WO2013147041A1 - 固定床多管式反応器を用いてのアクロレインおよびアクリル酸の製造方法 - Google Patents

固定床多管式反応器を用いてのアクロレインおよびアクリル酸の製造方法 Download PDF

Info

Publication number
WO2013147041A1
WO2013147041A1 PCT/JP2013/059304 JP2013059304W WO2013147041A1 WO 2013147041 A1 WO2013147041 A1 WO 2013147041A1 JP 2013059304 W JP2013059304 W JP 2013059304W WO 2013147041 A1 WO2013147041 A1 WO 2013147041A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ratio
acrylic acid
reaction
acrolein
Prior art date
Application number
PCT/JP2013/059304
Other languages
English (en)
French (fr)
Inventor
友厚 河野
秀夫 小野寺
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to US14/383,966 priority Critical patent/US9073845B2/en
Priority to CN201380016754.XA priority patent/CN104203883B/zh
Priority to EP13769687.8A priority patent/EP2832717B1/en
Priority to JP2014508040A priority patent/JP5845338B2/ja
Publication of WO2013147041A1 publication Critical patent/WO2013147041A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J27/192Molybdenum with bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene

Definitions

  • the present invention relates to a process for producing acrolein and acrylic acid by propylene catalytic gas phase oxidation reaction using a fixed bed multitubular reactor. More specifically, the present invention relates to a method for producing acrolein and acrylic acid by a catalytic gas phase oxidation reaction of propylene using a fixed bed multitubular reactor having a plurality of catalyst layers in a reaction tube.
  • a fixed bed reactor In a catalytic gas phase oxidation reaction on an industrial scale, a fixed bed reactor is widely used in which a reaction is performed by circulating a gas containing a raw material compound in a reaction tube filled with a catalyst.
  • a fixed bed packed with a heterogeneous catalyst in the form of solid particles as a catalyst In particular, in the production of (meth) acrolein and (meth) acrylic acid by catalytic gas phase oxidation reaction using propylene, propane, isobutylene or the like as a raw material compound, a fixed bed packed with a heterogeneous catalyst in the form of solid particles as a catalyst.
  • a catalytic gas phase oxidation reaction using a multitubular reactor is widely used.
  • the solid particle heterogeneous catalyst used there is a shaped catalyst (non-supported catalyst) in which the active component is shaped into a certain geometric shape or a carrier material having the same geometric shape as the shaped catalyst.
  • a supported catalyst in which an active component is coated is generally used (Patent Document 1).
  • JP 2003-1094 A Japanese Patent Laid-Open No. 2003-220334 JP 2005-186065 A JP 2001-48817 A Special table 2008-535784 gazette JP 2008-231044 A JP 2005-187460 A
  • the problem to be solved by the present invention is to provide a process for producing acrolein and acrylic acid capable of stable continuous operation over a long period of time while maintaining a high yield in the catalytic gas phase oxidation of propylene. is there.
  • the present inventors have studied in detail the catalyst used for catalytic gas phase oxidation and the packing specifications of the catalyst in each reaction tube of the fixed bed multitubular reactor.
  • the yield of the target product and the catalyst It has been found that there is a positive effect on performance such as life.
  • At least two catalysts comprising molybdenum, bismuth and iron oxides and / or complex oxides of at least two of these as essential catalytically active components- At least two catalysts have a ratio (D1) of the pore volume occupied by pores having a pore diameter in the range of 0.03 to less than 0.3 ⁇ m to the total pore volume, and a pore diameter of 0.3
  • the ratio (D1 / D2) of the pore volume occupied by pores in the range of ⁇ 3 ⁇ m to the ratio (D1 / D2) to the total pore volume is different (D1 / D2).
  • Able to produce acrolein and acrylic acid stably over a long period of time while maintaining a high yield, characterized by filling the tube so that at least two reaction zones are formed in the axial direction of the tube Is provided.
  • the following effects can be obtained by filling each reaction tube of a fixed bed multitubular reactor with the catalyst as described above.
  • Acrolein and acrylic acid can be obtained in high yield.
  • the catalyst can be used stably for a long time.
  • Acrolein and acrylic acid can be stably obtained in a high yield even in a reaction under high load conditions such as high raw material concentration and high space velocity.
  • the present invention relates to a process for producing acrolein and acrylic acid by catalytic vapor phase oxidation of propylene with molecular oxygen using a fixed bed multitubular reactor, and each catalyst is oxidized with molybdenum, bismuth and iron. And / or at least two catalysts comprising a complex oxide of at least two of these elements as essential catalytically active components. These at least two catalysts have a ratio (D1) of the pore volume occupied by pores having a pore diameter in the range of 0.03 to less than 0.3 ⁇ m to the total pore volume, and a pore diameter of 0.1.
  • the ratio (D1 / D2) of the ratio of the pore volume occupied by pores in the range of 3 to 3 ⁇ m to the ratio (D2) to the total pore volume is different.
  • These at least two kinds of catalysts are packed so that at least two reaction zones are formed in the axial direction in each reaction tube of the fixed bed multitubular reactor.
  • a general fixed bed multitubular reactor for catalytic gas phase oxidation can be used, except that the catalyst is packed in the above specifications. It is not particularly limited. For example, conventionally known ones such as a single reactor and a tandem reactor can be used as appropriate.
  • the gas phase oxidation catalyst that can be used in the present invention is a catalyst having molybdenum, bismuth and iron as essential components as catalytic active components, and the following general formula (1) Mo 12 Bi a Fe b A c B d C e D f O x (1) (Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from the group consisting of cobalt and nickel, and B is selected from the group consisting of alkali metals, alkaline earth metals and thallium.
  • At least one element is at least one element selected from the group consisting of tungsten, silicon, aluminum, zirconium and titanium, D is phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic, boron And at least one element selected from the group consisting of zinc, and O is oxygen, and a, b, c, d, e, f, and x are Bi, Fe, A, B, C, D, and O, respectively.
  • B is at least one element selected from alkali metals, 0.1 ⁇ a ⁇ 8, 0.1 ⁇ b ⁇ 10, 2 ⁇ c ⁇ 12 and 0.1 ⁇ Those satisfying d ⁇ 3 are preferred.
  • the catalyst of the present invention can be produced by a method generally used for preparing this type of catalyst, for example, the method described below.
  • the starting materials for the catalytically active components that can be used in the present invention.
  • oxides, hydroxides or salts ammonium salts, nitrates, carbonates, sulfates, chlorides, organic acid salts
  • ammonium salts and nitrates are preferably used.
  • starting materials of these catalytically active components are dissolved or suspended in water, for example, to prepare an aqueous solution or an aqueous slurry (hereinafter sometimes referred to as “starting material mixture”).
  • These starting material mixture liquids can be prepared by a method generally used for this type of catalyst. For example, an aqueous solution or an aqueous slurry containing each of the above starting materials of the catalytically active component is prepared, and these are mixed sequentially. That's fine. It is also possible to prepare a plurality of aqueous solutions or aqueous slurries for a starting material of one catalytically active component, and to divide and mix them. There are no particular restrictions on the mixing conditions (mixing order, temperature, pressure, pH, etc.) of the starting materials for the catalytically active component. The starting material mixture obtained in this way is used in a conventional and conventional supporting process in the form of a heat-treated liquid. Alternatively, a solid catalyst precursor can be produced from the starting raw material mixture through various drying methods (primary drying step) such as heating and decompression, and this can be used in the supporting step or molding step described later.
  • primary drying step such as heating and decompression
  • a method of obtaining a catalyst precursor by heat drying in the primary drying step for example, a method of obtaining a cake-like catalyst precursor by evaporating and drying a starting raw material mixture, a powder form using a spray dryer, a drum dryer or the like And a method of obtaining a block-like or flake-like catalyst precursor by heating in a gas stream using a box-type dryer, a tunnel-type dryer or the like.
