WO2013146990A1 - マスクブランク用基板、多層反射膜付き基板、透過型マスクブランク、反射型マスクブランク、透過型マスク、反射型マスク及び半導体装置の製造方法 - Google Patents

マスクブランク用基板、多層反射膜付き基板、透過型マスクブランク、反射型マスクブランク、透過型マスク、反射型マスク及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2013146990A1
WO2013146990A1 PCT/JP2013/059199 JP2013059199W WO2013146990A1 WO 2013146990 A1 WO2013146990 A1 WO 2013146990A1 JP 2013059199 W JP2013059199 W JP 2013059199W WO 2013146990 A1 WO2013146990 A1 WO 2013146990A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
multilayer reflective
reflective film
mask
Prior art date
Application number
PCT/JP2013/059199
Other languages
English (en)
French (fr)
Inventor
敏彦 折原
和宏 浜本
弘文 小坂井
臼井 洋一
笑喜 勉
順一 堀川
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020177035144A priority Critical patent/KR102055992B1/ko
Priority to US14/348,413 priority patent/US9494851B2/en
Priority to KR1020147018169A priority patent/KR101807838B1/ko
Priority to JP2014502925A priority patent/JP5538638B2/ja
Priority to KR1020147008229A priority patent/KR101477470B1/ko
Publication of WO2013146990A1 publication Critical patent/WO2013146990A1/ja
Priority to US15/275,719 priority patent/US10001699B2/en
Priority to US15/980,783 priority patent/US10295900B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3636Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing silicon, hydrogenated silicon or a silicide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/3665Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties specially adapted for use as photomask
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3085Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching

Definitions

  • the present invention relates to a mask blank substrate, a substrate with a multilayer reflective film, a transmissive mask blank, a reflective mask blank, a transmissive mask, a reflective mask, and a method for manufacturing a semiconductor device.
  • a fine pattern is formed using a photolithography method.
  • a number of transfer masks usually called photomasks, are used to form this fine pattern.
  • This transfer mask is generally provided with a fine pattern made of a metal thin film or the like on a translucent glass substrate, and the photolithographic method is also used in the manufacture of this transfer mask.
  • a mask blank having a thin film (for example, a light shielding film) for forming a transfer pattern (mask pattern) on a light-transmitting substrate such as a glass substrate is used.
  • the production of a transfer mask using the mask blank includes a drawing process for drawing a desired pattern on the resist film formed on the mask blank, and developing the resist film after drawing to form a desired resist pattern.
  • the developing process is formed, the etching process is performed to etch the thin film using the resist pattern as a mask, and the process is performed to peel and remove the remaining resist pattern.
  • a desired pattern is drawn on the resist film formed on the mask blank, and then a developing solution is supplied to dissolve a portion of the resist film that is soluble in the developing solution, thereby forming a resist pattern.
  • the resist pattern is used as a mask to remove the exposed portion of the thin film on which the resist pattern is not formed by dry etching or wet etching, thereby forming a desired mask pattern on the translucent substrate. Form. Thus, a transfer mask is completed.
  • phase shift mask As a type of transfer mask, a phase shift mask is known in addition to a binary mask having a light-shielding pattern made of a chromium-based material on a conventional translucent substrate.
  • This phase shift type mask has a structure having a phase shift film on a translucent substrate, and this phase shift film has a predetermined phase difference.
  • a material containing a molybdenum silicide compound is used.
  • a binary mask using a material containing a metal silicide compound such as molybdenum as a light-shielding film has been used.
  • These binary masks and phase shift masks are collectively referred to as transmission masks in the present application, and binary mask blanks and phase shift mask blanks, which are original plates used for transmission masks, are collectively referred to as transmission masks. This is called blank.
  • EUV lithography which is an exposure technique using extreme ultraviolet (hereinafter referred to as “EUV”) light
  • EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 0.2 to 100 nm.
  • a reflection mask has been proposed as a transfer mask used in this EUV lithography. In such a reflective mask, a multilayer reflective film that reflects exposure light is formed on a substrate, and an absorber film that absorbs exposure light is formed in a pattern on the multilayer reflective film.
  • the reflective mask includes an absorber film formed from a reflective mask blank having a substrate, a multilayer reflective film formed on the substrate, and an absorber film formed on the multilayer reflective film by a photolithography method or the like. Manufactured by forming a pattern.
  • a substrate with higher smoothness is required from the viewpoint of improvement in defect quality accompanying the recent miniaturization of patterns and optical characteristics required for a transfer mask.
  • Examples of conventional surface processing methods for mask blank substrates include those described in Patent Documents 1 to 3.
  • Patent Document 1 mainly discloses SiO 2 using a polishing slurry containing colloidal silica having an average primary particle diameter of 50 nm or less, an acid and water, and adjusted to have a pH in the range of 0.5 to 4.
  • a method for polishing a glass substrate is described in which the surface of a glass substrate as a component is polished so that the surface roughness Rms measured with an atomic force microscope is 0.15 nm or less.
  • Patent Document 2 describes an abrasive for a synthetic quartz glass substrate containing an inhibitory colloid solution and an acidic amino acid in order to suppress the generation of defects detected by a high-sensitivity defect inspection apparatus on the surface of the synthetic quartz glass substrate. ing.
  • Patent Document 3 a quartz glass substrate is placed in a hydrogen radical etching apparatus, and hydrogen radicals are allowed to act on the quartz glass substrate so that the surface flatness can be controlled at a sub-nanometer level. A method for controlling flatness is described.
  • a substrate with a multilayer reflective film is required to have higher smoothness from the viewpoint of improvement in defect quality due to recent pattern miniaturization and optical characteristics required for a transfer mask.
  • the multilayer reflective film is formed by alternately laminating a high refractive index layer and a low refractive index layer on the surface of the mask blank substrate. Each of these layers is generally formed by sputtering using a sputtering target made of a material for forming these layers.
  • ion beam sputtering is performed from the viewpoint that impurities are not easily mixed in the multilayer reflective film and that the ion source is independent and the condition setting is relatively easy. It is preferably implemented, and from the viewpoint of smoothness and surface uniformity of each layer to be formed, at a large angle with respect to the normal of the mask blank substrate main surface (straight line perpendicular to the main surface), that is, the substrate main surface
  • the sputtered particles are made to arrive at an angle close to or parallel to the film to form a high refractive index layer and a low refractive index layer.
  • Patent Document 4 discloses that when a multilayer reflective film of a reflective mask blank for EUV lithography is formed on a substrate, the substrate is centered on its central axis. It describes that ion beam sputtering is performed while maintaining the absolute value of the angle ⁇ formed by the normal line of the substrate and the sputtered particles incident on the substrate at 35 degrees ⁇ ⁇ ⁇ 80 degrees while rotating. JP 2006-35413 A JP 2009-297814 A JP 2008-94649 A JP-T 2009-510711
  • defect size defect size of the EUV mask, which is a mask, is becoming finer year by year.
  • the inspection light source wavelength used in defect inspection is approaching the light source wavelength of exposure light.
  • a defect inspection apparatus for an optical mask and its original mask blank and substrate a high-sensitivity defect inspection apparatus having an inspection light source wavelength of 193 nm is spreading, and an EUV mask and its original EUV mask are used.
  • an inspection light source wavelength is 266 nm (for example, mask substrate / blank defect inspection apparatus “MAGICS M7360” for EUV exposure manufactured by Lasertec Corporation, 193 nm (EUV manufactured by KLA-Tencor) Mask / Blank Defect Inspection Device “Teron600 Series”)
  • High-sensitivity defect inspection devices with a wavelength of 13.5 nm have been widely used or proposed.
  • the main surface of the substrate used for the conventional transfer mask was controlled by the surface roughness represented by Rms (root mean square roughness) and Rmax (maximum height) in the manufacturing process.
  • Rms root mean square roughness
  • Rmax maximum height
  • a multilayer reflective film of a substrate with a multilayer reflective film used for a conventional transfer mask is formed by, for example, the method described in [Background Art], and an attempt is made to reduce concave defects existing on the substrate. Yes.
  • the pseudo-defect here is an allowable unevenness on the substrate surface or the multilayer reflective film that does not affect the pattern transfer, and is erroneously determined as a defect when inspected by a high-sensitivity defect inspection apparatus.
  • a defect inspection apparatus having an inspection light source wavelength of 266 nm, 193 nm, or 13.5 nm, which is currently in widespread use, for example, a substrate having a size of 132 mm ⁇ 132 mm or a substrate with a multilayer reflective film has a detection number of 100,000. It cannot be inspected for fatal defects. Oversight of fatal defects in defect inspection causes defects in the subsequent mass production process of semiconductor devices, leading to unnecessary labor and economical loss.
  • the present invention has been made in view of the above problems, and in the defect inspection using a high-sensitivity defect inspection apparatus, the detection of pseudo defects due to the surface roughness of the substrate or film is suppressed, and foreign matter, scratches, etc.
  • the present invention achieves the smoothness required for a substrate with a multilayer reflective film, and at the same time achieves the smoothness required for a substrate with a multilayer reflective film, even in a high-sensitivity defect inspection machine using light of various wavelengths.
  • the present inventors have intensively studied.
  • the roughness of a predetermined spatial frequency (or spatial wavelength) component has an influence on the inspection light source wavelength of the high-sensitivity defect inspection apparatus. I found it. Therefore, among the roughness (unevenness) components on the main surface of the substrate and the surface of the film (for example, multilayer reflective film), the spatial frequency of the roughness component that the high-sensitivity defect inspection apparatus erroneously determines as a pseudo defect is specified.
  • the spatial frequency of the roughness component that the high-sensitivity defect inspection apparatus erroneously determines as a pseudo defect is specified.
  • a mask blank substrate is a mask blank substrate used for lithography
  • the main surface of the substrate on which the transfer pattern is formed has a root mean square roughness (Rms) of 0.15 nm or less obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope, and a space
  • the power spectrum density at a frequency of 1 ⁇ m ⁇ 1 or more is 10 nm 4 or less.
  • a substrate with a multilayer reflective film according to an embodiment of the present invention has a high refractive index layer and a low refractive index layer alternately on the main surface of the mask blank substrate of the present invention described above. It has the structure which has the multilayer reflective film laminated
  • a substrate with a multilayer reflective film has a high refractive index layer and a low refractive index layer alternately on the main surface of a mask blank substrate used in lithography.
  • the power spectral density is 20 nm 4 or less.
  • a transmission mask blank according to an embodiment of the present invention has a light-shielding film serving as a transfer pattern on the main surface of the above-described mask blank substrate of the present invention. Yes.
  • a reflective mask blank according to an embodiment of the present invention is an absorption pattern that forms a transfer pattern on the multilayer reflective film or the protective film of the multilayer reflective film-coated substrate of the present invention described above. It has a structure having a body membrane.
  • a transmissive mask according to an embodiment of the present invention includes a light-shielding film pattern formed on the main surface by patterning the light-shielding film in the above-described transmissive mask blank of the present invention. It is the composition which has.
  • a reflective mask according to an embodiment of the present invention is formed by patterning the absorber film in the reflective mask blank of the present invention described above on the multilayer reflective film or the protective film. It has the structure which has an absorber pattern.
  • a manufacturing method of a semiconductor device performs a lithography process using an exposure apparatus using the above-described transmission type mask of the present invention, and forms on a transfer target.
  • the method includes a step of forming a transfer pattern.
  • a manufacturing method of a semiconductor device performs a lithography process using an exposure apparatus using the above-described reflective mask of the present invention, and forms on a transferred object.
  • the method includes a step of forming a transfer pattern.
  • FIG. 1A is a perspective view showing a mask blank substrate 10 according to an embodiment of the present invention.
  • FIG.1 (b) is a cross-sectional schematic diagram which shows the mask blank substrate 10 of this embodiment. It is a cross-sectional schematic diagram which shows an example of a structure of the board
  • FIG. 7 is a graph obtained by extracting the result of power spectrum analysis of the main surface of the mask blank substrate of Examples 1 to 4 of the present invention. In FIG. 7, it is the graph which extracted the result of having performed the power spectrum analysis of the main surface of the mask blank board
  • FIG. 7 It is a graph which shows the result of having conducted the power spectrum analysis of the main surface of the mask blank board
  • the present invention has the following configuration.
  • Configuration 1 of the present invention is a mask blank substrate used in lithography, and the main surface on the side on which the transfer pattern of the substrate is formed is obtained by measuring a 1 ⁇ m ⁇ 1 ⁇ m region with an atomic force microscope.
  • a mask blank substrate having a root mean square roughness (Rms) of 0.15 nm or less and a power spectral density of a spatial frequency of 1 ⁇ m ⁇ 1 or more and 10 nm 4 or less.
  • the power spectral density which is the amplitude intensity of all roughness components having a spatial frequency of 1 ⁇ m ⁇ 1 or more, which can be detected in the region of 1 ⁇ m ⁇ 1 ⁇ m on the main surface of the mask blank substrate, is made 10 nm 4 or less.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a high-sensitivity defect inspection apparatus that uses a 266 nm UV laser or a 193 nm ArF excimer laser as the inspection light source wavelength is used.
  • the detection of pseudo defects in all defect inspections can be greatly suppressed, and the manifestation of fatal defects can be achieved.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a 266 nm UV laser or a 193 nm ArF excimer as the inspection light source wavelength. Detection of pseudo defects in defect inspection using a high-sensitivity defect inspection apparatus using a laser can be sufficiently suppressed, and a fatal defect can be revealed. Therefore, it is not necessary to form the surface form of the main surface with excessively high smoothness and high accuracy, so that the load in the manufacturing process of the mask blank substrate can be reduced.
  • Configuration 4 of the present invention is the mask blank substrate according to any one of Configurations 1 to 3, wherein the main surface is a surface processed by catalyst-based etching.
  • the unevenness (surface roughness) constituting the main surface is very high and smooth.
  • the surface form is very uniform while maintaining the properties, and the surface form has a higher proportion of the concave portion than the convex portion with respect to the reference surface. Accordingly, when a plurality of thin films are laminated on the main surface, the defect size on the main surface tends to be small, which is preferable in terms of defect quality. In particular, the effect is exhibited particularly when a multilayer reflective film described later is formed on the main surface. Further, by subjecting the main surface to surface treatment by catalyst-based etching as described above, it is possible to relatively easily form a surface having a surface roughness and a power spectral density within the ranges specified in the above configurations 1 to 3. .
  • Configuration 5 of the present invention is the mask blank substrate according to any one of Configurations 1 to 4, wherein the substrate is a mask blank substrate used for EUV lithography.
  • the substrate is made of a metal, an alloy, or a material containing at least one of oxygen, nitrogen, and carbon in any one of them on the main surface of the substrate made of multicomponent glass. It is a board
  • a mask blank substrate used for EUV lithography is required to have low thermal expansion characteristics, and therefore, it is preferable to use a multicomponent glass material as described later.
  • Multicomponent glass materials have the property that it is difficult to obtain high smoothness compared to synthetic quartz glass. Therefore, a substrate on which a thin film made of a metal, an alloy, or a material containing at least one of oxygen, nitrogen, and carbon in any of these is formed on the main surface of the substrate made of a multicomponent glass material; To do. Then, by processing the surface of such a thin film, it is possible to easily obtain a substrate having the surface form defined in the above configurations 1 to 5.
  • Configuration 7 of the present invention has a multilayer reflective film in which high refractive index layers and low refractive index layers are alternately stacked on the main surface of the mask blank substrate described in any one of Configurations 1 to 6.
  • a substrate with a multilayer reflective film is a substrate with a multilayer reflective film.
  • the surface form of the surface of the multilayer reflective film formed on the main surface is also highly smooth, the reflectance characteristic for EUV light is also good. Further, in the substrate with a multilayer reflective film, it is possible to suppress the detection of pseudo defects in the defect inspection on the surface of the multilayer reflective film using a high-sensitivity defect inspection apparatus, and it is possible to make a fatal defect manifest.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a high-sensitivity defect inspection apparatus that uses a 266 nm UV laser, a 193 nm ArF excimer laser as the inspection light source wavelength, and a 0.2 nm to 100 nm
  • Significant detection of pseudo defects in defect inspection using high-sensitivity defect inspection equipment that uses wavelength region inspection light (EUV light) for example, high-sensitivity defect inspection equipment that uses 13.5 nm EUV light as the inspection light source wavelength Can be suppressed.
  • EUV light wavelength region inspection light
  • Configuration 8 of the present invention is the substrate with multilayer reflection film according to Configuration 7, wherein the substrate with multilayer reflection film has a protective film on the multilayer reflection film.
  • the substrate with the multilayer reflective film has a protective film on the multilayer reflective film, thereby suppressing damage to the surface of the multilayer reflective film when the transfer mask (EUV mask) is manufactured. Therefore, the reflectance characteristics with respect to EUV light are further improved.
  • detection of pseudo defects in the defect inspection of the surface of the protective film using a high-sensitivity defect inspection apparatus can be suppressed, and a fatal defect can be revealed.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a high-sensitivity defect inspection apparatus that uses a 266 nm UV laser, a 193 nm ArF excimer laser as the inspection light source wavelength, and a 0.2 nm to 100 nm
  • Significant detection of pseudo defects in defect inspection using high-sensitivity defect inspection equipment that uses wavelength region inspection light (EUV light) for example, high-sensitivity defect inspection equipment that uses 13.5 nm EUV light as the inspection light source wavelength Can be suppressed.
  • EUV light wavelength region inspection light
  • the surface of the multilayer reflective film or the protective film of the multilayer reflective film-coated substrate according to the seventh or eighth aspect is obtained by measuring a 1 ⁇ m ⁇ 1 ⁇ m region with an atomic force microscope.
  • the surface of the multilayer reflective film or protective film has a power spectral density of a spatial frequency of 1 ⁇ m ⁇ 1 or more obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope to 20 nm 4 or less.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a high-sensitivity defect inspection apparatus that uses a 266 nm UV laser, a 193 nm ArF excimer laser as the inspection light source wavelength, and a 0.2 nm to 100 nm
  • Significant detection of pseudo defects in defect inspection using high-sensitivity defect inspection equipment that uses wavelength region inspection light (EUV light) for example, high-sensitivity defect inspection equipment that uses 13.5 nm EUV light as the inspection light source wavelength Can be suppressed.
  • EUV light wavelength region inspection light
  • the surface of the multilayer reflective film or the protective film of the multilayer reflective film-coated substrate according to the ninth aspect is obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope 1 ⁇ m ⁇ A substrate with a multilayer reflective film, wherein the power spectral density of 1 to 10 ⁇ m ⁇ 1 is 20 nm 4 or less.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a high-sensitivity defect inspection apparatus that uses a 266 nm UV laser or a 193 nm ArF excimer laser as the inspection light source wavelength is used.
  • the detection of pseudo defects in the defect inspection of all the substrates with the multilayer reflective film can be greatly suppressed, and the fatal defects can be made more obvious.
  • the surface of the multilayer reflective film or the protective film of the multilayer reflective film-coated substrate according to Structure 9 has a spatial frequency of 10 ⁇ m ⁇ obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope.
  • a high-sensitivity defect inspection apparatus that uses inspection light (EUV light) in the wavelength region of 0.2 nm to 100 nm, for example, a high-sensitivity defect inspection apparatus that uses EUV light of 13.5 nm as the inspection light source wavelength. Detection of pseudo defects in the defect inspection in use can be greatly suppressed.
  • EUV light inspection light
  • Detection of pseudo defects in the defect inspection in use can be greatly suppressed.
  • Configuration 12 the surface of the multilayer reflective film or the protective film of the multilayer reflective film-coated substrate according to any one of Configurations 9 to 11 is measured by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope.
  • the above structure 12 in addition to the effect that the detection of pseudo defects in the defect inspection using the high sensitivity defect inspection apparatus of the above structures 9 to 11 can be greatly suppressed, it is necessary as a substrate with a multilayer reflective film. The reflection characteristics can be improved.
  • the surface of the substrate with the multilayer reflective film has a root mean square roughness (Rms) of 0.15 nm or less obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope, and a spatial frequency of 1 ⁇ m ⁇ 1 or more.
  • the surface of the substrate with a multilayer reflective film has a root mean square roughness (Rms) obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope is 0.15 nm or less, and By making the power spectral density of the spatial frequency 1 ⁇ m ⁇ 1 or more 20 nm 4 or less, the reflection characteristics necessary for the substrate with the multilayer reflection film are improved, and the surface of the multilayer reflection film using the high-sensitivity defect inspection apparatus is improved. Detection of pseudo defects in the defect inspection can be suppressed, and a fatal defect can be revealed.
  • Rms root mean square roughness
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a high-sensitivity defect inspection apparatus that uses a 266 nm UV laser, a 193 nm ArF excimer laser as the inspection light source wavelength, and a 0.2 nm to 100 nm
  • a high-sensitivity defect inspection apparatus that uses inspection light (EUV light) in the wavelength region
  • EUV light inspection light
  • Configuration 14 of the present invention is the substrate with a multilayer reflective film according to Configuration 13, which has a protective film on the multilayer reflective film.
  • the protective film is provided on the multilayer reflective film, damage to the multilayer reflective film surface when the transfer mask (EUV mask) is manufactured can be suppressed.
  • the reflectance characteristic is further improved.
  • detection of pseudo defects in the defect inspection of the surface of the protective film using a high-sensitivity defect inspection apparatus can be suppressed, and a fatal defect can be revealed.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a high-sensitivity defect inspection apparatus that uses a 266 nm UV laser, a 193 nm ArF excimer laser as the inspection light source wavelength, and a 0.2 nm to 100 nm
  • a high-sensitivity defect inspection apparatus that uses inspection light (EUV light) in the wavelength region
  • EUV light inspection light
  • Configuration 15 the surface of the multilayer reflective film or the protective film of the substrate with the multilayer reflective film according to Configuration 13 or 14 is obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope.
  • the substrate with a multilayer reflective film has a power spectral density of 1 ⁇ m ⁇ 1 or more and 10 ⁇ m ⁇ 1 or less and 20 nm 4 or less.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a high-sensitivity defect inspection apparatus that uses a 266 nm UV laser or a 193 nm ArF excimer laser as the inspection light source wavelength is used.
  • the detection of pseudo defects in the defect inspection of all the substrates with the multilayer reflective film can be greatly suppressed, and the fatal defects can be made more obvious.
  • Configuration 16 of the present invention is a spatial frequency obtained by measuring the surface of the multilayer reflective film or the protective film of the multilayer reflective film-coated substrate according to Configuration 13 or 14 with an atomic force microscope in a 1 ⁇ m ⁇ 1 ⁇ m region. 10 [mu] m -1 or 100 [mu] m -1 or less of the power spectral density of 9 nm 4 or less, a multilayer reflective film coated substrate.
  • the high-sensitivity defect inspection apparatus that uses inspection light (EUV light) in the wavelength region of 0.2 nm to 100 nm, for example, the high-sensitivity defect inspection apparatus that uses EUV light of 13.5 nm as the inspection light source wavelength. Detection of pseudo defects in the defect inspection in use can be greatly suppressed.
  • EUV light inspection light
  • Configuration 17 of the present invention is a transmissive mask blank having a light-shielding film serving as a transfer pattern on the main surface of the mask blank substrate according to any one of Configurations 1 to 4.
  • the power spectral density which is the amplitude intensity of all the roughness components having a spatial frequency of 1 ⁇ m ⁇ 1 or more that can be detected in a 1 ⁇ m ⁇ 1 ⁇ m region, is 10 nm 4 or less. Detection of pseudo defects in defect inspection using a high-sensitivity defect inspection apparatus can be suppressed, and a fatal defect can be made obvious. In addition, for example, it is possible to greatly suppress the detection of pseudo defects in defect inspection using a high-sensitivity defect inspection apparatus that uses an ArF excimer laser having a wavelength of 193 nm as an inspection light source wavelength.
  • Configuration 18 of the present invention is a reflective mask having an absorber film serving as a transfer pattern on the multilayer reflective film or the protective film of the substrate with the multilayer reflective film according to any one of Configurations 8 to 16 It is blank.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, a high-sensitivity defect inspection apparatus that uses a 266 nm UV laser, a 193 nm ArF excimer laser as the inspection light source wavelength, and a 0.2 nm to 100 nm
  • EUV light inspection light
  • Configuration 19 of the present invention is a transmission type mask in which the light-shielding film in the transmission-type mask blank according to Configuration 17 is patterned to have a light-shielding film pattern on the main surface.
  • Configuration 20 of the present invention is a reflective mask in which the absorber film in the reflective mask blank described in Configuration 18 is patterned to have an absorber pattern on the multilayer reflective film.
  • the detection of the pseudo defect in the defect inspection using the high-sensitivity defect inspection apparatus can be suppressed, and the fatal defect is made more obvious. be able to.
  • Configuration 21 of the present invention is a method for manufacturing a semiconductor device, which includes a step of performing a lithography process using an exposure apparatus using the transmission type mask described in Configuration 19 to form a transfer pattern on a transfer target. .
  • Configuration 22 of the present invention is a method for manufacturing a semiconductor device, which includes a step of forming a transfer pattern on a transfer target object using a lithography process using an exposure apparatus using the reflective mask described in Configuration 20. .
  • a transmission type mask or a reflection type mask excluding fatal defects such as foreign matters and scratches can be used.
  • a transfer pattern such as a circuit pattern transferred onto a resist film formed on the body is free from defects, and a semiconductor device having a fine and high-precision transfer pattern can be manufactured.
  • a substrate with a multilayer reflective film, a reflective mask blank, a transmissive mask blank, a reflective mask, and a transmissive mask a highly sensitive defect inspection apparatus was used.
  • the defect inspection it is possible to suppress the detection of pseudo defects due to the surface roughness of the substrate or film, and to easily find a fatal defect such as a foreign object or a flaw.
  • the multilayer reflective film formed on the main surface of the substrate has a high reflectance while suppressing pseudo defects. Is obtained.
  • a reflective mask or a transmissive mask that eliminates fatal defects such as foreign matters and scratches can be used in defect inspection using a high-sensitivity defect inspection apparatus.
  • a semiconductor device having a transfer pattern such as a circuit pattern formed on a transfer medium such as a circuit pattern having no defects and having a fine and high-precision transfer pattern can be manufactured.
  • FIG. 1A is a perspective view showing a mask blank substrate 10 of the present embodiment.
  • FIG.1 (b) is a cross-sectional schematic diagram which shows the mask blank substrate 10 of this embodiment.
  • the mask blank substrate 10 (or simply referred to as the substrate 10) is a rectangular plate-like body, and has two opposing main surfaces 2 and an end surface 1.
  • the two opposing main surfaces 2 are the upper surface and the lower surface of this plate-like body, and are formed so as to oppose each other. At least one of the two opposing main surfaces 2 is a main surface on which a transfer pattern is to be formed.
  • the end face 1 is a side face of the plate-like body and is adjacent to the outer edge of the opposing main surface 2.
  • the end surface 1 has a planar end surface portion 1d and a curved end surface portion 1f.
