JP5077613B1 - 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス - Google Patents

電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス Download PDF

Info

Publication number
JP5077613B1
JP5077613B1 JP2012137533A JP2012137533A JP5077613B1 JP 5077613 B1 JP5077613 B1 JP 5077613B1 JP 2012137533 A JP2012137533 A JP 2012137533A JP 2012137533 A JP2012137533 A JP 2012137533A JP 5077613 B1 JP5077613 B1 JP 5077613B1
Authority
JP
Japan
Prior art keywords
electrode
acrylate
meth
binder composition
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012137533A
Other languages
English (en)
Other versions
JP2014002926A (ja
Inventor
博紀 北口
巧治 大塚
伸行 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2012137533A priority Critical patent/JP5077613B1/ja
Application granted granted Critical
Publication of JP5077613B1 publication Critical patent/JP5077613B1/ja
Priority to EP13151796.3A priority patent/EP2624338B1/en
Priority to ES13151796.3T priority patent/ES2526689T3/es
Priority to CN201310041093.8A priority patent/CN103094582B/zh
Priority to KR1020130011727A priority patent/KR101371988B1/ko
Priority to KR1020130079383A priority patent/KR101373889B1/ko
Publication of JP2014002926A publication Critical patent/JP2014002926A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】貯蔵安定性に優れると共に、密着性、充放電特性が良好な電極を製造可能な電極用バインダー組成物を提供する。
【解決手段】本発明に係る電極用バインダー組成物は、蓄電デバイスに使用される電極を作製するためのバインダー組成物であって、重合体(A)と、(メタ)アクリレート化合物(B)と、液状媒体(C)と、を含有し、前記重合体(A)が含フッ素系重合体粒子またはジエン系重合体粒子であり、前記バインダー組成物中における前記化合物(B)の濃度が10〜1,000ppmであることを特徴とする。
【選択図】なし

Description

本発明は、電極用バインダー組成物、該バインダー組成物と電極活物質とを含む電極用スラリー、該スラリーを集電体に塗布および乾燥して作製された電極、ならびに該電極を備えた蓄電デバイスに関する。
近年、電子機器の駆動用電源として高電圧、高エネルギー密度を有する蓄電デバイスが要求されている。特にリチウムイオン電池やリチウムイオンキャパシタは、高電圧、高エネルギー密度を有する蓄電デバイスとして期待されている。
このような蓄電デバイスに使用される電極は、通常、電極活物質とバインダーとして機能する重合体粒子との混合物を集電体表面へ塗布・乾燥することにより作製される。この重合体粒子に要求される特性としては、電極活物質同士の結合能力および電極活物質と集電体との結着能力や、電極を巻き取る工程における耐擦性、その後の裁断などによっても塗布された電極用組成物層(以下、単に「電極活物質層」ともいう。)から電極活物質の微粉などが発生しない粉落ち耐性などを挙げることができる。重合体粒子がこれらの種々の要求特性を満足することにより、得られる電極の折り畳み方法、捲回半径の設定などの蓄電デバイスの構造設計の自由度が高くなり、デバイスの小型化を達成することができる。なお、上記の電極活物質同士の結合能力および電極活物質層と集電体との接着能力、ならびに粉落ち耐性については、性能の良否がほぼ比例関係にあることが経験上明らかになっている。従って本明細書では、以下、これらを包括して「密着性」という用語を用いて表す場合がある。
電極用バインダーとしては、正極を作製する場合、ポリフッ化ビニリデン等の密着性にはやや劣るが耐酸化性に優れる含フッ素系有機重合体を使用することが有利である。一方、負極を作製する場合、耐酸化性にはやや劣るが密着性に優れる(メタ)アクリル酸系重合体を使用することが有利である。
上記のような電極用バインダーに使用される重合体の耐酸化性や密着性等の特性を向上させる技術が種々検討され、提案されている。例えば、特許文献1には、ポリフッ化ビニリデンとゴム系高分子とを併用することにより、負極用バインダーの耐酸化性と密着性を両立させようとする技術が提案されている。特許文献2には、ポリフッ化ビニリデンを特定の有機溶媒へ溶解し、これを集電体表面上に塗布した後、低温で溶媒を除去する工程を経ることによって密着性を向上させようとする技術が提案されている。さらに特許文献3には、フッ化ビニリデン共重合体からなる主鎖に、フッ素原子を有する側鎖を有する構造の電極用バインダーを適用することによって、密着性を向上させようとする技術が提案されている。
さらに、バインダー組成を制御することで上記特性を向上させる技術(特許文献4参照)や、エポキシ基やヒドロキシル基を有するバインダーを用いて上記特性を向上させる技術(特許文献5、6参照)が提案されている。
特開2011−3529号公報 特開2010−55847号公報 特開2002−42819号公報 特開2000−299109号公報 特開2010−205722号公報 特開2010−3703号公報
しかしながら、含フッ素系有機重合体とゴム系高分子とを併用する特許文献1に記載の技術によると、密着性は向上するものの、有機重合体の耐酸化性が大きく損なわれるため、これを用いて製造される蓄電デバイスは、充放電の繰り返しによって充放電特性が不可逆的に劣化してしまうという問題があった。一方、電極用バインダーとして含フッ素系有機重合体のみを使用する特許文献2や特許文献3に記載の技術によると、密着性のレベルは未だ不十分である。
また、特許文献4〜6に記載されているようなバインダー組成では、密着性は向上するものの電極活物質に付着するバインダー自身が電極の抵抗成分となり、良好な充放電特性を長期に亘り維持することは困難であった。
さらに、これらの電極用バインダー組成物は、蓄電デバイスの特性に着目してその優劣を評価しているに過ぎず、実用化にあたり重要となる電極用バインダー組成物の貯蔵安定性に関しては検討されていない。
そこで、本発明に係る幾つかの態様は、前記課題を解決することで、貯蔵安定性に優れると共に、密着性及び充放電特性が良好な電極を製造可能な電極用バインダー組成物を提供するものである。
本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
[適用例1]
本発明に係る電極用バインダー組成物の一態様は、
蓄電デバイスに使用される電極を作製するためのバインダー組成物であって、
重合体(A)と、メタクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、アクリル酸メチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシメチル及び(メタ)アクリル酸4−ヒドロキシブチルからなる群より選択される少なくとも1種の(メタ)アクリレート化合物(B)と、液状媒体(C)と、を含有し、
前記重合体(A)が、
含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、
不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、
を有する含フッ素系重合体粒子であり、
前記バインダー組成物中における前記化合物(B)の濃度が10〜1,000ppmであることを特徴とする。
[適用例2]
適用例1の電極用バインダー組成物において、
前記含フッ素系重合体粒子についてJIS K7121に準拠して示差走査熱量測定(DSC)を行ったときに、−50〜+250℃の温度範囲における吸熱ピークが1つのみ観測されることができる。
[適用例3]
適用例2の電極用バインダー組成物において、
前記吸熱ピークが−30〜+30℃の温度範囲に観測されることができる。
[適用例4]
本発明に係る電極用バインダー組成物の一態様は、
蓄電デバイスに使用される電極を作製するためのバインダー組成物であって、
重合体(A)と、メタクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、アクリル酸メチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシメチル及び(メタ)アクリル酸4−ヒドロキシブチルからなる群より選択される少なくとも1種の(メタ)アクリレート化合物(B)と、液状媒体(C)と、を含有し、
前記重合体(A)が、
共役ジエン化合物に由来する繰り返し単位(Mc)と、
芳香族ビニル化合物に由来する繰り返し単位(Md)と、
(メタ)アクリレート化合物に由来する繰り返し単位(Me)と、
不飽和カルボン酸に由来する繰り返し単位(Mf)と、
を有するジエン系重合体粒子であり、
前記バインダー組成物中における前記化合物(B)の濃度が10〜1,000ppmであることを特徴とする。
[適用例5]
適用例4の電極用バインダー組成物において、
前記ジエン系重合体粒子についてJIS K7121に準拠して示差走査熱量測定(DSC)を行ったときに、−50〜+5℃の温度範囲における吸熱ピークが1つのみ観測されることができる。
[適用例6]
適用例1ないし適用例5のいずれか一例の電極用バインダー組成物において、
前記含フッ素系重合体粒子または前記ジエン系重合体粒子の数平均粒子径が50〜400nmであることができる。
[適用例7]
本発明に係る電極用スラリーの一態様は、
適用例1ないし適用例6のいずれか一例の電極用バインダー組成物と、電極活物質と、を含有することを特徴とする。
[適用例8]
本発明に係る電極の一態様は、
集電体と、前記集電体の表面上に適用例7の電極用スラリーが塗布および乾燥させて形成された層と、を備えることを特徴とする。
[適用例9]
本発明に係る蓄電デバイスの一態様は、
適用例8に記載の電極を備えることを特徴とする。
本発明に係る電極用バインダー組成物によれば、貯蔵安定性に優れ、さらには密着性及び充放電特性に優れる電極を製造することができる。本発明に係る電極用バインダー組成物を用いて製造された電極を備える蓄電デバイスは、電気的特性の一つである充放電レー
ト特性が極めて良好となる。
実施例3で得られた重合体粒子のDSCチャートである。
以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変型例も含むものとして理解されるべきである。なお、本明細書における「(メタ)アクリル酸〜」とは、「アクリル酸〜」および「メタクリル酸〜」の双方を包括する概念である。また、「〜(メタ)アクリレート」とは、「〜アクリレート」および「〜メタクリレート」の双方を包括する概念である。
1.電極用バインダー組成物
本実施の形態に係る電極用バインダー組成物は、蓄電デバイスに使用される電極を作製するためのバインダー組成物であって、重合体(A)と、(メタ)アクリレート化合物(B)と、液状媒体(C)と、を含有し、前記バインダー組成物中における前記化合物(B)の濃度が10〜1,000ppmである。以下、本実施の形態に係る電極用バインダー組成物に含まれる各成分について詳細に説明する。
1.1.重合体(A)
本実施の形態に係る電極用バインダー組成物に含まれる重合体(A)は、液状媒体(C)中に粒子として分散されたラテックス状であることが好ましい。電極用バインダー組成物がラテックス状であると、電極活物質と混合して作製される電極用スラリーの安定性が良好となり、また電極用スラリーの集電体への塗布性が良好となるため好ましい。以下、液状媒体(C)中に粒子として分散された重合体(A)のことを「重合体粒子(A)」という。
重合体粒子(A)としては、一般に市販されているラテックスを使用してもよい。本実施の形態に係る電極用バインダー組成物が正極を作製するために用いられる場合、重合体粒子(A)は以下に説明する含フッ素系重合体粒子であることが好ましい。本実施の形態に係る電極用バインダー組成物が負極を作製するために用いられる場合、重合体粒子(A)は以下に説明するジエン系重合体粒子であることが好ましい。
1.1.1.含フッ素系重合体粒子
本実施の形態に係る電極用バインダー組成物が正極を作製するために用いられる場合、重合体粒子(A)は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、を有する含フッ素系重合体粒子であることが好ましい。さらに、前記含フッ素系重合体粒子は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する重合体(Aa)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する重合体(Ab)と、を有するポリマーアロイ粒子であることがより好ましい。
「ポリマーアロイ」とは、「岩波 理化学辞典 第5版.岩波書店」における定義によれば、「2成分以上の高分子の混合あるいは化学結合により得られる多成分系高分子の総称」であって「異種高分子を物理的に混合したポリマーブレンド、異種高分子成分が共有結合で結合したブロックおよびグラフト共重合体、異種高分子が分子間力によって会合した高分子錯体、異種高分子が互いに絡み合ったIPN(Interpenetrating Polymer Network)など」をいう。しかしながら、本願発明の電極用バインダー組成物に含有されるポリマーアロイ粒子は、「異種高分子成分が共有結合によ
って結合していないポリマーアロイ」の中でもIPN(相互侵入高分子網目)と称されるものからなる粒子である。
含フッ素系重合体粒子がポリマーアロイ粒子である場合、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する重合体(Aa)は、結晶性樹脂のハードセグメントが凝集して、主鎖にC−H…F−Cのような疑似架橋点を与えているものと考えられる。このためバインダー樹脂として重合体(Aa)を単独で用いると、その耐酸化性は良好であるものの、密着性および柔軟性が不十分となる。一方、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する重合体(Ab)は、密着性および柔軟性には優れるものの、耐酸化性が低いことから、これをバインダー樹脂として単独で正極に使用した場合には、充放電を繰り返すことにより酸化分解して変質するため、良好な充放電特性を得ることができない。
しかしながら、重合体(Aa)と重合体(Ab)とを有するポリマーアロイ粒子を使用することにより、耐酸化性と密着性とを同時に発現することができ、より良好な充放電特性を示す正極を製造することができる。なお、ポリマーアロイ粒子が重合体(Aa)と重合体(Ab)とを有する場合、耐酸化性を一層向上させることもできる。
1.1.1.1.含フッ素エチレン系単量体に由来する繰り返し単位(Ma)
上述したように、本実施の形態で使用する含フッ素系重合体粒子は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する。含フッ素エチレン系単量体としては、例えばフッ素原子を有するオレフィン化合物、フッ素原子を有する(メタ)アクリレート化合物等が挙げられる。フッ素原子を有するオレフィン化合物としては、例えばフッ化ビニリデン、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレン、パーフルオロアルキルビニルエーテル等が挙げられる。フッ素原子を有する(メタ)アクリレート化合物としては、例えば下記一般式(1)で表される化合物、(メタ)アクリル酸3[4〔1−トリフルオロメチル−2,2−ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2−ヒドロキシプロピル等が挙げられる。
Figure 0005077613
(一般式(1)中、Rは水素原子またはメチル基であり、Rはフッ素原子を含有する炭素数1〜18の炭化水素基である。)
上記一般式(1)中のRとしては、例えば炭素数1〜12のフッ化アルキル基、炭素数6〜16のフッ化アリール基、炭素数7〜18のフッ化アラルキル基等が挙げられるが、これらの中でも炭素数1〜12のフッ化アルキル基であることが好ましい。上記一般式(1)中のRの好ましい具体例としては、例えば2,2,2−トリフルオロエチル基、2,2,3,3,3−ペンタフルオロプロピル基、1,1,1,3,3,3−ヘキサフルオロプロパン−2−イル基、β−(パーフルオロオクチル)エチル基、2,2,3,3−テトラフルオロプロピル基、2,2,3,4,4,4−ヘキサフルオロブチル基、1H,1H,5H−オクタフルオロペンチル基、1H,1H,9H−パーフルオロ−1−ノニル基、1H,1H,11H−パーフルオロウンデシル基、パーフルオロオクチル基等が挙げられる。
含フッ素エチレン系単量体としては、これらのうち、フッ素原子を有するオレフィン化合物が好ましく、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンよりなる群から選ばれる少なくとも1種であることがより好ましい。上記の含フッ素エチレン系単量体は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
一般的に含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有するフッ素化重合体成分は、耐酸化性は良好であると考えられており、従来から正極用バインダー組成物に使用されることはあったが、このようなフッ素化重合体成分は密着性に劣っていた。そのため従来技術においては、種々のモディファイによってフッ素化重合体の密着性を向上させようとする検討が行われてきた。しかしながら、例えば重合体鎖に官能基を導入することによって密着性を向上する試みは、重合体の合成条件の精密な制御が必要であり、目的を達成することは困難であった。
本願発明においては、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、を有する含フッ素系重合体粒子を使用することにより、耐酸化性を劣化させることなく、密着性を発現することを可能としたものである。さらに、含フッ素系重合体粒子が、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する重合体(Aa)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する重合体(Ab)と、を有するポリマーアロイ粒子として使用することにより、より効果的に耐酸化性を劣化させることなく、密着性を発現することができる。
含フッ素系重合体粒子がポリマーアロイ粒子である場合、重合体(Aa)は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)のみを有していてもよく、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)以外の、共重合可能な他の不飽和単量体に由来する繰り返し単位を有していてもよい。このような他の不飽和単量体としては、例えば不飽和カルボン酸のアルキルエステル、不飽和カルボン酸のシクロアルキルエステル、親水性単量体、ハロゲン化オレフィン、架橋性単量体、α−オレフィン、水酸基を有する化合物(ただし、前記の親水性単量体および架橋性単量体に該当するものを除く。以下同じ。)などを挙げることができ、これらのうちから選択される1種以上を使用することができる。
上記不飽和カルボン酸のアルキルエステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシルなどを;上記不飽和カルボン酸のシクロアルキルエステルとしては、例えば(メタ)アクリル酸シクロヘキシルなどを、それぞれ挙げることができ、これらのうちから選択される1種以上を使用することができる。
上記親水性単量体としては、例えば不飽和カルボン酸、不飽和カルボン酸のヒドロキシアルキルエステル、不飽和カルボン酸の多価アルコールエステル、α,β−不飽和ニトリル化合物、水酸基を有する化合物などを挙げることができる。
上記不飽和カルボン酸としては、例えば(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などを;
上記不飽和カルボン酸のヒドロキシアルキルエステルとしては、例えば(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシブチルなどを;
上記不飽和カルボン酸の多価アルコールエステルとしては、例えば(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトールなどを;
上記α,β−不飽和ニトリル化合物としては、例えばアクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリル、シアン化ビニリデンなどを;
上記水酸基を有する化合物としては、例えばp−ヒドロキシスチレンなどを、それぞれ挙げることができ、これらのうちから選択される1種以上を使用することができる。
重合体(Aa)が上記のうちの不飽和カルボン酸に由来する構成単位を有することにより、電極活物質層を製造する際に用いられる電極用スラリーの分散安定性が向上するため、電極活物質や含フッ素系重合体粒子が局所的に偏在しない、均質な電極活物質層を作製することができる。その結果、強度的にも電気的にも均質な電極活物質層となり、局所的に電極活物質層が集電体から剥離したり、電極活物質やバインダーが偏在して電位が局所的に集中することによる電極劣化を効果的に抑制することができる点で好ましい。
重合体(Aa)における含フッ素エチレン系単量体に由来する繰り返し単位(Ma)の含有割合は、重合体(Aa)の全質量に対して、好ましくは80質量%以上であり、より好ましくは90質量%以上である。
重合体(Aa)がフッ化ビニリデンに由来する繰り返し単位を含有する場合、その含有割合は、好ましくは50〜99質量%であり、より好ましくは80〜98質量%である。重合体(Aa)が四フッ化エチレンに由来する繰り返し単位を含有する場合、その含有割合は、好ましくは1〜50質量%であり、より好ましくは2〜20質量%である。重合体(Aa)が六フッ化プロピレンに由来する繰り返し単位を含有する場合、その含有割合は、好ましくは1〜50質量%であり、より好ましくは2〜20質量%である。
重合体(Aa)は、上記の含フッ素エチレン系単量体、および任意的に他の不飽和単量体を、公知の方法に従って乳化重合することにより容易に製造することができる。
1.1.1.2.不飽和カルボン酸エステルに由来する繰り返し単位(Mb)
上述したように、本実施の形態で使用する含フッ素系重合体粒子は、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する。一般的に、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する重合体は、密着性は良好であるが、耐酸化性が不良であると考えられており、従来から正極には使用されなかった。しかしながら、本願発明は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、を有する含フッ素系重合体粒子を使用することにより、良好な密着性を維持しつつ、十分な耐酸化性を発現することに成功したものである。
上記の不飽和カルボン酸エステルは、(メタ)アクリル酸エステルであることが好ましい。このような(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メ
タ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレンなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルおよび(メタ)アクリル酸2−エチルヘキシルから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。
含フッ素系重合体粒子がポリマーアロイ粒子である場合、重合体(Ab)は、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)のみを有する重合体であってもよく、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)のほかに、共重合可能な他の不飽和単量体に由来する構成単位を有していてもよい。
重合体(Ab)における不飽和カルボン酸エステルに由来する繰り返し単位(Mb)の含有割合は、重合体(Ab)の全質量に対して、好ましくは65質量%以上であり、より好ましくは75質量%以上である。
上記他の不飽和単量体としては、例えばα,β−不飽和ニトリル化合物、不飽和カルボン酸、共役ジエン化合物、芳香族ビニル化合物およびその他の不飽和単量体を挙げることができる。
1.1.1.3.含フッ素系重合体粒子の調製
含フッ素系重合体粒子は、上記のような構成を採るものである限り、その合成方法は特に限定されないが、例えば公知の乳化重合工程またはこれを適宜に組み合わせることによって、容易に合成することができる。
例えば先ず、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する重合体(Aa)を公知の方法によって合成する。次いで、該重合体(Aa)に重合体(Ab)を構成するための単量体を加え、重合体(Aa)を含有する重合体粒子の編み目構造の中に前記単量体を十分吸収させた後、重合体(Aa)の編み目構造の中で吸収させた単量体を重合して重合体(Ab)を合成する方法により、含フッ素系重合体粒子を容易に製造することができる。なお、このような方法によってポリマーアロイ粒子を製造する場合には、重合体(Aa)に、重合体(Ab)の単量体を十分に吸収させることが必須となる。吸収温度が低すぎる場合または吸収時間が短すぎる場合には単なるコアシェル粒子または表層の一部のみがIPN型の構造である粒子となり、本発明における含フッ素系重合体粒子を得ることができない場合が多い。ただし、吸収温度が高すぎると重合系の圧力が高くなりすぎ、反応系のハンドリングおよび反応制御の面から不利となり、吸収時間を過度に長くしても、さらに有利な結果が得られるわけではない。
上記のような観点から、吸収温度は30〜100℃とすることが好ましく、40〜80℃とすることがより好ましく;吸収時間は1〜12時間とすることが好ましく、2〜8時間とすることがより好ましい。このとき、吸収温度が低い場合には吸収時間を長くすることが好ましく、吸収温度が高い場合には短い吸収時間で十分である。吸収温度(℃)と吸収時間(h)を乗じた値が、おおむね120〜300(℃・h)、好ましくは150〜250(℃・h)の範囲となるような条件が適当である。
重合体(Aa)の編み目構造の中に重合体(Ab)の単量体を吸収させる操作は、乳化重合に用いられる公知の溶媒中、例えば水中で行うことが好ましい。
含フッ素系重合体粒子中の重合体(Aa)の含有量は、含フッ素系重合体粒子100質量部中、1〜60質量部であることが好ましく、5〜55質量部であることがより好ましく、10〜50質量部であることがさらに好ましく、20〜40質量部であることが特に好ましい。含フッ素系重合体粒子が重合体(Aa)を前記範囲で含有することにより、耐酸化性と密着性とのバランスがより良好となる。
本発明の含フッ素系重合体粒子の製造、すなわち、重合体(Aa)の重合もしくは得られた重合体(Aa)中に単量体を吸収させた後に行う重合体(Ab)の重合またはこれらの双方は、後述する公知の乳化剤(界面活性剤)、重合開始剤、分子量調整剤などの存在下で行うことができる。
1.1.2.ジエン系重合体粒子
本実施の形態に係る電極用バインダー組成物が負極を作製するために用いられる場合、重合体粒子(A)はジエン系重合体粒子であることが好ましい。ジエン系重合体粒子は、共役ジエン化合物に由来する繰り返し単位(Mc)と、芳香族ビニル化合物に由来する繰り返し単位(Md)と、(メタ)アクリレート化合物に由来する繰り返し単位(Me)と、不飽和カルボン酸に由来する繰り返し単位(Mf)と、を有することが好ましい。
1.1.2.1.共役ジエン化合物に由来する繰り返し単位(Mc)
ジエン系重合体粒子が共役ジエン化合物に由来する繰り返し単位(Mc)を有することにより、粘弾性及び強度に優れた負極用バインダー組成物を製造することが容易となる。すなわち、共役ジエン化合物に由来する繰り返し単位を有する重合体を使用すると、重合体が強い結着力を有することができる。共役ジエン化合物に由来するゴム弾性が重合体に付与されるため、電極の体積収縮や拡大等の変化に追従することが可能となる。これにより、結着性を向上させて、さらには長期に充放電特性を維持する耐久性を有するものと考えられる。
共役ジエン化合物としては、例えば1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエンなどを挙げることができ、これらのうちから選択される1種以上であることができる。共役ジエン化合物としては、1,3−ブタジエンが特に好ましい。
共役ジエン化合物に由来する繰り返し単位(Mc)の含有割合は、全繰り返し単位を100質量部とした場合に30〜60質量部であることが好ましく、40〜55質量部であることがより好ましい。繰り返し単位(Mc)の含有割合が前記範囲にあると、結着性のさらなる向上が可能となる。
1.1.2.2.芳香族ビニル化合物に由来する繰り返し単位(Md)
ジエン系重合体粒子が芳香族ビニル化合物に由来する繰り返し単位(Md)を有することにより、負極用スラリーが導電付与剤を含有する場合に、これに対する親和性をより良好にすることができる。
芳香族ビニル化合物の具体例としては、例えばスチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼンなどを挙げることができ、これらのうちから選択される1種以上であることができる。芳香族ビニル化合物としては、上記のうちスチレンであることが特に好ましい。
芳香族ビニル化合物に由来する繰り返し単位(Md)の含有割合は、全繰り返し単位を100質量部とした場合に10〜40質量部であることが好ましく、15〜30質量部であることがより好ましい。繰り返し単位(Md)の含有割合が前記範囲にあると、重合体
粒子が電極活物質として用いられるグラファイトに対して適度な結着性を有する。また、得られる電極層は、柔軟性や集電体に対する結着性が良好なものとなる。
1.1.2.3.(メタ)アクリレート化合物に由来する繰り返し単位(Me)
ジエン系重合体粒子が(メタ)アクリレート化合物に由来する繰り返し単位(Me)を有することにより、電解液との親和性が良好となり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制するとともに、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
このような(メタ)アクリレート化合物の具体例としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレンなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ヒドロキシメチルおよび(メタ)アクリル酸ヒドロキシエチルから選択される1種以上であることが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸ヒドロキシメチルおよび(メタ)アクリル酸ヒドロキシエチルから選択される1種以上であることがであることが特に好ましい。
(メタ)アクリレート化合物に由来する繰り返し単位(Me)の含有割合は、全繰り返し単位を100質量部とした場合に5〜40質量部であることが好ましく、10〜30質量部であることがより好ましい。繰り返し単位(Me)の含有割合が前記範囲にあると、得られるジエン系重合体粒子は電解液との親和性が適度なものとなり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制するとともに、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
1.1.2.4.不飽和カルボン酸に由来する繰り返し単位(Mf)
ジエン系重合体粒子が不飽和カルボン酸に由来する繰り返し単位(Mf)を有することにより、本発明の電極用バインダー組成物を用いた電極用スラリーの安定性が向上する。
不飽和カルボン酸の具体例としては、例えばアクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等のモノまたはジカルボン酸を挙げることができ、これらから選択される1種以上であることができる。特に、アクリル酸、メタクリル酸およびイタコン酸から選択される1種以上であることが好ましい。
不飽和カルボン酸に由来する繰り返し単位(Mf)の含有割合は、全繰り返し単位を100質量部とした場合に15質量部以下であることが好ましく、0.3〜10質量部であることがより好ましい。繰り返し単位(Mf)の含有割合が前記範囲にあると、電極用スラリー調製時において、ジエン系重合体粒子の分散安定性が優れるため、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
1.1.2.5.その他の繰り返し単位
ジエン系重合体粒子は、上記以外の繰り返し単位を有してもよい。上記以外の繰り返し単位としては、例えばα,β−不飽和ニトリル化合物に由来する繰り返し単位が挙げられる。
ジエン系重合体粒子がα,β−不飽和ニトリル化合物に由来する繰り返し単位を有することにより、ジエン系重合体粒子の電解液に対する膨潤性をより向上させることができる。すなわち、ニトリル基の存在によって重合体鎖からなる網目構造に溶媒が侵入し易くなって網目間隔が広がるため、溶媒和したリチウムイオンがこの網目構造をすり抜けて移動し易くなる。これにより、リチウムイオンの拡散性が向上すると考えられ、その結果、電極抵抗が低下してより良好な充放電特性を実現することができるのである。
α,β−不飽和ニトリル化合物の具体例としては、例えばアクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリル、シアン化ビニリデンなどを挙げることができ、これらから選択される1種以上であることができる。これらのうち、アクリロニトリルおよびメタクリロニトリルから選択される1種以上であることが好ましく、アクリロニトリルであることがより好ましい。
α,β−不飽和ニトリル化合物に由来する繰り返し単位の含有割合は、全繰り返し単位を100質量部とした場合に、35質量部以下であることが好ましく、10〜25質量部であることがより好ましい。α,β−不飽和ニトリル化合物に由来する繰り返し単位の含有割合が前記範囲にあると、使用する電解液との親和性に優れ、かつ膨潤率が大きくなりすぎず、電池特性の向上に寄与することができる。
また、ジエン系重合体粒子は、以下に示す化合物に由来する繰り返し単位をさらに有してもよい。このような化合物としては、例えば、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレン等のエチレン性不飽和結合を有する含フッ素化合物;(メタ)アクリルアミド、N−メチロールアクリルアミド等のエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;エチレン性不飽和ジカルボン酸の酸無水物;モノアルキルエステル;モノアミド;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド等のエチレン性不飽和カルボン酸のアミノアルキルアミド等を挙げることができ、これらのうちから選択される1種以上であることができる。
1.1.2.6.ジエン系重合体粒子の調製
ジエン系重合体粒子の合成方法については特に限定されないが、例えば以下に示す二段階の乳化重合工程により容易に作製することができる。
1.1.2.6.1.一段目の重合工程
一段目の乳化重合工程に用いられる単量体成分(I)には、例えば、α,β−不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物、(メタ)アクリレート化合物等の非カルボン酸系単量体と、不飽和カルボン酸等のカルボン酸系単量体と、が含有される。単量体成分(I)に含まれる非カルボン酸系単量体の含有割合は、非カルボン酸系単量体とカルボン酸系単量体の合計100質量部中、80〜92質量部であることが好ましく、82〜92質量部であることがより好ましい。非カルボン酸系単量体の含有割合が前記範囲であると、電極用スラリー調製時において、重合体粒子の分散安定性に優れるため、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
単量体成分(I)において、非カルボン酸系単量体中の(メタ)アクリレート化合物の含有割合は10〜30質量%であることが好ましい。(メタ)アクリレート化合物の含有
割合が前記範囲にあると、電極用スラリー調製時において、重合体粒子の分散安定性に優れるため、凝集物が生じにくい。また、得られる重合体粒子は電解液との親和性が適度なものとなり、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
単量体成分(I)において、非カルボン酸系単量体中の共役ジエン化合物の含有割合は10〜50質量%であることが好ましく、芳香族ビニル化合物の含有割合は30〜70質量%であることが好ましい。また、カルボン酸系単量体中のイタコン酸の割合は、50〜85質量%であることが好ましい。
1.1.2.6.2.二段目の重合工程
二段目の乳化重合工程に用いられる単量体成分(II)には、例えば、α,β−不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物、(メタ)アクリレート化合物等の非カルボン酸系単量体と、不飽和カルボン酸等のカルボン酸系単量体と、が含有される。単量体成分(II)に含まれる非カルボン酸系単量体の含有割合は、非カルボン酸系単量体とカルボン酸系単量体の合計100質量%中、94〜99質量%であることが好ましい。非カルボン酸系単量体の含有割合が前記範囲にあると、電極用スラリー調製時において、重合体粒子の分散安定性に優れるため、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
単量体成分(II)において、非カルボン酸系単量体中の(メタ)アクリレート化合物の含有割合は15質量%以下であることが好ましい。(メタ)アクリレート化合物の含有割合が前記範囲であると、得られる重合体粒子は電解液との親和性が適度なものとなり、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
また、重合体構成単量体において、単量体成分(I)と単量体成分(II)との質量比((I)/(II)比)は、0.05〜0.5であることが好ましく、0.1〜0.4であることがより好ましい。(I)/(II)比が前記範囲にあると、電極用スラリー調製時において、重合体粒子の分散安定性に優れるため、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
1.1.2.6.3.乳化重合
乳化重合工程は、水性媒体中において、乳化剤、重合開始剤、および分子量調節剤の存在下にて行われる。以下、乳化重合工程で用いられる各材料について説明する。
乳化剤の具体例としては、例えば高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸・ホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩などのアニオン性界面活性剤;ポリエチレングリコールのアルキルエステル、ポリエチレングリコールのアルキルフェニルエーテル、ポリエチレングリコールのアルキルエーテルなどのノニオン性界面活性剤;パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有リン酸エステル、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキルエチレンオキシド付加物などのフッ素系界面活性剤などを挙げることができ、これらのうちから選択される1種以上を使用することができる。
重合開始剤の具体例としては、例えば過硫酸リチウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの水溶性重合開始剤;クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン
カルボニトリル)などの油溶性重合開始剤などを適宜選択して用いることができる。これらのうち、特に過硫酸カリウム、過硫酸ナトリウム、クメンハイドロパーオキサイドまたはt−ブチルハイドロパーオキサイドを使用することが好ましい。重合開始剤の使用割合は特に制限されないが、単量体組成、重合反応系のpH、他の添加剤などの組み合わせなどを考慮して適宜設定される。
分子量調節剤の具体例としては、例えばn−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタンなどのアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイドなどのキサントゲン化合物;ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィドなどのチウラム化合物;2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノールなどのフェノール化合物;アリルアルコールなどのアリル化合物;ジクロルメタン、ジブロモメタン、四臭化炭素などのハロゲン化炭化水素化合物;α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミドなどのビニルエーテル化合物などのほか、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート、α−メチルスチレンダイマーなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。
1.1.2.6.4.乳化重合の条件
一段目の乳化重合工程は、重合温度が40〜80℃、重合時間が2〜4時間の条件で行うことが好ましい。一段目の乳化重合工程においては、重合転化率が50%以上であることが好ましく、60%以上であることがより好ましい。また、二段目の乳化重合工程は、重合温度が40〜80℃、重合時間が2〜6時間の条件で行うことが好ましい。
乳化重合終了後は中和剤を添加することにより分散液のpHが5〜10程度となるように中和処理することが好ましい。使用する中和剤としては、特に限定されるものではないが、通常水酸化ナトリウム、水酸化カリウム等の金属水酸化物やアンモニアが挙げられる。分散液のpHを5〜10の範囲に設定することで分散液の配合安定性が良好となるが、好ましくは6〜9、より好ましくは7〜8.5である。乳化重合工程における全固形分濃度を50質量%以下とすると分散安定性良く反応を進行させることができるが、好ましくは45質量%以下、より好ましくは40質量%以下である。また、中和処理を行った後に濃縮することにより粒子の安定性をさらに良好にさせながら高固形分化させることができる。
1.1.3.重合体粒子(A)の物性
1.1.3.1.テトラヒドロフラン(THF)不溶分
重合体粒子(A)のTHF不溶分は、80%以上であることが好ましく、90%以上であることがより好ましい。THF不溶分は、蓄電デバイスで使用する電解液への不溶分量とほぼ比例すると推測される。このため、THF不溶分が前記範囲であれば、蓄電デバイスを作製して、長期間にわたり充放電を繰り返した場合でも電解液への重合体(A)の溶出を抑制できるため良好であると推測できる。
1.1.3.2.転移温度
重合体粒子(A)が含フッ素系重合体粒子である場合、JIS K7121に準拠する示差走査熱量測定(DSC)によって測定したときに、−50〜250℃の温度範囲において吸熱ピークを1つしか有さないものであることが好ましい。この吸熱ピークの温度は、−30〜+30℃の範囲にあることがより好ましい。含フッ素系重合体粒子の有する1
つのみの吸熱ピークの温度が−30〜+30℃の範囲にある場合には、該粒子は電極活物質層に対してより良好な柔軟性と粘着性とを付与することができ、従って密着性をより向上させることができる点で好ましい。
なお、重合体(Aa)が単独で存在する場合には、一般的に−50〜250℃に吸熱ピーク(融解温度)を有する。また、重合体(Ab)は、一般的に重合体(Aa)とは異なる吸熱ピーク(ガラス転移温度)を有する。このため、粒子中における重合体(Aa)および重合体(Ab)が、例えばコア−シエル構造のように相分離して存在する場合、−50〜250℃において2つの吸熱ピークが観察されるはずである。しかしながら、−50〜250℃における吸熱ピークが1つのみである場合には、重合体(Aa)と重合体(Ab)とが相分離せずに存在していることを示しており、該粒子がポリマーアロイ粒子であると推定することができる。
一方、重合体粒子(A)がジエン系重合体粒子である場合、JIS K7121に準拠する示差走査熱量測定(DSC)によって測定したときに、−50〜5℃の温度範囲において吸熱ピークを1つしか有さないものであることが好ましい。この吸熱ピークの温度は、−30〜0℃の範囲にあることがより好ましく、−25〜−5℃であることがより好ましい。ジエン系重合体粒子の有する1つのみの吸熱ピークの温度が上記範囲にある場合、電極活物質層に対してより良好な柔軟性と粘着性とを付与することができ、従って密着性をより向上させることができる点で好ましい。
1.1.3.3.数平均粒子径
重合体粒子(A)の数平均粒子径は、50〜400nmの範囲にあることが好ましく、100〜250nmの範囲にあることがより好ましい。重合体粒子(A)の数平均粒子径が前記範囲にあると、電極活物質の表面に重合体粒子(A)が十分に吸着することができるため、電極活物質の移動に伴って重合体粒子(A)も追随して移動することができる。その結果、両者の粒子のうちのどちらかのみが単独でマイグレーションすることを抑制することができるので、電気的特性の劣化を抑制することができる。
なお、重合体粒子(A)の数平均粒子径とは、光散乱法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、小さい粒子から粒子を累積したときの粒子数の累積度数が50%となる粒子径(D50)の値である。このような粒度分布測定装置としては、例えばコールターLS230、LS100、LS13 320(以上、Beckman Coulter.Inc製)や、FPAR−1000(大塚電子株式会社製)などを挙げることができる。これらの粒度分布測定装置は、重合体粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とすることができる。従って、これらの粒度分布測定装置によって測定された粒度分布は、電極用スラリー中に含まれる重合体粒子の分散状態の指標とすることができる。なお、重合体粒子(A)の数平均粒子径は、電極用スラリーを遠心分離して電極活物質を沈降させた後、その上澄み液を上記の粒度分布測定装置によって測定する方法によっても測定することができる。
1.2.(メタ)アクリレート化合物(B)
本実施の形態に係る電極用バインダー組成物は、(メタ)アクリレート化合物(B)を含有する。電極用バインダー組成物中の成分(B)の濃度は、10〜1,000ppmであり、10〜900ppmであることが好ましく、10〜800ppmであることがより好ましい。電極用バインダー組成物中の成分(B)の濃度が前記範囲であると、電極用バインダー組成物の貯蔵安定性が向上すると共に、これを使用して作製された電極用スラリーをさらに集電体に塗布して作製された電極を備える蓄電デバイスは、良好な充放電特性を示すことができる。
蓄電デバイスの充放電特性が良好となる効果の発現機構は明らかではないが、以下のように考えられる。電極用バインダー組成物中に成分(B)が含まれているため、この電極用バインダー組成物を用いて作製された電極用スラリーを集電体に塗布・乾燥して作製された電極活物質層中にも成分(B)が残留する。このような電極活物質層を備える電極では、最初に充放電を行うことにより成分(B)が電解重合して、電極活物質層の表面に保護膜が形成されると考えられる。その結果、充放電を繰り返すことによる電極表面でのデンドライドの発生が抑制されるので、蓄電デバイスの充放電特性を向上できると考えられる。
なお、成分(B)の濃度が前記範囲未満であると、上述のような効果を十分に発現させることができず、良好な充放電特性を発現する蓄電デバイスを作製することができない。
また、(メタ)アクリレート化合物は加熱されることにより蒸発しやすいので、電極用スラリーを集電体に塗布した後、乾燥させるために加熱する工程において、電極活物質層中に残留した成分(B)は蒸発により徐々に電極活物質層中から除去されると考えられる。しかしながら、成分(B)の濃度が前記範囲を超えてしまうと、集電体の表面に電極用スラリーを塗布し乾燥させた後も電極活物質層中に成分(B)が多量に残留することで、過剰な保護膜が形成されて電極抵抗が大きくなる場合があり、十分な充放電特性を発現できない蓄電デバイスとなることがあるため好ましくない。
本実施の形態に係る電極用バインダー組成物に含有される成分(B)としては、下記一般式(2)で示される化合物であることが好ましい。
Figure 0005077613
上記式(2)中、Rは水素原子またはメチル基を表し、Rは炭素数1〜8の直鎖または分岐鎖を有するアルキル基、炭素数3〜6のシクロアルキル基、炭素数1〜4の直鎖または分岐鎖を有するヒドロキシアルキル基を表す。
炭素数1〜8の直鎖または分岐鎖を有するアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基等が挙げられる。
炭素数3〜6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。これらの中でも、シクロヘキシル基であることが好ましい。
炭素数1〜6の直鎖または分岐鎖を有するヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシイソプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシプロピル基等が挙げられる。これらの中でも、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基であることが好ましい。
本実施の形態に係る電極用バインダー組成物に含有される成分(B)の具体例としては
、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレンなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチルおよび(メタ)アクリル酸ヒドロキシブチルから選択される1種以上であることが好ましい。
なお、本実施の形態に係る電極用バインダー組成物に含有される成分(B)は、標準沸点が50〜150℃であることが好ましい。上述したように、集電体の表面に電極用スラリーを塗布した後、乾燥させるために加熱する工程において、成分(B)が蒸発することにより電極活物質層中から徐々に成分(B)が除去されるが、標準沸点が前記範囲であると、電極活物質層中の成分(B)の残留を低減できるからである。
1.3.液状媒体(C)
本実施の形態に係る電極用バインダー組成物は、液状媒体(C)を含有する。液状媒体(C)としては、水を含有する水系媒体であることが好ましい。上記水系媒体には、水以外の非水系媒体を含有させることができる。この非水系媒体としては、例えばアミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。液状媒体(C)が水と、水以外の非水系媒体を含有する場合、液状媒体(C)の全量100質量%中、90質量%以上が水であることが好ましく、98質量%以上が水であることがさらに好ましい。本実施の形態に係る電極用バインダー組成物は、液状媒体(C)として水系媒体を使用することにより、環境に対して悪影響を及ぼす程度が低くなり、取扱作業者に対する安全性も高くなる。
水系媒体中に含まれる非水系媒体の含有割合は、水系媒体100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、実質的に含有しないことが特に好ましい。ここで、「実質的に含有しない」とは、液状媒体(C)として非水系媒体を意図的に添加しないという程度の意味であり、電極用バインダー組成物を作製する際に不可避的に混入する非水系媒体を含んでもよい。
1.4.その他の添加剤
本実施の形態に係る電極用バインダー組成物は、必要に応じて前述した成分(A)、成分(B)、成分(C)以外の添加剤を含有することができる。このような添加剤としては、例えば増粘剤が挙げられる。本実施の形態に係る電極用バインダー組成物は、増粘剤を含有することにより、その塗布性や得られる蓄電デバイスの充放電特性等をさらに向上させることができる。
このような増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース化合物;上記セルロース化合物のアン
モニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸、変性ポリ(メタ)アクリル酸などのポリカルボン酸;上記ポリカルボン酸のアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン−ビニルアルコール共重合体などのポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸およびフマル酸などの不飽和カルボン酸と、ビニルエステルとの共重合体の鹸化物などの水溶性ポリマーなどを挙げることができる。これらの中でも特に好ましい増粘剤としては、カルボキシメチルセルロースのアルカリ金属塩、ポリ(メタ)アクリル酸およびそのアルカリ金属塩である。
これら増粘剤の市販品としては、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、ダイセル化学工業株式会社製)等のカルボキシメチルセルロースのアルカリ金属塩を挙げることができる。
本実施の形態に係る電極用バインダー組成物が増粘剤を含有する場合、増粘剤の使用割合は、電極用バインダー組成物の全固形分量に対して、5質量%以下であることが好ましく、0.1〜3質量%であることがより好ましい。
2.電極用スラリー
本実施の形態に係る電極用スラリーは、前述の電極用バインダー組成物を用いて製造することができる。電極用スラリーとは、これを集電体の表面に塗布した後、乾燥して、集電体表面上に電極活物質層を形成するために用いられる分散液のことをいう。本実施の形態に係る電極用スラリーは、前述の電極用バインダー組成物と、電極活物質と、水と、を含有する。以下、本実施の形態に係る電極用スラリーに含まれる成分についてそれぞれ詳細に説明する。ただし、電極用バインダー組成物については、前述した通りであるから説明を省略する。
2.1.電極活物質
本実施の形態に係る電極用スラリーに含まれる電極活物質を構成する材料としては特に制限はなく、目的とする蓄電デバイスの種類により適宜適当な材料を選択することができる。
例えば、リチウムイオン二次電池の正極を作製する場合には、リチウム原子含有酸化物であることが好ましい。本明細書における「酸化物」とは、酸素と、酸素よりも電気陰性度の小さい元素と、からなる化合物または塩を意味する概念であり、金属酸化物の他、金属のリン酸塩、硝酸塩、ハロゲンオキソ酸塩、スルホン酸塩等をも包含する概念である。
リチウム原子含有酸化物としては、下記一般式(3a)または(3b)で表される複合金属酸化物、および下記一般式(4)で表されかつオリビン型結晶構造を有するリチウム原子含有酸化物が挙げられ、これらよりなる群から選択される1種以上を使用することが好ましい。
Li1+x ・・・・・(3a)
Li1+x ・・・・・(3b)
(式(3a)および(3b)中、MはCo、NiおよびMnよりなる群から選択される少なくとも1種の金属原子であり;MはAlおよびSnよりなる群から選択される少なくとも1種の金属原子であり;Oは酸素原子であり;x、yおよびzは、それぞれ、0.10≧x≧0、4.00≧y≧0.85および2.00≧z≧0の範囲の数である。)
Li1−x (XO) ・・・・・(4)
(式(4)中、Mは、Mg、Ti、V、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、GeおよびSnよりなる群から選択される金属のイオンの少なくとも1種であり;Xは、Si、S、PおよびVよりなる群から選択される少なくとも1種であり;xは数であり、0<x<1の関係を満たす。)
なお、上記一般式(4)におけるxの値は、MおよびXの価数に応じて、それぞれ上記一般式(4)全体の価数が0価となるように選択される。
上記一般式(3a)または(3b)で表される複合金属酸化物としては、例えばLiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)などを挙げることができ、これらのうちから選択される1種以上を使用することができる。これらのうち、LiCoO、LiMn、LiNiOおよびLiNi0.33Mn0.33Co0.33は電極電位が高く高効率であるため、高電圧および高エネルギー密度を有する蓄電デバイスを得ることができる。Li1+x は、固体内のLi拡散速度が速く、充放電レートに優れる点で特に好ましい。
上記一般式(4)で表され、かつオリビン結晶構造を有するリチウム原子含有酸化物は、金属元素Mの種類によって電極電位が異なる。従って、金属元素Mの種類を選択することにより、電池電圧を任意に設定することができる。オリビン結晶構造を有するリチウム原子含有酸化物の代表的なものとしては、LiFePO、LiCoPO、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30POなどを挙げることができる。これらのうち、特にLiFePOは、原料となる鉄化合物の入手が容易であるとともに安価であるため好ましい。また、上記の化合物中のFeイオンをCoイオン、NiイオンまたはMnイオンに置換した化合物も、上記各化合物と同じ結晶構造を有するので、電極活物質として同様の効果を有する。
一方、リチウムイオン二次電池の負極を作製する場合には、電極活物質(負極活物質)としては、例えばカーボンを用いることができる。カーボンの具体例としては、フェノール樹脂、ポリアクリロニトリル、セルロース等の有機高分子化合物を焼成することにより得られる炭素材料;コークスやピッチを焼成することにより得られる炭素材料;人造グラファイト;天然グラファイト等が挙げられる。
電気二重層キャパシタ電極を作製する場合には、電極活物質としては、例えば活性炭、活性炭繊維、シリカ、アルミナ等を用いることができる。また、リチウムイオンキャパシタ電極を作製する場合には、黒鉛、難黒鉛化炭素、ハードカーボン、コークス等の炭素材料や、ポリアセン系有機半導体(PAS)等を用いることができる。
電極活物質の数平均粒子径(Db)は、正極では0.4〜10μmの範囲とすることが好ましく、0.5〜7μmの範囲とすることがより好ましい。負極では3〜30μmの範囲とすることが好ましく、5〜25μmの範囲とすることがより好ましい。電極活物質の数平均粒子径(Db)が前記範囲内であると、電極活物質内におけるリチウムの拡散距離が短くなるので、充放電の際のリチウムの脱挿入に伴う抵抗を低減することができ、その結果、充放電特性がより向上する。さらに、電極用スラリーが後述の導電付与剤を含有する場合、電極活物質の数平均粒子径(Db)が前記範囲内であることにより、電極活物質と導電付与剤との接触面積を十分に確保することができることとなり、電極の電子導電性が向上し、電極抵抗がより低下する。
ここで、電極活物質の数平均粒子径(Db)とは、レーザー回折法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、小さい粒子から粒子を累積したときの粒子数の累積度数が50%となる粒子径(D50)の値である。このようなレーザー回折式粒度分布測定装置としては、例えばHORIBA LA−300シリーズ、HORIBA LA−920シリーズ(以上、株式会社堀場製作所製)などを挙げることができる。この粒度分布測定装置は、電極活物質の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とする。従って、この粒度分布測定装置によ
って得られた数平均粒子径(Db)は、電極用スラリー中に含まれる電極活物質の分散状態の指標とすることができる。なお、電極活物質の平均粒子径(Db)は、電極用スラリーを遠心分離して電極活物質を沈降させた後、その上澄み液を除去し、沈降した電極活物質を上記の方法により測定することによっても測定することができる。
2.2.その他の成分
上記電極用スラリーは、必要に応じて前述した成分以外の成分を含有することができる。このような成分としては、例えば導電付与剤、非水系媒体、増粘剤等が挙げられる。
2.2.1.導電付与剤
上記導電付与剤の具体例としては、リチウムイオン二次電池においてはカーボンなどが;ニッケル水素二次電池においては、正極では酸化コバルトが:負極ではニッケル粉末、酸化コバルト、酸化チタン、カーボンなどが、それぞれ用いられる。上記両電池において、カーボンとしては、グラファイト、活性炭、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレンなどを挙げることができる。これらの中でも、アセチレンブラックまたはファーネスブラックを好ましく使用することができる。導電付与剤の使用割合は、電極活物質100質量部に対して、好ましくは20質量部以下であり、より好ましくは1〜15質量部であり、特に好ましくは2〜10質量部である。
2.2.2.非水系媒体
上記電極用スラリーは、その塗布性を改善する観点から、80〜350℃の標準沸点を有する非水系媒体を含有することができる。このような非水系媒体の具体例としては、例えばN−メチルピロリドン、ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド化合物;トルエン、キシレン、n−ドデカン、テトラリンなどの炭化水素;2−エチル−1−ヘキサノール、1−ノナノール、ラウリルアルコールなどのアルコール;メチルエチルケトン、シクロヘキサノン、ホロン、アセトフェノン、イソホロンなどのケトン;酢酸ベンジル、酪酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル;o−トルイジン、m−トルイジン、p−トルイジンなどのアミン化合物;γ−ブチロラクトン、δ−ブチロラクトンなどのラクトン;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。これらの中でも、重合体粒子の安定性、電極用スラリーを塗布する際の作業性などの点から、N−メチルピロリドンを使用することが好ましい。
2.2.3.増粘剤
上記電極用スラリーは、その塗工性を改善する観点から、増粘剤を含有することができる。増粘剤の具体例としては、上記「1.4.その他の添加剤」に記載した各種化合物が挙げられる。
電極用スラリーが増粘剤を含有する場合、増粘剤の使用割合としては、電極用スラリーの全固形分量に対して、好ましくは20質量%以下であり、より好ましくは0.1〜15質量%であり、特に好ましくは0.5〜10質量%である。
2.3.電極用スラリーの製造方法
本実施の形態に係る電極用スラリーは、前述の電極用バインダー組成物と、電極活物質と、水と、必要に応じて用いられる添加剤と、を混合することにより製造することができる。これらの混合には公知の手法による攪拌によって行うことができ、例えば攪拌機、脱泡機、ビーズミル、高圧ホモジナイザーなどを利用することができる。
電極用スラリーの調製(各成分の混合操作)は、少なくともその工程の一部を減圧下で
行うことが好ましい。これにより、得られる電極層内に気泡が生じることを防止することができる。減圧の程度としては、絶対圧として、5.0×10〜5.0×10Pa程度とすることが好ましい。
電極用スラリーを製造するための混合撹拌としては、スラリー中に電極活物質の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。
2.4.電極用スラリーの特徴
前述の電極用バインダー組成物に含まれる重合体粒子(A)の数平均粒子径(Da)と電極活物質の数平均粒子径(Db)との比(Da/Db)は、正極では0.01〜1.0の範囲にあることが好ましく、0.05〜0.5の範囲にあることがより好ましい。負極では、0.002〜0.13の範囲にあることが好ましく、0.003〜0.1の範囲にあることがより好ましい。このことの技術的な意味は、以下の通りである。
電極用スラリーを集電体の表面に塗布した後、形成された塗膜を乾燥する工程において、重合体粒子(A)および電極活物質のうちの少なくとも一方がマイグレーションすることが確認されている。すなわち、粒子が表面張力の作用を受けることによって塗膜の厚み方向に沿って移動するのである。より具体的には、重合体粒子(A)および電極活物質のうちの少なくとも一方が、塗膜面のうちの、集電体と接する面とは反対側、すなわち水が蒸発する気固界面側へと移動する。このようなマイグレーションが起こると、重合体粒子(A)および電極活物質の分布が塗膜の厚み方向で不均一となり、電極特性が悪化する、密着性が損なわれる、などの問題が発生する。例えば、バインダーとして機能する重合体粒子(A)が電極活物質層の気固界面側へとブリード(移行)し、集電体と電極活物質層との界面における重合体粒子(A)の量が相対的に少なくなると、電極活物質層への電解液の浸透が阻害されることにより十分な電気的特性が得られなくなるとともに、集電体と電極活物質層との結着性が不足して剥離してしまう。さらに、重合体粒子(A)がブリードすることにより、電極活物質層表面の平滑性が損なわれてしまう。
しかしながら、両粒子の数平均粒子径の比(Da/Db)が前記範囲にあると、前述したような問題の発生を抑制することができ、良好な電気的特性と結着性とが両立した電極を容易に製造できることとなる。比(Da/Db)が前記範囲未満では、重合体粒子(A)と電極活物質との平均粒子径の差が小さくなるため、重合体粒子(A)と電極活物質との接触する面積が小さくなり、粉落ち耐性が不十分となる場合がある。一方、比(Da/Db)が前記範囲を超えると、重合体粒子(A)と電極活物質との平均粒子径の差が大きくなりすぎることにより、重合体粒子(A)の接着力が不十分となり、集電体と電極活物質層との間の結着性が不足する場合がある。
本実施の形態に係る電極用スラリーは、その固形分濃度(スラリー中の溶媒以外の成分の合計質量がスラリーの全質量に対して占める割合)が20〜80質量%であることが好ましく、30〜75質量%であることがより好ましい。
本実施の形態に係る電極用スラリーは、その曳糸性が30〜80%であることが好ましく、33〜79%であることがより好ましく、35〜78%であることが特に好ましい。曳糸性が前記範囲未満であると、電極用スラリーを集電体上へ塗布する際、レベリング性が不足するため、電極厚みの均一性を得難くなる場合がある。このような厚みが不均一な電極を使用すると、充放電反応の面内分布が発生するため、安定した電池性能の発現が困
難となる。一方、曳糸性が前記範囲を超えると、電極用スラリーを集電体上に塗布する際、液ダレが起き易くなり、安定した品質の電極が得られにくい。そこで、曳糸性が前記範囲にあれば、これらの問題の発生を抑制することができ、良好な電気的特性と密着性とを両立させた電極を製造することが容易となるのである。
本明細書における「曳糸性」は、以下のようにして測定される。
まず、底部に直径5.2mmの開口部を有するザーンカップ(太佑機材株式会社製、ザーンビスコシティーカップNo.5)を準備する。この開口部を閉じた状態で、ザーンカップに電極用スラリー40gを流し込む。その後、開口部を開放すると、開口部から電極用スラリーが流れ出す。ここで、開口部を開放した時をT、電極用スラリーの曳糸が終了した時をT、電極用スラリーの流出が終了した時をTとした場合に、本明細書における「曳糸性」は下記式(5)から求めることができる。
曳糸性(%)=((T−T)/(T−T))×100 ・・・・・(5)
3.電極
本実施の形態に係る電極は、集電体と、前記集電体の表面上に前述の電極用スラリーが塗布および乾燥されて形成された層と、を備えるものである。かかる電極は、金属箔などの適宜の集電体の表面に、上述の電極用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥して電極活物質層を形成することにより製造することができる。このようにして製造された電極は、集電体上に、前述の重合体(A)および電極活物質、さらに必要に応じて添加した任意成分を含有する電極活物質層が結着されてなるものである。かかる電極は、集電体と電極活物質層との結着性に優れるとともに、電気的特性の一つである充放電レート特性が良好である。したがって、このような電極は蓄電デバイスの電極として好適である。
集電体は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池においては、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製の集電体が使用されるが、特に正極にアルミニウムを、負極に銅を用いた場合、前述の電極用バインダーを用いて製造された電極用スラリーの効果が最もよく現れる。ニッケル水素二次電池における集電体としては、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などが使用される。集電体の形状および厚さは特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものとすることが好ましい。
電極用スラリーの集電体への塗布方法についても特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。電極用スラリーの塗布量も特に制限されないが、液状媒体(水および任意的に使用される非水系媒体の双方を包含する概念である)を除去した後に形成される電極活物質層の厚さが、0.005〜5mmとなる量とすることが好ましく、0.01〜2mmとなる量とすることがより好ましい。電極活物質層の厚さが上記範囲内にあることによって、電極活物質層に効果的に電解液を染み込ませることができる。その結果、電極活物質層中の電極活物質と電解液との充放電に伴う金属イオンの授受が容易に行われるため、電極抵抗をより低下させることができるため好ましい。また、電極活物質層の厚さが上記範囲内にあることで、電極を折り畳んだり、捲回するなどして加工する場合においても、電極活物質層が集電体から剥離することなく密着性が良好で、柔軟性に富む蓄電デバイス用電極が得られる点で好ましい。
塗布後の塗膜からの乾燥方法(水および任意的に使用される非水系媒体の除去方法)についても特に制限されず、例えば温風、熱風、低湿風による乾燥;真空乾燥;(遠)赤外
線、電子線などの照射による乾燥などによることができる。乾燥速度としては、応力集中によって電極活物質層に亀裂が入ったり、電極活物質層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ早く液状媒体が除去できるように適宜に設定することができる。
さらに、乾燥後の集電体をプレスすることにより、電極活物質層の密度を高め、空孔率を以下に示す範囲に調整することが好ましい。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。プレスの条件は、使用するプレス機器の種類および電極活物質層の空孔率および密度の所望値によって適宜に設定されるべきである。この条件は、当業者による少しの予備実験により、容易に設定することができるが、例えばロールプレスの場合、ロールプレス機の線圧力は0.1〜10(t/cm)、好ましくは0.5〜5(t/cm)の圧力において、例えばロール温度が20〜100℃において、乾燥後の集電体の送り速度(ロールの回転速度)が1〜80m/min、好ましくは5〜50m/minで行うことができる。
プレス後の電極活物質層の密度は、1.5〜5.0g/cmとすることが好ましく、1.5〜4.0g/cmとすることがより好ましく、1.6〜3.8g/cmとすることが特に好ましい。電極活物質が上記一般式(3a)または(3b)で表される複合金属酸化物である場合には、電極活物質層の密度は2.0〜4.0g/cmとすることが好ましく、3.0〜3.5g/cmとすることがより好ましい。また、電極活物質が上記一般式(4)で表されかつオリビン型結晶構造を有する化合物である場合には、電極活物質層の密度は1.5〜2.5g/cmとすることが好ましく、1.6〜2.4g/cmとすることがより好ましく、1.7〜2.2g/cmとすることがさらに好ましく、1.8〜2.1g/cmとすることが特に好ましい。電極活物質層の密度が前記範囲にあることにより、集電体と電極活物質層との間の結着性が良好となり、粉落ち性に優れ、かつ電気的特性にも優れた電極が得られることとなる。電極活物質層の密度が前記範囲未満であると、電極活物質層中の重合体(A)が十分にバインダーとして機能せず、電極活物質層が凝集剥離するなどして粉落ち性が低下する。また、電極活物質層の密度が前記範囲を超えると、電極活物質層中の重合体(A)のバインダー機能が強すぎて電極活物質同士の接着が強固になり過ぎる。その結果、集電体の柔軟性に電極活物質層が追随することができず、集電体と電極活物質層の界面が剥離する場合があり好ましくない。なお、本発明における「電極活物質層の密度」とは、電極活物質層の嵩密度を示す値であり、以下の測定方法から知ることができる。すなわち、集電体の片面に、面積C(cm)、厚みD(μm)の電極活物質層を有する電極において、集電体の質量がA(g)、蓄電デバイス用電極の質量がB(g)である場合、電極活物質層の密度は下記式(6)によって定義される。
電極活物質層の密度(g/cm)=(B(g)−A(g))/(C(cm)×D(μm)×10−4) ・・・・・(6)
プレス後の電極活物質層の空孔率は、10〜50%であることが好ましく、15〜45%であることがより好ましく、20〜40%であることが特に好ましい。電極活物質層の空孔率が前記範囲にあると、集電体と電極活物質層との間の結着性が良好となり、粉落ち性に優れ、かつ電気的特性にも優れる電極が得られる。また、電極活物質層の空孔率が前記範囲にあると、電極活物質層内部へ電解液を十分に染み込ませることができ、電極活物質表面と電解液が十分に接触することができる。その結果、電極活物質と電解液のリチウムイオンの授受が容易となり、良好な充放電特性が達成できる。なお、本発明における「電極活物質層の空孔率」とは、空孔の体積(電極活物質層の体積から固形分(電極活物質、導電付与剤、結着剤など)が占める体積を除いた量)が電極活物質層全体の体積に占める割合である。すなわち、集電体の片面に、面積C(cm)、厚みD(μm)の電極活物質層を有する電極において、電極活物質層の質量がB(g)、水銀圧入法により測定さ
れた細孔容積がV(cm/g)である場合、下記式(7)によって定義される値である。
電極活物質層の空孔率(%)=((V[cm/g]×B[g])/(C[cm]×D[μm]×10−4))×100 ・・・・・(7)
細孔容積は、例えば水銀ポロシメーターを用いた水銀圧入法などにより測定することができる。水銀ポロシメーターとしては、例えばQuantachrome社製の品名「PoreMaster」、株式会社島津製作所製の品名「オートポアIV」などを用いることができる。
4.蓄電デバイス
本実施の形態に係る蓄電デバイスは、上述の電極を備えるものであり、さらに電解液を含有し、セパレータなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、適宜の形状であることができる。
電解液は、液状でもゲル状でもよく、電極活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。
上記電解質としては、リチウムイオン二次電池では、従来から公知のリチウム塩のいずれをも使用することができ、その具体例としては、例えばLiClO、LiBF、LiPF、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、LiCFSO、LiCHSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウムなどを例示することができる。ニッケル水素二次電池では、例えば従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。
上記電解質を溶解するための溶媒は、特に制限されるものではないが、その具体例として、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどのカーボネート化合物;γ−ブチルラクトンなどのラクトン化合物;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル化合物;ジメチルスルホキシドなどのスルホキシド化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。電解液中の電解質の濃度としては、好ましくは0.5〜3.0モル/Lであり、より好ましくは0.7〜2.0モル/Lである。
5.実施例
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
5.1.実施例1
5.1.1.重合体粒子(A)の作製
電磁式撹拌機を備えた内容積約6Lのオートクレーブの内部を十分に窒素置換した後、脱酸素した純水2.5Lおよび乳化剤としてパーフルオロデカン酸アンモニウム25gを仕込み、350rpmで撹拌しながら60℃まで昇温した。次いで、単量体であるフッ化ビニリデン(VDF(登録商標))70%および六フッ化プロピレン(HFP)30%か
らなる混合ガスを、内圧が20kg/cmに達するまで仕込んだ。重合開始剤としてジイソプロピルパーオキシジカーボネートを20%含有するフロン113溶液25gを窒素ガスを使用して圧入し、重合を開始した。重合中は内圧が20kg/cmに維持されるようVDF60.2%およびHFP39.8%からなる混合ガスを逐次圧入して、圧力を20kg/cmに維持した。また、重合が進行するに従って重合速度が低下するため、3時間経過後に、先と同じ重合開始剤溶液の同量を窒素ガスを使用して圧入し、さらに3時間反応を継続した。その後、反応液を冷却すると同時に撹拌を停止し、未反応の単量体を放出した後に反応を停止することにより、重合体(Aa)の微粒子を40%含有する水系分散体を得た。得られた重合体(Aa)につき、19F−NMRにより分析した結果、各単量体の質量組成比はVDF/HFP=21/4であった。
容量7Lのセパラブルフラスコの内部を十分に窒素置換した後、上記の工程で得られた重合体(Aa)の微粒子を含有する水系分散体1,600g(重合体(Aa)換算で25質量部に相当)、乳化剤「アデカリアソープSR1025」(商品名、株式会社ADEKA製)0.5質量部、メタクリル酸メチル(MMA)30質量部、アクリル酸2−エチルヘキシル(EHA)40質量部およびメタクリル酸(MAA)5質量部ならびに水130質量部を順次仕込み、70℃で3時間攪拌し、重合体(Aa)に単量体を吸収させた。次いで油溶性重合開始剤であるアゾビスイソブチロニトリル0.5質量部を含有するテトラヒドロフラン溶液20mLを添加し、75℃に昇温して3時間反応を行い、さらに85℃で2時間反応を行った。その後、冷却した後に反応を停止し、2.5N水酸化ナトリウム水溶液でpH7に調節することにより、重合体粒子(A)を40%含有する水系分散体を得た。
得られた水系分散体の約10gを直径8cmのテフロンシャーレへ秤り取り、120℃で1時間乾燥して成膜した。得られた膜(重合体)のうちの1gをテトラヒドロフラン(THF)400mL中に浸漬して50℃で3時間振とうした。次いで、THF相を300メッシュの金網で濾過して不溶分を分離した後、溶解分のTHFを蒸発除去して得た残存物の重量(Y(g))を測定した値から、下記式(8)によってTHF不溶分を求めたところ、上記重合体粒子のTHF不溶分は85%であった。
THF不溶分(%)=((1−Y)/1)×100 ・・・・・(8)
さらに、得られた微粒子を示差走査熱量計(DSC)によって測定したところ、単一のガラス転移温度Tgが−5℃に一つだけ観測された。2種類の重合体を用いているにもかかわらず、得られた重合体粒子(A)は一つのTgしか示さないため、重合体粒子(A)はポリマーアロイ粒子であると推測できる。
5.1.2.電極用バインダー組成物の調製
上記で得られた重合体粒子(A)を含有する水系分散体1,000gに、アクリル酸2−エチルヘキシルを1%含有する水を50g仕込み、300rpmで撹拌することにより、電極用バインダー組成物の調製を行った。なお、以下の実施例、比較例において成分(B)が水に対して不溶性である場合、超音波により水溶液に分散させた状態の分散液(懸濁液)を添加することにより電極用バインダー組成物の調製を行った。
得られた電極用バインダー組成物について、動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、形式「FPAR−1000」)を用いて粒度分布を測定し、その粒度分布から最頻粒径を求めたところ、数平均粒子径は330nmであった。
なお、電極用バインダー組成物における成分(B)の含有量は、以下の手順で電極用バインダー組成物を分析することにより確認することもできる。すなわち、得られた電極用バインダー組成物を0.2g秤量し、内標準溶液として100ppmのテトラデカンを溶
解したテトラヒドロフラン溶液を添加して20倍に希釈した。このようにして作製した測定試料をガスクロマトグラフィー測定装置(Agilent Technologies社製、型式「GC6890N」)で、カラムにはAgilent Technologies社製のHP−1(30m×0.25mmID×膜厚1.0μm)使用して定量した結果、アクリル酸2−エチルヘキシルの含有量は500ppmであることが確認できた。
5.1.3.電極用バインダー組成物の貯蔵安定性評価
一般的に電極用バインダー組成物は、蓄電デバイスを作製する工場において、使用に備えて大量に貯蔵される。そして、大量に貯蔵された電極用バインダー組成物は、必要に応じて順次消費される。この際、最初に消費した電極用バインダー組成物の特性と長期間にわたり貯蔵した後の電極用バインダー組成物の特性とが、重合体粒子が沈降するなどして変化することは許されない。
また、電極用バインダー組成物の貯蔵環境は、コストの観点から温度管理を厳密に行うことができず、このため気温の変化により0℃近くの環境に晒される場合も多い。このため、下記の凍結温度の評価において、0℃で凍結することは許容できず、凍結温度が−0.5℃以下であることが要求される。したがって、凍結温度が−0.5℃以下である場合、電極用バインダー組成物の安定性が高く、良好であると判断できる。
<沈降評価>
上記で調製した電極用バインダー組成物をポリビンに100g充填し、2℃に設定した冷蔵庫で一ヵ月保管した。保管後の電極用バインダー組成物を目視で観察し、沈降が認められない場合は良好と判断して○、沈降が認められる場合は不良と判断して×と評価した。沈降評価の結果を表1に併せて示した。
<凍結温度評価>
上記で調製した電極用バインダー組成物をポリビンに1000g充填し、その後−10℃の冷凍庫に保管し、凍結が開始する温度(凍結温度)を測定した。その結果、電極用バインダー組成物の凍結温度は−1.0℃であった。凍結温度評価の結果を表1に併せて示した。
5.1.4.電極用スラリーの調製および評価
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に増粘剤(商品名「CMC1120」、ダイセル化学工業株式会社製)1質量部(固形分換算)、市販のリン酸鉄リチウム(LiFePO)をめのう乳鉢で粉砕し、ふるいを用いて分級することにより得られた粒子径(D50値)が0.5μmである電極活物質100質量部、アセチレンブラック5質量部および水68質量部を投入し、60rpmで1時間攪拌を行った。次いで、上記「5.1.3.電極用バインダー組成物の貯蔵安定性評価」で保存しておいた電極用バインダー組成物を、該組成物中に含有される重合体粒子が1質量部となるように加え、さらに1時間攪拌してペーストを得た。得られたペーストに水を加えて固形分濃度を50%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1,800rpmで5分間、さらに真空下(約5.0×10Pa)において1,800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。
<曳糸性の測定>
得られた電極用スラリーの曳糸性を、以下のようにして測定した。
先ず、容器の底辺に直径5.2mmの開口部が存在するザーンカップ(太佑機材株式会社製、ザーンビスコシティーカップNo.5)を準備した。このザーンカップの開口部を閉じた状態で、上記で調製した電極用スラリーを40g流し込んだ。開口部を開放すると
スラリーが流れ出した。このとき、開口部を開放した瞬間の時間をTとし、スラリーが流れ出る際に糸を曳くようにして流出し続けた時間を目視で測定し、この時間をTとした。さらに、糸を曳かなくなってからも測定を継続し、電極用スラリーが流れ出なくなるまでの時間Tを測定した。測定した各値T、TおよびTを下記式(5)に代入して曳糸性を求めた。
曳糸性(%)=((T−T)/(T−T))×100 ・・・・・(5)
電極用スラリーの曳糸性が30〜80%である場合に良好と判断できる。曳糸性の測定結果を表1に併せて示した。
5.1.5.電極の製造および評価
厚み30μmのアルミニウム箔からなる集電体の表面に、上記で調製した電極用スラリーを、乾燥後の膜厚が100μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜(電極活物質層)の密度が表1に記載の値になるようにロールプレス機によりプレス加工することにより、電極(正極)を得た。
<クラック率の測定>
得られた電極を、幅2cm×長さ10cmの極板に切り出し、幅方向に直径2mmの丸棒に沿って正極板を折り曲げ回数100回にて繰り返し折り曲げ試験を行った。丸棒に沿った部分のクラックの大きさを目視により観察し計測し、クラック率を測定した。クラック率は、下記式(9)によって定義した。
クラック率(%)=(クラックの入った長さ[mm]÷極板全体の長さ[mm])×100 ・・・・・(9)
ここで、柔軟性や密着性に優れた電極板はクラック率が低い。クラック率は0%であることが望ましいが、セパレータを介して渦巻き状に捲回して極板群を製造する場合には、クラック率が20%までなら許容される。しかしながら、クラック率が20%より大きくなると、電極が切れ易くなり極板群の製造が不可能となり、極板群の生産性が低下する。このことから、クラック率の閾値として20%までが良好な範囲であると考えられる。クラック率の測定結果を表1に併せて示した。
5.1.6.蓄電デバイスの製造および評価
<対極(負極)の製造>
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に、ポリフッ化ビニリデン(PVDF)4質量部(固形分換算)、負極活物質としてグラファイト100質量部(固形分換算)、N−メチルピロリドン(NMP)80質量部を投入し、60rpmで1時間撹拌を行った。その後、さらにNMP20質量部を投入した後、撹拌脱泡機(株式会社シンキー製、製品名「あわとり練太郎」)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに真空下において1,800rpmで1.5分間撹拌・混合することにより、対極(負極)用スラリーを調製した。
銅箔からなる集電体の表面に、上記で調製した対極(負極)用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜の密度が1.5g/cmとなるようにロールプレス機を使用してプレス加工することにより、対極(負極)を得た。
<リチウムイオン電池セルの組立て>
露点が−80℃以下となるようAr置換されたグローブボックス内で、上記で製造した電極(負極)を直径15.95mmに打ち抜き成型したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セ
ルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、上記で製造した正極を直径16.16mmに打ち抜き成型したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。
<充放電レート特性の評価>
上記で製造した蓄電デバイスにつき、定電流(0.2C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として、0.2Cでの充電容量を測定した。次いで、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、0.2Cでの放電容量を測定した。
次に、同じセルにつき、定電流(3C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として3Cでの充電容量を測定した。次いで、定電流(3C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、3Cでの放電容量を測定した。
上記の測定値を用いて、0.2Cでの充電容量に対する3Cでの充電容量の割合(百分率%)を計算することにより充電レート(%)を、0.2Cでの放電容量に対する3Cでの放電容量の割合(百分率%)を計算することにより放電レート(%)を、それぞれ算出した。充電レートおよび放電レートの双方がいずれもが80%以上のとき、充放電レート特性は良好であると評価することができる。測定された充電レートおよび放電レートの値を、表1にそれぞれ示した。
なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。例えば「0.1C」とは10時間かけて放電終了となる電流値のことであり、「10C」とは0.1時間かけて放電完了となる電流値のことをいう。
5.2.実施例2〜5および比較例1〜3
上記実施例1の「5.1.1.重合体粒子(A)の作製」において、単量体の組成と乳化剤量を適宜に変更したほかは実施例1と同様にして、表1に示す組成の重合体粒子(A)を含有する水系分散体を調製し、該水系分散体の固形分濃度に応じて水を減圧除去または追加することにより、固形分濃度40%の水系分散体を得た。なお、実施例2〜5および比較例1〜3で得られた微粒子を示差走査熱量計(DSC)によって測定したところ、単一のガラス転移温度Tgが表1に記載の温度で一つだけ観測された。2種類の重合体を用いているにもかかわらず、得られた重合体粒子(A)は一つのTgしか示さないため、重合体粒子(A)はポリマーアロイ粒子であると推測できる。
次いで、実施例1の「5.1.2.電極用バインダー組成物の調製」において、成分(B)の添加量を表1の種類および添加量とした以外は、実施例1と同様に電極用バインダー組成物を調製した。得られた電極用バインダー組成物を、実施例1の「5.1.3.電極用バインダー組成物の貯蔵安定性評価」と同様に評価した。その結果を表1に併せて示した。
さらに、実施例1の「5.1.4.電極用スラリーの調製および評価」、「5.1.5.電極の製造および評価」、「5.1.6.蓄電デバイスの製造および評価」と同様にし
て電極用スラリー、電極、蓄電デバイスを作製し、評価を行った。その結果を表1に併せて示した。
5.3.実施例6
5.3.1.重合体粒子(A)の作製
容量7リットルのセパラブルフラスコに、水150質量部およびドデシルベンゼンスルホン酸ナトリウム0.2質量部を仕込み、セパラブルフラスコの内部を十分に窒素置換した。一方、別の容器に、水60質量部、乳化剤としてエーテルサルフェート型乳化剤(商品名「アデカリアソープSR1025」、株式会社ADEKA製)を固形分換算で0.8質量部ならびに単量体として2,2,2−トリフルオロエチルメタクリレート(TFEMA)20質量部、アクリロニトリル(AN)10質量部、メチルメタクリレート(MMA)25質量部、2−エチルヘキシルアクリレート(EHA)40質量部およびアクリル酸(AA)5質量部を加え、十分に攪拌して上記モノマーの混合物を含有するモノマー乳化液を調製した。その後、上記セパラブルフラスコの内部の昇温を開始し、当該セパラブルフラスコの内部の温度が60℃に到達した時点で、重合開始剤として過硫酸アンモニウム0.5質量部を加えた。そして、セパラブルフラスコの内部の温度が70℃に到達した時点で、上記で調製したモノマー乳化液の添加を開始し、セパラブルフラスコの内部の温度を70℃に維持したままモノマー乳化液を3時間かけてゆっくりと添加した。その後、セパラブルフラスコの内部の温度を85℃に昇温し、この温度を3時間維持して重合反応を行った。3時間後、セパラブルフラスコを冷却して反応を停止した後、アンモニウム水を加えてpHを7.6に調整することにより、重合体粒子(A)を30%含有する水系分散体を得た。
上記で得られた水系分散体について、実施例1と同様にして評価したところ、THF不溶分は78%であり、数平均粒子径は110nmであった。また、ガラス転移温度は8℃に一つだけ観測された。上記で得られた水系分散体を使用したこと以外は、実施例1と同様にして電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスを作製して評価した。
5.4.実施例7〜8
各単量体の種類および仕込み量(部)をそれぞれ表1に記載の通りとしたほかは上記実施例6と同様にして、表1に記載の数平均粒子径を有する重合体粒子(A)を含有する水系分散体をそれぞれ得た。このようにして得られた水系分散体を使用したこと以外は、実施例1と同様にして電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスを作製して評価した。
5.5.実施例9
5.5.1.重合体粒子(A)の作製
攪拌機を備えた温度調節可能なオートクレーブ中に、水200質量部、ドデシルベンゼンスルホン酸ナトリウム0.6質量部、過硫酸カリウム1.0質量部、重亜硫酸ナトリウム0.5質量部、α−メチルスチレンダイマー0.2質量部、ドデシルメルカプタン0.2質量部、および表2に示した一段目重合成分を一括して仕込み、70℃に昇温し2時間重合反応させた。重合添加率が80%以上であることを確認した後、反応温度を70℃に維持したまま、表2に示す二段目重合成分を6時間かけて添加した。二段目重合成分添加開始から3時間経過した時点で、α−メチルスチレンダイマー1.0質量部およびドデシルメルカプタン0.3質量部を添加した。二段目重合成分添加終了後、温度を80℃に昇温し、さらに2時間反応させた。重合反応終了後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5質量部(固形分換算)を添加した。その後、残留モノマーを水蒸気蒸留で処理し、減圧下で固形分50%まで濃縮することで、重合体粒子(A)を50%含有する水系分散体を得た。得られた水系分散体について、実施例1と同様にして評
価したところ、THF不溶分は90%であり、ガラス転移温度は−20℃に一つだけ観測された。
5.5.2.電極用バインダー組成物の調製
上記で得られた重合体粒子(A)を含有する水系分散体1,000gに、メタクリル酸ブチルを1%含有する水を50g仕込み、300rpmで撹拌することにより、バインダー組成物の調製を行った。
得られた電極用バインダー組成物について、動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、形式「FPAR−1000」)を用いて粒度分布を測定し、その粒度分布から最頻粒径を求めたところ、数平均粒子径は200nmであった。
なお、電極用バインダー組成物における成分(B)の含有量は、以下の手順によりバインダー組成物を分析することで確認することもできる。すなわち、得られた電極バインダー組成物を0.2g秤量し、内標準溶液として100ppmのテトラデカンを溶解したテトラヒドロフラン溶液を添加して20倍に希釈した。このようにして作製した測定試料をガスクロマトグラフィー測定装置(Agilent Technologies社製、型式「GC6890N」)で、カラムにはAgilent Technologies社製のHP−1(30m×0.25mmID×膜厚1.0μm)を使用して定量した結果、メタクリル酸ブチルの含有量は500ppmであることが確認できた。
5.5.3.電極用バインダー組成物の貯蔵安定性評価
上記「5.1.3.電極用バインダー組成物の貯蔵安定性評価」と同様に評価を行った。その結果を表1に併せて示した。
5.5.4.電極用スラリーの調製および評価
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に増粘剤(商品名「CMC2200」、ダイセル化学工業株式会社製)1質量部(固形分換算)、負極活物質としてグラファイト100質量部(固形分換算)、水68質量部を投入し、60rpmで1時間攪拌を行った。その後、上記「5.5.3.電極用バインダー組成物の貯蔵安定性評価」の項で保存しておいた電極用バインダー組成物2質量部(固形分換算)を加え、さらに1時間攪拌しペーストを得た。得られたペーストに水を投入し、固形分を50%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。また、上記「5.1.4.電極用スラリーの調製および評価」と同様にして、得られた電極用スラリーの曳糸性を評価した。その結果を表1に併せて示した。
5.5.5.電極の製造および評価
厚み20μmの銅箔よりなる集電体の表面に、上記「5.5.4.電極用スラリーの調製および評価」で調製した電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、電極層の密度が表1に記載の値になるようにロールプレス機によりプレス加工することにより、電極(負極)を得た。また、上記「5.1.5.電極の製造および評価」と同様にして、得られた電極のクラック率を測定した。その結果を表1に併せて示した。
5.5.6.蓄電デバイスの製造および評価
<対極(正極)の製造>
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に電気化学デバイス電極用バインダー(株式会社クレハ製、商品名「
KFポリマー#1120」)4.0質量部(固形分換算)、導電助剤(電気化学工業株式会社製、商品名「デンカブラック50%プレス品」)3.0質量部、正極活物質として粒径5μmのLiCoO(ハヤシ化成株式会社製)100質量部(固形分換算)、N−メチルピロリドン(NMP)36質量部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを投入し、固形分を65%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。アルミニウム箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、電極層の密度が3.0g/cmとなるようにロールプレス機によりプレス加工することにより、対極(正極)を得た。
<リチウムイオン電池セルの組立て>
露点が−80℃以下となるようAr置換されたグローブボックス内で、上記において製造した電極(負極)を直径15.95mmに打ち抜き成型したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、前記<対極(正極)の製造>の項において製造した正極を直径16.16mmに打ち抜き成型したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。また、上記「5.1.6.蓄電デバイスの製造および評価」と同様にして、得られた蓄電デバイスの充放電レート特性を評価した。その結果を表1に併せて示した。
5.6.実施例10〜11および比較例4〜5
上記実施例9の「5.5.1.重合体粒子(A)の作製」において、単量体の組成と乳化剤量を適宜に変更したほかは実施例9と同様にして、表1に示す組成の重合体粒子(A)を含有する水系分散体を調製し、該水系分散体の固形分濃度に応じて水を減圧除去または追加することにより、固形分濃度50%の水系分散体を得た。
次いで、実施例9の「5.5.2.電極用バインダー組成物の調製」において、成分(B)の添加量を表1の種類と添加量とした以外は、実施例9と同様にして電極用バインダー組成物を調製した。得られた電極用バインダー組成物を、実施例9の「5.5.3.電極用バインダー組成物の貯蔵安定性評価」と同様に評価した。その結果を表1に併せて示した。
さらに、実施例9の「5.5.4.電極用スラリーの調製および評価」、「5.5.5.電極の製造および評価」、「5.5.6.蓄電デバイスの製造および評価」と同様にして電極用スラリー、電極、蓄電デバイスを作製し、評価を行った。その結果を表1に併せて示した。
5.7.評価結果
実施例1〜11および比較例1〜5に係る電極用バインダー組成、ならびに上記の評価結果を表1に併せて示した。また、実施例9〜11および比較例4〜5の重合体粒子(A)を含有する水系分散体を調製する際の、一段目重合成分および二段目重合成分の含有割合を表2に示した。
Figure 0005077613
Figure 0005077613
表1および表2における各成分の略称は、それぞれ以下の意味である。
・VDF:フッ化ビニリデン
・HFP:六フッ化プロピレン
・TFEMA:メタクリル酸2,2,2−トリフルオロエチル
・TFEA:アクリル酸2,2,2−トリフルオロエチル
・HFIPA:アクリル酸1,1,1,3,3,3−ヘキサフルオロイソプロピル
・MMA:メタクリル酸メチル
・EHA:アクリル酸2−エチルヘキシル
・HEMA:メタクリル酸2−ヒドロキシエチル
・MAA:メタクリル酸
・AA :アクリル酸
・TA :イタコン酸
・DVB:ジビニルベンゼン
・TMPTMA:トリメタクリル酸トリメチロールプロパン
・AN :アクリロニトリル
・BD :1,3−ブタジエン
・ST :スチレン
上記表1から明らかなように、実施例1〜11に示した本発明に係る電極用バインダー
組成物は、貯蔵安定性が良好であり、さらに本発明に係る電極用バインダー組成物を用いて調製された電極用スラリーは、集電体と電極活物質層との間の結着性が良好であるためクラック率が低く、密着性に優れる電極を与えた。また、これらの電極を備える蓄電デバイス(リチウムイオン二次電池)は、充放電レート特性が良好であった。
一方、比較例1〜5に示したバインダー組成物からは、良好な電極が得られず、良好な充放電特性を示す蓄電デバイスは得られなかった。
なお、上述のとおり、実施例1〜5および比較例1〜3で使用した重合体粒子(A)がポリマーアロイ粒子であることは、DSCチャートから推定した。
図1は、実施例3において得られた重合体粒子(A)のDSCチャートである。実施例3では、シード粒子へさらにモノマーを添加し、多段的に重合しているため、少なくとも二種類の重合体を含有する重合体粒子であると考えられる。しかしながら、図1から明らかなようにそれら二種類の重合体に由来する二種類のTgは確認できず、一つのTgのみ観察される。これは実施例3のように作製した重合体粒子がポリマーアロイの状態であることを示している。
本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。

Claims (9)

  1. 蓄電デバイスに使用される電極を作製するためのバインダー組成物であって、
    重合体(A)と、メタクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、アクリル酸メチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシメチル及び(メタ)アクリル酸4−ヒドロキシブチルからなる群より選択される少なくとも1種の(メタ)アクリレート化合物(B)と、液状媒体(C)と、を含有し、
    前記重合体(A)が、
    含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、
    不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、
    を有する含フッ素系重合体粒子であり、
    前記バインダー組成物中における前記化合物(B)の濃度が10〜1,000ppmであることを特徴とする、電極用バインダー組成物。
  2. 前記含フッ素系重合体粒子についてJIS K7121に準拠して示差走査熱量測定(DSC)を行ったときに、−50〜+250℃の温度範囲における吸熱ピークが1つのみ観測される、請求項1に記載の電極用バインダー組成物。
  3. 前記吸熱ピークが−30〜+30℃の温度範囲に観測される、請求項2に記載の電極用バインダー組成物。
  4. 蓄電デバイスに使用される電極を作製するためのバインダー組成物であって、
    重合体(A)と、メタクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、アクリル酸メチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシメチル及び(メタ)アクリル酸4−ヒドロキシブチルからなる群より選択される少なくとも1種の(メタ)アクリレート化合物(B)と、液状媒体(C)と、を含有し、
    前記重合体(A)が、
    共役ジエン化合物に由来する繰り返し単位(Mc)と、
    芳香族ビニル化合物に由来する繰り返し単位(Md)と、
    (メタ)アクリレート化合物に由来する繰り返し単位(Me)と、
    不飽和カルボン酸に由来する繰り返し単位(Mf)と、
    を有するジエン系重合体粒子であり、
    前記バインダー組成物中における前記化合物(B)の濃度が10〜1,000ppmであることを特徴とする、電極用バインダー組成物。
  5. 前記ジエン系重合体粒子についてJIS K7121に準拠して示差走査熱量測定(DSC)を行ったときに、−50〜+5℃の温度範囲における吸熱ピークが1つのみ観測される、請求項4に記載の電極用バインダー組成物。
  6. 前記含フッ素系重合体粒子または前記ジエン系重合体粒子の数平均粒子径が50〜400nmである、請求項1ないし請求項5のいずれか一項に記載の電極用バインダー組成物。
  7. 請求項1ないし請求項6のいずれか一項に記載の電極用バインダー組成物と、電極活物質と、を含有する、電極用スラリー。
  8. 集電体と、前記集電体の表面上に請求項7に記載の電極用スラリーが塗布および乾燥させて形成された層と、を備える電極。
  9. 請求項8に記載の電極を備える蓄電デバイス。
JP2012137533A 2012-02-02 2012-06-19 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス Active JP5077613B1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012137533A JP5077613B1 (ja) 2012-06-19 2012-06-19 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
EP13151796.3A EP2624338B1 (en) 2012-02-02 2013-01-18 Electrode binder composition, electrode slurry, electrode, and electrical storage device
ES13151796.3T ES2526689T3 (es) 2012-02-02 2013-01-18 Composición ligante de electrodo, suspensión para el electrodo, electrodo y dispositivo de almacenamiento eléctrico
CN201310041093.8A CN103094582B (zh) 2012-02-02 2013-02-01 电极用粘结剂组合物、电极用糊料、电极和蓄电设备
KR1020130011727A KR101371988B1 (ko) 2012-02-02 2013-02-01 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
KR1020130079383A KR101373889B1 (ko) 2012-02-02 2013-07-08 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137533A JP5077613B1 (ja) 2012-06-19 2012-06-19 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス

Publications (2)

Publication Number Publication Date
JP5077613B1 true JP5077613B1 (ja) 2012-11-21
JP2014002926A JP2014002926A (ja) 2014-01-09

Family

ID=47435476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137533A Active JP5077613B1 (ja) 2012-02-02 2012-06-19 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス

Country Status (1)

Country Link
JP (1) JP5077613B1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280145B1 (ko) 2012-02-13 2013-06-28 제이에스알 가부시끼가이샤 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
WO2013187188A1 (ja) * 2012-06-11 2013-12-19 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜形成用スラリー、保護膜、および蓄電デバイス
WO2014041983A1 (ja) * 2012-09-11 2014-03-20 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス
JP2014110195A (ja) * 2012-12-04 2014-06-12 Jsr Corp 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143552A (ja) * 2015-02-02 2016-08-08 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2016143553A (ja) * 2015-02-02 2016-08-08 Jsr株式会社 蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299109A (ja) * 1999-04-15 2000-10-24 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物及びその利用
JP2002042819A (ja) * 2000-07-31 2002-02-08 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JP2010055847A (ja) * 2008-08-27 2010-03-11 Idemitsu Kosan Co Ltd 電極製造用スラリー及びそれからなる電極シート
JP2010205722A (ja) * 2009-02-03 2010-09-16 Nippon A&L Inc 非水電解液二次電池電極用バインダー。
JP2011003529A (ja) * 2009-05-21 2011-01-06 Mitsubishi Chemicals Corp 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299109A (ja) * 1999-04-15 2000-10-24 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物及びその利用
JP2002042819A (ja) * 2000-07-31 2002-02-08 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JP2010055847A (ja) * 2008-08-27 2010-03-11 Idemitsu Kosan Co Ltd 電極製造用スラリー及びそれからなる電極シート
JP2010205722A (ja) * 2009-02-03 2010-09-16 Nippon A&L Inc 非水電解液二次電池電極用バインダー。
JP2011003529A (ja) * 2009-05-21 2011-01-06 Mitsubishi Chemicals Corp 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280145B1 (ko) 2012-02-13 2013-06-28 제이에스알 가부시끼가이샤 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
WO2013187188A1 (ja) * 2012-06-11 2013-12-19 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜形成用スラリー、保護膜、および蓄電デバイス
WO2014041983A1 (ja) * 2012-09-11 2014-03-20 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス
US9758629B2 (en) 2012-09-11 2017-09-12 Jsr Corporation Composition for producing protective film, protective film, and electrical storage device
JP2014110195A (ja) * 2012-12-04 2014-06-12 Jsr Corp 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス

Also Published As

Publication number Publication date
JP2014002926A (ja) 2014-01-09

Similar Documents

Publication Publication Date Title
JP4957932B1 (ja) 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP5862878B2 (ja) 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
JP4993150B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP4849286B1 (ja) 正極用バインダー組成物
JP5928712B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極の製造方法及びリチウムイオン二次電池の製造方法
KR101433512B1 (ko) 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
KR101373889B1 (ko) 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
JP5459526B1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜形成用スラリー、保護膜、および蓄電デバイス
JP5077613B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP6024896B2 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
WO2012169094A1 (ja) 蓄電デバイス用正極
JP5862877B2 (ja) 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
JP6048636B2 (ja) 電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスの製造方法
JP2013084502A (ja) 電極用バインダー組成物
JP2013033702A (ja) 蓄電デバイス用正極
JP2013030449A (ja) 正極用スラリー
JP2013030447A (ja) 正極用スラリー
JP5024575B1 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP2013179024A (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP2013030288A (ja) 電極用バインダー組成物

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250