  • a method for obtaining the catalyst precursor for example, a method of obtaining a cake-like catalyst precursor by evaporating and drying a starting raw material mixture, a powder form using a spray dryer, a drum dryer or the like
  • a method of obtaining a block-like or flake-like catalyst precursor by heating in a gas stream using a box-type dryer, a tunnel-type dryer or the like.
  • the cake-like solid obtained by evaporating and drying the starting material mixture is further heat-treated in an air stream using a box-type dryer, tunnel-type dryer, etc
  • Examples of the method for obtaining a solid catalyst precursor by drying under reduced pressure in the primary drying step include a method for obtaining a block or powdery catalyst precursor using a vacuum dryer. . Further, the solid catalyst precursor obtained by the primary drying step can be subsequently calcined to be used as a catalyst precursor.
  • the catalyst precursor thus obtained can be pulverized or classified as necessary to obtain a powdery catalyst precursor having an appropriate particle size.
  • the particle size of the catalyst precursor powder is not particularly limited, but is 500 ⁇ m or less, preferably 300 ⁇ m or less, and more preferably 150 ⁇ m or less in terms of excellent moldability in the molding process described later.
  • the catalyst that can be used in the present invention can be used as a shaped catalyst or a supported catalyst.
  • the formed catalyst and the supported catalyst are produced by the following methods, respectively.
  • the molded catalyst can be obtained by molding the catalyst precursor or a mixture of the catalyst precursor and a powdery inert carrier into a fixed shape according to an extrusion molding method, a tableting molding method, or the like.
  • the shape is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape, a ring shape, and an indeterminate shape.
  • a spherical shape it does not have to be a true sphere, and may be substantially spherical.
  • the column shape and the ring shape do not have to be a perfect circle, and may be substantially circular.
  • the supported catalyst is, for example, an evaporative drying method in which a desired inert carrier having a certain shape is dried and supported by applying or adhering the starting material mixture in an aqueous solution or an aqueous slurry without drying, without drying. It can be produced by a solid method or a granulation method comprising supporting a powder of the catalyst precursor or a powder obtained by further drying or calcining it on an inert carrier.
  • the centrifugal fluid coating method described in JP-A-63-200249, the rolling granulation method described in JP-A-10-28877, and the rocking mixer method described in JP-A-2004-136267 are used.
  • a granulation method of supporting on an inert carrier is preferable.
  • Examples of the inert carrier used in the forming catalyst and the supported catalyst include alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, zeolite and the like.
  • a powdery inert carrier may be used, and its particle size is not particularly limited, but is preferably 500 ⁇ m or less, preferably 300 ⁇ m or less, and more preferably 150 ⁇ m or less in terms of excellent moldability.
  • a carrier molded into a certain shape using the above inert carrier substance is used, but there is no particular limitation on the shape, and any known shape such as a spherical shape, a cylindrical shape, or a ring shape can be used. May be.
  • an auxiliary agent and a binder for improving the moldability and the supporting property can be used.
  • organic compounds such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol or phenols, as well as water, nitric acid, ammonium nitrate, ammonium carbonate, urea and the like.
  • the catalyst of the present invention is made of a glass fiber, a ceramic fiber or the like generally known as a reinforcing material, or an inorganic material such as silica, alumina, silicon carbide, silicon nitride or the like. Fibers may be added.
  • the method for adding these inorganic fibers is not particularly limited, and any method can be used as long as the inorganic fibers can be contained in the catalyst in a uniformly dispersed state.
  • the inorganic fiber may be added to the starting raw material mixture, or the solid catalyst precursor and the inorganic fiber may be mixed in the molding process.
  • the molded body obtained in the molding step or the carrier obtained in the supporting step is subjected to a secondary drying step as necessary and then sent to the firing step.
  • the molded body or the carrier is inactive such as molecular oxygen-containing gas, molecular nitrogen, carbon dioxide, etc. using a commonly used box-type dryer, tunnel-type dryer, etc. Drying is performed by heating in an atmosphere of gas or a mixture thereof. Specifically, it is dried at a drying temperature of 100 to 350 ° C., preferably 130 to 300 ° C., more preferably 150 to 250 ° C. for 1 to 24 hours, preferably 2 to 20 hours, more preferably 3 to 16 hours. .
  • the firing furnace used in the firing step is not particularly limited, and a generally used box-type firing furnace, tunnel-type firing furnace, or the like may be used.
  • the firing temperature is 350 to 600 ° C., preferably 400 to 550 ° C., more preferably 420 to 500 ° C., and the firing time is 1 to 15 hours, preferably 2 to 10 hours.
  • Firing is performed under an air atmosphere, an air flow, an inert gas (for example, molecular nitrogen, carbon dioxide, etc.) atmosphere, or an inert gas flow. Firing in a molecular oxygen-containing gas atmosphere is preferred. Air is suitably used as the molecular oxygen-containing gas.
  • the firing step is not necessarily required. If an auxiliary agent, a binder, or the like is used in the support step, the above-mentioned secondary can be removed. Only a drying process may be sufficient.
  • Examples of the catalyst having a different pore size distribution in the catalytically active component used in the present invention include (1) a method of adjusting the ratio of nitrate radical and ammonium root contained in the starting raw material mixture, (2) the above In the primary drying process, the size of the cake-like or block-like solid is adjusted when the heat treatment is performed in an air current using a box-type dryer, a tunnel-type dryer or the like, or the temperature, atmospheric gas It can be obtained by a method of adjusting drying conditions such as type and flow rate, or (3) a method of adjusting the particle size of the powdery catalyst precursor in the pulverization step.
  • the above method (1) for adjusting the ratio of nitrate radical and ammonium radical contained in the starting raw material mixture is, for example, changing the starting raw material, or the starting raw material mixture such as nitric acid, ammonia, ammonium nitrate, etc. It consists of adding substances containing nitrate or ammonium roots. If the ratio of the number of moles of ammonium radicals / the number of moles of nitrate radicals is 1.0 or more, the D1 / D2 ratio is relatively large. If the ratio is less than 0.8, the D1 / D2 ratio is relatively large. Get smaller.
  • the distance between any two ends of the solid material is a maximum of 30 mm, preferably less than 20 mm. If adjusted to, the D1 / D2 ratio can be made relatively small, and if adjusted to be in the range of 30 mm or more, preferably 50 mm or more, the D1 / D2 ratio can be made relatively large.
  • the amount V of atmospheric gas having a molecular oxygen concentration of 5 to 25% introduced into the dryer (L (standard state) / min) and The mass W (kg) of the starting material mixture or the ratio W (kg) of the catalyst precursor such as a cake-like solid obtained by evaporating and drying the starting material mixture (V / Comprising adjusting W).
  • the ratio of the molecular oxygen-containing gas amount as the atmospheric gas in the primary drying step to the mass of the starting raw material mixture or the mass of the cake-like solid obtained by evaporating and drying the starting raw material mixture (V / W) is adjusted to be in the range of 400 or more, preferably 500 or more, the D1 / D2 ratio can be made relatively small, and the ratio (V / W) is in the range of less than 200, preferably less than 100. By adjusting in this way, the D1 / D2 ratio can be made relatively large.
  • the D1 / D2 ratio is relatively large if the particle size of the powder is less than 50 ⁇ m, preferably less than 20 ⁇ m. If the particle size is 100 ⁇ m or more, preferably 150 ⁇ m or more, the D1 / D2 ratio can be made relatively small.
  • the above methods (1), (2) and (3) for adjusting the pore size distribution in the catalytically active component may be carried out by any one, or in combination of two or three. You can also.
  • At least two catalysts having different ratios (D1 / D2) of the ratio of the pore volume occupied by pores in the range to the total pore volume (D2) (D1 / D2) for each of the fixed bed multitubular reactors There is no particular limitation on the packing and arrangement of the catalyst except that the reaction tube is packed so as to form a layer in the tube axis direction.
