WO2013146548A1 - 二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物 - Google Patents

二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物 Download PDF

Info

Publication number
WO2013146548A1
WO2013146548A1 PCT/JP2013/058153 JP2013058153W WO2013146548A1 WO 2013146548 A1 WO2013146548 A1 WO 2013146548A1 JP 2013058153 W JP2013058153 W JP 2013058153W WO 2013146548 A1 WO2013146548 A1 WO 2013146548A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
active material
weight
particulate polymer
Prior art date
Application number
PCT/JP2013/058153
Other languages
English (en)
French (fr)
Inventor
祐子 大谷
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49259804&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013146548(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US14/384,826 priority Critical patent/US20150044559A1/en
Priority to PL13769208T priority patent/PL2833448T3/pl
Priority to KR1020147025700A priority patent/KR102039034B1/ko
Priority to JP2014507804A priority patent/JP6007973B2/ja
Priority to EP13769208.3A priority patent/EP2833448B1/en
Priority to CN201380022439.8A priority patent/CN104254939B/zh
Publication of WO2013146548A1 publication Critical patent/WO2013146548A1/ja
Priority to US16/254,937 priority patent/US20190157677A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite particle for a secondary battery negative electrode, a secondary battery negative electrode material, a secondary battery negative electrode, a method for producing a secondary battery negative electrode composite particle, a secondary battery negative electrode binder composition, and a secondary battery.
  • the lithium ion secondary battery can be a small and light battery, has a high energy density, and can be repeatedly charged and discharged. Utilizing such characteristics, demand for lithium ion secondary batteries is rapidly expanding. For example, taking advantage of high energy density, it is used in fields such as mobile phones and notebook personal computers. With the expansion and development of applications, lithium ion secondary batteries are required to be further improved, such as lowering resistance, increasing capacity, and improving mechanical characteristics.
  • an electrode for a secondary battery such as a lithium ion secondary battery
  • a slurry containing an electrode active material and a binder is prepared, the slurry is applied to a current collector, and the slurry is dried (application method). ) Is widely used.
  • the electrode active material layer can be formed by reducing migration. It is expected to obtain effects such as improvement of various performances of the battery by homogenization and ease of production.
  • the active material for the secondary battery electrode is pressure-molded as composite particles, the adhesive strength between the electrode active material layer and the current collector tends to be insufficient, and it is difficult to improve the performance such as cycle characteristics after all. It is.
  • an object of the present invention is to provide a secondary battery in which various performances as a battery, such as cycle characteristics, are improved and easy to manufacture, a component for manufacturing such a secondary battery, and its manufacture It is to provide a method.
  • the present inventor is considered to be relatively unfavorable in the coating method in place of the styrene-butadiene-based polymer (SBR) that has been regarded as preferable in the coating method that has been widely used conventionally.
  • SBR styrene-butadiene-based polymer
  • NBR acrylonitrile-butadiene copolymer
  • the adhesive strength between the electrode active material layer and the current collector can be made sufficiently high even in the technique using pressure molding of composite particles.
  • NBR acrylonitrile-butadiene copolymer
  • the durability of the electrode is lowered.
  • the present inventor has found that the battery performance is improved by causing the organic compound produced as a side reaction during the polymerization of NBR to dissolve in the electrolytic solution, move to the positive electrode side, and cause an oxidation reaction. I found it to decline.
  • the present inventor has further found that the problems described above can be collectively solved by preparing NBR with a reduced concentration of the organic compound and using it, and completed the present invention. That is, according to the present invention, the following is provided.
  • a composite particle for a secondary battery negative electrode comprising a negative electrode active material and a particulate polymer,
  • the particulate polymer contains 10% to 60% by weight of (meth) acrylonitrile monomer units and 35% to 85% by weight of aliphatic conjugated diene monomer units;
  • Composite particles for secondary battery negative electrodes having a boiling point of 150 ° C to 300 ° C and a residual amount of an organic compound having an unsaturated bond as a ratio to the amount of the particulate polymer of 500 ppm or less.
  • a secondary battery negative electrode material comprising the secondary battery negative electrode composite particles according to [1] or [2].
  • a negative electrode for a secondary battery including a current collector and an active material layer formed on the current collector and formed from the secondary battery negative electrode material according to [3].
  • the active material layer is a layer formed by pressure molding of the negative electrode material for the secondary battery.
  • the pressure molding is roll pressure molding.
  • a method for producing composite particles for a secondary battery negative electrode according to [1] or [2], A step of dispersing a composition containing a negative electrode active material and a particulate polymer in water to obtain a slurry composition; Granulating the slurry composition; Have The particulate polymer is a polymer containing 10% by weight to 60% by weight of (meth) acrylonitrile monomer units and 35% by weight to 85% by weight of aliphatic conjugated diene monomer units, In the composition, the residual amount of the organic compound having a boiling point of 150 ° C. to 300 ° C. and having an unsaturated bond is 500 ppm or less as a ratio to the amount of the particulate polymer. Production method.
  • a secondary battery comprising the secondary battery negative electrode according to any one of [4] to [6].
  • the composite particles for a secondary battery negative electrode of the present invention, and the secondary battery negative electrode material, the secondary battery negative electrode and the secondary battery negative electrode binder composition having the same are various battery properties such as cycle characteristics.
  • the secondary battery of the present invention having improved performance and easy manufacture can be provided.
  • the manufacturing method of the composite particle for secondary battery negative electrodes of this invention the said composite particle for secondary battery negative electrodes of this invention can be manufactured easily.
  • positive electrode active material means an electrode active material for positive electrode
  • negative electrode active material means an electrode active material for negative electrode
  • positive electrode active material layer means an electrode active material layer provided on the positive electrode
  • negative electrode active material layer means an electrode active material layer provided on the negative electrode
  • the composite particle of the present invention is a composite particle for a secondary battery negative electrode including a negative electrode active material and a particulate polymer.
  • the negative electrode active material is an electrode active material for a negative electrode, and is a material that transfers electrons in the negative electrode of the secondary battery.
  • a material that can occlude and release lithium is usually used as the negative electrode active material.
  • the material that can occlude and release lithium include a metal-based active material, a carbon-based active material, and an active material that combines these materials.
  • the metal-based active material is an active material containing a metal, and usually contains an element capable of inserting lithium (also referred to as dope) in the structure, and the theoretical electric capacity per weight when lithium is inserted is 500 mAh.
  • the upper limit of the theoretical electric capacity is not particularly limited, but may be, for example, 5000 mAh / g or less.
  • the metal-based active material for example, lithium metal, a single metal that forms a lithium alloy and an alloy thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used.
  • the single metal forming the lithium alloy examples include single metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, Zn, and Ti. Can be mentioned. Moreover, as a single metal alloy which forms a lithium alloy, the compound containing the said single metal is mentioned, for example. Among these, silicon (Si), tin (Sn), lead (Pb), and titanium (Ti) are preferable, and silicon, tin, and titanium are more preferable. Accordingly, a single metal of silicon (Si), tin (Sn), or titanium (Ti), an alloy containing these single metals, or a compound of these metals is preferable.
  • the metallic active material may further contain one or more nonmetallic elements.
  • the insertion of lithium at low potential and desorption (also called de-dope) capable SiO x, SiC and SiO x C y is preferred.
  • SiO x C y can be obtained by firing a polymer material containing silicon.
  • the range of 0.8 ⁇ x ⁇ 3 and 2 ⁇ y ⁇ 4 is preferably used in view of the balance between capacity and cycle characteristics.
  • Lithium metal, elemental metal forming lithium alloy and oxides, sulfides, nitrides, silicides, carbides and phosphides of the alloys include oxides, sulfides, nitrides and silicides of lithium-insertable elements Products, carbides, phosphides and the like.
  • an oxide is particularly preferable.
  • a lithium-containing metal composite oxide containing an oxide such as tin oxide, manganese oxide, titanium oxide, niobium oxide, and vanadium oxide and a metal element selected from the group consisting of Si, Sn, Pb, and Ti atoms is used. .
  • Li x Ti y M z O 4 As the lithium-containing metal composite oxide, a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, 0 ⁇ z ⁇ 1.6, and M represents an element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb.), Li x Mn y M A lithium manganese composite oxide represented by z O 4 (x, y, z and M are the same as defined in the lithium titanium composite oxide). Among these, Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 , Li 4/5 Ti 11/5 O 4 , and Li 4/3 Mn 5/3 O 4 are preferable.
  • an active material containing silicon is preferable as the metal-based active material.
  • an active material containing silicon By using an active material containing silicon, the electric capacity of the secondary battery can be increased.
  • the active materials containing silicon SiC, SiO x and SiO x C y are preferred.
  • an active material containing a combination of these Si and C when Li is inserted into and desorbed from Si (silicon) at a high potential, and Li is inserted into and desorbed from C (carbon) at a low potential Guessed. For this reason, since expansion and contraction are suppressed as compared with other metal-based active materials, the charge / discharge cycle characteristics of the secondary battery can be improved.
  • the carbon-based active material refers to an active material having carbon as a main skeleton into which lithium can be inserted, and examples thereof include a carbonaceous material and a graphite material.
  • the carbonaceous material is generally a carbon material with low graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower. Although the minimum of the said heat processing is not specifically limited, For example, it is good also as 500 degreeC or more.
  • Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.
  • Examples of the graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
  • MCMB is carbon fine particles obtained by separating and extracting mesophase microspheres generated in the process of heating pitches at around 400 ° C.
  • the mesophase pitch-based carbon fiber is a carbon fiber using as a raw material mesophase pitch obtained by growing and coalescing the mesophase microspheres.
  • Pyrolytic vapor-grown carbon fibers are (1) a method of pyrolyzing acrylic polymer fibers, etc., (2) a method of spinning by spinning a pitch, or (3) using nanoparticles such as iron as a catalyst.
  • non-graphitizable carbon examples include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, furfuryl alcohol resin fired bodies (PFA), and hard carbon.
  • the graphite material is a graphite material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
  • the upper limit of the said heat processing temperature is not specifically limited, For example, it is good also as 5000 degrees C or less.
  • Examples of the graphite material include natural graphite and artificial graphite.
  • Examples of artificial graphite include artificial graphite mainly heat-treated at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, graphitized mesophase pitch-based carbon fiber heat-treated mesophase pitch-based carbon fiber at 2000 ° C. or higher, etc. Is mentioned.
  • carbonaceous materials are preferable.
  • the resistance of the secondary battery can be reduced, and a secondary battery having excellent input / output characteristics can be manufactured.
  • the negative electrode active material one type may be used alone, or two or more types may be used in combination at any ratio.
  • the negative electrode active material is prepared as a granulated particle and used for the production of composite particles.
  • the shape of the particles is spherical, a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter is appropriately selected in consideration of other constituent elements of the secondary battery, and is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more. Usually, it is 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the 50% cumulative volume diameter of the negative electrode active material particles is usually 1 ⁇ m or more, preferably 15 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics. It is.
  • the 50% cumulative volume diameter can be obtained as a particle diameter at which the cumulative volume calculated from the small diameter side in the measured particle size distribution is 50% by measuring the particle size distribution by a laser diffraction method.
  • the tap density of the negative electrode active material is not particularly limited, but 0.6 g / cm 3 or more is preferably used.
  • the specific surface area of the negative electrode active material is usually 2 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 5 m 2 / g or more, and usually 20 m 2 / g or less, preferably from the viewpoint of improving the output density. It is 15 m 2 / g or less, more preferably 10 m 2 / g or less.
  • the specific surface area of the negative electrode active material can be measured by, for example, the BET method.
  • the particulate polymer contains a (meth) acrylonitrile monomer unit and an aliphatic conjugated diene monomer unit.
  • (Meth) acrylonitrile monomer unit is a unit obtained by polymerization of acrylonitrile and / or methacrylonitrile.
  • the proportion of the (meth) acrylonitrile monomer unit in the particulate polymer is 10% by weight or more, preferably 20% by weight or more, while it is 60% by weight or less and 50% by weight or less. Is preferable, and it is more preferable that it is 45 weight% or less.
  • the aliphatic conjugated diene monomer unit is a unit obtained by polymerization of an aliphatic conjugated diene monomer.
  • aliphatic conjugated diene monomers examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3 butadiene, 2-chloro-1,3-butadiene, substituted Examples include straight chain conjugated pentadienes, and substituted and side chain conjugated hexadienes. Of these, 2-methyl-1,3-butadiene and 1,3-butadiene are preferable, and 1,3-butadiene is particularly preferable.
  • the monomer composition for producing the particulate polymer may contain only one kind of aliphatic conjugated diene monomer, and may be a combination of two or more kinds of aliphatic conjugated diene monomers in any ratio. May be included. Therefore, the particulate polymer may contain only one type of aliphatic conjugated diene monomer unit, or may contain two or more types combined in any ratio.
  • the proportion of the aliphatic conjugated diene monomer unit in the particulate polymer is 35% by weight or more, preferably 42% by weight or more, more preferably 48% by weight or more, while 85% by weight. Or less, preferably 82% by weight or less, and more preferably 76% by weight or less.
  • the particulate polymer can contain arbitrary units in addition to the units described above.
  • the ethylenically unsaturated carboxylic acid monomer unit is a unit obtained by polymerization of an ethylenically unsaturated carboxylic acid monomer.
  • the ethylenically unsaturated carboxylic acid monomer examples include monocarboxylic and dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid, and anhydrides thereof.
  • a monomer selected from the group consisting of methacrylic acid, itaconic acid, and combinations thereof is preferable.
  • the monomer composition for producing the particulate polymer may contain only one kind of ethylenically unsaturated carboxylic acid monomer, and two or more kinds of ethylenically unsaturated carboxylic acid monomers may be arbitrarily added. You may include combining in a ratio. Therefore, the particulate polymer may contain only one type of ethylenically unsaturated carboxylic acid monomer unit, or may contain two or more types in combination at any ratio.
  • the proportion of the ethylenically unsaturated carboxylic acid monomer unit in the particulate polymer is preferably 0.5% by weight or more, more preferably 1% by weight or more, and 4% by weight or more. Is more preferably, on the other hand, preferably 10% by weight or less, more preferably 8% by weight or less, and even more preferably 7% by weight or less.
  • the total proportion of (meth) acrylonitrile monomer units, aliphatic conjugated diene monomer units, and (if included) ethylenically unsaturated carboxylic acid monomer units in the total particulate polymer is 45 wt. % Or more, more preferably 55% by weight or more, and even more preferably 65% by weight or more.
  • the upper limit is not particularly limited and may be 100% by weight or less.
  • the particulate polymer may contain any repeating unit other than those described above as long as the effects of the present invention are not significantly impaired.
  • Examples of monomers corresponding to any of the above repeating units include unsaturated carboxylic acid alkyl ester monomers, unsaturated monomers containing hydroxyalkyl groups, and unsaturated carboxylic acid amide monomers. It is done. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaco Nates, and 2-ethylhexyl acrylate. Of these, methyl methacrylate is preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • Examples of unsaturated monomers containing hydroxyalkyl groups include ⁇ -hydroxyethyl acrylate, ⁇ -hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2- Examples include hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethyl methyl fumarate. Of these, ⁇ -hydroxyethyl acrylate is preferred. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • unsaturated carboxylic acid amide monomers include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, and N, N-dimethylacrylamide. Of these, acrylamide and methacrylamide are preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the particulate polymer may contain monomers used in usual emulsion polymerization, such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the particulate polymer does not include a unit that reduces the adhesive strength between the electrode active material layer and the current collector, particularly an aromatic vinyl monomer unit, or the content may be small.