  • the planar end surface portion 1d is a surface that connects the side of one opposing main surface 2 and the side of the other opposing main surface 2, and includes a side surface portion 1a and a chamfered slope portion 1b.
  • the side surface portion 1a is a portion (T surface) substantially perpendicular to the opposing main surface 2 in the planar end surface portion 1d.
  • the chamfered slope portion 1b is a chamfered portion (C surface) between the side surface portion 1a and the opposing main surface 2, and is formed between the side surface portion 1a and the opposing main surface 2.
  • the curved end surface portion 1f is a portion (R portion) adjacent to the vicinity of the corner portion 10a of the substrate 10 when the substrate 10 is viewed in plan, and includes a side surface portion 1c and a chamfered slope portion 1e.
  • the plan view of the substrate 10 refers to, for example, viewing the substrate 10 from a direction perpendicular to the opposing main surface 2.
  • substrate 10 is the intersection vicinity of two sides in the outer edge of the opposing main surface 2, for example. The intersection of two sides may be the intersection of the extension lines of the two sides.
  • the curved end surface portion 1 f is formed in a curved shape by rounding the corner 10 a of the substrate 10.
  • At least the main surface on the side where the transfer pattern is formed that is, in the transmissive mask blank 50 as described later, the main surface on the side where the light-shielding film 51 is formed.
  • the main surface on which the multilayer reflective film 21, protective film 22, and absorber film 24 are formed has a certain surface roughness and power spectral density (Power (Density: PSD). It is characterized by having.
  • Rms (Root means ⁇ square), which is a representative surface roughness index, is a root mean square roughness, which is a square root of a value obtained by averaging the squares of deviations from the mean line to the measurement curve. Rms is expressed by the following formula (1).
  • Equation (1) l is the reference length, and Z is the height from the average line to the measurement curve.
  • Rmax which is a representative index of surface roughness, is the maximum height of the surface roughness, and the difference between the absolute value of the maximum value of the peak of the roughness curve and the maximum value of the depth of the valley. It is.
  • Rms and Rmax are conventionally used for managing the surface roughness of the mask blank substrate 10 and are excellent in that the surface roughness can be grasped numerically.
  • both Rms and Rmax are height information, and do not include information on a minute change in surface shape.
  • the power spectrum analysis represented by the amplitude intensity at the spatial frequency can quantify the fine surface shape. If Z (x, y) is the height data in the x-coordinate and y-coordinate, the Fourier transform is given by the following equation (2).
  • Nx and Ny are the numbers of data in the x and y directions.
  • u 0, 1, 2,... Nx-1
  • v 0, 1, 2,... Ny-1
  • the spatial frequency f is given by the following equation (3).
  • dx is the minimum resolution in the x direction
  • dy is the minimum resolution in the y direction.
  • the power spectral density PSD at this time is given by the following equation (4).
  • the change in the surface state of the main surface 2 of the substrate 10 and the film as described later can be grasped not only as a simple height change but also as a change in the spatial frequency. It is an excellent technique for analyzing the effects of microscopic reactions at the atomic level on the surface.
  • the mask blank substrate 10 of the present embodiment uses the above-mentioned surface roughness (Rms) and power spectral density as the main surface on the side where the transfer pattern is formed.
  • the root mean square roughness (Rms) obtained by measuring a 1 ⁇ m region with an atomic force microscope is 0.15 nm or less, and the power spectral density at a spatial frequency of 1 ⁇ m ⁇ 1 or more is 10 nm 4 or less.
  • the 1 ⁇ m ⁇ 1 ⁇ m region may be an arbitrary portion of the transfer pattern forming region.
  • the transfer pattern formation region is, for example, a 142 mm ⁇ 142 mm region excluding the peripheral region of the main surface of the substrate 10 or 132 mm ⁇ 132 mm.
  • the region of 132 mm ⁇ 104 mm can be a region of 132 mm ⁇ 104 mm, and the arbitrary portion can be a region of the center of the main surface of the substrate 10, for example.
  • the 1 ⁇ m ⁇ 1 ⁇ m region, the transfer pattern forming region, and an arbitrary portion described above are provided for a multilayer reflective film 21 and a protective film 22 of the substrate 20 with a multilayer reflective film described later, and an absorber film of the reflective mask blank 30. 24, and can also be applied to the light-shielding film 51 in the transmissive mask blank 50.
  • the mask blank using the high sensitivity defect inspection apparatus using the inspection light in the wavelength region of 150 nm to 365 nm for example, the high sensitivity defect inspection apparatus using the 266 nm UV laser or the 193 nm ArF excimer laser as the inspection light source wavelength.
  • the spatial frequency 1 [mu] m -1 or 10 [mu] m -1 or less of the power spectral density obtained by measuring an area of 1 [mu] m ⁇ 1 [mu] m with an atomic force microscope There preferably set to 10 nm 4 or less, more preferably, the power spectral density of the spatial frequency 1 [mu] m -1 or 10 [mu] m -1 or less is 1 nm 4 or more 10 nm 4 or less, more preferably, the spatial frequency 1 [mu] m -1 or 10 [mu] m -1 or less the power spectral density of 1 nm 4 or 8 nm 4 or less, more preferably, space Power spectral density of the wave number 1 [mu] m -1 or 10 [mu] m -1 or less is desirable to 1 nm 4 or 6 nm 4 or less.
  • the root-mean-square roughness (Rms) is preferably 0.12 nm or less, more preferably 0.10 nm or less, still more preferably 0.08 nm or less, and further preferably 0.06 nm or less.
  • the maximum height (Rmax) is preferably 1.2 nm or less, more preferably 1.0 nm or less, further preferably 0.8 nm or less, and more preferably 0.6 nm or less. From the viewpoint of improving optical characteristics such as reflectance of the multilayer reflective film 21, the protective film 22, the absorber film 24, and the light-shielding film 51 formed on the mask blank substrate 10, the root mean square roughness (Rms) and It is preferred to manage both parameters of maximum height (Rmax).
  • the preferred surface roughness of the mask blank substrate 10 is preferably a root mean square roughness (Rms) of 0.12 nm or less and a maximum height (Rmax) of 1.2 nm or less, more preferably The root mean square roughness (Rms) is 0.10 nm or less and the maximum height (Rmax) is 1.0 nm or less, more preferably the root mean square roughness (Rms) is 0.08 nm or less and the maximum height It is desirable that the thickness (Rmax) is 0.8 nm or less, more preferably the root mean square roughness (Rms) is 0.06 nm or less and the maximum height (Rmax) is 0.6 nm or less.
  • the main surface of the substrate 10 is preferably a surface processed by catalyst-based etching.
  • Catalyst-based etching (hereinafter referred to as “CARE”) refers to contact or contact between the main surface of the substrate 10 and the catalyst with a processing fluid that is not normally soluble between the substrate 10 and the catalyst. This is a surface processing method that selectively removes and smoothes out the fine convex portions present on the main surface by the active species generated from the molecules in the treatment liquid adsorbed on the catalyst.
  • the main surface of the substrate 10 is selectively surface-processed from the convex portion that contacts the catalyst surface, which is the reference surface, by the catalyst reference etching, the unevenness (surface roughness) constituting the main surface is very high and smooth
  • the surface form is very uniform while maintaining the properties, and the surface form has a higher proportion of the concave portion than the convex portion with respect to the reference surface. Accordingly, when a plurality of thin films are laminated on the main surface, the defect size on the main surface tends to be small, which is preferable in terms of defect quality. In particular, the effect is exhibited particularly when a multilayer reflective film described later is formed on the main surface. Further, by subjecting the main surface to surface treatment by catalyst-based etching as described above, it is possible to relatively easily form a surface having the surface roughness and bearing curve characteristics within the range defined in the above-described configuration 1 or 2. .
  • the catalyst at least one material selected from the group consisting of platinum, gold, transition metals, and alloys containing at least one of them can be used.
  • the treatment liquid at least one kind of liquid selected from the group consisting of pure water, functional water such as ozone water and hydrogen water, a low concentration alkaline aqueous solution, and a low concentration acidic aqueous solution can be used.
  • a mask substrate / blank defect inspection apparatus “MAGICS M7360” for EUV exposure manufactured by Lasertec (inspection light source wavelength) : 266nm), and defect inspection by KLA-Tencor reticle, optical mask / blank and EUV mask / blank defect inspection system “Teron600 series” (inspection light source wavelength: 193nm) can be suppressed.
  • the inspection light source wavelength is not limited to 266 nm and 193 nm.
  • As the inspection light source wavelength 532 nm, 488 nm, 364 nm, and 257 nm may be used.
  • Examples of the mask blank substrate for defect inspection using the high-sensitivity defect inspection apparatus having the above-described inspection light source wavelength include a transmissive mask blank substrate and a reflective mask blank substrate.
  • a high-sensitivity defect inspection apparatus that uses inspection light (EUV light) in the wavelength region of 0.2 nm to 100 nm, for example, a high-sensitivity defect inspection apparatus that uses 13.5 nm EUV light as the inspection light source wavelength is used.
  • EUV light inspection light
  • the main surface has a spatial frequency of 10 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less obtained by measuring a 1 ⁇ m ⁇ 1 ⁇ m region with an atomic force microscope.
  • the spectral density is preferably 5 nm 4 or less, and more preferably the power spectral density at a spatial frequency of 10 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less is 0.5 nm 4 or more and 5 nm 4 or less.
  • a reflectance higher than a predetermined value is required. Limited.
  • a reflective mask blank substrate may be mentioned.
  • the main surface on the side where the transfer pattern is formed is subjected to surface processing so as to have high flatness from the viewpoint of obtaining at least pattern transfer accuracy and position accuracy.
  • the flatness may be 0.1 ⁇ m or less in the 132 mm ⁇ 132 mm region or 142 mm ⁇ 142 mm region of the main surface on the side where the transfer pattern of the substrate 10 is formed.
  • it is 0.05 micrometer or less especially preferably. More preferably, the flatness is 0.03 ⁇ m or less in the region of the main surface 132 mm ⁇ 132 mm on the side where the transfer pattern of the substrate 10 is formed.
  • the main surface opposite to the side on which the transfer pattern is formed is a surface to be electrostatically chucked when being set in the exposure apparatus, and in a 142 mm ⁇ 142 mm region, the flatness is 1 ⁇ m or less, particularly preferably. 0.5 ⁇ m or less.
  • the surface is flat in the 132 mm ⁇ 132 mm region or 142 mm ⁇ 142 mm region of the main surface on the side where the transfer pattern of the substrate is formed.
  • the degree is preferably 0.3 ⁇ m or less, particularly preferably 0.2 ⁇ m or less.
  • any material can be used as the material for the transmission mask blank substrate for ArF excimer laser exposure as long as it has translucency with respect to the exposure wavelength.
  • synthetic quartz glass is used.
  • Other materials may be aluminosilicate glass, soda lime glass, borosilicate glass, or non-alkali glass.
  • any material may be used as a material for the reflective mask blank substrate for EUV exposure as long as it has a low thermal expansion characteristic.
  • SiO 2 —TiO 2 glass having characteristics of low thermal expansion binary system (SiO 2 —TiO 2 ) and ternary system (SiO 2 —TiO 2 —SnO 2 etc.)
  • SiO 2 —Al 2 O A so-called multicomponent glass such as a 3- Li 2 O-based crystallized glass can be used.
  • a substrate such as silicon or metal can also be used. Examples of the metal substrate include Invar alloy (Fe—Ni alloy).
  • a thin film made of a metal, an alloy, or a material containing at least one of oxygen, nitrogen, and carbon in any one of them is formed on a substrate made of a multicomponent glass material. Then, by subjecting such a thin film surface to mirror polishing and surface treatment, a surface having a surface roughness and a power spectral density in the above ranges can be formed relatively easily.
  • Ta tantalum
  • an alloy containing Ta or a Ta compound containing at least one of oxygen, nitrogen, and carbon in any of these is preferable.
  • the Ta compound for example, TaB, TaN, TaO, TaON, TaCON, TaBN, TaBO, TaBON, TaBCON, TaHf, TaHfO, TaHfN, TaHfON, TaHfCON, TaSi, TaSiO, TaSiN, TaSiON, TaSiCON, etc. can be applied. it can.
  • the thin film preferably has an amorphous structure from the viewpoint of high smoothness on the surface of the thin film.
  • the crystal structure of the thin film can be measured by an X-ray diffractometer (XRD).
  • the processing method for obtaining the surface roughness and power spectral density specified above is not particularly limited.
  • the present invention is characterized in that it controls the surface roughness and power spectral density of the mask blank substrate, and can be realized, for example, by a processing method as exemplified in Examples 1 to 3 and Example 5 described later. Can do.
  • FIG. 2 is a schematic diagram showing the multilayer reflective film-coated substrate 20 of the present embodiment.
  • the substrate 20 with a multilayer reflective film of the present embodiment has a structure having the multilayer reflective film 21 on the main surface on the side where the transfer pattern of the mask blank substrate 10 described above is formed.
  • the multilayer reflective film 21 provides a function of reflecting EUV light in a reflective mask for EUV lithography, and has a multilayer film structure in which elements having different refractive indexes are periodically stacked.
  • the material of the multilayer reflective film 21 is not particularly limited as long as it reflects EUV light. However, the reflectance of the multilayer reflective film 21 is usually 65% or more, and the upper limit is usually 73%. In general, the multilayer reflective film 21 includes 40 thin films (high refractive index layer) made of a high refractive index material and 40 thin films made of a low refractive index material (low refractive index layer) alternately. A multilayer reflective film having about 60 cycles can be formed.
  • the multilayer reflective film 21 for EUV light having a wavelength of 13 to 14 nm is preferably a Mo / Si periodic laminated film in which Mo films and Si films are alternately laminated for about 40 periods.
  • Ru / Si periodic multilayer films, Mo / Be periodic multilayer films, Mo compounds / Si compound periodic multilayer films, Si / Nb periodic multilayer films, Si / Mo / Ru A periodic multilayer film, a Si / Mo / Ru / Mo periodic multilayer film, a Si / Ru / Mo / Ru periodic multilayer film, or the like can be used.
  • the method for forming the multilayer reflective film 21 is known in the art, but can be formed by depositing each layer by, for example, a magnetron sputtering method or an ion beam sputtering method.
  • a magnetron sputtering method or an ion beam sputtering method for example, an Si film having a thickness of several nanometers is first formed on the substrate 10 using an Si target by an ion beam sputtering method, and then thickened using a Mo target. A Mo film having a thickness of about several nanometers is formed, and this is taken as one period, and laminated for 40 to 60 periods to form the multilayer reflective film 21.
  • a protective film 22 (see FIG. 3) is formed to protect the multilayer reflective film 21 from dry etching or wet cleaning in the manufacturing process of the reflective mask for EUV lithography. You can also Thus, the form which has the multilayer reflective film 21 and the protective film 22 on the board
  • Examples of the material of the protective film 22 include Ru, Ru- (Nb, Zr, Y, B, Ti, La, Mo), Si- (Ru, Rh, Cr, B), Si, Zr, Nb. , La, B, and the like can be used, but among these, when a material containing ruthenium (Ru) is applied, the reflectance characteristics of the multilayer reflective film become better. Specifically, Ru, Ru- (Nb, Zr, Y, B, Ti, La, Mo) are preferable. Such a protective film is particularly effective when the absorber film is made of a Ta-based material and the absorber film is patterned by dry etching with a Cl-based gas.
  • the surface of the multilayer reflective film 21 or the protective film 22 has a spatial frequency of 1 ⁇ m ⁇ 1 or more and 10 ⁇ m ⁇ obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope.
  • the power spectral density of 1 or less is preferably 20 nm 4 or less.
  • the surface of the multilayer reflective film 21 or the protective film 22, 1 [mu] m ⁇ power spectral density region below the spatial frequency 1 [mu] m -1 or more 10 [mu] m -1 obtained by measuring an atomic force microscope 1 [mu] m is 17nm 4 or less, more preferably, the power spectral density of the spatial frequency 1 [mu] m -1 or 10 [mu] m -1 or less obtained by measuring an area of 1 [mu] m ⁇ 1 [mu] m with an atomic force microscope 15 nm 4 or less, more preferably of 1 [mu] m ⁇ 1 [mu] m preferably the power spectral density of the spatial frequency 1 [mu] m -1 or 10 [mu] m -1 or less obtained by measuring the area with an atomic force microscope is 10 nm 4 or less, more preferably, between atoms a region of 1 [mu] m ⁇ 1 [mu] m force microscope 10
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, high sensitivity that uses a 266 nm UV laser or a 193 nm ArF excimer laser as the inspection light source wavelength mentioned above.
  • detection of pseudo defects can be greatly suppressed.
  • the surface of the multilayer reflective film 21 or the protective film 22 has a spatial frequency of 10 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope.
  • the power spectral density of 1 or less is preferably 9 nm 4 or less. More preferably, the power spectral density with a spatial frequency of 10 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope is 8 nm 4 or less, more preferably an area of 1 ⁇ m ⁇ 1 ⁇ m is an atom.
  • Spatial frequency obtained by measuring an area of power spectrum density of 10 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less with an atomic force microscope of 7 nm 4 or less, more preferably 1 ⁇ m ⁇ 1 ⁇ m with an atomic force microscope.
  • a high-sensitivity defect inspection apparatus that uses inspection light (EUV light) in the wavelength region of 0.2 nm to 100 nm, for example, high-sensitivity defect inspection that uses EUV light of 13.5 nm as the inspection light source wavelength.
  • EUV light inspection light
  • the surface of the multilayer reflective film 21 or the protective film 22 has a root mean square roughness (Rms) obtained by measuring a 1 ⁇ m ⁇ 1 ⁇ m region with an atomic force microscope. It is preferable to set it to 15 nm or less. More preferably, the root mean square roughness (Rms) is 0.13 nm or less, and more preferably, the root mean square roughness (Rms) is 0.12 nm or less.
  • the multilayer reflective film 21 should be in the normal line of the main surface of the substrate 10.
  • it is obtained by forming a film by sputtering so that the high refractive index layer and the low refractive index layer are deposited obliquely. More specifically, the incident angle of the sputtered particles for film formation of the high refractive index layer constituting the multilayer reflective film 21 with respect to the normal line of the main surface of the substrate 10 is such that the low refractive index layer is formed.
  • the incident angle of the sputtered particles for forming the low refractive index layer such as Mo is set to 40 degrees or more and less than 90 degrees, and the incident of the sputtered particles for forming the high refractive index layer such as Si is performed.
  • the film is preferably formed at an angle of 0 ° to 60 °.
  • the protective film 22 formed on the multilayer reflective film 21 is also ionized so that the protective film 22 is deposited obliquely with respect to the normal of the main surface of the substrate 10 continuously after the multilayer reflective film 21 is formed. It is preferable to form by a beam sputtering method.
  • the formation of a low refractive index layer such as Mo or the like in order to further suppress the detection of pseudo defects, the formation of a low refractive index layer such as Mo or the like.
  • the incident angle of the sputtered particles for the film and the angle of the sputtered particles for forming the high refractive index layer such as Si are set to a small angle with respect to the normal of the main surface of the substrate 10, for example, 0 ° to 30 °
  • the multilayer reflective film 21 may be formed at the following angles.
  • a back surface conductive film 23 (see FIG. 3) is formed on the surface of the substrate 10 opposite to the surface in contact with the multilayer reflective film 21 for the purpose of electrostatic chucking. You can also.
  • the multilayer reflective film 21 and the protective film 22 are provided on the side on which the transfer pattern on the mask blank substrate 10 is formed, and the back surface conductive film 23 is provided on the surface opposite to the surface in contact with the multilayer reflective film 21.
  • a form having a multilayer reflective film-coated substrate in the present invention can also be used.
  • the electrical characteristics (sheet resistance) required for the back conductive film 23 are usually 100 ⁇ / ⁇ or less.
  • the formation method of the back surface conductive film 23 is well-known, for example, can be formed by magnetron sputtering method or ion beam sputtering method using a target of a metal such as Cr or Ta or an alloy.
  • an underlayer may be formed between the substrate 10 and the multilayer reflective film 21.
  • the underlayer can be formed for the purpose of improving the smoothness of the main surface of the substrate 10, the purpose of reducing defects, the purpose of enhancing the reflectivity of the multilayer reflective film 21, and the purpose of correcting the stress of the multilayer reflective film 21.
  • FIG. 3 is a schematic diagram showing the reflective mask blank 30 of the present embodiment.
  • the reflective mask blank 30 of the present embodiment has a configuration in which an absorber film 24 serving as a transfer pattern is formed on the protective film 22 of the substrate 20 with a multilayer reflective film described above.
  • the material of the absorber film 24 is not particularly limited. For example, it has a function of absorbing EUV light, and it is preferable to use a material containing Ta (tantalum) alone or Ta as a main component.
  • the material mainly composed of Ta is usually an alloy of Ta.
  • Such an absorber film preferably has an amorphous or microcrystalline structure in terms of smoothness and flatness.
  • the material containing Ta as a main component include a material containing Ta and B, a material containing Ta and N, a material containing Ta and B, and further containing at least one of O and N, and a material containing Ta and Si.
  • a material containing Ta, Si and N, a material containing Ta and Ge, a material containing Ta, Ge and N can be used.
  • the absorber film 24 should be made an amorphous structure. preferable.
  • the crystal structure can be confirmed with an X-ray diffractometer (XRD).
  • the surface of the absorber film 24 is preferably a spatial frequency 1 [mu] m -1 or 10 [mu] m -1 or less of the power spectral density obtained by measuring an area of 1 [mu] m ⁇ 1 [mu] m by an atomic force microscope is 10 nm 4 or less , more preferably, it is desirable power spectral density of the spatial frequency 1 [mu] m -1 or 10 [mu] m -1 or less obtained by measuring an area of 1 [mu] m ⁇ 1 [mu] m by an atomic force microscope is 1 nm 4 or more 10 nm 4 or less.
  • a high-sensitivity defect inspection apparatus that uses inspection light in the wavelength region of 150 nm to 365 nm, for example, high sensitivity that uses a 266 nm UV laser or a 193 nm ArF excimer laser as the inspection light source wavelength mentioned above.
  • the defect inspection of the reflective mask blank 30 is performed with the defect inspection apparatus, the detection of pseudo defects can be greatly suppressed.
  • the surface of the absorber film 24 preferably has a power spectral density of 5 nm 4 or less at a spatial frequency of 10 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less obtained by measuring a 1 ⁇ m ⁇ 1 ⁇ m region with an atomic force microscope. , more preferably, it is desirable power spectral density of the spatial frequency 10 [mu] m -1 or 100 [mu] m -1 or less obtained by measuring an area of 1 [mu] m ⁇ 1 [mu] m by an atomic force microscope is 0.5 nm 4 or 5 nm 4 or less.
  • a high-sensitivity defect inspection apparatus that uses inspection light (EUV light) in the wavelength region of 0.2 nm to 100 nm, for example, high-sensitivity defect inspection that uses EUV light of 13.5 nm as the inspection light source wavelength.
  • EUV light inspection light
  • the detection of pseudo defects can be greatly suppressed.
  • the reflective mask blank of the present invention is not limited to the configuration shown in FIG.
  • a resist film serving as a mask for patterning the absorber film 24 can be formed on the absorber film 24, and a reflective mask blank with a resist film is also used as the reflective mask blank of the present invention.
  • the resist film formed on the absorber film 24 may be a positive type or a negative type. Further, it may be used for electron beam drawing or laser drawing.
  • a so-called hard mask (etching mask) film can be formed between the absorber film 24 and the resist film, and this aspect can also be used as a reflective mask blank in the present invention.
  • FIG. 4 is a schematic diagram showing the reflective mask 40 of the present embodiment.
  • the reflective mask 40 of the present embodiment has a configuration in which the absorber film 24 in the reflective mask blank 30 is patterned to form the absorber pattern 27 on the protective film 22.
  • exposure light such as EUV light
  • the exposure light is absorbed in a portion of the mask surface where the absorber film 24 is present, and the other portions where the absorber film 24 is removed are exposed. Since the exposure light is reflected by the protective film 22 and the multilayer reflective film 21, it can be used as a reflective mask 40 for lithography.
  • FIG. 5 is a schematic diagram showing the transmission mask blank 50 of the present embodiment.
  • the transmissive mask blank 50 of the present embodiment has a configuration in which a light-shielding film 51 serving as a transfer pattern is formed on the main surface of the mask blank substrate 10 described above on which the transfer pattern is formed.
  • Examples of the transmission type mask blank 50 include a binary type mask blank and a phase shift type mask blank.
  • the light-shielding film 51 includes a so-called halftone film that attenuates the exposure light and shifts the phase in addition to the light-shielding film having a function of shielding the exposure light.
  • the binary mask blank is obtained by forming a light-shielding film that blocks exposure light on the mask blank substrate 10.
  • the light-shielding film is patterned to form a desired transfer pattern.
  • the light shielding film include a Cr film, a Cr alloy film that selectively contains oxygen, nitrogen, carbon, and fluorine in Cr, a laminated film thereof, a MoSi film, and a MoSi alloy that selectively contains oxygen, nitrogen, and carbon in MoSi. Examples thereof include films and laminated films thereof.
  • the surface of the light shielding film may include an antireflection layer having an antireflection function.
  • the phase shift mask blank is obtained by forming a phase shift film for changing the phase difference of exposure light on the mask blank substrate 10.
  • the phase shift film is patterned to form a desired transfer pattern.
  • metal silicide oxynitride carbide films metalals: transition metals such as Mo, Ti, W, and Ta
  • halftone films such as CrO films, CrF films, and SiON films.
  • this phase shift mask blank an embodiment in which the light shielding film is formed on the phase shift film is also included.
  • the transmission mask blank of the present invention is not limited to the configuration shown in FIG.
  • a resist film serving as a mask for patterning the light-shielding film 51 can be formed on the light-shielding film 51, and the transmissive mask blank with a resist film is also used as the transmissive mask blank of the present invention.
  • the resist film formed on the light-shielding film 51 may be a positive type or a negative type. Further, it may be used for electron beam drawing or laser drawing.
  • a so-called hard mask (etching mask) film can be formed between the light-shielding film 51 and the resist film, and this aspect can also be used as the transmission type mask blank in the present invention.
  • the surface of the light-shielding film 51 has a power spectral density of 1 ⁇ m ⁇ 1 or more and 10 ⁇ m ⁇ 1 or less spatial frequency obtained by measuring a 1 ⁇ m ⁇ 1 ⁇ m region with an atomic force microscope. preferably but at 10 nm 4 or less, more preferably, 1 [mu] m ⁇ power spectral density of the spatial frequency 1 [mu] m -1 or 10 [mu] m -1 or less obtained areas as measured by atomic force microscope 1 [mu] m is 1 nm 4 or more 10 nm 4 The following is desirable.
  • the light shielding film 51 has an amorphous structure.
  • the crystal structure can be confirmed by an X-ray diffractometer (XRD).
  • FIG. 6 is a schematic diagram showing the transmission mask 60 of the present embodiment.
  • the transmissive mask 60 of the present embodiment has a configuration in which the light-shielding film 51 in the transmissive mask blank 50 is patterned to form a light-shielding film pattern 61 on the mask blank substrate 10.
  • the transmissive mask 60 of the present embodiment in a binary mask, when exposed to exposure light such as ArF excimer laser light, the exposure light is blocked at a portion of the mask surface where the light-shielding film 51 is present, and the other light shielding properties. In the portion from which the film 51 is removed, the exposure light transmits through the exposed mask blank substrate 10, so that it can be used as a transmissive mask 60 for lithography.
  • the halftone phase shift mask which is one of the phase shift masks
  • exposure light such as ArF excimer laser light
  • the exposed portion of the mask surface where the light-shielding film 51 is removed is used for an exposed mask blank.
  • the exposure light is transmitted through the substrate 10, and in a portion where the light-shielding film 51 is present, the exposure light is transmitted in a attenuated state and with a predetermined phase shift amount, thereby forming a transmissive mask 60 for lithography.
  • the phase shift mask is not limited to the above-described halftone phase shift mask, and may be a phase shift mask using various phase shift effects such as a Levenson type phase shift mask.
  • the absorber pattern 27 of the reflective mask 40 or the like is formed on the resist film formed on the transfer target such as a semiconductor substrate by the lithography process using the reflective mask 40 and the transmissive mask 60 described above and the exposure apparatus. Then, a transfer pattern such as a circuit pattern based on the light-shielding film pattern 61 of the transmissive mask 60 is transferred, and through various other processes, a semiconductor device in which various patterns are formed on the semiconductor substrate is manufactured. be able to.
  • a reference mark is formed on the mask blank substrate 10, the multilayer reflective film-coated substrate 20, the reflective mask blank 30, and the transmissive mask blank 50, and is detected by the reference mark and the above-described high-sensitivity defect inspection apparatus.
  • the coordinates of the position of the fatal defect that has been made can be managed.
  • the critical defect is obtained. It is possible to reduce the defects by correcting the drawing data so that the absorber pattern 27 and the light-shielding film pattern 61 are formed at the locations where the defects exist.
  • Examples 1 to 3 and 5 to 7 including embodiments of a mask blank substrate, a substrate with a multilayer reflective film, a reflective mask blank, and a reflective mask according to the present invention, and comparative examples for these.
  • Examples 1 and 2 and Example 4 including embodiments of the mask blank substrate for ArF excimer laser exposure, the transmission mask blank, and the transmission mask of the present invention will be described below.
  • Example 1 First, a first embodiment relating to a mask blank substrate for EUV exposure, a substrate with a multilayer reflective film, a reflective mask blank for EUV exposure, and a reflective mask according to the present invention will be described.
  • a SiO 2 —TiO 2 glass substrate having a size of 152.4 mm ⁇ 152.4 mm and a thickness of 6.35 mm is prepared, and the surface of the glass substrate is prepared using a double-side polishing apparatus.
  • the back surface was polished stepwise with cerium oxide abrasive grains or colloidal silica abrasive grains, and then surface treated with a low concentration of silicic acid.
  • the surface roughness of the surface of the glass substrate thus obtained was measured with an atomic force microscope.
  • the root mean square roughness (Rms) was 0.15 nm.
  • the surface shape (surface morphology, flatness) and TTV (plate thickness variation) of a region of 148 mm ⁇ 148 mm on the front and back surfaces of the glass substrate were measured with a wavelength shift interferometer using a wavelength modulation laser.
  • the flatness of the front and back surfaces of the glass substrate was 290 nm (convex shape).
  • the measurement result of the surface shape (flatness) of the glass substrate surface is stored in a computer as height information with respect to a reference surface at each measurement point, and the reference value of the surface flatness required for the glass substrate is 50 nm (convex shape).
  • the difference was calculated by a computer in comparison with the reference value 50 nm for the back flatness.
  • processing conditions for local surface processing according to the required removal amount were set for each processing spot shape region in the glass substrate surface.
  • the dummy substrate is processed with a spot without moving the substrate for a certain period of time in the same way as in actual processing, and the shape is converted to the same measuring machine as the apparatus for measuring the surface shape of the front and back surfaces.
  • the spot processing volume per unit time is calculated.
  • the scanning speed for raster scanning the glass substrate was determined according to the necessary removal amount obtained from the spot information and the surface shape information of the glass substrate.
  • the front and back flatness of the glass substrate is locally below the reference value by the magneto-visco-elastic fluid polishing (Magneto Rheological Finishing MRF) processing method.
  • MRF magneto-visco-elastic fluid polishing
  • Surface processing was performed to adjust the surface shape.
  • the magnetic viscoelastic fluid used at this time contained an iron component, and the polishing slurry was an alkaline aqueous solution + abrasive (about 2 wt%) and an abrasive: cerium oxide.
  • the glass substrate was immersed in a cleaning tank containing a hydrochloric acid aqueous solution having a concentration of about 10% (temperature: about 25 ° C.) for about 10 minutes, and then rinsed with pure water and isopropyl alcohol (IPA) dried.
  • a hydrochloric acid aqueous solution having a concentration of about 10% (temperature: about 25 ° C.) for about 10 minutes, and then rinsed with pure water and isopropyl alcohol (IPA) dried.
  • IPA isopropyl alcohol
  • the flatness of the front and back surfaces was about 40 to 50 nm. Further, when the surface roughness of the glass substrate surface was measured using an atomic force microscope in a 1 ⁇ m ⁇ 1 ⁇ m region at an arbitrary position of the transfer pattern formation region (132 mm ⁇ 132 mm), the root mean square roughness (Rms) ) was 0.37 nm, which was rougher than the surface roughness before local surface processing by MRF.
  • Processing fluid Alkaline aqueous solution (NaOH) + abrasive (concentration: about 2 wt%)
  • Abrasive colloidal silica, average particle size: about 70 nm Polishing platen rotation speed: about 1-50rpm
  • Processing pressure about 0.1-10kPa Polishing time: about 1-10 minutes
  • the glass substrate was washed with an alkaline aqueous solution (NaOH) to obtain a mask blank substrate 10 for EUV exposure.
  • an alkaline aqueous solution NaOH
  • the front and back surface flatness of the front and back surfaces of the obtained mask blank substrate 10 were measured, the front and back surface flatness was about 40 nm, which was good because the state before processing by the double-side polishing apparatus was maintained or improved. .
  • the surface roughness was a root mean square. The square root roughness (Rms) was 0.13 nm, and the maximum height (Rmax) was 1.2 nm.
  • the local processing method of the mask blank substrate 10 in the present invention is not limited to the above-described magnetic viscoelastic fluid polishing processing method.
  • a processing method using a gas cluster ion beam (Gas Cluster Ion Beams: GCIB) or local plasma may be used.
  • a TaBN film was formed on the main surface of the above-described mask blank substrate 10 by DC magnetron sputtering.
  • the TaB target was opposed to the main surface of the mask blank substrate, and reactive sputtering was performed in an Ar + N 2 gas atmosphere.
  • the elemental composition of the TaBN film was measured by Rutherford backscattering analysis, Ta: 80 atomic%, B: 10 atomic%, and N: 10 atomic%.
  • the thickness of the TaBN film was 150 nm.
  • the crystal structure of the TaBN film was measured with an X-ray diffractometer (XRD), it was an amorphous structure.
  • Processing liquid alkaline aqueous solution (NaOH) + abrasive (average colloidal silica abrasive grain 50 nm, concentration: 5 wt%) Processing pressure: 50 g / cm 2 Polishing time: about 1 to 10 minutes.
  • the surface of the TaBN film was washed with a hydrofluoric acid aqueous solution (HF: concentration 0.2 wt%) for 428 seconds to obtain a mask blank substrate for EUV exposure.
  • HF hydrofluoric acid aqueous solution
  • the maximum value was 7.73 nm 4 and the minimum value was 2.94 nm 4 .
  • the power spectral density at a spatial frequency of 10 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 was a maximum value of 3.47 nm 4 and a minimum value of 1.86 nm 4 .
  • the power spectral density at the spatial frequency of 1 ⁇ m ⁇ 1 or higher and the spatial frequency of 1 ⁇ m ⁇ 1 or higher and 10 ⁇ m ⁇ 1 or lower on the surface of the TaBN film of Example 1 was 10 nm 4 or lower.
  • the defect area (S) and the defect height (h) can be measured by an atomic force microscope (AFM).
  • a substrate 20 with a multilayer reflective film was produced.
  • the multilayer reflective film 21 was formed into 40 pairs (total thickness of 280 nm), with a pair of a 4.2 nm thick Si film and a 2.8 nm thick Mo film as one pair. Further, a protective film 22 made of Ru with a film thickness of 2.5 nm was formed on the surface of the multilayer reflective film 21.
  • the multilayer reflective film 21 is formed by ion beam sputtering so that the incident angle of the sputtered particles of the Si film is 5 degrees and the incident angle of the sputtered particles of the Mo film is 65 degrees with respect to the normal line of the main surface of the substrate. Filmed.
  • the surface roughness of the protective film 22 of the obtained substrate 20 with a multilayer reflective film when measuring 1 micrometer x 1 micrometer area
  • the power spectral density of the spatial frequency 1 [mu] m -1 or 10 [mu] m -1 or less in 20 nm 4 below, the maximum value is 14.4 nm 4, the minimum value was 0.13 nm 4.
  • the surface of the multilayer reflective film of Example 1 was used.
  • the total number of detected defects was less than 100,000, and fatal defects could be inspected.
  • a high-sensitivity defect inspection apparatus (Lasertec “MAGICS M7360”) with an inspection light source wavelength of 266 nm is the highest inspection sensitivity condition, and a high-sensitivity defect inspection apparatus with an inspection light source wavelength of 13.5 nm has a sphere equivalent diameter of 20 nm or less. The defect inspection was performed under the inspection sensitivity condition that can be detected.
  • Reference marks for coordinate management of the position of the defect were formed at four positions outside the transfer pattern formation region (132 mm ⁇ 132 mm) by a focused ion beam.
  • the back surface conductive film 23 was formed by DC magnetron sputtering on the back surface of the substrate 20 with a multilayer reflection film on which the multilayer reflection film 21 was not formed.
  • Ar + N 2 gas Ar + N 2 gas
  • an absorber film 24 made of a TaBN film was formed on the surface of the protective film 22 of the substrate 20 with a multilayer reflective film described above by a DC magnetron sputtering method, and a reflective mask blank 30 was produced.
  • the elemental composition of the absorber film 24 was measured by Rutherford backscattering analysis, Ta: 80 atomic%, B: 10 atomic%, and N: 10 atomic%.
  • the film thickness of the absorber film 24 was 65 nm.
  • membrane 24 was measured with the X-ray-diffraction apparatus (XRD), it was an amorphous structure.
  • a resist was applied to the surface of the absorber film 24 by spin coating, and a resist film 25 having a thickness of 150 nm was formed through heating and cooling processes. Next, a resist pattern was formed through a drawing and developing process of a desired pattern. Using the resist pattern as a mask, patterning of the TaBN film as the absorber film 24 was performed by dry etching with Cl 2 + He gas to form the absorber pattern 27 on the protective film 22. Thereafter, the resist film 25 was removed, and chemical cleaning similar to that described above was performed to produce a reflective mask 40.
  • Example 2 ⁇ Manufacture of mask blank substrate>
  • a SiO 2 —TiO 2 glass substrate having a size of 152.4 mm ⁇ 152.4 mm and a thickness of 6.35 mm was prepared and carried out.
  • the front and back surfaces of the glass substrate were subjected to steps from polishing by a double-side polishing apparatus to local surface processing by a magnetic viscoelastic fluid polishing method.
  • Example 2 EEM (Elastic Emission Machining) was performed as non-contact polishing.
  • This EEM was performed under the following processing conditions.
  • Rotating body rotational speed 10 to 300 rpm
  • Work holder rotation speed 10 ⁇ 100rpm Polishing time: 5-30 minutes
  • the spatial frequency of 1 ⁇ m ⁇ 1 obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m on the main surface of the mask blank substrate 10 for EUV exposure of Example 2 with an atomic force microscope
  • the power spectral density of 10 ⁇ m ⁇ 1 or less was a maximum value of 7.40 nm 4 and a minimum value of 2.16 nm 4 .
  • the power spectral density at a spatial frequency of 10 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less was a maximum value of 3.32 nm 4 and a minimum value of 2.13 nm 4 .
  • the power spectral density at the spatial frequency of 1 ⁇ m ⁇ 1 or more and the spatial frequency of 1 ⁇ m ⁇ 1 or more and 10 ⁇ m ⁇ 1 or less of the main surface of the mask blank substrate of Example 2 was 10 nm 4 or less.
  • the main surface of the mask blank substrate 10 for EUV exposure of Example 2 under the highest inspection sensitivity conditions using a high-sensitivity defect inspection apparatus Lasertec “MAGICS M7360” having an inspection light source wavelength of 266 nm.
  • MAGICS M7360 high-sensitivity defect inspection apparatus having an inspection light source wavelength of 266 nm.
  • a multilayer reflective film 21 having a thickness of 280 nm is formed by alternately laminating the same Si film and Mo film as in Example 1, and the film thickness is formed on the surface.
  • a protective film 22 made of 2.5 nm of Ru was formed.
  • the ion beam sputtering conditions for the multilayer reflective film 21 were the same as those in Example 1.
  • the surface of the multilayer reflective film of Example 2 is 132 mm ⁇
  • the total number of detected defects was less than 100,000, and it was possible to inspect fatal defects.
  • the reflective mask blank 30 and the reflective mask 40 were produced in the same manner as in Example 1 described above.
  • a high-sensitivity defect inspection apparatus (“Teron 600 series” manufactured by KLA-Tencor)
  • no defects were confirmed.
  • a high-sensitivity defect inspection apparatus Lasertec “MAGICS M7360” with an inspection light source wavelength of 266 nm is the highest inspection sensitivity condition
  • a high-sensitivity defect inspection apparatus with an inspection light source wavelength of 13.5 nm has a sphere equivalent diameter of 20 nm or less.
  • the defect inspection was performed under the inspection sensitivity condition that can be detected.
  • Example 3 ⁇ Manufacture of mask blank substrate>
  • the mask blank substrate 10 for EUV exposure is a SiO 2 —TiO 2 system having a size of 152.4 mm ⁇ 152.4 mm and a thickness of 6.35 mm.
  • a glass blank substrate 10 for EUV exposure was produced through substantially the same steps as in Example 2. However, in Example 3, in the final polishing of the local surface processing in Example 2, the second-stage EEM processing using pure water as the processing liquid was omitted.
  • a spatial frequency of 1 ⁇ m ⁇ 1 obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m on the main surface of the mask blank substrate 10 for EUV exposure of Example 3 with an atomic force microscope is used.
  • the power spectral density of 10 ⁇ m ⁇ 1 or less was a maximum value of 10.00 nm 4 and a minimum value of 3.47 nm 4 .
  • the power spectral density at a spatial frequency of 10 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 was a maximum value of 3.96 nm 4 and a minimum value of 2.56 nm 4 .
  • the power spectral density at the spatial frequency of 1 ⁇ m ⁇ 1 or more and the spatial frequency of 1 ⁇ m ⁇ 1 or more and 10 ⁇ m ⁇ 1 or less of the main surface of the mask blank substrate of Example 3 was 10 nm 4 or less.
  • the main surface of the mask blank substrate 10 for EUV exposure of Example 3 under the highest inspection sensitivity conditions using a high-sensitivity defect inspection apparatus Lasertec “MAGICS M7360” having an inspection light source wavelength of 266 nm.
  • MAGICS M7360 high-sensitivity defect inspection apparatus having an inspection light source wavelength of 266 nm.
  • a multilayer reflective film 21 having a thickness of 280 nm is formed by alternately laminating the same Si film and Mo film as in Example 1, and the film thickness is formed on the surface.
  • a protective film 22 made of 2.5 nm of Ru was formed.
  • the ion beam sputtering conditions for the multilayer reflective film 21 were the same as those in Example 1.
  • a high-sensitivity defect inspection apparatus (Lasertec “MAGICS M7360”) having an inspection light source wavelength of 266 nm and a high-sensitivity inspection apparatus having an inspection light source wavelength of 13.5 nm, 132 mm on the surface of the multilayer reflective film of Example 3 was used.
  • MAGICS M7360 high-sensitivity defect inspection apparatus having an inspection light source wavelength of 266 nm
  • a high-sensitivity inspection apparatus having an inspection light source wavelength of 13.5 nm 132 mm on the surface of the multilayer reflective film of Example 3 was used.
  • the total number of detected defects was less than 100,000, and it was possible to inspect fatal defects.
  • a high-sensitivity defect inspection apparatus (Lasertec “MAGICS M7360”) with an inspection light source wavelength of 266 nm is the highest inspection sensitivity condition, and a high-sensitivity defect inspection apparatus with an inspection light source wavelength of 13.5 nm has a sphere equivalent diameter of 20 nm or less. The defect inspection was performed under the inspection sensitivity condition that can be detected.
  • the reflective mask blank 30 and the reflective mask 40 were produced in the same manner as in Example 1 described above.
  • the obtained reflective mask 40 was subjected to defect inspection using a high-sensitivity defect inspection apparatus (“Teron 600 series” manufactured by KLA-Tencor), no defects were confirmed.
  • non-contact polishing as the final polishing in the local surface processing in Examples 2 and 3 is not limited to the above-described EEM.
  • a float polish or a catalyst-based etching method Catalyst® Referred® Etching
  • the final polishing of the main surface of the glass substrate is preferably non-contact polishing using water or pure water.
  • the mask blank substrate 10 for EUV exposure is a SiO 2 —TiO 2 glass substrate having a size of 152.4 mm ⁇ 152.4 mm and a thickness of 6.35 mm. Prepared.
  • Comparative Example 1 unlike Example 2, a polishing slurry containing colloidal silica (average particle size of 50 nm, concentration of 5 wt%) adjusted to acidity of pH: 0.5 to 4 as final polishing for local surface processing.
  • cleaning with sodium hydroxide (NaOH) with a concentration of 0.1 wt% was performed for a cleaning time of 300 seconds.
  • a spatial frequency of 1 ⁇ m ⁇ 1 or more obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m on the main surface of the mask blank substrate 10 for EUV exposure of Comparative Example 1 with an atomic force microscope
  • the power spectral density of 10 ⁇ m ⁇ 1 or less had a maximum value of 14.81 nm 4 and a minimum value of 3.87 nm 4 .
  • a multilayer reflective film 21 having a thickness of 280 nm is formed by alternately laminating the same Si film and Mo film as in Example 1, and the film thickness is formed on the surface.
  • a protective film 22 made of 2.5 nm of Ru was formed.
  • the ion beam sputtering conditions for the multilayer reflective film 21 were the same as those in Example 1.
  • SEVD Sphere Equivalent Volume Diameter
  • a reflective mask blank 30 and a reflective mask 40 were produced in the same manner as in Example 1 described above.
  • the obtained reflective mask 40 was subjected to defect inspection using a high-sensitivity defect inspection apparatus (“Teron 600 series” manufactured by KLA-Tencor), several tens of defects were confirmed. Defect correction was performed to obtain a reflective mask.
  • the mask blank substrate 10 for EUV exposure is a SiO 2 —TiO 2 glass substrate having a size of 152.4 mm ⁇ 152.4 mm and a thickness of 6.35 mm. Prepared.
  • polishing slurry containing colloidal silica (average particle diameter of 50 nm, density
  • cleaning with fluoric acid (HF) having a concentration of 0.2 wt% was performed for 428 seconds.
  • a spatial frequency of 1 ⁇ m ⁇ 1 or more obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m on the main surface of the mask blank substrate 10 for EUV exposure of Comparative Example 2 with an atomic force microscope
  • the power spectral density of 10 ⁇ m ⁇ 1 or less had a maximum value of 11.65 nm 4 and a minimum value of 5.16 nm 4 .
  • the power spectral density at a spatial frequency of 10 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less was a maximum value of 7.20 nm 4 and a minimum value of 4.08 nm 4 .
  • a multilayer reflective film 21 having a thickness of 280 nm is formed by alternately laminating the same Si film and Mo film as in Example 1, and the film thickness is formed on the surface.
  • a protective film 22 made of 2.5 nm of Ru was formed.
  • the ion beam sputtering conditions for the multilayer reflective film 21 were the same as those in Example 1.
  • the result of defect inspection of a 132 mm ⁇ 132 mm region on the multilayer reflective film surface of Comparative Example 2 using a high-sensitivity defect inspection apparatus with an inspection light source wavelength of 13.5 nm is the same, and the total number of detected defects is In all cases, the number exceeded 100,000, and the presence or absence of a fatal defect could not be inspected.
  • defect inspection was performed under inspection sensitivity conditions that can detect defects with a sphere equivalent diameter of 20 nm or less.
  • a reflective mask blank 30 and a reflective mask 40 were produced in the same manner as in Example 1 described above. When the obtained reflective mask 40 was subjected to defect inspection using a high-sensitivity defect inspection apparatus (“Teron 600 series” manufactured by KLA-Tencor), several tens of defects were confirmed. Defect correction was performed to obtain a reflective mask.
  • Example 4 a synthetic quartz glass substrate having the same dimensions as in Examples 1 to 3 was used. Except for this, a mask blank substrate 10 for ArF excimer laser exposure was manufactured through the same steps as those described in ⁇ Preparation of mask blank substrate> in Example 2 described above.
  • a spatial frequency of 1 ⁇ m obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m on the main surface of the mask blank substrate 10 for ArF excimer laser exposure of Example 4 with an atomic force microscope.
  • the power spectral density of ⁇ 1 to 10 ⁇ m ⁇ 1 was a maximum value of 8.72 nm 4 and a minimum value of 2.03 nm 4 .
  • the power spectral density at the spatial frequency of 1 ⁇ m ⁇ 1 or more and the spatial frequency of 1 ⁇ m ⁇ 1 or more and 10 ⁇ m ⁇ 1 or less of the main surface of the mask blank substrate of Example 3 was 10 nm 4 or less.
  • the main surface of the mask blank substrate 10 for ArF excimer laser exposure in Example 4 is 132 mm ⁇ 132 mm.
  • the area was inspected for defects.
  • the total number of detected defects including pseudo defects was 31,056, and the number of pseudo defects was greatly suppressed as compared with the conventional number of detected defects exceeding 100,000. If the total number of detected defects is about 31,056, the presence or absence of a fatal defect such as a foreign object or a flaw can be easily inspected.
  • ⁇ Preparation of transmission type mask blank> The above-described mask blank substrate 10 for ArF excimer laser exposure was introduced into a DC magnetron sputtering apparatus, and a TaN layer was formed on the main surface thereof. A mixed gas of Xe + N 2 was introduced into a DC magnetron sputtering apparatus, and a sputtering method using a Ta target was performed. Thereby, a TaN layer having a film thickness of 44.9 nm was formed on the main surface of the mask blank substrate 10.
  • a transmissive mask blank (binary mask blank) in which a TaO layer having a film thickness of 13 nm is formed on the surface of the TaN layer and the light-shielding film 51 composed of two layers is formed on the mask blank substrate 10 is obtained. It was.
  • XRD X-ray diffractometer
  • a resist was applied to the surface of the light-shielding film 51 by a spin coating method, and a resist film 25 having a thickness of 150 nm was formed through heating and cooling processes.
  • a resist pattern was formed through a drawing and developing process of a desired pattern.
  • dry etching using a fluorine-based (CHF 3 ) gas is performed to pattern the TaO layer, and then the TaN layer is patterned by dry etching using a chlorine-based (Cl 2 ) gas.
  • a light-shielding film pattern 61 was formed on the mask blank substrate 10.
  • the resist film 25 was removed, and chemical cleaning similar to that described above was performed to produce a transmission mask 60.
  • the obtained transmission mask 60 was subjected to defect inspection using a high-sensitivity defect inspection apparatus (“Teron 600 series” manufactured by KLA-Tencor), no defects were confirmed.
  • Example 5 As in Example 1, as a mask blank substrate 10 for EUV exposure, a SiO 2 —TiO 2 glass substrate having a size of 152.4 mm ⁇ 152.4 mm and a thickness of 6.35 mm was prepared and carried out. In the same manner as in Example 1, the front and back surfaces of the glass substrate were subjected to steps from polishing by a double-side polishing apparatus to local surface processing by a magnetic viscoelastic fluid polishing method.
  • a spatial frequency of 1 ⁇ m ⁇ 1 or more and 10 ⁇ m ⁇ obtained by measuring an area of 1 ⁇ m ⁇ 1 ⁇ m on the main surface of the mask blank substrate 10 for EUV exposure of Example 5 with an atomic force microscope ⁇
  • the power spectral density of 1 or less had a maximum value of 5.29 nm 4 and a minimum value of 1.15 nm.
  • the power spectral density at a spatial frequency of 10 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 was a maximum value of 1.18 nm 4 and a minimum value of 0.20 nm 4 .
  • the power spectral density at the spatial frequency of 1 ⁇ m ⁇ 1 or more and the spatial frequency of 1 ⁇ m ⁇ 1 or more and 10 ⁇ m ⁇ 1 or less of the main surface of the mask blank substrate of Example 5 was 10 nm 4 or less.
  • the main surface of the mask blank substrate 10 for EUV exposure of Example 5 under the highest inspection sensitivity conditions using a high-sensitivity defect inspection apparatus Lasertec “MAGICS M7360” having an inspection light source wavelength of 266 nm.
  • MAGICS M7360 high-sensitivity defect inspection apparatus having an inspection light source wavelength of 266 nm.
  • a multilayer reflective film 21 having a thickness of 280 nm is formed by alternately laminating the same Si film and Mo film as in Example 1, and the film thickness is formed on the surface.
  • a protective film 22 made of 2.5 nm of Ru was formed.
  • the ion beam sputtering conditions for the multilayer reflective film 21 were the same as those in Example 1.
  • the surface of the multilayer reflective film of Example 2 is 132 mm ⁇
  • the total number of detected defects was less than 100,000, and it was possible to inspect fatal defects.
  • a high-sensitivity defect inspection apparatus (Lasertec “MAGICS M7360”) with an inspection light source wavelength of 266 nm is the highest inspection sensitivity condition, and a high-sensitivity defect inspection apparatus with an inspection light source wavelength of 13.5 nm has a sphere equivalent diameter of 20 nm or less. The defect inspection was performed under the inspection sensitivity condition that can be detected.
  • the reflective mask blank 30 and the reflective mask 40 were produced in the same manner as in Example 1 described above.
  • the obtained reflective mask 40 was subjected to defect inspection using a high-sensitivity defect inspection apparatus (“Teron 600 series” manufactured by KLA-Tencor), no defects were confirmed.
  • Example 6 In Example 5 described above, the conditions for forming the multilayer reflective film 21 are such that the incident angle of the sputtered particles of the Si film is 30 degrees and the incident angle of the sputtered particles of the Mo film is 30 degrees with respect to the normal line of the substrate main surface.
  • a substrate with a multilayer reflective film was produced in the same manner as in Example 5 except that the film was formed by the ion beam sputtering method.
  • the surface of the multilayer reflective film of Example 6 is 132 mm ⁇
  • the total number of detected defects was less than 100,000, and it was possible to inspect fatal defects.
  • a high-sensitivity defect inspection apparatus (Lasertec “MAGICS M7360”) with an inspection light source wavelength of 266 nm is the highest inspection sensitivity condition, and a high-sensitivity defect inspection apparatus with an inspection light source wavelength of 13.5 nm has a sphere equivalent diameter of 20 nm or less. The defect inspection was performed under the inspection sensitivity condition that can be detected.
  • the reflective mask blank 30 and the reflective mask 40 were produced in the same manner as in Example 1 described above.
  • the obtained reflective mask 40 was subjected to defect inspection using a high-sensitivity defect inspection apparatus (“Teron 600 series” manufactured by KLA-Tencor), no defects were confirmed.
  • Example 7 On the mask blank substrate for EUV exposure in Comparative Example 1 described above, a multilayer reflective film 21 and a protective film 22 were formed according to the film forming conditions of Example 6 described above to produce a substrate with a multilayer reflective film.
  • the multilayer reflective film-coated substrate of Example 6 As a result of defect inspection on the area of 132 mm ⁇ 132 mm on the surface of 20 protective films, the total number of detected defects was less than 100,000, and it was possible to inspect fatal defects.
  • a high-sensitivity defect inspection apparatus (Lasertec “MAGICS M7360”) with an inspection light source wavelength of 266 nm is the highest inspection sensitivity condition, and a high-sensitivity defect inspection apparatus with an inspection light source wavelength of 13.5 nm has a sphere equivalent diameter of 20 nm or less. The defect inspection was performed under the inspection sensitivity condition that can be detected.
  • a reflective mask blank 30 and a reflective mask 40 were produced in the same manner as in Example 1 described above.
  • the obtained reflective mask 40 was subjected to defect inspection using a high-sensitivity defect inspection apparatus (“Teron 600 series” manufactured by KLA-Tencor), no defects were confirmed.
  • the multilayer reflective film 21 and the protective film 22 were formed on the main surface on the side where the transfer pattern of the mask blank substrate 10 is formed. Then, although the back surface conductive film 23 was formed in the back surface on the opposite side to the said main surface, it is not restricted to this. After the back surface conductive film 23 is formed on the main surface opposite to the main surface on which the transfer pattern of the mask blank substrate 10 is formed, the multilayer reflective film 21 or the like is formed on the main surface on the side where the transfer pattern is formed. Further, the reflective mask blank 30 may be manufactured by forming the protective film 22 to form the multilayer reflective film-coated substrate 20 and further forming the absorber film 24 on the protective film 22.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 リソグラフィーに使用されるマスクブランク用基板であって前記基板の転写パターンが形成される側の主表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下であり、且つ、空間周波数1μm-1以上のパワースペクトル密度が10nm以下であることを特徴とするマスクブランク用基板である。

Description

マスクブランク用基板、多層反射膜付き基板、透過型マスクブランク、反射型マスクブランク、透過型マスク、反射型マスク及び半導体装置の製造方法
 本発明は、高感度の欠陥検査装置を用いた欠陥検査において、基板や膜の表面粗さに起因する疑似欠陥を抑制し、異物や傷などの致命欠陥の発見を容易にすることが可能なマスクブランク用基板、多層反射膜付き基板、透過型マスクブランク、反射型マスクブランク、透過型マスク、反射型マスク及び半導体装置の製造方法に関する。
 一般に、半導体装置の製造工程では、フォトリソグラフィ法を用いて微細パターンの形成が行われている。また、この微細パターンの形成には通常何枚ものフォトマスクと呼ばれている転写用マスクが使用される。この転写用マスクは、一般に透光性のガラス基板上に、金属薄膜等からなる微細パターンを設けたものであり、この転写用マスクの製造においてもフォトリソグラフィ法が用いられている。
 フォトリソグラフィ法による転写用マスクの製造には、ガラス基板等の透光性基板上に転写パターン(マスクパターン)を形成するための薄膜(例えば遮光膜など)を有するマスクブランクが用いられる。このマスクブランクを用いた転写用マスクの製造は、マスクブランク上に形成されたレジスト膜に対し、所望のパターン描画を施す描画工程と、描画後、前記レジスト膜を現像して所望のレジストパターンを形成する現像工程と、このレジストパターンをマスクとして前記薄膜をエッチングするエッチング工程と、残存するレジストパターンを剥離除去する工程とを有して行われている。上記現像工程では、マスクブランク上に形成されたレジスト膜に対し所望のパターン描画を施した後に現像液を供給して、現像液に可溶なレジスト膜の部位を溶解し、レジストパターンを形成する。また、上記エッチング工程では、このレジストパターンをマスクとして、ドライエッチング又はウェットエッチングによって、レジストパターンの形成されていない薄膜が露出した部位を除去し、これにより所望のマスクパターンを透光性基板上に形成する。こうして、転写用マスクが出来上がる。
 また、転写用マスクの種類としては、従来の透光性基板上にクロム系材料からなる遮光
パターンを有するバイナリー型マスクのほかに、位相シフト型マスクが知られている。この位相シフト型マスクは、透光性基板上に位相シフト膜を有する構造のもので、この位相シフト膜は、所定の位相差を有するものであり、例えばモリブデンシリサイド化合物を含む材料等が用いられる。また、モリブデン等の金属のシリサイド化合物を含む材料を遮光膜として用いるバイナリー型マスクも用いられるようになってきている。これら、バイナリー型マスク、位相シフト型マスクを総称して、本願では透過型マスクと称し、透過型マスクに使用される原版であるバイナリー型マスクブランク、位相シフト型マスクブランクを総称して透過型マスクブランクと称す。
 また、近年、半導体産業において、半導体デバイスの高集積化に伴い、従来の紫外光を用いたフォトリソグラフィ法の転写限界を上回る微細パターンが必要とされてきている。このような微細パターン形成を可能とするため、極紫外(Extreme Ultra Violet:以下、「EUV」と呼ぶ。)光を用いた露光技術であるEUVリソグラフィーが有望視されている。ここで、EUV光とは、軟X線領域又は真空紫外線領域の波長帯の光を指し、具体的には波長が0.2~100nm程度の光のことである。このEUVリソグラフィーにおいて用いられる転写用マスクとして反射型マスクが提案されている。このような反射型マスクは、基板上に露光光を反射する多層反射膜が形成され、該多層反射膜上に露光光を吸収する吸収体膜がパターン状に形成されたものである。
 当該反射型マスクは、基板と、当該基板上に形成された多層反射膜と、当該多層反射膜上に形成された吸収体膜とを有する反射型マスクブランクから、フォトリソグラフィ法等により吸収体膜パターンを形成することによって製造される。
 以上のように、リソグラフィー工程での微細化に対する要求が高まることにより、そのリソグラフィー工程での課題が顕著になりつつある。その1つが、リソグラフィー工程で用いられるマスクブランク用基板や多層反射膜付き基板等の欠陥情報に関する問題である。
 マスクブランク用基板は、近年のパターンの微細化に伴う欠陥品質の向上や、転写用マスクに求められる光学的特性の観点から、より平滑性の高い基板が要求されている。従来のマスクブランク用基板の表面加工方法としては、例えば、特許文献1~3に記載されたようなものがある。
 特許文献1には、平均一次粒子径が50nm以下のコロイダルシリカ、酸および水を含み、pHが0.5~4の範囲になるように調整してなる研磨スラリーを用いて、SiOを主成分とするガラス基板の表面を、原子間力顕微鏡で測定した表面粗さRmsが0.15nm以下になるように研磨する、ガラス基板の研磨方法が記載されている。
 特許文献2には、合成石英ガラス基板表面の高感度欠陥検査装置で検出される欠陥の生成を抑制するために、抑制コロイド溶液及び酸性アミノ酸を含んだ合成石英ガラス基板用の研磨剤が記載されている。
 特許文献3には、石英ガラス基板を水素ラジカルエッチング装置内に載置し、石英ガラス基板に水素ラジカルを作用させて、表面平坦度をサブナノメータレベルで制御できるようにした、石英ガラス基板の表面平坦度を制御する方法が記載されている。
 また、多層反射膜付き基板も、近年のパターンの微細化に伴う欠陥品質の向上や、転写用マスクに求められる光学的特性の観点から、より高い平滑性を有することが要求されている。多層反射膜は、マスクブランク用基板の表面上に高屈折率層及び低屈折率層を交互に積層することで形成される。これらの各層は、一般にそれらの層の形成材料からなるスパッタリングターゲットを使用したスパッタリングにより形成されている。
 スパッタリングの手法としては、放電でプラズマを作る必要がないので、多層反射膜中に不純物が混ざりにくい点や、イオン源が独立していて、条件設定が比較的容易等の点からイオンビームスパッタリングが好ましく実施されており、形成される各層の平滑性や面均一性の観点から、マスクブランク用基板主表面の法線(前記主表面に直交する直線)に対して大きな角度で、すなわち基板主表面に対してななめ若しくは平行に近い角度でスパッタ粒子を到達させて、高屈折率層及び低屈折率層を成膜している。
 このような方法で多層反射膜付き基板を製造する技術として、特許文献4には、基板上にEUVリソグラフィー用反射型マスクブランクの多層反射膜を成膜するに際し、基板をその中心軸を中心に回転させつつ、基板の法線と基板に入射するスパッタ粒子とがなす角度αの絶対値を35度≦α≦80度に保持してイオンビームスパッタリングを実施することが記載されている。
特開2006-35413号公報 特開2009-297814号公報 特開2008-94649号公報 特表2009-510711号公報
 ArFエキシマレーザー、EUV(Extreme Ultra-Violet)を使用したリソグラフィーにおける急速なパターンの微細化に伴い、バイナリー型マスクや位相シフト型マスクのような透過型マスク(オプティカルマスクとも言う。)や、反射型マスクであるEUVマスクの欠陥サイズ(Defect Size)も年々微細になり、このような微細欠陥を発見するために、欠陥検査で使用する検査光源波長は露光光の光源波長に近づきつつある。
 例えば、オプティカルマスクや、その原版であるマスクブランク及びサブストレートの欠陥検査装置としては、検査光源波長が193nmとする高感度欠陥検査装置が普及しつつあり、EUVマスクや、その原版であるEUVマスクブランク及びサブストレートの欠陥検査装置としては、検査光源波長が266nm(例えば、レーザーテック社製のEUV露光用のマスク・サブストレート/ブランク欠陥検査装置「MAGICS M7360」 、193nm(KLA-Tencor社製のEUV・マスク/ブランクス欠陥検査装置「Teron600シリーズ」)、13.5nmとする高感度欠陥検査装置が普及、又は提案されている。
 ここで、従来の転写用マスクに用いられる基板の主表面は、その製造過程においてRms(二乗平均平方根粗さ)及びRmax(最大高さ)に代表される表面粗さにより管理していた。しかし、上述した高感度欠陥検査装置の検出感度が高いため、欠陥品質の向上の観点からいくらRms及びRmaxに準拠する平滑性を高めても、基板主表面の欠陥検査を行うと多数の疑似欠陥が検出され、欠陥検査が最後まで実施できないという問題が生じた。
 また、従来の転写用マスクに用いられる多層反射膜付き基板の多層反射膜は、例えば[背景技術]で述べた方法で成膜されて、基板上に存在する凹欠陥を低減する試みがなされている。しかし、いくら基板の凹欠陥起因の欠陥を低減できたとしても、上述した高感度欠陥検査装置の検出感度が高いため、多層反射膜の欠陥検査を行うと欠陥検出数(欠陥検出数=致命欠陥+疑似欠陥)が多く検出されるという問題が生じている。
 ここでいう疑似欠陥とは、パターン転写に影響しない基板表面上や多層反射膜上の許容される凹凸であって、高感度欠陥検査装置で検査した場合に、欠陥と誤判定されてしまうものをいう。欠陥検査において、このような疑似欠陥が多数検出されると、パターン転写に影響のある致命欠陥が多数の疑似欠陥に埋もれてしまい、致命欠陥を発見することができなくなる。例えば、現在普及しつつある検査光源波長が266nm、193nmあるいは13.5nmとする欠陥検査装置では、例えば132mm×132mmのサイズの基板や多層反射膜付基板において、欠陥検出数が100,000個を超えてしまい、致命欠陥の有無を検査することができない。欠陥検査における致命欠陥の看過は、その後の半導体装置の量産過程において不良を引き起こし、無用な労力と経済的な損失をまねくことになる。
 本発明は、上記問題点に鑑みてなされたものであり、高感度の欠陥検査装置を用いた欠陥検査において、基板や膜の表面粗さに起因する疑似欠陥検出を抑制し、異物や傷などの致命欠陥の発見を容易にすることが可能なマスクブランク用基板、多層反射膜付き基板、透過型マスクブランク、反射型マスクブランク、透過型マスク、反射型マスク及び半導体装置の製造方法の提供を目的とする。
 また、本発明は、種々の波長の光を使用した高感度欠陥検査機においても疑似欠陥を含む欠陥検出数が少なく、特に多層反射膜付き基板に要求される平滑性が達成され、同時に疑似欠陥を含む欠陥検出数が少ないために致命欠陥を確実に検出することができる多層反射膜付き基板及びその製造方法、当該基板を使用して得られる反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに前記反射型マスクを使用した半導体装置の製造方法を提供することを目的とする。
 上記問題点を解決するために、本発明者らが鋭意検討した結果、高感度欠陥検査装置の検査光源波長に対し、所定の空間周波数(または空間波長)成分の粗さが影響を与えることを見出した。そこで、基板主表面や膜(例えば、多層反射膜)の表面上の粗さ(凹凸)成分のうち、高感度欠陥検査装置が疑似欠陥と誤判定してしまう粗さ成分の空間周波数を特定し、該空間周波数における振幅強度を管理することで、欠陥検査における疑似欠陥検出の抑制と、致命欠陥の顕著化とを図ることができる。
 また、多層反射膜付き基板においては、従来、多層反射膜について反射率特性の観点からその表面粗さを低減する試みはなされていたが、高感度欠陥検査装置による疑似欠陥の検出との関連については、全く知られていなかった。
 上記目的を達成するために、本発明の一実施形態に係るマスクブランク用基板は、リソグラフィーに使用されるマスクブランク用基板であって、
 前記基板の転写パターンが形成される側の主表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下であり、且つ、空間周波数1μm-1以上のパワースペクトル密度が10nm以下である構成となっている。
 上記目的を達成するために、本発明の一実施形態に係る多層反射膜付き基板は、上述した本発明のマスクブランク用基板の主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を有する構成となっている。
 上記目的を達成するために、本発明の一実施形態に係る多層反射膜付き基板は、リソグラフィーに使用されるマスクブランク用基板の主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を有する多層反射膜付き基板であって、
 前記多層反射膜付き基板の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下であり、且つ、空間周波数1μm-1以上のパワースペクトル密度が20nm以下である構成となっている。
 上記目的を達成するために、本発明の一実施形態に係る透過型マスクブランクは、上述した本発明のマスクブランク用基板の主表面上に、転写パターンとなる遮光性膜を有する構成となっている。
 上記目的を達成するために、本発明の一実施形態に係る反射型マスクブランクは、上述した本発明の多層反射膜付き基板の前記多層反射膜上又は前記保護膜上に、転写パターンとなる吸収体膜を有する構成となっている。
 上記目的を達成するために、本発明の一実施形態に係る透過型マスクは、上述した本発明の透過型マスクブランクにおける前記遮光性膜をパターニングして、前記主表面上に遮光性膜パターンを有する構成となっている。
 上記目的を達成するために、本発明の一実施形態に係る反射型マスクは、上述した本発明の反射型マスクブランクにおける前記吸収体膜をパターニングして、前記多層反射膜上又は前記保護膜上に吸収体パターンを有する構成となっている。
 上記目的を達成するために、本発明の一実施形態に係る半導体装置の製造方法は、上述した本発明の透過型マスクを用いて、露光装置を使用したリソグラフィープロセスを行い、被転写体上に転写パターンを形成する工程を有する方法となっている。
 上記目的を達成するために、本発明の一実施形態に係る半導体装置の製造方法は、上述した本発明の反射型マスクを用いて、露光装置を使用したリソグラフィープロセスを行い、被転写体上に転写パターンを形成する工程を有する方法となっている。
図1(a)は、本発明の一実施形態に係るマスクブランク用基板10を示す斜視図である。図1(b)は、本実施形態のマスクブランク用基板10を示す断面模式図である。 本発明の一実施形態に係る多層反射膜付き基板の構成の一例を示す断面模式図である。 本発明の一実施形態に係る反射型マスクブランクの構成の一例を示す断面模式図である。 本発明の一実施形態に係る反射型マスクの一例を示す断面模式図である。 本発明の一実施形態に係る透過型マスクブランクの構成の一例を示す断面模式図である。 本発明の一実施形態に係る透過型マスクの一例を示す断面模式図である。 本発明の実施例1~4、比較例1及び2のマスクブランク用基板の主表面をパワースペクトル解析した結果を示すグラフである。 図7において、本発明の実施例1~4のマスクブランク用基板の主表面をパワースペクトル解析した結果を抜き出したグラフである。 図7において、比較例1及び2のマスクブランク用基板の主表面をパワースペクトル解析した結果を抜き出したグラフである。 本発明の実施例5のマスクブランク用基板の主表面をパワースペクトル解析した結果を示すグラフである。
発明の詳細な説明
・全般的説明
 上記目的を達成するために、本発明は、以下の構成となっている。
(構成1)
 本発明の構成1は、リソグラフィーに使用されるマスクブランク用基板であって、前記基板の転写パターンが形成される側の主表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下であり、且つ、空間周波数1μm-1以上のパワースペクトル密度が10nm以下である、マスクブランク用基板である。
 上記構成1によれば、マスクブランク用基板の主表面が1μm×1μmの領域で検出されうる空間周波数1μm-1以上の粗さ成分全ての振幅強度であるパワースペクトル密度を10nm以下にすることにより、高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。
(構成2)
 本発明の構成2は、前記主表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が10nm以下である、構成1に記載のマスクブランク用基板である。
 上記構成2によれば、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー又は193nmのArFエキシマレーザーを用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができ、さらに致命欠陥の顕在化を図ることができる。
(構成3)
 本発明の構成3は、前記主表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が1nm以上10nm以下である、構成2に記載のマスクブランク用基板である。
 上記構成3によれば、パワースペクトル密度を1nmまで低くすれば、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー又は193nmのArFエキシマレーザーを用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を十分に抑制することができ、さらに致命欠陥の顕在化を図ることができる。従って、前記主表面の表面形態を過剰に高平滑、高精度に形成する必要がないので、マスクブランク用基板の製造過程の負荷を低減させることができる。
(構成4)
 本発明の構成4は、前記主表面は、触媒基準エッチングにより表面加工された表面である、構成1~3のいずれか1項に記載のマスクブランク用基板である。
 上記構成4によれば、触媒基準エッチングにより、基準面である触媒表面に接触する凸部から選択的に表面加工されるため、主表面を構成する凹凸(表面粗さ)が、非常に高い平滑性を維持しつつ、非常に揃った表面形態となり、しかも、基準面に対して凸部よりも凹部を構成する割合が多い表面形態となる。従って、前記主表面上に複数の薄膜を積層する場合においては、主表面の欠陥サイズが小さくなる傾向となるので欠陥品質上好ましい。特に、前記主表面上に、後述する多層反射膜を形成する場合に特に効果が発揮される。また、上述のように主表面を触媒基準エッチングによる表面処理することにより、上記構成1~3で規定している範囲の表面粗さ、パワースペクトル密度の表面を比較的容易に形成することができる。
(構成5)
 本発明の構成5は、前記基板が、EUVリソグラフィーに使用されるマスクブランク用基板である、構成1~4のいずれか1つに記載のマスクブランク用基板である。
 上記構成5によれば、EUVリソグラフィーに使用されるマスクブランク用基板とすることにより、前記主表面上に形成される多層反射膜表面の表面形態も高平滑となるので、EUV光に対する反射率特性も良好となる。
(構成6)
 本発明の構成6は、前記基板が、多成分系のガラスからなる基板の前記主表面上に、金属、合金又はこれらのいずれかに酸素、窒素、炭素の少なくとも一つを含有した材料からなる薄膜を有する、構成5に記載のマスクブランク用基板である。
 一般に、EUVリソグラフィーに使用されるマスクブランク用基板においては、低熱膨張の特性が要求されるため、後述するような多成分系のガラス材料を使用することが好ましい。多成分系のガラス材料は、合成石英ガラスと比較して高い平滑性を得られにくいという性質がある。このため、多成分系のガラス材料からなる基板の前記主表面上に、金属、合金又はこれらの何れかに酸素、窒素、炭素の少なくとも一つを含有した材料からなる薄膜が形成された基板とする。そして、このような薄膜の表面を表面加工することにより、上記構成1~5に規定した表面形態を有する基板を容易に得られる。
(構成7)
 本発明の構成7は、構成1~6のいずれか1つに記載したマスクブランク用基板の主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を有する、多層反射膜付き基板である。
 上記構成7によれば、前記主表面上に形成される多層反射膜表面の表面形態も高平滑となるので、EUV光に対する反射率特性も良好となる。また、多層反射膜付き基板において、高感度欠陥検査装置を使用しての多層反射膜表面の欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。また、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー、193nmのArFエキシマレーザーを用いる高感度欠陥検査装置や、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、検査光源波長として13.5nmのEUV光を用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる。
(構成8)
 本発明の構成8は、前記多層反射膜付き基板は、前記多層反射膜上に保護膜を有する、構成7に記載の多層反射膜付き基板である。
 上記構成8によれば、前記多層反射膜付き基板は、前記多層反射膜上に保護膜を有することにより、転写用マスク(EUVマスク)を製造する際の多層反射膜表面へのダメージを抑制することができるので、EUV光に対する反射率特性が更に良好となる。また、多層反射膜付き基板において、高感度欠陥検査装置を使用しての保護膜表面の欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。また、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー、193nmのArFエキシマレーザーを用いる高感度欠陥検査装置や、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、検査光源波長として13.5nmのEUV光を用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる。
(構成9)
 本発明の構成9は、構成7又は8に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上のパワースペクトル密度が20nm以下である、多層反射膜付き基板である。
 上記構成9によれば、多層反射膜又は保護膜の表面が、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上のパワースペクトル密度が20nm以下にすることにより、高感度欠陥検査装置を使用しての多層反射膜表面の欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。また、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー、193nmのArFエキシマレーザーを用いる高感度欠陥検査装置や、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、検査光源波長として13.5nmのEUV光を用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる。
(構成10)
 本発明の構成10は、構成9に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が20nm以下である、多層反射膜付き基板である。
 上記構成10によれば、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー又は193nmのArFエキシマレーザーを用いる高感度欠陥検査装置を使用しての多層反射膜付き基板の欠陥検査における疑似欠陥の検出を大幅に抑制することができ、さらに致命欠陥の顕在化を図ることができる。
(構成11)
 本発明の構成11は、構成9に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が9nm以下である、多層反射膜付き基板である。
 上記構成11によれば、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、検査光源波長として13.5nmのEUV光を用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる。
(構成12)
 本発明の構成12は、構成9~11のいずれか1つに記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下である、多層反射膜付き基板である。
 上記構成12によれば、上記構成9~11の高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる効果に加え、多層反射膜付き基板として必要な反射特性を良好にするこができる。
(構成13)
 リソグラフィーに使用されるマスクブランク用基板の主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を有する多層反射膜付き基板であって、
 前記多層反射膜付き基板の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下であり、且つ、空間周波数1μm-1以上のパワースペクトル密度が20nm以下である、多層反射膜付き基板である。
 上記構成13によれば、多層反射膜付き基板の表面が、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下であり、且つ、空間周波数1μm-1以上のパワースペクトル密度が20nm以下にすることにより、多層反射膜付き基板として必要な反射特性を良好にするとともに、高感度欠陥検査装置を使用しての多層反射膜表面の欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。また、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー、193nmのArFエキシマレーザーを用いる高感度欠陥検査装置や、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、13.5nmのEUV光を用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる。
(構成14)
 本発明の構成14は、前記多層反射膜上に保護膜を有する、構成13に記載の多層反射膜付き基板である。
 上記構成14によれば、前記多層反射膜上に保護膜を有することにより、転写用マスク(EUVマスク)を製造する際の多層反射膜表面へのダメージを抑制することができるので、EUV光に対する反射率特性が更に良好となる。また、多層反射膜付き基板において、高感度欠陥検査装置を使用しての保護膜表面の欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。また、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー、193nmのArFエキシマレーザーを用いる高感度欠陥検査装置や、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、13.5nmのEUV光を用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる。
(構成15)
 本発明の構成15は、構成13又は14に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が20nm以下である、多層反射膜付き基板である。
 上記構成15によれば、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー又は193nmのArFエキシマレーザーを用いる高感度欠陥検査装置を使用しての多層反射膜付き基板の欠陥検査における疑似欠陥の検出を大幅に抑制することができ、さらに致命欠陥の顕在化を図ることができる。
(構成16)
 本発明の構成16は、構成13又は14に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が9nm以下である、多層反射膜付き基板である。
 上記構成16によれば、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、検査光源波長として13.5nmのEUV光を用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる。
(構成17)
 本発明の構成17は、構成1~4のいずれか1つに記載のマスクブランク用基板の前記主表面上に、転写パターンとなる遮光性膜を有する、透過型マスクブランクである。
 上記構成17によれば、透過型マスクブランクにおいて、1μm×1μmの領域で検出されうる空間周波数1μm-1以上の粗さ成分全ての振幅強度であるパワースペクトル密度を10nm以下にすることにより、高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。また、例えば、検査光源波長として193nmのArFエキシマレーザーを用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる。
(構成18)
 本発明の構成18は、構成8~16のいずれか1つに記載の多層反射膜付き基板の前記多層反射膜上又は前記保護膜上に、転写パターンとなる吸収体膜を有する、反射型マスクブランクである。
 上記構成18によれば、反射型マスクブランクにおいて、高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。また、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー、193nmのArFエキシマレーザーを用いる高感度欠陥検査装置や、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、13.5nmのEUV光を用いる高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる。
(構成19)
 本発明の構成19は、構成17に記載の透過型マスクブランクにおける前記遮光性膜をパターニングして、前記主表面上に遮光性膜パターンを有する、透過型マスクである。
(構成20)
 本発明の構成20は、構成18に記載した反射型マスクブランクにおける前記吸収体膜をパターニングして、前記多層反射膜上に吸収体パターンを有する、反射型マスクである。
 上記構成19、20によれば、透過型マスクや反射型マスクにおいて、高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。
(構成21)
 本発明の構成21は、構成19に記載した透過型マスクを用いて、露光装置を使用したリソグラフィープロセスを行い、被転写体上に転写パターンを形成する工程を有する、半導体装置の製造方法である。
(構成22)
 本発明の構成22は、構成20に記載した反射型マスクを用いて、露光装置を使用したリソグラフィープロセスを用い、被転写体上に転写パターンを形成する工程を有する、半導体装置の製造方法である。
 上記構成21、22によれば、高感度の欠陥検査装置を用いた欠陥検査において、異物や傷などの致命欠陥を排除した透過型マスクや反射型マスクを使用できるので、半導体基板等の被転写体上に形成されたレジスト膜に転写する回路パターン等の転写パターンに欠陥がなく、微細でかつ高精度の転写パターンを有する半導体装置を製造することができる。
・発明の効果
 上述した本発明のマスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、透過型マスクブランク、反射型マスク、透過型マスクによれば、高感度の欠陥検査装置を用いた欠陥検査において、基板や膜の表面粗さに起因する疑似欠陥の検出を抑制し、異物や傷などの致命欠陥の発見を容易にすることが可能となる。特に、EUVリソグラフィーに使用するマスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスクにおいては、疑似欠陥を抑制しつつ、基板主表面上に形成した多層反射膜は高い反射率が得られる。
 また、上述した半導体装置の製造方法によれば、高感度の欠陥検査装置を用いた欠陥検査において、異物や傷などの致命欠陥を排除した反射型マスクや透過型マスクを使用できるので、半導体基板等の被転写体上に形成する回路パターン等の転写パターンに欠陥がなく、微細でかつ高精度の転写パターンを有する半導体装置を製造することができる。
・図示された実施形態の説明
[マスクブランク用基板]
 まず、本発明の一実施形態に係るマスクブランク用基板について以下に説明する。
 図1(a)は、本実施形態のマスクブランク用基板10を示す斜視図である。図1(b)は、本実施形態のマスクブランク用基板10を示す断面模式図である。
 マスクブランク用基板10(または、単に基板10と称す。)は、矩形状の板状体であり、2つの対向主表面2と、端面1とを有する。2つの対向主表面2は、この板状体の上面及び下面であり、互いに対向するように形成されている。また、2つの対向主表面2の少なくとも一方は、転写パターンが形成されるべき主表面である。
 端面1は、この板状体の側面であり、対向主表面2の外縁に隣接する。端面1は、平面状の端面部分1d、及び曲面状の端面部分1fを有する。平面状の端面部分1dは、一方の対向主表面2の辺と、他方の対向主表面2の辺とを接続する面であり、側面部1a、及び面取斜面部1bを含む。側面部1aは、平面状の端面部分1dにおける、対向主表面2とほぼ垂直な部分(T面)である。面取斜面部1bは、側面部1aと対向主表面2との間における面取りされた部分(C面)であり、側面部1aと対向主表面2との間に形成される。
 曲面状の端面部分1fは、基板10を平面視したときに、基板10の角部10a近傍に隣接する部分(R部)であり、側面部1c及び面取斜面部1eを含む。ここで、基板10を平面視するとは、例えば、対向主表面2と垂直な方向から、基板10を見ることである。また、基板10の角部10aとは、例えば、対向主表面2の外縁における、2辺の交点近傍である。2辺の交点とは、2辺のそれぞれの延長線の交点であってよい。本例において、曲面状の端面部分1fは、基板10の角部10aを丸めることにより、曲面状に形成されている。
 本実施形態において、上記目的を達成するために、少なくとも転写パターンが形成される側の主表面、即ち、後述するように透過型マスクブランク50においては、遮光性膜51が形成される側の主表面、反射型マスクブランク30においては、多層反射膜21、保護膜22、吸収体膜24が形成される側の主表面が、ある一定の表面粗さと、パワースペクトル密度(Power Spectrum Density : PSD)を有していることを特徴とする。
 以下、本実施形態のマスクブランク用基板10の主表面の表面形態を示すパラメーターである表面粗さ(Rmax、Rms)及び、パワースペクトル密度(Power Spectrum Density : PSD)について以下に説明する。
 まず、代表的な表面粗さの指標であるRms(Root means square)は、二乗平均平方根粗さであり、平均線から測定曲線までの偏差の二乗を平均した値の平方根である。Rmsは下式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、lは基準長さであり、Zは平均線から測定曲線までの高さである。
 同じく、代表的な表面粗さの指標であるRmaxは、表面粗さの最大高さであり、粗さ曲線の山の高さの最大値と谷の深さの最大値との絶対値の差である。
 Rms及びRmaxは、従来からマスクブランク用基板10の表面粗さの管理に用いられており、表面粗さを数値で把握できる点で優れている。しかし、これらRms及びRmaxは、いずれも高さの情報であり、微細な表面形状の変化に関する情報を含まない。
 これに対して、得られた表面の凹凸を空間周波数領域へ変換することにより、空間周波数での振幅強度で表すパワースペクトル解析は、微細な表面形状を数値化することができる。Z(x,y)をx座標、y座標における高さのデータとすると、そのフーリエ変換は下式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Nx,Nyは、x方向とy方向のデータの数である。u=0、1、2・・・Nx-1、v=0、1、2・・・Ny-1であり、このとき空間周波数fは、下式(3)で与えられる。
Figure JPOXMLDOC01-appb-M000003
 ここで、式(3)において、dxはx方向の最小分解能であり、dyはy方向の最小分解能である。
 このときのパワースペクトル密度PSDは下式(4)で与えられる。
Figure JPOXMLDOC01-appb-M000004
 このパワースペクトル解析は、基板10の主表面2や、後述するような膜の表面状態の変化を単純な高さの変化としてだけでなく、その空間周波数での変化として把握することができる点で優れており、原子レベルでの微視的な反応などが表面に与える影響を解析する手法である。
 そして、本実施形態のマスクブランク用基板10は、上記目的を達成するために、転写パターンが形成される側の主表面を、上述の表面粗さ(Rms)、パワースペクトル密度を用い、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下であり、且つ、空間周波数1μm-1以上のパワースペクトル密度が10nm以下とする。
 本発明において、前記1μm×1μmの領域は、転写パターン形成領域の任意の箇所でよい。転写パターン形成領域は、基板10が6025サイズ(152.4mm×152.4mm×6.35mm)の場合、例えば、基板10の主表面の周縁領域を除外した142mm×142mmの領域や、132mm×132mmの領域、132mm×104mmの領域とすることができる、また、前記任意の箇所については、例えば、基板10の主表面の中心の領域とすることができる。
 また、上述で説明した1μm×1μmの領域、転写パターン形成領域、任意の箇所については、後述する多層反射膜付き基板20の多層反射膜21や保護膜22、反射型マスクブランク30の吸収体膜24、透過型マスクブランク50における遮光性膜51においても適用することができる。
 また、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、検査光源波長として266nmのUVレーザー又は193nmのArFエキシマレーザーを用いる高感度欠陥検査装置を使用して、上記マスクブランク用基板10の主表面の欠陥検査を行う場合には、上記主表面が、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が10nm以下とすることが好ましく、更に好ましくは、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が1nm以上10nm以下、更に好ましくは、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が1nm以上8nm以下、更に好ましくは、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が1nm以上6nm以下とするのが望ましい。
 また、上述の二乗平均平方根粗さ(Rms)は、好ましくは、0.12nm以下、更に好ましくは、0.10nm以下、更に好ましくは、0.08nm以下、更に好ましくは、0.06nm以下が望ましい。また、最大高さ(Rmax)は、好ましくは1.2nm以下、更に好ましくは、1.0nm以下、更に好ましくは、0.8nm以下、更に好ましくは、0.6nm以下が望ましい。マスクブランク用基板10上に形成される多層反射膜21、保護膜22、吸収体膜24、遮光性膜51の反射率等の光学特性向上の観点からは、二乗平均平方根粗さ(Rms)と最大高さ(Rmax)の両方のパラメーターを管理することが好ましい。例えば、マスクブランク用基板10の表面の好ましい表面粗さは、二乗平均平方根粗さ(Rms)が0.12nm以下でかつ、最大高さ(Rmax)が1.2nm以下が好ましく、更に好ましくは、二乗平均平方根粗さ(Rms)が0.10nm以下でかつ、最大高さ(Rmax)が1.0nm以下、更に好ましくは、二乗平均平方根粗さ(Rms)が0.08nm以下でかつ、最大高さ(Rmax)が0.8nm以下、更に好ましくは、二乗平均平方根粗さ(Rms)が0.06nm以下でかつ、最大高さ(Rmax)が0.6nm以下であることが望ましい。
 また、基板10の主表面は、触媒基準エッチングにより表面加工された表面とすることが好ましい。触媒基準エッチング(Catalyst Referred Etching:以下、CAREともいう)とは、基板10の主表面と触媒との間に、常態では溶解性を示さない処理流体を介在させた状態で、両者を接近又は接触させることにより、触媒に吸着している処理液中の分子から生成された活性種によって、主表面に存在する微小な凸部を選択的に除去して平滑化させる表面加工方法である。
 基板10の主表面が、触媒基準エッチングにより、基準面である触媒表面に接触する凸部から選択的に表面加工されるため、主表面を構成する凹凸(表面粗さ)が、非常に高い平滑性を維持しつつ、非常に揃った表面形態となり、しかも、基準面に対して凸部よりも凹部を構成する割合が多い表面形態となる。従って、前記主表面上に複数の薄膜を積層する場合においては、主表面の欠陥サイズが小さくなる傾向となるので欠陥品質上好ましい。特に、前記主表面上に、後述する多層反射膜を形成する場合に特に効果が発揮される。また、上述のように主表面を触媒基準エッチングによる表面処理することにより、上記構成1又は2で規定している範囲の表面粗さ、ベアリングカーブ特性の表面を比較的容易に形成することができる。
 尚、基板10の材料がガラス材料の場合、触媒としては、白金、金、遷移金属及びこれらのうち少なくとも一つを含む合金からなる群より選ばれる少なくとも一種の材料を使用することができる。また、処理液としては、純水、オゾン水や水素水等の機能水、低濃度のアルカリ性水溶液、低濃度の酸性水溶液からなる群より選択される少なくとも一種の所液を使用することができる。
 上記のように主表面の表面粗さ、及びパワースペクトル密度を上記範囲にすることにより、例えば、レーザーテック社製のEUV露光用のマスク・サブストレート/ブランク欠陥検査装置「MAGICS M7360」(検査光源波長:266nm)や、KLA-Tencor社製のレチクル、オプティカル・マスク/ブランク及びEUV・マスク/ブランク欠陥検査装置「Teron600シリーズ」(検査光源波長:193nm)による欠陥検査において、疑似欠陥の検出を大幅に抑制することができる。
 尚、上記検査光源波長は、266nm、193nmに限定されない。検査光源波長として、532nm、488nm、364nm、257nmを使用しても構わない。
 上記の検査光源波長を有する高感度欠陥検査装置を用いて欠陥検査するマスクブランク用基板としては、透過型マスクブランク用基板、反射型マスクブランク用基板が挙げられる。
 また、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、検査光源波長として13.5nmのEUV光を用いる高感度欠陥検査装置を使用して、上記マスクブランク用基板10の主表面の欠陥検査を行う場合には、上記主表面が、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が5nm以下とすることが好ましく、更に好ましくは、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が0.5nm以上5nm以下とするのが望ましい。但し、EUV光を用いる高感度欠陥検査装置を使用してマスクブランク用基板10の主表面の欠陥検査を行う場合には、所定以上の反射率を必要とするため、ガラス以外の材料の場合に限られる。
 上記のように主表面の表面粗さ、及びパワースペクトル密度を上記範囲にすることにより、例えば、検査光源波長として13.5nmのEUV光を用いる高感度欠陥検査装置による欠陥検査において、疑似欠陥の検出を大幅に抑制することができる。
 上記の検査光源波長を有する高感度欠陥検査装置を用いて欠陥検査するマスクブランク用基板10としては、反射型マスクブランク用基板が挙げられる。
 また、本実施形態のマスクブランク用基板10は、転写パターンが形成される側の主表面は、少なくともパターン転写精度、位置精度を得る観点から高平坦度となるように表面加工されていることが好ましい。EUVの反射型マスクブランク用基板の場合、基板10の転写パターンが形成される側の主表面の132mm×132mmの領域、または142mm×142mmの領域において、平坦度が0.1μm以下であることが好ましく、特に好ましくは0.05μm以下である。更に好ましくは、基板10の転写パターンが形成される側の主表面132mm×132mmの領域において、平坦度が0.03μm以下である。また、転写パターンが形成される側と反対側の主表面は、露光装置にセットする時の静電チャックされる面であって、142mm×142mmの領域において、平坦度が1μm以下、特に好ましくは0.5μm以下である。ArFエキシマレーザー露光用の透過型マスクブランクに使用するマスクブランク用基板10の場合、基板の転写パターンが形成される側の主表面の132mm×132mmの領域、または142mm×142mmの領域においては、平坦度が0.3μm以下であることが好ましく、特に好ましくは、0.2μm以下である。
 ArFエキシマレーザー露光用の透過型マスクブランク用基板の材料としては、露光波長に対して透光性を有するものであれば何でもよい。一般的には、合成石英ガラスが使用される。その他の材料としては、アルミノシリケートガラス、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラスであっても構わない。
 また、EUV露光用の反射型マスクブランク用基板の材料としては、低熱膨張の特性を有するものであれば何でもよい。例えば、低熱膨張の特性を有するSiO-TiO系ガラス(2元系(SiO-TiO)及び3元系(SiO-TiO-SnO等))、例えばSiO-Al-LiO系の結晶化ガラスなどの所謂、多成分系ガラスを使用することができる。また、上記ガラス以外にシリコンや金属などの基板を用いることもできる。前記金属基板の例としては、インバー合金(Fe-Ni系合金)などが挙げられる。
 上述のように、EUV露光用のマスクブランク用基板の場合、基板に低熱膨張の特性が要求されるため、多成分系ガラス材料を使用するが、合成石英ガラスと比較して高い平滑性を得にくいという問題がある。この問題を解決すべく、多成分系ガラス材料からなる基板上に、金属、合金からなる又はこれらのいずれかに酸素、窒素、炭素の少なくとも一つを含有した材料からなる薄膜を形成する。そして、このような薄膜表面を鏡面研磨、表面処理することにより、上記範囲の表面粗さ、パワースペクトル密度の表面を比較的容易に形成することができる。
 上記薄膜の材料としては、例えば、Ta(タンタル)、Taを含有する合金、又はこれらのいずれかに酸素、窒素、炭素の少なくとも一つを含有したTa化合物が好ましい。Ta化合物としては、例えば、TaB、TaN、TaO、TaON、TaCON、TaBN、TaBO、TaBON、TaBCON、TaHf、TaHfO、TaHfN、TaHfON、TaHfCON、TaSi、TaSiO、TaSiN、TaSiON、TaSiCONなどを適用することができる。これらTa化合物のうち、窒素(N)を含有するTaN、TaON、TaCON、TaBN、TaBON、TaBCON、TaHfN、TaHfON、TaHfCON、TaSiN、TaSiON、TaSiCONがより好ましい。尚、上記薄膜は、薄膜表面の高平滑性の観点から、好ましくはアモルファス構造とすることが望ましい。薄膜の結晶構造は、X線回折装置(XRD)により測定することができる。
 尚、本発明では、上記に規定した表面粗さ、パワースペクトル密度を得るための加工方法は、特に限定されるものではない。本発明は、マスクブランク用基板の表面粗さ、パワースペクトル密度を管理する点に特徴があり、例えば、後述する実施例1~3、及び実施例5に例示したような加工方法によって実現することができる。
[多層反射膜付き基板]
 次に、本発明の一実施形態に係る多層反射膜付き基板20について以下に説明する。
 図2は、本実施形態の多層反射膜付き基板20を示す模式図である。
 本実施形態の多層反射膜付き基板20は、上記説明したマスクブランク用基板10の転写パターンが形成される側の主表面上に多層反射膜21を有する構造としている。この多層反射膜21は、EUVリソグラフィー用反射型マスクにおいてEUV光を反射する機能を付与するものであり、屈折率の異なる元素が周期的に積層された多層膜の構成を取っている。
 多層反射膜21はEUV光を反射する限りその材質は特に限定されないが、その単独での反射率は通常65%以上であり、上限は通常73%である。このような多層反射膜21は、一般的には、高屈折率の材料からなる薄膜(高屈折率層)と、低屈折率の材料からなる薄膜(低屈折率層)とが、交互に40~60周期程度積層された多層反射膜とすることができる。
 例えば、波長13~14nmのEUV光に対する多層反射膜21としては、Mo膜とSi膜とを交互に40周期程度積層したMo/Si周期積層膜とすることが好ましい。その他、EUV光の領域で使用される多層反射膜として、Ru/Si周期多層膜、Mo/Be周期多層膜、Mo化合物/Si化合物周期多層膜、Si/Nb周期多層膜、Si/Mo/Ru周期多層膜、Si/Mo/Ru/Mo周期多層膜、Si/Ru/Mo/Ru周期多層膜などとすることが可能である。
 多層反射膜21の形成方法は当該技術分野において公知であるが、例えば、マグネトロンスパッタリング法や、イオンビームスパッタリング法などにより、各層を成膜することにより形成できる。上述したMo/Si周期多層膜の場合、例えば、イオンビームスパッタリング法により、まずSiターゲットを用いて厚さ数nm程度のSi膜を基板10上に成膜し、その後、Moターゲットを用いて厚さ数nm程度のMo膜を成膜し、これを一周期として、40~60周期積層して、多層反射膜21を形成する。
 上記で形成された多層反射膜21の上に、EUVリソグラフィー用反射型マスクの製造工程におけるドライエッチングやウェット洗浄からの多層反射膜21の保護のため、保護膜22(図3を参照)を形成することもできる。このように、マスクブランク用基板10上に、多層反射膜21と、保護膜22とを有する形態も本発明における多層反射膜付き基板とすることができる。
 尚、上記保護膜22の材料としては、例えば、Ru、Ru-(Nb,Zr,Y,B,Ti,La,Mo),Si-(Ru,Rh,Cr,B),Si,Zr,Nb,La,B等の材料を使用することができるが、これらのうち、ルテニウム(Ru)を含む材料を適用すると、多層反射膜の反射率特性がより良好となる。具体的には、Ru、Ru-(Nb,Zr,Y,B,Ti,La,Mo)であることが好ましい。このような保護膜は、特に、吸収体膜をTa系材料とし、Cl系ガスのドライエッチングで当該吸収体膜をパターニングする場合に有効である。
 尚、上記の多層反射膜付き基板20において、前記多層反射膜21又は前記保護膜22の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が20nm以下であることが好ましい。このような構成とすることにより、高感度欠陥検査装置を使用しての多層反射膜21又は保護膜22の表面の欠陥検査における疑似欠陥の検出を抑制することができ、さらに致命欠陥の顕在化を図ることができる。更に好ましくは、前記多層反射膜21又は前記保護膜22の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が17nm以下、更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が15nm以下、更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が10nm以下であることが好ましく、更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が1nm以上10nm以下であることが望ましい。このような構成とすることにより、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、上述に挙げた検査光源波長として266nmのUVレーザー又は193nmのArFエキシマレーザーを用いる高感度欠陥検査装置で多層反射膜付き基板20の欠陥検査を行う場合、疑似欠陥の検出を大幅に抑制することができる。
 また、上記の多層反射膜付き基板20において、前記多層反射膜21又は前記保護膜22の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が9nm以下であることが好ましい。更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が8nm以下、更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が7nm以下、更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が5nm以下であることが好ましく、更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が0.5nm以上5nm以下であることが望ましい。このような構成とすることにより、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、検査光源波長として13.5nmのEUV光を用いる高感度欠陥検査装置で多層反射膜付き基板の欠陥検査を行う場合、疑似欠陥の検出を大幅に抑制することができる。
 また、上記の高感度欠陥検査装置を使用しての欠陥検査における疑似欠陥の検出を大幅に抑制することができる効果に加え、多層反射膜付き基板として必要な反射特性を良好にするために、上記の多層反射膜付き基板20において、前記多層反射膜21又は前記保護膜22の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下とすることが好ましい。更に好ましくは、二乗平均平方根粗さ(Rms)が0.13nm以下、更に好ましくは、二乗平均平方根粗さ(Rms)が0.12nm以下とするのが望ましい。
 上記範囲の基板10の表面形態を保って、多層反射膜21又は保護膜22の表面が、上記範囲のパワースペクトル密度にするには、多層反射膜21を、基板10の主表面の法線に対して斜めに高屈折率層と低屈折率層とが堆積するように、スパッタリング法により成膜することにより得られる。より具体的には、基板10の主表面の法線に対して、多層反射膜21を構成する高屈折率層の成膜のためのスパッタ粒子の入射角度が、低屈折率層の成膜のためのスパッタ粒子の入射角度より大きくなるように、イオンビームスパッタリング法に形成する。さらに詳細には、Mo等の低屈折率層の成膜のためのスパッタ粒子の入射角度は、40度以上90度未満とし、Si等の高屈折率層の成膜のためのスパッタ粒子の入射角度は、0度以上60度以下にして成膜すると良い。さらには、多層反射膜21上に形成する保護膜22も多層反射膜21の成膜後、連続して、基板10の主表面の法線に対して斜めに保護膜22が堆積するようにイオンビームスパッタリング法により形成することが好ましい。
 また、上記範囲以外の表面形態を有する基板10の場合や、多層反射膜21又は保護膜22の高感度欠陥検査において、さらに疑似欠陥の検出を抑制するため、Mo等の低屈折率層の成膜のためのスパッタ粒子の入射角度、及びSi等の高屈折率層の成膜のためのスパッタ粒子の角度を、基板10の主表面の法線に対して小さな角度、例えば0度以上30度以下の角度として多層反射膜21を成膜するとよい。
 また、多層反射膜付き基板20において、基板10の多層反射膜21と接する面と反対側の面には、静電チャックの目的のために裏面導電膜23(図3を参照)を形成することもできる。このように、マスクブランク用基板10上の転写パターンが形成される側に多層反射膜21と、保護膜22とを有し、多層反射膜21と接する面と反対側の面に裏面導電膜23を有する形態も本発明における多層反射膜付き基板とすることができる。尚、裏面導電膜23に求められる電気的特性(シート抵抗)は、通常100Ω/□以下である。裏面導電膜23の形成方法は公知であり、例えば、マグネトロンスパッタリング法やイオンビームスパッタリング法により、Cr、Ta等の金属や合金のターゲットを使用して形成することができる。
 また、本実施形態の多層反射膜付き基板20としては、基板10と多層反射膜21との間に下地層を形成しても良い。下地層は、基板10の主表面の平滑性向上の目的、欠陥低減の目的、多層反射膜21の反射率増強効果の目的、並びに多層反射膜21の応力補正の目的で形成することができる。
[反射型マスクブランク]
 次に、本発明の一実施形態に係る反射型マスクブランク30について以下に説明する。
 図3は、本実施形態の反射型マスクブランク30を示す模式図である。
 本実施形態の反射型マスクブランク30は、上記説明した多層反射膜付き基板20の保護膜22上に、転写パターンとなる吸収体膜24を形成した構成としてある。
 上記吸収体膜24の材料は、特に限定されるものではない。例えば、EUV光を吸収する機能を有するもので、Ta(タンタル)単体、又はTaを主成分とする材料を用いることが好ましい。Taを主成分とする材料は、通常、Taの合金である。このような吸収体膜の結晶状態は、平滑性、平坦性の点から、アモルファス状又は微結晶の構造を有しているものが好ましい。Taを主成分とする材料としては、例えば、TaとBを含む材料、TaとNを含む材料、TaとBを含み、更にOとNの少なくともいずれかを含む材料、TaとSiを含む材料、TaとSiとNを含む材料、TaとGeを含む材料、TaとGeとNを含む材料などを用いることができる。また例えば、TaにB、Si、Ge等を加えることにより、アモルファス構造が容易に得られ、平滑性を向上させることができる。さらに、TaにN、Oを加えれば、酸化に対する耐性が向上するため、経時的な安定性を向上させることができる。上記範囲の基板10や、多層反射膜付き基板20の表面形態を保って、吸収体膜24の表面が、上記範囲のパワースペクトル密度にするには、吸収体膜24をアモルファス構造にすることが好ましい。結晶構造については、X線回折装置(XRD)により確認することができる。
 尚、上記吸収体膜24の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が10nm以下であることが好ましく、更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が1nm以上10nm以下であることが望ましい。このような構成とすることにより、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、上述に挙げた検査光源波長として266nmのUVレーザー又は193nmのArFエキシマレーザーを用いる高感度欠陥検査装置で反射型マスクブランク30の欠陥検査を行う場合、疑似欠陥の検出を大幅に抑制することができる。
 また、上記吸収体膜24の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が5nm以下であることが好ましく、更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が0.5nm以上5nm以下であることが望ましい。このような構成とすることにより、0.2nm~100nmの波長領域の検査光(EUV光)を用いる高感度欠陥検査装置、例えば、検査光源波長として13.5nmのEUV光を用いる高感度欠陥検査装置で反射型マスクブランク30の欠陥検査を行う場合、疑似欠陥の検出を大幅に抑制することができる。
 尚、本発明の反射型マスクブランクは、図3に示す構成に限定されるものではない。例えば、上記吸収体膜24の上に、吸収体膜24をパターニングするためのマスクとなるレジスト膜を形成することもでき、レジスト膜付き反射型マスクブランクも、本発明の反射型マスクブランクとすることができる。尚、吸収体膜24の上に形成するレジスト膜は、ポジ型でもネガ型でも構わない。また、電子線描画用でもレーザー描画用でも構わない。さらに、吸収体膜24と前記レジスト膜との間に、いわゆるハードマスク(エッチングマスク)膜を形成することもでき、この態様も本発明における反射型マスクブランクとすることができる。
[反射型マスク]
 次に、本発明の一実施形態に係る反射型マスク40について以下に説明する。
 図4は、本実施形態の反射型マスク40を示す模式図である。
 本実施形態の反射型マスク40は、上記の反射型マスクブランク30における吸収体膜24をパターニングして、上記保護膜22上に吸収体パターン27を形成した構成である。本実施形態の反射型マスク40は、EUV光等の露光光で露光すると、マスク表面で吸収体膜24のある部分では露光光が吸収され、それ以外の吸収体膜24を除去した部分では露出した保護膜22及び多層反射膜21で露光光が反射されることにより、リソグラフィー用の反射型マスク40として使用することができる。
[透過型マスクブランク]
 次に、本発明の一実施形態に係る透過型マスクブランク50について以下に説明する。
 図5は、本実施形態の透過型マスクブランク50を示す模式図である。
 本実施形態の透過型マスクブランク50は、上記説明したマスクブランク用基板10の転写パターンが形成される側の主表面上に、転写パターンとなる遮光性膜51を形成した構成としてある。
 透過型マスクブランク50としては、バイナリー型マスクブランク、位相シフト型マスクブランクが挙げられる。上記遮光性膜51には、露光光を遮断する機能を有する遮光膜の他、露光光を減衰させ、かつ位相シフトさせる所謂ハーフトーン膜などが含まれる。
 バイナリー型マスクブランクは、マスクブランク用基板10上に、露光光を遮断する遮光膜を成膜したものである。この遮光膜をパターニングして所望の転写パターンを形成する。遮光膜としては、例えば、Cr膜、Crに酸素、窒素、炭素、弗素を選択的に含むCr合金膜、これらの積層膜、MoSi膜、MoSiに酸素、窒素、炭素を選択的に含むMoSi合金膜、これらの積層膜などが挙げられる。尚、遮光膜の表面には、反射防止機能を有する反射防止層が含まれても良い。
 また、位相シフト型マスクブランクは、マスクブランク用基板10上に、露光光の位相差を変化させる位相シフト膜を成膜したものである。この位相シフト膜をパターニングして所望の転写パターンを形成する。位相シフト膜としては、位相シフト機能のみを有するSiO2膜のほかに、位相シフト機能及び遮光機能を有する金属シリサイド酸化物膜、金属シリサイド窒化物膜、金属シリサイド酸化窒化物膜、金属シリサイド酸化炭化物膜、金属シリサイド酸化窒化炭化物膜(金属:Mo、Ti、W、Taなどの遷移金属)、CrO膜、CrF膜、SiON膜などのハーフトーン膜が挙げられる。この位相シフト型マスクブランクにおいて、位相シフト膜上に、上記の遮光膜を形成した態様も含まれる。
 尚、本発明の透過型マスクブランクは、図5に示す構成に限定されるものではない。例えば、上記遮光性膜51の上に、遮光性膜51をパターニングするためのマスクとなるレジスト膜を形成することもでき、レジスト膜付き透過型マスクブランクも、本発明の透過型マスクブランクとすることができる。尚、上述と同様に、遮光性膜51の上に形成するレジスト膜は、ポジ型でもネガ型でも構わない。また、電子線描画用でもレーザー描画用でも構わない。さらに、遮光性膜51と前記レジスト膜との間に、いわゆるハードマスク(エッチングマスク)膜を形成することもでき、この態様も本発明における透過型マスクブランクとすることができる。
 尚、上記の透過型マスクブランク50において、前記遮光性膜51の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が10nm以下であることが好ましく、更に好ましくは、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が1nm以上10nm以下であることが望ましい。このような構成とすることにより、150nm~365nmの波長領域の検査光を用いる高感度欠陥検査装置、例えば、上述に挙げた検査光源波長として193nmのArFエキシマレーザーを用いる高感度欠陥検査装置で透過型マスクブランク50の欠陥検査を行う場合、疑似欠陥の検出を大幅に抑制することができる。
 尚、上記範囲の基板10の表面形態を保って、遮光性膜51の表面が、上記範囲のパワースペクトル密度にするには、遮光性膜51をアモルファス構造にすることが好ましい。結晶構造については、X線回折装置(XRD)により確認することができる。
 [透過型マスク]
 次に、本発明の一実施形態に係る透過型マスク60について以下に説明する。
 図6は、本実施形態の透過型マスク60を示す模式図である。
 本実施形態の透過型マスク60は、上記の透過型マスクブランク50における遮光性膜51をパターニングして、上記マスクブランク用基板10上に遮光性膜パターン61を形成した構成である。本実施形態の透過型マスク60は、バイナリー型マスクにおいては、ArFエキシマレーザー光等の露光光で露光すると、マスク表面で遮光性膜51のある部分では露光光が遮断され、それ以外の遮光性膜51を除去した部分では露出したマスクブランク用基板10を露光光が透過することにより、リソグラフィー用の透過型マスク60として使用することできる。また、位相シフト型マスクの一つであるハーフトーン型位相シフトマスクにおいては、ArFエキシマレーザー光等の露光光で露光すると、マスク表面で遮光性膜51が除去した部分では、露出したマスクブランク用基板10を露光光が透過し、遮光性膜51のある部分では、露光光が減衰した状態でかつ、所定の位相シフト量を有して透過されることにより、リソグラフィー用の透過型マスク60として使用することができる。また、位相シフト型マスクとしては、上述のハーフトーン型位相シフトマスクに限らず、レベンソン型位相シフトマスク等の各種位相シフト効果を利用した位相シフトマスクでも良い。
[半導体装置の製造方法]
 以上説明した反射型マスク40や透過型マスク60と、露光装置を使用したリソグラフィープロセスにより、半導体基板等の被転写体上に形成されたレジスト膜に、前記反射型マスク40の吸収体パターン27や、前記透過型マスク60の遮光性膜パターン61に基づく回路パターン等の転写パターンを転写し、その他種々の工程を経ることで、半導体基板上に種々のパターン等が形成された半導体装置を製造することができる。
 尚、上述のマスクブランク用基板10、多層反射膜付き基板20、反射型マスクブランク30、透過型マスクブランク50に、基準マークを形成し、この基準マークと、上述の高感度欠陥検査装置で検出された致命欠陥の位置を座標管理することができる。得られた致命欠陥の位置情報(欠陥データ)に基づいて、反射型マスク40や透過型マスク60を作製するときに、上述の欠陥データと被転写パターン(回路パターン)データとを元に、致命欠陥が存在している箇所に吸収体パターン27や、遮光性膜パターン61が形成されるように描画データを補正して、欠陥を低減させることができる。
・実施例
 以下、本発明のEUV露光用のマスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスクの実施形態を含む実施例1~3及び5~7、これらに対する比較例1及び2、本発明のArFエキシマレーザー露光用のマスクブランク用基板、透過型マスクブランク、透過型マスクの実施形態を含む実施例4について、以下に説明する。
[実施例1]
 まず、本発明に係るEUV露光用のマスクブランク用基板、多層反射膜付き基板、EUV露光用反射型マスクブランク、反射型マスクに関する実施例1について説明する。
<マスクブランク用基板の作製>
 マスクブランク用基板10として、大きさが152.4mm×152.4mm、厚さが6.35mmのSiO-TiO系のガラス基板を準備し、両面研磨装置を用いて、当該ガラス基板の表裏面を、酸化セリウム砥粒やコロイダルシリカ砥粒により段階的に研磨した後、低濃度のケイフッ酸で表面処理した。これにより得られたガラス基板表面の表面粗さを原子間力顕微鏡で測定したところ、二乗平均平方根粗さ(Rms)は0.15nmであった。
 当該ガラス基板の表裏面における148mm×148mmの領域の表面形状(表面形態、平坦度)、TTV(板厚ばらつき)を、波長変調レーザーを用いた波長シフト干渉計で測定した。その結果、ガラス基板の表裏面の平坦度は290nm(凸形状)であった。ガラス基板表面の表面形状(平坦度)の測定結果は、測定点ごとにある基準面に対する高さの情報としてコンピュータに保存するとともに、ガラス基板に必要な表面平坦度の基準値50nm(凸形状)、裏面平坦度の基準値50nmと比較し、その差分(必要除去量)をコンピュータで計算した。
 次いで、ガラス基板面内を加工スポット形状領域ごとに、必要除去量に応じた局所表面加工の加工条件を設定した。事前にダミー基板を用いて、実際の加工と同じようにダミー基板を、一定時間基板を移動させずにスポットで加工し、その形状を上記表裏面の表面形状を測定する装置と同じ測定機にて測定し、単位時間当たりにおけるスポットの加工体積を算出する。そして、スポットの情報とガラス基板の表面形状の情報より得られた必要除去量に従い、ガラス基板をラスタ走査する際の走査スピードを決定した。
 設定した加工条件に従い、磁気流体による基板仕上げ装置を用いて、磁気粘弾性流体研磨(Magneto Rheological Finishing : MRF)加工法により、ガラス基板の表裏面平坦度が上記の基準値以下となるように局所的表面加工処理をして表面形状を調整した。尚、このとき使用した磁性粘弾性流体は、鉄成分を含んでおり、研磨スラリーは、アルカリ水溶液+研磨剤(約2wt%)、研磨剤:酸化セリウムとした。その後、ガラス基板を濃度約10%の塩酸水溶液(温度約25℃)が入った洗浄槽に約10分間浸漬した後、純水によるリンス、イソプロピルアルコール(IPA)乾燥を行った。
 得られたガラス基板表面の表面形状(表面形態、平坦度)を測定したところ、表裏面の平坦度は約40~50nmであった。また、ガラス基板表面の表面粗さを、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域において、原子間力顕微鏡を用いて測定したところ、二乗平均平方根粗さ(Rms)は0.37nmとなっており、MRFによる局所表面加工前の表面粗さより荒れた状態になっていた。
 そのため、ガラス基板の表裏面について、ガラス基板表面の表面形状が維持又は改善する研磨条件で両面研磨装置を用いて両面研磨を行った。この仕上げ研磨は、以下の研磨条件で行った。
 加工液:アルカリ水溶液(NaOH)+研磨剤(濃度:約2wt%)
 研磨剤:コロイダルシリカ、平均粒径:約70nm
 研磨定盤回転数:約1~50rpm
 加工圧力:約0.1~10kPa
 研磨時間:約1~10分
 その後、ガラス基板をアルカリ水溶液(NaOH)で洗浄し、EUV露光用のマスクブランク用基板10を得た。
 得られたマスクブランク用基板10の表裏面の平坦度、表面粗さを測定したところ、表裏面平坦度は約40nmと両面研磨装置による加工前の状態を維持又は改善しており良好であった。また、得られたマスクブランク用基板10について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を、原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.13nm、最大高さ(Rmax)は1.2nmであった。
 尚、本発明におけるマスクブランク用基板10の局所加工方法は、上述した磁気粘弾性流体研磨加工法に限定されるものではない。ガスクラスターイオンビーム(Gas Cluster Ion Beams : GCIB)や局所プラズマを使用した加工方法であってもよい。
 次に、上述したマスクブランク用基板10の主表面上に、DCマグネトロンスパッタリング法により、TaBN膜を成膜した。TaBターゲットをマスクブランク用基板の主表面に対向させ、Ar+Nガス雰囲気中で反応性スパッタリングを行った。ラザフォード後方散乱分析法によりTaBN膜の元素組成を測定したところ、Ta:80原子%、B:10原子%、N:10原子%であった。また、TaBN膜の膜厚は150nmであった。尚、上記TaBN膜の結晶構造をX線回折装置(XRD)により測定したところ、アモルファス構造であった。
 次に、片面研磨装置を用いて、TaBN膜の表面を超精密研磨した。この超精密研磨は、以下の研磨条件で行った。
 加工液:アルカリ水溶液(NaOH)+研磨剤(コロイダルシリカの平均砥粒50nm、濃度:5wt%)
 加工圧力:50g/cm
 研磨時間:約1~10分。
 その後、TaBN膜の表面をフッ酸水溶液(HF:濃度0.2wt%)で、428秒間洗浄し、EUV露光用のマスクブランク用基板を得た。
 本実施例1により得られたEUV露光用のマスクブランク用基板10のTaBN膜表面について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.085nm、最大高さ(Rmax)は1.1nmであった。また、得られたEUV露光用のマスクブランク用基板10のTaBN膜表面をパワースペクトル解析した結果を、図7、図8のグラフ中「+」で示す。
 図7、図8に示すように、本実施例1のTaBN膜表面における1μm×1μmの領域を、原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は、最大値7.73nm、最小値2.94nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は、最大値3.47nm、最小値1.86nmであった。これらの図が示すとおり、本実施例1のTaBN膜表面の空間周波数1μm-1以上、及び空間周波数1μm-1以上10μm-1以下におけるパワースペクトル密度は、10nm以下であった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例1のTaBN膜表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計18,789個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。合計18,789個程度の欠陥検出個数であれば、異物や傷などの致命欠陥の有無を容易に検査することができる。尚、球相当直径SEVDは、欠陥の面積を(S)、欠陥の高さを(h)としたときに、SEVD=2(3S/4πh)1/3の式により算出することができる。(以下の実施例、比較例も同様。)欠陥の面積(S)、欠陥の高さ(h)は原子間力顕微鏡(AFM)により測定することができる。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」を使用して、最高の検査感度条件で、本実施例1のTaBN膜表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。
<多層反射膜付き基板の作製>
 上述したEUV露光用のマスクブランク用基板10のTaBN膜の表面に、イオンビームスパッタリング法により、高屈折率層と低屈折率層とを交互に積層した多層反射膜21と、保護膜22を形成して多層反射膜付き基板20を作製した。
 多層反射膜21は、膜厚4.2nmのSi膜と、膜厚2.8nmのMo膜とを1ぺアとし、40ペア成膜した(膜厚の合計280nm)。さらに、当該多層反射膜21の表面に、膜厚2.5nmのRuからなる保護膜22を成膜した。尚、多層反射膜21は、基板主表面の法線に対して、Si膜のスパッタ粒子の入射角度は5度、Mo膜のスパッタ粒子の入射角度は65度なるようにイオンビームスパッタリング法により成膜した。
 得られた多層反射膜付き基板20の保護膜22の表面について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.141nm、最大高さ(Rmax)は1.49nmであった。また、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は20nm以下で、最大値は14.4nm、最小値は0.13nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は9nm以下で、最大値7.64nm、最小値0.09nmであった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例1の多層反射膜付き基板20の保護膜表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計19,132個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。また、EUV光に対する反射率を測定したところ、65%と良好な結果が得られた。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)、及び検査光源波長13.5nmの高感度欠陥検査装置を使用して、本実施例1の多層反射膜表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。尚、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)では最高の検査感度条件で、検査光源波長13.5nmの高感度欠陥検査装置では、球相当直径20nm以下の欠陥を検出できる検査感度条件にて欠陥検査を行った。
 尚、本実施例1の多層反射膜付き基板20の保護膜22及び多層反射膜21に対して、
転写パターン形成領域(132mm×132mm)の外側4箇所に、上記欠陥の位置を座標管理するための基準マークを集束イオンビームにより形成した。
<EUV露光用反射型マスクブランクの作製>
 上述した多層反射膜付き基板20の多層反射膜21を形成していない裏面に、DCマグネトロンスパッタリング法により、裏面導電膜23を形成した。当該裏面導電膜23は、Crターゲットを多層反射膜付き基板20の裏面に対向させ、Ar+Nガス(Ar:N2=90%:10%)雰囲気中で反応性スパッタリングを行った。ラザフォード後方散乱分析法により裏面導電膜23の元素組成を測定したところ、Cr:90原子%、N:10原子%であった。また、裏面導電膜23の膜厚は20nmであった。
 さらに、上述した多層反射膜付き基板20の保護膜22の表面に、DCマグネトロンスパッタリング法により、TaBN膜からなる吸収体膜24を成膜し、反射型マスクブランク30を作製した。当該吸収体膜24は、TaBターゲット(Ta:B=80:20)に多層反射膜付き基板20の吸収体膜24を対向させ、Xe+Nガス(Xe:N=90%:10%)雰囲気中で反応性スパッタリングを行った。ラザフォード後方散乱分析法により吸収体膜24の元素組成を測定したところ、Ta:80原子%、B:10原子%、N:10原子%であった。また、吸収体膜24の膜厚は65nmであった。尚、吸収体膜24の結晶構造をX線回折装置(XRD)により測定したところ、アモルファス構造であった。
<反射型マスクの作製>
 上述した吸収体膜24の表面に、スピンコート法によりレジストを塗布し、加熱及び冷却工程を経て、膜厚150nmのレジスト膜25を成膜した。次いで、所望のパターンの描画及び現像工程を経て、レジストパターン形成した。当該レジストパターンをマスクにして、Cl+Heガスのドライエッチングにより、吸収体膜24であるTaBN膜のパターニングを行い、保護膜22上に吸収体パターン27を形成した。その後、レジスト膜25を除去し、上記と同様の薬液洗浄を行い、反射型マスク40を作製した。尚、上述の描画工程においては、上記基準マークを元に作成された欠陥データに基づいて、欠陥データと被転写パターン(回路パターン)データとを元に、致命欠陥が存在している箇所に吸
収体パターン27が配置されるように描画データを補正して、反射型マスク40を作製した。得られた反射型マスク40について、高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して欠陥検査を行ったところ、欠陥は確認されなかった。
[実施例2]
<マスクブランク用基板の作製>
 実施例1と同様に、EUV露光用のマスクブランク用基板10として、大きさが152.4mm×152.4mm、厚さが6.35mmのSiO-TiO系のガラス基板を準備し、実施例1と同様に、ガラス基板の表裏面について、両面研磨装置による研磨から磁気粘弾性流体研磨加工法による局所表面加工処理までの工程を行った。
 その後、局所表面加工処理の仕上げ研磨として、ガラス基板の表裏面に非接触研磨を実施した。本実施例2では、非接触研磨としてEEM(Elastic Emission Machining)を行った。このEEMは、以下の加工条件で行った。
 加工液(1段階目):アルカリ水溶液(NaOH)+微細分粒子(濃度:5wt%)
 加工液(2段階目):純水
 微細粉末粒子:コロイダルシリカ、平均粒径:約100nm
 回転体:ポリウレタンロール
 回転体回転数:10~300rpm
 ワークホルダ回転数:10~100rpm
 研磨時間:5~30分
 本実施例2により得られたEUV露光用のマスクブランク用基板10の主表面において、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、二乗平均平方根粗さ(Rms)は0.10nm、最大高さ(Rmax)は1.0nmであった。また、得られたEUV露光用のマスクブランク用基板10の主表面をパワースペクトル解析した結果を、図7、図8のグラフ中「▲」で示す。
 図7、図8に示すように、本実施例2のEUV露光用のマスクブランク用基板10の主表面における1μm×1μmの領域を、原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は、最大値7.40nm、最小値2.16nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は、最大値3.32nm、最小値2.13nmであった。これらの図が示すとおり、本実施例2のマスクブランク用基板の主表面の空間周波数1μm-1以上、及び空間周波数1μm-1以上10μm-1以下におけるパワースペクトル密度は、10nm以下であった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例2のEUV露光用のマスクブランク用基板10の主表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計29,129個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。合計29,129個程度の欠陥検出個数であれば、異物や傷などの致命欠陥の有無を容易に検査することができる。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)を使用して、最高の検査感度条件で、本実施例2のEUV露光用のマスクブランク用基板10の主表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。
 上述したEUV露光用のマスクブランク用基板10の主表面に、実施例1と同様のSi膜とMo膜とを交互に積層した膜厚280nmの多層反射膜21を形成し、その表面に膜厚2.5nmのRuからなる保護膜22を成膜した。尚、多層反射膜21のイオンビームスパッタリング条件は、実施例1と同様とした。
 得られた多層反射膜付き基板20の保護膜22の表面について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.143nm、最大高さ(Rmax)は1.50nmであった。また、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は20nm以下で、最大値17.4nm、最小値0.14nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は9nm以下で、最大値8.62nm、最小値0.11nmであった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例2の多層反射膜付き基板20の保護表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計30,011個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)、及び検査波長13.5nmの高感度欠陥検査を使用して、本実施例2の多層反射膜表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。
 上述の実施例1と同様にして反射型マスクブランク30及び反射型マスク40を作製した。得られた反射型マスク40について、高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して欠陥検査を行ったところ、欠陥は確認されなかった。尚、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)では最高の検査感度条件で、検査光源波長13.5nmの高感度欠陥検査装置では、球相当直径20nm以下の欠陥を検出できる検査感度条件にて欠陥検査を行った。
[実施例3]
<マスクブランク用基板の作製>
 本実施例3では、実施例1及び2と同様に、EUV露光用のマスクブランク用基板10として、大きさが152.4mm×152.4mm、厚さが6.35mmのSiO-TiO系のガラス基板を準備し、実施例2とほぼ同様の工程を経て、EUV露光用のマスクブランク用基板10を作製した。但し、本実施例3では、実施例2の局所表面加工処理の仕上げ研磨において、加工液に純水を用いた2段階目のEEM加工を省略した。
 本実施例3により得られたEUV露光用のマスクブランク用基板10の主表面において、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、二乗平均平方根粗さ(Rms)は0.11nm、最大高さ(Rmax)は1.2nmであった。また、得られたEUV露光用のマスクブランク用基板10の主表面をパワースペクトル解析した結果を、図7、図8のグラフ中「◆」で示す。
 図7、図8に示すように、本実施例3のEUV露光用のマスクブランク用基板10の主表面における1μm×1μmの領域を、原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は、最大値10.00nm、最小値3.47nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は、最大値3.96nm、最小値2.56nmであった。これらの図が示すとおり、本実施例3のマスクブランク用基板の主表面の空間周波数1μm-1以上、及び空間周波数1μm-1以上10μm-1以下におけるパワースペクトル密度は、10nm以下であった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例3のEUV露光用のマスクブランク用基板10の主表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計36,469個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。合計36,469個程度の欠陥検出個数であれば、異物や傷などの致命欠陥の有無を容易に検査することができる。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)を使用して、最高の検査感度条件で、本実施例3のEUV露光用のマスクブランク用基板10の主表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。
<多層反射膜付き基板の作製>
 上述したEUV露光用のマスクブランク用基板10の主表面に、実施例1と同様のSi膜とMo膜とを交互に積層した膜厚280nmの多層反射膜21を形成し、その表面に膜厚2.5nmのRuからなる保護膜22を成膜した。尚、多層反射膜21のイオンビームスパッタリング条件は、実施例1と同様とした。
 得られた多層反射膜付き基板20の保護膜22の表面について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.146nm、最大高さ(Rmax)は1.50nmであった。また、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は20nm以下で、最大値17.9nm、最小値0.16nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は9nm以下で、最大値8.76nm、最小値0.11nmであった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-TencCor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例3の多層反射膜付き基板20の保護膜表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計38,856個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)、及び検査光源波長13.5nmの高感度検査装置を使用して、本実施例3の多層反射膜表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。尚、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)では最高の検査感度条件で、検査光源波長13.5nmの高感度欠陥検査装置では、球相当直径20nm以下の欠陥を検出できる検査感度条件にて欠陥検査を行った。
 上述の実施例1と同様にして反射型マスクブランク30及び反射型マスク40を作製した。得られた反射型マスク40について、高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して欠陥検査を行ったところ、欠陥は確認されなかった。
 尚、実施例2、3における局所表面加工処理の仕上げ研磨としての非接触研磨は、上述したEEMに限定されるものではない。例えば、フロートポリッシュ又は触媒基準エッチング法(Catalyst Referred Etching)を適用することができる。いずれにしても、ガラス基板の主表面の仕上げ研磨は、水ないし純水を使用した非接触研磨が好ましい。
[比較例1]
<マスクブランク用基板の作製>
 比較例1では、実施例2と同様に、EUV露光用のマスクブランク用基板10として、大きさが152.4mm×152.4mm、厚さが6.35mmのSiO-TiO系のガラス基板を準備した。
 そして、比較例1では、実施例2と異なり、局所表面加工処理の仕上げ研磨として、pH:0.5~4の酸性に調整したコロイダルシリカ(平均粒径50nm、濃度5wt%)を含む研磨スラリーを使用した片面研磨装置による超精密研磨を行った後、濃度0.1wt%の水酸化ナトリウム(NaOH)を用いた洗浄を、洗浄時間300秒間行った。
 比較例1により得られたEUV露光用のマスクブランク用基板10の主表面において、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、二乗平均平方根粗さ(Rms)は0.11nm、最大高さ(Rmax)は1.0nmであった。また、得られたEUV露光用のマスクブランク用基板10の主表面をパワースペクトル解析した結果を、図7、図9のグラフ中「●」で示す。
 図7、図9に示すように、比較例1のEUV露光用のマスクブランク用基板10の主表面における1μm×1μmの領域を、原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は、最大値14.81nm、最小値3.87nmであった。これらの図が示すとおり、比較例1のマスクブランク用基板の主表面の空間周波数1μm-1以上、及び空間周波数1μm-1以上10μm-1以下におけるパワースペクトル密度の最大値は10nmを超えていた。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、比較例1のEUV露光用のマスクブランク用基板10の主表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計100,000個を超え、異物や傷などの致命欠陥の有無を検査することができなかった。
 <多層反射膜付き基板の作製>
 上述したEUV露光用のマスクブランク用基板10の主表面に、実施例1と同様のSi膜とMo膜とを交互に積層した膜厚280nmの多層反射膜21を形成し、その表面に膜厚2.5nmのRuからなる保護膜22を成膜した。尚、多層反射膜21のイオンビームスパッタリング条件は、実施例1と同様とした。
 得られた多層反射膜付き基板20の保護膜22の表面について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.165nm、最大高さ(Rmax)は1.61nmであった。また、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は20nmを超えており、最大値22.8nm、最小値0.19nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は9nmを超えており、最大値9.53nm、最小値0.12nmであった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、比較例1の多層反射膜付き基板20の保護膜表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計100,000個を超え、異物や傷などの致命欠陥の有無を検査することができなかった。
 また、検査光源波長13.5nmの高感度欠陥検査装置を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、比較例1の多層反射膜表面における132mm×132mmの領域を欠陥検査した結果も同様であり、欠陥検出個数の合計は、100,000個を超え、致命欠陥の有無を検査することができなかった。上述の実施例1と同様にして反射型マスクブランク30及び反射型マスク40を作製した。得られた反射型マスク40について、高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して欠陥検査を行ったところ、欠陥は数十個確認されたが、欠陥修正装置により欠陥修正を行い、反射型マスクを得た。
[比較例2]
 比較例2では、実施例2と同様に、EUV露光用のマスクブランク用基板10として、大きさが152.4mm×152.4mm、厚さが6.35mmのSiO-TiO系のガラス基板を準備した。
 そして、比較例2では、実施例2と異なり、局所表面加工処理の仕上げ研磨として、pH:10のアルカリ性に調整したコロイダルシリカ(平均粒径50nm、濃度5wt%)を含む研磨スラリーを使用した片面研磨装置による超精密研磨を行った後、濃度0.2wt%のフッ酸(HF)を用いた洗浄を、洗浄時間を428秒間行った。
 比較例2により得られたEUV露光用のマスクブランク用基板10の主表面において、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、二乗平均平方根粗さ(Rms)は0.15nm、最大高さ(Rmax)は1.2nmであった。また、得られたEUV露光用のマスクブランク用基板10の主表面をパワースペクトル解析した結果を、図7、図9のグラフ中「■」で示す。
 図7、図9に示すように、比較例2のEUV露光用のマスクブランク用基板10の主表面における1μm×1μmの領域を、原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は、最大値11.65nm、最小値5.16nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は、最大値7.20nm、最小値4.08nmであった。これらの図が示すとおり、比較例2のマスクブランク用基板の主表面の空間周波数1μm-1以上、及び空間周波数1μm-1以上10μm-1以下におけるパワースペクトル密度の最大値は10nmを超えていた。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、比較例2のEUV露光用のマスクブランク用基板10の主表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計100,000個を超え、異物や傷などの致命欠陥の有無を検査することができなかった。
<多層反射膜付き基板の作製>
 上述したEUV露光用のマスクブランク用基板10の主表面に、実施例1と同様のSi膜とMo膜とを交互に積層した膜厚280nmの多層反射膜21を形成し、その表面に膜厚2.5nmのRuからなる保護膜22を成膜した。尚、多層反射膜21のイオンビームスパッタリング条件は、実施例1と同様とした。
 得られた多層反射膜付き基板20の保護膜22の表面について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.173nm、最大高さ(Rmax)は1.56nmであった。また、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は20nmを超えており、最大値25.2nm、最小値0.27nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は9nmを超えており、最大値9.60nm、最小値0.15nmであった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、比較例2の多層反射膜付き基板20の保護膜表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計100,000個を超え、異物や傷などの致命欠陥の有無を検査することができなかった。
 また、検査光源波長13.5nmの高感度欠陥検査装置を使用して、比較例2の多層反射膜表面における132mm×132mmの領域を欠陥検査した結果も同様であり、欠陥検出個数の合計は、いずれも100,000個を超え、致命欠陥の有無を検査することができなかった。尚、検査光源波長13.5nmの高感度欠陥検査装置では、球相当直径20nm以下の欠陥を検出できる検査感度条件にて欠陥検査を行った。上述の実施例1と同様にして反射型マスクブランク30及び反射型マスク40を作製した。得られた反射型マスク40について、高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して欠陥検査を行ったところ、欠陥は数十個確認されたが、欠陥修正装置により欠陥修正を行い、反射型マスクを得た。
[実施例4]
 次に、本発明に係るArFエキシマレーザー露光用のマスクブランク用基板、透過型マスクブランク、透過型マスクに関する実施例4について説明する。
<マスクブランク用基板の作製>
 実施例4では、実施例1~3と同寸法の合成石英ガラス基板を使用した。これ以外は、上述した実施例2の<マスクブランク用基板の作製>と同様の工程を経て、ArFエキシマレーザー露光用のマスクブランク用基板10を作製した。
 本実施例4により得られたArFエキシマレーザー露光用のマスクブランク用基板1の主表面において、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、二乗平均平方根粗さ(Rms)は0.11nm、最大高さ(Rmax)は0.93nmであった。また、得られたArFエキシマレーザー露光用のマスクブランク用基板10の主表面をパワースペクトル解析した結果を、図7、図8のグラフ中「*」で示す。
 図7、図8に示すように、本実施例4のArFエキシマレーザー露光用のマスクブランク用基板10の主表面における1μm×1μmの領域を、原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は、最大値8.72nm、最小値2.03nmであった。これらの図が示すとおり、本実施例3のマスクブランク用基板の主表面の空間周波数1μm-1以上、及び空間周波数1μm-1以上10μm-1以下におけるパワースペクトル密度は、10nm以下であった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、本実施例4のArFエキシマレーザー露光用のマスクブランク用基板10の主表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計31,056個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。合計31,056個程度の欠陥検出個数であれば、異物や傷などの致命欠陥の有無を容易に検査することができる。
<透過型マスクブランクの作製>
 上述したArFエキシマレーザー露光用のマスクブランク用基板10を、DCマグネトロンスパッタ装置に導入し、その主表面にTaN層を成膜した。DCマグネトロンスパッタ装置内に、Xe+Nの混合ガスを導入し、Taターゲットを用いたスパッタリング法を行った。これにより、当該マスクブランク用基板10の主表面に、膜厚44.9nmのTaN層を成膜した。
 次いで、DCマグネトロンスパッタ装置内のガスを、Ar+Oの混合ガスに入れ替えて、再びTaターゲットを用いたスパッタリング法を行った。これにより、TaN層の表面に、膜厚13nmのTaO層を成膜し、マスクブランク用基板10上に2層からなる遮光性膜51を形成した透過型マスクブランク(バイナリー型マスクブランク)を得た。
  尚、遮光性膜51の結晶構造をX線回折装置(XRD)により測定したところ、アモルファス構造であった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例4のマスクブランク用基板10上の遮光性膜51における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計33,121個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。合計33,121個程度の欠陥検出個数であれば、異物や傷などの致命欠陥の有無を容易に検査することができる。
<透過型マスクの作製>
 上述した遮光性膜51の表面に、スピンコート法によりレジストを塗布し、加熱及び冷却工程を経て、膜厚150nmのレジスト膜25を成膜した。次いで、所望のパターンの描画及び現像工程を経て、レジストパターン形成した。当該レジストパターンをマスクにして、フッ素系(CHF)ガスを用いたドライエッチングを行い、TaO層をパターニングした後、続いて、塩素系(Cl)ガスのドライエッチングにより、TaN層のパターニングを行い、マスクブランク用基板10上に遮光性膜パターン61を形成した。その後、レジスト膜25を除去し、上記と同様の薬液洗浄を行い、透過型マスク60を作製した。得られた透過型マスク60について、高感度欠陥検査装置((KLA-Tencor社製「Teron600シリーズ」)を使用して欠陥検査を行ったところ、欠陥は確認されなかった。
[実施例5]
 実施例1と同様に、EUV露光用のマスクブランク用基板10として、大きさが152.4mm×152.4mm、厚さが6.35mmのSiO-TiO系のガラス基板を準備し、実施例1と同様に、ガラス基板の表裏面について、両面研磨装置による研磨から磁気粘弾性流体研磨加工法による局所表面加工処理までの工程を行った。
 その後、局所表面加工処理の仕上げ研磨として、表面粗さ改善を目的として、コロイダルシリカ砥粒を用いた両面タッチ研磨を行った後、触媒基準エッチング法(CARE:Catalyst Referred Etching)による表面加工を行った。このCAREは、以下の加工条件で行った。
 加工液:純水
 触媒:白金
 基板回転数:10.3回転/分
 触媒定盤回転数:10回転/分
 加工時間:50分
 加工圧:250hPa
 その後、ガラス基板の端面をスクラブ洗浄した後、当該基板を王水(温度約65℃)が入った洗浄槽に約10分浸漬させ、その後、純水によるリンス、乾燥を行った。尚、王水による洗浄は、ガラス基板の表裏面に触媒である白金の残留物がなくなるまで、複数回行った。
 本実施例5により得られたEUV露光用のマスクブランク用基板10の主表面において、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、二乗平均平方根粗さ(Rms)は0.040nm、最大高さ(Rmax)は0.40nmであった。また得られたEUV露光用のマスクブランク用基板10の主表面をパワースペクトル解析した結果を、図10のグラフ中「●」で示す。
 図10に示すように、本実施例5のEUV露光用のマスクブランク用基板10の主表面における1μm×1μmの領域を、原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は、最大値5.29nm、最小値1.15nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は、最大値1.18nm、最小値0.20nmであった。図10が示すとおり、本実施例5のマスクブランク用基板の主表面の空間周波数1μm-1以上、及び空間周波数1μm-1以上10μm-1以下におけるパワースペクトル密度は、10nm以下であった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例5のEUV露光用のマスクブランク用基板10の主表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計370個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。合計370個程度の欠陥検出個数であれば、異物や傷などの致命欠陥の有無を容易に検査することができる。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)を使用して、最高の検査感度条件で、本実施例5のEUV露光用のマスクブランク用基板10の主表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。
<多層反射膜付き基板の作製>
 上述したEUV露光用のマスクブランク用基板10の主表面に、実施例1と同様のSi膜とMo膜とを交互に積層した膜厚280nmの多層反射膜21を形成し、その表面に膜厚2.5nmのRuからなる保護膜22を成膜した。尚、多層反射膜21のイオンビームスパッタリング条件は、実施例1と同様とした。
 得られた多層反射膜付き基板20の保護膜22の表面について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.135nm、最大高さ(Rmax)は1.27nmであった。また、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は20nm以下で、最大値15.5nm、最小値0.09nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は9nm以下で、最大値7.51nm、最小値0.10nmであった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例5の多層反射膜付き基板20の保護表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計13,512個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)、及び検査波長13.5nmの高感度欠陥検査を使用して、本実施例2の多層反射膜表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。尚、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)では最高の検査感度条件で、検査光源波長13.5nmの高感度欠陥検査装置では、球相当直径20nm以下の欠陥を検出できる検査感度条件にて欠陥検査を行った。
 上述の実施例1と同様にして反射型マスクブランク30及び反射型マスク40を作製した。得られた反射型マスク40について、高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して欠陥検査を行ったところ、欠陥は確認されなかった。
[実施例6]
上述の実施例5において、多層反射膜21の成膜条件を、基板主表面の法線に対して、Si膜のスパッタ粒子の入射角度が30度、Mo膜のスパッタ粒子の入射角度が30度となるようにイオンビームスパッタリング法により成膜した以外は、実施例5と同様に、多層反射膜付き基板を作製した。
 得られた多層反射膜付き基板20の保護膜22の表面について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.116nm、最大高さ(Rmax)は1.15nmであった。また、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は20nm以下で、最大値9.98nm、最小値0.10nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は9nm以下で、最大値4.81nm、最小値0.12nmであった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例6の多層反射膜付き基板20の保護表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計4,758個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)、及び検査波長13.5nmの高感度欠陥検査を使用して、本実施例6の多層反射膜表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。尚、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)では最高の検査感度条件で、検査光源波長13.5nmの高感度欠陥検査装置では、球相当直径20nm以下の欠陥を検出できる検査感度条件にて欠陥検査を行った。
 上述の実施例1と同様にして反射型マスクブランク30及び反射型マスク40を作製した。得られた反射型マスク40について、高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して欠陥検査を行ったところ、欠陥は確認されなかった。
[実施例7]
 上述の比較例1におけるEUV露光用のマスクブランク用基板に対して、上述の実施例6の成膜条件により多層反射膜21、および保護膜22を形成して多層反射膜付き基板を作製した。
 得られた多層反射膜付き基板20の保護膜22の表面について、転写パターン形成領域(132mm×132mm)の任意の箇所の1μm×1μmの領域を原子間力顕微鏡で測定したところ、その表面粗さは、二乗平均平方根粗さ(Rms)は0.122nm、最大高さ(Rmax)は1.32nmであった。また、空間周波数1μm-1以上10μm-1以下のパワースペクトル密度は20nm以下で、最大値13.3nm、最小値0.07nmであった。また、空間周波数10μm-1以上100μm-1以下のパワースペクトル密度は9nm以下で、最大値6.74nm、最小値0.11nmであった。
 検査光源波長193nmの高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して、球相当直径SEVD(Sphere Equivalent Volume Diameter)で20nm以下の欠陥を検出できる検査感度条件で、本実施例7の多層反射膜付き基板20の保護膜表面における132mm×132mmの領域を欠陥検査した。この結果、疑似欠陥を含む欠陥検出個数は、合計10,218個であり、従来の欠陥検出個数100,000個超と比較して疑似欠陥が大幅に抑制された。また、EUV光に対する反射率を測定したところ、65%と良好な結果が得られた。
 また、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)、及び検査光源波長13.5nmの高感度欠陥検査装置を使用して、本実施例6の多層反射膜付き基板20の保護膜表面における132mm×132mmの領域を欠陥検査した結果、欠陥検出個数の合計は、いずれも100,000個を下回り、致命欠陥の検査が可能であった。尚、検査光源波長266nmの高感度欠陥検査装置(レーザーテック社製「MAGICS M7360」)では最高の検査感度条件で、検査光源波長13.5nmの高感度欠陥検査装置では、球相当直径20nm以下の欠陥を検出できる検査感度条件にて欠陥検査を行った。
 さらに、上述の実施例1と同様にして反射型マスクブランク30及び反射型マスク40を作製した。得られた反射型マスク40について、高感度欠陥検査装置(KLA-Tencor社製「Teron600シリーズ」)を使用して欠陥検査を行ったところ、欠陥は確認されなかった。
<半導体装置の製造方法>
 次に、上述の実施例1~7、比較例1~2の反射型マスク、透過型マスクを使用し、露光装置を使用して、半導体基板である被転写体上のレジスト膜にパターン転写を行い、その後、配線層をパターニングして、半導体装置を作製した。その結果、実施例1~7の反射型マスク及び透過型マスクを使用した場合には、パターン欠陥はなく、半導体装置を作製することができたが、比較例1~2の反射型マスクを使用した場合には、パターン欠陥が発生し、半導体装置の不良が発生した。これは、マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクにおける欠陥検査において、致命欠陥が疑似欠陥に埋もれて検出できなかったことにより、適正な描画補正、マスク修正が行われなかったことにより、反射型マスクに致命欠陥が存在したことによるものであった。
 尚、上述の多層反射膜付き基板20、反射型マスクブランク30の作製において、マスクブランク用基板10の転写パターンが形成される側の主表面に、多層反射膜21及び保護膜22を成膜した後、上記主表面とは反対側の裏面に裏面導電膜23を形成したがこれに限らない。マスクブランク用基板10の転写パターンが形成される側の主表面とは反対型の主表面に裏面導電膜23を形成した後、転写パターンが形成される側の主表面に、多層反射膜21や、さらに保護膜22を成膜して多層反射膜付き基板20、さらに保護膜22上に吸収体膜24を成膜して反射型マスクブランク30を作製しても構わない。
[符号の説明]
 10 マスクブランク用基板
 20 多層反射膜付き基板
 21 多層反射膜
 22 保護膜
 23 裏面導電膜
 24 吸収体膜
 27 吸収体パターン
 30 反射型マスクブランク
 40 反射型マスク
 50 透過型マスクブランク
 51 遮光性膜
 60 透過型マスク

Claims (22)

  1.  リソグラフィーに使用されるマスクブランク用基板であって、
     前記基板の転写パターンが形成される側の主表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下であり、且つ、空間周波数1μm-1以上のパワースペクトル密度が10nm以下であるマスクブランク用基板。
  2.  前記主表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が10nm以下である請求項1に記載のマスクブランク用基板。
  3.  前記主表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が1nm以上10nm以下である請求項2記載のマスクブランク用基板。
  4.  前記主表面は、触媒基準エッチングにより表面加工された表面である請求項1~3のいずれか1項に記載のマスクブランク用基板。
  5.  前記基板が、EUVリソグラフィーに使用されるマスクブランク用基板である請求項1~4のいずれか1項に記載のマスクブランク用基板。
  6.  前記基板が、多成分系のガラス材料からなる基板上に、金属、合金又はこれらのいずれかに酸素、窒素、炭素の少なくとも一つを含有した材料からなる薄膜を有する請求項5に記載のマスクブランク用基板。
  7.  請求項1~6のいずれか1項に記載のマスクブランク用基板の主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を有する多層反射膜付き基板。
  8.  前記多層反射膜上に保護膜を有する請求項7に記載の多層反射膜付き基板。
  9.  請求項7又は8に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上のパワースペクトル密度が20nm以下である多層反射膜付き基板。
  10.  請求項9に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が20nm以下である多層反射膜付き基板。
  11.  請求項9に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が9nm以下である多層反射膜付き基板。
  12.  請求項9~11のいずれか1項に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下である多層反射膜付き基板。
  13.  リソグラフィーに使用されるマスクブランク用基板の主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を有する多層反射膜付き基板であって、
     前記多層反射膜付き基板の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる二乗平均平方根粗さ(Rms)が0.15nm以下であり、且つ、空間周波数1μm-1以上のパワースペクトル密度が20nm以下である多層反射膜付き基板。
  14.  前記多層反射膜上に保護膜を有する請求項13に記載の多層反射膜付き基板。
  15.  請求項13又は14に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数1μm-1以上10μm-1以下のパワースペクトル密度が20nm以下である多層反射膜付き基板。
  16.  請求項13又は14に記載の多層反射膜付き基板の前記多層反射膜又は前記保護膜の表面は、1μm×1μmの領域を原子間力顕微鏡で測定して得られる空間周波数10μm-1以上100μm-1以下のパワースペクトル密度が9nm以下である多層反射膜付き基板。
  17.  請求項1~4のいずれか1項に記載のマスクブランク用基板の前記主表面上に、転写パターンとなる遮光性膜を有する透過型マスクブランク。
  18.  請求項8~16のいずれか1項に記載の多層反射膜付き基板の前記多層反射膜上又は前記保護膜上に、転写パターンとなる吸収体膜を有する反射型マスクブランク。
  19.  請求項17に記載の透過型マスクブランクにおける前記遮光性膜をパターニングして、前記主表面上に遮光性膜パターンを有する透過型マスク。
  20.  請求項18に記載の反射型マスクブランクにおける前記吸収体膜をパターニングして、前記多層反射膜上又は前記保護膜上に吸収体パターンを有する反射型マスク。
  21.  請求項19に記載の透過型マスクを用いて、露光装置を使用したリソグラフィープロセスを行い、被転写体上に転写パターンを形成する工程を有する半導体装置の製造方法。
  22.  請求項20に記載の反射型マスクを用いて、露光装置を使用したリソグラフィープロセスを行い、被転写体上に転写パターンを形成する工程を有する半導体装置の製造方法。
PCT/JP2013/059199 2012-03-28 2013-03-28 マスクブランク用基板、多層反射膜付き基板、透過型マスクブランク、反射型マスクブランク、透過型マスク、反射型マスク及び半導体装置の製造方法 WO2013146990A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177035144A KR102055992B1 (ko) 2012-03-28 2013-03-28 마스크 블랭크용 기판, 다층 반사막 부착 기판, 투과형 마스크 블랭크, 반사형 마스크 블랭크, 투과형 마스크, 반사형 마스크 및 반도체 장치의 제조 방법
US14/348,413 US9494851B2 (en) 2012-03-28 2013-03-28 Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method
KR1020147018169A KR101807838B1 (ko) 2012-03-28 2013-03-28 마스크 블랭크용 기판, 다층 반사막 부착 기판, 투과형 마스크 블랭크, 반사형 마스크 블랭크, 투과형 마스크, 반사형 마스크 및 반도체 장치의 제조 방법
JP2014502925A JP5538638B2 (ja) 2012-03-28 2013-03-28 マスクブランク用基板、多層反射膜付き基板、透過型マスクブランク、反射型マスクブランク、透過型マスク、反射型マスク及び半導体装置の製造方法
KR1020147008229A KR101477470B1 (ko) 2012-03-28 2013-03-28 마스크 블랭크용 기판, 다층 반사막 부착 기판, 투과형 마스크 블랭크, 반사형 마스크 블랭크, 투과형 마스크, 반사형 마스크 및 반도체 장치의 제조 방법
US15/275,719 US10001699B2 (en) 2012-03-28 2016-09-26 Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method
US15/980,783 US10295900B2 (en) 2012-03-28 2018-05-16 Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012074626 2012-03-28
JP2012-074626 2012-03-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/348,413 A-371-Of-International US9494851B2 (en) 2012-03-28 2013-03-28 Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method
US15/275,719 Continuation US10001699B2 (en) 2012-03-28 2016-09-26 Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method

Publications (1)

Publication Number Publication Date
WO2013146990A1 true WO2013146990A1 (ja) 2013-10-03

Family

ID=49260238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059199 WO2013146990A1 (ja) 2012-03-28 2013-03-28 マスクブランク用基板、多層反射膜付き基板、透過型マスクブランク、反射型マスクブランク、透過型マスク、反射型マスク及び半導体装置の製造方法

Country Status (5)

Country Link
US (3) US9494851B2 (ja)
JP (3) JP5538638B2 (ja)
KR (3) KR102055992B1 (ja)
TW (3) TWI654478B (ja)
WO (1) WO2013146990A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104276A1 (ja) * 2012-12-28 2014-07-03 Hoya株式会社 マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、マスクブランク用基板の製造方法及び多層反射膜付き基板の製造方法並びに半導体装置の製造方法
WO2014104009A1 (ja) * 2012-12-27 2014-07-03 Hoya株式会社 マスクブランク用基板処理装置、マスクブランク用基板処理方法、マスクブランク用基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
JP2015114356A (ja) * 2013-12-09 2015-06-22 Hoya株式会社 機能膜付き基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
WO2015145887A1 (ja) * 2014-03-26 2015-10-01 Hoya株式会社 マスクブランク用基板、マスクブランク及び転写用マスク、並びにそれらの製造方法
JP2016143791A (ja) * 2015-02-03 2016-08-08 旭硝子株式会社 マスクブランク用ガラス基板
JP2017044758A (ja) * 2015-08-24 2017-03-02 旭硝子株式会社 Euvlマスクブランク用ガラス基板、およびその製造方法
JP2017156762A (ja) * 2017-04-19 2017-09-07 Hoya株式会社 マスクブランク用基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及びマスクブランク用基板製造装置
JPWO2016199746A1 (ja) * 2015-06-09 2018-02-15 旭硝子株式会社 ガラス板
TWI721681B (zh) * 2014-12-24 2021-03-11 日商Hoya股份有限公司 反射型光罩基底、反射型光罩、及半導體裝置之製造方法
EP3923071A1 (en) 2020-06-09 2021-12-15 Shin-Etsu Chemical Co., Ltd. Mask blank glass substrate
EP4095210A1 (en) 2021-05-24 2022-11-30 Shin-Etsu Chemical Co., Ltd. Polishing composition
JP2023501931A (ja) * 2019-10-29 2023-01-20 ザイゴ コーポレーション 光学表面上の欠陥を軽減する方法およびその方法によって形成されたミラー

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229466B2 (ja) * 2013-12-06 2017-11-15 信越化学工業株式会社 フォトマスクブランク
JP6301127B2 (ja) * 2013-12-25 2018-03-28 Hoya株式会社 反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
KR102519334B1 (ko) * 2014-12-19 2023-04-07 호야 가부시키가이샤 마스크 블랭크용 기판, 마스크 블랭크 및 이들의 제조 방법, 전사용 마스크의 제조 방법 그리고 반도체 디바이스의 제조 방법
TWI694304B (zh) * 2015-06-08 2020-05-21 日商Agc股份有限公司 Euv微影術用反射型光罩基底
JP6058757B1 (ja) * 2015-07-15 2017-01-11 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
WO2018020994A1 (ja) * 2016-07-27 2018-02-01 Hoya株式会社 マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、半導体デバイスの製造方法、マスクブランク用基板、マスクブランク及び転写用マスク
JP6717211B2 (ja) * 2017-01-16 2020-07-01 Agc株式会社 マスクブランク用基板、マスクブランク、およびフォトマスク
JP7023790B2 (ja) * 2018-05-22 2022-02-22 株式会社Screenホールディングス フォトマスク検査装置およびフォトマスク検査方法
AU2019311181A1 (en) 2018-07-27 2021-02-18 Research Development Foundation Chimeric immunogenic polypeptides
US10866197B2 (en) * 2018-09-20 2020-12-15 KLA Corp. Dispositioning defects detected on extreme ultraviolet photomasks
US11448955B2 (en) 2018-09-27 2022-09-20 Taiwan Semiconductor Manufacturing Co., Ltd. Mask for lithography process and method for manufacturing the same
TWI782237B (zh) * 2018-11-30 2022-11-01 日商Hoya股份有限公司 光罩基底、光罩之製造方法及顯示裝置之製造方法
KR20210094119A (ko) * 2018-12-17 2021-07-28 어플라이드 머티어리얼스, 인코포레이티드 기판 상에 디바이스들을 형성하는 방법
JP6678269B2 (ja) * 2019-03-15 2020-04-08 Hoya株式会社 反射型マスクブランク及び反射型マスク
US11111176B1 (en) * 2020-02-27 2021-09-07 Applied Materials, Inc. Methods and apparatus of processing transparent substrates
US11852965B2 (en) 2020-10-30 2023-12-26 Taiwan Semiconductor Manufacturing Co., Ltd. Extreme ultraviolet mask with tantalum base alloy absorber
JPWO2022149417A1 (ja) * 2021-01-05 2022-07-14
CN115343910A (zh) * 2021-05-12 2022-11-15 上海传芯半导体有限公司 移相掩膜版及其制作方法
KR102660636B1 (ko) 2021-12-31 2024-04-25 에스케이엔펄스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231994A (ja) * 2004-02-20 2005-09-02 Schott Ag 低熱膨張性ガラスセラミック
JP2006278515A (ja) * 2005-03-28 2006-10-12 Shin Etsu Handotai Co Ltd 半導体ウエーハの評価方法及び製造方法
JP2007213020A (ja) * 2005-12-22 2007-08-23 Asahi Glass Co Ltd マスクブランクス用ガラス基板およびその研磨方法
JP2008094649A (ja) * 2006-10-10 2008-04-24 Shinetsu Quartz Prod Co Ltd 石英ガラス基板の表面処理方法及び水素ラジカルエッチング装置
JP2008156215A (ja) * 2006-12-01 2008-07-10 Asahi Glass Co Ltd 予備研磨されたガラス基板表面を仕上げ加工する方法
JP2008201665A (ja) * 2006-11-30 2008-09-04 Corning Inc 極紫外光学素子のための研磨方法及びその方法を用いて作成された素子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0960356A1 (en) 1997-01-21 1999-12-01 The University of New Mexico Methods and apparatus for integrating optical and interferometric lithography to produce complex patterns
JP3441711B2 (ja) * 2000-11-02 2003-09-02 Hoya株式会社 ハーフトーン型位相シフトマスク及びハーフトーン型位相シフトマスクブランク
JP5090633B2 (ja) 2004-06-22 2012-12-05 旭硝子株式会社 ガラス基板の研磨方法
US7504185B2 (en) 2005-10-03 2009-03-17 Asahi Glass Company, Limited Method for depositing multi-layer film of mask blank for EUV lithography and method for producing mask blank for EUV lithography
JP5035516B2 (ja) * 2005-12-08 2012-09-26 信越化学工業株式会社 フォトマスク用チタニアドープ石英ガラスの製造方法
JP4839927B2 (ja) * 2006-03-31 2011-12-21 凸版印刷株式会社 極端紫外線露光用マスクブランク及び極端紫外線露光用マスク並びにパターン転写方法
JP4998082B2 (ja) * 2007-05-17 2012-08-15 凸版印刷株式会社 反射型フォトマスクブランク及びその製造方法、反射型フォトマスク、並びに、半導体装置の製造方法
EP2256789B1 (en) * 2008-03-18 2012-07-04 Asahi Glass Company, Limited Reflective mask blank for euv lithography
JP5369506B2 (ja) 2008-06-11 2013-12-18 信越化学工業株式会社 合成石英ガラス基板用研磨剤
JP2008268980A (ja) 2008-07-29 2008-11-06 Shin Etsu Chem Co Ltd フォトマスクの製造方法
JP2010135732A (ja) * 2008-08-01 2010-06-17 Asahi Glass Co Ltd Euvマスクブランクス用基板
US20110272024A1 (en) * 2010-04-13 2011-11-10 Applied Materials, Inc. MULTI-LAYER SiN FOR FUNCTIONAL AND OPTICAL GRADED ARC LAYERS ON CRYSTALLINE SOLAR CELLS
CN101880907B (zh) * 2010-07-07 2012-04-25 厦门大学 纳米精度的电化学整平和抛光加工方法及其装置
JP2012052870A (ja) * 2010-08-31 2012-03-15 Renesas Electronics Corp マスクブランク検査装置およびその光学調整方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231994A (ja) * 2004-02-20 2005-09-02 Schott Ag 低熱膨張性ガラスセラミック
JP2006278515A (ja) * 2005-03-28 2006-10-12 Shin Etsu Handotai Co Ltd 半導体ウエーハの評価方法及び製造方法
JP2007213020A (ja) * 2005-12-22 2007-08-23 Asahi Glass Co Ltd マスクブランクス用ガラス基板およびその研磨方法
JP2008094649A (ja) * 2006-10-10 2008-04-24 Shinetsu Quartz Prod Co Ltd 石英ガラス基板の表面処理方法及び水素ラジカルエッチング装置
JP2008201665A (ja) * 2006-11-30 2008-09-04 Corning Inc 極紫外光学素子のための研磨方法及びその方法を用いて作成された素子
JP2008156215A (ja) * 2006-12-01 2008-07-10 Asahi Glass Co Ltd 予備研磨されたガラス基板表面を仕上げ加工する方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104009A1 (ja) * 2012-12-27 2014-07-03 Hoya株式会社 マスクブランク用基板処理装置、マスクブランク用基板処理方法、マスクブランク用基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
US10481488B2 (en) 2012-12-27 2019-11-19 Hoya Corporation Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
US9581895B2 (en) 2012-12-28 2017-02-28 Hoya Corporation Mask blank substrate, substrate with multilayer reflective film, reflective mask blank, reflective mask, method of manufacturing mask blank substrate, method of manufacturing substrate with reflective film and method of manufacturing semiconductor device
US10025176B2 (en) 2012-12-28 2018-07-17 Hoya Corporation Mask blank substrate, substrate with multilayer reflective film, reflective mask blank, reflective mask, method of manufacturing mask blank substrate, method of manufacturing substrate with reflective film and method of manufacturing semiconductor device
WO2014104276A1 (ja) * 2012-12-28 2014-07-03 Hoya株式会社 マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、マスクブランク用基板の製造方法及び多層反射膜付き基板の製造方法並びに半導体装置の製造方法
JP2015114356A (ja) * 2013-12-09 2015-06-22 Hoya株式会社 機能膜付き基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
WO2015145887A1 (ja) * 2014-03-26 2015-10-01 Hoya株式会社 マスクブランク用基板、マスクブランク及び転写用マスク、並びにそれらの製造方法
KR101758837B1 (ko) * 2014-03-26 2017-07-17 호야 가부시키가이샤 마스크 블랭크용 기판, 마스크 블랭크 및 전사용 마스크, 그리고 그들의 제조방법
KR20170085602A (ko) * 2014-03-26 2017-07-24 호야 가부시키가이샤 마스크 블랭크용 기판, 마스크 블랭크 및 전사용 마스크
US9778209B2 (en) 2014-03-26 2017-10-03 Hoya Corporation Substrate for mask blanks, mask blank, transfer mask, and method of manufacturing them
JP2015184622A (ja) * 2014-03-26 2015-10-22 Hoya株式会社 マスクブランク用基板、マスクブランク及び転写用マスク、並びにそれらの製造方法
KR101929849B1 (ko) 2014-03-26 2018-12-17 호야 가부시키가이샤 마스크 블랭크용 기판, 마스크 블랭크 및 전사용 마스크
TWI721681B (zh) * 2014-12-24 2021-03-11 日商Hoya股份有限公司 反射型光罩基底、反射型光罩、及半導體裝置之製造方法
JP2016143791A (ja) * 2015-02-03 2016-08-08 旭硝子株式会社 マスクブランク用ガラス基板
JPWO2016199746A1 (ja) * 2015-06-09 2018-02-15 旭硝子株式会社 ガラス板
JP2017044758A (ja) * 2015-08-24 2017-03-02 旭硝子株式会社 Euvlマスクブランク用ガラス基板、およびその製造方法
JP2017156762A (ja) * 2017-04-19 2017-09-07 Hoya株式会社 マスクブランク用基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及びマスクブランク用基板製造装置
JP2023501931A (ja) * 2019-10-29 2023-01-20 ザイゴ コーポレーション 光学表面上の欠陥を軽減する方法およびその方法によって形成されたミラー
JP7343700B2 (ja) 2019-10-29 2023-09-12 ザイゴ コーポレーション 光学表面上の欠陥を軽減する方法およびその方法によって形成されたミラー
EP3923071A1 (en) 2020-06-09 2021-12-15 Shin-Etsu Chemical Co., Ltd. Mask blank glass substrate
KR20210152951A (ko) 2020-06-09 2021-12-16 신에쓰 가가꾸 고교 가부시끼가이샤 마스크 블랭크스용 유리 기판
US11835853B2 (en) 2020-06-09 2023-12-05 Shin-Etsu Chemical Co., Ltd. Mask blank glass substrate
EP4095210A1 (en) 2021-05-24 2022-11-30 Shin-Etsu Chemical Co., Ltd. Polishing composition
KR20220158632A (ko) 2021-05-24 2022-12-01 신에쓰 가가꾸 고교 가부시끼가이샤 연마용 조성물

Also Published As

Publication number Publication date
JP5538638B2 (ja) 2014-07-02
KR102055992B1 (ko) 2019-12-13
TW201921086A (zh) 2019-06-01
TWI654478B (zh) 2019-03-21
US20170010527A1 (en) 2017-01-12
JPWO2013146990A1 (ja) 2015-12-14
TW201346428A (zh) 2013-11-16
JP2016048379A (ja) 2016-04-07
KR101477470B1 (ko) 2014-12-29
KR20170137961A (ko) 2017-12-13
TW201812435A (zh) 2018-04-01
JP5826886B2 (ja) 2015-12-02
KR101807838B1 (ko) 2017-12-12
US20150017574A1 (en) 2015-01-15
US20180275507A1 (en) 2018-09-27
JP2014186333A (ja) 2014-10-02
TWI688819B (zh) 2020-03-21
US10001699B2 (en) 2018-06-19
KR20140095464A (ko) 2014-08-01
US9494851B2 (en) 2016-11-15
US10295900B2 (en) 2019-05-21
TWI607277B (zh) 2017-12-01
JP6195880B2 (ja) 2017-09-13
KR20140128951A (ko) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6195880B2 (ja) マスクブランク用基板の製造方法、多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、反射型マスクの製造方法、透過型マスクブランクの製造方法、透過型マスクの製造方法、及び半導体装置の製造方法
JP6574034B2 (ja) マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、透過型マスクブランク、及び透過型マスク、並びに半導体装置の製造方法
JP6388841B2 (ja) 反射型マスクブランク、反射型マスクブランクの製造方法、反射型マスク及び半導体装置の製造方法
WO2015046303A1 (ja) 多層反射膜付き基板、マスクブランク、転写用マスク及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502925

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147008229

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14348413

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767780

Country of ref document: EP

Kind code of ref document: A1