  • each reaction tube of the fixed bed multitubular reactor is filled with a catalyst having a large D1 / D2 ratio and the gas outlet side is filled with a catalyst having a small D1 / D2 ratio, D1 / D2 Compared with the case where the ratio is constant, an effect that the catalyst life is improved is obtained.
  • the present invention by arranging a plurality of catalysts having different D1 / D2 ratios in the reaction tube in this manner, the yield of the target products acrolein and acrylic acid can be improved, or the catalyst life can be increased. Can be improved.
  • the gas inlet side of each reaction tube of the fixed-bed multitubular reactor is obtained in view of the fact that the yield of acrolein and acrylic acid is greatly improved, as well as the effect of extending the catalyst life.
  • An arrangement in which a catalyst having a small D1 / D2 ratio is packed and a catalyst having a large D1 / D2 ratio is packed on the gas outlet side is preferable.
  • the D1 / D2 ratio may be 0.1 to 8, preferably 0.2 to 6, and more preferably 0.3 to 5.
  • the number of reaction zones is not particularly limited, but industrially, the desired effect can be obtained sufficiently by setting it to about 2 or 3.
  • the optimum splitting ratio of the catalyst layer cannot be specified because it depends on the oxidation reaction conditions and the composition, shape, size, etc. of the catalyst packed in each layer, so it is possible to obtain the optimum activity and selectivity as a whole. May be selected as appropriate.
  • the D1 / D2 ratio is not necessarily sequentially from the gas inlet side to the gas outlet. There is no need to dispose it so as to increase it, or to dispose the D1 / D2 ratio so that it gradually decreases from the gas inlet side toward the gas outlet.
  • the pore diameter distribution of the packed catalyst may be arranged so as to satisfy the above relationship. The object of the present invention can be achieved even in an arrangement in which the gas is once reduced and then filled so as to become larger, or in an arrangement in which the D1 / D2 ratio is once increased from the gas inlet side toward the gas outlet side and then filled so as to become smaller.
  • propylene is subjected to catalytic gas phase oxidation with molecular oxygen or a molecular oxygen-containing gas to produce acrolein and acrylic acid, and a gas phase oxidation catalyst is filled in each reaction tube with the above specifications.
  • a fixed bed multitubular reactor is used.
  • the reaction raw material is propylene or a propylene-containing gas.
  • the method of the present invention can be suitably applied as the first step in the production of acrylic acid by, for example, two-step catalytic gas phase oxidation using propylene as a starting material.
  • propylene as a reaction raw material.
  • polymer grade or chemical grade propylene, or a propylene-containing mixed gas obtained by propane dehydrogenation reaction or oxidative dehydrogenation reaction can be used. If necessary, air or oxygen can be added to the gas.
  • the reaction conditions are not particularly limited, and any conditions generally used for this type of reaction can be used.
  • a normal reaction raw material gas for example, 1 to 15% by volume, preferably 4 to 12% by volume propylene, 0.5 to 25% by volume, preferably 2 to 20% by volume molecular oxygen, 0 to 30% by volume
  • % Preferably 0 to 25% by volume of water vapor, and the balance of an inert gas such as nitrogen
  • an inert gas such as nitrogen
  • It may be brought into contact with the oxidation catalyst at a propylene space velocity of 100 to 600 hr ⁇ 1 (standard state), preferably 120 to 300 hr ⁇ 1 (standard state) under a reaction pressure of 0 MPa.
  • Catalyst production example 1 Preparation of catalyst (1) In 500 parts of ion-exchanged water, 341 parts of cobalt nitrate and 82 parts of nickel nitrate were dissolved. Further, 92 parts of ferric nitrate and 128 parts of bismuth nitrate were dissolved in an aqueous nitric acid solution consisting of 75 parts of 65% by weight nitric acid and 300 parts of ion-exchanged water.
  • the mixture was pulverized to 300 ⁇ m or less to obtain catalyst precursor powder.
  • 340 parts of an alumina spherical carrier having an average particle diameter of 5.0 mm are put into a rolling granulator, and then a catalyst powder is gradually put together with a 20 mass% ammonium nitrate aqueous solution as a binder to be supported on the carrier.
  • the catalyst (1) was obtained by heat treatment at 470 ° C. for 6 hours in an air atmosphere.
  • the metal element composition excluding oxygen and support of this catalyst (1) was as follows.
  • catalyst production example 2 Preparation of catalyst (2) In catalyst production example 1, the flow rate of air introduced into the tunnel-type dryer was changed, the ratio V / W was 400, and the catalyst was dried at 180 ° C for 14 hours. A catalyst was prepared in the same manner as in Production Example 1 to obtain a catalyst (2).
  • Catalyst production example 3 Preparation of catalyst (3)
  • the flow rate of air introduced into the tunnel-type dryer was changed, the ratio V / W was 600, and the catalyst was dried at 180 ° C for 14 hours.
  • a catalyst was prepared in the same manner as in Production Example 1 to obtain a catalyst (3).
  • Catalyst production example 4 Preparation of catalyst (4)
  • the solid obtained by the heat treatment of the suspension is adjusted to a distance of any two ends of less than 100 mm at the longest and introduced into a tunnel dryer.
  • the catalyst was prepared in the same manner as in Catalyst Production Example 1 except that the ratio V / W was changed to 100 and the air was dried at 180 ° C. for 15 hours to obtain a catalyst (4).
  • Catalyst production example 5 Preparation of catalyst (5)
  • the flow rate of air introduced into the tunnel dryer was changed, the ratio V / W was set to 300, and the solid after drying was pulverized to 120 ⁇ m or less.
  • a catalyst was prepared in the same manner as in Catalyst Production Example 1 to obtain catalyst (5).
  • Table 1 shows the preparation conditions, supported amount, and D1 / D2 ratio of the catalysts (1) to (5).
  • Example 1 A reactor consisting of 24 steel reaction tubes having a total length of 3000 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the tubes was prepared in the vertical direction.
  • the catalyst (2) is first dropped from the upper part of the reaction tube so as to have a layer length of 900 mm and then the catalyst (1) so as to have a layer length of 2000 mm.
  • a reaction zone having a layer length of 2900 mm was filled in the reaction tube.
  • Example 2 In Example 1, from the reaction gas inlet side to the outlet side, the catalyst (1) was first packed so as to have a layer length of 800 mm and then the catalyst (2) so as to have a layer length of 2100 mm. The propylene oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 2.
  • Example 3 In Example 1, from the reaction gas inlet side to the outlet side, the catalyst (3) is first formed so as to have a layer length of 600 mm, and then the catalyst (2) is further formed so as to have a layer length of 700 mm.
  • the oxidation reaction of propylene was carried out in the same manner as in Example 1 except that the layers were sequentially filled so that the layer length was 1600 mm. The results are shown in Table 2.
  • Comparative Example 1 In Example 1, an oxidation reaction of propylene was performed in the same manner as in Example 1 except that only the catalyst (1) was filled so as to have a layer length of 2900 mm. The results are shown in Table 2.
  • Example 2 In Example 1, an oxidation reaction of propylene was carried out in the same manner as in Example 1 except that only the catalyst (2) was filled so as to have a layer length of 2900 mm. The results are shown in Table 2. Compared with Example 1, the yields at the initial 80 hours and 4,000 hours after the oxidation reaction were both low, and the reaction temperature increase rate over time was high. Comparative Example 3 In Example 1, an oxidation reaction of propylene was carried out in the same manner as in Example 1 except that only the catalyst (3) was filled so as to have a layer length of 2900 mm. The results are shown in Table 2.
  • Example 4 In Example 1, from the reaction gas inlet side to the outlet side, the catalyst (5) was first packed so as to have a layer length of 800 mm and then the catalyst (4) so as to have a layer length of 2100 mm. The propylene oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 接触気相酸化によってアクロレインおよび/またはアクリル酸を製造するにあたり、高い収率を維持しながら、長期間にわたる安定的な連続操業が可能な方法を提供する。 該方法は、モリブデン、ビスマスおよび鉄の各酸化物および/またはこれらのうちの少なくとも2つの元素の複合酸化物を触媒活性成分として含む少なくとも2種の触媒――該少なくとも2種の触媒は、細孔直径が0.03~0.3μm未満の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D1)と、細孔直径が0.3~3μmの範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D2)との比(D1/D2)を異にする――を、固定床多管式反応器の各反応管に管軸方向に少なくとも2つの反応帯を形成するように充填することを特徴とする。