  • the aromatic vinyl monomer include styrene and styrene derivatives such as ⁇ -methylstyrene and ⁇ -methylstyrene.
  • the ratio of the aromatic vinyl monomer unit in the particulate polymer is preferably 1% by weight or less, more preferably 0.5% by weight or less, and ideally 0% by weight.
  • the weight average molecular weight of the particulate polymer is preferably 10,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less.
  • the weight average molecular weight of the water-insoluble polymer can be determined as a value in terms of polystyrene using tetrahydrofuran as a developing solvent by gel permeation chromatography (GPC).
  • the particulate polymer becomes water-insoluble particles. Therefore, in the production of composite particles, the particulate polymer is not dissolved in water as a solvent but dispersed as particles.
  • the polymer being water-insoluble means that the insoluble content becomes 90% by weight or more when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C.
  • a polymer being water-soluble means that at 25 ° C., 0.5 g of the polymer is dissolved in 100 g of water and the insoluble content is less than 0.5% by weight.
  • the number average particle diameter of the particulate polymer is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less.
  • the presence of particles can be easily measured by transmission electron microscopy, Coulter counter, laser diffraction scattering, or the like.
  • the content ratio of the negative electrode active material and the particulate polymer in the composite particles of the present invention is not particularly limited, but the amount of the particulate polymer with respect to 100 parts by weight of the negative electrode active material is usually 0.3 parts by weight or more, preferably It is 0.5 parts by weight or more, particularly preferably 1 part by weight or more, and usually 8 parts by weight or less, preferably 5 parts by weight or less, particularly preferably 3 parts by weight or less.
  • an organic compound having a boiling point of 150 ° C. to 300 ° C. and having an unsaturated bond hereinafter, for convenience of explanation, the specific organic compound may be referred to as “low molecular weight organic compound”).
  • low molecular weight organic compound Is less than a predetermined amount.
  • the low molecular weight organic compound is produced as a by-product during the polymerization of the particulate polymer. More specifically, it is a product of Diels-Alder reaction of a monomer, and more specifically, a dimer produced by Diels-Alder reaction of an aliphatic conjugated diene monomer and dienophile.
  • the dienophile is not particularly limited as long as it is a compound that undergoes a Diels-Alder reaction with an aliphatic conjugated diene monomer.
  • a (meth) acrylonitrile monomer an ethylenically unsaturated carboxylic acid monomer
  • examples thereof include saturated carboxylic acid alkyl ester monomers, unsaturated monomers containing hydroxyalkyl groups, and unsaturated carboxylic acid amide monomers.
  • 4-cyanocyclohexene bis(boiling point 260 ° C.)
  • a Diels-Alder reaction product of 1,3-butadiene and acrylonitrile is formed.
  • the ratio of the low molecular weight organic compound in the composite particles of the present invention is 500 ppm or less as a ratio to the amount of the particulate polymer, and preferably 300 ppm or less. That is, the residual amount of the low molecular weight organic compound in the composite particles per 1 g of the particulate polymer present in the composite particles is 500 ⁇ g or less, and preferably 300 ⁇ g or less.
  • the residual amount of the low molecular weight organic compound is reduced by producing the particulate polymer by a production method with a small production amount of the low molecular weight organic compound. Can be reduced.
  • the particulate polymer with a low content of low molecular weight organic compounds is It is preferable to manufacture by (i) the manufacturing method by low temperature polymerization, or (ii) the manufacturing method with the removal of the low molecular weight organic compound by steam distillation after polymerization. Since removal of the low molecular weight organic compound by steam distillation requires a long time, the above (i) is more preferable from the viewpoint of production efficiency and prevention of modification of the particulate polymer.
  • the low-temperature polymerization (i) can be any method capable of allowing a low-temperature reaction to proceed in a composition containing each monomer at a predetermined ratio.
  • a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, or a solution polymerization method can be employed.
  • it is preferable to produce by an emulsion polymerization method because the particle diameter of the particulate polymer can be easily controlled.
  • an aqueous polymerization method using water as a main solvent is preferred.
  • the emulsion polymerization is an emulsion obtained by mixing a monomer, a solvent, and, if necessary, optional components such as an emulsifier, a molecular weight regulator, and a polymerization initiator at a low polymerization temperature. This can be done by reacting.
  • water can usually be used as a solvent.
  • emulsifier examples include nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; myristic acid, palmitic acid, oleic acid, linolenic acid, and the like.
  • Anionic emulsifiers such as fatty acids and salts thereof, higher alcohol sulfates, alkylsulfosuccinic acids; ammonium chlorides such as trimethylammonium chloride and dialkylammonium chloride; cationic emulsifiers such as benzylammonium salts and quaternary ammonium salts; ⁇ , Examples include ⁇ -unsaturated carboxylic acid sulfoesters, ⁇ , ⁇ -unsaturated carboxylic acid sulfate esters, and copolymerizable emulsifiers such as sulfoalkylaryl ethers. Rukoto can.
  • an anionic emulsifier or a nonionic emulsifier is preferably used.
  • An emulsifier can be used individually by 1 type and can also be used in combination of 2 or more type.
  • the amount of these emulsifiers used is preferably 1.0 to 10.0 parts by weight, more preferably 1.5 to 7.0 parts by weight with respect to 100 parts by weight of the total amount of monomers. .
  • the molecular weight regulator examples include t-dodecyl mercaptan and terpene compounds such as terpinolene, ⁇ -pinene, ⁇ -pinene, ⁇ -terpinene, ⁇ -terpinene, and myrcene.
  • t-dodecyl mercaptan and terpinolene are preferable from the reaction efficiency during polymerization.
  • a molecular weight regulator can be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the amount of the molecular weight regulator used is preferably 0.5 to 10 parts by weight, more preferably 1.0 to 7.5 parts by weight, based on 100 parts by weight of the total amount of monomers.
  • the amount of the molecular weight regulator used is preferably 0.5 to 10 parts by weight, more preferably 1.0 to 7.5 parts by weight, based on 100 parts by weight of the total amount of monomers.
  • polymerization initiator examples include organic peroxides such as 1,1,3,3-tetramethylbutyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, paramentane hydroperoxide, lauroyl peroxide, and azbis.
  • organic peroxides such as 1,1,3,3-tetramethylbutyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, paramentane hydroperoxide, lauroyl peroxide, and azbis.
  • diazo compounds such as isobutyronitrile and redox catalysts such as a combination of an organic compound and iron sulfate.
  • the polymerization temperature in emulsion polymerization at a low temperature is preferably 0 ° C. to 50 ° C., more preferably 0 ° C. to 30 ° C., further preferably 0 ° C. to 15 ° C., and particularly preferably 0 ° C. to 10 ° C.
  • the reaction time is not particularly limited, polymerization is started by mixing monomers and other materials, and the polymerization reaction is stopped by adding a reaction terminator when a desired polymerization conversion rate is achieved. be able to.
  • the reaction terminator include hydroxylammonium sulfate, hydroxyamine, 2,5-di-t-butylhydroquinone and the like.
  • the removal of the low molecular weight organic compound by (ii) steam distillation is performed by steam distillation of the reaction mixture containing the particulate polymer obtained by any polymerization reaction by any method such as a known method. be able to.
  • the steam distillation time is arbitrary and can be carried out until the concentration of the low molecular weight organic compound reaches a desired value, but can be 10 hours to 15 hours.
  • the composite particle of the present invention can contain an optional component in addition to the negative electrode active material and the particulate polymer.
  • an optional component for example, the component used for the production of the particulate polymer may be contained as it is within a range not significantly impairing the effects of the present invention.
  • Optional ingredients can also include water-soluble polymers having acidic functional groups.
  • the water-soluble polymer having an acidic functional group can be prepared by polymerizing a monomer composition containing an acidic functional group-containing monomer and, if necessary, any other monomer.
  • acidic functional group-containing monomers examples include carboxyl group-containing monomers, sulfonic acid group-containing monomers, and phosphate group-containing monomers, and carboxyl group-containing monomers are particularly preferred.
  • the ratio of the water-soluble polymer in the composite particles of the present invention can be 0.3 to 1 part by weight with respect to 100 parts by weight of the negative electrode active material.
  • Optional ingredients can also include a conductive agent.
  • the conductive material include conductive carbon black such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap); graphite such as natural graphite and artificial graphite; Examples thereof include carbon fibers such as acrylonitrile-based carbon fibers, pitch-based carbon fibers, and vapor grown carbon fibers; and carbon nanotubes.
  • the amount of the conductive material is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the negative electrode active material. Range.
  • the optional component can also include a dispersant for dispersing each component in the slurry prepared in the production of the composite particles.
  • dispersant examples include cellulose polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxypropylcellulose, and hydroxypropylmethylcellulose, and ammonium salts or alkali metal salts thereof; ammonium salts of polyacrylic acid or polymethacrylic acid Or alkali metal salt; polyvinyl alcohol, modified polyvinyl alcohol, polyethylene oxide; polyvinyl pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, chitosan derivatives and the like. These dispersants may be used alone or in combination of two or more.
  • a cellulose polymer is preferable, and carboxymethyl cellulose or an ammonium salt or an alkali metal salt thereof is particularly preferable.
  • the amount of the dispersant used is not particularly limited, but is usually 0.1 to 5 parts by weight, preferably 0.5 to 1 part by weight, and more preferably 0 to 100 parts by weight of the negative electrode active material. The range is from 8 parts by weight to 0.7 parts by weight.
  • the sphericity is preferably 80% or more, more preferably 90% or more.
  • the minor axis diameter Ls and the major axis diameter Ll are values measured from a transmission electron micrograph image.
  • the volume average particle diameter of the composite particles is usually 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, while usually 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the volume average particle diameter can be measured using a laser diffraction particle size distribution analyzer.
  • the composite particles of the present invention are produced by a production method comprising a step of obtaining a slurry composition by dispersing a composition containing a negative electrode active material and a particulate polymer in water, and a step of granulating the slurry composition. Yes.
  • this manufacturing method is demonstrated as a manufacturing method of the composite particle of this invention.
  • the composite particles obtained by the method for producing composite particles of the present invention are particles in which a particulate polymer, a negative electrode active material, and the like are integrated.
  • the negative electrode active material and the particulate polymer constituting the slurry composition do not exist as independent particles, but two or more components including the negative electrode active material and the particulate polymer form one particle. Specifically, a plurality of particles of the two or more components are combined to form secondary particles, and a plurality (preferably several to several tens) of negative electrode active materials are particulate polymers. It is preferable that the particles are bound to form particles.
  • Granulation of the slurry composition is, for example, spray-drying granulation method, rolling bed granulation method, compression granulation method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed granulation It can be carried out by a granulation method such as a method, a fluidized bed multifunctional granulation method, a pulse combustion drying method, and a melt granulation method.
  • the spray-drying granulation method is preferable because composite particles in which the particulate polymer is unevenly distributed near the surface can be easily obtained. When composite particles obtained by the spray drying granulation method are used, the internal resistance of the secondary battery negative electrode can be reduced.
  • the slurry composition is spray dried and granulated to obtain composite particles.
  • Spray drying is performed by spraying and drying the slurry composition in hot air.
  • An atomizer is mentioned as an apparatus used for spraying the slurry composition.
  • the rotating disk system is a system in which the slurry composition is introduced almost at the center of the disk rotating at high speed, and the slurry composition is released from the disk by the centrifugal force of the disk, and the slurry composition is made into a mist at that time. .
  • the rotational speed of the disc depends on the size of the disc, but is usually 5,000 rpm to 40,000 rpm, preferably 15,000 rpm to 40,000 rpm. The lower the rotational speed of the disk, the larger the spray droplets and the larger the weight average particle diameter of the resulting composite particles.
  • the rotating disk type atomizer include a pin type and a vane type, and a pin type atomizer is preferable.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks.
  • the slurry composition is introduced from the center of the spray disc, adheres to the spraying roller by centrifugal force, moves outward on the roller surface, and finally sprays away from the roller surface.
  • the pressurization method is a method in which the slurry composition is pressurized and sprayed from a nozzle to be dried.
  • the temperature of the slurry composition to be sprayed is usually room temperature, but may be heated to room temperature or higher.
  • the hot air temperature at the time of spray drying is usually 80 ° C. to 250 ° C., preferably 100 ° C. to 200 ° C.
  • the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
  • the binder composition of the present invention contains the particulate polymer of the present invention.
  • the binder composition of the present invention can be used as a material for producing the composite particles of the present invention.
  • the residual amount of the low molecular weight organic compound is 500 ppm or less, preferably 300 ppm or less, as a ratio to the amount of the particulate polymer.
  • a binder composition can be prepared by mixing the particulate polymer obtained by the production methods (i) and (ii) described above and other materials not containing a low molecular weight organic compound. it can.
  • the binder composition of the present invention can contain an optional component in addition to the particulate polymer of the present invention.
  • the components used in the production of the particulate polymer may be contained as they are within a range that does not significantly impair the effects of the present invention.
  • the secondary battery negative electrode material of the present invention includes the composite particle for a secondary battery negative electrode of the present invention.
  • the secondary battery negative electrode material can contain an arbitrary component in addition to the composite particle for secondary battery negative electrode, but can usually be composed only of the composite particle for secondary battery negative electrode of the present invention.
  • the negative electrode for secondary batteries of this invention contains the active material layer formed from the collector and the secondary battery negative electrode material of this invention provided on the said collector.
  • the material of the current collector is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but a metal material is preferable because of its heat resistance.
  • Examples of the material for the current collector for the negative electrode include iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum.
  • copper is particularly preferable as the current collector used for the secondary battery negative electrode.
  • One kind of the above materials may be used alone, or two or more kinds thereof may be used in combination at any ratio.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 mm to 0.5 mm is preferable.
  • the current collector is preferably used after roughening the surface in advance.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method usually, a polishing cloth with an abrasive particle fixed thereto, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity of the negative electrode active material layer.
  • the active material layer is preferably formed by pressure molding of a secondary battery negative electrode material.
  • the pressure molding is preferably roll pressure molding. More specifically, the secondary battery negative electrode material is supplied onto the current collector to form a secondary battery negative electrode material layer, and then the layer is pressed with a roll or the like to form an active material layer. can do.
  • the feeder used in the step of supplying the composite particles onto the current collector is not particularly limited, but is preferably a quantitative feeder capable of supplying the composite particles quantitatively.
  • the quantitative feeder preferably used for the production of the negative electrode for a secondary battery of the present invention has a CV value of preferably 2 or less.
  • Specific examples of the quantitative feeder include a gravity feeder such as a table feeder and a rotary feeder, and a mechanical force feeder such as a screw feeder and a belt feeder. Of these, the rotary feeder is preferred.
  • the subsequent pressurization can be performed by pressurizing the current collector and the supplied layer of composite particles with a pair of rolls.
  • the composite particles heated as necessary are formed into a sheet-like negative electrode active material layer with a pair of rolls.
  • the temperature of the supplied composite particles is preferably 40 ° C. to 160 ° C., more preferably 70 ° C. to 140 ° C. When composite particles in this temperature range are used, there is no slip of the composite particles on the surface of the press roll, and the composite particles are continuously and uniformly supplied to the press roll. A negative electrode active material layer with little variation can be obtained.
  • the temperature during molding is usually 25 ° C. or higher, preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and 200 ° C. or lower, preferably 150 ° C. or lower, more preferably 120 ° C. or lower.
  • the molding temperature is preferably higher than the melting point or glass transition temperature of the particulate polymer used in the present invention, and more preferably 20 ° C. higher than the melting point or glass transition temperature.
  • the forming speed is usually greater than 0.1 m / min, preferably 35 m / min to 70 m / min.
  • the press linear pressure between the pressing rolls is usually 10 kN / m or more, preferably 200 kN / m or more, more preferably 300 kN / m or more, while usually 1000 kN / m or less, preferably 900 kN / m or less, more preferably. Is 600 kN / m or less.
  • the arrangement of the pair of rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically.
  • the current collector is continuously supplied between a pair of rolls, and the composite particles are supplied to at least one of the rolls so that the composite particles are supplied to the gap between the current collector and the rolls.
  • the negative electrode active material layer can be formed by pressurization.
  • the current collector is transported in the horizontal direction, the composite particles are supplied onto the current collector, and the supplied composite particles are leveled with a blade or the like as necessary.
  • the negative electrode active material layer can be formed by supplying between a pair of rolls and applying pressure.
  • the secondary battery of the present invention includes the negative electrode of the present invention.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and includes the negative electrode of the present invention as the negative electrode.
  • the positive electrode usually includes a current collector and a positive electrode active material layer including a positive electrode active material and a positive electrode binder formed on the surface of the current collector.
  • a metal may be used as the positive electrode active material, and this may also serve as a current collector.
  • the current collector of the positive electrode is not particularly limited as long as it is a material having electrical conductivity and electrochemical durability.
  • the current collector for the positive electrode for example, the current collector used for the negative electrode of the present invention may be used. Among these, aluminum is particularly preferable.
  • the positive electrode active material for example, when the secondary battery of the present invention is a lithium ion secondary battery, a material capable of inserting and removing lithium ions is used.
  • Such positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • transition metal oxide examples include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 and the like can be mentioned. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
  • transition metal sulfide examples include TiS 2 , TiS 3 , amorphous MoS 2 , FeS, and the like.
  • lithium-containing composite metal oxide examples include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), lithium composite oxide of Co—Ni—Mn, Ni—Mn— Examples thereof include lithium composite oxides of Al and lithium composite oxides of Ni—Co—Al.
  • lithium-containing composite metal oxide having a spinel structure examples include Li [Mn 3/2 M 1/2 ] O 4 in which lithium manganate (LiMn 2 O 4 ) or a part of Mn is substituted with another transition metal. (Where M is Cr, Fe, Co, Ni, Cu, etc.).
  • lithium-containing composite metal oxide having an olivine type structure examples include Li X MPO 4 (wherein M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti).
  • Examples of the positive electrode active material made of an organic compound include conductive polymer compounds such as polyacetylene and poly-p-phenylene.
  • the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
  • a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and this composite material may be used as a positive electrode active material.
  • Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
  • you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination at any ratio.
  • the average particle diameter of the positive electrode active material particles is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the average particle diameter of the positive electrode active material particles is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90% by weight or more, more preferably 95% by weight or more, preferably 99.9% by weight or less, more preferably 99% by weight or less.
  • binder for the positive electrode examples include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like.
  • Resins; Soft polymers such as acrylic soft polymers, diene soft polymers, olefin soft polymers, and vinyl soft polymers can be used.
  • a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the positive electrode active material layer may contain components other than the positive electrode active material and the binder as necessary. Examples thereof include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, an electrolytic solution additive, and the like. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the thickness of the positive electrode active material layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 250 ⁇ m or less. When the thickness of the positive electrode active material layer is in the above range, high characteristics can be realized in both load characteristics and energy density.
  • the positive electrode can be manufactured, for example, by the same method as the above-described negative electrode.
  • the electrolytic solution for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the amount of the supporting electrolyte is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the secondary battery may be lowered.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC); Esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide.
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • an additive may be included in the electrolytic solution as necessary.
  • carbonate compounds such as vinylene carbonate (VC) are preferable.
  • An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; Can do.
  • separator As the separator, a porous substrate having a pore portion is usually used.
  • separators include (a) a porous separator having pores, (b) a porous separator having a polymer coating layer formed on one or both sides, and (c) a porous resin coat containing inorganic ceramic powder. And a porous separator having a layer formed thereon. Examples of these are for solid polymer electrolytes such as polypropylene-based, polyethylene-based, polyolefin-based or aramid-based porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile or polyvinylidene fluoride hexafluoropropylene copolymer.
  • a polymer film for a gel polymer electrolyte a separator coated with a gelled polymer coat layer; a separator coated with a porous film layer composed of an inorganic filler and an inorganic filler dispersant; and the like.
  • the manufacturing method of the secondary battery of the present invention is not particularly limited.
  • the above-described negative electrode and positive electrode are overlapped via a separator, and this is wound into a battery container according to the battery shape, if necessary, and placed in the battery container, and the electrolyte is injected into the battery container and sealed.
  • a battery can be constructed. Further, if necessary, an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of, for example, a laminate cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
  • the amount of the low molecular weight organic compound remaining in the composite particles was determined as a ratio (ppm) to the amount of the particulate polymer from the obtained gas chromatograph.
  • the residual amount of the low molecular weight organic compound in the binder composition was measured by the same method as the method for measuring the residual amount of the low molecular weight organic compound in the composite particles, except that the binder composition was used instead of the composite particles. .
  • the battery was discharged to 0.02 V by a constant current method at a discharge rate of 0.1 C in a 25 ° C. environment, and then charged at a charge rate of 0.1 C.
  • the battery capacity at the time of 0.1 C charging was determined by charging to 1.5V.
  • capacitance per unit weight of a negative electrode active material layer was computed from the obtained battery capacity, and this was made into the initial stage capacity
  • the initial capacity was evaluated according to the following criteria. A higher initial capacity is preferable because the battery capacity of the secondary battery increases.
  • Example 1 (1-1. Production of water-insoluble binder (A1), low-temperature polymerization) In a nitrogen-substituted reactor, 71 parts of 1,3-butadiene, 22 parts of acrylonitrile, 7 parts of methacrylic acid, 0.3 part of a molecular weight modifier (TDM: t-dodecyl mercaptan), a polymerization initiator (TBM: 1,1, (3,3-tetramethylbutyl hydroperoxide) 0.1 part, ferrous sulfate 0.008 part, soft water 120 part and emulsifier (Wallolate u: product of Tohshin Chemical Co., Ltd.) 6 parts, and kept at 8 ° C. The polymerization was started.
  • TDM molecular weight modifier
  • TBM t-dodecyl mercaptan
  • TBM 1,1, (3,3-tetramethylbutyl hydroperoxide
  • This slurry is spray-dried and granulated using a spray dryer (Okawara Kako Co., Ltd.) and a rotating disk type atomizer (diameter 65 mm) at a rotational speed of 25,000 rpm, a hot air temperature of 150 ° C, and a particle recovery outlet temperature of 90 ° C To obtain composite particles.
  • the composite particles had a volume average particle size of 40 ⁇ m.
  • the residual amount of the organic compound was measured. The results are shown in Table 1.
  • the sheet-like negative electrode obtained in the step (1-3) was cut out into a disk shape having a diameter of 12 mm.
  • a single-layer polypropylene separator (thickness 25 ⁇ m, produced by a dry method, porosity 55%) was cut into a disk shape having a diameter of 19 mm.
  • a sheet-like metallic lithium having a thickness of 500 ⁇ m was cut out into a disk shape having a diameter of 14 mm to obtain a disk-shaped positive electrode.
  • a disk-shaped negative electrode, a disk-shaped separator, and a disk-shaped positive electrode were stacked in this order.
  • the direction of the disc-shaped negative electrode was such that the surface on the negative electrode active material layer side was in contact with the separator. Further, an expanded metal was placed on the disc-shaped positive electrode.
  • Stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0) with stacked electrodes, separators, and expanded metal, with the negative electrode in contact with the bottom surface of the outer container and polypropylene packing .25 mm).
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A half-cell secondary battery for measuring initial capacity of 20 mm and a thickness of about 2 mm was prepared.
  • Example 2> (2-1. Production of water-insoluble binder (A2), low-temperature polymerization) Except for changing the amount of acrylonitrile to 10 parts and changing the amount of 1,3-butadiene to 83 parts, in the same manner as in step (1-1) of Example 1, the water-insoluble binder composition (A2) And the residual amount of the organic compound was measured. The results are shown in Table 1.
  • Example 1 (2-2. Manufacture of secondary batteries) Example 1 except that the water-insoluble binder composition (A2) obtained in the above step (2-1) was used instead of the water-insoluble binder composition (A1) obtained in the step (1-1). In the same manner as in steps (1-2) to (1-6), the battery components and the battery were produced and evaluated. The results are shown in Table 1.
  • Example 3> (3-1. Production of water-insoluble binder (A3), low-temperature polymerization) Except for changing the amount of acrylonitrile to 55 parts and changing the amount of 1,3-butadiene to 38 parts, in the same manner as in step (1-1) of Example 1, the water-insoluble binder composition (A3) And the residual amount of the organic compound was measured. The results are shown in Table 1.
  • Example 1 (3-2. Production of secondary battery) Example 1 except that the water-insoluble binder composition (A3) obtained in the above step (3-1) was used instead of the water-insoluble binder composition (A1) obtained in the step (1-1).
  • the battery components and the battery were produced and evaluated. The results are shown in Table 1.
  • Example 4> (4-1. Production of water-insoluble binder (A1b), medium temperature polymerization) A water-insoluble binder composition (A1b) was obtained in the same manner as in step (1-1) of Example 1 except that the temperature of emulsion polymerization was changed to 30 ° C. instead of 8 ° C., and the residual amount of organic compound was reduced. It was measured. The results are shown in Table 1.
  • Example 1 (-2. Manufacture of secondary batteries) Example 1 except that the water-insoluble binder composition (A1b) obtained in the above step (4-1) was used instead of the water-insoluble binder composition (A1) obtained in the step (1-1). In the same manner as in steps (1-2) to (1-6), the battery components and the battery were produced and evaluated. The results are shown in Table 1.
  • Example 5> Production of water-insoluble binder (A1c), medium temperature polymerization
  • the water-insoluble binder composition (A1c) was obtained in the same manner as in the step (1-1) of Example 1 except that the temperature of the emulsion polymerization was changed to 55 ° C. instead of 8 ° C., and the residual amount of the organic compound was reduced. It was measured. The results are shown in Table 1.
  • Example 1 (5-2. Manufacture of secondary batteries) Example 1 except that the water-insoluble binder composition (A1c) obtained in the above step (5-1) was used instead of the water-insoluble binder composition (A1) obtained in the step (1-1). In the same manner as in steps (1-2) to (1-6), the battery components and the battery were produced and evaluated. The results are shown in Table 1.
  • Example 6> (6-1. Production of water-insoluble binder (A4), low-temperature polymerization) A water-insoluble binder composition (A4) was obtained in the same manner as in step (1-1) of Example 1, except that 7 parts of itaconic acid was used instead of 7 parts of methacrylic acid, and the residual organic compound remained. The amount was measured. The results are shown in Table 1.
  • Example 1 (6-2. Manufacture of secondary batteries) Example 1 except that the water-insoluble binder composition (A4) obtained in the above step (6-1) was used in place of the water-insoluble binder composition (A1) obtained in the step (1-1). In the same manner as in steps (1-2) to (1-6), the battery components and the battery were produced and evaluated. The results are shown in Table 1.
  • Example 7> (7-1. Production of water-insoluble binder (A5), low-temperature polymerization) The monomer composition of 22 parts of acrylonitrile, 71 parts of 1,3-butadiene, and 7 parts of methacrylic acid was changed to 24 parts of acrylonitrile, 36 parts of 1,3-butadiene, and 40 parts of 2-hydroxyethyl acrylate, In the same manner as in Step (1-1) of Example 1, a water-insoluble binder composition (A5) was obtained, and the residual amount of the organic compound was measured. The results are shown in Table 2.
  • Example 1 Production of secondary battery
  • Example 1 except that the water-insoluble binder composition (A5) obtained in the above step (7-1) was used in place of the water-insoluble binder composition (A1) obtained in the step (1-1).
  • the battery components and the battery were produced and evaluated. The results are shown in Table 2.
  • Example 8 Batteries and batteries were produced and evaluated in the same manner as in Example 1 except that in step (1-2), SiOC was not used and the proportion of artificial graphite was 100 parts. The results are shown in Table 2.
  • Example 9> (9-1. Production of water-insoluble binder (A1d), high temperature polymerization) In a polymerization reactor substituted with nitrogen, 22 parts of acrylonitrile, 71 parts of 1,3-butadiene, 7 parts of methacrylic acid, 0.2 part of t-dodecyl mercaptan (TDM), 132 parts of soft water, 3.0 parts of sodium dodecylbenzenesulfonate , ⁇ -naphthalenesulfonic acid formalin condensate sodium salt 0.5 part, potassium persulfate 0.3 part and ethylenediaminetetraacetic acid sodium salt 0.05 part were charged, and the polymerization conversion was 98% while maintaining the polymerization temperature at 80 ° C.
  • TDM t-dodecyl mercaptan
  • Example 1 Manufacture of secondary batteries
  • Example 1 Example 1 except that the water-insoluble binder composition (A1d) obtained in the above step (9-1) was used instead of the water-insoluble binder composition (A1) obtained in the step (1-1).
  • the battery components and the battery were produced and evaluated. The results are shown in Table 2.
  • Example 10> (10-1. Production of water-insoluble binder (A8), low temperature polymerization) Except for changing the amount of acrylonitrile to 24 parts, changing the amount of 1,3-butadiene to 72 parts, and changing the amount of methacrylic acid to 4 parts, the same procedure as in step (1-1) of Example 1 was performed. Thus, a water-insoluble binder composition (A8) was obtained, and the residual amount of the organic compound was measured. The results are shown in Table 2.
  • Example 1 (10-2. Production of secondary battery) Example 1 except that the water-insoluble binder composition (A8) obtained in the above step (10-1) was used instead of the water-insoluble binder composition (A1) obtained in the step (1-1).
  • the battery components and the battery were produced and evaluated. The results are shown in Table 2.
  • Example 11 (11-1. Production of water-insoluble binder (A9), low temperature polymerization) Except for changing the amount of acrylonitrile to 27 parts, changing the amount of 1,3-butadiene to 72 parts, and changing the amount of methacrylic acid to 1 part, the same procedure as in step (1-1) of Example 1 was performed. Thus, a water-insoluble binder composition (A9) was obtained, and the residual amount of the organic compound was measured. The results are shown in Table 2.
  • Example 1 (11-2. Production of secondary battery) Example 1 except that the water-insoluble binder composition (A9) obtained in the above step (11-1) was used in place of the water-insoluble binder composition (A1) obtained in the step (1-1). In the same manner as in steps (1-2) to (1-6), the battery components and the battery were produced and evaluated. The results are shown in Table 2.
  • Example 1 (Cp1-2. Manufacture of secondary battery) Example 1 except that the water-insoluble binder composition (A6) obtained in the above step (Cp1-1) was used instead of the water-insoluble binder composition (A1) obtained in the step (1-1).
  • the battery components and the battery were produced and evaluated. The results are shown in Table 3.
  • Example 1 (Cp2-2. Manufacture of secondary batteries) Example 1 except that the water-insoluble binder composition (A7) obtained in the above step (Cp2-1) was used instead of the water-insoluble binder composition (A1) obtained in the step (1-1). In the same manner as in steps (1-2) to (1-6), the battery components and the battery were produced and evaluated. The results are shown in Table 3.
  • Example 1 (Cp3-2. Manufacture of secondary batteries) Example 1 except that the water-insoluble binder composition (A1e) obtained in the above step (Cp3-1) was used in place of the water-insoluble binder composition (A1) obtained in the step (1-1). In the same manner as in steps (1-2) to (1-6), the battery components and the battery were produced and evaluated. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 負極活物質及び粒子状重合体を含む二次電池負極用複合粒子であって、前記粒子状重合体が、(メタ)アクリロニトリル単量体単位10重量%~60重量%及び脂肪族共役ジエン単量体単位35重量%~85重量%を含有し、沸点が150℃~300℃であり且つ不飽和結合を有する有機化合物の残留量が、前記粒子状重合体量に対する比として500ppm以下である、二次電池負極用複合粒子。

Description

二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物
 本発明は、二次電池負極用複合粒子、二次電池負極材料、二次電池用負極、二次電池負極用複合粒子の製造方法、二次電池負極用バインダー組成物、及び二次電池に関する。
 リチウムイオン二次電池は、小型で軽量な電池とすることができ、エネルギー密度が高く、且つ繰り返し充放電が可能であるという特性を有している。かかる特性を活かして、リチウムイオン二次電池の需要は急速に拡大している。例えば、高いエネルギー密度を活かして、携帯電話やノート型パーソナルコンピュータなどの分野で利用されている。リチウムイオン二次電池には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性の向上など、より一層の改善が求められている。
 従来、リチウムイオン二次電池などの二次電池用の電極の形成にあたっては、電極活物質及びバインダーを含むスラリーを調製し、当該スラリーを集電体に塗布し、スラリーを乾燥する方法(塗布法)が汎用されている。
 ところで、電気化学素子用電極の製造方法として、電極活物質、導電材及びバインダーを含む電極組成物のスラリーをスプレードライ乾燥して粉体とし、粉体を加圧成形して電極とする方法が提案されている(特許文献1)。
国際公開第2010/24327号
 上で述べた塗布法に代えて、特許文献1に記載される複合粒子の加圧成形を用いた手法を二次電池用の電極の形成に適用すれば、マイグレーションの低減による電極活物質層の均質化による電池の諸性能の向上、及び製造の容易化等の効果を得ることが期待される。しかしながら、二次電池電極用の活物質を複合粒子とし加圧成形すると、電極活物質層と集電体との接着強度が不足する傾向があり、結局サイクル特性等の性能を向上させることが困難である。
 したがって、本発明の目的は、サイクル特性等の、電池としての諸性能が向上され、且つ製造が容易である二次電池、及びそのような二次電池を製造するための構成要素、ならびにその製造方法を提供することにある。
 本発明者は上記の課題を解決するべく検討した結果、従来汎用されていた塗布法において好ましいとされていたスチレン・ブタジエン系重合体(SBR)に代えて、塗布法では比較的好ましく無いとされていたアクリロニトリル・ブタジエン共重合体(NBR)又はそれに類する重合体をバインダーに用いることを想到した。
 NBRをバインダーに用いると、電極活物質層と集電体との接着強度を、複合粒子の加圧成形を用いた手法においても十分高いものとしうる。しかしながら一方、NBRをバインダーに用いると、電極の耐久性が低下するという不利益が生じ易い。
 そこでその点についてさらに検討した結果、本発明者は、NBRの重合時に副反応として生成される有機化合物が、電解液に溶解し、正極側に移動し、酸化反応を起こすことにより、電池性能が低下することを見出した。本発明者はさらに、当該有機化合物の濃度が低減されたNBRを調製し、それを用いることにより、上に述べた諸問題をまとめて解決しうることを見出し、本発明を完成した。
 即ち、本発明によれば、下記のものが提供される。
〔1〕 負極活物質及び粒子状重合体を含む二次電池負極用複合粒子であって、
 前記粒子状重合体が、(メタ)アクリロニトリル単量体単位10重量%~60重量%及び脂肪族共役ジエン単量体単位35重量%~85重量%を含有し、
 沸点が150℃~300℃であり且つ不飽和結合を有する有機化合物の残留量が、前記粒子状重合体量に対する比として500ppm以下である、二次電池負極用複合粒子。
〔2〕 前記粒子状重合体が、エチレン性不飽和カルボン酸単量体単位をさらに含有する〔1〕に記載の二次電池負極用複合粒子。
〔3〕 〔1〕又は〔2〕に記載の二次電池負極用複合粒子を含む二次電池負極材料。
〔4〕 集電体、及び前記集電体上に設けられた、〔3〕に記載の二次電池負極材料から形成される活物質層を含む二次電池用負極。
〔5〕 前記活物質層が、前記二次電池負極材料の加圧成形により形成された層である〔4〕に記載の二次電池用負極。
〔6〕 前記加圧成形がロール加圧成形である〔5〕に記載の二次電池用負極。
〔7〕 〔1〕又は〔2〕に記載の二次電池負極用複合粒子を製造する方法であって、
 負極活物質、及び粒子状重合体を含む組成物を水に分散させてスラリー組成物を得る工程と、
 前記スラリー組成物を造粒する工程と、
 を有し、
 前記粒子状重合体は、(メタ)アクリロニトリル単量体単位10重量%~60重量%及び脂肪族共役ジエン単量体単位35重量%~85重量%を含有する重合体であり、
 前記組成物において、沸点が150℃~300℃であり且つ不飽和結合を有する有機化合物の残留量が、前記粒子状重合体量に対する比として500ppm以下である、
 製造方法。
〔8〕 (メタ)アクリロニトリル単量体単位10重量%~60重量%及び脂肪族共役ジエン単量体単位35重量%~85重量%を含有する粒子状重合体を含み、
 沸点が150℃~300℃であり且つ不飽和結合を有する有機化合物の残留量が、前記粒子状重合体量に対する比として500ppm以下である、二次電池負極用バインダー組成物。
〔9〕 〔4〕~〔6〕のいずれか1項に記載の二次電池用負極を備える二次電池。
 本発明の二次電池負極用複合粒子、並びにそれを有する本発明の二次電池負極材料、二次電池用負極、及び二次電池負極用バインダー組成物は、サイクル特性等の、電池としての諸性能が向上され、且つ製造が容易である本発明の二次電池を与えうる。また、本発明の二次電池負極用複合粒子の製造方法によれば、当該本発明の二次電池負極用複合粒子を容易に製造することができる。
 以下、実施形態及び例示物等を示して本発明について詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 本明細書において、「正極活物質」とは正極用の電極活物質を意味し、「負極活物質」とは負極用の電極活物質を意味する。さらに、「正極活物質層」とは正極に設けられる電極活物質層を意味し、「負極活物質層」とは負極に設けられる電極活物質層を意味する。
 (1.複合粒子)
 本発明の複合粒子は、負極活物質及び粒子状重合体を含む二次電池負極用複合粒子である。
 (1-1.負極活物質)
 負極活物質は、負極用の電極活物質であり、二次電池の負極において電子の受け渡しをする物質である。
 例えば本発明の二次電池がリチウムイオン二次電池である場合には、負極活物質として、通常は、リチウムを吸蔵及び放出しうる物質を用いる。このようにリチウムを吸蔵及び放出しうる物質としては、例えば、金属系活物質、炭素系活物質、及びこれらを組み合わせた活物質などが挙げられる。
 金属系活物質とは、金属を含む活物質であり、通常は、リチウムの挿入(ドープともいう)が可能な元素を構造に含み、リチウムが挿入された場合の重量あたりの理論電気容量が500mAh/g以上である活物質をいう。当該理論電気容量の上限は、特に限定されないが、例えば5000mAh/g以下でもよい。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成する単体金属及びその合金、並びにそれらの酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が用いられる。
 リチウム合金を形成する単体金属としては、例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Ti等の単体金属が挙げられる。また、リチウム合金を形成する単体金属の合金としては、例えば、上記単体金属を含有する化合物が挙げられる。これらの中でもケイ素(Si)、スズ(Sn)、鉛(Pb)及びチタン(Ti)が好ましく、ケイ素、スズ及びチタンがより好ましい。したがって、ケイ素(Si)、スズ(Sn)又はチタン(Ti)の単体金属若しくはこれら単体金属を含む合金、または、それらの金属の化合物が好ましい。
 金属系活物質は、さらに、一つ以上の非金属元素を含有していてもよい。例えば、SiC、SiO(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)、SnO(0<x≦2)、LiSiO、LiSnO等が挙げられる。中でも、低電位でリチウムの挿入及び脱離(脱ドープともいう)が可能なSiO、SiC及びSiOが好ましい。例えば、SiOは、ケイ素を含む高分子材料を焼成して得ることができる。SiOの中でも、容量とサイクル特性の兼ね合いから、0.8≦x≦3、2≦y≦4の範囲が好ましく用いられる。
 リチウム金属、リチウム合金を形成する単体金属及びその合金の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物としては、リチウムの挿入可能な元素の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が挙げられる。その中でも、酸化物が特に好ましい。例えば、酸化スズ、酸化マンガン、酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物と、Si、Sn、PbおよびTi原子よりなる群から選ばれる金属元素とを含むリチウム含有金属複合酸化物が用いられる。
 リチウム含有金属複合酸化物としては、更にLiTiで示されるリチウムチタン複合酸化物(0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であり、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる元素を表す。)、LiMnで示されるリチウムマンガン複合酸化物(x、y、z及びMは、リチウムチタン複合酸化物における定義と同様である。)が挙げられる。中でも、Li4/3Ti5/3、LiTi、Li4/5Ti11/5、Li4/3Mn5/3が好ましい。
 これらの中でも、金属系活物質としては、ケイ素を含有する活物質が好ましい。ケイ素を含有する活物質を用いることにより、二次電池の電気容量を大きくすることが可能となる。
 ケイ素を含有する活物質の中でも、SiC、SiO及びSiOが好ましい。これらのSi及びCを組み合わせて含む活物質においては、高電位でSi(ケイ素)へのLiの挿入及び脱離が起こり、低電位でC(炭素)へのLiの挿入及び脱離が起こると推測される。このため、他の金属系活物質よりも膨張及び収縮が抑制されるので、二次電池の充放電サイクル特性を向上させることができる。
 炭素系活物質とは、リチウムが挿入可能な炭素を主骨格とする活物質をいい、例えば炭素質材料と黒鉛質材料が挙げられる。
 炭素質材料としては、一般的には、炭素前駆体を2000℃以下で熱処理して炭素化させた、黒鉛化の低い(即ち、結晶性の低い)炭素材料である。前記の熱処理の下限は特に限定されないが、例えば500℃以上としてもよい。
 炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 易黒鉛性炭素としては、例えば、石油又は石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとは、ピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子である。メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。熱分解気相成長炭素繊維とは、(1)アクリル高分子繊維などを熱分解する方法、(2)ピッチを紡糸して熱分解する方法、又は(3)鉄などのナノ粒子を触媒として用いて炭化水素を気相熱分解する触媒気相成長(触媒CVD)法により得られた炭素繊維である。
 難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 黒鉛質材料とは、易黒鉛性炭素を2000℃以上で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料である。前記の熱処理温度の上限は、特に限定されないが、例えば5000℃以下としてもよい。
 黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛等が挙げられる。人造黒鉛としては、例えば、主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 前記の炭素系活物質の中でも、炭素質材料が好ましい。炭素質材料を用いることで、二次電池の抵抗を低減することができ、入出力特性の優れた二次電池を作製することが可能となる。
 負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 負極活物質は、粒子状に整粒されたものとして調製し、これを複合粒子の製造に供することが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。
 負極活物質が粒子である場合、その体積平均粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択され、通常0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。
 負極活物質の粒子の50%累積体積径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下である。50%累積体積径は、レーザー回折法によって粒径分布を測定し、測定された粒径分布において小径側から計算した累積体積が50%となる粒子径として求めることができる。
 負極活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。
 負極活物質の比表面積は、出力密度向上の観点から、通常2m/g以上、好ましくは3m/g以上、より好ましくは5m/g以上であり、通常20m/g以下、好ましくは15m/g以下、より好ましくは10m/g以下である。負極活物質の比表面積は、例えばBET法により測定できる。
 (1-2.粒子状重合体)
 粒子状重合体は、(メタ)アクリロニトリル単量体単位及び脂肪族共役ジエン単量体単位を含有する。
 (メタ)アクリロニトリル単量体単位は、アクリロニトリル及び/又はメタクリロニトリルの重合により得られる単位である。粒子状重合体中の(メタ)アクリロニトリル単量体単位の割合は、10重量%以上であり、20重量%以上であることが好ましく、一方60重量%以下であり、50重量%以下であることが好ましく、45重量%以下であることがより好ましい。(メタ)アクリロニトリル単量体単位の割合を当該範囲とすることにより、電極活物質と集電体との十分な密着性を得ることができ、且つ良好な耐電解液性を得ることができる。
 脂肪族共役ジエン単量体単位は、脂肪族共役ジエン単量体の重合により得られる単位である。
 脂肪族共役ジエン単量体の例としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、並びに置換および側鎖共役ヘキサジエン類が挙げられる。中でも、2-メチル-1,3-ブタジエン及び1,3-ブタジエンが好ましく、1,3-ブタジエンが特に好ましい。
 粒子状重合体を製造するための単量体組成物は、1種類のみの脂肪族共役ジエン単量体を含んでもよく、2種類以上の脂肪族共役ジエン単量体を任意の比率で組み合わせて含んでもよい。したがって、粒子状重合体は、脂肪族共役ジエン単量体単位を、1種類だけ含んでもよく、2種類以上を任意の比率で組み合わせて含んでもよい。
 粒子状重合体中の脂肪族共役ジエン単量体単位の割合は、35重量%以上であり、42重量%以上であることが好ましく、48重量%以上であることがより好ましく、一方85重量%以下であり、82重量%以下であることが好ましく、76重量%以下であることがより好ましい。脂肪族共役ジエン単量体単位の割合を当該範囲とすることにより、得られる電極の柔軟性を向上させ、耐電解液性を良好にし、且つ電極活物質と集電体との十分な密着性を得ることができる。
 粒子状重合体は、上に述べた単位に加えて、任意の単位を含むことができる。特に、上に述べた単位に加えて、エチレン性不飽和カルボン酸単量体単位をさらに含有することが、電極活物質層の集電体への接着力を向上させる観点から好ましい。エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体の重合により得られる単位である。
 エチレン性不飽和カルボン酸単量体の例としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノカルボン酸及びジカルボン酸並びにその無水物が挙げられる。中でも、複合粒子の接着力の観点から、メタクリル酸、イタコン酸、及びこれらの組み合わせからなる群より選ばれる単量体が好ましい。
 粒子状重合体を製造するための単量体組成物は、1種類のみのエチレン性不飽和カルボン酸単量体を含んでもよく、2種類以上のエチレン性不飽和カルボン酸単量体を任意の比率で組み合わせて含んでもよい。したがって、粒子状重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでもよく、2種類以上を任意の比率で組み合わせて含んでもよい。
 粒子状重合体中のエチレン性不飽和カルボン酸単量体単位の割合は、0.5重量%以上であることが好ましく、1重量%以上であることがより好ましく、4重量%以上であることがさらにより好ましく、一方10重量%以下であることが好ましく、8重量%以下であることがより好ましく、7重量%以下であることがさらにより好ましい。エチレン性不飽和カルボン酸単量体単位の割合を当該範囲とすることにより、バインダー組成物の粘度を過度に高くならない範囲に抑え、且つバインダー組成物の安定性を良好な範囲に維持することができる。
 粒子状重合体全体に占める、(メタ)アクリロニトリル単量体単位、脂肪族共役ジエン単量体単位、及び(含む場合は)エチレン性不飽和カルボン酸単量体単位の合計の割合は、45重量%以上であることが好ましく、55重量%以上であることがより好ましく、65重量%以上であることがさらにより好ましい。一方上限は特に限定されず100重量%以下としうる。このように、これら三種の単位の割合を高い割合とすることにより、従来のSBRバインダーを用いた場合に比べて非常に向上した、電極活物質層と集電体との高い接着強度を得ることができる。
 粒子状重合体は、本発明の効果を著しく損なわない限り、上述した以外にも任意の繰り返し単位を含んでいてもよい。前記の任意の繰り返し単位に対応する単量体の例としては、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、及び不飽和カルボン酸アミド単量体が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 不飽和カルボン酸アルキルエステル単量体の例としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、及び2-エチルヘキシルアクリレートが挙げられる。中でも、メチルメタクリレートが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ヒドロキシアルキル基を含有する不飽和単量体の例としては、β-ヒドロキシエチルアクリレート、β-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ジ-(エチレングリコール)マレエート、ジ-(エチレングリコール)イタコネート、2-ヒドロキシエチルマレエート、ビス(2-ヒドロキシエチル)マレエート、及び2-ヒドロキシエチルメチルフマレートが挙げられる。中でも、β-ヒドロキシエチルアクリレートが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 不飽和カルボン酸アミド単量体の例としては、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、及びN,N-ジメチルアクリルアミドが挙げられる。中でも、アクリルアミド、及びメタクリルアミドが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 さらに、粒子状重合体は、例えば、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン等、通常の乳化重合において使用される単量体を含んでもよい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 但し、本発明において、粒子状重合体は、電極活物質層と集電体との接着強度を低減する単位、特に芳香族ビニル単量体単位は含まないか、含んでも含有割合が小さいことが好ましい。かかる芳香族ビニル単量体としては、スチレン、並びにα-メチルスチレン及びβ-メチルスチレン等のスチレン誘導体を挙げることができる。粒子状重合体における芳香族ビニル単量体単位の割合は、1重量%以下であることが好ましく、0.5重量%以下であることがより好ましく、理想的にはゼロ重量%である。
 粒子状重合体の重量平均分子量は、好ましくは10000以上、より好ましくは20000以上であり、好ましくは1000000以下、より好ましくは500000以下である。粒子状重合体の重量平均分子量が上記範囲にあると、本発明の負極の強度及び負極活物質の分散性を良好にし易い。非水溶性重合体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって、テトラヒドロフランを展開溶媒としたポリスチレン換算の値として求めうる。
 通常、粒子状重合体は、非水溶性の粒子となる。したがって、複合粒子の製造においては、粒子状重合体は溶媒である水には溶解せず、粒子となって分散する。重合体が非水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が90重量%以上となることをいう。一方、重合体が水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。
 粒子状重合体の個数平均粒径は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。粒子状重合体の個数平均粒径が上記範囲にあることで、得られる負極の強度および柔軟性を良好にできる。粒子の存在は、透過型電子顕微鏡法やコールターカウンター、レーザー回折散乱法などによって容易に測定することができる。
 (1-3.負極活物質と粒子状重合体との割合)
 本発明の複合粒子における、負極活物質及び粒子状重合体の含有割合は、特に限定されないが、負極活物質100重量部に対する粒子状重合体の量として、通常0.3重量部以上、好ましくは0.5重量部以上、特に好ましくは1重量部以上であり、且つ、通常8重量部以下、好ましくは5重量部以下、特に好ましくは3重量部以下である。負極活物質に対する粒子状重合体の割合を上記範囲内とすることにより、粒子状流動体の流動性を確保しつつ、集電体と活物質層との良好な密着性を得ることができる。
 (1-4.有機化合物残留量)
 本発明の複合粒子においては、沸点が150℃~300℃であり且つ不飽和結合を有する有機化合物(以下、説明の便宜上、当該特定の有機化合物を「低分子量有機化合物」と称することがある。)の残留量が所定量以下である。
 この低分子量有機化合物は、具体的には、粒子状重合体の重合に際して副生物として生成するものである。より具体的には単量体のDiels-Alder反応による生成物であり、さらに具体的には、脂肪族共役ジエン単量体と、ジエノフィルとのDiels-Alder反応によって生成する2量体である。ここで、ジエノフィルとしては、脂肪族共役ジエン単量体とDiels-Alder反応する化合物であれば特に限定されないが、例えば、(メタ)アクリロニトリル単量体、エチレン性不飽和カルボン酸単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、不飽和カルボン酸アミド単量体などが挙げられる。一例を示すと、アクリロニトリル、1,3-ブタジエン、メタクリル酸を重合させた際には、1,3-ブタジエンとアクリロニトリルのDiels-Alder反応物である4-シアノシクロヘキセン(沸点260℃)が生成し、1,3-ブタジエンとメタクリル酸とのDiels-Alder反応物である4-メチル-4-カルボキシシクロヘキセン(沸点250℃)が生成する。
 本発明者の見出したところによれば、この低分子量有機化合物が低減された粒子状重合体を用いることにより、電極の耐久性を向上させることができ、その結果、(メタ)アクリロニトリル単量体及び脂肪族共役ジエン単量体の共重合体の良好な接着強度を享受しながら、同時に電極の高い耐久性をも得ることができるという顕著な効果を得ることができる。
 本発明の複合粒子における低分子量有機化合物の割合は、粒子状重合体量に対する比として500ppm以下であり、300ppm以下であることが好ましい。即ち、複合粒子中に存在する粒子状重合体1gあたりに対する、複合粒子中の低分子量有機化合物の残留量が、500μg以下であり、300μg以下であることが好ましい。
 低分子量有機化合物は、粒子状重合体の重合に際して生成するものであるので、低分子量有機化合物の生成量の少ない製造方法で粒子状重合体を製造することにより、低分子量有機化合物の残留量を低減させることができる。
 (1-5.粒子状重合体の製造方法)
 低分子量有機化合物の含有割合の少ない粒子状重合体は、
 (i)低温重合による製造方法、又は
 (ii)重合後の、水蒸気蒸留による低分子量有機化合物の除去を伴う製造方法
 により製造することが好ましい。水蒸気蒸留による低分子量有機化合物の除去には、長時間を要するため、製造効率及び粒子状重合体の変性防止の観点からは、前記(i)がより好ましい。
 前記(i)の低温重合は、所定の比率で各単量体を含む組成物において低温反応を進行させうる任意の方法とすることができる。具体的には、乳化重合法、懸濁重合法、分散重合法または溶液重合法等の公知の重合法を採用することができる。中でも、乳化重合法で製造することが、粒子状重合体の粒子径の制御が容易であるので好ましい。特に水を主溶媒とした水系での重合法が好ましい。乳化重合は、より具体的には、単量体、溶媒、並びに必要に応じて乳化剤、分子量調節剤、及び重合開始剤などの任意の成分を混合して乳化物とし、低温の重合温度にて反応することにより行いうる。
 乳化重合において、溶媒としては、通常、水を用いることができる。
 乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ミリスチン酸、パルミチン酸、オレイン酸、リノレン酸の如き脂肪酸及びその塩、高級アルコール硫酸エステル、アルキルスルホコハク酸等のアニオン性乳化剤;トリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライドの如きアンモニウムクロライドや、ベンジルアンモニウム塩等及び第4級アンモニウム塩等のカチオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤などを挙げることができる。特に、アニオン性乳化剤又は非イオン性乳化剤が好適に用いられる。乳化剤は、1種類を単独で用いることもでき2種類以上を組み合わせて用いることもできる。
 これら乳化剤の使用量は、単量体合計100重量部に対して、好ましくは1.0重量部~10.0重量部であり、より好ましくは1.5重量部~7.0重量部である。当該下限以上とすることにより、良好な重合安定性を得ることができ、当該上限以下とすることにより、重合体に不純物として残存する乳化剤を低減することができる。
 分子量調節剤としては、例えば、t-ドデシルメルカプタン、ならびにテルピノーレン、α-ピネン、β-ピネン、α-テルピネン、β-テルピネン、γ-テルピネン、ミルセン等のテルペン系化合物が挙げられる。中でも、重合時における反応効率からt-ドデシルメルカプタン及びテルピノーレンが好ましい。分子量調節剤は、1種類を単独で用いることもでき2種類以上を組み合わせて用いることもできる。
 分子量調節剤の使用量は、単量体合計100重量部に対して、好ましくは0.5重量部~10重量部、より好ましくは1.0重量部~7.5重量部である。当該下限以上とすることにより、分子量調節剤としての効果を得ることができ、当該上限以下とすることにより、重合速度の低下を防ぐことができ、重合体のムーニー粘度を所望の高い値に維持し成形加工における生産性を向上させることができ、且つコストを低減することができる。
 重合開始剤としては、例えば、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ラウロイルパーオキサイドなどの有機過酸化物、アズビスイソブチロニトリルなどのジアゾ化合物、有機化合物-硫酸鉄の組み合わせ等のレドックス系触媒などを挙げることができる。
 低温での乳化重合における重合温度は、好ましくは0℃~50℃、より好ましくは0℃~30℃、さらに好ましくは0℃~15℃、特に好ましくは0℃~10℃としうる。重合温度がこの範囲にあると、単量体のDiels-Alder反応による生成物が抑制され、好ましい。反応時間は特に限定されず、単量体及びその他の材料を混合することで重合を開始させ、所望の重合転化率が達成された時点で、反応停止剤を添加することにより重合反応を停止することができる。反応停止剤としては、硫酸ヒドロキシルアンモニウム、ヒドロキシアミン、2,5-ジ-t-ブチルハイドロキノン等を挙げることができる。
 以上の工程により、粒子状重合体を含有するラテックス状の混合物を得ることができる。
 前記(ii)の、水蒸気蒸留による低分子量有機化合物の除去は、任意の重合反応により得られた粒子状重合体を含む反応混合物を、公知の方法等の任意の方法で水蒸気蒸留することにより行うことができる。水蒸気蒸留の時間は任意であり、低分子量有機化合物の濃度が所望の値になるまで行うことができるが、10時間~15時間とすることができる。
 (1-6.任意の成分)
 本発明の複合粒子は、負極活物質及び粒子状重合体に加えて、任意の成分を含むことができる。かかる任意の成分としては、例えば、本発明の効果を著しく損ねない範囲で、粒子状重合体の製造に用いた成分を、そのまま含有していてもよい。任意の成分としてはまた、酸性官能基を有する水溶性重合体を含みうる。酸性官能基を有する水溶性重合体は、酸性官能基含有単量体、及び必要に応じて他の任意の単量体を含む単量体組成物を重合することによって調製しうる。酸性官能基含有単量体の例としては、カルボキシル基含有単量体、スルホン酸基含有単量体、及びリン酸基含有単量体を挙げることができ、特にカルボキシル基含有単量体が好ましい。本発明の複合粒子における水溶性重合体の割合は、負極活物質100重量部に対し、0.3重量部~1重量部とすることができる。
 任意の成分としてはまた、導電剤を含みうる。導電材の具体的な例としては、ファーネスブラック、アセチレンブラック、およびケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)等の導電性カーボンブラック;天然黒鉛、人造黒鉛等の黒鉛;ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、気相法炭素繊維等の炭素繊維;カーボンナノチューブが挙げられる。導電材の量は、負極活物質100重量部に対して、通常は0.1重量部~10重量部、好ましくは0.5重量部~5重量部、より好ましくは1重量部~5重量部の範囲である。
 任意の成分としてはまた、複合粒子の製造に際して調製されるスラリーにおいて、各成分を分散させるための分散剤を含むことができる。分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、および、ヒドロキシプロピルメチルセルロース等のセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩;ポリアクリル酸またはポリメタクリル酸のアンモニウム塩またはアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体等が挙げられる。これらの分散剤は、1種類を単独でまたは2種以上を組み合わせて使用しうる。分散剤としては、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。分散剤の使用量は、特に限定されないが、負極活物質100重量部に対して、通常は0.1重量部~5重量部、好ましくは0.5重量部~1重量部、より好ましくは0.8重量部~0.7重量部の範囲である。分散剤を用いることで、スラリー中の固形分の沈降や凝集を抑制できる。
 (1-7.複合粒子の形状)
 複合粒子の形状は、実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をLs、長軸径をLl、La=(Ls+Ll)/2とし、(1-(Ll-Ls)/La)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lsおよび長軸径Llは、透過型電子顕微鏡写真像より測定される値である。
 複合粒子の体積平均粒子径は、通常10μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、一方通常100μm以下、好ましくは80μm以下、より好ましくは60μm以下である。体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定することができる。
 (2.複合粒子の製造方法)
 本発明の複合粒子は、負極活物質、及び粒子状重合体を含む組成物を水に分散させてスラリー組成物を得る工程と、前記スラリー組成物を造粒する工程とを有する製造方法により製造しうる。以下、この製造方法を、本発明の複合粒子の製造方法として説明する。
 本発明の複合粒子の製造方法により得られる複合粒子は、粒子状重合体及び負極活物質等が一体化した粒子となる。スラリー組成物を構成する負極活物質や粒子状重合体が、それぞれ別個に独立した粒子として存在するのではなく、負極活物質及び粒子状重合体を含む2以上の成分が一粒子を形成する。具体的には、前記2以上の成分の粒子が複数個が結合して二次粒子を形成しており、複数個(好ましくは数個~数十個)の負極活物質が、粒子状重合体によって結着されて粒子を形成しているものが好ましい。負極活物質層を複合粒子を用いて形成することにより、マイグレーションの低減による電極活物質層の均質化による電池の諸性能の向上、及び製造の容易化等の効果を得ることができる。
 スラリー組成物の造粒は、例えば、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、パルス燃焼式乾燥法、および溶融造粒法などの造粒法によって行いうる。表面付近に粒子状重合体が偏在した複合粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いると、二次電池負極の内部抵抗を低減することができる。
 噴霧乾燥造粒法では、前記スラリー組成物を噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中にスラリー組成物を噴霧して乾燥することにより行う。スラリー組成物の噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリー組成物を導入し、円盤の遠心力によってスラリー組成物が円盤の外に放たれ、その際にスラリー組成物を霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、通常は5,000rpm~40,000rpm、好ましくは15,000rpm~40,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。スラリー組成物は噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、スラリー組成物を加圧してノズルから霧状にして乾燥する方式である。
 噴霧されるスラリー組成物の温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80℃~250℃、好ましくは100℃~200℃である。
 噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
 (3.バインダー組成物)
 本発明のバインダー組成物は、前記本発明の粒子状重合体を含む。本発明のバインダー組成物は、本発明の複合粒子を製造する際の材料として用いることができる。
 本発明のバインダー組成物においては、低分子量有機化合物の残留量が、前記粒子状重合体量に対する比として500ppm以下であり、300ppm以下であることが好ましい。このようなバインダー組成物は、上に述べた製造方法(i)及び(ii)により得た粒子状重合体と、低分子量有機化合物を含まないその他の材料とを混合することにより調製することができる。
 本発明のバインダー組成物は、前記本発明の粒子状重合体に加え、任意の成分を含むことができる。例えば、本発明の効果を著しく損ねない範囲で、粒子状重合体の製造に用いた成分を、そのまま含有していてもよい。
 (4.二次電池負極材料)
 本発明の二次電池負極材料は、前記本発明の二次電池負極用複合粒子を含む。
 二次電池負極材料は、二次電池負極用複合粒子に加えて、任意の成分を含むことができるが、通常は、前記本発明の二次電池負極用複合粒子のみからなるものとしうる。
 (5.二次電池用負極)
 本発明の二次電池用負極は、集電体、及び前記集電体上に設けられた、前記本発明の二次電池負極材料から形成される活物質層を含む。
 集電体の材料は、電気導電性を有し、且つ、電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましい。負極用の集電体の材料としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池負極に用いる集電体としては銅が特に好ましい。前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 集電体の形状は特に制限されないが、厚さ0.001mm~0.5mm程度のシート状のものが好ましい。
 集電体は、負極活物質層との接着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、通常、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層の接着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。
 活物質層は、好ましくは、二次電池負極材料の加圧成形により形成される。加圧成形は、好ましくは、ロール加圧成形である。より具体的には、二次電池負極材料を、集電体上に供給して、二次電池負極材料の層を形成し、その後当該層をロール等で加圧することにより、活物質層を形成することができる。
 複合粒子を集電体上に供給する工程で用いられるフィーダーは、特に限定されないが、複合粒子を定量的に供給できる定量フィーダーであることが好ましい。ここで、定量的に供給できるとは、かかるフィーダーを用いて複合粒子を連続的に供給し、一定間隔で供給量を複数回測定し、その測定値の平均値mと標準偏差σmから求められるCV値(=σm/m×100)が4以下であることをいう。本発明の二次電池用負極の製造に好適に用いられる定量フィーダーは、CV値が好ましくは2以下である。定量フィーダーの具体例としては、テーブルフィーダー、ロータリーフィーダーなどの重力供給機、スクリューフィーダー、ベルトフィーダーなどの機械力供給機などが挙げられる。これらのうちロータリーフィーダーが好適である。
 続いての加圧は、集電体と供給された複合粒子の層とを一対のロールで加圧することにより行いうる。この工程では、必要に応じ加温された前記複合粒子が、一対のロールでシート状の負極活物質層に成形される。供給される複合粒子の温度は、好ましくは40℃~160℃、より好ましくは70℃~140℃である。この温度範囲にある複合粒子を用いると、プレス用ロールの表面で複合粒子の滑りがなく、複合粒子が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、負極活物質層を得ることができる。
 成形時の温度は、通常25℃以上、好ましくは50℃以上、より好ましくは80℃以上であり、一方200℃以下、好ましくは150℃以下、より好ましくは120℃以下である。また、成形時の温度は、本発明に用いる粒子状重合体の融点またはガラス転移温度より高いことが好ましく、融点またはガラス転移温度より20℃以上高いことがより好ましい。ロールを用いる場合の成形速度は、通常0.1m/分より大きく、好ましくは35m/分~70m/分である。またプレス用ロール間のプレス線圧は、通常10kN/m以上、好ましくは200kN/m以上、より好ましくは300kN/m以上であり、一方通常1000kN/m以下、好ましくは900kN/m以下、より好ましくは600kN/m以下である。
 上記製法では、前記一対のロールの配置は特に限定されないが、略水平または略垂直に配置されることが好ましい。略水平に配置する場合は、集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に複合粒子を供給することで、集電体とロールとの間隙に複合粒子が供給され、加圧により負極活物質層を形成できる。略垂直に配置する場合は、集電体を水平方向に搬送させ、集電体上に複合粒子を供給し、供給された複合粒子を必要に応じブレード等で均した後、前記集電体を一対のロール間に供給し、加圧により負極活物質層を形成できる。
 (6.二次電池)
 本発明の二次電池は、本発明の負極を備える。通常、本発明の二次電池は、正極、負極、電解液及びセパレーターを備え、前記負極として、前記本発明の負極を備える。
 (6-1.正極)
 正極は、通常、集電体と、集電体の表面に形成された、正極活物質及び正極用のバインダーを含む正極活物質層とを備える。又は、正極活物質として金属を用い、これが集電体を兼ねるものであってもよい。
 正極の集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されない。正極の集電体としては、例えば、本発明の負極に使用される集電体を用いてもよい。中でも、アルミニウムが特に好ましい。
 正極活物質は、例えば本発明の二次電池がリチウムイオン二次電池である場合には、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。
 上記の遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 遷移金属酸化物としては、例えば、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
 遷移金属硫化物としては、例えば、TiS、TiS、非晶質MoS、FeS等が挙げられる。
 リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物等が挙げられる。
 スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)又はMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。
 オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMPO(式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、Xは0≦X≦2を満たす数を表す。)で表されるオリビン型燐酸リチウム化合物が挙げられる。
 有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子化合物が挙げられる。
 また、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
 さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。また、上記の無機化合物と有機化合物の混合物を正極活物質として用いてもよい。
 正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 正極活物質の粒子の平均粒子径は、通常1μm以上、好ましくは2μm以上であり、通常50μm以下、好ましくは30μm以下である。正極活物質の粒子の平均粒子径を上記範囲にすることにより、正極活物質層を調製する際のバインダーの量を少なくすることができ、二次電池の容量の低下を抑制できる。また、正極活物質層を形成するためには、通常、正極活物質及びバインダーを含む正極用スラリー組成物を用意するが、この正極用スラリー組成物の粘度を塗布し易い適正な粘度に調整することが容易になり、均一な正極を得ることができる。
 正極活物質層における正極活物質の含有割合は、好ましくは90重量%以上、より好ましくは95重量%以上であり、好ましくは99.9重量%以下、より好ましくは99重量%以下である。正極活物質の含有量を上記範囲とすることにより、二次電池の容量を高くでき、また、正極の柔軟性並びに集電体と正極活物質層との結着性を向上させることができる。
 正極用のバインダーとしては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、正極活物質層には、必要に応じて、正極活物質及びバインダー以外の成分が含まれていてもよい。その例を挙げると、例えば、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 正極活物質層の厚みは、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方で高い特性を実現できる。
 正極は、例えば、前述の負極と同様の方法で製造しうる。
 (6-2.電解液)
 電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用しうる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 支持電解質の量は、電解液に対して、通常1重量%以上、好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二次電池の充電特性及び放電特性が低下する可能性がある。
 電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されない。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、電解液には必要に応じて添加剤を含有させうる。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、LiNなどの無機固体電解質;などを挙げることができる。
 (6-3.セパレーター)
 セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
 (6-4.二次電池の製造方法)
 本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを、必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口し、電池を構成しうる。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇及び過充放電を防止しうる。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 実施例及び比較例において、電池及び材料の物性及び性能の評価は、以下の通り行った。
 〔バインダー組成物中及び複合粒子中の低分子量有機化合物の残留量測定〕
 複合粒子1gを秤量し、DMF(ジメチルホルムアミド)25ml中、密閉容器内で24時間放置後、これを測定資料とし、島津製作所社製のガスクロマトグラフィー用の装置(商品名「ガスクロマトグラフGC-14A」、カラム:キャピラリーカラム、キャリアガス:ヘリウム)を用いて、ガスクロマトグラフィーを行った。検出されたピークを検討し、複合粒子中の化合物に帰属させた。既知濃度の有機化合物を用いて作製した検量線を用いて、得られたガスクロマトグラフより複合粒子中に残留する低分子量有機化合物の量を、粒子状重合体量に対する比(ppm)として求めた。
 なお、バインダー組成物における低分子量有機化合物の残留量は、複合粒子のかわりに、バインダー組成物を用いること以外は、複合粒子中の低分子量有機化合物の残留量測定方法と同様の方法で測定した。
 〔ピール強度〕
 負極の試験片を、負極活物質層側の表面を上にして固定した。試験片の負極活物質層側の表面にセロハンテープを貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定した。測定を10回行い、その平均値を求めてこれをピール強度とし、下記基準にて判定を行った。この値が大きいほど、負極の密着強度が大きいことを示す。
 A:10N/m以上
 B:10N/m未満5N/m以上
 C:5N/m未満1N/m以上
 D:1N/m未満
 〔初期容量〕
 各実施例及び比較例で得られたハーフセル二次電池について、25℃環境下、放電レート0.1Cとした定電流法により、0.02Vまで放電を行ない、次いで、充電レート0.1Cにて、1.5Vまで充電することにより、0.1C充電時の電池容量を求めた。そして、得られた電池容量から、負極活物質層の単位重量当たりの容量を算出し、これを初期容量とした。以下の基準に従って、初期容量を評価した。初期容量が高いほど、二次電池の電池容量が高くなるため、好ましい。
 A:380mAh/g以上
 B:380mAh/g未満
 〔抵抗〕
 実施例および比較例で得られたフルセル二次電池を、25℃環境下、24時間静置した後に4.2V、0.1Cの充放電レートにて充放電の操作を行った。その後、-30℃環境下で、充放電の操作を行い、放電開始10秒後の電圧(ΔV)を測定した。この値が小さいほど、内部抵抗が小さく、高速充放電が可能であることを示す。
 A:0.2V未満
 B:0.2V以上0.3V未満
 C:0.3V以上0.5V未満
 D:0.5V以上0.7V未満
 E:0.7V以上
 〔高温サイクル特性〕
 実施例および比較例で得られたフルセル二次電池を、0.1Cの定電流法によって4.3Vまで充電しその後0.1Cにて3.0Vまで放電するサイクルを200回繰り返した。初期容量に対する200回目の容量維持率(%)を求め、これを下記の高温サイクル特性の評価基準に従って評価した。この値が高いほど高温サイクル特性に優れている。高温サイクル特性の測定は、全て温度60℃の環境下で行った。
 A:95%以上
 B:95%未満、85%以上
 C:85%未満、75%以上
 D:75%未満、60%以上
 E:60%未満
 〔高温保存特性〕
 実施例および比較例で得られたフルセル二次電池を、25℃環境下、24時間静置した後に4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量Cを測定した。さらに、60℃環境下、4.2Vに充電し、60℃、7日間保存した後、25℃環境下、4.2V、0.1Cの充放電レートにて充放電の操作を行い、高温保存後の容量Cを測定した。ΔC=C/C×100(%)で示す容量変化率を求め、これを下記の高温保存特性の評価基準に従って評価した。この値が高いほど高温保存特性に優れることを示す。
 A:85%以上
 B:70%以上85%未満
 C:60%以上70%未満
 D:50%以上60%未満
 E:50%未満
 <実施例1>
 (1-1.非水溶性バインダー(A1)の製造、低温重合)
 窒素置換した反応器に、1,3-ブタジエン71部、アクリロニトリル22部、メタクリル酸7部、分子量調整剤(TDM:t-ドデシルメルカプタン)0.3部、重合開始剤(TBM:1,1,3,3-テトラメチルブチルハイドロパーオキサイド)0.1部及び硫酸第一鉄0.008部、軟水120部及び乳化剤(ワロラートu:東振化学社製品)6部を仕込み、8℃に保持して重合を開始した。
 重合転化率が90%に達した時に、生成した共重合体100重量部当たり0.2部の硫酸ヒドロキシルアンモニウムを添加して重合反応を停止させ共重合体を含む混合物を得た。得られた共重合体を含む混合物から未反応単量体を除去した後、上記共重合体を含む混合物に、水、及び5%水酸化ナトリウム水溶液を添加して、固形分濃度40%、pH8の共重合体粒子水分散液を得た。この混合物をそのまま、非水溶性バインダー組成物(A1)として、以下の工程に供した。非水溶性バインダー組成物(A1)中の固形物量(共重合体量)は、40%であった。非水溶性バインダー組成物(A1)について、有機化合物の残留量を測定した。結果を表1に示す。
 (1-2.二次電池負極用複合粒子の製造)
 負極活物質としてのSiOC(体積平均粒子径:12μm)5部及び人造黒鉛(体積平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値)):0.354nm)95部と、カルボキシメチルセルロースの1.5%水溶液0.7部(固形分換算量)と、上記工程(1-1)で得た非水溶性バインダー組成物(A1)3.0部(固形分換算量)とを混合し、さらにイオン交換水を固形分濃度が35%となるように加え、混合して、各成分が分散したスラリーを得た。このスラリーを、スプレー乾燥機(大川原化工機社製)及び回転円盤方式のアトマイザ(直径65mm)を用い、回転数25,000rpm、熱風温度150℃、粒子回収出口の温度90℃で噴霧乾燥造粒に供し、複合粒子を得た。この複合粒子の体積平均粒子径は40μmであった。
 得られた複合粒子について、有機化合物の残留量を測定した。結果を表1に示す。
 (1-3.負極の製造)
 上記工程(1-2)で得られた複合粒子を、厚さ20μmの銅箔上に堆積させ、ロールプレス機(押し切り粗面熱ロール、ヒラノ技研工業社製)のロール(ロール温度100℃、プレス線圧500kN/m)に供給し、成形速度20m/分でシート状に成形することにより、厚さ80μmの活物質層を形成し、二次電池用負極を得た。
 得られた負極から、試験片を切り出し、ピール強度を測定した。結果を表1に示す。
 (1-4.二次電池の製造:初期容量測定用ハーフセル)
 工程(1-3)で得たシート状の負極を直径12mmの円盤状に切り抜いた。単層のポリプロピレン製セパレーター(厚さ25μm、乾式法により製造、気孔率55%)を直径19mmの円盤状に切り抜いた。厚さ500μmのシート状の金属リチウムを、直径14mmの円盤状に切り抜き、円盤状の正極とした。円盤状の負極、円盤状のセパレーター、及び円盤状の正極を、この順に重ねて載置した。その際、円盤状の負極の向きは、負極活物質層側の面がセパレーターに接するようにした。さらに、円盤状の正極の上に、エキスパンドメタルを載置した。
 積み重ねた電極、セパレーター及びエキスパンドメタルを、負極が外装容器の底面に接する向きで、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mm、初期容量測定用のハーフセル二次電池を作製した。電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
 得られた電池について、初期容量を測定した。結果を表1に示す。
 (1-5.正極用電極組成物および正極の製造)
 正極活物質としてのスピネル構造を有するLiCoO95部に、バインダーとしてPVDF(ポリフッ化ビニリデン)を固形分量で3部となるように加え、さらに、アセチレンブラック2部及びN-メチルピロリドン20部を加えて、プラネタリーミキサーで混合してスラリー状とし、正極用スラリー組成物を得た。この正極用のスラリー組成物を厚さ18μmのアルミニウム箔に厚さ80μmとなるよう塗布し、120℃で30分乾燥した後、ロールプレスして厚さ60μmの活物質層を形成することにより、正極を得た。
 (1-6.セパレーターの用意)
 単層のポリプロピレン製セパレーター(厚さ25μm、乾式法により製造、気孔率55%)を、5×5cmの正方形に切り抜いた。
 (1-7.二次電池の製造:フルセル)
 電池の外装として、アルミ包材外装を用意した。上記(1-5)で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。正極の正極活物質層の面上に、上記(1-6)で得られた正方形のセパレーターを配置した。さらに、上記(1-3)で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。電解液(溶媒:EC/DEC=1/2、電解質:濃度1MのLiPF)を空気が残らないように注入し、さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。
 <実施例2>
 (2-1.非水溶性バインダー(A2)の製造、低温重合)
 アクリロニトリルの量を10部に変更し、1,3-ブタジエンの量を83部に変更した他は、実施例1の工程(1-1)と同様にして、非水溶性バインダー組成物(A2)を得て、有機化合物の残留量を測定した。結果を表1に示す。
 (2-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(2-1)で得た非水溶性バインダー組成物(A2)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表1に示す。
 <実施例3>
 (3-1.非水溶性バインダー(A3)の製造、低温重合)
 アクリロニトリルの量を55部に変更し、1,3-ブタジエンの量を38部に変更した他は、実施例1の工程(1-1)と同様にして、非水溶性バインダー組成物(A3)を得て、有機化合物の残留量を測定した。結果を表1に示す。
 (3-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(3-1)で得た非水溶性バインダー組成物(A3)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表1に示す。
 <実施例4>
 (4-1.非水溶性バインダー(A1b)の製造、中温重合)
 乳化重合の温度を8℃ではなく30℃とした他は、実施例1の工程(1-1)と同様にして、非水溶性バインダー組成物(A1b)を得て、有機化合物の残留量を測定した。結果を表1に示す。
 (4-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(4-1)で得た非水溶性バインダー組成物(A1b)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表1に示す。
 <実施例5>
 (5-1.非水溶性バインダー(A1c)の製造、中温重合)
 乳化重合の温度を8℃ではなく55℃とした他は、実施例1の工程(1-1)と同様にして、非水溶性バインダー組成物(A1c)を得て、有機化合物の残留量を測定した。結果を表1に示す。
 (5-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(5-1)で得た非水溶性バインダー組成物(A1c)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表1に示す。
 <実施例6>
 (6-1.非水溶性バインダー(A4)の製造、低温重合)
 メタクリル酸7部に代えて、イタコン酸7部を用いた他は、実施例1の工程(1-1)と同様にして、非水溶性バインダー組成物(A4)を得て、有機化合物の残留量を測定した。結果を表1に示す。
 (6-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(6-1)で得た非水溶性バインダー組成物(A4)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表1に示す。
 <実施例7>
 (7-1.非水溶性バインダー(A5)の製造、低温重合)
 アクリロニトリル22部、1,3-ブタジエン71部、及びメタクリル酸7部の単量体組成を、アクリロニトリル24部、1,3-ブタジエン36部、及び2-ヒドロキシエチルアクリレート40部に変更した他は、実施例1の工程(1-1)と同様にして、非水溶性バインダー組成物(A5)を得て、有機化合物の残留量を測定した。結果を表2に示す。
 (7-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(7-1)で得た非水溶性バインダー組成物(A5)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表2に示す。
 <実施例8>
 工程(1-2)で、SiOCを用いず、且つ人造黒鉛の割合を100部とした他は、実施例1と同様にして、電池の構成要素及び電池を製造して評価した。結果を表2に示す。
 <実施例9>
 (9-1.非水溶性バインダー(A1d)の製造、高温重合)
 窒素置換した重合反応器に、アクリロニトリル22部、1,3-ブタジエン71部、メタクリル酸7部、t-ドデシルメルカプタン(TDM)0.2部、軟水132部、ドデシルベンゼンスルホン酸ナトリウム3.0部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩0.5部、過硫酸カリウム0.3部及びエチレンジアミン四酢酸ナトリウム塩0.05部を仕込み、重合温度80℃を保持しながら重合転化率が98%に達するまで反応させた。転化率98%に達したところで重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止し、共重合体を含む反応混合物を得た。
 次いで、反応混合物のpHを8に調整した後、90℃にて水蒸気蒸留を15時間行い、未反応単量体および他の低沸点化合物を除去した。水蒸気蒸留終了後の混合物に、水、及び5%水酸化ナトリウム水溶液を添加して、固形分濃度40%、pH8の共重合体粒子水分散液を得た。これをそのまま、非水溶性バインダー組成物(A1d)として、以下の工程に供した。また非水溶性バインダー組成物(A1d)中の有機化合物の残留量を測定した。結果を表2に示す。
 (9-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(9-1)で得た非水溶性バインダー組成物(A1d)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表2に示す。
 <実施例10>
 (10-1.非水溶性バインダー(A8)の製造、低温重合)
 アクリロニトリルの量を24部に変更し、1,3-ブタジエンの量を72部に変更し、メタクリル酸の量を4部に変更した他は、実施例1の工程(1-1)と同様にして、非水溶性バインダー組成物(A8)を得て、有機化合物の残留量を測定した。結果を表2に示す。
 (10-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(10-1)で得た非水溶性バインダー組成物(A8)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表2に示す。
 <実施例11>
 (11-1.非水溶性バインダー(A9)の製造、低温重合)
 アクリロニトリルの量を27部に変更し、1,3-ブタジエンの量を72部に変更し、メタクリル酸の量を1部に変更した他は、実施例1の工程(1-1)と同様にして、非水溶性バインダー組成物(A9)を得て、有機化合物の残留量を測定した。結果を表2に示す。
 (11-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(11-1)で得た非水溶性バインダー組成物(A9)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表2に示す。
 <比較例1>
 (Cp1-1.非水溶性バインダー(A6)の製造、高温重合)
 窒素置換した重合反応器に、アクリロニトリル6部、1,3-ブタジエン35部、メタクリル酸6部、スチレン53部、t-ドデシルメルカプタン(TDM)0.2部、軟水132部、ドデシルベンゼンスルホン酸ナトリウム3.0部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩0.5部、過硫酸カリウム0.3部及びエチレンジアミン四酢酸ナトリウム塩0.05部を仕込み、重合温度80℃を保持しながら重合転化率が98%に達するまで反応させた。転化率98%に達したところで重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止し、共重合体を含む反応混合物を得た。
 得られた共重合体を含む混合物から未反応単量体を除去した後、水、及び5%水酸化ナトリウム水溶液を添加して、固形分濃度40%、pH8の共重合体粒子水分散液を得た。この混合物をそのまま、非水溶性バインダー組成物(A6)として、以下の工程に供した。また非水溶性バインダー組成物(A6)中の有機化合物の残留量を測定した。結果を表3に示す。
 (Cp1-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(Cp1-1)で得た非水溶性バインダー組成物(A6)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表3に示す。
 <比較例2>
 (Cp2-1.非水溶性バインダー(A7)の製造、高温重合)
 アクリロニトリル6部、1,3-ブタジエン35部、メタクリル酸6部、及びスチレン53部の単量体組成を、アクリロニトリル10部、2-ヒドロキシエチルアクリレート86部、及びメタクリル酸4部に変更した他は、比較例1の工程(Cp1-1)と同様にして、非水溶性バインダー組成物(A7)を得て、有機化合物の残留量を測定した。結果を表3に示す。
 (Cp2-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(Cp2-1)で得た非水溶性バインダー組成物(A7)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表3に示す。
 <比較例3>
 (Cp3-1.非水溶性バインダー(A1e)の製造、高温重合)
 アクリロニトリル6部、1,3-ブタジエン35部、メタクリル酸6部、及びスチレン53部の単量体組成を、アクリロニトリル22部、1,3-ブタジエン71部、及びメタクリル酸7部に変更した他は、比較例1の工程(Cp1-1)と同様にして、非水溶性バインダー組成物(A1e)を得て、有機化合物の残留量を測定した。結果を表3に示す。
 (Cp3-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(Cp3-1)で得た非水溶性バインダー組成物(A1e)を用いた他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表3に示す。
 <比較例4>
 (Cp4-1.非水溶性バインダー(A1f)の製造、高温重合)
 水蒸気蒸留の時間を、15時間ではなく6時間とした他は、実施例9の工程(9-1)と同様にして、非水溶性バインダー組成物(A1f)を得て、有機化合物の残留量を測定した。結果を表3に示す。
 (Cp4-2.二次電池の製造)
 工程(1-1)で得た非水溶性バインダー組成物(A1)に代えて、上記工程(Cp4-1)で得た非水溶性バインダー組成物(A1f)を用いた点の他は、実施例1の工程(1-2)~(1-6)と同様にして、電池の構成要素及び電池を製造して評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表中の略語は、それぞれ以下のものを示す。
 人造黒鉛粒径:人造黒鉛の体積平均粒子径(μm)
 面間隔:人造黒鉛の黒鉛層間距離(X線回折法による(002)面の面間隔(d値)、nm)
 シリコン負極:ケイ素を含有する負極活物質の種類
 割合:人造黒鉛/ケイ素含有負極活物質の重量比
 AN量:アクリロニトリル量(部)
 ジエン種:脂肪族共役ジエン単量体の種類
 ジエン量:脂肪族共役ジエン単量体量(部)
 水蒸気蒸留時間:重合後に水蒸気蒸留を行った場合の蒸留時間(時間)
 カルボン酸単量体種:エチレン性不飽和カルボン酸単量体の種類
 カルボン酸単量体量:エチレン性不飽和カルボン酸単量体量(部)
 バインダ有機化合物濃度:バインダー組成物中の、低分子量有機化合物の残留量(粒子状重合体量に対する比、ppm)
 複合粒子有機化合物濃度:複合粒子中の、低分子量有機化合物の残留量(粒子状重合体量に対する比、ppm)
 BD:1,3-ブタジエン
 MAA:メタクリル酸
 IA:イタコン酸
 ※1:単量体として2-ヒドロキシエチルアクリレートも使用
 ※2:単量体としてスチレンも使用
 表1~表3の結果から明らかな通り、低分子量有機化合物の残留量が本発明の規定の範囲内である実施例においては、比較例に比べて、種々の評価のいずれにおいても良好な傾向が見られた。

Claims (9)

  1.  負極活物質及び粒子状重合体を含む二次電池負極用複合粒子であって、
     前記粒子状重合体が、(メタ)アクリロニトリル単量体単位10重量%~60重量%及び脂肪族共役ジエン単量体単位35重量%~85重量%を含有し、
     沸点が150℃~300℃であり且つ不飽和結合を有する有機化合物の残留量が、前記粒子状重合体量に対する比として500ppm以下である、二次電池負極用複合粒子。
  2.  前記粒子状重合体が、エチレン性不飽和カルボン酸単量体単位をさらに含有する請求項1に記載の二次電池負極用複合粒子。
  3.  請求項1又は2に記載の二次電池負極用複合粒子を含む二次電池負極材料。
  4.  集電体、及び前記集電体上に設けられた、請求項3に記載の二次電池負極材料から形成される活物質層を含む二次電池用負極。
  5.  前記活物質層が、前記二次電池負極材料の加圧成形により形成された層である請求項4に記載の二次電池用負極。
  6.  前記加圧成形がロール加圧成形である請求項5に記載の二次電池用負極。
  7.  請求項1又は2に記載の二次電池負極用複合粒子を製造する方法であって、
     負極活物質、及び粒子状重合体を含む組成物を水に分散させてスラリー組成物を得る工程と、
     前記スラリー組成物を造粒する工程と、
     を有し、
     前記粒子状重合体は、(メタ)アクリロニトリル単量体単位10重量%~60重量%及び脂肪族共役ジエン単量体単位35重量%~85重量%を含有する重合体であり、
     前記組成物において、沸点が150℃~300℃であり且つ不飽和結合を有する有機化合物の残留量が、前記粒子状重合体量に対する比として500ppm以下である、
     製造方法。
  8.  (メタ)アクリロニトリル単量体単位10重量%~60重量%及び脂肪族共役ジエン単量体単位35重量%~85重量%を含有する粒子状重合体を含み、
     沸点が150℃~300℃であり且つ不飽和結合を有する有機化合物の残留量が、前記粒子状重合体量に対する比として500ppm以下である、二次電池負極用バインダー組成物。
  9.  請求項4~6のいずれか1項に記載の二次電池用負極を備える二次電池。
PCT/JP2013/058153 2012-03-26 2013-03-21 二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物 WO2013146548A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/384,826 US20150044559A1 (en) 2012-03-26 2013-03-21 Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition
PL13769208T PL2833448T3 (pl) 2012-03-26 2013-03-21 Cząstki kompozytowe do ujemnych elektrod baterii akumulatorowych, ich zastosowanie, sposób ich wytwarzania i kompozycja lepiszcza
KR1020147025700A KR102039034B1 (ko) 2012-03-26 2013-03-21 2 차 전지 부극용 복합 입자, 그 용도 및 제조 방법, 그리고 바인더 조성물
JP2014507804A JP6007973B2 (ja) 2012-03-26 2013-03-21 二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物
EP13769208.3A EP2833448B1 (en) 2012-03-26 2013-03-21 Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition
CN201380022439.8A CN104254939B (zh) 2012-03-26 2013-03-21 二次电池负极用复合粒子、其用途及制造方法、以及粘合剂组合物
US16/254,937 US20190157677A1 (en) 2012-03-26 2019-01-23 Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-069222 2012-03-26
JP2012069222 2012-03-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/384,826 A-371-Of-International US20150044559A1 (en) 2012-03-26 2013-03-21 Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition
US16/254,937 Division US20190157677A1 (en) 2012-03-26 2019-01-23 Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition

Publications (1)

Publication Number Publication Date
WO2013146548A1 true WO2013146548A1 (ja) 2013-10-03

Family

ID=49259804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058153 WO2013146548A1 (ja) 2012-03-26 2013-03-21 二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物

Country Status (7)

Country Link
US (2) US20150044559A1 (ja)
EP (1) EP2833448B1 (ja)
JP (1) JP6007973B2 (ja)
KR (1) KR102039034B1 (ja)
CN (1) CN104254939B (ja)
PL (1) PL2833448T3 (ja)
WO (1) WO2013146548A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115109A (ja) * 2013-12-09 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン(lithiumion)二次電池負極用水系スラリー(slurry)、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池
CN106104874A (zh) * 2014-04-02 2016-11-09 日本瑞翁株式会社 锂离子二次电池电极用粘合剂组合物、锂离子二次电池电极用浆料组合物、锂离子二次电池用电极、及锂离子二次电池
JP2016213094A (ja) * 2015-05-11 2016-12-15 トヨタ自動車株式会社 二次電池用負極の製造方法
WO2017002361A1 (ja) * 2015-06-29 2017-01-05 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2017010093A1 (ja) * 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2018123624A1 (ja) * 2016-12-28 2018-07-05 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
WO2018180232A1 (ja) * 2017-03-28 2018-10-04 東亞合成株式会社 非水電解質二次電池電極用バインダー
CN108780878A (zh) * 2016-03-01 2018-11-09 瓦克化学股份公司 处理用于电池的电极材料的方法
WO2022131164A1 (ja) 2020-12-14 2022-06-23 東洋インキScホールディングス株式会社 導電材分散体およびその利用
WO2024009866A1 (ja) * 2022-07-08 2024-01-11 株式会社Eneosマテリアル 蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153465A1 (en) * 2013-03-20 2014-09-25 Kansas State University Research Foundation Flexible composite electrode high-rate performance lithium-ion batteries
WO2014148064A1 (ja) * 2013-03-22 2014-09-25 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR102287812B1 (ko) * 2014-09-26 2021-08-09 삼성전자주식회사 음극 활물질 및 이를 채용한 리튬 전지, 및 상기 음극 활물질의 제조방법
JP6129441B2 (ja) * 2015-05-12 2017-05-17 オリンパス株式会社 医療機器用バッテリアッセンブリ及び医療機器ユニット
EP3352253B1 (en) * 2015-09-16 2020-08-26 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
JP7003663B2 (ja) * 2015-11-30 2022-01-20 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層および非水系二次電池
EP3480876B1 (en) * 2016-06-29 2024-02-07 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
FR3054728B1 (fr) * 2016-07-26 2018-08-17 Hutchinson Anode pour cellule de batterie lithium-ion, son procede de fabrication et cette batterie l'incorporant
JP6666223B2 (ja) * 2016-09-21 2020-03-13 株式会社東芝 負極、非水電解質電池、電池パック、及び車両
CN108232195B (zh) * 2016-12-13 2021-08-31 上海硅酸盐研究所中试基地 一种基于聚四氟乙烯粘结剂的水系离子电池的极片成型方法
EP3605677A4 (en) * 2017-03-28 2020-12-30 Zeon Corporation COMPOSITION OF BINDER FOR NON-AQUEOUS ACCUMULATOR ELECTRODES, COMPOSITION OF PASTE FOR NON-AQUEOUS ACCUMULATOR ELECTRODES, ELECTRODE FOR NON-AQUEOUS ACCUMULATORS, NON-AQUEOUS ACCUMULATOR, AND PROCESS FOR THE PRODUCTION OF ELECTRODE FOR NON-AQUEOUS ACCUMULATORS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024327A1 (ja) 2008-08-28 2010-03-04 日本ゼオン株式会社 リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP2011204573A (ja) * 2010-03-26 2011-10-13 Nippon Zeon Co Ltd 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極、二次電池及び二次電池負極用バインダー組成物の製造方法
JP2012009775A (ja) * 2010-06-28 2012-01-12 Nippon Zeon Co Ltd 分極性電極、電気化学素子および鉛蓄電池
JP2012243476A (ja) * 2011-05-17 2012-12-10 Nippon Zeon Co Ltd 全固体二次電池の製造方法
JP2012256541A (ja) * 2011-06-09 2012-12-27 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136716A (en) * 1976-05-11 1977-11-15 Kubota Ltd Spreader for fertilizer and seed
JPS573A (en) * 1980-05-31 1982-01-05 Matsushita Electric Works Ltd Indoor electric facility unit
EP0430349A3 (en) 1989-11-27 1991-10-16 Stamicarbon B.V. Process for the polymerization and recovery of nitrile rubber containing high bound acrylonitrile
US5262255A (en) 1991-01-30 1993-11-16 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery
JPH07282841A (ja) 1994-04-05 1995-10-27 Mitsubishi Chem Corp リチウムイオン二次電池
US5861528A (en) 1996-01-22 1999-01-19 Mitsui Chemicals, Inc. Process for preparing diels-alder addition product from conjugated diolefin and acrylonitrile
DE19649331A1 (de) 1996-02-29 1997-09-04 Bayer Ag Verfahren zur Herstellung von Lacites auf Basis von konjugierten Dienen mittels Emulsionspolymerisation
EP0797263A2 (en) 1996-03-19 1997-09-24 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary cell
JPH11111273A (ja) 1997-09-29 1999-04-23 Furukawa Battery Co Ltd:The リチウム二次電池用極板の製造法及びリチウム二次電池
FR2777698B1 (fr) 1998-04-16 2000-05-12 Alsthom Cge Alcatel Separateur comprenant une matrice macroporeuse et un polymere poreux, son procede de fabrication, generateur electrochimique le comprenant et le procede de fabrication de celui-ci
JP4543634B2 (ja) 2003-08-14 2010-09-15 日本ゼオン株式会社 電極層形成用材料
DE10347704A1 (de) 2003-10-14 2005-05-12 Bayer Ag Verfahren zur Herstellung von gereinigten Elastomeren aus Lösung
EP1705736B1 (en) * 2003-12-15 2015-08-26 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery
KR101296983B1 (ko) * 2005-04-26 2013-08-14 니폰 제온 가부시키가이샤 전기화학 소자 전극용 복합 입자
EP2282364B1 (en) 2008-03-31 2014-05-21 Zeon Corporation Porous film and secondary cell electrode
US8470468B2 (en) 2010-02-12 2013-06-25 GM Global Technology Operations LLC Lithium-ion batteries with coated separators
PL2368916T3 (pl) 2010-03-25 2013-03-29 Lanxess Int Sa Sposób wytwarzania kauczuków nitrylowych wolnych od wody i rozpuszczalników
FR2963482B1 (fr) 2010-07-29 2013-01-25 Commissariat Energie Atomique Electrode pour accumulateur au lithium
WO2012026462A1 (ja) * 2010-08-24 2012-03-01 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法
JP5768815B2 (ja) * 2010-08-27 2015-08-26 日本ゼオン株式会社 全固体二次電池
US9379411B2 (en) 2010-08-31 2016-06-28 Adeka Corporation Non-aqueous electrolyte secondary battery
US20130309575A1 (en) 2010-09-03 2013-11-21 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2012036260A1 (ja) 2010-09-16 2012-03-22 日本ゼオン株式会社 二次電池用正極
KR20130108286A (ko) 2010-09-16 2013-10-02 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 2차 전지
EP2660908B1 (en) * 2010-12-28 2017-04-26 Zeon Corporation Electrode binder composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
EP2610296A1 (de) 2011-12-29 2013-07-03 Lanxess Deutschland GmbH Verfahren zur Herstellung von gereinigten Nitrilkautschuken

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024327A1 (ja) 2008-08-28 2010-03-04 日本ゼオン株式会社 リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP2011204573A (ja) * 2010-03-26 2011-10-13 Nippon Zeon Co Ltd 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極、二次電池及び二次電池負極用バインダー組成物の製造方法
JP2012009775A (ja) * 2010-06-28 2012-01-12 Nippon Zeon Co Ltd 分極性電極、電気化学素子および鉛蓄電池
JP2012243476A (ja) * 2011-05-17 2012-12-10 Nippon Zeon Co Ltd 全固体二次電池の製造方法
JP2012256541A (ja) * 2011-06-09 2012-12-27 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833448A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115109A (ja) * 2013-12-09 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン(lithiumion)二次電池負極用水系スラリー(slurry)、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池
CN106104874A (zh) * 2014-04-02 2016-11-09 日本瑞翁株式会社 锂离子二次电池电极用粘合剂组合物、锂离子二次电池电极用浆料组合物、锂离子二次电池用电极、及锂离子二次电池
CN106104874B (zh) * 2014-04-02 2020-12-11 日本瑞翁株式会社 锂离子二次电池电极用粘合剂组合物、浆料组合物、锂离子二次电池及电极
JP2016213094A (ja) * 2015-05-11 2016-12-15 トヨタ自動車株式会社 二次電池用負極の製造方法
WO2017002361A1 (ja) * 2015-06-29 2017-01-05 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
KR101888854B1 (ko) 2015-07-14 2018-08-16 니폰 제온 가부시키가이샤 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 도전재 페이스트 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
KR20180005259A (ko) * 2015-07-14 2018-01-15 니폰 제온 가부시키가이샤 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 도전재 페이스트 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
JPWO2017010093A1 (ja) * 2015-07-14 2018-04-26 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2017010093A1 (ja) * 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
CN108780878A (zh) * 2016-03-01 2018-11-09 瓦克化学股份公司 处理用于电池的电极材料的方法
CN108780878B (zh) * 2016-03-01 2022-01-25 瓦克化学股份公司 处理用于电池的电极材料的方法
JP7003936B2 (ja) 2016-12-28 2022-01-21 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
WO2018123624A1 (ja) * 2016-12-28 2018-07-05 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
JPWO2018123624A1 (ja) * 2016-12-28 2019-10-31 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
WO2018180232A1 (ja) * 2017-03-28 2018-10-04 東亞合成株式会社 非水電解質二次電池電極用バインダー
JPWO2018180232A1 (ja) * 2017-03-28 2020-01-23 東亞合成株式会社 非水電解質二次電池電極用バインダー
US11773246B2 (en) 2017-03-28 2023-10-03 Toagosei Co. Ltd. Binder for nonaqueous electrolyte secondary battery electrode
WO2022131164A1 (ja) 2020-12-14 2022-06-23 東洋インキScホールディングス株式会社 導電材分散体およびその利用
WO2024009866A1 (ja) * 2022-07-08 2024-01-11 株式会社Eneosマテリアル 蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
CN104254939B (zh) 2017-10-13
EP2833448A4 (en) 2015-12-02
KR20140148378A (ko) 2014-12-31
KR102039034B1 (ko) 2019-10-31
US20150044559A1 (en) 2015-02-12
JPWO2013146548A1 (ja) 2015-12-14
PL2833448T3 (pl) 2018-06-29
EP2833448A1 (en) 2015-02-04
CN104254939A (zh) 2014-12-31
JP6007973B2 (ja) 2016-10-19
US20190157677A1 (en) 2019-05-23
EP2833448B1 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6007973B2 (ja) 二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物
JP6070570B2 (ja) リチウムイオン二次電池用電極、リチウムイオン二次電池及びスラリー組成物、並びにリチウムイオン二次電池用電極の製造方法
JP5991321B2 (ja) 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
JP5761197B2 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法
JP5673545B2 (ja) リチウムイオン二次電池負極及びリチウムイオン二次電池
JP6011608B2 (ja) 二次電池負極用バインダー組成物、二次電池用負極、二次電池負極用スラリー組成物、製造方法及び二次電池
KR20150063958A (ko) 리튬 이온 이차 전지
WO2013183717A1 (ja) 負極スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP6593320B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6601413B2 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2015115089A1 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2015174036A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極およびその製造方法、並びに、二次電池
US10784502B2 (en) Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
KR102672676B1 (ko) 2차 전지 부극용 슬러리 조성물, 2차 전지용 부극 및 2차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507804

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14384826

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147025700

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013769208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013769208

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE