WO2024009866A1 - 蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池 - Google Patents

蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2024009866A1
WO2024009866A1 PCT/JP2023/023941 JP2023023941W WO2024009866A1 WO 2024009866 A1 WO2024009866 A1 WO 2024009866A1 JP 2023023941 W JP2023023941 W JP 2023023941W WO 2024009866 A1 WO2024009866 A1 WO 2024009866A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mass
lithium ion
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2023/023941
Other languages
English (en)
French (fr)
Inventor
卓哉 中山
悠太 浅井
真希 前川
一将 森
Original Assignee
株式会社Eneosマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Eneosマテリアル filed Critical 株式会社Eneosマテリアル
Publication of WO2024009866A1 publication Critical patent/WO2024009866A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for an electricity storage device, a slurry for a lithium ion secondary battery electrode, an electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion batteries, lithium ion capacitors, and the like are expected to be used as such power storage devices.
  • Electrodes used in such power storage devices are manufactured by applying a composition (slurry for power storage device electrodes) containing an active material and a polymer that functions as a binder onto the surface of a current collector and drying the composition.
  • a composition slurry for power storage device electrodes
  • a polymer that functions as a binder onto the surface of a current collector and drying the composition.
  • Ru Properties required of a polymer used as a binder include the ability to bond between active materials and the ability to adhere to an active material and a current collector. Another example is powder drop resistance, which prevents fine particles of the active material from falling off from the active material layer when the coated and dried composition coating film (hereinafter also referred to as "active material layer”) is cut.
  • active material layer Such a binder material exhibits good adhesion and reduces the internal resistance of the battery caused by the binder material, thereby imparting good charge/discharge characteristics to the electricity storage device.
  • PVDF polyvinylidene fluoride
  • Some embodiments of the present invention provide a binder composition for a power storage device that can produce a power storage device electrode with excellent surface condition, adhesion, and ionic conductivity, and can improve the cycle life characteristics of the power storage device. provide.
  • the present invention has been made to solve at least part of the above-mentioned problems, and can be realized as any of the following embodiments.
  • One embodiment of the binder composition for a power storage device is Contains a polymer (A) and a liquid medium (B),
  • the polymer (A) is 50 to 99% by mass of repeating units (a1) derived from a conjugated diene compound, 1 to 19% by mass of repeating units (a2) derived from an ⁇ , ⁇ -unsaturated nitrile compound;
  • the weight average molecular weight (Mw) of the polymer (A) is 100,000 to 2,000,000.
  • the polymer (A) may further contain 0.1 to 10% by mass of a repeating unit (a3) derived from an unsaturated carboxylic acid.
  • the polymer (A) may further contain 1 to 30% by mass of repeating units (a4) derived from an aromatic vinyl compound.
  • the emulsifier may be contained in an amount of 30 to 30,000 ppm based on the total mass of the polymer (A).
  • the solubility of the polymer (A) in N-methyl-2-pyrrolidone at 25° C. and 1 atmosphere can be 1 g or more per 100 g of N-methyl-2-pyrrolidone.
  • any embodiment of the binder composition for an electricity storage device When performing differential scanning calorimetry (DSC) on the polymer (A) in accordance with JIS K7121:2012, an endothermic peak can be observed in the temperature range of -80°C to 0°C.
  • DSC differential scanning calorimetry
  • the liquid medium (B) is selected from the group consisting of aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, ketones, esters, ethers, glycol ethers, lactams, lactones, and amides. It can be at least one selected from the group consisting of:
  • One embodiment of the slurry for lithium ion secondary battery electrodes according to the present invention is It contains the binder composition for a power storage device according to any of the above embodiments and an active material.
  • the active material can be a positive electrode active material.
  • the positive electrode active material may be an olivine-type lithium-containing phosphoric acid compound.
  • the present invention includes a current collector, and an active material layer formed by applying and drying the slurry for a lithium ion secondary battery electrode according to any of the above embodiments on the surface of the current collector.
  • One embodiment of the lithium ion secondary battery according to the present invention is The electrode for a lithium ion secondary battery according to the above embodiment is provided.
  • a power storage device electrode with excellent surface condition, adhesion, and ion conductivity can be produced, and a power storage device with excellent cycle life characteristics is provided.
  • (meth)acrylic acid refers to “acrylic acid” or “methacrylic acid”
  • (meth)acrylate refers to “acrylate” or “methacrylate”.
  • a numerical range described as "X to Y" is interpreted as including the numerical value X as the lower limit and the numerical value Y as the upper limit.
  • Binder composition for power storage devices contains a polymer (A) and a liquid medium (B).
  • the polymer (A) contains 50 to 99 mass% of repeating units (a1) derived from a conjugated diene compound, and ⁇ , 1 to 19% by mass of repeating units (a2) derived from a ⁇ -unsaturated nitrile compound. Further, the weight average molecular weight (Mw) of the polymer (A) is 100,000 to 2,000,000.
  • the content ratio of the polymer (A) among the polymer components contained in the binder composition for an electricity storage device according to the present embodiment is preferably 10 to 100% by mass, more preferably 100% by mass of the polymer component. is 20 to 95% by weight, particularly preferably 25 to 90% by weight.
  • the polymer component includes the polymer (A), a polymer other than the polymer (A) described below, and a thickener.
  • the binder composition for a power storage device according to the present embodiment is used to produce a power storage device electrode (active material layer) with improved binding ability between active materials, adhesion ability between the active material and a current collector, and resistance to powder falling off. It can also be used as a material for forming a protective film to suppress short circuits caused by dendrites that occur during charging and discharging.
  • active material layer active material layer
  • the binder composition for a power storage device according to the present embodiment is used to produce a power storage device electrode (active material layer) with improved binding ability between active materials, adhesion ability between the active material and a current collector, and resistance to powder falling off. It can also be used as a material for forming a protective film to suppress short circuits caused by dendrites that occur during charging and discharging.
  • the binder composition for a power storage device contains a polymer (A).
  • the polymer (A) may be in the form of a latex dispersed in the liquid medium (B), or may be in a state dissolved in the liquid medium (B). Preferably, it is in a dissolved state.
  • the stability of the slurry for electricity storage device electrodes hereinafter also referred to as "slurry" produced by mixing with the active material is good. This is preferable because the slurry can be applied to the current collector well.
  • the adhesion strength between the active materials is increased, so that the ionic conductivity is improved. This allows the internal resistance to be reduced, making it easy to obtain a power storage device with excellent cycle life characteristics.
  • the polymer (A) contains repeating units derived from a conjugated diene compound (a1) when the total of repeating units contained in the polymer (A) is 100% by mass. ) (hereinafter also simply referred to as “repeat unit (a1)”) from 50 to 99% by mass, and a repeat unit (a2) derived from an ⁇ , ⁇ -unsaturated nitrile compound (hereinafter simply referred to as “repeat unit (a2)"). ) contains 1 to 19% by mass.
  • the polymer (A) may contain, in addition to the repeating unit (a1) and the repeating unit (a2), a repeating unit derived from another monomer copolymerizable with these units.
  • Repeating unit (a1) derived from a conjugated diene compound The content of the repeating unit (a1) derived from the conjugated diene compound is 50 to 99% by mass when the total number of repeating units contained in the polymer (A) is 100% by mass.
  • the lower limit of the content of the repeating unit (a1) is preferably 52% by mass, more preferably 55% by mass.
  • the upper limit of the content of the repeating unit (a1) is preferably 97% by mass, more preferably 95% by mass.
  • Conjugated diene compounds include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, etc. One or more types selected from these can be used. Among these, 1,3-butadiene is particularly preferred.
  • Repeating unit (a2) derived from ⁇ , ⁇ -unsaturated nitrile compound The content of the repeating unit (a2) derived from the ⁇ , ⁇ -unsaturated nitrile compound is 1 to 19% by mass when the total number of repeating units contained in the polymer (A) is 100% by mass. .
  • the lower limit of the content of the repeating unit (a2) is preferably 2% by mass, more preferably 3% by mass.
  • the upper limit of the content of the repeating unit (a2) is preferably 18% by mass, more preferably 17% by mass.
  • ⁇ , ⁇ -unsaturated nitrile compound examples include, but are not limited to, acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethyl acrylonitrile, vinylidene cyanide, and one or more selected from these. can be used. Among these, one or more selected from the group consisting of acrylonitrile and methacrylonitrile is preferred, and acrylonitrile is particularly preferred.
  • repeating units (a1) and the repeating unit (a2) may contain a repeating unit derived from another monomer copolymerizable with these units.
  • repeating units (a3) derived from unsaturated carboxylic acids
  • repeating units (a4) derived from aromatic vinyl compounds.
  • repeating unit (a4) repeat unit (a5) derived from unsaturated carboxylic acid ester (hereinafter also simply referred to as “repeat unit (a5))
  • cationic monomer Examples include repeating units derived from.
  • the content of the repeating unit (a3) derived from unsaturated carboxylic acid may be 0.1 to 10% by mass when the total number of repeating units contained in the polymer (A) is 100% by mass. preferable.
  • the lower limit of the content of the repeating unit (a3) is preferably 0.2% by mass, more preferably 0.3% by mass.
  • the upper limit of the content of the repeating unit (a3) is preferably 9% by mass, more preferably 8% by mass.
  • unsaturated carboxylic acids include, but are not limited to, monocarboxylic acids and dicarboxylic acids (including anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. One or more types selected from these can be used. As the unsaturated carboxylic acid, it is preferable to use one or more selected from acrylic acid, methacrylic acid, and itaconic acid.
  • the content of the repeating unit (a4) derived from the aromatic vinyl compound is preferably 1 to 30% by mass when the total number of repeating units contained in the polymer (A) is 100% by mass.
  • the lower limit of the content of the repeating unit (a4) is preferably 2% by mass, more preferably 4% by mass.
  • the upper limit of the content of the repeating unit (a4) is preferably 28% by mass, more preferably 25% by mass.
  • the permeability of the electrolytic solution can be improved, good repeated charge/discharge characteristics may be exhibited. Furthermore, the polymer (A) exhibits good binding properties to graphite or the like used as an active material, and a power storage device electrode with excellent adhesion may be obtained in some cases.
  • aromatic vinyl compound examples include, but are not limited to, styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene, etc., and one or more selected from these may be used. be able to.
  • the content of the repeating unit (a5) derived from the unsaturated carboxylic acid ester is preferably 0 to 10% by mass when the total number of repeating units contained in the polymer (A) is 100% by mass. .
  • the lower limit of the content of the repeating unit (a5) is preferably 0.5% by mass, more preferably 1% by mass.
  • the upper limit of the content of the repeating unit (a5) is preferably 9% by mass, more preferably 8% by mass.
  • (meth)acrylic esters can be preferably used.
  • Specific examples of (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-butyl (meth)acrylate.
  • methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, and di(meth)acrylate Preferably, it is one or more selected from ethylene glycol, and methyl (meth)acrylate is particularly preferable.
  • the polymer (A) may contain repeating units derived from a cationic monomer.
  • the cationic monomer is not particularly limited, but is at least one monomer selected from the group consisting of secondary amines (salts), tertiary amines (salts), and quaternary ammonium salts. It is preferable.
  • cationic monomers include 2-(dimethylamino)ethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate methyl chloride quaternary salt, 2-(diethylamino)ethyl (meth)acrylate, ( 3-(dimethylamino)propyl meth)acrylate, 3-(diethylamino)propyl (meth)acrylate, 4-(dimethylamino)phenyl (meth)acrylate, 2-[(3,5-meth)acrylate dimethylpyrazolyl)carbonylamino]ethyl, 2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl (meth)acrylate, 2-(1-aziridinyl)ethyl (meth)acrylate, methacroylcholine chloride , tris(2-acryloyloxyethyl) isocyanurate, 2-vinylpyridine
  • the weight average molecular weight (Mw) of the polymer (A) in terms of polystyrene determined by gel permeation chromatography (GPC) is 100,000 to 2,000,000.
  • the lower limit of the weight average molecular weight of the polymer (A) is preferably 120,000, more preferably 150,000.
  • the upper limit of the weight average molecular weight of the polymer (A) is preferably 1,800,000, more preferably 1,600,000. When the weight average molecular weight (Mw) of the polymer (A) is within the above range, the polymer (A) is easily dissolved in the liquid medium (B).
  • the stability of the slurry prepared by mixing with the active material is improved, and the applicability of the slurry to the current collector is improved.
  • the binding property between fillers such as active materials and conductive aids due to the polymer (A) is improved, and a lithium ion secondary battery with excellent charge and discharge characteristics is easily obtained.
  • the resistance to external forces such as pressing and bending of the positive electrode plate during production of a lithium ion secondary battery is improved.
  • NMP N-methyl-2-pyrrolidone
  • the solubility of the polymer (A) in N-methyl-2-pyrrolidone (herein also referred to as "NMP") at 25°C and 1 atmosphere is 1 g per 100 g of NMP. It is preferable that it is above.
  • the solubility in NMP of 1 g or more per 100 g of NMP means that the polymer (A) is soluble in the organic solvent. When the polymer (A) is soluble in an organic solvent, the surface of the active material is likely to be coated with the polymer (A), which has excellent flexibility and adhesiveness.
  • the polymer (A) preferably has a first endothermic peak in the temperature range of -80°C to 0°C when measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012. In addition to the first endothermic peak, the polymer (A) exhibits a second endothermic peak in the temperature range of 80°C to 150°C when measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012. It is more preferable to further have a peak. When the endothermic peak of the polymer (A) in DSC analysis is within the above temperature range, the polymer (A) is preferable because it can impart better flexibility and binding properties to the active material layer. .
  • the method for producing the polymer (A) is not particularly limited, but any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, an emulsion polymerization method, etc. can be used.
  • a solution polymerization method a solution polymerization method
  • a suspension polymerization method a suspension polymerization method
  • a bulk polymerization method a bulk polymerization method
  • an emulsion polymerization method etc.
  • any reaction such as ionic polymerization, radical polymerization, living radical polymerization, etc. can be used.
  • polymerization initiator used in polymerization examples include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, tert-butyl peroxypivalate, and 3,3,5-trimethylhexanoyl peroxide.
  • organic peroxides such as; azo compounds such as ⁇ , ⁇ '-azobisisobutyronitrile; ammonium persulfate, potassium persulfate, and the like.
  • emulsion polymerization methods carried out in the presence of known emulsifiers, chain transfer agents, polymerization initiators, etc. are preferred.
  • emulsifiers used in the emulsion polymerization method include higher alcohol sulfate ester salts, alkylbenzene sulfonates, alkylnaphthalene sulfonates, alkyldiphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietates, Anionic surfactants such as naphthalene sulfonic acid/formalin condensates, sulfate ester salts of nonionic surfactants; nonionic surfactants such as alkyl esters of polyethylene glycol, alkylphenyl ethers of polyethylene glycol, and alkyl ethers of polyethylene glycol.
  • fluorine-based surfactants such as perfluorobutyl sulfonate, perfluoroalkyl group-containing phosphate ester, perfluoroalkyl group-containing carboxylate, perfluoroalkyl ethylene oxide adduct;
  • fluorine-based surfactants such as perfluorobutyl sulfonate, perfluoroalkyl group-containing phosphate ester, perfluoroalkyl group-containing carboxylate, perfluoroalkyl ethylene oxide adduct.
  • chain transfer agent and polymerization initiator used in the emulsion polymerization method compounds described in Japanese Patent No. 5999399 and the like can be used.
  • the emulsion polymerization method for synthesizing the polymer (A) may be carried out by one-stage polymerization, or may be carried out by multi-stage polymerization of two or more stages.
  • the mixture of the above monomers is mixed in the presence of a suitable emulsifier, chain transfer agent, polymerization initiator, etc., preferably at a temperature of 0 to 80°C, Emulsion polymerization can be performed, preferably with a polymerization time of 4 to 36 hours.
  • each stage of polymerization is preferably set as follows.
  • the proportion of the monomer used in the first stage polymerization is based on the total mass of the monomers (the sum of the mass of the monomer used in the first stage polymerization and the mass of the monomer used in the second stage polymerization). It is preferably in the range of 20 to 99% by mass, more preferably in the range of 25 to 99% by mass.
  • the types of monomers used in the second-stage polymerization and their usage ratios may be the same as or different from the monomer types and their usage ratios used in the first-stage polymerization.
  • the polymerization conditions at each stage are preferably as follows from the viewpoint of dispersibility of particles of the resulting polymer (A).
  • - First-stage polymerization Preferably a temperature of 0 to 80°C; a polymerization time of preferably 2 to 36 hours; a polymerization conversion rate of preferably 50% by mass or more, more preferably 60% by mass or more.
  • Second stage polymerization preferably a temperature of 0 to 80°C; preferably a polymerization time of 2 to 18 hours.
  • each stage of polymerization is preferably set as follows.
  • the ratio of the monomers used in the first stage polymerization is determined by the total mass of the monomers (the mass of the monomers used in the first stage polymerization, the mass of the monomers used in the second stage polymerization, and the mass of the monomers used in the third stage polymerization). It is preferably in the range of 20 to 90% by mass, more preferably in the range of 25 to 80% by mass, based on the total mass of monomers used in (1).
  • the types of monomers used in the second-stage polymerization and their usage ratios may be the same as or different from the monomer types and their usage ratios used in the first-stage polymerization.
  • the types of monomers used in the third stage polymerization and their usage ratios are the types of monomers used in the first stage polymerization and their usage ratios, and the types of monomers used in the second stage polymerization and their usage ratios. may be the same or different.
  • the polymerization conditions at each stage are preferably as follows from the viewpoint of dispersibility of particles of the resulting polymer (A).
  • - First-stage polymerization Preferably a temperature of 0 to 80°C; a polymerization time of preferably 2 to 36 hours; a polymerization conversion rate of preferably 50% by mass or more, more preferably 60% by mass or more.
  • Second stage polymerization preferably a temperature of 0 to 80°C; preferably a polymerization time of 2 to 18 hours.
  • Third stage polymerization preferably a temperature of 0 to 80°C; preferably a polymerization time of 2 to 9 hours.
  • This total solid content concentration is preferably 45% by mass or less, more preferably 40% by mass or less.
  • a neutralizing agent to the polymerization mixture to neutralize it after the emulsion polymerization is completed.
  • the neutralizing agent used here is not particularly limited, but includes, for example, metal hydroxides such as sodium hydroxide and potassium hydroxide; ammonia, and the like.
  • the polymer (A) may be obtained by selectively hydrogenating only the carbon-carbon unsaturated bonds derived from the conjugated diene compound in the polymer obtained by the above polymerization method using a hydrogenation reaction.
  • the hydrogenation method is not particularly limited.
  • the iodine value of the polymer (A) can be adjusted to the range described later by the hydrogenation reaction.
  • a selective hydrogenation method for selectively hydrogenating only the carbon-carbon unsaturated bonds derived from the conjugated diene compound in the polymer known methods may be used, such as oil layer hydrogenation method and aqueous layer hydrogenation method. Both are possible.
  • the aqueous hydrogenation method is preferred because the content of impurities (for example, metals described below) in the resulting polymer (A) is reduced.
  • the aqueous layer hydrogenation method include an aqueous layer direct hydrogenation method and an aqueous layer indirect hydrogenation method.
  • the concentration of the polymer in the aqueous layer is preferably 38% by mass or less to prevent agglomeration.
  • the hydrogenation catalyst to be used is not particularly limited as long as it is a compound that is difficult to decompose with water, but a palladium catalyst is preferred.
  • palladium catalysts include palladium salts of carboxylic acids such as formic acid, propionic acid, lauric acid, succinic acid, oleic acid, and phthalic acid; palladium chloride, dichloro(cyclooctadiene)palladium, dichloro(norbornadiene)palladium, hexachloro Examples include palladium chlorides such as ammonium palladate (IV); iodides such as palladium iodide; and palladium sulfate dihydrate. Among these, palladium salts of carboxylic acids, dichloro(norbornadiene)palladium and ammonium hexachloropalladate (IV) are particularly preferred.
  • the amount of the hydrogenation catalyst used is preferably 5 to 5,500 ppm, more preferably 10 to 4,000 ppm, based on the amount of metal in the hydrogenation catalyst, based on the mass of the polymer to be hydrogenated.
  • the reaction temperature in the aqueous layer direct hydrogenation method is preferably 0 to 280°C, more preferably 20 to 160°C, particularly preferably 30 to 100°C. If the reaction temperature is too low, the reaction rate may decrease, and if the reaction temperature is too high, side reactions such as hydrogenation of nitrile groups may occur.
  • the hydrogen pressure is preferably 0.1 to 30 MPa, more preferably 0.5 to 20 MPa.
  • the reaction time is selected taking into consideration the reaction temperature, hydrogen pressure, target hydrogenation rate, etc.
  • the concentration of the polymer in the aqueous layer is preferably 1 to 50% by mass, more preferably 1 to 40% by mass.
  • Oxidizing agents used in the aqueous indirect hydrogenation method include oxygen, air, hydrogen peroxide, and the like.
  • the amount of these oxidizing agents used is a molar ratio (oxidizing agent: carbon-carbon double bond) to carbon-carbon double bonds, preferably 0.1:1 to 100:1, more preferably 0.8:1. ⁇ 5:1 range.
  • reducing agent used in the aqueous layer indirect hydrogenation method hydrazines such as hydrazine, hydrazine hydrate, hydrazine acetate, hydrazine sulfate, and hydrazine hydrochloride or compounds that liberate hydrazine are used.
  • the amount of these reducing agents used is a molar ratio (reducing agent: carbon-carbon double bond) to carbon-carbon double bonds, preferably 0.1:1 to 100:1, more preferably 0.8: The ratio is in the range of 1 to 5:1.
  • activator used in the aqueous indirect hydrogenation method ions of metals such as copper, iron, cobalt, lead, nickel, iron, and tin are used.
  • the amount of these activators to be used is a molar ratio to carbon-carbon double bonds (activator: carbon-carbon double bonds), preferably 1:1000 to 10:1, more preferably 1:50 to 1: It is 2.
  • the reaction in the aqueous indirect hydrogenation method is carried out by heating within the range from 0°C to reflux temperature, thereby carrying out the hydrogenation reaction.
  • the temperature range at this time is preferably 0 to 250°C, more preferably 20 to 100°C, particularly preferably 35 to 80°C.
  • a method in which hydrogenation is carried out in two or more stages is particularly preferred. Hydrogenation efficiency can be increased by performing hydrogenation in two or more stages. That is, when converting repeating units derived from a conjugated diene compound into linear alkylene repeating units, it is possible to lower the iodine value of the polymer.
  • the hydrogenation catalyst in the dispersion is removed.
  • a method for example, a method can be adopted in which an adsorbent such as activated carbon or an ion exchange resin is added to adsorb the hydrogenation catalyst under stirring, and then the dispersion is filtered or centrifuged. It is also possible to leave the hydrogenation catalyst in the dispersion without removing it.
  • the iodine value of the polymer (A) is preferably 1 to 60, more preferably 1 to 50, particularly preferably 1 to 40.
  • the stability of the polymer (A) at the oxidation potential becomes high, so that the cycle life characteristics of the lithium ion secondary battery may be improved.
  • flexibility can be imparted to the polymer (A), so that adhesiveness may be improved.
  • the iodine value of the polymer (A) can be measured as follows. After coagulating the NMP solution of polymer (A) with 1 L of methanol, it is vacuum-dried at 60° C. overnight. The iodine value of the dried polymer (A) is measured according to JIS K6235:2006.
  • the polymer (A) is coagulated by adding a coagulant to the dispersion obtained in the above polymerization step, and a hydrated crumb (a coagulated product containing the polymer (A), a coagulant, and water) is obtained. get.
  • a metal salt having a valence of 1 or more and 3 or less can be suitably used, and examples thereof include magnesium sulfate, sodium chloride, and calcium chloride. Among these, sodium chloride and calcium chloride are preferred.
  • the amount of the coagulant used is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more and 15 parts by mass or less, based on 100 parts by mass of the polymer in the dispersion.
  • the solidification temperature is not particularly limited, but is preferably 40°C or higher and 90°C or lower, more preferably 45°C or higher and 80°C or lower.
  • the washing method is not particularly limited, but includes a method in which water is used as a washing liquid and water is mixed with water-containing crumbs.
  • the temperature during water washing is not particularly limited, but is preferably 5°C or higher and 70°C or lower, more preferably 10°C or higher and 60°C or lower.
  • the mixing time is not particularly limited, but is preferably 1 minute or more and 60 minutes or less, more preferably 2 minutes or more and 45 minutes or less.
  • the amount of water added to the water-containing crumb during washing with water is not particularly limited, but it effectively reduces the coagulant content (residual amount) in the final binder composition for power storage devices. From the viewpoint that it can be used, it is preferably 150 parts by mass or more and 10,000 parts by mass or less, more preferably 150 parts by mass or more and 5,000 parts by mass or less, based on 100 parts by mass of the polymer contained in the hydrous crumb. be.
  • the number of times of water washing is not particularly limited. From the viewpoint of reducing the coagulant content (residual amount) in the finally obtained binder composition for power storage devices, the number of water washings is preferably 2 times or more and 8 times or less, more preferably 3 times or more and 10 times. It is as follows. Note that from the viewpoint of reducing the content (residual amount) of the coagulant in the finally obtained binder composition for an electricity storage device, it is desirable that the number of washings is large. However, even if cleaning is performed in excess of the above range, while the effect of removing the coagulant is small, the number of steps increases, resulting in a significant decrease in manufacturing efficiency.
  • a completely different process is required, such as dissolving it in an organic solvent such as toluene and then coagulating it by pouring it into methanol. becomes. Therefore, it is preferable to carry out the coagulation washing method, which is industrially efficient in production, and the number of washings is preferably within the above range.
  • acid washing may be performed using an acid as a cleaning liquid.
  • the water-containing crumb that has undergone the above-mentioned washing step is dried to obtain a coagulated dried product containing a polymer and a coagulant.
  • the drying method that can be used in the drying process is not particularly limited, but for example, drying can be performed using a dryer such as a screw type extruder, kneader type dryer, expander dryer, hot air dryer, or vacuum dryer. can. Further, a drying method that combines these methods may also be used. Furthermore, before drying in the drying step, if necessary, the water-containing crumb may be filtered using a sieve such as a rotary screen or a vibrating screen; a centrifugal dehydrator, or the like.
  • the drying temperature in the drying step is not particularly limited and varies depending on the dryer used for drying.
  • the drying temperature is preferably 60°C or more and 200°C or less, more preferably 70°C or more and 180°C or less.
  • the binder composition for an electricity storage device contains a liquid medium (B).
  • the liquid medium (B) is not particularly limited, but includes aliphatic hydrocarbons such as hexane, heptane, octane, decane, and dodecane; alicyclic hydrocarbons such as cyclohexane, cycloheptane, cyclooctane, and cyclodecane; toluene, xylene, Aromatic hydrocarbons such as mesitylene, naphthalene, and tetralin; Ketones such as methylhexyl ketone and dipropyl ketone; Esters such as butyl acetate, butyl butyrate, and methyl butanoate; Ethers such as dibutyl ether, tetrahydrofuran, and anisole; - Lactams such as methyl-2-pyrrolidone and 2-pyr
  • the content ratio of the liquid medium (B) in the binder composition for an electricity storage device is preferably 100 to 10,000 parts by mass, and 500 to 2,000 parts by mass, based on 100 parts by mass of the polymer component. More preferably, it is parts by mass.
  • the content ratio of the liquid medium (B) is equal to or higher than the lower limit value, the miscibility of the polymer component and the active material becomes good when preparing a slurry for a lithium ion secondary battery electrode.
  • the content ratio of the liquid medium (B) is below the upper limit, the coating properties of the slurry for lithium ion secondary battery electrodes will be good when manufacturing the active material layer, and the drying process after coating will be difficult. Concentration gradients of combined components and active materials are less likely to occur.
  • the polymer component includes the polymer (A), a polymer other than the polymer (A) described below, and a thickener.
  • the binder composition for a power storage device may contain 30 to 30,000 ppm of an emulsifier based on the total mass of the polymer (A).
  • the lower limit of the emulsifier content is preferably 50 ppm, more preferably 100 ppm, based on the total mass of the polymer (A).
  • the upper limit of the content of the emulsifier is preferably 25,000 ppm, more preferably 20,000 ppm, based on the total mass of the polymer (A).
  • an emulsifier is used when polymerizing the polymer (A), but the amount of residual emulsifier changes depending on the conditions of the subsequent coagulation step, washing step, etc. Therefore, residual emulsifiers are generally not properly managed.
  • good battery characteristics may be exhibited by appropriately controlling the amount of emulsifier in the manufacturing process. That is, when the emulsifier amount is below the upper limit, it is possible to effectively suppress the generation of craters on the surface of the slurry coating film due to foam breakage derived from the emulsifier.
  • the amount of emulsifier is at least the lower limit, it becomes possible to suppress the fusion of the binders in the slurry coating film, suppressing the increase in internal resistance, and thus exhibiting good repeated charge/discharge characteristics.
  • the positive electrode cannot maintain an electronic conduction path, the ionic conductivity decreases and the resistance increases, so it is important to suppress the obstruction of the conduction path due to the fusion of binders.
  • emulsifier examples include the emulsifiers exemplified in the polymerization step above. Among these, anionic surfactants are preferred, and alkylbenzene sulfonates, alkylnaphthalene sulfonates, alkyldiphenyl ether disulfonates, aliphatic sulfonates, and aliphatic carboxylates are more preferred.
  • the binder composition for a power storage device according to the present embodiment may contain additives other than the above-mentioned components as necessary.
  • additives include polymers other than polymer (A), antioxidants, thickeners, and the like.
  • the binder composition for a power storage device may contain a polymer other than the polymer (A).
  • a polymer other than the polymer (A) examples include, but are not particularly limited to, acrylic polymers containing unsaturated carboxylic acid esters or derivatives thereof as constituent units, fluorine polymers such as PVDF (polyvinylidene fluoride), and the like. These polymers may be used alone or in combination of two or more. By containing these polymers, flexibility and adhesion may be further improved.
  • the binder composition for a power storage device may contain an antioxidant.
  • an antioxidant By containing an antioxidant, the low-temperature cycle characteristics and low-temperature output characteristics of the resulting electricity storage device may be further improved. Moreover, the oxidation resistance of the polymer component may be further improved.
  • antioxidants examples include compounds such as phenolic antioxidants, amine antioxidants, quinone antioxidants, organophosphorus antioxidants, sulfur antioxidants, and phenothiazine antioxidants. . Among these, phenolic antioxidants and amine antioxidants are preferred.
  • the binder composition for an electricity storage device may contain a thickener. By containing a thickener, it may be possible to further improve the coating properties of the slurry and the charge/discharge characteristics of the resulting electricity storage device.
  • thickeners include cellulose polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, and hydroxypropylcellulose; poly(meth)acrylic acid; ammonium salts or alkali metal salts of the cellulose compound or the poly(meth)acrylic acid; Examples include modified polyvinyl alcohol, polyethylene oxide; polyvinylpyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. Among these, cellulose polymers are preferred.
  • Examples of commercially available thickeners include alkali metal salts of carboxymethyl cellulose such as CMC1120, CMC1150, CMC2200, CMC2280, and CMC2450 (all manufactured by Daicel Corporation).
  • the binder composition for an electricity storage device contains a thickener
  • the content of the thickener is 5% by mass or less with respect to 100% by mass of the total solid content of the binder composition for an electricity storage device.
  • the amount is preferably 0.1 to 3% by mass, and more preferably 0.1 to 3% by mass.
  • a slurry for a lithium ion secondary battery electrode according to one embodiment of the present invention contains the above-described binder composition for an electricity storage device and an active material.
  • the slurry for lithium ion secondary battery electrodes according to the present embodiment is a lithium ion secondary battery with improved bonding ability between active materials, adhesion ability between the active material and current collector, and powder drop resistance for lithium ion secondary batteries. It can be used as a material for producing an electrode (active material layer) for a next battery.
  • an active material layer can be formed on the surface of the current collector by applying the slurry for a lithium ion secondary battery electrode according to the present embodiment to the surface of the current collector and then drying it. can.
  • a slurry for a positive electrode of a lithium ion secondary battery often contains PVDF in order to suppress an increase in internal resistance.
  • the slurry for a lithium ion secondary battery electrode according to the present embodiment can suppress an increase in internal resistance even when it contains only the above-mentioned polymer (A) as a polymer component.
  • the slurry for a lithium ion secondary battery electrode according to the present embodiment may contain a polymer other than the polymer (A) or a thickener in order to further suppress an increase in internal resistance.
  • the components contained in the slurry for a lithium ion secondary battery electrode according to this embodiment will be explained below.
  • Binder Composition for Electricity Storage Devices The composition, physical properties, and manufacturing method of the binder composition for electricity storage devices are as described above, so explanations thereof will be omitted.
  • the content ratio of the polymer component in the slurry for a lithium ion secondary battery electrode according to the present embodiment is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, based on 100 parts by mass of the active material. parts, more preferably 1 to 7 parts by weight, particularly preferably 1.5 to 6 parts by weight.
  • the polymer component includes the polymer (A), a polymer other than the polymer (A) that is added as necessary, a thickener, and the like.
  • the active material used in the slurry for a lithium ion secondary battery electrode according to this embodiment includes a positive electrode active material and a negative electrode active material.
  • a positive electrode active material and a negative electrode active material include carbon materials, silicon materials, oxides containing lithium atoms, sulfur compounds, lead compounds, tin compounds, arsenic compounds, antimony compounds, aluminum compounds, conductive polymers such as polyacene, A B Y O Z (However, A is an alkali metal or a transition metal, B is at least one selected from transition metals such as cobalt, nickel, aluminum, tin, and manganese, O represents an oxygen atom, and X, Y, and Z are numbers in the range of 1.10>X>0.05, 4.00>Y>0.85, and 5.00>Z>1.5, respectively.) and other complex metal oxides. metal oxides and the like. Specific examples of these include compounds described in Japanese Patent No. 5999399 and the like.
  • the slurry for lithium ion secondary battery electrodes according to the present embodiment can be used when producing either a positive electrode or a negative electrode, it is particularly preferable to use it for a positive electrode.
  • lithium atom-containing oxide examples include one or more lithium atom-containing oxides (olivine-type lithium-containing phosphate compounds) that are represented by the following general formula (1) and have an olivine-type crystal structure. can be mentioned.
  • M is at least one selected from the group consisting of Mg, Ti, V, Nb, Ta, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, Ge, and Sn.
  • A is at least one kind selected from the group consisting of Si, S, P, and V, and x is a number satisfying the relationship 0 ⁇ x ⁇ 1.
  • the value of x in the general formula (1) is selected according to the valences of M and A so that the valence of the general formula (1) as a whole becomes zero.
  • olivine-type lithium-containing phosphate compounds examples include LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 0.90 Ti 0.05 Nb 0.05 Fe 0.30 Co 0.30 Mn 0.30 PO 4 and the like. .
  • LiFePO 4 lithium iron phosphate
  • LiFePO 4 is particularly preferred because the iron compound as a raw material is easily available and is inexpensive.
  • the average particle diameter of the olivine-type lithium-containing phosphoric acid compound is preferably in the range of 1 to 30 ⁇ m, more preferably in the range of 1 to 25 ⁇ m, and particularly preferably in the range of 1 to 20 ⁇ m.
  • Examples of the composite metal oxide include lithium cobalt oxide, lithium nickel oxide, lithium manganate, ternary nickel cobalt lithium manganate, and the like.
  • the lithium ion secondary battery electrode produced using the lithium ion secondary battery electrode slurry according to the present embodiment exhibits good electrical characteristics even when an oxide containing lithium atoms is used as the positive electrode active material. Can be done. The reason for this is that the polymer (A) can strongly bind oxides containing lithium atoms, and at the same time maintain the state in which oxides containing lithium atoms are firmly bound even during charging and discharging. It is believed that there is.
  • the active material when producing a negative electrode, it is preferable that the active material contains a silicon material and/or a carbon material among the above-mentioned active materials, and a mixture of a silicon material and a carbon material is more preferable.
  • Silicon material has a large lithium storage capacity per unit weight compared to other active materials, so it can increase the storage capacity of the resulting power storage device, and as a result, the output and energy density of the power storage device can be increased. can do.
  • carbon materials have a smaller volume change due to charging and discharging than silicon materials, so by using a mixture of silicon materials and carbon materials as the negative electrode active material, the effect of volume changes of silicon materials can be alleviated. , it is possible to further improve the adhesion ability between the active material layer and the current collector.
  • silicon (Si) When silicon (Si) is used as an active material, while silicon has a high capacity, it undergoes a large volume change when occluding lithium. For this reason, the silicon material becomes finely powdered through repeated expansion and contraction, causing peeling from the current collector and separation of the active materials from each other, and the conductive network inside the active material layer is likely to be disrupted. Due to this property, the charge/discharge durability characteristics of the electricity storage device deteriorate extremely in a short period of time.
  • the electricity storage device electrode produced using the slurry for lithium ion secondary battery electrodes according to the present embodiment does not have the above-mentioned problems even when silicon material is used, and has good electrical performance. Characteristics can be shown. The reason for this is that the polymer (A) can strongly bind the silicon material, and at the same time, even if the silicon material expands in volume by occluding lithium, the polymer (A) expands and contracts, causing the silicon to bind. This is thought to be because the materials can be maintained in a strongly bonded state.
  • the content of the silicon material in 100% by mass of the active material is preferably 1% by mass or more, more preferably 2 to 50% by mass, even more preferably 3 to 45% by mass, and 10% by mass. It is particularly preferable to set the content to 40% by mass.
  • the content of the silicon material in 100% by mass of the active material is within the above range, an electricity storage device with an excellent balance between improvement in the output and energy density of the electricity storage device and charge/discharge durability characteristics can be obtained.
  • the shape of the active material is preferably particulate.
  • the average particle diameter of the active material is preferably 0.1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the slurry for a lithium ion secondary battery electrode according to the present embodiment may optionally contain a polymer other than the polymer (A), a thickener, a liquid medium, and a conductive aid. , pH adjusters, corrosion inhibitors, antioxidants, cellulose fibers, and other components may be added. Polymers other than polymer (A) and thickeners should be appropriately selected from the compounds exemplified in the section "1.4. Other additives" above and used for the same purpose and content ratio. Can be done.
  • a liquid medium may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment.
  • the liquid medium to be added may be the same type as or different from the liquid medium (B) contained in the binder composition for electricity storage devices, but it may be the same as the liquid medium (B) contained in the binder composition for power storage devices, but it may be different from the liquid medium (B) in the above "1.2. Liquid medium (B)". It is preferable to use a liquid medium selected from among the liquid media exemplified in Section 3.
  • the content ratio of the liquid medium (including the amount brought in from the binder composition for power storage devices) in the slurry for the lithium ion secondary battery electrode according to the present embodiment is determined by the solid content concentration in the slurry (the content of the liquid medium in the slurry other than the liquid medium in the slurry).
  • the ratio of the total mass of the components to the total mass of the slurry is preferably 30 to 70% by mass, more preferably 40 to 60% by mass.
  • a conductive additive may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment for the purpose of imparting conductivity and buffering changes in volume of the active material due to inflow and outflow of lithium ions. good.
  • the conductive aid include carbon such as activated carbon, acetylene black, Ketjen black, furnace black, graphite, carbon fiber, fullerene, and carbon nanotubes.
  • carbon such as activated carbon
  • acetylene black, Ketjen black, or carbon nanotubes can be preferably used.
  • the content of the conductive additive is preferably 20 parts by mass or less, more preferably 1 to 15 parts by mass, and particularly preferably 2 to 10 parts by mass, based on 100 parts by mass of the active material.
  • a pH adjuster may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment for the purpose of suppressing corrosion of the current collector.
  • Examples of the pH adjuster include hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, formic acid, ammonium phosphate, ammonium sulfate, ammonium acetate, ammonium formate, ammonium chloride, sodium hydroxide, potassium hydroxide, and the like.
  • sulfuric acid, ammonium sulfate, sodium hydroxide, and potassium hydroxide are preferred.
  • a neutralizing agent selected from among the neutralizing agents described in the method for producing the polymer (A).
  • a corrosion inhibitor may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment for the purpose of suppressing corrosion of the current collector depending on the type of active material.
  • Corrosion inhibitors include ammonium metavanadate, sodium metavanadate, potassium metavanadate, ammonium metatungstate, sodium metatungstate, potassium metatungstate, ammonium paratungstate, sodium paratungstate, potassium paratungstate, molybdic acid. Ammonium, sodium molybdate, potassium molybdate, etc. can be mentioned. Among these, ammonium paratungstate, ammonium metavanadate, sodium metavanadate, potassium metavanadate, and ammonium molybdate are preferred.
  • Cellulose fibers may be further added to the slurry for a lithium ion secondary battery electrode according to this embodiment.
  • As the cellulose fiber known ones can be used. By adding cellulose fibers, the adhesion of the active material to the current collector may be improved. It is thought that by fibrous cellulose fibers binding adjacent active materials to each other through line adhesion or line contact, it is possible to prevent the active materials from falling off and to improve the adhesion to the current collector.
  • the slurry for lithium ion secondary battery electrodes according to the present embodiment can be prepared by any method as long as it contains the above-mentioned binder composition for power storage devices and active material. It may be a manufactured product. From the viewpoint of producing a slurry with better dispersibility and stability more efficiently and at a lower cost, active materials and optional additive components used as necessary are added to the binder composition for power storage devices, and these are mixed. It is preferable to manufacture by.
  • a specific manufacturing method includes, for example, the method described in Japanese Patent No. 5999399.
  • Electrode for Lithium Ion Secondary Battery includes a current collector, and the above slurry for a lithium ion secondary battery electrode is applied and dried on the surface of the current collector. and an active material layer formed by.
  • Such electrodes for lithium ion secondary batteries are made by applying the above-mentioned slurry for lithium ion secondary battery electrodes on the surface of a current collector such as metal foil to form a coating film, and then drying the coating film to make it active. It can be manufactured by forming a material layer.
  • the electrode for a lithium ion secondary battery manufactured in this way has an active material layer on the surface of the current collector containing the above-mentioned polymer (A), an active material, and optional components added as necessary. Since it is made by binding together, it has excellent repeated charging and discharging characteristics as well as excellent charging and discharging durability characteristics.
  • the current collector is not particularly limited as long as it is made of a conductive material, and examples include the current collector described in Japanese Patent No. 5999399.
  • the content of silicon element in 100% by mass of the active material layer is preferably 1 to 30% by mass, and 2% by mass. It is more preferably 20% by weight, and particularly preferably 3% to 10% by weight.
  • the content ratio of silicon element in the active material layer is within the above range, the storage capacity of a lithium ion secondary battery manufactured using the active material layer is improved, and the active material layer has a uniform distribution of silicon element. is obtained.
  • the content of silicon element in the active material layer can be measured, for example, by the method described in Japanese Patent No. 5999399.
  • Lithium ion secondary battery is equipped with the above-mentioned lithium ion secondary battery electrode, further contains an electrolyte, and is manufactured using parts such as a separator according to a conventional method. can be manufactured.
  • a specific manufacturing method includes, for example, stacking a negative electrode and a positive electrode with a separator in between, rolling or folding them according to the shape of the battery, storing them in a battery container, and injecting an electrolyte into the battery container.
  • An example of this is a method of sealing the container.
  • the shape of the battery can be any appropriate shape, such as a coin shape, a cylindrical shape, a square shape, or a laminate shape.
  • the electrolyte may be liquid or gel, and depending on the type of active material, one may be selected from known electrolytes used in lithium ion secondary batteries that effectively exhibits battery functions.
  • the electrolyte can be a solution of an electrolyte dissolved in a suitable solvent. Examples of such electrolytes and solvents include compounds described in Japanese Patent No. 5999399 and the like.
  • known members for lithium ion secondary batteries can be used as the members other than the binder composition for an electricity storage device.
  • binder composition for power storage device A polymer (A1) dispersion was obtained by one-stage polymerization as shown below. In a reactor, a monomer mixture consisting of 200 parts by mass of water, 50 parts by mass of 1,3-butadiene, 35 parts by mass of styrene, 5 parts by mass of methacrylic acid, and 10 parts by mass of acrylonitrile, and tert-dodecyl as a chain transfer agent were placed in a reactor.
  • the polymer (A1) obtained above was dissolved in N-methyl-2-pyrrolidone by adding it to N-methyl-2-pyrrolidone and stirring overnight.
  • a binder composition was prepared.
  • the content of the polymer (A1) was adjusted to 8% by mass when the entire binder composition for an electricity storage device was 100% by mass.
  • Example 2 ⁇ Examples 2, 4, 5, 7-10, 12-14, Comparative Examples 1-4>
  • Example 2 4, 5, 7 to 10, 12 to 14, and Comparative Examples 1 to 4, the implementation was performed except that the types and amounts of monomers were as shown in Tables 1 to 2 below, respectively.
  • Each polymer was synthesized by one-stage polymerization in the same manner as in Example 1, and each binder composition for an electricity storage device was obtained in the same manner as in Example 1.
  • a polymer (A3) dispersion was obtained by two-stage polymerization as shown below.
  • a monomer mixture consisting of 200 parts by mass of water, 60 parts by mass of 1,3-butadiene, 10 parts by mass of styrene, 1 part by mass of methacrylic acid, and 19 parts by mass of acrylonitrile, and tert-dodecyl as a chain transfer agent were placed in a reactor.
  • the polymer (A3) obtained above was dissolved in N-methyl-2-pyrrolidone by adding it to N-methyl-2-pyrrolidone and stirring overnight.
  • a binder composition was prepared.
  • the content of the polymer (A3) was set to 8% by mass when the entire binder composition for an electricity storage device was 100% by mass.
  • Example 6 11, 15> each polymer was synthesized by two-stage polymerization in the same manner as in Example 3, except that the types and amounts of monomers were as shown in Tables 1 and 2 below, respectively. Then, in the same manner as in Example 3, binder compositions for each power storage device were obtained.
  • DSC ⁇ Differential scanning calorimetry
  • CMC 100 parts by mass of CMC
  • CMC2200 1 part by mass of a thickener (trade name "CMC2200", manufactured by Daicel Corporation)
  • NMP 74 parts by mass of NMP to form a slurry with a solid content concentration of approximately 50%.
  • the mixture was prepared as follows and stirred at 60 rpm for 1 hour.
  • LFP is an example of a positive electrode active material.
  • - 3 points If the number of broken particle traces is 6 or more and 10 or less, there are few coating defects due to residual emulsifier, which is good.
  • - 2 points If the number of broken particle traces is 11 or more and 15 or less, there will be some coating defects due to the residual emulsifier, making it difficult to use.
  • - 1 point If the number of broken particle traces is 16 or more, there are many coating defects due to residual emulsifier, and the product cannot be used.
  • ⁇ Preparation of negative electrode for lithium ion secondary battery> The slurry for lithium ion secondary battery negative electrode prepared above was uniformly applied to the surface of a current collector made of copper foil with a thickness of 20 ⁇ m using a doctor blade method so that the film thickness after drying was 80 ⁇ m. It was dried at °C for 20 minutes. Thereafter, a negative electrode for a lithium ion secondary battery was obtained by pressing using a roll press machine so that the density of the formed film (negative electrode active material layer) was 1.9 g/cm 3 .
  • the negative electrode for a lithium ion secondary battery produced above is punched and molded into a circular shape with a diameter of 16.16 mm. Co., Ltd., trade name "HS Flat Cell”).
  • a separator made of a polypropylene porous membrane punched into a circular shape with a diameter of 24 mm was placed on top of the negative electrode for a lithium ion secondary battery.
  • the positive electrode for lithium ion secondary battery produced above was punched into a circular shape with a diameter of 15.95 mm and placed on top of the separator.
  • a lithium ion secondary battery was assembled by closing and sealing the exterior body of the bipolar coin cell with screws.
  • the time point was defined as the completion of charging (cutoff). Thereafter, discharging was started at a constant current (1.0 C), and the time when the voltage reached 2.5 V was defined as the completion of discharging (cutoff), and the discharge capacity of the first cycle was calculated. Charging and discharging was repeated 100 times in this manner. After repeating charging and discharging 100 times, charging and discharging were performed in the same manner as in the 0th cycle, and the 101st discharge capacity was evaluated. The rate of increase in resistance was calculated using the following formula (3), and evaluated using the following criteria. The results are shown in Tables 1 and 2 below.
  • Resistance increase rate (%) (Discharge capacity at 101st cycle - Discharge capacity at 100th cycle) / (Discharge capacity at 0th cycle - Discharge capacity at 1st cycle) x 100 (3) (Evaluation criteria) - 5 points: resistance increase rate is 100% or more and less than 110%.
  • ⁇ 4 points Resistance increase rate is 110% or more and less than 120%.
  • ⁇ 3 points Resistance increase rate is 120% or more and less than 130%.
  • ⁇ 2 points Resistance increase rate is 130% or more and less than 140%.
  • - 1 point resistance increase rate is 140% or more and less than 150%.
  • ⁇ 0 point resistance increase rate is 150% or more.
  • Capacity retention rate (%) (Discharge capacity at 100th cycle)/(Discharge capacity at 1st cycle) (4) (Evaluation criteria)
  • ⁇ 1 point Capacity retention rate is 75% or more and less than 80%.
  • Example 16 12.5 parts by mass of a binder composition for an electricity storage device containing the polymer (A3) synthesized in Example 3 (solid content equivalent: 8% by mass, as the polymer (A3) obtained above) was equivalent to 1 part by mass) as the positive electrode binder, and NMP was adjusted and added so that the solid content concentration of the slurry for lithium ion secondary battery positive electrode was 50%. was carried out. Further, in Examples 17 and 18, the same evaluation as in Example 3 was performed except that the polymers listed in Table 3 below were used.
  • the contents of the autoclave were heated to 50°C while pressurized with hydrogen gas to 3 MPa, and the hydrogenation reaction (hereinafter referred to as "first stage hydrogenation reaction") was carried out for 6 hours. ). At this time, the iodine value of the polymer was 38.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate was added as a hydrogenation catalyst by dissolving it in 60 ml of water containing 4 times the molar amount of nitric acid relative to Pd.
  • the contents of the autoclave were heated to 50°C while pressurized with hydrogen gas to 3 MPa, and hydrogenation reaction (hereinafter referred to as "second stage hydrogenation reaction") was carried out for 6 hours. ).
  • the iodine value of the polymer (A19) was measured as follows.
  • the NMP solution of the polymer (A19) was coagulated with 1 L of methanol, and then vacuum-dried at 60° C. overnight.
  • the iodine value of the dried polymer (A19) was measured according to JIS K6235:2006.
  • Example 20 hydrogenation was carried out in the same manner as in Example 19, except that the polymer (A3) dispersion was used instead of the polymer (A2) dispersion, and a power storage device containing the polymer (A20) was prepared. A composition for use was obtained.
  • the obtained polymer (A20) had an iodine value of 29 after the first-stage hydrogenation reaction, and an iodine value of 11 after the second-stage hydrogenation reaction.
  • Example 21-27 the polymer (A3) synthesized in Example 3 was dissolved using the liquid medium listed in Table 5 below, and the same liquid medium was also used when preparing slurry for a positive electrode of a lithium ion secondary battery. The same evaluation as in Example 3 was carried out except that the following was used.
  • Tables 1 to 2 below show the polymer compositions, physical property measurement results, and evaluation results used in Examples 1 to 15 and Comparative Examples 1 to 4. shows.
  • Table 3 below shows the composition of the polymer components used in Examples 16 to 18 and the results of each evaluation.
  • Table 4 below shows the composition of the polymer components used in Examples 19 to 20 and the results of each evaluation.
  • Table 5 below shows the composition of the polymer components used in Examples 21 to 27, the type of liquid medium, and the results of each evaluation. Note that the numerical values representing the polymer composition or polymer component composition shown in Tables 1 to 5 below represent parts by mass.
  • a slurry containing the binder composition for a power storage device of the present invention and an active material is used as a slurry for a lithium ion secondary battery electrode.
  • the active material layer formed with the slurry has a good surface condition, and when measuring peel strength, the active material layer itself becomes brittle and the active material or solid electrolyte falls off or cracks occur. It was confirmed that the binder had sufficient binding properties between both the active material and the solid electrolyte. Furthermore, it was confirmed that the rate of increase in resistance in the obtained lithium ion secondary battery was reduced and the cycle characteristics were improved.
  • the binder composition for power storage devices of the present invention electrodes for lithium ion secondary batteries with excellent surface condition, adhesion, and ionic conductivity can be produced, and the cycle characteristics of lithium ion secondary batteries can be improved. I found out that I can improve.
  • Example 19 a polymer (A19) obtained by further hydrogenating the polymer (A2) synthesized in Example 2 is used.
  • Example 20 a polymer (A20) obtained by further hydrogenating the polymer (A3) synthesized in Example 3 is used.
  • the cycle life characteristics of the lithium ion secondary battery were improved more than in Example 2, and in Example 20, the cycle life characteristics of the lithium ion secondary battery were improved more than in Example 3. I understand. This result shows that by using the hydrogenated polymer (A), it becomes chemically more stable against high potentials and the electrode structure can be maintained even during long-term cycles.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible.
  • the present invention includes configurations that are substantially the same as those described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objectives and effects).
  • the present invention includes configurations in which non-essential parts of the configurations described in the above embodiments are replaced with other configurations.
  • the present invention also includes configurations that have the same effects or can achieve the same objectives as the configurations described in the above embodiments.
  • the present invention also includes a configuration in which known technology is added to the configuration described in the above embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

表面状態、密着性及びイオン伝導性に優れた蓄電デバイス電極を作製でき、かつ、蓄電デバイスのサイクル寿命特性を向上させることができる蓄電デバイス用バインダー組成物を提供する。 本発明に係る蓄電デバイス用バインダー組成物は、重合体(A)と、液状媒体(B)と、を含有し、前記重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、前記重合体(A)が、共役ジエン化合物に由来する繰り返し単位(a1)50~99質量%と、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a2)1~19質量%と、を含有し、前記重合体(A)の重量平均分子量(Mw)が100,000~2,000,000である。

Description

蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
 本発明は、蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池に関する。
 近年、電子機器の駆動用電源として、高電圧かつ高エネルギー密度を有する蓄電デバイスが要求されている。このような蓄電デバイスとしては、リチウムイオン電池やリチウムイオンキャパシタなどが期待されている。
 このような蓄電デバイスに使用される電極は、活物質と、バインダーとして機能する重合体とを含有する組成物(蓄電デバイス電極用スラリー)を集電体の表面に塗布及び乾燥させることにより製造される。バインダーとして使用される重合体に要求される特性としては、活物質同士の結合能力及び活物質と集電体との密着能力が挙げられる。また、塗布・乾燥された組成物塗膜(以下、「活物質層」ともいう。)を裁断する際、活物質層から活物質の微粉などが脱落しない粉落ち耐性などを挙げることができる。このようなバインダー材料が良好な密着性を発現させて、該バインダー材料に起因する電池の内部抵抗を低減させることで、蓄電デバイスに良好な充放電特性を付与することができる。
 なお、上記の活物質同士の結合能力及び活物質と集電体との密着能力、並びに粉落ち耐性については、性能の良否がほぼ比例関係にあることが経験上明らかになっている。したがって、本明細書では、以下これらを包括して「密着性」という用語を用いて表す場合がある。
 昨今、容量及び充放電サイクル特性に優れた電気化学デバイスを作製するために、水との反応性が高い正極活物質の使用が検討されている。そして、有機溶剤系の蓄電デバイス電極用バインダーとしてもっとも広く使用されているのは、ポリフッ化ビニリデン(PVDF)である。PVDFは、良好な結着性と、耐酸化性を有するものの、フッ素原子を含有するため環境負荷が高く、原料供給の不安定性も顕在化しつつある(例えば、特許文献1参照)。
 こうした背景の下、正極用スラリーの諸問題を解決すべく、種々のバインダー材料が提案されている(例えば、特許文献1~2参照)。
特開平10-298386号公報 特開2019-194944号公報
 しかしながら、従来用いられているPVDFまたは上記特許文献1に開示されているスルホン化したPVDFを含有する正極用スラリーを用いる方法では、特に塩基性条件下で、脱HFに伴う架橋体が形成されることが知られている。この架橋体が正極用スラリー中に形成されてしまうと、密着性が阻害される場合があった。また、従来用いられている正極用スラリーを塗布すると、該スラリー中に残留する乳化剤等の影響によって、塗膜の表面に破泡によるクレーターが発生することがあった。このような表面欠陥は、製品の歩留まりの低下に繋がるため、防ぐ必要がある。
 本発明に係る幾つかの態様は、表面状態、密着性及びイオン伝導性に優れた蓄電デバイス電極を作製でき、かつ、蓄電デバイスのサイクル寿命特性を向上させることができる蓄電デバイス用バインダー組成物を提供する。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下のいずれかの態様として実現することができる。
 本発明に係る蓄電デバイス用バインダー組成物の一態様は、
 重合体(A)と、液状媒体(B)と、を含有し、
 前記重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、前記重合体(A)が、
 共役ジエン化合物に由来する繰り返し単位(a1)50~99質量%と、
 α,β-不飽和ニトリル化合物に由来する繰り返し単位(a2)1~19質量%と、
を含有し、
 前記重合体(A)の重量平均分子量(Mw)が100,000~2,000,000である。
 前記蓄電デバイス用バインダー組成物の一態様において、
 前記重合体(A)が、不飽和カルボン酸に由来する繰り返し単位(a3)0.1~10質量%を更に含有することができる。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)が、芳香族ビニル化合物に由来する繰り返し単位(a4)1~30質量%を更に含有することができる。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)の全質量に対して30~30,000ppmの乳化剤を含有することができる。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)の、25℃、1気圧におけるN-メチル-2-ピロリドンに対する溶解度が、N-メチル-2-ピロリドン100gに対して1g以上であることができる。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)について、JIS K7121:2012に準拠して示差走査熱量測定(DSC)を行ったときに、-80℃~0℃の温度範囲において吸熱ピークが観測されることができる。
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記液状媒体(B)が、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ケトン類、エステル類、エーテル類、グリコールエーテル類、ラクタム類、ラクトン類、及びアミド類よりなる群から選択される少なくとも1種であることができる。
 本発明に係るリチウムイオン二次電池電極用スラリーの一態様は、
 前記いずれかの態様の蓄電デバイス用バインダー組成物と、活物質と、を含有する。
 前記リチウムイオン二次電池電極用スラリーの一態様において、
 前記活物質が正極活物質であることができる。
 前記リチウムイオン二次電池電極用スラリーのいずれかの態様において、
 前記正極活物質がオリビン型リチウム含有リン酸化合物であることができる。
 本発明に係るリチウムイオン二次電池用電極の一態様は、
 集電体と、前記集電体の表面に前記いずれかの態様のリチウムイオン二次電池電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備える。
 本発明に係るリチウムイオン二次電池の一態様は、
 前記一態様のリチウムイオン二次電池用電極を備える。
 本発明に係る蓄電デバイス用バインダー組成物によれば、表面状態、密着性及びイオン伝導性に優れた蓄電デバイス電極を作製でき、かつ、サイクル寿命特性に優れた蓄電デバイスが提供される。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
 本明細書において、「(メタ)アクリル酸~」とは、「アクリル酸~」又は「メタクリル酸~」を表し、「~(メタ)アクリレート」とは、「~アクリレート」又は「~メタクリレート」を表す。
 本明細書において、「X~Y」のように記載された数値範囲は、数値Xを下限値として含み、かつ、数値Yを上限値として含むものとして解釈される。
 1.蓄電デバイス用バインダー組成物
 本発明の一実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)と、液状媒体(B)と、を含有する。前記重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、共役ジエン化合物に由来する繰り返し単位(a1)50~99質量%と、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a2)1~19質量%と、を含有する。また、前記重合体(A)の重量平均分子量(Mw)は、100,000~2,000,000である。
 本実施形態に係る蓄電デバイス用バインダー組成物に含有される重合体成分のうち重合体(A)の含有割合は、重合体成分100質量%中、好ましくは10~100質量%であり、より好ましくは20~95質量%であり、特に好ましくは25~90質量%である。ここで、重合体成分には、重合体(A)、後述する重合体(A)以外の重合体、及び増粘剤が含まれる。
 本実施形態に係る蓄電デバイス用バインダー組成物は、活物質同士の結合能力及び活物質と集電体との密着能力並びに粉落ち耐性を向上させた蓄電デバイス電極(活物質層)を作製するための材料として使用することもできるし、充放電に伴って発生するデンドライトに起因する短絡を抑制するための保護膜を形成するための材料として使用することもできる。以下、本実施形態に係る蓄電デバイス用バインダー組成物に含まれる成分について詳細に説明する。
 1.1.重合体(A)
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)を含有する。重合体(A)は、液状媒体(B)中に分散されたラテックス状であってもよいし、液状媒体(B)中に溶解された状態であってもよいが、液状媒体(B)に溶解された状態であることが好ましい。重合体(A)が液状媒体(B)に溶解された状態であると、活物質と混合して作製される蓄電デバイス電極用スラリー(以下、「スラリー」ともいう。)の安定性が良好となり、集電体へのスラリーの塗布性も良好となるため好ましい。さらに、重合体(A)が液状媒体(B)に溶解された状態であると、活物質間の密着強度が高くなるので、イオン伝導性が向上する。これにより、内部抵抗を低減させることができるので、サイクル寿命特性に優れた蓄電デバイスが得られやすい。
 以下、重合体(A)を構成する繰り返し単位、重合体(A)の物性、重合体(A)の製造方法の順に説明する。
 1.1.1.重合体(A)を構成する繰り返し単位
 重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、共役ジエン化合物に由来する繰り返し単位(a1)(以下、単に「繰り返し単位(a1)」ともいう。)を50~99質量%と、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a2)(以下、単に「繰り返し単位(a2)」ともいう。)1~19質量%と、を含有する。また、重合体(A)は、繰り返し単位(a1)及び繰り返し単位(a2)の他に、これらと共重合可能な他の単量体に由来する繰り返し単位を含有してもよい。
 1.1.1.1.共役ジエン化合物に由来する繰り返し単位(a1)
 共役ジエン化合物に由来する繰り返し単位(a1)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、50~99質量%である。繰り返し単位(a1)の含有割合の下限は、52質量%であることが好ましく、55質量%であることがより好ましい。繰り返し単位(a1)の含有割合の上限は、97質量%であることが好ましく、95質量%であることがより好ましい。重合体(A)が繰り返し単位(a1)を前記範囲内で含有することにより、活物質や導電助剤の分散性が良好となり、均質な活物質層の作製が可能となる。これにより、電極板の構造欠陥がなくなり、良好な繰り返し充放電特性を示すようになる。また、活物質の表面を被覆した重合体(A)に伸縮性を付与することができ、重合体(A)が伸縮することで密着性を向上できるので、良好な充放電耐久特性を示すようになる。
 共役ジエン化合物としては、特に限定されないが、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、1,3-ブタジエンが特に好ましい。
 1.1.1.2.α,β-不飽和ニトリル化合物に由来する繰り返し単位(a2)
 α,β-不飽和ニトリル化合物に由来する繰り返し単位(a2)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、1~19質量%である。繰り返し単位(a2)の含有割合の下限は、2質量%であることが好ましく、3質量%であることがより好ましい。繰り返し単位(a2)の含有割合の上限は、好ましくは18質量%であり、より好ましくは17質量%である。重合体(A)が繰り返し単位(a2)を前記範囲内で含有することにより、該重合体(A)同士の相互作用が高まることで電極としての密着性が高くなる傾向がある。また、重合体(A)と電解液との親和性が良好となり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制することができる。
 α,β-不飽和ニトリル化合物としては、特に限定されないが、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エチルアクリロニトリル、シアン化ビニリデン等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、アクリロニトリル及びメタクリロニトリルよりなる群から選択される1種以上が好ましく、アクリロニトリルが特に好ましい。
 1.1.1.3.その他の繰り返し単位
 重合体(A)は、前記繰り返し単位(a1)及び前記繰り返し単位(a2)の他に、これらと共重合可能な他の単量体に由来する繰り返し単位を含有してもよい。このような繰り返し単位としては、例えば、不飽和カルボン酸に由来する繰り返し単位(a3)(以下、単に「繰り返し単位(a3)」ともいう。)、芳香族ビニル化合物に由来する繰り返し単位(a4)(以下、単に「繰り返し単位(a4)」ともいう。)、不飽和カルボン酸エステルに由来する繰り返し単位(a5)(以下、単に「繰り返し単位(a5)」ともいう。)、カチオン性単量体に由来する繰り返し単位等が挙げられる。
<不飽和カルボン酸に由来する繰り返し単位(a3)>
 不飽和カルボン酸に由来する繰り返し単位(a3)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0.1~10質量%であることが好ましい。繰り返し単位(a3)の含有割合の下限は、0.2質量%であることが好ましく、0.3質量%であることがより好ましい。繰り返し単位(a3)の含有割合の上限は、9質量%であることが好ましく、8質量%であることがより好ましい。重合体(A)が繰り返し単位(a3)を前記範囲内で含有することにより、集電体と活物質層の結着性を向上させることができ、電極の密着強度が向上する場合がある。
 不飽和カルボン酸としては、特に限定されないが、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等の、モノカルボン酸及びジカルボン酸(無水物を含む。)等が挙げられ、これらの中から選択される1種以上を使用することができる。不飽和カルボン酸としては、アクリル酸、メタクリル酸及びイタコン酸から選択される1種以上を使用することが好ましい。
<芳香族ビニル化合物に由来する繰り返し単位(a4)>
 芳香族ビニル化合物に由来する繰り返し単位(a4)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、1~30質量%であることが好ましい。繰り返し単位(a4)の含有割合の下限は、2質量%であることが好ましく、4質量%であることがより好ましい。繰り返し単位(a4)の含有割合の上限は、28質量%であることが好ましく、25質量%であることがより好ましい。重合体(A)が繰り返し単位(a4)を前記範囲内で含有することにより、活物質層中に分散された重合体(A)同士の融着を抑制し、良好なスラリー特性を示すようになり、塗布性を向上させることができる場合がある。また、電解液の浸透性を向上できるため、良好な繰り返し充放電特性を示す場合がある。さらに、重合体(A)が活物質として用いられるグラファイト等に対して良好な結着性を示し、密着性に優れた蓄電デバイス電極が得られる場合がある。
 芳香族ビニル化合物としては、特に限定されないが、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロロスチレン、ジビニルベンゼン等が挙げられ、これらの中から選択される1種以上を使用することができる。
<不飽和カルボン酸エステルに由来する繰り返し単位(a5)>
 不飽和カルボン酸エステルに由来する繰り返し単位(a5)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~10質量%であることが好ましい。繰り返し単位(a5)の含有割合の下限は、0.5質量%であることが好ましく、1質量%であることがより好ましい。繰り返し単位(a5)の含有割合の上限は、9質量%であることが好ましく、8質量%であることがより好ましい。重合体(A)が繰り返し単位(a5)を前記範囲内で含有することにより、重合体(A)と電解液との親和性が良好となり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制できる場合がある。
 不飽和カルボン酸エステルの中でも、(メタ)アクリル酸エステルを好ましく使用することができる。(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸5-ヒドロキシペンチル、(メタ)アクリル酸6-ヒドロキシヘキシル、グリセリンモノ(メタ)アクリレート、及びグリセリンジ(メタ)アクリレート等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、及びジ(メタ)アクリル酸エチレングリコールから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。
<カチオン性単量体に由来する繰り返し単位>
 重合体(A)は、カチオン性単量体に由来する繰り返し単位を含有してもよい。カチオン性単量体としては、特に限定されないが、第二級アミン(塩)、第三級アミン(塩)及び第四級アンモニウム塩よりなる群から選択される少なくとも1種の単量体であることが好ましい。カチオン性単量体の具体例としては、(メタ)アクリル酸2-(ジメチルアミノ)エチル、ジメチルアミノエチル(メタ)アクリレート塩化メチル4級塩、(メタ)アクリル酸2-(ジエチルアミノ)エチル、(メタ)アクリル酸3-(ジメチルアミノ)プロピル、(メタ)アクリル酸3-(ジエチルアミノ)プロピル、(メタ)アクリル酸4-(ジメチルアミノ)フェニル、(メタ)アクリル酸2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル、(メタ)アクリル酸2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチル、(メタ)アクリル酸2-(1-アジリジニル)エチル、メタクロイルコリンクロリド、イソシアヌル酸トリス(2-アクリロイルオキシエチル)、2-ビニルピリジン、キナルジンレッド、1,2-ジ(2-ピリジル)エチレン、4’-ヒドラジノ-2-スチルバゾール二塩酸塩水和物、4-(4-ジメチルアミノスチリル)キノリン、1-ビニルイミダゾール、ジアリルアミン、ジアリルアミン塩酸塩、トリアリルアミン、ジアリルジメチルアンモニウムクロリド、ジクロルミド、N-アリルベンジルアミン、N-アリルアニリン、2,4-ジアミノ-6-ジアリルアミノ-1,3,5-トリアジン、N-trans-シンナミル-N-メチル-(1-ナフチルメチル)アミン塩酸塩、trans-N-(6,6-ジメチル-2-ヘプテン-4-イニル)-N-メチル-1-ナフチルメチルアミン塩酸塩等が挙げられ、これらの中から選択される1種以上を使用することができる。
 1.1.2.重合体(A)の物性
 1.1.2.1.重量平均分子量(Mw)
 重合体(A)の、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算の重量平均分子量(Mw)は、100,000~2,000,000である。重合体(A)の重量平均分子量の下限は、120,000であることが好ましく、150,000であることがより好ましい。重合体(A)の重量平均分子量の上限は、1,800,000であることが好ましく、1,600,000であることがより好ましい。重合体(A)の重量平均分子量(Mw)が前記範囲内であると、重合体(A)が液状媒体(B)に溶解しやすくなる。このため、活物質と混合して作製されるスラリーの安定性が良好となるとともに、集電体へのスラリーの塗布性が良好となる。また、重合体(A)による活物質や導電助剤等のフィラー間の結着性が向上し、充放電特性に優れたリチウムイオン二次電池が得られやすい。また、リチウムイオン二次電池作製時の正極電極板のプレス、折り曲げ等の外力に対する耐性が向上する。
 1.1.2.2.N-メチル-2-ピロリドンに対する溶解度
 重合体(A)の、25℃、1気圧におけるN-メチル-2-ピロリドン(本明細書において、「NMP」ともいう。)に対する溶解度は、NMP100gに対し1g以上であることが好ましい。NMPに対する溶解度がNMP100gに対し1g以上であることは、重合体(A)が有機溶媒に対して可溶性であることを意味する。重合体(A)が有機溶媒に対して可溶性であると、柔軟性や密着性に優れる重合体(A)によって活物質の表面がコーティングされやすくなる。その結果、充放電時における活物質の伸縮による脱落を効果的に抑制でき、良好な充放電耐久特性を示す蓄電デバイスが得られやすい。また、スラリーの安定性が良好となり、スラリーの集電体への塗布性も良好となるため好ましい。
 1.1.2.3.ガラス転移温度(Tg)
 重合体(A)は、JIS K7121:2012に準拠する示差走査熱量測定(DSC)によって測定したときに、-80℃~0℃の温度範囲において第1吸熱ピークを有することが好ましい。また、重合体(A)は、JIS K7121:2012に準拠する示差走査熱量測定(DSC)によって測定したときに、前記第1吸熱ピークに加えて、80℃~150℃の温度範囲において第2吸熱ピークを更に有することがより好ましい。DSC分析における重合体(A)の吸熱ピークが上記温度範囲内にある場合、重合体(A)は、活物質層に対してより良好な柔軟性及び結着性を付与することができるため好ましい。
 1.1.3.重合体(A)の製造方法
<重合工程>
 重合体(A)の製造方法については、特に限定されないが、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。重合に用いる重合開始剤としては、例えば、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、tert-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物;α,α’-アゾビスイソブチロニトリルなどのアゾ化合物;過硫酸アンモニウム、過硫酸カリウムなどが挙げられる。
 上記重合法の中でも、例えば公知の乳化剤、連鎖移動剤、重合開始剤などの存在下で行う乳化重合法が好ましい。
 乳化重合法に用いる乳化剤としては、高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸・ホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩などのアニオン性界面活性剤;ポリエチレングリコールのアルキルエステル、ポリエチレングリコールのアルキルフェニルエーテル、ポリエチレングリコールのアルキルエーテルなどのノニオン性界面活性剤;パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有リン酸エステル、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキルエチレンオキシド付加物などのフッ素系界面活性剤などを挙げることができ、これらのうちから選択される1種以上を使用することができる。
 乳化重合法に用いる連鎖移動剤及び重合開始剤としては、特許第5999399号公報等に記載された化合物を用いることができる。
 重合体(A)を合成するための乳化重合法は、一段重合で行ってもよく、二段重合以上の多段重合で行ってもよい。
 重合体(A)の合成を一段重合によって行う場合、上記の単量体の混合物を、適当な乳化剤、連鎖移動剤、重合開始剤などの存在下で、好ましくは0~80℃の温度で、好ましくは4~36時間の重合時間の乳化重合によることができる。
 重合体(A)の合成を二段重合によって行う場合、各段階の重合は以下のように設定することが好ましい。
 一段目重合に使用する単量体の使用割合は、単量体の全質量(一段目重合に使用する単量体の質量と二段目重合に使用する単量体の質量の合計)に対して、20~99質量%の範囲とすることが好ましく、25~99質量%の範囲とすることがより好ましい。一段目重合をこのような単量体の使用割合で行うことにより、分散安定性に優れ、凝集物が生じ難い重合体(A)の粒子を得ることができるとともに、凝固後の蓄電デバイス用バインダー組成物の経時的な粘度上昇も抑制されることとなり好ましい。
 二段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。
 各段階の重合条件は、得られる重合体(A)の粒子の分散性の観点から、以下のようにすることが好ましい。
・一段目重合;好ましくは0~80℃の温度:好ましくは2~36時間の重合時間:好ましくは50質量%以上、より好ましくは60質量%以上の重合転化率。
・二段目重合;好ましくは0~80℃の温度;好ましくは2~18時間の重合時間。
 重合体(A)の合成を三段重合によって行う場合、各段階の重合は以下のように設定することが好ましい。
 一段目重合に使用する単量体の使用割合は、単量体の全質量(一段目重合に使用する単量体の質量と二段目重合に使用する単量体の質量と三段目重合に使用する単量体の質量の合計)に対して、20~90質量%の範囲とすることが好ましく、25~80質量%の範囲とすることがより好ましい。一段目重合をこのような単量体の使用割合で行うことにより、分散安定性に優れ、凝集物が生じ難い重合体(A)の粒子を得ることができるとともに、凝固後の蓄電デバイス用バインダー組成物の経時的な粘度上昇も抑制されることとなり好ましい。
 二段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。
 三段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合、二段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。
 各段階の重合条件は、得られる重合体(A)の粒子の分散性の観点から、以下のようにすることが好ましい。
・一段目重合;好ましくは0~80℃の温度:好ましくは2~36時間の重合時間:好ましくは50質量%以上、より好ましくは60質量%以上の重合転化率。
・二段目重合;好ましくは0~80℃の温度;好ましくは2~18時間の重合時間。
・三段目重合;好ましくは0~80℃の温度;好ましくは2~9時間の重合時間。
 乳化重合における全固形分濃度を50質量%以下とすることにより、得られる重合体(A)の粒子の分散安定性が良好な状態で重合反応を進行させることができる。この全固形分濃度は、好ましくは45質量%以下であり、より好ましくは40質量%以下である。
 重合体(A)の合成を一段重合で行う場合であっても、多段重合で行う場合であっても、乳化重合終了後には重合混合物に中和剤を添加して中和することが好ましい。ここで使用する中和剤としては、特に限定されないが、例えば水酸化ナトリウム、水酸化カリウムなどの金属水酸化物;アンモニア等が挙げられる。
 また、水素添加反応により、上記重合法により得られた重合体中の共役ジエン化合物に由来する炭素-炭素不飽和結合のみを選択的に水素化して重合体(A)を得てもよい。共役ジエン化合物に由来する繰り返し単位の導入後に水素添加して直鎖アルキレン繰り返し単位を形成する場合、水素添加する方法は特に限定されない。また、水素添加反応により、重合体(A)のヨウ素価を後述する範囲とすることができる。水素添加することで、高電位に対して重合体(A)が化学構造的に安定となり、長期サイクルにおいても電極構造を維持することができ、サイクル寿命特性に優れる場合がある。
 重合体中の共役ジエン化合物に由来する炭素-炭素不飽和結合のみを選択的に水素化する選択的水素化方法としては、公知の方法によればよく、油層水素化法、水層水素化法のいずれも可能である。これらの中でも、得られる重合体(A)中の不純物(例えば、後述する金属等)の含有量が少なくなることから、水層水素化法が好ましい。水層水素化法としては、水層直接水素化法、水層間接水素化法が挙げられる。
 水層直接水素化法においては、水層中の重合体の濃度(分散液状態での濃度)は、凝集を防止するために38質量%以下とすることが好ましい。また、用いる水素化触媒としては、水で分解しにくい化合物であれば特に限定されないが、パラジウム触媒が好ましい。パラジウム触媒の具体例としては、ギ酸、プロピオン酸、ラウリン酸、コハク酸、オレイン酸、フタル酸などのカルボン酸のパラジウム塩;塩化パラジウム、ジクロロ(シクロオクタジエン)パラジウム、ジクロロ(ノルボルナジエン)パラジウム、ヘキサクロロパラジウム(IV)酸アンモニウムなどのパラジウム塩素化物;ヨウ化パラジウムなどのヨウ素化物;硫酸パラジウム・二水和物などが挙げられる。これらの中でも、カルボン酸のパラジウム塩、ジクロロ(ノルボルナジエン)パラジウム及びヘキサクロロパラジウム(IV)酸アンモニウムが特に好ましい。水素化触媒の使用量は、水素化する重合体の質量に対して、水素化触媒の金属量換算で、好ましくは5~5500ppm、より好ましくは10~4000ppmである。
 水層直接水素化法における反応温度は、好ましくは0~280℃、より好ましくは20~160℃、特に好ましくは30~100℃である。反応温度が低すぎると反応速度が低下するおそれがあり、反応温度が高すぎるとニトリル基の水素添加などの副反応が起こる可能性がある。水素圧力は、好ましくは0.1~30MPa、より好ましくは0.5~20MPaである。反応時間は、反応温度、水素圧、目標の水素化率などを勘案して選定される。
 一方、水層間接水素化法では、水層中の重合体の濃度(分散液状態での濃度)は、好ましくは1~50質量%、より好ましくは1~40質量%である。
 水層間接水素化法で用いる酸化剤としては、酸素、空気、過酸化水素などが挙げられる。これら酸化剤の使用量は、炭素-炭素二重結合に対するモル比(酸化剤:炭素-炭素二重結合)で、好ましくは0.1:1~100:1、より好ましくは0.8:1~5:1の範囲である。
 水層間接水素化法で用いる還元剤としては、ヒドラジン、ヒドラジン水和物、酢酸ヒドラジン、ヒドラジン硫酸塩、ヒドラジン塩酸塩などのヒドラジン類またはヒドラジンを遊離する化合物が用いられる。これらの還元剤の使用量は、炭素-炭素二重結合に対するモル比(還元剤:炭素-炭素二重結合)で、好ましくは0.1:1~100:1、より好ましくは0.8:1~5:1の範囲である。
 水層間接水素化法で用いる活性剤としては、銅、鉄、コバルト、鉛、ニッケル、鉄、スズなどの金属のイオンが用いられる。これらの活性剤の使用量は、炭素-炭素二重結合に対するモル比(活性剤:炭素-炭素二重結合)で、好ましくは1:1000~10:1、より好ましくは1:50~1:2である。
 水層間接水素化法における反応は、0℃から還流温度までの範囲内で加熱することにより行い、これにより水素化反応が行われる。この際の温度範囲は、好ましくは0~250℃、より好ましくは20~100℃、特に好ましくは35~80℃である。
 また、本実施形態に用いる重合体(A)の製造方法においては、水素添加を2段階以上に分けて実施する方法が特に好ましい。水素添加を2段階以上に分けて実施することにより、水素添加効率を高めることができる。すなわち、共役ジエン化合物に由来する繰り返し単位を直鎖アルキレン繰り返し単位へ転換する際に、重合体のヨウ素価をより低くすることが可能となる。
 水素添加反応終了後、分散液中の水素添加触媒を除去する。その方法としては、例えば、活性炭、イオン交換樹脂等の吸着剤を添加して撹拌下で水素添加触媒を吸着させ、次いで分散液をろ過又は遠心分離する方法を採用することができる。水素添加触媒を除去せずに分散液中に残存させることも可能である。
 重合体(A)のヨウ素価は、好ましくは1~60であり、より好ましくは1~50であり、特に好ましくは1~40である。重合体(A)のヨウ素価が前記範囲内であると、重合体(A)の酸化電位における安定性が高くなるので、リチウムイオン二次電池のサイクル寿命特性が向上する場合がある。また、重合体(A)のヨウ素価が前記範囲内であると、重合体(A)に柔軟性を付与することができるので、密着性が向上する場合がある。
 重合体(A)のヨウ素価は、以下のようにして測定することができる。重合体(A)のNMP溶液をメタノール1Lで凝固した後、60℃で一晩真空乾燥させる。乾燥させた重合体(A)のヨウ素価をJIS K6235:2006に従って測定する。
<凝固工程>
 次いで、上述の重合工程において得られた分散液に凝固剤を添加することにより重合体(A)を凝固させ、含水クラム(重合体(A)と、凝固剤と、水とを含む凝固物)を得る。
 凝固剤としては、1価以上3価以下の金属塩を好適に用いることができ、例えば、硫酸マグネシウム、塩化ナトリウム、塩化カルシウムが挙げられる。これらの中でも、塩化ナトリウム、塩化カルシウムが好ましい。凝固剤の使用量は、分散液中の重合体100質量部に対して、好ましくは1質量部以上20質量部以下、より好ましくは2質量部以上15質量部以下である。
 凝固温度は特に限定されないが、好ましくは40℃以上90℃以下、より好ましくは45℃以上80℃以下である。
<洗浄工程>
 次いで、上述の凝固工程において得られた含水クラムを洗浄する。含水クラムを洗浄することにより、重合体以外の成分(凝固剤等)の残留量を低減することができる。
 洗浄方法としては、特に限定されないが、洗浄液として水を使用し、含水クラムとともに添加した水を混合することにより水洗を行う方法が挙げられる。水洗時の温度は、特に限定されないが、好ましくは5℃以上70℃以下、より好ましくは10℃以上60℃以下である。また、混合時間は、特に限定されないが、好ましくは1分以上60分以下、より好ましくは2分以上45分以下である。
 そして、水洗時に、含水クラムに対して添加する水の量としては、特に限定されないが、最終的に得られる蓄電デバイス用バインダー組成物中の凝固剤の含有量(残留量)を効果的に低減することができるという観点より、含水クラム中に含まれる重合体100質量部に対して、好ましくは150質量部以上10,000質量部以下、より好ましくは150質量部以上5,000質量部以下である。
 水洗回数としては、特に限定されない。最終的に得られる蓄電デバイス用バインダー組成物中の凝固剤の含有量(残留量)を低減するという観点から、水洗回数は、好ましくは2回以上8回以下、より好ましくは3回以上10回以下である。なお、最終的に得られる蓄電デバイス用バインダー組成物中の凝固剤の含有量(残留量)を低減するという観点からは、水洗回数が多い方が望ましい。しかしながら、上記範囲を超えて洗浄を行っても、凝固剤の除去効果が小さい一方で、工程数が増加してしまうことにより製造効率の低下の影響が大きくなってしまう。さらに、より凝固剤の含有量(残留量)を低下させるためには、一旦トルエンなどの有機溶媒に溶解させた後、メタノール中に投入する等の方法で凝固させる等のまったく別の工程が必要となる。従って、工業的に製造効率の良い凝固水洗方式で行うことが好ましく、水洗回数は上記範囲内とすることが好ましい。また、洗浄工程においては、水洗を行った後、さらに洗浄液として酸を使用した酸洗浄を行ってもよい。
<乾燥工程>
 次いで、上述の洗浄工程を経た含水クラムを乾燥して、重合体と凝固剤を含む凝固乾燥物を得る。乾燥工程で使用可能な乾燥方法としては、特に限定されないが、例えば、スクリュー型押出機、ニーダー型乾燥機、エキスパンダー乾燥機、熱風乾燥機、減圧乾燥機などの乾燥機を用いて乾燥させることができる。また、これらを組み合わせた乾燥方法を用いてもよい。さらに、乾燥工程により乾燥を行う前に、必要に応じて、含水クラムに対し、回転式スクリーン、振動スクリーンなどの篩;遠心脱水機などを用いたろ別を行ってもよい。
 乾燥工程における乾燥温度は、特に限定されず、乾燥に用いる乾燥機に応じて異なる。例えば熱風乾燥機を用いる場合には、乾燥温度は60℃以上200℃以下とすることが好ましく、70℃以上180℃以下とすることがより好ましい。
 1.2.液状媒体(B)
 本実施形態に係る蓄電デバイス用バインダー組成物は、液状媒体(B)を含有する。液状媒体(B)としては、特に限定されないが、ヘキサン、ヘプタン、オクタン、デカン、ドデカン等の脂肪族炭化水素;シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン等の脂環式炭化水素;トルエン、キシレン、メシチレン、ナフタレン、テトラリン等の芳香族炭化水素;メチルヘキシルケトン、ジプロピルケトン等のケトン類;酢酸ブチル、酪酸ブチル、ブタン酸メチル等のエステル類;ジブチルエーテル、テトラヒドロフラン、アニソール等のエーテル類;N-メチル-2-ピロリドン、2-ピロリドン等のラクタム類;N-メチルアセトアミド、ジメチルアセトアミド、N-メチルホルムアミド、ジメチルホルムアミド等のアミド類;β-ラクタム、γ-ラクタム、σ-ラクタム等のラクタム類;(モノ、ジ、トリ、ポリ)エチレングリコールモノメチルエーテル、(モノ、ジ、トリ、ポリ)エチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル等のグリコールエーテル類;水を含有する水系媒体などを用いることができる。これらの溶媒は、1種単独であるいは2種類以上を組み合わせて用いることができる。
 本実施形態に係る蓄電デバイス用バインダー組成物中の液状媒体(B)の含有割合は、重合体成分100質量部に対し、100~10,000質量部であることが好ましく、500~2,000質量部であることがより好ましい。液状媒体(B)の含有割合が前記下限値以上であると、リチウムイオン二次電池電極用スラリーを調製する際に、重合体成分と活物質との混合性が良好となる。一方、液状媒体(B)の含有割合が前記上限値以下であると、活物質層を製造する際に、リチウムイオン二次電池電極用スラリーの塗布性が良好となり、塗布後の乾燥処理において重合体成分や活物質の濃度勾配が生じにくい。ここで、重合体成分には、重合体(A)、後述する重合体(A)以外の重合体、及び増粘剤が含まれる。
 1.3.乳化剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、前記重合体(A)の全質量に対して30~30,000ppmの乳化剤を含有してもよい。乳化剤の含有割合の下限値は、前記重合体(A)の全質量に対し、50ppmであることが好ましく、100ppmであることがより好ましい。乳化剤の含有割合の上限値は、前記重合体(A)の全質量に対し、25,000ppmであることが好ましく、20,000ppmであることがより好ましい。乳化剤を前記割合で含有することにより、スラリー塗膜におけるバインダー同士の融着を抑制できるので、内部抵抗上昇が抑制され、良好な繰り返し充放電特性を示すようになる。また、スラリー塗膜の表面に乳化剤由来の破泡によるクレーターが発生するのを抑制することができる。
 上述のように、重合体(A)を重合する際に乳化剤を用いるが、その後の凝固工程や洗浄工程等の条件により残留乳化剤量が変化する。そのため、残留乳化剤を適切に管理していないのが一般的である。本実施形態に係る蓄電デバイス用バインダー組成物においては、製造工程において乳化剤量を適切に管理することで、良好な電池特性が発現する場合がある。すなわち、乳化剤量が前記上限値以下であると、スラリー塗膜の表面に乳化剤由来の破泡によるクレーターが発生するのを効果的に抑制することができる。また、乳化剤量が前記下限値以上であると、スラリー塗膜におけるバインダー同士の融着を抑制できるようになり、内部抵抗上昇が抑制されるため、良好な繰り返し充放電特性を示すようになる。特に、正極では電子導電パスが維持できなくなると、イオン伝導性が低下し、抵抗が増大するため、バインダー同士の融着による導電パスの阻害を抑制することが重要である。
 乳化剤としては、上記重合工程で例示した乳化剤が挙げられる。これらの中でも、アニオン性界面活性剤であることが好ましく、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩であることがより好ましい。
 1.4.その他の添加剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、必要に応じて上述した成分以外の添加剤を含有することができる。このような添加剤としては、例えば重合体(A)以外の重合体、酸化防止剤、増粘剤等が挙げられる。
<重合体(A)以外の重合体>
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)以外の重合体を含有してもよい。このような重合体としては、特に限定されないが、不飽和カルボン酸エステル又はこれらの誘導体を構成単位として含むアクリル系重合体、PVDF(ポリフッ化ビニリデン)等のフッ素系重合体等が挙げられる。これらの重合体は、1種単独で用いてもよく、2種以上併用してもよい。これらの重合体を含有することにより、柔軟性や密着性がより向上する場合がある。
<酸化防止剤>
 本実施形態に係る蓄電デバイス用バインダー組成物は、酸化防止剤を含有してもよい。酸化防止剤を含有することにより、得られる蓄電デバイスの低温サイクル特性及び低温出力特性を更に向上できる場合がある。また、重合体成分の耐酸化性を更に向上させることができる場合がある。
 酸化防止剤としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、キノン系酸化防止剤、有機リン系酸化防止剤、硫黄系酸化防止剤、フェノチアジン系酸化防止剤などの化合物が挙げられる。これらの中でも、フェノール系酸化防止剤、アミン系酸化防止剤が好ましい。
<増粘剤>
 本実施形態に係る蓄電デバイス用バインダー組成物は、増粘剤を含有してもよい。増粘剤を含有することにより、スラリーの塗布性や得られる蓄電デバイスの充放電特性等をさらに向上できる場合がある。
 増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマー;ポリ(メタ)アクリル酸;前記セルロース化合物又は前記ポリ(メタ)アクリル酸のアンモニウム塩もしくはアルカリ金属塩;変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの中でも、セルロース系ポリマーが好ましい。
 これら増粘剤の市販品としては、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、株式会社ダイセル製)等のカルボキシメチルセルロースのアルカリ金属塩を挙げることができる。
 本実施形態に係る蓄電デバイス用バインダー組成物が増粘剤を含有する場合、増粘剤の含有割合は、蓄電デバイス用バインダー組成物の全固形分量100質量%に対して、5質量%以下であることが好ましく、0.1~3質量%であることがより好ましい。
 2.リチウムイオン二次電池電極用スラリー
 本発明の一実施形態に係るリチウムイオン二次電池電極用スラリーは、上述の蓄電デバイス用バインダー組成物と、活物質と、を含有するものである。本実施形態に係るリチウムイオン二次電池電極用スラリーは、リチウムイオン二次電池向けの活物質同士の結合能力及び活物質と集電体との密着能力並びに粉落ち耐性を向上させたリチウムイオン二次電池用電極(活物質層)を作製するための材料として使用することができる。具体的には、本実施形態に係るリチウムイオン二次電池電極用スラリーを集電体の表面に塗布した後、それを乾燥させることによって、集電体表面上に活物質層を作製することができる。
 一般的に、リチウムイオン二次電池正極用スラリーは、内部抵抗の上昇を抑制させるために、PVDFを含有することが多い。一方、本実施形態に係るリチウムイオン二次電池電極用スラリーは、重合体成分として上述した重合体(A)のみを含有する場合であっても内部抵抗の上昇を抑制させることができる。もちろん、本実施形態に係るリチウムイオン二次電池電極用スラリーは、更に内部抵抗の上昇を抑制させるために、重合体(A)以外の重合体や増粘剤を含有してもよい。以下、本実施形態に係るリチウムイオン二次電池電極用スラリーに含まれる成分について説明する。
 2.1.蓄電デバイス用バインダー組成物
 蓄電デバイス用バインダー組成物の組成、物性、製造方法については、上述した通りであるので説明を省略する。
 本実施形態に係るリチウムイオン二次電池電極用スラリー中の重合体成分の含有割合は、活物質100質量部に対し、好ましくは0.5~10質量部であり、より好ましくは1~8質量部であり、さらに好ましくは1~7質量部であり、特に好ましくは1.5~6質量部である。重合体成分の含有割合が前記範囲内にあると、スラリー中の活物質の分散性が良好となり、スラリーの塗布性も優れたものとなる。ここで、重合体成分には、重合体(A)、必要に応じて添加される重合体(A)以外の重合体、及び増粘剤等が含まれる。
 2.2.活物質
 本実施形態に係るリチウムイオン二次電池電極用スラリーに使用される活物質としては、正極活物質及び負極活物質が挙げられる。これらの具体例としては、例えば、炭素材料、ケイ素材料、リチウム原子を含む酸化物、硫黄化合物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、アルミニウム化合物、ポリアセン等の導電性高分子、A(但し、Aはアルカリ金属又は遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、Y及びZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が挙げられる。これらの具体例としては、特許第5999399号公報等に記載された化合物が挙げられる。
 本実施形態に係るリチウムイオン二次電池電極用スラリーは、正極及び負極のいずれの電極を作製する際にも使用することができるが、特に正極に使用することが好ましい。
 正極を作製する場合には、上記例示した活物質の中でもリチウム原子を含む酸化物であることが好ましい。リチウム原子を含む酸化物としては、例えば、下記一般式(1)で表され、かつ、オリビン型結晶構造を有するリチウム原子含有酸化物(オリビン型リチウム含有リン酸化合物)から選択される1種以上が挙げられる。
 Li1-x(AO) ・・・・・(1)
(式(1)中、Mは、Mg、Ti、V、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、Ge及びSnよりなる群から選択される少なくとも1種の金属のイオンであり、Aは、Si、S、P及びVよりなる群から選択される少なくとも1種であり、xは0<x<1の関係を満たす数である。)
 なお、前記一般式(1)におけるxの値は、M及びAの価数に応じて、前記一般式(1)全体の価数が0価となるように選択される。
 オリビン型リチウム含有リン酸化合物としては、例えばLiFePO、LiCoPO、LiMnPO、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30POなどが挙げられる。これらのうち、特にLiFePO(リン酸鉄リチウム)は、原料となる鉄化合物の入手が容易であるとともに安価であるため好ましい。
 オリビン型リチウム含有リン酸化合物の平均粒子径は、1~30μmの範囲にあることが好ましく、1~25μmの範囲にあることがより好ましく、1~20μmの範囲にあることが特に好ましい。
 前記複合金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、三元系ニッケルコバルトマンガン酸リチウム等が挙げられる。
 本実施形態に係るリチウムイオン二次電池電極用スラリーを用いて作製されたリチウムイオン二次電池電極は、正極活物質としてリチウム原子を含む酸化物を使用した場合でも良好な電気的特性を示すことができる。この理由としては、重合体(A)がリチウム原子を含む酸化物を強固に結着できると同時に、充放電中においてもリチウム原子を含む酸化物を強固に結着させた状態を維持できるからであると考えられる。
 一方、負極を作製する場合には、上記例示した活物質の中でもケイ素材料及び/又は炭素材料を含有するものであることが好ましく、ケイ素材料と炭素材料の混合物であることがより好ましい。ケイ素材料は、単位重量当たりのリチウムの吸蔵量がその他の活物質と比較して大きいことから、得られる蓄電デバイスの蓄電容量を高めることができ、その結果、蓄電デバイスの出力及びエネルギー密度を高くすることができる。一方、炭素材料は、充放電に伴う体積変化がケイ素材料よりも小さいので、負極活物質としてケイ素材料と炭素材料の混合物を使用することにより、ケイ素材料の体積変化の影響を緩和することができ、活物質層と集電体との密着能力をより向上させることができる。
 シリコン(Si)を活物質として使用する場合、シリコンは、高容量である一方、リチウムを吸蔵する際に大きな体積変化を生じる。このため、ケイ素材料は膨張と収縮の繰り返しによって微粉化し、集電体からの剥離や、活物質同士の乖離を引き起こし、活物質層内部の導電ネットワークが寸断されやすいという性質がある。この性質により、蓄電デバイスの充放電耐久特性が短時間で極端に劣化してしまうのである。
 この点において、本実施形態に係るリチウムイオン二次電池電極用スラリーを用いて作製された蓄電デバイス電極は、ケイ素材料を使用した場合でも上述のような問題が発生することなく、良好な電気的特性を示すことができる。この理由としては、重合体(A)がケイ素材料を強固に結着させることができると同時に、リチウムを吸蔵することによりケイ素材料が体積膨張しても重合体(A)が伸び縮みしてケイ素材料を強固に結着させた状態を維持できるからであると考えられる。
 活物質100質量%中に占めるケイ素材料の含有割合は、1質量%以上とすることが好ましく、2~50質量%とすることがより好ましく、3~45質量%とすることが更に好ましく、10~40質量%とすることが特に好ましい。活物質100質量%中に占めるケイ素材料の含有割合が前記範囲内であると、蓄電デバイスの出力及びエネルギー密度の向上と充放電耐久特性とのバランスに優れた蓄電デバイスが得られる。
 活物質の形状は、粒子状であることが好ましい。活物質の平均粒子径は、0.1~100μmであることが好ましく、1~20μmであることがより好ましい。
 2.3.その他の成分
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、上述した成分以外に、必要に応じて、重合体(A)以外の重合体、増粘剤、液状媒体、導電助剤、pH調整剤、腐食防止剤、酸化防止剤、セルロースファイバー等の成分を添加してもよい。重合体(A)以外の重合体及び増粘剤としては、上記「1.4.その他の添加剤」の項で例示した化合物の中から適宜選択して、同様の目的及び含有割合で用いることができる。
<液状媒体>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、蓄電デバイス用バインダー組成物からの持ち込み分に加えて、液状媒体を更に添加してもよい。添加される液状媒体は、蓄電デバイス用バインダー組成物に含まれていた液状媒体(B)と同種であってもよく、異なってもよいが、上記「1.2.液状媒体(B)」の項で例示した液状媒体の中から選択して使用されることが好ましい。
 本実施形態に係るリチウムイオン二次電池電極用スラリーにおける液状媒体(蓄電デバイス用バインダー組成物からの持ち込み分を含む。)の含有割合は、スラリー中の固形分濃度(スラリー中の液状媒体以外の成分の合計質量がスラリーの全質量に占める割合をいう。以下同じ。)が、30~70質量%となる割合とすることが好ましく、40~60質量%となる割合とすることがより好ましい。
<導電助剤>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、導電性を付与するとともに、リチウムイオンの出入りによる活物質の体積変化を緩衝させることを目的として、導電助剤を更に添加してもよい。
 導電助剤の具体例としては、活性炭、アセチレンブラック、ケッチェンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレン、カーボンナノチューブ等のカーボンが挙げられる。これらの中でも、アセチレンブラック、ケッチェンブラック、又はカーボンナノチューブを好ましく使用することができる。導電助剤の含有割合は、活物質100質量部に対して、好ましくは20質量部以下であり、より好ましくは1~15質量部であり、特に好ましくは2~10質量部である。
<pH調整剤>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、活物質の種類に応じて集電体の腐食を抑制することを目的として、pH調整剤を更に添加してもよい。
 pH調整剤としては、例えば、塩酸、リン酸、硫酸、酢酸、ギ酸、リン酸アンモニウム、硫酸アンモニウム、酢酸アンモニウム、ギ酸アンモニウム、塩化アンモニウム、水酸化ナトリウム、水酸化カリウム等を挙げることができる。これらの中でも、硫酸、硫酸アンモニウム、水酸化ナトリウム、水酸化カリウムが好ましい。また、重合体(A)の製造方法中に記載した中和剤の中から選択して使用することもできる。
<腐食防止剤>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、活物質の種類に応じて集電体の腐食を抑制することを目的として、腐食防止剤を更に添加してもよい。
 腐食防止剤としては、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、メタタングステン酸アンモニウム、メタタングステン酸ナトリウム、メタタングステン酸カリウム、パラタングステン酸アンモニウム、パラタングステン酸ナトリウム、パラタングステン酸カリウム、モリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウム等を挙げることができる。これらの中でも、パラタングステン酸アンモニウム、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、モリブデン酸アンモニウムが好ましい。
<セルロースファイバー>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、セルロースファイバーを更に添加してもよい。セルロースファイバーとしては公知のものを用いることができる。セルロースファイバーを添加することにより、活物質の集電体に対する密着性を向上できる場合がある。繊維状のセルロースファイバーが線接着又は線接触によって隣接する活物質同士を繊維状結着させることにより、活物質の脱落を防止できるとともに、集電体に対する密着性を向上できると考えられる。
 2.4.リチウムイオン二次電池電極用スラリーの調製方法
 本実施形態に係るリチウムイオン二次電池電極用スラリーは、上述の蓄電デバイス用バインダー組成物及び活物質を含有するものである限り、どのような方法によって製造されたものであってもよい。より良好な分散性及び安定性を有するスラリーを、より効率的かつ安価に製造する観点から、蓄電デバイス用バインダー組成物に、活物質及び必要に応じて用いられる任意添加成分を加え、これらを混合することにより製造することが好ましい。具体的な製造方法としては、例えば特許第5999399号公報等に記載された方法が挙げられる。
 3.リチウムイオン二次電池用電極
 本発明の一実施形態に係るリチウムイオン二次電池用電極は、集電体と、前記集電体の表面に上述のリチウムイオン二次電池電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備えるものである。かかるリチウムイオン二次電池用電極は、金属箔などの集電体の表面に、上述のリチウムイオン二次電池電極用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥して活物質層を形成することにより製造することができる。このようにして製造されたリチウムイオン二次電池用電極は、集電体の表面に、上述の重合体(A)、活物質、及び必要に応じて添加された任意成分を含有する活物質層が結着されてなるものであるため、繰り返し充放電特性に優れ、かつ、充放電耐久特性に優れている。
 集電体としては、導電性材料からなるものであれば特に制限されないが、例えば特許第5999399号公報等に記載された集電体が挙げられる。
 本実施形態に係るリチウムイオン二次電池用電極において、活物質としてケイ素材料を用いる場合、活物質層100質量%中のシリコン元素の含有割合は、1~30質量%であることが好ましく、2~20質量%であることがより好ましく、3~10質量%であることが特に好ましい。活物質層中のシリコン元素の含有割合が前記範囲内であると、それを用いて作製されるリチウムイオン二次電池の蓄電容量が向上することに加え、シリコン元素の分布が均一な活物質層が得られる。活物質層中のシリコン元素の含有量は、例えば特許第5999399号公報等に記載された方法により測定することができる。
 4.リチウムイオン二次電池
 本発明の一実施形態に係るリチウムイオン二次電池は、上述のリチウムイオン二次電池用電極を備え、更に電解液を含有し、セパレータなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に収納し、該電池容器に電解液を注入して封口する方法などを挙げることができる。電池の形状は、コイン型、円筒型、角形、ラミネート型など、適宜の形状であることができる。
 電解液は、液状でもゲル状でもよく、活物質の種類に応じて、リチウムイオン二次電池に用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。このような電解質や溶媒については、例えば特許第5999399号公報等に記載された化合物が挙げられる。
 本実施形態に係るリチウムイオン二次電池において、蓄電デバイス用バインダー組成物以外の部材は、公知のリチウムイオン二次電池用の部材を用いることが可能である。
 5.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
 5.1.実施例1~15、比較例1~4
 5.1.1.蓄電デバイス用バインダー組成物の調製
<実施例1>
 以下に示すような一段重合により、重合体(A1)分散液を得た。反応器に、水200質量部と、1,3-ブタジエン50質量部、スチレン35質量部、メタクリル酸5質量部、及びアクリロニトリル10質量部からなる単量体混合物と、連鎖移動剤としてtert-ドデシルメルカプタン0.5質量部と、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1質量部と、重合開始剤としてクメンハイドロパーオキサイド0.02質量部とエチレンジアミン四酢酸四ナトリウム塩0.01質量部と硫酸鉄(II)七水和物0.006質量部とナトリウムホルムアルデヒドスルホキシレート0.03質量部を仕込み、撹拌しながら15℃で10時間重合し、重合体(A1)分散液を得た。このときの重合転化率は71%であった。
 次いで、老化防止剤として2,6-ジ-tert-ブチル-p-クレゾール1質量部を添加し、0.5%塩化カルシウム水溶液3000質量部に重合体(A1)分散液を滴下した。得られた凝集物を水洗し、得られた凝集物中の一部を80℃で乾燥し、凝集物中に含まれる乳化剤量を分析した。その後、同様の作業を繰り返し、凝集物中に残っている乳化剤量の減少がみられなかったところで、残りの凝集物すべてを80℃で乾燥し、全量回収した。全量回収した凝集物中に含まれる乳化剤量は、重合体(A1)100質量部に対し8,020ppmであった。
 上記で得られた重合体(A1)をN-メチル-2-ピロリドン中に添加し、一晩撹拌することにより、重合体(A1)をN-メチル-2-ピロリドンに溶解させた蓄電デバイス用バインダー組成物を調製した。ここで、蓄電デバイス用バインダー組成物全体を100質量%としたときに、重合体(A1)の含有量が8質量%となるように調整した。
<実施例2、4、5、7~10、12~14、比較例1~4>
 実施例2、4、5、7~10、12~14、比較例1~4においては、単量体の種類及び量をそれぞれ下表1~下表2に記載の通りとした以外は、実施例1と同様に一段重合により各重合体を合成し、実施例1と同様にして各蓄電デバイス用バインダー組成物を得た。
<実施例3>
 以下に示すような二段重合により、重合体(A3)分散液を得た。反応器に、水200質量部と、1,3-ブタジエン60質量部、スチレン10質量部、メタクリル酸1質量部、及びアクリロニトリル19質量部からなる単量体混合物と、連鎖移動剤としてtert-ドデシルメルカプタン0.5質量部と、乳化剤としてアルカンスルホン酸ナトリウム0.5質量部とドデシルベンゼンスルホン酸ナトリウム0.5質量部と、重合開始剤としてクメンハイドロパーオキサイド0.02質量部とエチレンジアミン四酢酸四ナトリウム塩0.01質量部と硫酸鉄(II)七水和物0.006質量部とナトリウムホルムアルデヒドスルホキシレート0.03質量部を仕込み、撹拌しながら15℃で10時間重合した。このときの重合転化率は73%(固形分濃度25%)であった。
 次いで、未反応量単量体を除去した後、スチレンを7質量部、メタクリル酸を3質量部添加し、重合開始剤としてtert-ブチルハイドロパーオキサイド0.2質量部とエチレンジアミン四酢酸四ナトリウム塩0.03質量部と硫酸鉄(II)七水和物0.008質量部とナトリウムホルムアルデヒドスルホキシレート0.6質量部を仕込み、撹拌しながら5℃で10時間重合し、重合体(A3)分散液を得た。この二段階目の仕込みモノマーに対する重合転化率は97%であった。
 次いで、老化防止剤として2,6-ジ-tert-ブチル-p-クレゾールを1質量部添加し、0.5%塩化カルシウム水溶液3000質量部に重合体(A3)分散液を滴下した。得られた凝集物を水洗し、得られた凝集物中の一部を80℃で乾燥し、凝集物中に含まれる乳化剤量を分析した。その後、同様の作業を繰り返し、凝集物中に残っている乳化剤量の減少がみられなかったところで、残りの凝集物すべてを80℃で乾燥し、全量回収した。全量回収した凝集物中に含まれる乳化剤量は、重合体(A3)100質量部に対し5,110ppmであった。
 上記で得られた重合体(A3)をN-メチル-2-ピロリドン中に添加し、一晩撹拌することにより、重合体(A3)をN-メチル-2-ピロリドンに溶解させた蓄電デバイス用バインダー組成物を調製した。ここで、蓄電デバイス用バインダー組成物全体を100質量%としたときに、重合体(A3)の含有量が8質量%となるようにした。
<実施例6、11、15>
 実施例6、11、15においては、単量体の種類及び量をそれぞれ下表1~下表2に記載の通りとした以外は、実施例3と同様に二段重合により各重合体を合成し、実施例3と同様にして各蓄電デバイス用バインダー組成物を得た。
 5.1.2.蓄電デバイス用バインダー組成物の物性評価
<重合転化率の測定方法>
 上記の各重合体の合成における重合転化率は、以下のようにして測定した。
 所定時間、重合した反応溶液を抜き取り、あらかじめ重量を計測したアルミ皿(X(g))へ入れて反応溶液の重量(Y(g))を計量した。これを熱風乾燥機を用いて、155℃で15分間乾燥させた。アルミ皿を取り出し、放冷後、アルミ皿の重量(Z(g))を計量した。このようにして計量された重量X、Y、及びZの値から下記式(2)により重合転化率(%)を算出した。
 重合転化率(%)=((Z-X)/Y)×100   (2)
<重量平均分子量(Mw)>
 温度条件50℃において、ゲルパーミエーションクロマトグラフィー(GPC、カラム:商品名「GMHHR-H」、東ソー株式会社製)によって測定を行い、ポリスチレン換算の重量平均分子量(Mw)を求めた。その結果を下表1~下表2に示す。
<N-メチル-2-ピロリドン溶解性の評価>
 上記で得られた重合体分散液を塩化カルシウム水溶液に添加し、水洗工程及び乾燥工程を経て凝固した重合体を得た。得られた重合体が1質量%となるようにN-メチル-2-ピロリドンを加えて希釈した。こうして得られた重合体1質量%NMP溶液について、1気圧、23℃での透明度を目視にて確認した。その結果を下表1~下表2に示す。重合体1質量%NMP溶液が透明である場合は「溶解」と判断し「A」と表記した。重合体1質量%NMP溶液が半透明ないし白濁している場合は「不溶」と判断し「B」と表記した。
<示差走査熱量測定(DSC)>
 上記で得られた各重合体について、JIS K7121:2012に準拠して示差走査熱量計(NETZSCH社製、DSC204F1 Phoenix)を用いて測定し、吸熱ピークの温度を求めた。その結果を下表1~下表2に示す。なお、表中において、「DSC-1」は第1吸熱ピーク温度を表し、「DSC-2」は第2吸熱ピーク温度を表す。
 5.1.3.リチウムイオン二次電池正極用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、重合体(A)をNMPに溶解させた蓄電デバイス用バインダー組成物を37.5質量部(固形分換算値8%、上記で得られた重合体としては3質量部に相当)、正極活物質としてLFP(商品名「DY-1」、徳方納米社製)100質量部、アセチレンブラック9質量部、増粘剤(商品名「CMC2200」、株式会社ダイセル製)1質量部、及びNMP74質量部を投入し、固形分濃度が約50%のスラリーになるように調製し、60rpmで1時間撹拌を行った。なお、LFPは、正極活物質の一例である。
 その後、1時間撹拌してペーストを得た後、撹拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下(約5.0×10Pa)において1800rpmで1.5分間撹拌混合することにより、リチウムイオン二次電池正極用スラリーを調製した。
 5.1.4.リチウムイオン二次電池用正極の作製及び物性評価
<リチウムイオン二次電池用正極の作製>
 厚み20μmのアルミニウム箔からなる集電体の表面に、上記で得られたリチウムイオン二次電池正極用スラリーを、乾燥後の膜厚が100μmとなるように、ドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、形成された膜(正極活物質層)の密度が3.0g/cmになるように、ロールプレス機を用いてプレス加工することにより、リチウムイオン二次電池用正極を得た。
<電極の状態の評価>
 上記で得られたリチウムイオン二次電池用正極を10cm×10cmに切り取り、その表面の破泡された痕数を目視によって数えた。評価基準は以下の通りである。評価結果を下表1~下表2に示す。活物質層の損傷が見られないものは、残留した乳化剤による塗工不良が減少し、良好なサイクル特性を示す。
(評価基準)
・5点:破泡された粒子痕個数が0個以下であれば、残留した乳化剤による塗工不良が全くなく、良好である。
・4点:破泡された粒子痕個数が1個以上5個以下であれば、残留した乳化剤による塗工不良がほぼなく、良好である。
・3点:破泡された粒子痕個数が6個以上10個以下であれば、残留した乳化剤による塗工不良が少なく、良好である。
・2点:破泡された粒子痕個数が11個以上15個以下であれば、残留した乳化剤による塗工不良が若干あり、使用しづらい。
・1点:破泡された粒子痕個数が16個以上であれば、残留した乳化剤による塗工不良が多く、使用不可である。
<密着強度の評価>
 上記で得られたリチウムイオン二次電池用正極の表面に、ナイフを用いて活物質層から集電体に達する深さまでの切り込みを2mm間隔で縦横それぞれ10本入れて碁盤目の切り込みを作った。この切り込みに幅18mmの粘着テープ(ニチバン(株)製、商品名「セロテープ」(登録商標)JIS Z1522:2009に規定)を貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で評価した。評価基準は以下の通りである。評価結果を下表1~下表2に示す。
(評価基準)
・5点:活物質層の脱落が0個である。
・4点:活物質層の脱落が1~5個である。
・3点:活物質層の脱落が6~20個である。
・2点:活物質層の脱落が21~40個である。
・1点:活物質層の脱落が41個以上である。
 5.1.5.リチウムイオン二次電池の作製及び物性評価
<リチウムイオン二次電池負極用スラリーの調製>
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、増粘剤(商品名「CMC2200」、株式会社ダイセル製)1質量部(固形分換算)、負極活物質としてのグラファイト100質量部(固形分換算)、及び水68質量部を投入し、60rpmで1時間撹拌を行った。
 次いで、SBR(商品名「TRD105A」、株式会社ENEOSマテリアル製)を2質量部(固形分換算)に相当する量だけ加え、さらに1時間撹拌し、ペーストを得た。得られたペーストに水を投入し、固形分を50%に調整した後、撹拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間撹拌混合することにより、リチウムイオン二次電池負極用スラリーを調製した。
<リチウムイオン二次電池用負極の作製>
 厚み20μmの銅箔よりなる集電体の表面に、上記で調製したリチウムイオン二次電池負極用スラリーを、乾燥後の膜厚が80μmとなるように、ドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、形成された膜(負極活物質層)の密度が1.9g/cmになるように、ロールプレス機を用いてプレス加工することにより、リチウムイオン二次電池用負極を得た。
<リチウムイオン二次電池の組立て>
 露点が-80℃以下となるようAr置換されたグローブボックス内で、上記で作製したリチウムイオン二次電池用負極を直径16.16mmの円形に打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmの円形に打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を、リチウムイオン二次電池用負極の上に重ねて載置した。さらに、空気が入らないように電解液を500μL注入した後、上記で作製したリチウムイオン二次電池用正極を直径15.95mmの円形に打ち抜き成形したものを、セパレータの上に重ねて載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン二次電池を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。
<抵抗上昇率の評価>
 上記で作製したリチウムイオン二次電池につき、25℃に調温された恒温槽にて、定電流(1.0C)にて充電を開始し、電圧が3.8Vになった時点で引き続き定電圧(3.8V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(0.05C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とし、0サイクル目の放電容量を算出した。さらに、定電流(1.0C)にて充電を開始し、電圧が3.8Vになった時点で引き続き定電圧(3.8V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1.0C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返した。100回充放電を繰り返した後、0サイクル目と同様に充放電を行い、101回目の放電容量を評価し、下記式(3)により抵抗上昇率を算出し、下記の基準で評価した。結果を下表1~下表2に示す。
 抵抗上昇率(%)=(101サイクル目の放電容量-100サイクル目の放電容量)/(0サイクル目の放電容量-1サイクル目の放電容量)×100   (3)
(評価基準)
・5点:抵抗上昇率が100%以上~110%未満。
・4点:抵抗上昇率が110%以上~120%未満。
・3点:抵抗上昇率が120%以上~130%未満。
・2点:抵抗上昇率が130%以上~140%未満。
・1点:抵抗上昇率が140%以上~150%未満。
・0点:抵抗上昇率が150%以上。
<サイクル特性の評価>
 上記で作製したリチウムイオン二次電池につき、25℃に調温された恒温槽にて、定電流(1.0C)にて充電を開始し、電圧が3.8Vになった時点で引き続き定電圧(3.8V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1.0C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返した。下記式(4)により容量保持率を計算し、下記の基準で評価した。結果を下表1~下表2に示す。
 容量保持率(%)
 =(100サイクル目の放電容量)/(1サイクル目の放電容量)   (4)
(評価基準)
・5点:容量保持率が95%以上。
・4点:容量保持率が90%以上~95%未満。
・3点:容量保持率が85%以上~90%未満。
・2点:容量保持率が80%以上~85%未満。
・1点:容量保持率が75%以上~80%未満。
・0点:容量保持率が75%未満。
 5.2.実施例16~18
 実施例16では、実施例3で合成した重合体(A3)を含有する蓄電デバイス用バインダー組成物12.5質量部(固形分換算値8質量%、上記で得られた重合体(A3)としては1質量部に相当)を正極バインダーとして使用し、リチウムイオン二次電池正極用スラリーの固形分濃度が50%となるようにNMPを調整して添加した以外は、実施例3と同様の評価を実施した。また、実施例17及び18についても下表3中に記載の重合体を使用した以外は、実施例3と同様の評価を実施した。
 5.3.実施例19~20
<実施例19>
 上記で合成した重合体(A2)分散液を固形分濃度が35%になるまで減圧蒸留し、残留しているモノマーを除去した。その後、全固形分濃度が12%となるように調整された重合体(A2)分散液を400mL(全固形分48g)を撹拌機付きの1Lオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mLに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(以下、「第一段階の水素添加反応」という。)させた。このとき、重合体のヨウ素価は38であった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(以下、「第二段階の水素添加反応」という。)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が25%となるまで濃縮して重合体(A19)分散液を得た。なお、重合体(A19)のヨウ素価は16であった。
 なお、重合体(A19)のヨウ素価は、以下のようにして測定した。重合体(A19)のNMP溶液をメタノール1Lで凝固した後、60℃で一晩真空乾燥させた。乾燥させた重合体(A19)のヨウ素価をJIS K6235:2006に従って測定した。
 このようにして得られた重合体(A19)を含有する蓄電デバイス用バインダー組成物12質量部(固形分換算値25質量%、上記で得られた重合体(A19)としては3質量部に相当)を正極バインダーとして使用し、リチウムイオン二次電池正極用スラリーの固形分濃度が50%となるようにNMPを調整して添加した以外は、実施例2と同様の評価を実施した。
<実施例20>
 実施例19において、重合体(A2)分散液に代えて重合体(A3)分散液を使用した以外は、実施例19と同様に水素添加を実施し、重合体(A20)を含有する蓄電デバイス用組成物を得た。なお、得られた重合体(A20)の第一段階の水素添加反応後のヨウ素価は29であり、第二段階の水素添加反応後のヨウ素価は11であった。このようにして得られた重合体(A20)を含有する蓄電デバイス用バインダー組成物12質量部(固形分換算値25質量%、上記で得られた重合体(A20)としては3質量部に相当)を正極バインダーとして使用し、リチウムイオン二次電池正極用スラリーの固形分濃度が50%となるようにNMPを調整して添加した以外は、実施例3と同様の評価を実施した。
 5.4.実施例21~27
 実施例21~27では、実施例3で合成した重合体(A3)を下表5に記載の液状媒体を用いてそれぞれ溶解させ、リチウムイオン二次電池正極用スラリー作製時にも同一の液状媒体を用いた以外は、実施例3と同様の評価を実施した。
 5.5.実施例1~27、比較例1~4の評価結果
 下表1~下表2に、実施例1~15及び比較例1~4で使用した重合体組成、各物性測定結果、及び各評価結果を示す。下表3に、実施例16~18で使用した重合体成分組成、及び各評価結果を示す。下表4に、実施例19~20で使用した重合体成分組成、及び各評価結果を示す。下表5に、実施例21~27で使用した重合体成分組成、液状媒体の種類、及び各評価結果を示す。なお、下表1~下表5中に示された重合体組成または重合体成分組成を表す数値は、質量部を表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 なお、上表1~上表2の実施例番号及び比較例番号の下の行に、それぞれの例で合成された重合体番号を記載した。上表1~上表3における単量体、乳化剤、重合体は、それぞれ以下の化合物を表す。
<単量体>
(共役ジエン化合物)
・BD:1,3-ブタジエン
(α,β-不飽和ニトリル化合物)
・AN:アクリロニトリル
(不飽和カルボン酸)
・TA:イタコン酸
・AA:アクリル酸
・MAA:メタクリル酸
(芳香族ビニル化合物)
・ST:スチレン
(不飽和カルボン酸エステル)
・MMA:メタクリル酸メチル
・BA:アクリル酸ブチル
・2EHA:アクリル酸2-エチルヘキシル
・CHMA:メタクリル酸シクロヘキシル
<乳化剤>
(スルホン酸系乳化剤)
・アルカンスルホン酸ナトリウム:商品名「ラテムル PS」、花王株式会社製
・アルキルジフェニルエーテルスルホン酸ナトリウム:商品名「ぺレックス SS-L」、花王株式会社製
・ドデシルベンゼンスルホン酸ナトリウム:商品名「ネオぺレックス G-65」、花王株式会社製
・ジアルキルスルホコハク酸ナトリウム:商品名「ぺレックス TR」、花王株式会社製
(カルボン酸系乳化剤)
・半硬化牛脂脂肪酸ソーダ石鹸:商品名「NSソープ」、花王株式会社製
・ロジン酸カリウム:商品名「デイプロジン A-100」、東邦化学株式会社製
<重合体>
・PVdF:商品名「HSV900」、アルケマ社製、ポリフッ化ビニリデン
 実施例1~実施例18においては、リチウムイオン二次電池電極用スラリーとして、本発明の蓄電デバイス用バインダー組成物、及び活物質が含有されてなるものが用いられている。その結果、当該スラリーによって形成された活物質層は、表面状態が良好であり、剥離強度の測定の際に活物質層自体が脆くなって活物質や固体電解質の脱落、あるいはクラックなどが生じることがなく、活物質及び固体電解質のいずれの間においてもバインダーに十分な結着性が得られていることが確認された。また、得られたリチウムイオン二次電池における抵抗上昇率は低くなり、サイクル特性は向上することが確認された。したがって、本発明の蓄電デバイス用バインダー組成物を用いることにより、表面状態、密着性及びイオン導電性に優れたリチウムイオン二次電池用電極を作製でき、かつ、リチウムイオン二次電池のサイクル特性を向上できることがわかった。
 実施例19では、実施例2で合成された重合体(A2)を更に水素添加して得られた重合体(A19)を使用している。実施例20では、実施例3で合成された重合体(A3)を更に水素添加して得られた重合体(A20)を使用している。その結果、実施例19では実施例2よりもリチウムイオン二次電池のサイクル寿命特性が向上しており、実施例20では実施例3よりもリチウムイオン二次電池のサイクル寿命特性が向上していることがわかった。この結果は、水素添加された重合体(A)を使用することで、高電位に対して化学的により安定となり、長期サイクルにおいても電極構造を維持できることを示している。
 また、実施例21~27の結果から、NMPだけではなく、γ-ブチロラクトン、メチルアセトアミド、ジメチルホルムアミド、メチルヘキシルケトン、トリエチレングリコールジメチルエーテル、酢酸ブチル、アニソール等の様々な液状媒体が使用可能であることがわかった。
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 

Claims (12)

  1.  重合体(A)と、液状媒体(B)と、を含有し、
     前記重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、前記重合体(A)が、
     共役ジエン化合物に由来する繰り返し単位(a1)50~99質量%と、
     α,β-不飽和ニトリル化合物に由来する繰り返し単位(a2)1~19質量%と、
    を含有し、
     前記重合体(A)の重量平均分子量(Mw)が100,000~2,000,000である、蓄電デバイス用バインダー組成物。
  2.  前記重合体(A)が、不飽和カルボン酸に由来する繰り返し単位(a3)0.1~10質量%を更に含有する、請求項1に記載の蓄電デバイス用バインダー組成物。
  3.  前記重合体(A)が、芳香族ビニル化合物に由来する繰り返し単位(a4)1~30質量%を更に含有する、請求項1に記載の蓄電デバイス用バインダー組成物。
  4.  前記重合体(A)の全質量に対して30~30,000ppmの乳化剤を含有する、請求項1に記載の蓄電デバイス用バインダー組成物。
  5.  前記重合体(A)の、25℃、1気圧におけるN-メチル-2-ピロリドンに対する溶解度が、N-メチル-2-ピロリドン100gに対して1g以上である、請求項1に記載の蓄電デバイス用バインダー組成物。
  6.  前記重合体(A)について、JIS K7121:2012に準拠して示差走査熱量測定(DSC)を行ったときに、-80℃~0℃の温度範囲において吸熱ピークが観測される、請求項1に記載の蓄電デバイス用バインダー組成物。
  7.  前記液状媒体(B)が、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ケトン類、エステル類、エーテル類、グリコールエーテル類、ラクタム類、ラクトン類、及びアミド類よりなる群から選択される少なくとも1種である、請求項1に記載の蓄電デバイス用バインダー組成物。
  8.  請求項1ないし請求項7のいずれか一項に記載の蓄電デバイス用バインダー組成物と、活物質と、を含有するリチウムイオン二次電池電極用スラリー。
  9.  前記活物質が正極活物質である、請求項8に記載のリチウムイオン二次電池電極用スラリー。
  10.  前記正極活物質がオリビン型リチウム含有リン酸化合物である、請求項9に記載のリチウムイオン二次電池電極用スラリー。
  11.  集電体と、前記集電体の表面に請求項8に記載のリチウムイオン二次電池電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備えるリチウムイオン二次電池用電極。
  12.  請求項11に記載のリチウムイオン二次電池用電極を備えるリチウムイオン二次電池。
     
PCT/JP2023/023941 2022-07-08 2023-06-28 蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池 WO2024009866A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022110279 2022-07-08
JP2022-110279 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024009866A1 true WO2024009866A1 (ja) 2024-01-11

Family

ID=89453435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023941 WO2024009866A1 (ja) 2022-07-08 2023-06-28 蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2024009866A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157677A (ja) * 1994-10-07 1996-06-18 Nippon Zeon Co Ltd 電極用バインダー
JP2010003703A (ja) * 2009-09-10 2010-01-07 Nippon Zeon Co Ltd バインダー組成物、電池電極用スラリー、電極、およびリチウム二次電池
JP2012174569A (ja) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd 正極合剤層形成用スラリーの調製方法および非水電解液二次電池の製造方法
JP2012243476A (ja) * 2011-05-17 2012-12-10 Nippon Zeon Co Ltd 全固体二次電池の製造方法
JP2013179040A (ja) * 2012-01-30 2013-09-09 Nippon Zeon Co Ltd 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
WO2013146548A1 (ja) * 2012-03-26 2013-10-03 日本ゼオン株式会社 二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157677A (ja) * 1994-10-07 1996-06-18 Nippon Zeon Co Ltd 電極用バインダー
JP2010003703A (ja) * 2009-09-10 2010-01-07 Nippon Zeon Co Ltd バインダー組成物、電池電極用スラリー、電極、およびリチウム二次電池
JP2012174569A (ja) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd 正極合剤層形成用スラリーの調製方法および非水電解液二次電池の製造方法
JP2012243476A (ja) * 2011-05-17 2012-12-10 Nippon Zeon Co Ltd 全固体二次電池の製造方法
JP2013179040A (ja) * 2012-01-30 2013-09-09 Nippon Zeon Co Ltd 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
WO2013146548A1 (ja) * 2012-03-26 2013-10-03 日本ゼオン株式会社 二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物

Similar Documents

Publication Publication Date Title
JP5999399B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
JP4957932B1 (ja) 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP4849286B1 (ja) 正極用バインダー組成物
JP5862878B2 (ja) 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
KR101433512B1 (ko) 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
JP4993150B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP5163919B1 (ja) 電極用バインダー組成物
JP2013211246A (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP5077613B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP6048636B2 (ja) 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
JP5862877B2 (ja) 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
KR20220047803A (ko) 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
JP5601476B2 (ja) 電極用バインダー組成物
JP2013030449A (ja) 正極用スラリー
WO2024009866A1 (ja) 蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
CN112385060B (zh) 蓄电设备用组合物、蓄电设备电极用浆料、蓄电设备电极和蓄电设备
KR20230054404A (ko) 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
JP2013030447A (ja) 正極用スラリー
WO2024075601A1 (ja) 蓄電デバイス用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP5024575B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
KR20220046628A (ko) 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
JP2019197695A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2023243590A1 (ja) 蓄電デバイス用バインダー組成物、全固体二次電池用スラリー、全固体二次電池、全固体二次電池用固体電解質シート、全固体二次電池用固体電解質シートの製造方法、及び全固体二次電池の製造方法、並びにリチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
CN112385062B (zh) 蓄电设备用组合物、蓄电设备电极用浆料、蓄电设备电极和蓄电设备
WO2023021941A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835398

Country of ref document: EP

Kind code of ref document: A1