Description

固定床多管式反応器を用いてのアクロレインおよびアクリル酸の製造方法
 本発明は、固定床多管式反応器を用いてのプロピレンの接触気相酸化反応によるアクロレインおよびアクリル酸の製造方法に関する。より詳しくいえば、本発明は、反応管内に複数の触媒層を有する固定床多管式反応器を用いて、プロピレンの接触気相酸化反応によりアクロレインおよびアクリル酸を製造する方法に関する。
 工業的規模での接触気相酸化反応には、触媒を充填した反応管に原料化合物を含むガスを流通させて反応を行う固定床反応器が広く用いられている。中でも、プロピレン、プロパン、イソブチレン等を原料化合物とした接触気相酸化反応による(メタ)アクロレインおよび(メタ)アクリル酸の製造においては、触媒として固体粒子形状の不均一系触媒が充填された固定床多管式反応器を用いた接触気相酸化反応が広く使用されている。そこで使用される固体粒子形状の不均一系触媒としては、活性成分を一定の幾何学的形状に成形した成形触媒(非担持型触媒)あるいは成形触媒と同じような幾何学的形状を有する担体材料に活性成分を被覆した担持触媒が一般的である(特許文献1)。
 このような固体粒子形状の不均一系触媒を充填した固定床多管式反応器を用いて、プロピレンの接触気相酸化反応によりアクロレインおよびアクリル酸を高収率で製造するための方法が種々提案されている。そのような提案の大部分は、該反応で使用されるモリブデンおよびビスマスを主成分とするモリブデン-ビスマス系触媒に関するものであって、その組成、形状、物性ならびに製造方法に関するものが多い(特許文献2および3等)。また、固定床多管式反応器の各反応管への触媒の充填仕様に関するものもいくつか提案されている(特許文献4、5、6および7)。
特開2003-1094号公報 特開2003-220334号公報 特開2005-186065号公報 特開2001-48817号公報 特表2008-535784号公報 特開2008-231044号公報 特開2005-187460号公報
 しかしながら、このような従来公知の方法はいずれも、工業的な規模での実施の場合、目的とするアクロレインおよびアクリル酸の収率や触媒寿命等の面において、なお改善の余地を残すものである。
 本発明が解決すべき課題は、プロピレンの接触気相酸化を行うにあたり、高い収率を維持しながら、長期間にわたる安定的な連続操業が可能なアクロレインおよびアクリル酸の製造方法を提供することにある。
 本発明者らは、かかる課題を解決するべく、接触気相酸化に使用する触媒ならびに固定床多管式反応器の各反応管への触媒の充填仕様について詳細に検討を行った結果、モリブデン、ビスマスおよび鉄を必須成分とした触媒であって、細孔径分布が異なる少なくとも2種の触媒を、固定床多管式反応器の各反応管に充填した場合に、目的生成物の収率や触媒寿命などの性能に好影響が生ずることを見出した。斯くして、本発明によれば、モリブデン、ビスマスおよび鉄の各酸化物および/またはこれらのうちの少なくとも2つの元素の複合酸化物を必須の触媒活性成分として含む少なくとも2種の触媒――該少なくとも2種の触媒は、細孔直径が0.03~0.3μm未満の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D1)と、細孔直径が0.3~3μmの範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D2)との比(D1/D2)を異にする――を、固定床多管式反応器の各反応管に管軸方向に少なくとも2つの反応帯が形成されるように充填することから成ることを特徴とする、高い収率を維持しながら、長期間にわたる安定的なアクロレインおよびアクリル酸の製造が可能な方法が提供される。
 本発明に従い、固定床多管式反応器の各反応管に上記のような仕様で触媒を充填することによって、以下の効果が得られる。
(1)高収率でアクロレインおよびアクリル酸が得られる。
(2)触媒を長期間安定して使用することができる。
(3)高原料濃度、高空間速度などのような高負荷条件下での反応においてもアクロレインおよびアクリル酸を安定して高収率で得られる。
 以下、本発明について詳細に説明するが、本発明の範囲は以下の説明内容には制限されず、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
 本発明は、固定床多管式反応器を用いてプロピレンを分子状酸素により接触気相酸化することによってアクロレインおよびアクリル酸を製造する方法であって、触媒として、モリブデン、ビスマスおよび鉄の各酸化物および/またはこれらのうちの少なくとも2つの元素の複合酸化物を必須の触媒活性成分として含む少なくとも2種の触媒を使用する。これら少なくとも2種の触媒は、細孔直径が0.03~0.3μm未満の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D1)と、細孔直径が0.3~3μmの範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D2)との比(D1/D2)を異にしている。これら少なくとも2種の触媒は、固定床多管式反応器の各反応管に管軸方向に少なくとも2つの反応帯が形成されるように充填される。
 本発明に使用できる固定床多管式反応器としては、触媒が前記仕様で充填されていること以外は、一般的な接触気相酸化用の固定床多管式反応器を用いることができ、特に限定されるものではない。例えば、シングルリアクター、タンデムリアクターなど、従来公知のものを適宜利用することができる。
 本願発明に使用できる気相酸化触媒としては、触媒活性成分としてモリブデン、ビスマスおよび鉄を必須成分とする触媒であって、下記一般式(1)
Mo12BiFe (1)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルからなる群より選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムからなる群より選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンからなる群より選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素、ホウ素および亜鉛からなる群より選ばれる少なくとも1種の元素、そしてOは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0<d≦10、0≦e≦30そして0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。)
で表される触媒活性成分を含む触媒が好適である。上記一般式(1)において、Bがアルカリ金属から選ばれた少なくとも1種の元素であり、0.1≦a≦8、0.1≦b≦10、2≦c≦12そして0.1<d≦3であるものが好ましい。
 本発明の触媒は、この種の触媒の調製に一般的に用いられる方法、例えば下記するような方法、を用いて製造することができる。
 本発明で使用できる触媒活性成分の出発原料については特段の制限はない。例えば、各成分元素を含む酸化物、水酸化物または塩類(アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、塩化物、有機酸塩)など、それらの水溶液またはゾル、複数の成分元素を含む化合物、あるいは、これらの組み合わせ、などを用いることができる。中でも、アンモニウム塩や硝酸塩が好適に用いられる。
 先ず、これら触媒活性成分の出発原料を、例えば、水に溶解あるいは懸濁させて、水溶液あるいは水性スラリー(以下、「出発原料混合液」と記すこともある。)を調製する。
 これら出発原料混合液は、この種の触媒に一般に用いられている方法により調製することができ、例えば、上記触媒活性成分の出発原料の各々を含む水溶液あるいは水性スラリーをつくり、これらを順次混合すればよい。また、一つの触媒活性成分の出発原料について複数の水溶液あるいは水性スラリーをつくり、これらを分割して混合することもできる。触媒活性成分の出発原料の混合条件(混合順序、温度、圧力、pH等)については特に制限はない。
こうして得られた出発原料混合液は、加熱処理した液状のままで従来慣用の担持工程で使用される。あるいは、該出発原料混合液から加熱や減圧など各種方法による乾燥工程(1次乾燥工程)を経て固体状の触媒前駆体をつくり、これを後述の担持工程または成形工程で使用することができる。
 1次乾燥工程における加熱乾燥によって触媒前駆体を得る方法としては、例えば、出発原料混合液を蒸発乾固してケーキ状の触媒前駆体を得る方法、スプレードライヤー、ドラムドライヤー等を用いて粉末状の触媒前駆体を得る方法、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の触媒前駆体を得る方法などがある。また、一旦、出発原料混合液を蒸発乾固して得られたケーキ状の固形物をさらに箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱処理することによってブロック状またはフレーク状の触媒前駆体を得る方法も採用できる。
1次乾燥工程において、減圧により乾燥させて固体状の触媒前駆体を得る方法としては、例えば、真空乾燥機を用いて、ブロック状または粉末状の触媒前駆体を得る方法などを挙げることができる。
また、前記1次乾燥工程により得られた固体状の触媒前駆体を、引き続き焼成してこれを触媒前駆体とすることもできる。
このようにして得られた触媒前駆体は、必要に応じて粉砕や分級を行い適度な粒度の粉体状の触媒前駆体とすることもできる。この場合、触媒前駆体の粉体の粒度は、特に限定されないが、後述の成形工程における成形性に優れる点で、500μm以下であり、好ましくは300μm以下であり、さらに好ましくは150μm以下である。
本発明で使用できる触媒は、成形触媒または担持触媒として使用できる。成形触媒および担持触媒は、それぞれ次の方法により製造される。
成形触媒は、前記触媒前駆体あるいは前記触媒前駆体と粉体状の不活性担体との混合物を押し出し成形法や打錠成形法などに従って一定の形状に成形することにより得られる。
押し出し成形法や打錠成形法等の場合、その形状に特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよい。円柱状およびリング状についても同様に断面形状は真円である必要は無く、実質的に円形であればよい。
 担持触媒は、例えば、一定の形状を有する所望の不活性担体に、出発原料混合液を乾燥させずに水溶液あるいは水性スラリーのまま、加熱しながら塗布あるいは付着させて乾燥担持させることから成る蒸発乾固法、あるいは、前記触媒前駆体の粉体や、それをさらに乾燥または焼成した粉体を不活性担体に担持させることから成る造粒法にしたがって製造することができる。中でも、特に特開昭63-200839号公報に記載の遠心流動コーティング法、特開平10-28877号公報に記載の転動造粒法、特開2004-136267号公報に記載のロッキングミキサー法を用いて不活性担体に担持する造粒法が好ましい。
 成形触媒や担持触媒で使用される不活性担体の例としては、アルミナ、シリカ、シリカ-アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ-マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。成形触媒では粉体状の不活性担体を使用すればよく、その粒度は特に限定されないが、成形性に優れる点で500μm以下のものが好適であり、300μm以下が好ましく、150μm以下がさらに好ましい。担持触媒では、上記不活性担体物質を用いて一定の形状に成型された担体が使用されるが、その形状についても特に制限はなく、球状、円柱状、リング状など公知のいずれの形状であってもよい。
 成形工程および担持工程においては、成形性および担持性を向上させるための補助剤やバインダーを用いることができる。具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコールまたはフェノール類などのような有機化合物のほか、水、硝酸、硝酸アンモニウム、炭酸アンモニウム、尿素などが挙げられる。
 また、本発明の触媒には機械的強度を向上させる目的で、補強材として一般に知られているガラス繊維、セラミック繊維など、あるいは、シリカ、アルミナ、炭化珪素、窒化珪素などのような無機質材料から成る繊維を添加してもよい。これらの無機質繊維の添加方法については、特に制限はなく、触媒中に無機質繊維が均一に分散した状態で含有されるようにし得るものであれば、いずれの方法も用いることができる。例えば、出発原料混合液に無機質繊維を添加しても、あるいは成型工程で固体状の触媒前駆体と無機質繊維とを混合してもよい。
 上記成形工程で得られた成形体あるいは担持工程で得られた担持体は、必要により2次乾燥工程を経たのち、焼成工程に送られる。
2次乾燥工程では、成形体あるいは担持体を、一般的に使用される箱型乾燥機、トンネル型乾燥機等を用いて分子状酸素含有ガスや分子状窒素、二酸化炭素などのような不活性ガスあるいはこれらの混合物などの雰囲気下で加熱することによって乾燥する。具体的には、100~350℃、好ましくは130~300℃、さらに好ましくは150~250℃の乾燥温度で、1~24時間、好ましくは2~20時間、さらに好ましくは3~16時間乾燥する。
焼成工程において用いる焼成炉には特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。焼成温度は350~600℃、好ましくは400~550℃、更に好ましくは420~500℃であり、焼成時間は1~15時間、好ましくは2~10時間である。焼成は、空気雰囲気下、空気流通下、不活性ガス(例えば、分子状窒素、二酸化炭素など)雰囲気下、あるいは不活性ガス流通下などで行う。分子状酸素含有ガス雰囲気下での焼成が好ましい。分子状酸素含有ガスとしては空気が好適に用いられる。
また、焼成は前記2次乾燥工程後に、あるいは2次乾燥工程を経ずに、行ってもよい。なお、予め焼成した触媒活性成分を触媒前駆体として用いた担持体の場合は、必ずしも焼成工程は必要なく、担持工程で補助剤やバインダー等を使用した場合に、これらが除去できれば前記した2次乾燥工程のみでもよい。
 本発明において使用される触媒活性成分中の細孔径分布を異にする触媒は、例えば、(1)出発原料混合液に含まれる硝酸根とアンモニウム根との割合を調整する方法、(2)上記1次乾燥工程において、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱処理する際に、ケーキ状またはブロック状固形物の大きさを調整するか、あるいは、温度、雰囲気ガスの種類、流量などのような乾燥条件を調整する方法、あるいは、(3)前記粉砕工程における粉体状の触媒前駆体の粒径を調整する方法などによって得ることができる。
出発原料混合液に含まれる硝酸根とアンモニウム根との割合を調整する上記方法(1)は、例えば、出発原料を変更すること、あるいは、出発原料混合液に硝酸、アンモニア、硝酸アンモニウムなどのような硝酸根あるいはアンモニウム根を含む物質を添加することから成る。アンモニウム根のモル数/硝酸根のモル数の比を1.0以上とすれば、D1/D2比は比較的大きくなり、該比を0.8未満にすれば、D1/D2比は比較的小さくなる。
1次乾燥工程における乾燥条件で調整する上記方法(2)のうち、固形物の大きさによる方法では、固形物の任意の2端の距離を最長で30mm、好ましくは20mm未満の範囲になるように調整すれば、D1/D2比を比較的小さくでき、30mm以上、好ましくは50mm以上の範囲になるように調製すれば、D1/D2比を比較的大きくできる。また、上記方法(2)のうち、雰囲気ガスの種類や流量による方法では、乾燥機に導入される分子状酸素濃度5~25%の雰囲気ガスの量V〔L(標準状態)/分〕と、前記出発原料混合液の質量W(kg)あるいは出発原料混合液を蒸発乾固して得たケーキ状の固形物等のような前記触媒前駆体の質量W(kg)との比(V/W)を調整することから成る。例えば、1次乾燥工程における雰囲気ガスとしての分子状酸素含有ガス量と、出発原料混合液の質量あるいは出発原料混合液を蒸発乾固して得たケーキ状の固形物の質量との比(V/W)を400以上、好ましくは500以上の範囲になるように調節すれば、D1/D2比を比較的小さくでき、該比(V/W)を200未満、好ましくは100未満の範囲になるように調節すれば、D1/D2比を比較的大きくできる。
また、粉砕工程における、触媒前駆体の粉体の粒径を調整する上記方法(3)では、粉体の粒径を50μm未満、好ましくは20μm未満とすれば、D1/D2比を比較的大きくでき、該粒径を100μm以上、好ましくは150μm以上とすれば、D1/D2比を比較的小さくできる。
触媒活性成分中の細孔径分布を調整するための上記(1)、(2)および(3)の方法は、いずれかひとつによって実施してもよいし、2つまたは3つを組み合わせて実施することもできる。
本発明においては、細孔直径が0.03~0.3μm未満の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D1)と、細孔直径が0.3~3μmの範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D2)との比(D1/D2)を異にする少なくとも2種の触媒を、固定床多管式反応器の各反応管に、管軸方向に層を形成するように充填すること以外は、触媒の充填および配置について特に制限されるものではない。
 本発明において、固定床多管式反応器の各反応管のガス入口側にD1/D2比の小さい触媒を充填し、ガス出口側にD1/D2比の大きい触媒を充填した場合には、D1/D2比が一定の場合に比べて、目的生成物であるアクロレインおよびアクリル酸の収率が向上するという効果が得られる。また、固定床多管式反応器の各反応管のガス入口側にD1/D2比の大きい触媒を充填し、ガス出口側にD1/D2比の小さい触媒を充填した場合には、D1/D2比が一定の場合に比べて、触媒寿命が向上するという効果が得られる。本発明によれば、このようにD1/D2比の異なる複数個の触媒を反応管中に配列することによって、目的生成物であるアクロレインおよびアクリル酸の収率を向上させ、あるいは、触媒寿命を向上させることができる。
 本発明によれば、触媒寿命の延長効果もさることながら、アクロレインおよびアクリル酸収率の非常に大きな向上効果が得られることからみて、固定床多管式反応器の各反応管のガス入口側にD1/D2比の小さい触媒が充填され、ガス出口側にD1/D2比の大きい触媒が充填された配置が好ましい。
 本発明においては、D1/D2比は0.1~8であればよく、好ましくは0.2~6であり、より好ましくは0.3~5である。
 また、反応帯の数も、特に限定されないが、工業的には2または3程度にすることで十分目的とする効果を得ることができる。触媒層の分割比については、酸化反応条件や各層に充填された触媒の組成、形状、サイズなどによって最適値が左右されるため一概に特定できないので、全体としての最適な活性および選択率が得られるように適宜選択すればよい。
 尚、固定床多管式反応器の各反応管に3つ以上の反応帯を形成するように触媒を充填する場合には、必ずしも、D1/D2比がガス入口側からガス出口に向かって順次大きくなるように配置したり、D1/D2比がガス入口側からガス出口に向かって順次小さくなるように配置する必要はない。その反応帯の少なくとも2つにおいて、充填された触媒の細孔径分布が上記の関係になるように配置されていればよい。一旦小さくなった後に大きくなるように充填する配置や、ガス入口側からガス出口側に向かってD1/D2比が一旦大きくなった後に小さくなるように充填する配置でも、本発明の目的は達成される。
 本発明においては、プロピレンを、分子状酸素または分子状酸素含有ガスにより接触気相酸化して、アクロレインおよびアクリル酸を製造するに際して、気相酸化触媒が各反応管に上記の仕様で充填された固定床多管式反応器が使用される。反応原料は、プロピレンまたはプロピレン含有ガスである。
 本発明の方法は、例えばプロピレンを出発原料とする2工程の接触気相酸化によるアクリル酸の製造における第1工程として、好適に適用できる。反応原料であるプロピレンについては特に制限はなく、例えば、ポリマーグレードやケミカルグレードのプロピレン、あるいは、プロパンの脱水素反応や酸化脱水素反応によって得られるプロピレン含有の混合ガスも使用可能であり、この混合ガスに必要に応じ、空気または酸素などを添加して使用することもできる。
本発明の方法では、反応条件には特に制限はなく、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、通常の反応原料ガス(例えば、1~15容量%、好ましくは4~12容量%のプロピレン、0.5~25容量%、好ましくは2~20容量%の分子状酸素、0~30容量%、好ましくは0~25容量%の水蒸気、そして残部が窒素などの不活性ガスからなる混合ガス)を、280~430℃、好ましくは280~400℃の温度範囲で、0.1~1.0MPaの反応圧力下で、100~600hr-1(標準状態)、好ましくは120~300hr-1(標準状態)のプロピレン空間速度で、酸化触媒に接触させればよい。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。なお、転化率および収率は以下の式により算定した。
転化率(モル%)
 =(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
収率(モル%)
 =(生成したアクロレインおよびアクリル酸のモル数/供給したプロピレンのモル数)×100
 
細孔容積及び細孔径分布の測定
なお、本発明における触媒の細孔容積及び細孔径分布は、水銀圧入式ポロシメーター(商品名:「AutoPore IV 9500」、micromeritics社製)を用い、平均昇圧速度0.005~0.3MPa/秒で昇圧し、細孔径0.003~200μmの範囲について、触媒単位質量あたりの細孔容積及び細孔径分布として測定した。
触媒製造例1:触媒(1)の調製
 イオン交換水500部に硝酸コバルト341部および硝酸ニッケル82部を溶解した。また、硝酸第二鉄92部および硝酸ビスマス128部を65重量%の硝酸75部とイオン交換水300部とからなる硝酸水溶液に溶解した。別に、イオン交換水1500部にパラモリブデン酸アンモニウム400部およびパラタングステン酸アンモニウム5.1部を添加し、攪拌しながら溶解した。得られた水溶液に上記別途調製した2つの水溶液を滴下しながら混合し、次いで硝酸カリウム1.9部をイオン交換水30部に溶解した水溶液を添加し、懸濁液を得た。得られた懸濁液を加熱下に粘土状になるまで攪拌した後、自然冷却し、塊状の固形物を得た。得られた固形物50kgをトンネル型乾燥機に搬入し、空気を流量2500L(標準状態)/分で乾燥機内に導入した(V/W=50)。185℃で15時間乾燥後に、300μm以下に粉砕し、触媒前駆体粉体を得た。転動造粒機に平均粒径5.0mmのアルミナ球状担体340部を投入し、次いで結合剤としての20質量%の硝酸アンモニウム水溶液とともに、触媒粉体を徐々に投入して担体に担持させた後、空気雰囲気下470℃で6時間熱処理をして触媒(1)を得た。この触媒(1)の酸素および担体を除く金属元素組成は次のとおりであった。
 Mo12Bi1.4Ni1.5Co6.2Fe1.20.10.1
また、触媒(1)の次式より算出した担持量は140質量%であった。
担持量(質量%)=(触媒の質量-使用した担体の質量)/(使用した担体の質量)×100
触媒製造例2:触媒(2)の調製
 触媒製造例1において、トンネル型乾燥機に導入する空気の流量を変えて、比V/Wを400とし、180℃で14時間乾燥したこと以外は触媒製造例1と同様に触媒を調製し、触媒(2)を得た。
触媒製造例3:触媒(3)の調製
 触媒製造例1において、トンネル型乾燥機に導入する空気の流量を変えて、比V/Wを600とし、180℃で14時間乾燥したこと以外は触媒製造例1と同様に触媒を調製し、触媒(3)を得た。
触媒製造例4:触媒(4)の調製
 触媒製造例1において、懸濁液の熱処理で得られた固形物を任意の2端の距離を最長で100mm未満に調整し、トンネル型乾燥機に導入する空気の流量を変えて、比V/Wを100とし、180℃で15時間乾燥したこと以外は触媒製造例1と同様に触媒を調製し、触媒(4)を得た。
触媒製造例5:触媒(5)の調製
 触媒製造例1において、トンネル型乾燥機に導入する空気の流量を変えて、比V/Wを300とし、乾燥後の固形物を120μm以下に粉砕したこと以外は触媒製造例1と同様に触媒を調製し、触媒(5)を得た。
触媒(1)~(5)の調製条件、担持量およびD1/D2比を表1に示した。
実施例1
 全長3000mmで内径25mmの鋼鉄製反応管24本、および、これを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に用意した。反応ガス入口側から出口側に向かって、先ず触媒(2)を層長900mmとなるように、次いで触媒(1)を層長2000mmとなるように、反応管上部より順次落下させることによって、全層長が2900mmの反応帯を反応管内に充填した。
 熱媒体温度を320℃に保ち、触媒を充填した反応管に、プロピレン8.0容量%、酸素15.4容量%、水蒸気9.1容量%、残りは窒素等の不活性ガスからなる混合ガスを、プロピレン空間速度125h-1(標準状態)で導入し、プロピレン酸化反応を行った。結果を表2に示した。
実施例2
 実施例1において、反応ガス入口側から出口側に向かって、先ず触媒(1)を層長800mmとなるように、次いで触媒(2)を層長2100mmとなるように、順次充填したこと以外は実施例1と同様にプロピレンの酸化反応を実施した。結果を表2に示した。
実施例3
 実施例1において、反応ガス入口側から出口側に向かって、先ず触媒(3)を層長600mmとなるように、次いで触媒(2)を層長700mmとなるように、さらに触媒(3)を層長1600mmとなるように、順次充填したこと以外は実施例1と同様にプロピレンの酸化反応を実施した。結果を表2に示した。
比較例1
 実施例1において、触媒(1)のみを層長2900mmとなるように充填したこと以外は実施例1と同様にプロピレンの酸化反応を実施した。結果を表2に示した。実施例1と比較して、酸化反応の初期80時間および4,000時間経過時における収率が共に低く、経時的な反応温度上昇速度が速かった。
比較例2
 実施例1において、触媒(2)のみを層長2900mmとなるように充填したこと以外は実施例1と同様にプロピレンの酸化反応を実施した。結果を表2に示した。実施例1と比較して、酸化反応の初期80時間および4,000時間経過時における収率が共に低く、経時的な反応温度上昇速度が速かった。
比較例3
 実施例1において、触媒(3)のみを層長2900mmとなるように充填したこと以外は実施例1と同様にプロピレンの酸化反応を実施した。結果を表2に示した。実施例1と比較して、酸化反応の初期80時間および4,000時間経過時における収率が共に低く、経時的な反応温度上昇速度が速かった。
実施例4
 実施例1において、反応ガス入口側から出口側に向かって、先ず触媒(5)を層長800mmとなるように、次いで触媒(4)を層長2100mmとなるように、順次充填したこと以外は実施例1と同様にプロピレンの酸化反応を実施した。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  触媒を充填した固定床多管式反応器を用いて、プロピレンを分子状酸素または分子状酸素含有ガスにより接触気相酸化することによりアクロレインおよびアクリル酸を製造する方法であって、モリブデン、ビスマスおよび鉄の各酸化物および/またはこれらのうちの少なくとも2つの元素の複合酸化物を必須の触媒活性成分として含む少なくとも2種の触媒――該少なくとも2種の触媒は、細孔直径が0.03~0.3μm未満の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D1)と、細孔直径が0.3~3μmの範囲にある細孔により占められる細孔容積の全細孔容積に対する割合(D2)との比(D1/D2)を異にする――を、前記固定床多管式反応器の各反応管に管軸方向に少なくとも2つの反応帯が形成されるように充填することを特徴とするアクロレインおよびアクリル酸の製造方法。
  2.  前記触媒が、下記一般式(1)
    Mo12BiFe (1)
    (ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルからなる群より選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムからなる群より選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンからなる群より選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素、ホウ素および亜鉛からなる群より選ばれる少なくとも1種の元素、そしてOは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0<d≦10、0≦e≦30そして0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。)
    で表される触媒活性成分を含む触媒である請求項1に記載のアクロレインおよびアクリル酸の製造方法。
  3.  前記触媒が、前記触媒活性成分を成形した成形触媒である請求項1または2に記載のアクロレインおよびアクリル酸の製造方法。
  4.  前記触媒が、前記触媒活性成分を一定形状の不活性担体に担持させた担持触媒である請求項1または2に記載のアクロレインおよびアクリル酸の製造方法。
  5.  固定床多管式反応器の各反応管のガス入口側にD1/D2比の小さい触媒を、ガス出口側にD1/D2比の大きい触媒を充填する、請求項1から4のいずれか1項に記載のアクロレインおよびアクリル酸の製造方法。
  6.  D1/D2比が0.1~8であることを特徴とする、請求項1から5のいずれか1項に記載のアクロレインおよびアクリル酸の製造方法。
     
PCT/JP2013/059304 2012-03-30 2013-03-28 固定床多管式反応器を用いてのアクロレインおよびアクリル酸の製造方法 WO2013147041A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/383,966 US9073845B2 (en) 2012-03-30 2013-03-28 Method for producing acrolein and acrylic acid with a fixed-bed multitubular reactor
CN201380016754.XA CN104203883B (zh) 2012-03-30 2013-03-28 使用固定床多管式反应器的丙烯醛和丙烯酸的制备方法
EP13769687.8A EP2832717B1 (en) 2012-03-30 2013-03-28 Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor
JP2014508040A JP5845338B2 (ja) 2012-03-30 2013-03-28 固定床多管式反応器を用いてのアクロレインおよびアクリル酸の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012078621 2012-03-30
JP2012-078621 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147041A1 true WO2013147041A1 (ja) 2013-10-03

Family

ID=49260286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059304 WO2013147041A1 (ja) 2012-03-30 2013-03-28 固定床多管式反応器を用いてのアクロレインおよびアクリル酸の製造方法

Country Status (5)

Country Link
US (1) US9073845B2 (ja)
EP (1) EP2832717B1 (ja)
JP (1) JP5845338B2 (ja)
CN (1) CN104203883B (ja)
WO (1) WO2013147041A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816917A (zh) * 2014-03-14 2014-05-28 厦门大学 一种丙烯选择氧化制丙烯醛催化剂及其制备方法
JP2016195987A (ja) * 2015-04-02 2016-11-24 三菱化学株式会社 複合酸化物触媒、それを用いたアクロレイン及びアクリル酸の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185617B (zh) * 2012-03-29 2016-03-16 株式会社日本触媒 使用固定床多管式反应器的丙烯酸的制备方法
CN110560079B (zh) * 2019-07-31 2022-01-25 浙江新和成股份有限公司 用于制备丙烯酸或丙烯醛的催化剂及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200839A (ja) 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd プロピレン酸化用触媒および再現性に優れたその製造方法
JPH1028877A (ja) 1996-05-14 1998-02-03 Nippon Kayaku Co Ltd 触媒及び不飽和アルデヒドおよび不飽和酸の製造方法
JP2000202294A (ja) * 1999-01-19 2000-07-25 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒、その製造法、およびメタクリル酸の製造方法
JP2001048817A (ja) 1999-08-04 2001-02-20 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法
JP2003001094A (ja) 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd 固体粒子充填反応器およびその反応器を用いた接触気相酸化方法
JP2003220334A (ja) 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp 複合酸化物触媒及びその製造方法
JP2004136267A (ja) 2002-08-20 2004-05-13 Nippon Shokubai Co Ltd 触媒の製造方法
JP2005187460A (ja) 2003-12-03 2005-07-14 Mitsubishi Chemicals Corp 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2005186065A (ja) 2003-12-03 2005-07-14 Mitsubishi Chemicals Corp 不飽和アルデヒド及び不飽和カルボン酸製造用触媒及びその製造方法
JP2008535784A (ja) 2005-02-25 2008-09-04 エルジー・ケム・リミテッド 不飽和アルデヒド及び/または不飽和酸の製造法
JP2008231044A (ja) 2007-03-22 2008-10-02 Sumitomo Chemical Co Ltd 不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法
JP2011246384A (ja) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd 不飽和アルデヒド及び不飽和カルボン酸の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003039744A1 (fr) 2001-11-08 2003-05-15 Mitsubishi Chemical Corporation Catalyseur a base d'oxyde composite et son procede de preparation
WO2005053839A1 (ja) 2003-12-03 2005-06-16 Mitsubishi Chemical Corporation 不飽和アルデヒド及び不飽和カルボン酸製造用触媒及びその製造方法
JP2010235504A (ja) * 2009-03-31 2010-10-21 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200839A (ja) 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd プロピレン酸化用触媒および再現性に優れたその製造方法
JPH1028877A (ja) 1996-05-14 1998-02-03 Nippon Kayaku Co Ltd 触媒及び不飽和アルデヒドおよび不飽和酸の製造方法
JP2000202294A (ja) * 1999-01-19 2000-07-25 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒、その製造法、およびメタクリル酸の製造方法
JP2001048817A (ja) 1999-08-04 2001-02-20 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法
JP2003001094A (ja) 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd 固体粒子充填反応器およびその反応器を用いた接触気相酸化方法
JP2003220334A (ja) 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp 複合酸化物触媒及びその製造方法
JP2004136267A (ja) 2002-08-20 2004-05-13 Nippon Shokubai Co Ltd 触媒の製造方法
JP2005187460A (ja) 2003-12-03 2005-07-14 Mitsubishi Chemicals Corp 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2005186065A (ja) 2003-12-03 2005-07-14 Mitsubishi Chemicals Corp 不飽和アルデヒド及び不飽和カルボン酸製造用触媒及びその製造方法
JP2008535784A (ja) 2005-02-25 2008-09-04 エルジー・ケム・リミテッド 不飽和アルデヒド及び/または不飽和酸の製造法
JP2008231044A (ja) 2007-03-22 2008-10-02 Sumitomo Chemical Co Ltd 不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法
JP2011246384A (ja) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd 不飽和アルデヒド及び不飽和カルボン酸の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816917A (zh) * 2014-03-14 2014-05-28 厦门大学 一种丙烯选择氧化制丙烯醛催化剂及其制备方法
CN103816917B (zh) * 2014-03-14 2016-01-06 厦门大学 一种丙烯选择氧化制丙烯醛催化剂及其制备方法
JP2016195987A (ja) * 2015-04-02 2016-11-24 三菱化学株式会社 複合酸化物触媒、それを用いたアクロレイン及びアクリル酸の製造方法

Also Published As

Publication number Publication date
CN104203883B (zh) 2015-11-25
EP2832717B1 (en) 2017-10-18
US9073845B2 (en) 2015-07-07
CN104203883A (zh) 2014-12-10
EP2832717A1 (en) 2015-02-04
US20150045581A1 (en) 2015-02-12
EP2832717A4 (en) 2015-11-11
JPWO2013147041A1 (ja) 2015-12-14
JP5845338B2 (ja) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5845337B2 (ja) 固定床多管式反応器を用いてのアクリル酸の製造方法
KR101642163B1 (ko) 기하학적 촉매 성형체의 제조 방법
JP5628930B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒および該触媒を用いる不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2013161703A1 (ja) 成型触媒の製造方法および該成型触媒を用いるジエンまたは不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
KR102612311B1 (ko) 아크롤레인, 메타크롤레인, 아크릴산, 또는 메타크릴산의 제조 방법
JP5845338B2 (ja) 固定床多管式反応器を用いてのアクロレインおよびアクリル酸の製造方法
JP5586382B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法およびその触媒、ならびに該触媒を用いたアクロレインおよび/またはアクリル酸の製造方法
JP5388897B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒および該触媒を用いた不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2010038677A1 (ja) アクロレインおよび/またはアクリル酸製造用の触媒および該触媒を用いたアクロレインおよび/またはアクリル酸の製造方法
JP5448331B2 (ja) アクリル酸製造用触媒および該触媒を用いたアクリル酸の製造方法
JP5548132B2 (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
JP5582708B2 (ja) アクロレイン製造用触媒および該触媒を用いたアクロレインおよび/またはアクリル酸の製造方法
JP6504774B2 (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
JP2015120133A (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
JP4970986B2 (ja) 複合酸化物触媒の製造方法および該触媒を用いた不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2016147324A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6033027B2 (ja) 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の製造方法とその触媒、ならびに不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP6487242B2 (ja) アクリル酸製造用触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造方法
JP5582709B2 (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
JP2004244383A (ja) アクリル酸の製造方法
JP2004002323A (ja) 不飽和アルデヒドの製造法
JP2011102247A (ja) アクロレインおよび/またはアクリル酸の製造方法
JP6534328B2 (ja) アクリル酸製造用触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造方法
JP2011102248A (ja) アクリル酸の製造方法
JP2011102249A (ja) アクリル酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14383966

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014508040

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013769687

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013769687

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE