a uniform solution. 40 g of aluminum nitride particles (grade JD: manufactured by Toyo Aluminum Co., Ltd.) was added to this solution and kneaded.
  • EXA-830 CRP made by DIC
  • B-570 made by DIC
  • N, N-dimethylbenzylamine made by Wako Pure Chemical Industries, Ltd.
  • acidic phosphoric acid ester Phosphor BH-650: manufactured by Toho Chemical Co., Ltd.
  • Example 11 10 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.), 0.5 g of octyl isocyanate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.22 g of acidic phosphoric acid ester (Phosphanol RS-610: manufactured by Toho Chemical Co., Ltd.) was mixed to obtain a uniform solution. To this solution, 30 g of aluminum nitride particles (grade H: manufactured by Tokuyama Corp.) was added and kneaded.
  • EXA-830 CRP manufactured by DIC
  • 2-ethyl-4-methylimidazole 2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.
  • octyl isocyanate manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 12 Bisphenol F type epoxy resin (EXA-830CRP: manufactured by DIC) 8 g, 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei Co., Ltd.) 0.2 g, carbodiimide (Carbodilite V-05: manufactured by Nisshinbo Co., Ltd.), and 0.25 g of acidic phosphoric acid ester (Phosphorol RS-610: manufactured by Toho Chemical Co., Ltd.) was mixed to obtain a uniform solution. 40 g of aluminum nitride particles (grade H: manufactured by Tokuyama) was added to this solution and kneaded.
  • EXA-830CRP manufactured by DIC
  • 2-ethyl-4-methylimidazole 2E4MZ: manufactured by Shikoku Kasei Co., Ltd.
  • carbodiimide Carbodilite V-05: manufactured by Nisshinbo Co., Ltd.
  • Phosphorol RS-610 manufactured
  • Example 13 10 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.), 0.1 g of acetylacetone aluminum (manufactured by Tokyo Kasei Co., Ltd.) 0.22 g of phosphoric acid ester (Phosphanol RS-610: manufactured by Toho Chemical Co., Ltd.) was mixed to obtain a uniform solution. 40 g of aluminum nitride particles (grade H: manufactured by Tokuyama) was added to this solution and kneaded.
  • EXA-830 CRP manufactured by DIC
  • 2-ethyl-4-methylimidazole 2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.
  • acetylacetone aluminum manufactured by Tokyo Kasei Co., Ltd.
  • Phosphanol RS-610 manufactured by Toho Chemical Co.
  • Example 14 Aluminum nitride particles (particle diameter 1.1 ⁇ m, BET specific surface area 1.6 m 2: Tokuyama company trial product) 1 kg, aluminum phosphate solution (100 L, Al 2 O 3 / 8.5%, P 2 O 5 33.0%: Taki Chemical Co., Ltd. A) 4.0 g, 3.0 g of lauryl phosphate (ML-200: manufactured by Toho Chemical Co., Ltd.) and 1 kg of water to form a uniform solution, and then the flow rate is set at 0 with an ultrasonic disperser (GSD600 HAT: manufactured by Ginsen) After 3 times of treatment at 5 L / min, it was dried at an inlet temperature of 200 ° C. with a spray drier (R-100, manufactured by Pris) and vacuum dried at 80 ° C. for 15 hours. The obtained particles are referred to as aluminum nitride particles A.
  • Aluminum nitride particles (particle diameter 4.5 ⁇ m, BET specific surface area 0.6 m 2: Tokuyama company prototype) 1 kg, aluminum phosphate solution (100 L, Al 2 O 3 /8.5%, P 2 O 5 33.0%: Taki Chemical Co., Ltd. ) 2.5 g of lauryl phosphate (ML-200: manufactured by Toho Chemical Co., Ltd.) and 1 kg of water are heated to form a uniform solution, and the flow rate is set at 0 with an ultrasonic disperser (GSD600 HAT: manufactured by Ginsen). After 3 times of treatment at 5 L / min, it was dried at an inlet temperature of 200 ° C. with a spray drier (R-100, manufactured by Pris) and vacuum dried at 80 ° C. for 15 hours. The obtained particles were referred to as aluminum nitride particles B.
  • Bisphenol F type epoxy resin (EXA-830CRP: made by DIC) 10 g, 2-ethyl-4-methylimidazole (2E4MZ: made by Shikoku Kasei Co., Ltd.) 0.2 g, and acidic phosphoric acid ester (phosphanol RA-600: Toho A uniform solution was prepared by mixing 0.25 g of Chem. To this solution, 20 g of aluminum nitride particles A and 30 g of aluminum nitride particles B were added and kneaded.
  • Table 3 shows the results of measurement of the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 15 In 2 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), 0.25 g of acidic phosphoric acid ester (Phosphorol RA-600: manufactured by Toho Chemical Co., Ltd.) was dissolved and kneaded with 45 g of aluminum nitride particles A. A homogeneous solution of 8 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC) and 0.2 g of 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei Co., Ltd.) was added to this mixture and further kneaded.
  • EXA-830 CRP manufactured by DIC
  • 2-ethyl-4-methylimidazole 2E4MZ: manufactured by Shikoku Kasei Co., Ltd.
  • Table 3 shows the results of measurement of the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 16 Dissolve 0.25 g of acidic phosphoric acid ester (Phosphorol RA-600: Toho Chemical Co., Ltd.) in 2 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), and dissolve 30 g of aluminum nitride particles A and 20 g of aluminum nitride particles B Kneaded. After this mixture is stored at 40 ° C. for 8 hours, a homogeneous mixture of 8 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC) and 0.2 g of 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei) Were added and further kneaded.
  • EXA-830 CRP manufactured by DIC
  • Table 3 shows the results of measurement of the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 17 10 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.), and acidic phosphoric acid ester (phosphonol RS-610: Toho The chemical solution (0.07 g) was mixed to obtain a uniform solution. To this solution, 30 g of aluminum nitride particles (grade H: Tokuyama trial product) was added and kneaded.
  • EXA-830 CRP manufactured by DIC
  • 2-ethyl-4-methylimidazole 2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.
  • acidic phosphoric acid ester phosphonol RS-610: Toho
  • Table 3 shows the results of measurement of the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 18 10 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.), and acidic phosphoric acid ester (phosphonol RS-610: Toho The chemical solution (0.03 g) was mixed to obtain a uniform solution. To this solution, 25 g of aluminum nitride particles (grade H: manufactured by Tokuyama Corp.) and 25 g of alumina particles (AKP-20, BET specific surface area 5 m 2 / g: manufactured by Sumitomo Chemical Co., Ltd.) were added and kneaded.
  • EXA-830 CRP: manufactured by DIC 0.2 g of 2-ethyl-4-methylimidazole (2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.)
  • acidic phosphoric acid ester phosphonol RS-610: To
  • Table 3 shows the results of measurement of the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 19 10 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.), and acidic phosphoric acid ester (phosphonol RS-610: Toho The chemical solution (0.03 g) was mixed to obtain a uniform solution. To this solution, 12 g of aluminum nitride particles (grade H: manufactured by Tokuyama) and boron nitride particles (HCPL, BET specific surface area 7 m 2 / g, manufactured by Momentive) were added and kneaded.
  • EXA-830 CRP manufactured by DIC
  • 2-ethyl-4-methylimidazole 2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.
  • acidic phosphoric acid ester phosphonol RS-610: Toho
  • 12 g 12 g of aluminum nitrid
  • Table 3 shows the results of measurement of the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Example 20 Bisphenol F type epoxy resin (EXA-830CRP: made by DIC) 10 g, 2-ethyl-4-methylimidazole (2E4MZ: made by Shikoku Kasei Co., Ltd.) 0.2 g, and acidic phosphoric acid ester (BYK-W9010: Big Chemie Japan Co., Ltd. Made into a homogeneous solution. 40 g of aluminum nitride particles (grade H: manufactured by Tokuyama) was added to this solution and kneaded.
  • EXA-830CRP made by DIC
  • 2-ethyl-4-methylimidazole 2E4MZ: made by Shikoku Kasei Co., Ltd.
  • BYK-W9010 Big Chemie Japan Co., Ltd.
  • Table 3 shows the results of measurement of the viscosity of the obtained curable resin composition and the thermal conductivity after curing.
  • Comparative example 2 5 g of bisphenol A-type epoxy resin (JER 1004: manufactured by Mitsubishi Chemical Corporation), 5 g of o-cresol novolac epoxy resin (YDCN 703: manufactured by Toto Kasei Co., Ltd.), and 1-cyanoethyl-2-phenylimidazolium trimellitate (2PZCN-PW: 0.2 g of Shikoku Kasei Co., Ltd.) was mixed to obtain a uniform solution. To this solution, 35 g of aluminum nitride particles (grade H: manufactured by Tokuyama Corp.) was added and kneaded.
  • Comparative example 7 10 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei Co., Ltd.), and 0.25 g of ethyl carbitol (manufactured by Tokyo Kasei Co., Ltd.) Mix to make a homogeneous solution. 40 g of aluminum nitride particles (grade H: manufactured by Tokuyama) was added to this solution and kneaded.
  • EXA-830 CRP manufactured by DIC
  • 2-ethyl-4-methylimidazole 2E4MZ: manufactured by Shikoku Kasei Co., Ltd.
  • ethyl carbitol manufactured by Tokyo Kasei Co., Ltd.
  • Examples 21 to 28 and Comparative Examples 9 to 11 They are the Example which manufactured the highly thermally conductive laminated substrate which concerns on the 4th aspect of this invention, and the comparative example which tried manufacture of the highly thermally conductive laminated substrate.
  • Example 21 The curable resin composition of Example 9 is thinly coated on an 18 ⁇ m thick electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.), and an aluminum substrate (A1050, thickness 1 mm, thermal conductivity 225 W) / M ⁇ K: manufactured by Ohkouchi Metals Co., Ltd.) and vacuum pressed at 180 ° C. for 3 hours to obtain a high thermal conductive laminated substrate.
  • Table 5 shows theoretical calculation values of the adhesive strength, the insulation withstand voltage, and the thermal conductivity of the composite layer composed of the high thermal conductive resin and the aluminum substrate of the obtained high thermal conductive laminated substrate.
  • Example 22 10 g of bisphenol F-type epoxy resin (EXA-830 CRP: manufactured by DIC), 0.2 g of 2-ethyl-4-methylimidazole (2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.), and acidic phosphoric acid ester (phosphonol RS-610: Toho 10 g of Toru Kagaku Co., Ltd. and 100 g of toluene were mixed to obtain a primer solution. After spin-coating this primer solution on an aluminum substrate (A1050, thickness 1 mm: manufactured by Ohkonai Metals Co., Ltd.), it was dried at 120 ° C. for 1 hour.
  • EXA-830 CRP manufactured by DIC
  • 2-ethyl-4-methylimidazole 2E4 MZ: manufactured by Shikoku Kasei Co., Ltd.
  • acidic phosphoric acid ester phosphonol RS-610: Toho 10 g of Toru Kagaku Co., Ltd. and 100
  • Example 14 The curable resin composition of Example 14 was thinly coated on a 35 ⁇ m-thick rolled copper foil (HPF-ST35-X: manufactured by Hitachi Cable, Ltd.), and the primer coated surface of the aluminum substrate was placed on that surface. A high thermal conductive laminated substrate was obtained by vacuum pressing at 3 ° C. for 3 hours.
  • Table 5 shows theoretical calculation values of the adhesive strength, the insulation withstand voltage, and the thermal conductivity of the composite layer consisting of the high thermal conductivity resin composition layer and the aluminum substrate of the obtained high thermal conductivity laminated substrate.
  • Example 23 The curable resin composition of Example 16 was thinly coated on an electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.) with a thickness of 12 ⁇ m, and an aluminum substrate (A1050, thickness 0.5 mm: Taigauchi metal) was applied to the coated surface , And vacuum pressed at 180 ° C. for 3 hours to obtain a high thermal conductive laminated substrate.
  • JTC electrolytic copper foil
  • Al substrate A1050, thickness 0.5 mm: Taigauchi metal
  • Table 5 shows theoretical calculation values of the adhesive strength, the insulation withstand voltage, and the thermal conductivity of the composite layer consisting of the high thermal conductivity resin composition layer and the aluminum substrate of the obtained high thermal conductivity laminated substrate.
  • Example 24 The curable resin composition of Example 3 is thinly coated on a 12 ⁇ m thick electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.), and an aluminum nitride substrate (thickness 0.64 mm, thermal conductivity) is applied to the coated surface After placing 170 W / m ⁇ K: manufactured by TD Power Materials Co., Ltd., it was vacuum pressed at 180 ° C. for 3 hours to obtain a high thermal conductive laminated substrate.
  • JTC electrolytic copper foil
  • aluminum nitride substrate thinness 0.64 mm, thermal conductivity
  • Table 5 shows theoretical calculation values of the adhesive strength and the insulation withstand voltage of the obtained high thermal conductive laminated substrate, and the thermal conductivity of the composite layer comprising the high thermal conductive resin composition layer and the aluminum nitride substrate.
  • Example 25 The curable resin composition of Example 8 is thinly coated on an electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.) having a thickness of 9 ⁇ m, and an aluminum nitride substrate (thickness 1 mm: manufactured by TD Power Materials Co., Ltd.) C. for 3 hours to obtain a high thermal conductive laminate substrate.
  • JTC electrolytic copper foil
  • JX manufactured by JX Nippon Mining & Metals Co., Ltd.
  • aluminum nitride substrate thickness 1 mm: manufactured by TD Power Materials Co., Ltd.
  • Table 5 shows theoretical calculation values of the adhesive strength and the insulation withstand voltage of the obtained high thermal conductive laminated substrate, and the thermal conductivity of the composite layer comprising the high thermal conductive resin composition layer and the aluminum nitride substrate.
  • Example 26 The curable resin composition of Example 13 is thinly coated on an 18 ⁇ m thick electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.), and an aluminum nitride substrate (thickness 1 mm: manufactured by TD Power Materials Co., Ltd.) C. for 3 hours to obtain a high thermal conductive laminate substrate.
  • JTC electrolytic copper foil
  • JX manufactured by JX Nippon Mining & Metals Co., Ltd.
  • aluminum nitride substrate thinness 1 mm: manufactured by TD Power Materials Co., Ltd.
  • Table 5 shows theoretical calculation values of the adhesive strength and the insulation withstand voltage of the obtained high thermal conductive laminated substrate, and the thermal conductivity of the composite layer comprising the high thermal conductive resin composition layer and the aluminum nitride substrate.
  • Example 27 The curable resin composition of Example 14 was thinly coated on an 18 ⁇ m thick electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.), and an aluminum substrate (A1050, thickness 1 mm: manufactured by Ohkouchi Metal Corp.) C. for 3 hours to obtain a high thermal conductive laminate substrate.
  • JTC electrolytic copper foil
  • A1050, thickness 1 mm manufactured by Ohkouchi Metal Corp.
  • Table 5 shows theoretical calculation values of the adhesive strength, the insulation withstand voltage, and the thermal conductivity of the composite layer consisting of the high thermal conductivity resin composition layer and the aluminum substrate of the obtained high thermal conductivity laminated substrate.
  • Example 28 The curable resin composition of Example 4 is thinly coated on an 18 ⁇ m thick electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.), and an aluminum nitride substrate (thickness 1 mm: manufactured by TD Power Materials Co., Ltd.) C. for 3 hours to obtain a high thermal conductive laminate substrate.
  • Table 5 shows theoretical calculation values of the adhesive strength and the insulation withstand voltage of the obtained high thermal conductive laminated substrate, and the thermal conductivity of the composite layer comprising the high thermal conductive resin composition layer and the aluminum nitride substrate.
  • Comparative example 9 The curable resin composition of Comparative Example 5 is thinly coated on an 18 ⁇ m thick electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.) ) Was placed, followed by vacuum pressing at 180 ° C. for 3 hours to obtain a laminated substrate.
  • JTC manufactured by JX Nippon Mining & Metals Co., Ltd.
  • Comparative example 10 The curable resin composition of Comparative Example 5 is thinly applied to an electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.) having a thickness of 35 ⁇ m, and an aluminum nitride substrate (thickness 1 mm: manufactured by TD Power Materials Co., Ltd.) ) Was placed, followed by vacuum pressing at 180 ° C. for 3 hours to obtain a laminated substrate.
  • JTC manufactured by JX Nippon Mining & Metals Co., Ltd.
  • an aluminum nitride substrate thinness 1 mm: manufactured by TD Power Materials Co., Ltd.
  • Comparative example 11 The curable resin composition of Comparative Example 4 is thinly coated on an electrolytic copper foil (JTC: manufactured by JX Nippon Mining & Metals Co., Ltd.) having a thickness of 12 ⁇ m, and an aluminum nitride substrate (thickness 1 mm: manufactured by TD Power Materials Co., Ltd.) ) Was placed, followed by vacuum pressing at 180 ° C. for 3 hours to obtain a laminated substrate.
  • JTC manufactured by JX Nippon Mining & Metals Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 必要十分な接合強度を有し、且つ高い熱伝導性を有する絶縁性の接着層を低コストで形成できる、硬化性樹脂組成物を提供する。 窒化アルミニウム粒子、エポキシ樹脂、硬化剤、および、下記一般式(1)で表される酸性リン酸エステルを含有する硬化性樹脂組成物であって、上記各成分が相互に混合されている、硬化性樹脂組成物。(式(1)中、 R:炭素数4~20のヒドロカルビル基 R:炭素数1~20の飽和ヒドロカルビレン基 R:炭素数2~3の飽和ヒドロカルビレン基 R:炭素数1~8のヒドロカルビレン基 k:0~20 l:0~20 m:0~20 n:1~2 であって、 R(i:1~4)が複数ある場合、該複数のRは同一でも異なっていてもよく、 k個の-CORO-基、l個の-RO-基、及びm個の-CORCOO-基がなす順序は任意であり、 n=2の場合、2個の側鎖は同一でも異なっていてもよい。)

Description

硬化性樹脂組成物及びその製造方法、高熱伝導性樹脂組成物及び高熱伝導性積層基板
 本発明は、電子材料の放熱用途に用いられる高熱伝導性樹脂組成物に関する。
 電子機器の電源の変圧や変調にはパワー半導体と呼ばれる半導体素子が用いられている。パワー半導体を用いたパワーデバイスの出力密度は、電子機器の小型化や高効率化の要求に伴い、急速に増大してきた。一方、素子の安定な動作及び寿命のためには素子の温度を一定温度以下に保つ必要があり、これらの素子の発生する熱を効率よく放出することは重要な課題である。このようなパワーデバイスでも特に出力の高いもの、例えば1kW以上の出力を有するデバイスの放熱には、窒化アルミニウム、窒化珪素、アルミナ等の熱伝導率の高い絶縁性セラミックスの基板上に銅等の金属配線が形成された、メタライズドセラミックス基板を用いることが一般的である。
 セラミックス基板に金属を接合するためには、銀ロウに代表される、ロウ材と呼ばれる合金が従来用いられてきた。ロウ材及びバインダーを含むペースト組成物によりセラミックス基板上に回路を印刷した後、ロウ材の融点以上の温度で基板を加熱することにより、セラミックスと金属とを強固に結合するという手法である(特許文献1)。また、より高い精度が必要な場合には、ロウ材をセラミックス基板の全面に塗布した後、メッキ又は貼付けにより銅等の金属層を基板表面に形成し、その後に金属層をエッチングするという手法が一般的であった(特許文献2)。しかし、ロウ材には銀を用いるため原料コストが高いこと、ロウ材の融点は通常600℃以上であるため製造のためのエネルギーコストも高いこと、及び、金属層が厚い場合には、セラミックスと金属との間での熱膨張係数の相違から、過酷な熱サイクル試験においてセラミックスと金属の間で剥離が起こる場合があること、等の問題があった。
 他方、近年LED素子は、その輝度の向上に伴って、用途が急速に拡大しつつある。特に高輝度のLED素子を用いる場合には、回路基板にも高い放熱性が求められる。先に述べたパワー半導体の出力が通常数百W又はそれ以上であり、1kW以上の出力を有するパワー半導体も存在するのに対し、LED素子の出力は最大数百ワット程度である。よってパワー半導体用の回路基板とLED素子用の回路基板とでは、回路基板に求められる特性が異なる。すなわち、パワーデバイスの場合にはその使用条件下で素子の動作温度が百数十℃となることが一般的であるため、パワー半導体用の回路基板にはそのような高温から室温まで、場合によっては氷点下までの温度範囲にわたる熱サイクルに耐える接合強度が求められる。他方、LED素子の寿命は動作温度に大きく影響されるため、LED素子用の回路基板には素子の動作温度を可能な限り低くするよう、優れた放熱性が求められる。LEDの動作温度は通常100℃以下であるから、LED素子用の回路基板におけるセラミックス-金属間の接合強度には、高出力なパワー半導体を搭載する基板に要求されるほどの厳しい条件は課されない。LED素子用の回路基板を製造するにあたっては、例えば、窒化アルミニウム等の絶縁基板上にチタン等の金属を蒸着又はスパッタリングすることにより接着層を形成し、該接着層の上にニッケル、金等の導電層をメッキ、スパッタリング又は蒸着によって形成するという方法が採用されている(特許文献3)。しかし、LEDの本格的な普及のためには製造コストの低減が重要な課題であり、したがって部品、製造工程の全てにわたって低コスト化が求められている。
 LED素子用の回路基板において必要十分なセラミックス-金属間の接合強度を得られる低コストな接合手法としては、エポキシ樹脂等の樹脂系材料による接着が挙げられる。しかし、現状のエポキシ樹脂をこのような接着用途に用いた場合、接着層の熱伝導率が不十分となるために、メタライズドセラミックス基板全体としての熱伝導率を高くすることが困難であった。またアルミナ、窒化ホウ素、窒化アルミニウム等の高熱伝導性フィラーをエポキシ樹脂に添加することによってエポキシ樹脂接着層の熱伝導率を向上させる試みも近年盛んに行われているが、その様なフィラーを添加しても、接着層として十分な熱伝導率を得るには至っていない。
 一方、上記のような高い放熱性が必ずしも要求されない用途、例えば液晶テレビのバックライト用LED、低出力の照明用LED等では、熱伝導率がさほど高くない大面積の基板を用いて放熱を行う事が一般的である。そのような場合には金属ベース基板、とくに金属としてアルミニウムを採用したアルミベース基板が用いられてきた。アルミベース基板とは、回路形成のための金属箔、絶縁層としての有機無機複合樹脂、及びアルミニウム基板を有する積層基板である。しかし現状では複合樹脂の熱伝導率が不十分なため、積層基板全体としての熱伝導率を高くすることができていない。このためアルミベース基板においても、例えば照明用LED等の比較的高出力な用途に使用した場合には、LED素子の温度が上昇する結果、発効効率及び寿命が低下する等の問題が生じるおそれがある。よって複合樹脂の熱伝導率を高めることが必要であるが、簡便かつ低コストのプロセスによって製造可能な、実用に耐える高熱伝導性の絶縁性樹脂は、今のところ開発されていない。
 更に、上述のような基板材料のみならず、電子材料分野では様々な高熱伝導性の絶縁性材料が求められている。中でも熱硬化性高熱伝導性樹脂は、半導体封止材料、半導体素子と基板を接着するためのアンダーフィル、ダイボンディング材、及びその他接着剤等として広範囲な用途を有する。一方前述の通り、半導体素子の小型化、高出力化に伴い放熱性能への要求水準は急速に高まっているため、熱硬化性高熱伝導性樹脂には、その熱伝導率の更なる向上が求められている。
 一般に、無機粒子を充填した樹脂の熱伝導率は、無機粒子の充填量の増加に伴って上昇し、そのカーブは充填量が高いほど傾きが大きくなる。従って高熱伝導性の樹脂を得るためには、高熱伝導の無機粒子を樹脂中に大量に分散させる必要があり、このためには無機粒子が充填された樹脂の粘度を低く抑えることが必要である。従来この目的のために、粒子径の異なる球状粒子を組み合わせることや(特許文献4)、高沸点溶媒を添加すること(特許文献5)といった様々な技術が提案されてきた。しかしこれらの技術をエポキシ樹脂に適用しても、その効果は不十分であった。
特開平09-181423号公報 特開平10-284813号公報 国際公開2006/098454号パンフレット 特開2005-320479号公報 特開平10-173097号公報
 以上のようにメタライズドセラミックス基板においては、必要十分なセラミックス-金属間の接合強度を有し、且つ熱伝導率の高い接着層を低コストで実現する新たな接合手法が求められている。また金属ベース基板においても、熱抵抗の低い絶縁層を低コストで形成できる、熱伝導率の高い複合樹脂が求められている。
 そこで本発明者は、必要十分な接合強度を有し、且つ高い熱伝導性を有する絶縁性の接着層を低コストで形成できる、硬化性樹脂組成物及びその製造方法を提供することを課題とする。また、高熱伝導性樹脂組成物、高熱伝導性積層基板およびその製造方法を提供する。
 本発明の第1の態様は、窒化アルミニウム粒子、エポキシ樹脂、硬化剤、および下記一般式(1)で表される酸性リン酸エステルを含有する硬化性樹脂組成物であって、該硬化性樹脂組成物においては、窒化アルミニウム粒子、エポキシ樹脂、硬化剤、および下記一般式(1)で表される酸性リン酸エステルが相互に混合されている、硬化性樹脂組成物である。なお本発明の第1の態様において「窒化アルミニウム粒子、エポキシ樹脂、硬化剤、および下記一般式(1)で表される酸性リン酸エステルが相互に混合されている」とは、「エポキシ樹脂、硬化剤、および下記一般式(1)で表される酸性リン酸エステルを含む混合物中に、窒化アルミニウム粒子が分散されている」と言い換えることができる。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、
 R:炭素数4~20の飽和または不飽和ヒドロカルビル基
 R:炭素数1~20の飽和ヒドロカルビレン基
 R:炭素数2または3の飽和ヒドロカルビレン基
 R:炭素数1~8の飽和または不飽和ヒドロカルビレン基
 k:0~20の整数
 l:0~20の整数
 m:0~20の整数
 n:1または2
であって、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
 k個の-CORO-基、l個の-RO-基、及びm個の-CORCOO-基がなす順序は任意であり、
 n=2の場合、2個のRO(CORO)(RO)(CORCOO)基は同一でも異なっていてもよい。)
 本発明の第2の態様は、窒化アルミニウム粒子、エポキシ樹脂、硬化剤、および上記一般式(1)で表される酸性リン酸エステルを相互に混合する工程を有する、硬化性樹脂組成物の製造方法である。
 本発明の第3の態様は、本発明の第1の態様に係る硬化性樹脂組成物を硬化させることにより得られる、高熱伝導性樹脂組成物である。
 本発明の第4の態様は、金属箔、本発明の第3の態様に係る高熱伝導性樹脂組成物、および、金属基板または高熱伝導性セラミックス基板がこの順に積層されている、高熱伝導性積層基板である。
 本発明の第5の態様は、金属箔と、金属基板または高熱伝導性セラミックス基板とを、本発明の第1の態様に係る硬化性樹脂組成物を介して積層する工程と、該硬化性樹脂組成物を硬化させる工程とをこの順に有する、高熱伝導性積層基板の製造方法である。
 本発明の第1の態様によれば、硬化させることにより、高められた接合強度および熱伝導率を有する高熱伝導性樹脂組成物を低コストで得ることができる、硬化性樹脂組成物を提供できる。該硬化性樹脂組成物は、本発明の第2の態様に係る製造方法によって好ましく製造できる。
 本発明の第1の態様に係る硬化性樹脂組成物、及び、該硬化性樹脂組成物を硬化させることで得られる本発明の第3の態様に係る高熱伝導性樹脂組成物は、電子材料用として広範な用途を有し、特に、本発明の第4の態様に係る高熱伝導性積層基板の絶縁性接着層を得るにあたって有用である。本発明の第4の態様に係る高熱伝導性積層基板は、低コストで製造でき、且つ高められた熱伝導率を有するので、LED素子用の回路基板や低出力パワー半導体用の回路基板として好ましく採用できる。該高熱伝導性積層基板は、本発明の第5の態様に係る製造方法によって好ましく製造できる。
本発明の第2の態様に係る硬化性樹脂組成物の製造方法の一の実施形態S1を説明するフローチャートである。 本発明の第2の態様に係る硬化性樹脂組成物の製造方法の他の実施形態S2を説明するフローチャートである。 本発明の第2の態様に係る硬化性樹脂組成物の製造方法のさらに他の実施形態S3を説明するフローチャートである。 本発明の第2の態様に係る硬化性樹脂組成物の製造方法のさらに他の実施形態S4を説明するフローチャートである。 本発明の第4の態様に係る高熱伝導性積層基板における、硬化性樹脂組成物を硬化させる前の状態を模式的に説明する断面図である。 本発明の第4の態様に係る高熱伝導性積層基板を模式的に説明する断面図である。 本発明の第5の態様に係る高熱伝導性積層基板の製造方法の一の実施形態S10を説明するフローチャートである。 本発明の第5の態様に係る高熱伝導性積層基板の製造方法の他の実施形態S11を説明するフローチャートである。 本発明の第5の態様に係る高熱伝導性積層基板の製造方法のさらに他の実施形態S12を説明するフローチャートである。 本発明の第5の態様に係る高熱伝導性積層基板の製造方法のさらに他の実施形態S13を説明するフローチャートである。
 本明細書において、数値A及びBについて「A~B」なる表記は、特に別途規定されない限り、「A以上B以下」を意味するものとする。該表記において数値Aの単位が省略された場合には、数値Bに付された単位が数値Aの単位として適用されるものとする。
 本明細書において、「平均粒子径」とは、レーザー回折法によって測定される体積分布の中間値を与える球相当径(体積平均値D50)を意味するものとする。レーザー回折法による粒子の体積分布の測定は、日機装株式会社製マイクロトラックを用いて好ましく行うことができる。
 <1.硬化性樹脂組成物>
 本発明の第1の態様に係る硬化性樹脂組成物について説明する。
 (窒化アルミニウム粒子)
 本発明の硬化性樹脂組成物における窒化アルミニウム粒子としては、公知の窒化アルミニウム粒子を特に制限なく採用できる。その製法も特に制限されるものではなく、直接窒化法であってもよく、還元窒化法であってもよい。窒化アルミニウム粒子の平均粒子径は特に制限されるものではなく、例えば10nm~100μmの平均粒子径を有する窒化アルミニウム粒子を採用できる。
 好ましい一態様として、平均粒子径の異なる窒化アルミニウム粒子を混合して用いる態様を例示できる。例えば窒化アルミニウム粒子の全量に対して、平均粒子径10~100μmの窒化アルミニウム粒子を30~80質量%、平均粒子径1μm以上10μm未満の窒化アルミニウム粒子を10~60質量%、及び平均粒子径100nm以上1μm未満の窒化アルミニウム粒子を3~30質量%の割合で含む混合粒子によれば、硬化性樹脂組成物の粘度をより低く抑える事ができるので、硬化性樹脂組成物中の窒化アルミニウム粒子の充填量をさらに高めることが可能になる。
 なお硬化性樹脂組成物を硬化させて得られる高熱伝導性樹脂組成物に高い耐水性が要求される場合には、窒化アルミニウム粒子の平均粒子径が100nm~100μmであることが好ましい。
 本発明の硬化性樹脂組成物を硬化させて得られる高熱伝導性樹脂組成物に特に高い耐水性が要求される場合の好ましい一例としては、窒化アルミニウム粒子を予め耐水化処理することにより得た耐水性窒化アルミニウム粒子を、エポキシ樹脂等との混合に供する態様を挙げることができる。この様な耐水化処理に用いる処理剤(以下、「耐水化処理剤」と略記することがある。)としては、リン酸、リン酸アルミニウム等の金属リン酸塩、酸性リン酸エステル、ホスホン酸化合物、シランカップリング剤、有機酸等を例示できる。耐水化処理剤は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。上記例示した耐水化処理剤の中でも、リン酸、リン酸アルミニウム等の金属リン酸塩、及び酸性リン酸エステルから選ばれる1種以上を好ましく用いることができる。これらの中でも酸性リン酸エステルを用いて耐水化処理を行うことにより、特に良好な耐水性を得ることが可能であり、また、硬化性樹脂組成物を硬化させて得られる高熱伝導性樹脂組成物の熱伝導率をさらに高めることが容易になる。なお、窒化アルミニウム粒子の疎水化処理に使用する酸性リン酸エステルは、本発明の硬化性樹脂組成物における必須成分である酸性リン酸エステル(上記一般式(1))の要件を必ずしも満たしている必要はない。
 窒化アルミニウム粒子を耐水化処理するにあたっては、公知の方法を特に制限なく採用することができる。例えば、窒化アルミニウム粒子と耐水化処理剤とを溶媒中(湿式)で又は無溶媒(乾式)で混合した後、熱処理により個々の窒化アルミニウム粒子表面に被膜を形成する事が一般的である。但し、熱伝導率および耐水性を同時に高めるためには、均一で薄い被膜を形成する事が望ましく、したがって溶媒中に分散させた窒化アルミニウム粒子に対して耐水化処理剤による処理を行うことが好ましい。耐水化処理における溶媒としては、例えば、水;メタノール、エタノール等のアルコール類;酢酸エチル等のエステル類;アセトン、エチルメチルケトン等のケトン類;ジエチルエーテル、tert-ブチルメチルエーテル等のエーテル類、等から、耐水化処理剤が溶解する溶媒を適宜採用することができる。
 本発明の硬化性樹脂組成物には、必要に応じて窒化アルミニウム粒子以外のセラミックス粒子をさらに含有させてもよい。窒化アルミニウム粒子以外のセラミックス粒子をさらに含有する形態の本発明の硬化性樹脂組成物においては、窒化アルミニウム粒子、窒化アルミニウム粒子以外のセラミックス粒子、エポキシ樹脂、硬化剤、および上記一般式(1)で表される酸性リン酸エステルが、相互に混合されている。言い換えれば、窒化アルミニウム粒子、及び、窒化アルミニウム粒子以外のセラミックス粒子が、エポキシ樹脂、硬化剤、および上記一般式(1)で表される酸性リン酸エステルを含む混合物中に分散されている。本発明の硬化性樹脂組成物において使用可能な窒化アルミニウム粒子以外のセラミックス粒子としては、アルミナ粒子、マグネシア粒子、酸化亜鉛粒子、シリカ粒子、窒化珪素粒子、窒化ホウ素粒子、及び炭化珪素粒子等を例示できる。窒化アルミニウム粒子以外のセラミックス粒子は、1種のみを用いてもよく、2種以上を併用してもよい。窒化アルミニウム粒子以外のセラミックス粒子の好ましい平均粒子径の範囲は、上記説明した窒化アルミニウム粒子と同様、特に制限されるものではない。例えば10nm~100μmの平均粒子径を有する粒子を採用でき、高い耐水性が要求される場合には、100nm~100μmの平均粒子径を有する粒子を好ましく採用できる。
 また上記同様、好ましい一態様として、平均粒子径の異なるセラミックス粒子を混合して用いる態様を例示できる。なお本明細書において「セラミックス粒子」とは、「窒化アルミニウム粒子以外の」と規定しない限り、窒化アルミニウム粒子をも包含する概念である。例えばセラミックス粒子の全量に対して、(1)平均粒子径10~100μmのセラミックス粒子を30~80質量%、(2)平均粒子径1μm以上10μm未満のセラミックス粒子を10~60質量%、及び(3)平均粒子径100nm以上1μm未満のセラミックス粒子を3~30質量%の割合で含む混合粒子(ただし上記(1)(2)及び(3)のセラミックス粒子のうち1つ以上が窒化アルミニウム粒子を含有するセラミックス粒子である。)によれば、硬化性樹脂組成物の粘度をより低く抑える事ができるので、硬化性樹脂組成物中のセラミックス粒子の充填量をさらに高めることが可能になる。
 但し、本発明の硬化性樹脂組成物を硬化させて得られる高熱伝導性樹脂組成物の熱伝導率を高める観点からは、アルミナ、マグネシア、又は酸化亜鉛の粒子の含有量は、これら粒子の総表面積が、窒化アルミニウム粒子の総表面積に対して2倍以下となる量であることが好ましく、1倍以下となる量であることがより好ましい。シリカは熱伝導率が低いため、シリカ粒子の含有量は、その総表面積が、窒化アルミニウム粒子の総表面積に対して1倍以下となる量であることが好ましく、1/2倍以下となる量であることがより好ましい。窒化珪素および炭化珪素は熱伝導率が高いため、窒化珪素又は炭化珪素の粒子の含有量は、これら粒子の総表面積が、窒化アルミニウム粒子の総表面積に対して4倍以下となる量であることが好ましく、3倍以下となる量であることがより好ましい。窒化ホウ素粒子の場合には含有量の増加に伴って熱伝導率が高くなる場合もある一方で組成物の粘度が増大するため、窒化ホウ素粒子の含有量は、その総表面積が、窒化アルミニウム粒子の総表面積に対して4倍以下となる量であることが好ましい。
 なお本明細書において、ある粒子の「総表面積」とは、該粒子のBET法による比表面積(BET比表面積)(m/g)に、該粒子の総質量(g)を乗じた値を意味するものとする。
 (エポキシ樹脂)
 本発明の硬化性樹脂組成物におけるエポキシ樹脂としては、公知のエポキシ樹脂を特に制限なく採用できる。その具体例としては、ビスフェノールA型またはビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等の多官能エポキシ樹脂、ビスフェノールA型またはビスフェノールF型エポキシ樹脂に多官能エポキシ樹脂を加えたもの、が挙げられる。
 (硬化剤)
 本発明の硬化性樹脂組成物における硬化剤としては、エポキシ樹脂の硬化剤として公知の硬化剤を特に制限なく採用できる。その具体例としては、アミン;ポリアミド;イミダゾール;酸無水物;潜在性硬化剤と呼ばれる三フッ化ホウ素-アミン錯体;ジシアンジアミド;有機酸ヒドラジド;フェノールノボラック樹脂、ビスフェノールノボラック樹脂、クレゾールノボラック樹脂等のフェノール性水酸基を1分子中に2個以上有する化合物;並びに、ジフェニルヨードニウムヘキサフロロホスフェート、トリフェニルスルホニウムヘキサフロロホスフェート等の光硬化剤、が挙げられる。これらの中でも、アミン、イミダゾール、酸無水物が好ましい。
 上記アミンの具体例としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン等の鎖状脂肪族ポリアミン;N-アミノエチルピペラジン、イソホロンジアミン等の環状脂肪族ポリアミン;m-キシレンジアミン等の脂肪芳香族アミン;メタフェニレンジアミン、ジアミノジフェミルメタン、ジアミノジフェニルスルホン等の芳香族アミン等が挙げられる。
 上記イミダゾールの具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、エポキシイミダゾールアダクト等が挙げられる。
 上記酸無水物の具体例としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物、アルキルスチレン-無水マレイン酸共重合体、クロレンド酸無水物、ポリアゼライン酸無水物等が挙げられる。
 (酸性リン酸エステル)
 本発明の硬化性樹脂組成物における酸性リン酸エステルは、下記一般式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、
 R:炭素数4~20の飽和または不飽和ヒドロカルビル基
 R:炭素数1~20の飽和ヒドロカルビレン基
 R:炭素数2または3の飽和ヒドロカルビレン基
 R:炭素数1~8の飽和または不飽和ヒドロカルビレン基
 k:0~20の整数
 l:0~20の整数
 m:0~20の整数
 n:1または2
であって、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
 k個の-CORO-基、l個の-RO-基、及びm個の-CORCOO-基がなす順序は任意であり、
 n=2の場合、2個のRO(CORO)(RO)(CORCOO)基は同一でも異なっていてもよい。)
 式(1)中、Rは、炭素数4~20の飽和または不飽和ヒドロカルビル基である限り特に限定されない。Rの具体例としては、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等の飽和炭化水素基;フェニル基、ノニルフェニル基等の不飽和炭化水素基が挙げられる。Rの炭素数は6~18であることが好ましく、特にk=l=m=0の場合にはRの炭素数は10~18であることが好ましい。
 式(1)中、Rは炭素数1~20の飽和ヒドロカルビレン基である。Rの炭素数は1~16であることが好ましい。Rの具体例としては、メチレン基、エチレン基、ペンチレン基、テトラデシレン基、ペンタデシレン基等が挙げられる。
 式(1)中、Rは炭素数2または3の飽和ヒドロカルビレン基である。Rの炭素数は2であることが好ましく、エチレン基であることがより好ましい。
 式(1)中、Rは炭素数1~8の飽和または不飽和ヒドロカルビレン基である。Rの炭素数は1~6であることが好ましい。Rの具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基等の飽和炭化水素;フェニル基等の不飽和炭化水素が挙げられる。
 式(1)中、kは0~20の整数である限り特に限定されない。ただし好ましくは0~10の整数である。
 式(1)中、lは0~20の整数である限り特に限定されない。ただし好ましくは0~10の整数である。
 式(1)中、mは0~20の整数である限り特に限定されない。ただし好ましくは0~10の整数である。
 式(1)中、k、l、及びmとともに表記されている単量体ユニット、すなわち、k個の-CORO-基、l個の-RO-基、及びm個の-CORCOO-基が、RO-基とリン原子との間で並ぶ順序は任意である。これらの基は必ずしも式(1)の通りに並んでいる必要はない。また、-(CORO)(RO)(CORCOO)-基はブロック共重合体であってもよく、ランダム共重合体であってもよい。
 式(1)中、nは1又は2である。本発明の硬化性樹脂組成物における、一般式(1)で表される酸性リン酸エステルは、1個以上の酸性水酸基を必要とする。この理由は定かではないが、本発明者は、フィラーとなる窒化アルミニウムが固体塩基であり、その表面への吸着に酸性基が必要なためと推察している。
 一般式(1)で表される酸性リン酸エステルは、n=1の化合物とn=2の化合物との混合物であってもよい。また、一般式(1)で表される酸性リン酸エステルがn=2の場合、同一分子内に異なる側鎖を有する化合物であってもよい。すなわち、n=2の場合、2個のRO(CORO)(RO)(CORCOO)基は同一でも異なっていてもよい。更に、上記一般式(1)で表される酸性リン酸エステルは、構造の異なる化合物の混合物であってもよい。なお、一般式(1)で表される酸性リン酸エステルは、通常、n=1の化合物とn=2の化合物との混合物として得られる。
 酸性リン酸エステルであっても、一般式(1)で表される酸性リン酸エステルではないものは、窒化アルミニウムとエポキシ樹脂との親和性が十分でないため、粘度が上昇する或いは熱伝導率が低下する等の虞がある。
 一般式(1)で表される酸性リン酸エステルの分子量は特に制限されるものではないが、好ましくは5000以下であり、より好ましくは2000以下であり、最も好ましくは1500以下である。これは窒化アルミニウム表面に吸着した酸性リン酸エステルの側鎖がある程度短い方が、窒化アルミニウム粒子とエポキシ樹脂との間の界面熱抵抗を低減するにあたって有利に作用するためと考えられる。
 上記酸性リン酸エステルのうち、商業的に入手可能な具体例としては、DYSPERBYK-111(ビックケミー・ジャパン社製)、BYK-W9010(ビックケミー・ジャパン社製)等が挙げられる。
 一般式(1)で表される酸性リン酸エステルの中でも、k=m=0である下記一般式(2)で表される構造を有する酸性リン酸エステルが好ましい。このような構造を有する酸性リン酸エステルを用いることにより、本発明の硬化性樹脂組成物を硬化させた樹脂組成物の熱伝導性をさらに高めることが容易になる。
Figure JPOXMLDOC01-appb-C000005
(式(2)中、
 R:炭素数4~20の飽和または不飽和ヒドロカルビル基
 R:炭素数2または3の飽和ヒドロカルビレン基
 l:0~20の整数
 n:1または2
であって、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
 Rが複数存在する場合には、複数のRは同一でも異なっていてもよい。)
 式(2)中、Rは、炭素数4~20の飽和または不飽和ヒドロカルビル基である限り、特に限定されない。Rとして、飽和ヒドロカルビル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘキサデシル基、オクタデシル基等のアルキル基等が挙げられる。不飽和ヒドロカルビル基としては、フェニル基、ノニルフェニル基、オレイル基等が挙げられる。Rの炭素数は6~18であることが好ましく、特にlが0の場合にはRの炭素数は10~18であることが好ましい。Rとして特に好ましい基としては、デシル基、ウンデシル基、及びドデシル基を挙げることができる。
 式(2)中、Rは炭素数2または3の飽和ヒドロカルビレン基である。Rの炭素数は2であることが好ましい。Rとして好ましい基としては、エチレン基を挙げることができる。
 式(2)中、lは0~20の整数である限り特に限定されない。ただし好ましくは0~10の整数である。
 式(2)中、nは1又は2である。
 一般式(2)で表される酸性リン酸エステルはn=1の化合物とn=2の化合物との混合物であってもよい。また、一般式(2)で表される酸性リン酸エステルがn=2の場合、同一分子内に異なる側鎖を有する化合物であってもよい。すなわち、n=2の場合、2個のRO(RO)基は同一でも異なっていてもよい。更に、一般式(2)で表される酸性リン酸エステルは、構造の異なる化合物の混合物であってもよい。なお、一般式(2)で表される酸性リン酸エステルは、通常、n=1の化合物とn=2の化合物との混合物として得られる。
 一般式(2)で表される酸性リン酸エステルの具体例としては、
(1)Rがオクチル基、lが0であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(2)Rがオクチル基、lが1、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(3)Rがオクチル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(4)Rがデシル基、lが0であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(5)Rがデシル基、lが1、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(6)Rがデシル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(7)Rがデシル基、lが3、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(8)Rがウンデシル基、lが0であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(9)Rがウンデシル基、lが1、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(10)Rがウンデシル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(11)Rがウンデシル基、lが3、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(12)Rがウンデシル基、lが4、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(13)Rがウンデシル基、lが5、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(14)Rがウンデシル基、lが6、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(15)Rがウンデシル基、lが7、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(16)Rがウンデシル基、lが8、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(17)Rがウンデシル基、lが9、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(18)Rがウンデシル基、lが10、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(19)Rがドデシル基、lが0であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(20)Rがドデシル基、lが1、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(21)Rがドデシル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(22)Rがドデシル基、lが3、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(23)Rがドデシル基、lが4、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(24)Rがドデシル基、lが5、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(25)Rがドデシル基、lが6、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(26)Rがドデシル基、lが7、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(27)Rがドデシル基、lが8、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(28)Rがドデシル基、lが9、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(29)Rがドデシル基、lが10、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(30)Rがオクチルデシル基、lが0であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(31)Rがオクチルデシル基、lが1、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(32)Rがオクチルデシル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(33)Rがオクチルデシル基、lが3、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(34)Rがオクチルデシル基、lが4、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(35)Rがオクチルデシル基、lが5、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(36)Rがオクチルデシル基、lが6、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(37)Rがオクチルデシル基、lが7、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(38)Rがオクチルデシル基、lが8、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(39)Rがオクチルデシル基、lが9、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(40)Rがオクチルデシル基、lが10、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(41)Rがヘキシル基、lが0、nが1である化合物と、
がヘキシル基、lが0、nが2である化合物と、
がヘプチル基、lが0、nが1である化合物と、
がヘプチル基、lが0、nが2である化合物と、
がオクチル基、lが0、nが1である化合物と、
がオクチル基、lが0、nが2である化合物と、
がノニル基、lが0、nが1である化合物と、
がノニル基、lが0、nが2である化合物と、
がデシル基、lが0、nが1である化合物と、
がデシル基、lが0、nが2である化合物との混合物である酸性リン酸エステル;
(42)上記(41)の酸性リン酸エステル中、n=2の化合物においては2個のRのうち一方が該化合物について指定された基(例えば「Rがデシル基、lが0、nが2である化合物」においてはデシル基が指定されている。)であり、他方がヘキシル基、ヘプチル基、オクチル基、ノニル基、又はデシル基である、酸性リン酸エステル;
(43)Rがヘキシル基、lが1、Rがエチレン基、nが1である化合物と、
がヘキシル基、lが1、Rがエチレン基、nが2である化合物と、
がヘプチル基、lが1、Rがエチレン基、nが1である化合物と、
がヘプチル基、lが1、Rがエチレン基、nが2である化合物と、
がオクチル基、lが1、Rがエチレン基、nが1である化合物と、
がオクチル基、lが1、Rがエチレン基、nが2である化合物と、
がノニル基、lが1、Rがエチレン基、nが1である化合物と、
がノニル基、lが1、Rがエチレン基、nが2である化合物と、
がデシル基、lが1、Rがエチレン基、nが1である化合物と、
がデシル基、lが1、Rがエチレン基、nが2である化合物との混合物である酸性リン酸エステル;
(44)上記(43)の酸性リン酸エステル中、n=2の化合物においては2個のRのうち一方が該化合物について指定された基(例えば「Rがデシル基、lが1、Rがエチレン基、nが2である化合物」においてはデシル基が指定されている。)であり、他方がヘキシル基、ヘプチル基、オクチル基、ノニル基、又はデシル基である、酸性リン酸エステル;
(45)Rがヘキシル基、lが2、Rがエチレン基、nが1である化合物と、
がヘキシル基、lが2、Rがエチレン基、nが2である化合物と、
がヘプチル基、lが2、Rがエチレン基、nが1である化合物と、
がヘプチル基、lが2、Rがエチレン基、nが2である化合物と、
がオクチル基、lが2、Rがエチレン基、nが1である化合物と、
がオクチル基、lが2、Rがエチレン基、nが2である化合物と、
がノニル基、lが2、Rがエチレン基、nが1である化合物と、
がノニル基、lが2、Rがエチレン基、nが2である化合物と、
がデシル基、lが2、Rがエチレン基、nが1である化合物と、
がデシル基、lが2、Rがエチレン基、nが2である化合物との混合物である酸性リン酸エステル;
(46)上記(45)の酸性リン酸エステル中、n=2の化合物においては2個のRのうち一方が該化合物について指定された基(例えば「Rがデシル基、lが2、Rがエチレン基、nが2である化合物」においてはデシル基が指定されている。)であり、他方がヘキシル基、ヘプチル基、オクチル基、ノニル基、又はデシル基である、酸性リン酸エステル;
(47)Rがヘキシル基、lが3、Rがエチレン基、nが1である化合物と、
がヘキシル基、lが3、Rがエチレン基、nが2である化合物と、
がヘプチル基、lが3、Rがエチレン基、nが1である化合物と、
がヘプチル基、lが3、Rがエチレン基、nが2である化合物と、
がオクチル基、lが3、Rがエチレン基、nが1である化合物と、
がオクチル基、lが3、Rがエチレン基、nが2である化合物と、
がノニル基、lが3、Rがエチレン基、nが1である化合物と、
がノニル基、lが3、Rがエチレン基、nが2である化合物と、
がデシル基、lが3、Rがエチレン基、nが1である化合物と、
がデシル基、lが3、Rがエチレン基、nが2である化合物との混合物である酸性リン酸エステル;
(48)上記(47)の酸性リン酸エステル中、n=2の化合物においては2個のRのうち一方が該化合物について指定された基(例えば「Rがデシル基、lが3、Rがエチレン基、nが2である化合物」においてはデシル基が指定されている。)であり、他方がヘキシル基、ヘプチル基、オクチル基、ノニル基、又はデシル基である、酸性リン酸エステル;
(49)Rがヘキシル基、lが4、Rがエチレン基、nが1である化合物と、
がヘキシル基、lが4、Rがエチレン基、nが2である化合物と、
がヘプチル基、lが4、Rがエチレン基、nが1である化合物と、
がヘプチル基、lが4、Rがエチレン基、nが2である化合物と、
がオクチル基、lが4、Rがエチレン基、nが1である化合物と、
がオクチル基、lが4、Rがエチレン基、nが2である化合物と、
がノニル基、lが4、Rがエチレン基、nが1である化合物と、
がノニル基、lが4、Rがエチレン基、nが2である化合物と、
がデシル基、lが4、Rがエチレン基、nが1である化合物と、
がデシル基、lが4、Rがエチレン基、nが2である化合物との混合物である酸性リン酸エステル;
(50)上記(49)の酸性リン酸エステル中、n=2の化合物においては2個のRのうち一方が該化合物について指定された基(例えば「Rがデシル基、lが3、Rがエチレン基、nが2である化合物」においてはデシル基が指定されている。)であり、他方がヘキシル基、ヘプチル基、オクチル基、ノニル基、又はデシル基である、酸性リン酸エステル;
等を挙げることができる。
 以上の化合物群の中でも好ましい酸性リン酸エステルとしては、
(5)Rがデシル基、lが1、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(6)Rがデシル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(7)Rがデシル基、lが3、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(8)Rがウンデシル基、lが0であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(9)Rがウンデシル基、lが1、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(10)Rがウンデシル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(11)Rがウンデシル基、lが3、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(12)Rがウンデシル基、lが4、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(13)Rがウンデシル基、lが5、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(14)Rがウンデシル基、lが6、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(15)Rがウンデシル基、lが7、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(16)Rがウンデシル基、lが8、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(17)Rがウンデシル基、lが9、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(18)Rがウンデシル基、lが10、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(19)Rがドデシル基、lが0であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(20)Rがドデシル基、lが1、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(21)Rがドデシル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(22)Rがドデシル基、lが3、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(23)Rがドデシル基、lが4、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(24)Rがドデシル基、lが5、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(25)Rがドデシル基、lが6、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(26)Rがドデシル基、lが7、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(27)Rがドデシル基、lが8、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(28)Rがドデシル基、lが9、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
(29)Rがドデシル基、lが10、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル;
等を例示できる。
 上記酸性リン酸エステルの中で、商業的に入手可能な酸性リン酸エステルとしては、
(7)Rがデシル基、lが3、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル(フォスファノールRS-410:東邦化学社製);
(14)Rがウンデシル基、lが6、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル(フォスファノールRS-610:東邦化学社製);
(18)Rがウンデシル基、lが10、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル(フォスファノールRS-710:東邦化学社製);
(32)Rがオクチルデシル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル(フォスファノールRL-310:東邦化学社製);
(50)Rがヘキシル基、ヘプチル基、オクチル基、ノニル基、及びデシル基の混合物であり、lが4であり、Rがエチレン基であり、n=1の化合物とn=2の化合物とのとの混合物である酸性リン酸エステル(フォスファノールRA-600:東邦化学社製);
(19a)Rがドデシル基、lが0、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステルであって、n=1の化合物の含有量(mol)がn=2の化合物の含有量(mol)より多い混合物である酸性リン酸エステル(フォスファノールML-200:東邦化学社製);
(21)Rがドデシル基、lが2、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル(フォスファノールML-220:東邦化学社製);
(23)Rがドデシル基、lが4、Rがエチレン基であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステル(フォスファノールML-240:東邦化学社製);
(19b)Rがドデシル基、lが0であり、n=1の化合物とn=2の化合物との混合物である酸性リン酸エステルであって、n=1の化合物の含有量(mol)とn=2の化合物の含有量(mol)とがほぼ等しい混合物である酸性リン酸エステル(フォスファノールGF-199:東邦化学社製);
等を例示できる。
 (含有量)
 本発明の硬化性樹脂組成物中の窒化アルミニウム粒子の含有量は特に限定されるものではない。ただし、硬化性樹脂組成物を硬化させて得られる高熱伝導性樹脂組成物の熱伝導率をより高める観点から、窒化アルミニウム粒子の含有量は、エポキシ樹脂、硬化剤、および酸性リン酸エステルの合計量100質量部に対して好ましくは50質量部以上であり、より好ましくは100質量部以上であり、最も好ましくは200質量部以上である。また硬化性樹脂組成物の粘度、流動性、及び作業性の観点からは、900質量部以下であることが好ましく、600質量部以下であることがより好ましい。
 本発明の硬化性樹脂組成物中の硬化剤の含有量は、硬化剤の特性、エポキシ樹脂のエポキシ当量、酸性リン酸エステル及び窒化アルミニウム粒子の含有量等を考慮して、当業者が適宜決定することができる。一般的には、エポキシ樹脂100重量部に対し0.1~200重量部であり、より好ましくは0.4~150重量部である。
 本発明の硬化性樹脂組成物中の、一般式(1)で表される酸性リン酸エステルの含有量は、エポキシ樹脂の特性、硬化剤の特性、及び窒化アルミニウム粒子の比表面積などを考慮して、当業者が適宜決定することができる。ただし、窒化アルミニウム粒子とエポキシ樹脂との十分な親和性を保ちながら、エポキシ樹脂本来の物性を発揮させる観点からは、エポキシ樹脂100質量部に対して一般式(1)で表される酸性リン酸エステル0.4~5質量部が好ましく、0.6~4質量部がより好ましい。
 (その他の成分)
 本発明の硬化性樹脂組成物は、必要に応じて上記以外の成分を含有してもよい。そのような成分としては、ヘキシルイソシアネート、オクチルイソシアネート、デシルイソシアネート、ドデシルイソシアネート、ヘキサメチレンジイソシアネート等の単官能または多官能イソシアネート化合物;フェノール、アルコール、オキシム等のブロック剤により前記単官能または多官能イソシアネート化合物の末端を保護されたブロックイソシアネート化合物;カルボジイミド化合物;ウレタン化合物;アセチルアセトンアルミニウム等のルイス酸化合物を例示できる。これらの中でもルイス酸化合物は、本発明の硬化性樹脂組成物のポットライフ延長に有効である。これらの成分の添加量は、エポキシ樹脂100質量部に対して通常50質量部以下であり、好ましくは40質量部以下である。含有量が上記上限値を超える場合には、エポキシ樹脂の物性が低下し、例えば積層基板の接着強度が低下する等の虞がある。
 <2.硬化性樹脂組成物の製造方法>
 本発明の第2の態様に係る硬化性樹脂組成物の製造方法について説明する。
 本発明の硬化性樹脂組成物は、窒化アルミニウム粒子、エポキシ樹脂、硬化剤、および上記一般式(1)で表される酸性リン酸エステルを混合することにより、製造することができる。硬化性樹脂組成物の各成分を混合する順序は特に限定されるものではない。ただし、
(a)窒化アルミニウム粒子及び上記一般式(1)で表される酸性リン酸エステルのみを予め混合した後に、上記一般式(1)で表される酸性リン酸エステルを含まないその他の成分(エポキシ樹脂や硬化剤)との混合を行った場合;及び、
(b)窒化アルミニウム粒子を、上記一般式(1)で表される酸性リン酸エステルで表面処理された粒子とした後に、上記一般式(1)で表される酸性リン酸エステルを含まないその他の成分(エポキシ樹脂や硬化剤)との混合を行った場合
には、硬化後の樹脂組成物に高い熱伝導性を付与する効果が劣ったものとなる。よって上記(a)及び(b)以外の順序で混合を行うことが好ましい。この理由は完全に解明されてはいないものの、予め窒化アルミニウム粒子と酸性リン酸エステルとを接触させると、窒化アルミニウム粒子表面の酸性リン酸エステルの側鎖が収縮してしまい、窒化アルミニウム粒子とエポキシ樹脂との親和性が劣化するためであると考えられる。言い換えれば、上記(a)又は(b)の混合順序によって製造された硬化性樹脂組成物においては、「窒化アルミニウム粒子、エポキシ樹脂、硬化剤、および上記一般式(1)で表される酸性リン酸エステルが相互に混合されている」とはいえない。
 硬化性樹脂組成物の各成分の混合順序としては、図1のフローチャートS1に示すように、窒化アルミニウム粒子を、エポキシ樹脂の全部又は一部と上記一般式(1)で表される酸性リン酸エステルとを含む混合物と混合する工程(工程S11)を経ることが、硬化後の樹脂組成物に高い熱伝導性を付与できる点で好ましい。その理由は、予め上記一般式(1)で表される酸性リン酸エステルとエポキシ樹脂とを混合することにより、酸性リン酸エステルの側鎖が十分に伸びた状態となり、その結果エポキシ樹脂との親和性が良好になるためであると推察される。工程S11において、「エポキシ樹脂の全部又は一部と上記一般式(1)で表される酸性リン酸エステルとを含む混合物」中のエポキシ樹脂の含有量は特に限定されるものではないが、当該混合物中の上記一般式(1)で表される酸性リン酸エステル100質量部に対して、通常70質量部以上であり、好ましくは100質量部以上であり、より好ましくは150質量部以上であり、特に好ましくは200質量部以上である。工程S11において、「エポキシ樹脂の全部又は一部と上記一般式(1)で表される酸性リン酸エステルとを含む混合物」は硬化剤を含んでいてもよく、硬化剤を含んでいなくてもよいが、窒化アルミニウム粒子は含んでいないことが好ましい。
 工程S11の後、混合すべき全ての材料の混合が完了している場合(判断工程S12で肯定判断がなされた場合)には、製造方法S1は終了する。工程S11の後、混合すべき未混合の材料(例えばエポキシ樹脂の残部や硬化剤等。)が存在する場合(判断工程S12で否定判断がなされた場合)には、工程S11で得られた混合物と、当該混合すべき未混合の材料とを混合する(工程S13)。
 典型的には例えば、図2のフローチャートS2に示すように、上記一般式(1)で表される酸性リン酸エステルとエポキシ樹脂とを混合(工程S21)した後に、工程S21で得られた混合物と他の成分(窒化アルミニウム粒子や硬化剤)とを混合する(工程S22)ことにより、本発明の硬化性樹脂組成物を好ましく製造することができる。
 本発明の硬化性樹脂組成物の製造方法においては、硬化剤と上記一般式(1)で表される酸性リン酸エステルとを接触させる前に、窒化アルミニウム粒子と上記一般式(1)で表される酸性リン酸エステルとを接触させることが好ましい。これは特にアミンやイミダゾール等の塩基性硬化剤を用いる場合に顕著である。具体的には、例えば図3のフローチャートS3に示すように、酸性リン酸エステルと、エポキシ樹脂の全量または一部とを混合し(工程S31);該工程S31で得られた混合物と、窒化アルミニウム粒子とを混合し(工程S32);その後に、該工程S32で得られた混合物と、エポキシ樹脂の残部と、硬化剤とを混合する(工程S33)ことが好ましい。工程S33において、エポキシ樹脂の残部及び硬化剤は同時に混合してもよく、逐次的に混合してもよい。
 工程S33を逐次的に行う場合には、図4のフローチャートS4に示すように、酸性リン酸エステルと、エポキシ樹脂の全量または一部とを混合し(工程S41);該工程S41で得られた混合物と、窒化アルミニウム粒子とを混合し(工程S42);該工程S42で得られた混合物と、エポキシ樹脂の残部とを混合し(工程S43);最後に、工程S43で得られた混合物と硬化剤(塩基性硬化剤)とを混合する(工程S44)、という順序を好ましく採用できる。
 また、窒化アルミニウム粒子を混合する工程の後、すなわち図3のフローチャートS3においてはS32とS33との間、図4のフローチャートS4においてはS42とS43との間において、養生(aging)と呼ばれる加熱下での保存処理を行う態様も好ましく採用できる。養生工程における一般的な加熱温度は40~100℃であり、一般的な加熱時間は1~72時間である。
 硬化剤と上記一般式(1)で表される酸性リン酸エステルとを接触させる前に窒化アルミニウム粒子と上記一般式(1)で表される酸性リン酸エステルとを接触させる混合手順が好ましい理由は完全には解明されていないものの、硬化剤が塩基性硬化剤である場合、窒化アルミニウム粒子と上記一般式(1)で表される酸性リン酸エステルとを接触させるより前に塩基性硬化剤と該酸性リン酸エステルとを接触させた場合には、塩基性硬化剤と該酸性リン酸エステルとが塩を形成することにより硬化剤の作用が低下する場合があるためと考えられる。窒化アルミニウムはそれ自体が塩基性であるから、まず窒化アルミニウム粒子表面への酸性リン酸エステル分子の吸着を促すことにより、上記一般式(1)で表される酸性リン酸エステルの効果を十分に発揮させることができ、且つ他の塩基性成分や、全体としては塩基性でなくとも塩基性の反応部位を有する成分への副作用を抑制できるものと考えられる。そして窒化アルミニウム粒子の混合後に養生工程を行う態様によれば、窒化アルミニウム粒子表面への酸性リン酸エステル分子の吸着を一層促進できるものと考えられる。
 本発明の硬化性樹脂組成物の製造方法において、混合の方法は特に制限されるものではない。混合にあたっては、公知の混合装置を特に制限なく用いることができる。混合装置の具体例としては、プラネタリーミキサー、トリミックスなどのニーダー、三本ロールなどのロール混練機、擂潰機等を挙げることができる。
 なお混合すべき成分がいずれも常温で固体である等の場合には、加温することにより溶融状態で混合してもよい。また固体成分を溶媒に溶解させた状態で混合してもよく、その後必要であれば溶媒を乾燥除去してもよい。
 <3.高熱伝導性樹脂組成物>
 本発明の第3の態様に係る高熱伝導性樹脂組成物について説明する。
 本発明の第1の態様に係る硬化性樹脂組成物を硬化させることにより、本発明の第3の態様に係る高熱伝導性樹脂組成物を得ることができる。エポキシ樹脂の硬化には、大別して加熱硬化と光等のエネルギー照射による光硬化との二種類があり、用途に応じて適宜選択することができる。ただし積層基板の製造においては加熱硬化が一般的である。加熱硬化の場合の加熱温度は通常120℃~220℃であり、好ましくは140℃~200℃である。
 本発明の高熱伝導性樹脂組成物の熱伝導率は特に限定されないものの、後述する本発明の第4の態様に係る高熱伝導性積層基板の熱抵抗を低減する観点からは、4W/m・K以上であることが好ましく、5W/m・K以上であることがより好ましい。
 <4.高熱伝導性積層基板>
 本発明の第4の態様に係る高熱伝導性積層基板について説明する。
 本発明の第1の態様に係る硬化性樹脂組成物は、樹脂接着剤として用いることができる。例えば、図5に示すように、金属基板または高熱伝導性セラミックス基板1(以下、単に「基板1」と略記することがある。)と、回路形成のための金属箔2とを、本発明の硬化性樹脂組成物3を介して積層する。その後、硬化性樹脂組成物3を硬化させることにより、図6に示すように、金属箔2、硬化性樹脂組成物3の硬化体である高熱伝導性樹脂組成物層4、および、金属基板または高熱伝導性セラミックス基板1が上記順に積層されている、高熱伝導性積層基板10(以下、「積層基板10」と略記することがある。)を製造できる。
 (基板:金属基板)
 本発明の積層基板10における基板1が金属基板である場合、該金属基板としては、一般に放熱基板として使用される金属基板を特に制限なく用いることができる。好ましい金属基板の材質としては、銅、アルミニウム、銅-タングステン合金、銅-モリブデン合金、及び、SiCにアルミニウムを含浸させたAl-SiC等を例示できる。
 (基板:高熱伝導性セラミックス基板)
 本発明の積層基板10における基板1が高熱伝導性セラミックス基板である場合、該高熱伝導性セラミックス基板は、半導体素子からの発生する熱を放出するために十分な熱伝導率を有するセラミックス基板であり、好ましくは30W/m・K以上、より好ましくは70W/m・K以上の熱伝導率を有するセラミックス基板である。本発明において使用可能な高熱伝導性セラミックス基板の具体例としては、窒化アルミニウム基板、窒化珪素基板、アルミナ基板等を挙げることができる。中でも、特に高い放熱性を要求される場合には、窒化アルミニウム基板または窒化珪素基板を用いる事が特に好ましい。
 本発明の積層基板10における基板1の厚さは特に限定されない。ただし、基板の熱抵抗を低減する観点からは、不必要に厚くすることは好ましくない。よって金属基板又は高熱伝導性セラミックス基板1の厚さは好ましくは0.3~10mmである。
 (金属箔)
 本発明の積層基板10における金属箔2としては、金箔、銀箔、銅箔、アルミ箔など、公知の金属箔を特に制限なく採用できる。ただし、電気伝導率およびコストの観点から、銅箔が好適に使用される。銅箔の厚さは特に限定されないが、一般的には5~105μm、好ましくは8~35μmである。銅箔の製法は特に限定されないが、一般的に使用される銅箔は圧延銅箔または電解銅箔である。
 (高熱伝導性樹脂組成物層)
 本発明の積層基板10における高熱伝導性樹脂組成物層4の厚さは特に限定されるものではなく、絶縁性、接着力、耐久性等を考慮して当業者が適宜決定することができる。基板1が金属基板である場合には、高熱伝導性樹脂組成物層4に絶縁層としての特性が要求されるため、高熱伝導性樹脂組成物層4の厚さは通常20~300μmであり、好ましくは40~250μmであり、より好ましくは50~200μmである。高熱伝導性樹脂組成物層4の厚さが上記下限値未満の場合、絶縁性が低下する虞がある。高熱伝導性樹脂組成物層4の厚さが上記上限値を超える場合、積層基板10の熱伝導率が低下する虞がある。一方、基板1が高熱伝導性セラミックス基板である場合には、界面での熱抵抗を低減する観点から、高熱伝導性樹脂組成物層4の厚さは好ましくは1~20μmであり、より好ましくは2~10μmである。
 (熱伝導率)
 本発明における高熱伝導性積層基板10の熱伝導率は、金属箔2の厚さにより基板全体の熱伝導率が大きく変化するので、金属箔2のない状態で評価する事が望ましい。基板1及び高熱伝導性樹脂組成物層4からなる複合層5(図6参照。以下、単に「複合層5」と略記することがある。)の熱伝導率は、各層の熱伝導率及び厚さの関係を表す下記式(3):
Figure JPOXMLDOC01-appb-M000006
(式(3)中、
 d:複合層5の厚さ
 d:高熱伝導性樹脂組成物層4の厚さ
 d:金属基板または高熱伝導性セラミックス基板1の厚さ
 λ:複合層5の熱伝導率
 λ:高熱伝導性樹脂組成物層4の熱伝導率
 λ:金属基板または高熱伝導性セラミックス基板1の熱伝導率
である。)
から複合層5の熱伝導率λを下記式(4)により理論的に求めることができる。
Figure JPOXMLDOC01-appb-M000007
 複合層5の熱伝導率は、20W/m・K以上であることが好ましく、30W/m・Kであることがより好ましい。
 <5.高熱伝導性積層基板の製造方法>
 本発明の第5の態様に係る高熱伝導性積層基板の製造方法について説明する。
 本発明の高熱伝導性積層基板10を製造するプロセスとしては、例えば金属ベース基板等の積層基板の製造プロセスとして公知のプロセスを特に制限なく採用することができる。具体的には、例えば図7のフローチャートS10に示すように、基板1の表面に本発明の硬化性樹脂組成物を塗布し(工程S101)、金属箔2と基板1とを圧着し(工程S102及び図5)、その後、加熱することによって硬化性樹脂組成物3からなる樹脂層を硬化させる(工程S103及び図6)、という方法を挙げることができる。
 工程S101において、もし硬化性樹脂組成物の粘度が高い場合には、図8のフローチャートS11に示すように、溶媒に硬化性樹脂組成物を溶解した溶液を塗布することができる(工程S111)。その場合、硬化性樹脂組成物の溶液を塗布した後、金属箔2を圧着する前に溶媒を乾燥除去する(工程S112)。工程S112における加熱温度は硬化性樹脂組成物の組成により適宜決定することができる。ただし一般的には120℃~220℃であり、好ましくは140℃~200℃である。その後は上記製造方法S10同様に、金属箔2と基板1とを圧着し(工程S113及び図5)、加熱することによって硬化性樹脂組成物3からなる樹脂層を硬化させる(工程S114及び図6)ことにより、高熱伝導性積層基板10を製造することができる。
 なお本発明の高熱伝導性積層基板の製造方法に関する上記説明では、本発明の硬化性樹脂組成物3を基板1の表面に塗布した後に金属箔2と基板1とを圧着させる形態の製造方法S10及びS11を例示した。しかし本発明の高熱伝導性積層基板の製造方法は当該形態に限定されない。硬化性樹脂組成物層を予め金属箔表面に形成する形態の製造方法とすることも可能である。例えば図9のフローチャートS12に示すように、金属箔2に本発明の硬化性樹脂組成物を塗布することにより、金属箔2の表面に硬化性樹脂組成物3の層を形成し(工程S121)、該硬化性樹脂組成物3の層が表面に形成された金属箔2を基板1に圧着し(工程S122及び図5)、加熱することによって硬化性樹脂組成物3の層を硬化させる(工程S123及び図6)ことにより、高熱伝導性積層基板10を製造できる。
 本発明の高熱伝導性積層基板の製造方法においては、基板1と金属箔2との接着性を向上させるために、シランカップリング剤、チタネートカップリング剤、アニオン系界面活性剤、ノニオン系界面活性剤、有機酸性リン酸エステル化合物、ホスホン酸化合物などの接着促進成分を本発明の硬化性樹脂組成物に含有させてもよい。
 また、これらの接着促進成分を硬化性樹脂組成物に含有させる代わりに、該接着促進成分を基板1の表面、および/または、金属箔2の表面に塗布し、その後に該接着促進成分と硬化性樹脂組成物とを接触させてもよい。例えば図10のフローチャートS13に示すように、接着促進成分を溶媒で希釈することによってプライマー溶液を調製し(工程S131)、該プライマー溶液をスプレー、スピン、ディッピング等により基板1の表面および/または金属箔2の表面に塗布し(工程S132)、塗布したプライマー溶液を乾燥させて溶媒を除去する(工程S133)。その後、基板1の表面または金属箔2の表面に本発明の硬化性樹脂組成物を塗布することにより硬化性樹脂組成物3の層を形成し(工程S134)、金属箔2を基板1に圧着し(工程S135)、加熱することによって硬化性樹脂組成物3の層を硬化させる(工程S136)ことにより、本発明の高熱伝導性積層基板10を製造できる。なおプライマー溶液は溶媒および接着促進成分の他に、エポキシ樹脂や硬化剤を含んでいてもよい。
 特に、基板1がアルミニウム基板、アルミナ基板または窒化アルミニウム基板である場合には、接着促進成分として有機酸性リン酸エステル化合物またはホスホン酸化合物を用い、そのプライマー溶液を基板1の表面に塗布することが好ましい。
 本発明の高熱伝導性積層基板の用途は特に制限されない。本発明の高熱伝導性積層基板は、放熱性および絶縁性を要求される電子回路基板として公知の用途に特に制限なく使用できる。本発明の高熱伝導性積層基板の用途を例示すれば、コンバーター、インバーター等のパワーエレクトロニクス用途、照明用LED、工業用LED、車載用LED等のLED用途、並びにIC、LSI用基板等が挙げられる。
 以下、実施例および用途例によって本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。
 <試験方法>
(1)硬化性樹脂組成物の粘度
 得られた硬化性樹脂組成物について、動的粘弾性測定装置(STRESS TECH:セイコー電子工業社製)を用い、直径20mmのパラレルプレート、ギャップ幅1.00mm、測定温度25℃、周波数=0.1Hz、定常応力=1000Paにて、測定開始から120秒後の粘度を求めた。
(2)高熱伝導性樹脂組成物の熱伝導率
 得られた硬化性樹脂組成物をトルエンまたは2-メトキシエタノールにて適度な粘度に希釈後、バーコーター(PI-1210:テスター産業社製)を用いて離型PETフィルム上に製膜し、180℃での硬化後、PETフィルムを剥がした。硬化後の膜の厚さは約200~300μmであった。これら試料の熱伝導率を迅速熱伝導率計(QTM-500:京都電子工業社製)にて測定した。レファレンスには、厚さ2cm、長さ15cm、幅6cmの、石英ガラス、シリコーンゴム、及びジルコニアを用いた。
(3)高熱伝導性樹脂組成物層の厚さ
 得られた高熱伝導性積層基板を切断し、走査型電子顕微鏡(JSM-5300:JEOL社製)を用いて倍率100倍、500倍、又は2000倍にて断面の観察を行い、同一視野中で等間隔に採った10点で高熱伝導性樹脂組成物層の厚さを測定し、その相加平均を高熱伝導性樹脂組成物の厚さとした。なお、高熱伝導性樹脂組成物層の厚さが100μm以上の試料を倍率100倍にて測定し、高熱伝導性樹脂組成物層の厚さが10μm以上100μm未満の試料を倍率500倍にて測定し、高熱伝導性樹脂組成物層の厚さが10μm未満の試料を倍率2000倍にて測定した。
(4)高熱伝導性積層基板の接合強度
 得られた高熱伝導性積層基板の銅箔表面にニッケルメッキ、及び続けて金メッキを行った後、表面にニッケルメッキを施したφ1.1mmの42アロイネイルヘッドピンを上記金メッキの表面にPb-Snハンダにてハンダ付けし、該ネイルヘッドピンを10mm/分の速度で垂直方向に引っ張り、該ネイルヘッドピンが剥がれた時の最大引っ張り強さを接合強度(MPa)とした。
(5)絶縁性試験
 得られた高熱伝導性積層基板を温度20℃、湿度85%の雰囲気中で24時間コンディショニングした後、基板の厚さ方向に1kVの交流電圧を1分間印加した。このとき絶縁層が破壊されたものを不合格、そうでなかったものを合格とした。
 <実施例1~20及び比較例1~8>
 本発明の第1の態様に係る硬化性樹脂組成物を製造した実施例、及び、硬化性樹脂組成物の製造を試みた比較例である。
 (実施例1)
 ビスフェノールA型エポキシ樹脂(JER1004:三菱化学社製)5g、o-クレゾールノボラック型エポキシ樹脂(YDCN703:東都化成社製)5g、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(2PZCN-PW:四国化成社製)0.2g、酸性リン酸エステル(フォスファノールRS-410:東邦化学社製)0.1gを混合して均一溶液とした。この溶液におよび窒化アルミニウム粒子(グレードH、BET比表面積2.6m/g:トクヤマ社製)35gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表1に示す。
 (実施例2)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)2gに酸性リン酸エステル(フォスファノールRS-610:東邦化学社製)0.3gを溶解し、窒化アルミニウム粒子(グレードH:トクヤマ社製)45gと混練した。この混合物に、ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)8gと2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2gの均一混合物を加え、更に混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表1に示す。
 (実施例3)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールRA-600:東邦化学社製)0.2gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表1に示す。
 (比較例1)
 窒化アルミニウム粒子(グレードH:トクヤマ社製)1kg、酸性リン酸エステル(フォスファノールRA-600:東邦化学社製)5gおよび水1kgを加熱して均一溶液とした後、超音波分散機(GSD600HAT:ギンセン社製)にて流量0.5L/分にて3回処理を行なった後、スプレードライヤー(R-100、プリス社製)にて入り口温度200℃にて乾燥後、80℃にて15時間真空乾燥した。得られた粒子を耐水性窒化アルミニウム粒子Cとした。
 耐水性窒化アルミニウム粒子Cを用い、且つ酸性リン酸エステルを加えなかったこと以外は実施例3と同様にして硬化性樹脂組成物を得た。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表1に示す。
 (実施例4)
 ビスフェノールA型エポキシ樹脂(EXA-4850-150:DIC社製)1gに酸性リン酸エステル(フォスファノールRS-710:東邦化学社製)0.35gを溶解し、窒化アルミニウム粒子(グレードH:トクヤマ社製)20gおよび球状アルミナ粒子(DAW-45、BET比表面積0.2m/g:電気化学社製)30gと混練した。この混合物にビスフェノールA型エポキシ樹脂(EXA-4850-150:DIC社製)9gと2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2gの均一混合物を加え、更に混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表1に示す。
 (実施例5)
 ビスフェノールA型エポキシ樹脂(EXA-4850-150:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールRA-600:東邦化学社製)0.25gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)25gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表1に示す。
 (実施例6)
 ビスフェノールA型エポキシ樹脂(EXA-4850-150:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールRA-600:東邦化学社製)0.25gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードF、BET比表面積3.4m/g:トクヤマ社製)30gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表1に示す。
 (実施例7)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)7.7g、ポリアミン硬化剤(JERキュア113:三菱化学社製)2.3g、および酸性リン酸エステル(フォスファノールGF-199:東邦化学社製)0.3gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードUM、BET比表面積1.1m/g:東洋アルミニウム社製)35gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表2に示す。
 (実施例8)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)5g、酸無水物(B-570:DIC社製)5g、促進剤としてN,N-ジメチルベンジルアミン(和光純薬社製)0.8g、および酸性リン酸エステル(フォスファノールML-200:東邦化学社製)0.1gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードJD、BET比表面積2.2m/g:東洋アルミニウム社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表2に示す。
 (実施例9)
 ビスフェノールA型エポキシ樹脂(EXA-4850-150:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールML-200:東邦化学社製)0.1gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードJD:東洋アルミニウム社製)30g並びに窒化ホウ素(HCPL、BET比表面積7m/g:モメンティブ社製)を加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表2に示す。
 (実施例10)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、酸無水物(B-570:DIC社製)5g、促進剤としてN,N-ジメチルベンジルアミン(和光純薬社製)0.8g、および酸性リン酸エステル(フォスファノールBH-650:東邦化学社製)0.1gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードJD:東洋アルミニウム社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表2に示す。
 (実施例11)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、オクチルイソシアネート(和光純薬社製)0.5g、および酸性リン酸エステル(フォスファノールRS-610:東邦化学社製)0.22gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)30gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表2に示す。
 (実施例12)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)8g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、カルボジイミド(カルボジライトV-05:日清紡社製)2g、および酸性リン酸エステル(フォスファノールRS-610:東邦化学社製)0.25gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表2に示す。
 (実施例13)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、アセチルアセトンアルミニウム(東京化成社製)0.1g、および酸性リン酸エステル(フォスファノールRS-610:東邦化学社製)0.22gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表2に示す。
 (保存安定性)
 実施例2及び13の硬化性樹脂組成物を40℃にて48時間放置し、保存安定性の加速試験を行ったところ、実施例2の硬化性樹脂組成物は硬化したが、実施例13の硬化性樹脂組成物は硬化しなかった。この原因は明らかではないが、おそらく窒化アルミニウム表面に強力なルイス塩基点が存在し、エポキシ樹脂の安定性に負の影響を与えていたために実施例2の硬化性樹脂組成物は硬化したが、実施例13の硬化性樹脂組成物においては、この塩基点がルイス酸であるアセチルアセトンアルミニウムにより中和されたため硬化しなかったと推察している。
 (実施例14)
 窒化アルミニウム粒子(粒子径1.1μm、BET比表面積1.6m2:トクヤマ社試作品)1kg、リン酸アルミニウム溶液(100L、Al2O3/8.5%、P2O5/33.0%:多木化学社製)4.0g、ラウリルリン酸エステル(ML-200:東邦化学社製)3.0gおよび水1kgを加熱して均一溶液とした後、超音波分散機(GSD600HAT:ギンセン社製)にて流量0.5L/分にて3回処理を行なった後、スプレードライヤー(R-100、プリス社製)にて入り口温度200℃にて乾燥後、80℃にて15時間真空乾燥した。得られた粒子を窒化アルミニウム粒子Aとした。
 窒化アルミニウム粒子(粒子径4.5μm、BET比表面積0.6m2:トクヤマ社試作品)1kg、リン酸アルミニウム溶液(100L、Al2O3/8.5%、P2O5/33.0%:多木化学社製)2.5g、ラウリルリン酸エステル(ML-200:東邦化学社製)1.5gおよび水1kgを加熱して均一溶液とした後、超音波分散機(GSD600HAT:ギンセン社製)にて流量0.5L/分にて3回処理を行なった後、スプレードライヤー(R-100、プリス社製)にて入り口温度200℃にて乾燥後、80℃にて15時間真空乾燥した。得られた粒子を窒化アルミニウム粒子Bとした。
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールRA-600:東邦化学社製)0.25gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子A20g、並びに窒化アルミニウム粒子B30gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表3に示す。
 (実施例15)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)2gに酸性リン酸エステル(フォスファノールRA-600:東邦化学社製)0.25gを溶解し、窒化アルミニウム粒子A45gと混練した。この混合物にビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)8gと2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2gの均一溶液を加え、更に混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表3に示す。
 (実施例16)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)2gに酸性リン酸エステル(フォスファノールRA-600:東邦化学社製)0.25gを溶解し、窒化アルミニウム粒子A30g並びに窒化アルミニウム粒子B20gと混練した。この混合物を40℃にて8時間保存後、ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)8gと2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2gの均一混合物を加え、更に混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表3に示す。
 (実施例17)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールRS-610:東邦化学社製)0.07gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社試作品)30gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表3に示す。
 (実施例18)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールRS-610:東邦化学社製)0.03gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)25g並びにアルミナ粒子(AKP-20、BET比表面積5m/g:住友化学社製)25gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表3に示す。
 (実施例19)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールRS-610:東邦化学社製)0.03gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)12g並びに窒化ホウ素粒子(HCPL、BET比表面積7m/g、モメンティブ社製)を加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表3に示す。
 (実施例20)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(BYK-W9010:ビックケミー・ジャパン社製)0.25gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表3に示す。
 (比較例2)
 ビスフェノールA型エポキシ樹脂(JER1004:三菱化学社製)5g、o-クレゾールノボラック型エポキシ樹脂(YDCN703:東都化成社製)5g、および1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(2PZCN-PW:四国化成社製)0.2gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)35gを加えて練和した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表4に示す。
 (比較例3)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(モノイソプロピルリン酸とジイソプロピルリン酸の混合物、A-3:SC有機化学社製)0.25gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表4に示す。
 (比較例4)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、およびラウリン酸(東京化成社製)0.25gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表4に示す。
 (比較例5)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、およびテトラエチレングリコールラウリルエーテル(ペグノールL-4:東邦化学社製)0.25gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表4に示す。
 (比較例6)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールRS-610:東邦化学社製)0.25gを混合して均一溶液とした。この溶液にアルミナ粒子(AKP-20、BET比表面積5m/g:住友化学社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表4に示す。
 (比較例7)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、およびエチルカルビトール(東京化成社製)0.25gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)40gを加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表4に示す。
 (比較例8)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性基を持たないリン酸エステル(〔(CHO〕P(O)OCOP(O)〔OC(CH、PX-200:大八化学社製)0.03gを混合して均一溶液とした。この溶液に窒化アルミニウム粒子(グレードH:トクヤマ社製)12g並びに窒化ホウ素粒子(HCPL、BET比表面積7m/gモメンティブ社製)を加えて混練した。
 得られた硬化性樹脂組成物の粘度および硬化後の熱伝導率を測定した結果を表4に示す。
 <実施例21~28及び比較例9~11>
 本発明の第4の態様に係る高熱伝導性積層基板を製造した実施例、及び、高熱伝導性積層基板の製造を試みた比較例である。
 (実施例21)
 厚さ18μmの電解銅箔(JTC:JX日鉱日石金属社製)に実施例9の硬化性樹脂組成物を薄く塗布し、その塗布面にアルミニウム基板(A1050、厚さ1mm、熱伝導率225W/m・K:大河内金属社製)を置いた後、180℃にて3時間真空プレスして高熱伝導性積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、高熱伝導性樹脂及びアルミニウム基板からなる複合層の熱伝導率の理論計算値を表5に示す。
 (実施例22)
 ビスフェノールF型エポキシ樹脂(EXA-830CRP:DIC社製)10g、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成社製)0.2g、および酸性リン酸エステル(フォスファノールRS-610:東邦化学社製)10gおよびトルエン100gを混合してプライマー溶液とした。アルミニウム基板(A1050、厚さ1mm:大河内金属社製)にこのプライマー溶液をスピンコートした後、120℃にて1時間乾燥した。厚さ35μmの圧延銅箔(HPF-ST35-X:日立電線社製)に実施例14の硬化性樹脂組成物を薄く塗布し、その面に上記アルミニウム基板のプライマー塗布面を置いた後、180℃にて3時間真空プレスして高熱伝導性積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、高熱伝導性樹脂組成物層およびアルミニウム基板からなる複合層の熱伝導率の理論計算値を表5に示す。
 (実施例23)
 厚さ12μmの電解銅箔(JTC:JX日鉱日石金属社製)に実施例16の硬化性樹脂組成物を薄く塗布し、その塗布面にアルミニウム基板(A1050、厚さ0.5mm:大河内金属社製)を置いた後、180℃にて3時間真空プレスして高熱伝導性積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、高熱伝導性樹脂組成物層およびアルミニウム基板からなる複合層の熱伝導率の理論計算値を表5に示す。
 (実施例24)
 厚さ12μmの電解銅箔(JTC:JX日鉱日石金属社製)に実施例3の硬化性樹脂組成物を薄く塗布し、その塗布面に窒化アルミニウム基板(厚さ0.64mm、熱伝導率170W/m・K:TDパワーマテリアル社製)を置いた後、180℃にて3時間真空プレスして高熱伝導性積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、高熱伝導性樹脂組成物層および窒化アルミニウム基板からなる複合層の熱伝導率の理論計算値を表5に示す。
 (実施例25)
 厚さ9μmの電解銅箔(JTC:JX日鉱日石金属社製)に実施例8の硬化性樹脂組成物を薄く塗布し、その塗布面に窒化アルミニウム基板(厚さ1mm:TDパワーマテリアル社製)を置いた後、180℃にて3時間真空プレスして高熱伝導性積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、高熱伝導性樹脂組成物層および窒化アルミニウム基板からなる複合層の熱伝導率の理論計算値を表5に示す。
 (実施例26)
 厚さ18μmの電解銅箔(JTC:JX日鉱日石金属社製)に実施例13の硬化性樹脂組成物を薄く塗布し、その塗布面に窒化アルミニウム基板(厚さ1mm:TDパワーマテリアル社製)を置いた後、180℃にて3時間真空プレスして高熱伝導性積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、高熱伝導性樹脂組成物層および窒化アルミニウム基板からなる複合層の熱伝導率の理論計算値を表5に示す。
 (実施例27)
 厚さ18μmの電解銅箔(JTC:JX日鉱日石金属社製)に実施例14の硬化性樹脂組成物を薄く塗布し、その塗布面にアルミニウム基板(A1050、厚さ1mm:大河内金属社製)を置いた後、180℃にて3時間真空プレスして高熱伝導性積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、高熱伝導性樹脂組成物層およびアルミニウム基板からなる複合層の熱伝導率の理論計算値を表5に示す。
 (実施例28)
 厚さ18μmの電解銅箔(JTC:JX日鉱日石金属社製)に実施例4の硬化性樹脂組成物を薄く塗布し、その塗布面に窒化アルミニウム基板(厚さ1mm:TDパワーマテリアル社製)を置いた後、180℃にて3時間真空プレスして高熱伝導性積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、高熱伝導性樹脂組成物層および窒化アルミニウム基板からなる複合層の熱伝導率の理論計算値を表5に示す。
 (比較例9)
 厚さ18μmの電解銅箔(JTC:JX日鉱日石金属社製)に比較例5の硬化性樹脂組成物を薄く塗布し、その塗布面にアルミニウム基板(A1050、厚さ1mm:大河内金属社製)を置いた後、180℃にて3時間真空プレスして積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、樹脂組成物層およびアルミニウム基板からなる複合層の熱伝導率の理論計算値を表6に示す。
 (比較例10)
 厚さ35μmの電解銅箔(JTC:JX日鉱日石金属社製)に比較例5の硬化性樹脂組成物を薄く塗布し、その塗布面に窒化アルミニウム基板(厚さ1mm:TDパワーマテリアル社製)を置いた後、180℃にて3時間真空プレスして積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、樹脂組成物層および窒化アルミニウム基板からなる複合層の熱伝導率の理論計算値を表6に示す。
 (比較例11)
 厚さ12μmの電解銅箔(JTC:JX日鉱日石金属社製)に比較例4の硬化性樹脂組成物を薄く塗布し、その塗布面に窒化アルミニウム基板(厚さ1mm:TDパワーマテリアル社製)を置いた後、180℃にて3時間真空プレスして積層基板を得た。
 得られた高熱伝導性積層基板の接着強さ、絶縁耐圧、並びに、樹脂組成物層および窒化アルミニウム基板からなる複合層の熱伝導率の理論計算値を表6に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 以上の結果から、本発明の硬化性樹脂組成物を使用することにより、実用上必要十分な接着強さを有する高熱伝導性積層基板を低コストで製造できることが示された。
 1 金属基板または高熱伝導性セラミックス基板 (基板)
 2 金属箔
 3 硬化性樹脂組成物
 4 高熱伝導性樹脂組成物層
 5 複合層
 10 高熱伝導性積層基板 (積層基板)

Claims (8)

  1.  窒化アルミニウム粒子、
     エポキシ樹脂、
     硬化剤、および
     下記一般式(1)で表される酸性リン酸エステル
    を含有する硬化性樹脂組成物であって、
     該硬化性樹脂組成物においては、前記窒化アルミニウム粒子、前記エポキシ樹脂、前記硬化剤、および下記一般式(1)で表される酸性リン酸エステルが相互に混合されていることを特徴とする、硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
     R:炭素数4~20の飽和または不飽和ヒドロカルビル基
     R:炭素数1~20の飽和ヒドロカルビレン基
     R:炭素数2または3の飽和ヒドロカルビレン基
     R:炭素数1~8の飽和または不飽和ヒドロカルビレン基
     k:0~20の整数
     l:0~20の整数
     m:0~20の整数
     n:1または2
    であって、
     Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
     Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
     Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
     Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
     k個の-CORO-基、l個の-RO-基、及びm個の-CORCOO-基がなす順序は任意であり、
     n=2の場合、2個のRO(CORO)(RO)(CORCOO)基は同一でも異なっていてもよい。)
  2.  窒化アルミニウム粒子、エポキシ樹脂、硬化剤、および下記一般式(1)で表される酸性リン酸エステルを相互に混合する工程を有することを特徴とする、硬化性樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、
     R:炭素数4~20の飽和または不飽和ヒドロカルビル基
     R:炭素数1~20の飽和ヒドロカルビレン基
     R:炭素数2または3の飽和ヒドロカルビレン基
     R:炭素数1~8の飽和または不飽和ヒドロカルビレン基
     k:0~20の整数
     l:0~20の整数
     m:0~20の整数
     n:1または2
    であって、
     Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
     Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
     Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
     Rが複数存在する場合には、複数のRは同一でも異なっていてもよく、
     k個の-CORO-基、l個の-RO-基、及びm個の-CORCOO-基がなす順序は任意であり、
     n=2の場合、2個のRO(CORO)(RO)(CORCOO)基は同一でも異なっていてもよい。)
  3.  前記混合する工程が、
     前記窒化アルミニウム粒子を、前記エポキシ樹脂の全部又は一部と前記酸性リン酸エステルとを含む混合物と混合する工程
    を有する、請求項2に記載の硬化性樹脂組成物の製造方法。
  4.  前記混合する工程が、
     (i)前記酸性リン酸エステルと前記エポキシ樹脂とを混合する工程、及び、
     (ii)前記(i)の工程で得られた混合物と、前記窒化アルミニウム粒子と、前記硬化剤とを混合する工程
    を有する、請求項2又は3に記載の硬化性樹脂組成物の製造方法。
  5.  前記混合する工程が、
     (i)前記酸性リン酸エステルと、前記エポキシ樹脂の一部とを混合する工程、
     (ii)前記(i)の工程で得られた混合物と、前記窒化アルミニウム粒子とを混合する工程、及び、
     (iii)前記(ii)の工程で得られた混合物と、前記エポキシ樹脂の残部と、前記硬化剤とを混合する工程
    を有し、
    前記硬化剤が塩基性硬化剤である、
    請求項2又は3に記載の硬化性樹脂組成物の製造方法。
  6.  請求項1に記載の硬化性樹脂組成物を硬化させることにより得られる、高熱伝導性樹脂組成物。
  7.  金属箔、
     請求項6に記載の高熱伝導性樹脂組成物、および
     金属基板または高熱伝導性セラミックス基板
    が上記順に積層されている、高熱伝導性積層基板。
  8.  金属箔と、金属基板または高熱伝導性セラミックス基板とを、請求項1に記載の硬化性樹脂組成物を介して積層する工程と、
     該硬化性樹脂組成物を硬化させる工程と
    を上記順に有することを特徴とする、高熱伝導性積層基板の製造方法。
PCT/JP2013/059384 2012-03-30 2013-03-28 硬化性樹脂組成物及びその製造方法、高熱伝導性樹脂組成物及び高熱伝導性積層基板 WO2013147086A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380017342.8A CN104204084B (zh) 2012-03-30 2013-03-28 固化性树脂组合物及其制造方法、高导热性树脂组合物及高导热性层叠基板
KR20147023817A KR20140148372A (ko) 2012-03-30 2013-03-28 경화성 수지 조성물 및 그 제조 방법, 고열전도성 수지 조성물 및 고열전도성 적층 기판
JP2014508061A JP6192635B2 (ja) 2012-03-30 2013-03-28 硬化性樹脂組成物及びその製造方法、高熱伝導性樹脂組成物及び高熱伝導性積層基板
US14/387,494 US20150079401A1 (en) 2012-03-30 2013-03-28 Curable resin composition, method for manufacturing the same, high thermal conductive resin composition, and high thermal conductive laminated substrate
EP13767287.9A EP2832792A4 (en) 2012-03-30 2013-03-28 HARDENABLE RESIN COMPOSITION, METHOD FOR THE MANUFACTURE THEREOF, HIGH-CIRCULAR RESIN COMPOSITION, AND HIGH-WELDING MULTILAYER SUBSTRATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081300 2012-03-30
JP2012-081300 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147086A1 true WO2013147086A1 (ja) 2013-10-03

Family

ID=49260329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059384 WO2013147086A1 (ja) 2012-03-30 2013-03-28 硬化性樹脂組成物及びその製造方法、高熱伝導性樹脂組成物及び高熱伝導性積層基板

Country Status (7)

Country Link
US (1) US20150079401A1 (ja)
EP (1) EP2832792A4 (ja)
JP (1) JP6192635B2 (ja)
KR (1) KR20140148372A (ja)
CN (1) CN104204084B (ja)
TW (1) TWI572635B (ja)
WO (1) WO2013147086A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126141A1 (ja) * 2013-02-13 2014-08-21 株式会社トクヤマ 樹脂組成物及びその製造方法、高熱伝導性樹脂成型体
JP2015034214A (ja) * 2013-08-08 2015-02-19 株式会社Adeka 一液型硬化性樹脂組成物
JP2015071730A (ja) * 2013-10-04 2015-04-16 株式会社トクヤマ 表面修飾粒子
JP2015229763A (ja) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、金属張積層板、プリント配線板
JP2017071704A (ja) * 2015-10-07 2017-04-13 日立化成株式会社 アンダーフィル用樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2018162367A (ja) * 2017-03-24 2018-10-18 トヨタ自動車株式会社 金属積層構造体
JP2020117619A (ja) * 2019-01-23 2020-08-06 デンカ株式会社 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
WO2021090629A1 (ja) * 2019-11-08 2021-05-14 デンカ株式会社 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
WO2021090630A1 (ja) * 2019-11-08 2021-05-14 デンカ株式会社 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468482B (zh) * 2013-06-19 2015-01-11 Polytronics Technology Corp 黏合材料
CN104198079A (zh) * 2014-07-30 2014-12-10 肇庆爱晟电子科技有限公司 一种高精度高可靠快速响应热敏芯片及其制作方法
WO2017131005A1 (ja) * 2016-01-26 2017-08-03 富士フイルム株式会社 表面修飾無機物およびその製造方法、樹脂組成物、熱伝導材料、ならびにデバイス
US10943631B2 (en) * 2017-09-04 2021-03-09 Tdk Corporation Spin current magnetization reversing element, magnetoresistance effect element, magnetic memory, and magnetic device
WO2019068529A1 (en) * 2017-10-06 2019-04-11 Basf Se DISPERSIBLE POLYISOCYANATES IN WATER
CN113348193B (zh) * 2019-02-01 2023-08-18 富士胶片株式会社 导热材料形成用组合物、导热材料
KR20210108221A (ko) * 2020-02-25 2021-09-02 현대자동차주식회사 양면 냉각형 파워모듈
KR102295682B1 (ko) * 2021-04-14 2021-08-30 레이져라이팅(주) 질화알루미늄을 포함하는 방열 도료 조성물 및 이를 이용한 엘이디(led) 조명등기구

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172618A (ja) * 1992-12-10 1994-06-21 Denki Kagaku Kogyo Kk エポキシ樹脂組成物及びプリント基板
JPH07101762A (ja) * 1993-10-01 1995-04-18 Takemoto Oil & Fat Co Ltd ポリマーモルタル又はポリマーコンクリートへの流動性付与方法
JPH09181423A (ja) 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk セラミックス回路基板
JPH10173097A (ja) 1996-10-09 1998-06-26 Matsushita Electric Ind Co Ltd 熱伝導基板用シート状物とその製造方法及びそれを用いた熱伝導基板とその製造方法
JPH10284813A (ja) 1997-04-02 1998-10-23 Denki Kagaku Kogyo Kk 回路基板及びその製造方法
JPH10306201A (ja) * 1997-05-08 1998-11-17 Toray Ind Inc エポキシ樹脂組成物
JPH10330626A (ja) * 1997-06-03 1998-12-15 Teijin Seiki Co Ltd 光造形用樹脂組成物
JP2002322372A (ja) * 2001-04-26 2002-11-08 Denki Kagaku Kogyo Kk 樹脂組成物およびそれを用いた金属ベース回路基板
JP2004075817A (ja) * 2002-08-15 2004-03-11 Denki Kagaku Kogyo Kk 回路基板用樹脂組成物とそれを用いた金属ベース回路基板
JP2005320479A (ja) 2004-05-11 2005-11-17 Kyocera Chemical Corp 液状エポキシ樹脂組成物
JP2006000984A (ja) 2004-06-18 2006-01-05 Matsushita Electric Ind Co Ltd 熱硬化性樹脂シートの切断加工方法
JP2009167261A (ja) * 2008-01-15 2009-07-30 Meidensha Corp 絶縁性高分子材料組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1169352A (en) * 1965-10-13 1969-11-05 Laporte Titanium Ltd Improvements in and relating to the Treatment of Pigments
US4111909A (en) * 1977-04-11 1978-09-05 Celanese Polymer Specialties Company Controlled reactivity epoxy resin compositions
US4123420A (en) * 1977-10-28 1978-10-31 Unitika Ltd. Aromatic copolyester composition containing phosphorus compounds
DE2946549A1 (de) * 1979-11-17 1981-05-27 Bayer Ag, 5090 Leverkusen Neuartige tio(pfeil abwaerts)2(pfeil abwaerts) -pigmente mit guter dispergierbarkeit, verfahren zu ihrer herstellung un verwendung
JPS61194091A (ja) * 1985-02-21 1986-08-28 Dainichi Seika Kogyo Kk リン酸エステル系顔料分散剤
GB8521131D0 (en) * 1985-08-23 1985-10-02 English Clays Lovering Pochin Aqueous suspensions of mixtures
JP3714506B2 (ja) * 1997-06-17 2005-11-09 三井化学株式会社 優れた耐水性を有する高熱伝導性樹脂組成物
FR2780409B1 (fr) * 1998-06-30 2001-07-13 Omya Sa Procede pour traiter une charge minerale par un phosphate, charge minerale ainsi traitee, mousses de polyurethanne et polyurethannes composites utilisant cette charge, objets moules ou non les contenant
US6248204B1 (en) * 1999-05-14 2001-06-19 Loctite Corporation Two part, reinforced, room temperature curable thermosetting epoxy resin compositions with improved adhesive strength and fracture toughness
EP1275673B1 (en) * 2001-07-12 2006-08-23 Dainippon Ink And Chemicals, Inc. Epoxy resin composition, cured article thereof, novel epoxy resin, novel phenol compound, and process for preparing the same
TWI281924B (en) * 2003-04-07 2007-06-01 Hitachi Chemical Co Ltd Epoxy resin molding material for sealing use and semiconductor device
WO2005082982A1 (ja) * 2004-02-27 2005-09-09 Toray Industries, Inc. 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体
JP4017645B2 (ja) * 2005-12-22 2007-12-05 横浜ゴム株式会社 湿気硬化性樹脂組成物
JP5040247B2 (ja) * 2006-10-06 2012-10-03 東レ株式会社 半導体用接着組成物、それを用いた半導体装置および半導体装置の製造方法
JP5201131B2 (ja) * 2007-03-01 2013-06-05 味の素株式会社 金属膜転写用フィルム、金属膜の転写方法及び回路基板の製造方法
TWI350716B (en) * 2008-12-29 2011-10-11 Nanya Plastics Corp High thermal conductivity, halogen-free flame-retardent resin composition and its pre-impregnated and coating materials for printed circuit boards
JP5792054B2 (ja) * 2011-12-27 2015-10-07 株式会社ダイセル 硬化性組成物及びその硬化物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181423A (ja) 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk セラミックス回路基板
JPH06172618A (ja) * 1992-12-10 1994-06-21 Denki Kagaku Kogyo Kk エポキシ樹脂組成物及びプリント基板
JPH07101762A (ja) * 1993-10-01 1995-04-18 Takemoto Oil & Fat Co Ltd ポリマーモルタル又はポリマーコンクリートへの流動性付与方法
JPH10173097A (ja) 1996-10-09 1998-06-26 Matsushita Electric Ind Co Ltd 熱伝導基板用シート状物とその製造方法及びそれを用いた熱伝導基板とその製造方法
JPH10284813A (ja) 1997-04-02 1998-10-23 Denki Kagaku Kogyo Kk 回路基板及びその製造方法
JPH10306201A (ja) * 1997-05-08 1998-11-17 Toray Ind Inc エポキシ樹脂組成物
JPH10330626A (ja) * 1997-06-03 1998-12-15 Teijin Seiki Co Ltd 光造形用樹脂組成物
JP2002322372A (ja) * 2001-04-26 2002-11-08 Denki Kagaku Kogyo Kk 樹脂組成物およびそれを用いた金属ベース回路基板
JP2004075817A (ja) * 2002-08-15 2004-03-11 Denki Kagaku Kogyo Kk 回路基板用樹脂組成物とそれを用いた金属ベース回路基板
JP2005320479A (ja) 2004-05-11 2005-11-17 Kyocera Chemical Corp 液状エポキシ樹脂組成物
JP2006000984A (ja) 2004-06-18 2006-01-05 Matsushita Electric Ind Co Ltd 熱硬化性樹脂シートの切断加工方法
JP2009167261A (ja) * 2008-01-15 2009-07-30 Meidensha Corp 絶縁性高分子材料組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832792A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126141A1 (ja) * 2013-02-13 2014-08-21 株式会社トクヤマ 樹脂組成物及びその製造方法、高熱伝導性樹脂成型体
EP2957601A4 (en) * 2013-02-13 2016-09-21 Tokuyama Corp RESIN COMPOSITION AND PROCESS FOR PRODUCING THE SAME, AND HIGHLY CONDUCTIVE RESIN MOLDED MOLDED ARTICLE
JP2015034214A (ja) * 2013-08-08 2015-02-19 株式会社Adeka 一液型硬化性樹脂組成物
JP2015071730A (ja) * 2013-10-04 2015-04-16 株式会社トクヤマ 表面修飾粒子
JP2015229763A (ja) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、金属張積層板、プリント配線板
WO2017061580A1 (ja) * 2015-10-07 2017-04-13 日立化成株式会社 アンダーフィル用樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2017071704A (ja) * 2015-10-07 2017-04-13 日立化成株式会社 アンダーフィル用樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2018162367A (ja) * 2017-03-24 2018-10-18 トヨタ自動車株式会社 金属積層構造体
JP2020117619A (ja) * 2019-01-23 2020-08-06 デンカ株式会社 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
JP7304161B2 (ja) 2019-01-23 2023-07-06 デンカ株式会社 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
WO2021090629A1 (ja) * 2019-11-08 2021-05-14 デンカ株式会社 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
WO2021090630A1 (ja) * 2019-11-08 2021-05-14 デンカ株式会社 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
CN114364738A (zh) * 2019-11-08 2022-04-15 电化株式会社 绝缘性树脂组合物、绝缘性树脂固化物、层合体及电路基板

Also Published As

Publication number Publication date
EP2832792A4 (en) 2015-11-18
CN104204084B (zh) 2016-11-16
KR20140148372A (ko) 2014-12-31
EP2832792A1 (en) 2015-02-04
TW201343709A (zh) 2013-11-01
US20150079401A1 (en) 2015-03-19
TWI572635B (zh) 2017-03-01
CN104204084A (zh) 2014-12-10
JP6192635B2 (ja) 2017-09-06
JPWO2013147086A1 (ja) 2015-12-14

Similar Documents

Publication Publication Date Title
WO2013147086A1 (ja) 硬化性樹脂組成物及びその製造方法、高熱伝導性樹脂組成物及び高熱伝導性積層基板
KR102051272B1 (ko) 다층 수지 시트, 수지 시트 적층체, 다층 수지 시트 경화물 및 그 제조 방법, 금속박이 형성된 다층 수지 시트, 그리고 반도체 장치
JP5348332B2 (ja) 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置
CN107406742B (zh) 膜状接合剂用组合物、膜状接合剂及制造方法、使用膜状接合剂的半导体封装及制造方法
WO2011040415A1 (ja) 多層樹脂シート及びその製造方法、多層樹脂シート硬化物の製造方法、並びに、高熱伝導樹脂シート積層体及びその製造方法
JP6023474B2 (ja) 熱伝導性絶縁シート、金属ベース基板及び回路基板、及びその製造方法
JP2018138634A (ja) 樹脂組成物および該樹脂組成物を用いた半導体装置
KR20120135217A (ko) 내열용 접착제
JP2012253167A (ja) 熱伝導性絶縁シート、金属ベース基板及び回路基板
US20170287866A1 (en) Interlayer filler composition for semiconductor device and method for producing semiconductor device
TWI835762B (zh) 積層體及電子裝置
JP7352173B2 (ja) 組成物、硬化物、多層シート、放熱部品、並びに電子部品
JP6508384B2 (ja) 熱伝導性シートおよび半導体装置
JP2014009343A (ja) 樹脂シート及びその製造方法、樹脂シート硬化物、並びに放熱用部材
JP2019129179A (ja) 半導体装置の製造方法
JP2013038094A (ja) 銅箔付き熱伝導性絶縁基板
JP6765215B2 (ja) 回路基板用樹脂組成物とそれを用いた金属ベース回路基板
TW202033708A (zh) 半導體用接著劑、半導體裝置的製造方法及半導體裝置
TW202142596A (zh) 絕緣膜、金屬基材基板及金屬基材基板之製造方法
WO2023189030A1 (ja) 熱硬化性樹脂組成物、樹脂硬化物および複合成形体
WO2016056655A1 (ja) 半導体デバイスの製造法
WO2023182470A1 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート、放熱積層体、放熱性回路基板、半導体装置およびパワーモジュール
JP2024000325A (ja) 半導体装置
JP2020167408A (ja) ヒートシンク付き絶縁回路基板の製造方法、及び、絶縁回路基板の製造方法
JP2022151865A (ja) 積層構造体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023817

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014508061

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387494

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013767287

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE