WO2013146136A1 - キャパシタ用電解液、電気二重層キャパシタ及びリチウムイオンキャパシタ - Google Patents

キャパシタ用電解液、電気二重層キャパシタ及びリチウムイオンキャパシタ Download PDF

Info

Publication number
WO2013146136A1
WO2013146136A1 PCT/JP2013/056099 JP2013056099W WO2013146136A1 WO 2013146136 A1 WO2013146136 A1 WO 2013146136A1 JP 2013056099 W JP2013056099 W JP 2013056099W WO 2013146136 A1 WO2013146136 A1 WO 2013146136A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrolytic solution
capacitors
mass
double layer
Prior art date
Application number
PCT/JP2013/056099
Other languages
English (en)
French (fr)
Inventor
和幸 小林
山本 紀子
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to CN201380006921.2A priority Critical patent/CN104081487B/zh
Priority to KR1020147029103A priority patent/KR102104687B1/ko
Priority to US14/387,766 priority patent/US9646773B2/en
Priority to EP13767784.5A priority patent/EP2833383B1/en
Publication of WO2013146136A1 publication Critical patent/WO2013146136A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrolytic solution for a capacitor. More specifically, the present invention relates to an electrolytic solution for a capacitor that has high performance even at a low temperature for an electric double layer capacitor or a lithium ion capacitor.
  • Electric double layer capacitors and lithium ion capacitors are used as small power sources used for semiconductor memory backup and the like.
  • an inexpensive porous carbon material such as activated carbon
  • the internal resistance increases when used at a high voltage exceeding the decomposition voltage of the electrolyte, For example, the capacitance may decrease. Therefore, the electrolytic solution used for the electric double layer capacitor and the lithium ion capacitor is required to have high conductivity and excellent electrochemical stability.
  • the electrolytic solution used can operate the capacitors stably for a long time in a wide temperature range from low temperature to high temperature. The characteristics that can be achieved are also important.
  • Patent Document 1 discloses an electrolytic solution for an electric double layer capacitor in which tetraethylammonium tetrafluoroborate, which is an aliphatic quaternary ammonium salt, is dissolved as an electrolyte in propylene carbonate, which is an organic solvent.
  • tetraethylammonium tetrafluoroborate which is an aliphatic quaternary ammonium salt
  • propylene carbonate which is an organic solvent
  • Patent Document 2 discloses an electrolytic solution using a mixed solution of sulfolane and 3-methylsulfolane or a mixed solution of sulfolane and 2,4-dimethylsulfolane as an organic solvent for the purpose of improving the withstand voltage.
  • the melting point of sulfolane is 29 ° C
  • the melting point of 3-methylsulfolane is 1 ° C
  • the melting point of 2,4-dimethylsulfolane is -3 ° C. Since these have a relatively high melting point, the electrolyte is solidified at low temperatures. There is a problem that the characteristics of the capacitor are remarkably deteriorated.
  • Patent Document 3 discloses an electrolytic solution in which a quaternary onium salt is dissolved in a solvent containing 15 to 85% by volume of sulfolane or a derivative thereof and 85 to 15% by volume of ethyl methyl carbonate as a chain carbonate. Is used in an organic electrolyte battery using an organic semiconductor material having a polyacene skeleton as an electrode. However, this method has a problem that ethyl methyl carbonate, which is inferior in oxidation resistance to sulfolane, greatly affects the withstand voltage of the electrolytic solution, and the withstand voltage is extremely inferior.
  • Patent Document 4 discloses a quaternary ammonium salt, spiro- (1,1 ′)-pyrrolidinium, which is a quaternary ammonium salt, in an organic solvent in which a sulfolane: chain alkylsulfone compound is mixed at 70:30 to 90:10.
  • a method is disclosed in which an electrolytic solution in which is dissolved is used for an electric double layer capacitor.
  • this electrolyte solution may be solidified at a very low temperature, and is not sufficient in terms of long-term reliability.
  • JP 2000-114105 A Japanese Patent Laid-Open No. 7-74061 Japanese Patent Laid-Open No. 10-27623 JP 2008-171902 A
  • the present invention has high electrical conductivity and withstand voltage, has a stable liquid without solidification and salt precipitation in a wide temperature range, particularly at low temperatures, can exhibit excellent electrical characteristics, and has long-term reliability. It aims at providing the electrolyte solution for capacitors which is excellent in. Another object of the present invention is to provide an electric double layer capacitor and a lithium ion capacitor manufactured using the electrolytic solution for a capacitor.
  • the present invention is an electrolytic solution in which a quaternary ammonium salt or a lithium salt is dissolved in an organic solvent, and the organic solvent contains a chain alkyl sulfone compound represented by the following formula (1) and acetonitrile.
  • This is an electrolytic solution for capacitors.
  • R 1 and R 2 each represent a linear or branched alkyl group having 1 to 4 carbon atoms and may be independently the same or different from each other.
  • the electrolytic solution for capacitors of the present invention is an electrolytic solution in which a quaternary ammonium salt or a lithium salt is dissolved in an organic solvent.
  • the organic solvent contains a chain alkylsulfone compound represented by the above formula (1) (hereinafter also simply referred to as a chain alkylsulfone compound).
  • a chain alkylsulfone compound represented by the above formula (1) (hereinafter also simply referred to as a chain alkylsulfone compound).
  • R 1 and R 2 each represent a linear or branched alkyl group having 1 to 4 carbon atoms, and are each independently the same or different. but since the melting point is low, R 1 and R 2, are preferably different.
  • R 1 and R 2 are preferably different.
  • the carbon number of R 1 and / or R 2 is 5 or more, it exhibits a solid at room temperature, the viscosity of the obtained electrolytic solution for capacitors is remarkably increased, and the characteristics of the capacitor such as conductivity and capacitance are deteriorated. .
  • the carbon number of R 1 and / or R 2 increases, the dielectric constant tends to decrease and the solubility of the electrolyte tends to decrease. Therefore, the carbon number of R 1 and R 2 is preferably 3 or less.
  • R 1 and R 2 are preferably branched because of low crystallinity and low melting point.
  • the boiling point of the chain alkylsulfone compound is preferably 240 ° C. or higher in order to impart high heat resistance and high durability to the capacitor.
  • the melting point of the chain alkyl sulfone compound is preferably 0 ° C. or lower in order to ensure stable operation of the capacitor at a low temperature.
  • the lower the viscosity of the chain alkyl sulfone compound, the lower the internal resistance of the device, and the viscosity measured at 25 ° C. is preferably 10 cP or less. In the present specification, the viscosity means a value measured with a conical plate type rotational viscometer.
  • chain alkylsulfone compound examples include dimethylsulfone, ethylmethylsulfone, diethylsulfone, propylmethylsulfone, isopropylmethylsulfone, propylethylsulfone, isopropylethylsulfone, dipropylsulfone, diisopropylsulfone, and the like. It is done.
  • the chain alkylsulfone compound may be used alone, but by using a combination of two or more of the chain alkylsulfone compounds, the freezing point of the obtained electrolytic solution for capacitors can be lowered, or quaternary ammonium can be used. The solubility of the salt or lithium salt can be improved.
  • the organic solvent contains acetonitrile.
  • the electrolytic solution for capacitors of the present invention has excellent conductivity at low temperatures.
  • the minimum with preferable content of acetonitrile in the said organic solvent is 5 mass%, and a preferable upper limit is 80 mass%.
  • a preferable upper limit is 80 mass%.
  • the content of acetonitrile is less than 5% by mass, the obtained electrolytic solution for a capacitor may solidify or precipitate a salt at a low temperature.
  • the content of the acetonitrile exceeds 80% by mass, the obtained electrolytic solution for a capacitor becomes high in volatility and toxicity, and handling may be difficult.
  • the more preferable lower limit of the content of acetonitrile is 10% by mass, the more preferable upper limit is 50% by mass, the still more preferable lower limit is 20% by mass, and the still more preferable upper limit is 30% by mass.
  • the preferable minimum of content of the said acetonitrile with respect to 100 mass parts of said linear alkyl sulfone compounds is 5 mass parts, and a preferable upper limit is 400 mass parts.
  • the content of the acetonitrile relative to 100 parts by mass of the chain alkyl sulfone compound is less than 5 parts by mass, the obtained electrolytic solution for capacitors may solidify or precipitate a salt at a low temperature. If the content of the acetonitrile with respect to 100 parts by mass of the chain alkyl sulfone compound exceeds 400 parts by mass, the resulting electrolyte for a capacitor may be highly volatile and difficult to handle.
  • the minimum with more preferable content of the said acetonitrile with respect to 100 mass parts of said chain alkyl sulfone compounds is 11 mass parts, and a more preferable upper limit is 100 mass parts.
  • the organic solvent may contain another organic solvent in addition to the chain alkyl sulfone compound and the acetonitrile.
  • organic solvents include sulfolane represented by the following formula (2) (hereinafter, also simply referred to as sulfolane), 3-methylsulfolane, ⁇ -butyrolactone, propylene carbonate, ethylene carbonate, vinylene carbonate, butylene carbonate, and the like. .
  • sulfolane has a higher withstand voltage than the carbonates listed above, and can be used as a mixed solvent without impairing the high withstand voltage characteristics of the chain alkyl sulfones. Furthermore, by using a mixed solvent of sulfolane and chain alkyl sulfones, there is an effect of increasing the solubility of the electrolyte.
  • the minimum with preferable content of the sulfolane in the said organic solvent is 10 mass%, and a preferable upper limit is 90 mass%.
  • a preferable upper limit is 90 mass%.
  • the solubility of the electrolyte may be lowered.
  • the content of the sulfolane exceeds 90% by mass, the freezing point of the electrolytic solution may increase.
  • a more preferable lower limit of the sulfolane content is 20% by mass, and a more preferable upper limit is 80% by mass.
  • the minimum with preferable content of the said sulfolane with respect to 100 mass parts of said chain alkyl sulfone compounds is 11 mass parts, and a preferable upper limit is 900 mass parts.
  • a preferable upper limit is 900 mass parts.
  • the solubility of the electrolyte may be lowered.
  • the content of the sulfolane with respect to 100 parts by mass of the chain alkyl sulfone compound exceeds 900 parts by mass, the freezing point of the electrolytic solution may increase.
  • the minimum with more preferable content of the said sulfolane with respect to 100 mass parts of said linear alkyl sulfone compounds is 25 mass parts, and a more preferable upper limit is 400 mass parts.
  • the electrolyte in the electrolytic solution for capacitors of the present invention is a quaternary ammonium salt or a lithium salt.
  • the quaternary ammonium salt include triethylmethylammonium, tetraethylammonium, tetrabutylammonium, diethyldimethylammonium, ethyltrimethylammonium, dimethylpyrrolidinium, diethylpyrrolidinium, ethylmethylpyrrolidinium, spiro- (1,1 ') -Pyrrolidinium, N-methyl-N-spiropyrrolidinium, diethylpiperidinium, spiro- (1,1')-piperidinium and other salts of tetraalkylammonium and anions.
  • Examples of the anion constituting the quaternary ammonium salt or lithium salt include BF 4 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , N (CF 3 SO 2 ) 2 ⁇ , and N (C 2 F 5 SO 2 ) 2.
  • N (CF 3 SO 2 ) (C 4 F 9 SO 2) 2 -, C (CF 3 SO 2) 3 -, C (C 2 F 5) 3 - is preferable.
  • BF 4 ⁇ , PF 6 ⁇ , N (CF 3 SO 2 ) 2 have high solubility in the organic solvent, excellent electrochemical stability, and high conductivity when used as an electrolytic solution.
  • BF 4 -, PF 6 - is more preferred.
  • These anions may be used alone or in combination of two or more.
  • the quaternary ammonium salt, triethyl ammonium tetrafluoroborate are preferable, examples of the lithium salt, LiPF 6 is preferred.
  • the preferable lower limit of the concentration of the quaternary ammonium salt or lithium salt in the electrolytic solution for capacitors of the present invention is 0.1 mol / L, and the preferable upper limit is 3.0 mol / L. If the concentration of the quaternary ammonium salt or lithium salt is less than 0.1 mol / L, the electrical conductivity may be insufficient. When the concentration of the quaternary ammonium salt or the lithium salt exceeds 3.0 mol / L, the viscosity of the obtained electrolytic solution for a capacitor is increased, impregnation is reduced, and the capacitor may be inferior in electrical characteristics. is there.
  • the more preferable lower limit of the concentration of the quaternary ammonium salt or the lithium salt is 0.5 mol / L
  • the more preferable upper limit is 2.0 mol / L
  • the still more preferable lower limit is 0.8 mol / L
  • the more preferable upper limit is 1. 5 mol / L.
  • the electrolytic solution for capacitors of the present invention may contain an additive that imparts impregnation properties and flame retardancy.
  • the additive include siloxane compounds such as hexamethyldisiloxane and hexamethylcyclotrisiloxane.
  • the electrolytic solution for capacitors of the present invention can be prepared by the following production method. That is, it is confirmed that an electrolyte composed of a quaternary ammonium salt or a lithium salt is added to the organic solvent, and the solution is stirred and completely dissolved. The obtained electrolytic solution is dehydrated, and the water content in the electrolytic solution is reduced to 100 ppm or less, preferably 20 ppm or less, whereby the intended electrolytic solution for capacitors is obtained.
  • a capacitor can be produced by using the electrolytic solution for a capacitor thus prepared.
  • An electric double layer capacitor and a lithium ion capacitor produced using the electrolytic solution for capacitors of the present invention are also one aspect of the present invention.
  • the electric double layer capacitor of the present invention and the lithium ion capacitor of the present invention are collectively referred to as the capacitor of the present invention.
  • the production of the electric double layer capacitor of the present invention can be made by a general capacitor manufacturing method, that is, impregnating the polarizable electrode sandwiching the separator with the electrolytic solution for a capacitor of the present invention, which becomes a driving electrolytic solution, This is done by sealing the container.
  • a lithium ion capacitor can be manufactured by a general method of manufacturing a lithium ion capacitor, that is, driven by a polarizable electrode (positive electrode) sandwiching a separator and a carbon electrode (negative electrode) from which lithium ions can be inserted and removed. It is carried out by impregnating the capacitor-like electrolyte of the present invention, which is an electrolytic solution, and sealing it in a container.
  • Examples of the polarizable electrode include porous carbon materials such as activated carbon powder and activated carbon fibers, metal oxide materials, and conductive polymer materials. Among these, a porous carbon material is preferable because it is inexpensive and easily available.
  • Examples of the carbon electrode from which lithium ions can be inserted and removed include materials such as hard carbon, graphite, and carbon nanotube. Among these, a graphite material is preferable because it is used as a negative electrode of a lithium ion battery and is easily available. The graphite material is used after lithium ions are pre-doped before assembling the lithium ion capacitor.
  • separator a separator made of a material such as cellulose, polyethylene, or polypropylene-based nonwoven fabric can be used.
  • the shape of the capacitor of the present invention is not particularly limited, and examples thereof include a film shape, a coin shape, a cylindrical shape, and a box shape.
  • the electrical conductivity and withstand voltage are high, it has a stable liquid state without solidification or salt precipitation in a wide temperature range, particularly at a low temperature, can exhibit excellent electrical characteristics, and can be used for a long time. It is possible to provide an electrolytic solution for a capacitor that is excellent in reliability. Moreover, according to this invention, the electrical double layer capacitor and lithium ion capacitor which were manufactured using this electrolyte solution for capacitors can be provided.
  • a chain alkyl sulfone compound (“ethyl methyl sulfone”, “ethyl isopropyl sulfone”, “ethyl isobutyl sulfone”), a cyclic sulfone compound (“sulfolane”), a chain nitrile compound (“ The structural formulas of acetonitrile ”) and carbonate compound (“ propylene carbonate ”) are shown in Table 1.
  • Example 1 In an argon gas circulation type dry box whose dew point temperature was controlled to -50 ° C. or less, 80 parts by mass of ethyl methyl sulfone (EMS, boiling point 239 ° C., melting point 34 ° C., viscosity 6 cP (35 ° C.)) and 20 parts by mass of acetonitrile was added to a glass screw tube and mixed with a solvent obtained by adding triethylmethylammonium tetrafluoroborate together with a stirrer so as to have a concentration of 1.0 mol / L. This was stirred using a magnetic stirrer for about 1 hour until the electrolyte was completely dissolved to obtain a capacitor electrolyte.
  • EMS ethyl methyl sulfone
  • acetonitrile 20 parts by mass of acetonitrile
  • the prepared electrolyte solution was measured for the moisture value of the obtained capacitor electrolyte solution, and was confirmed to be less than 100 ppm.
  • Example 2 In a solvent obtained by mixing 16 parts by mass of ethyl isopropyl sulfone (EIPS, boiling point 265 ° C., melting point ⁇ 11 ° C., viscosity 6 cP (25 ° C.)), 64 parts by mass of sulfolane and 20 parts by mass of acetonitrile, the concentration is 1. Triethylmethylammonium tetrafluoroborate was added at 0 mol / L to obtain an electrolytic solution for capacitors. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • EIPS ethyl isopropyl sulfone
  • Triethylmethylammonium tetrafluoroborate was added at 0 mol / L to obtain an electrolytic solution for capacitors. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • Example 3 To a solvent obtained by mixing 18 parts by mass of ethyl methyl sulfone, 72 parts by mass of sulfolane and 10 parts by mass of acetonitrile, triethylmethylammonium tetrafluoroborate was added so as to have a concentration of 1.0 mol / L. An electrolytic solution was obtained. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • Example 4 To a solvent obtained by mixing 20 parts by mass of ethylmethylsulfone, 60 parts by mass of sulfolane and 20 parts by mass of acetonitrile, triethylmethylammonium tetrafluoroborate was added so as to have a concentration of 1.0 mol / L. An electrolytic solution was obtained. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • Triethylmethylammonium tetrafluoroborate was added to a solvent obtained by mixing 60 parts by mass of ethyl methyl sulfone, 20 parts by mass of ethyl isopropyl sulfone and 20 parts by mass of acetonitrile so that the concentration became 1.0 mol / L.
  • An electrolytic solution for capacitors was obtained. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • Triethylmethylammonium tetrafluoroborate is added to a solvent obtained by mixing 70 parts by mass of ethylmethylsulfone and 30 parts by mass of acetonitrile so that the concentration becomes 1.0 mol / L, thereby obtaining an electrolytic solution for a capacitor. It was. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • Example 7 Triethylmethylammonium tetrafluoroborate is added to a solvent obtained by mixing 70 parts by mass of ethyl isopropyl sulfone and 30 parts by mass of acetonitrile so that the concentration becomes 1.0 mol / L to obtain an electrolytic solution for a capacitor. It was. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • Example 8 In a solvent obtained by mixing 70 parts by mass of ethyl isobutyl sulfone (EIBS, boiling point 261 ° C., melting point ⁇ 16 ° C., viscosity 4 cP (25 ° C.)) and 30 parts by mass of acetonitrile, the concentration becomes 1.0 mol / L. Thus, triethylmethylammonium tetrafluoroborate was added to obtain an electrolytic solution for a capacitor. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • EIBS ethyl isobutyl sulfone
  • Example 9 To a solvent obtained by mixing 95 parts by mass of ethyl isopropyl sulfone and 5 parts by mass of acetonitrile, triethylmethylammonium tetrafluoroborate is added so as to have a concentration of 1.0 mol / L to obtain an electrolytic solution for a capacitor. It was. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • Triethylmethylammonium tetrafluoroborate is added to a solvent obtained by mixing 20 parts by mass of ethyl isopropyl sulfone and 80 parts by mass of acetonitrile so that the concentration becomes 1.0 mol / L, thereby obtaining an electrolytic solution for a capacitor. It was. The moisture value of the obtained capacitor electrolyte was measured and confirmed to be less than 100 ppm.
  • the counter electrode is platinum wire
  • the reference electrode is Ag / Ag +
  • the voltage until the current density of 0.2 mA / cm 2 is measured at a sweep speed of 5 mV / s is to determine the oxidative decomposition potential and the reductive decomposition potential. Determined by.
  • Table 2 EMS represents ethyl methyl sulfone
  • EIPS represents ethyl isopropyl sulfone
  • EIBS represents ethyl isobutyl sulfone.
  • An electric double layer capacitor was produced by the following steps using the electrolytic solution for capacitors obtained in the Examples and Comparative Examples. Two sheets of circular activated carbon coated aluminum sheet with a diameter of 14 mm and a thickness of 0.1 mm are used as polarizable electrodes, and a separator made of circular cellulose with a diameter of 17 mm and a thickness of 0.05 mm is interposed between the two sheets to make polypropylene.
  • the characteristics of the produced electric double layer capacitor were determined by conducting charge / discharge tests at 20 ° C. and ⁇ 30 ° C. for each electric double layer capacitor. Specifically, each capacitor is left at a predetermined measurement temperature for 30 minutes or more, and after the capacitor reaches a predetermined temperature, a rated voltage of 2.5 V is applied for 30 minutes, and then a constant current discharge is performed at a discharge current of 2 mA. The time until the voltage between the capacitor terminals changed from 2V to 1V was measured, and the capacitance was calculated. Moreover, the discharge lower limit was set to 0.0V. The internal resistance was calculated from the IR drop after applying a rated voltage of 2.5 V for 30 minutes and discharging at a constant current of 100 mA, as in the capacitance measurement. The results are shown in Table 3.
  • the electrical conductivity and withstand voltage are high, it has a stable liquid state without solidification or salt precipitation in a wide temperature range, particularly at a low temperature, can exhibit excellent electrical characteristics, and can be used for a long time. It is possible to provide an electrolytic solution for a capacitor that is excellent in reliability. Moreover, according to this invention, the electrical double layer capacitor and lithium ion capacitor which were manufactured using this electrolyte solution for capacitors can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、導電率及び耐電圧が高く、広い温度範囲、特に低温において凝固や塩の析出がなく安定した液状を有し、優れた電気的特性を発現することができ、かつ、長期信頼性に優れるキャパシタ用電解液を提供する。また、本発明は、該キャパシタ用電解液を用いて製造された電気二重層キャパシタ及びリチウムイオンキャパシタを提供する。 本発明は、有機溶媒中に第4級アンモニウム塩又はリチウム塩を溶解した電解液であって、前記有機溶媒は、下記式(1)で表される鎖状アルキルスルホン化合物とアセトニトリルとを含有するキャパシタ用電解液である。 式(1)中、R、Rは、直鎖状又は分岐鎖状の炭素数1~4のアルキル基を示し、それぞれ独立し、互いに同一であってもよいし、異なってもよい。

Description

キャパシタ用電解液、電気二重層キャパシタ及びリチウムイオンキャパシタ
本発明は、キャパシタ用電解液に関する。更に詳しくは、電気二重層キャパシタ又はリチウムイオンキャパシタ用として低温でも高性能であるキャパシタ用電解液に関する。
電気二重層キャパシタやリチウムイオンキャパシタは、半導体メモリーバックアップ等に用いられる小型電源として利用されている。しかしながら、これらのキャパシタの問題点として、分極性電極に活性炭等の安価な多孔性炭素材料を使用した場合、電解液の分解電圧を超えるような高い電圧で使用すると、内部抵抗が増大したり、静電容量が減少したりすることが挙げられる。
したがって、電気二重層キャパシタやリチウムイオンキャパシタに用いられる電解液は、高い導電率を有するとともに、電気化学的安定性に優れることが要求される。また、これらのキャパシタは過酷な条件下において使用されることが想定されるため、用いられる電解液としては低温から高温に至るまでの広い温度範囲において、キャパシタを長期間安定的に作動させることのできる特性も重要となる。
特許文献1には、有機溶媒であるプロピレンカーボネートに、電解質として脂肪族第4級アンモニウム塩であるテトラフルオロホウ酸テトラエチルアンモニウムを溶解させた電気二重層キャパシタ用電解液が開示されている。
しかしながら、上記のプロピレンカーボネートを溶媒とした電解液では、印加電圧が2.6~2.8Vに達すると溶媒が分解し始めることから、この電解液を用いた場合の電気二重層キャパシタの最大印加電圧は2.5V前後となり、耐電圧が不充分であるという問題点があった。
特許文献2には、耐電圧の向上を目的として、有機溶媒にスルホランと3-メチルスルホランの混合液や、スルホランと2,4-ジメチルスルホランの混合液等を用いた電解液が開示されている。
しかしながら、スルホランの融点は29℃、3-メチルスルホランの融点は1℃、2,4-ジメチルスルホランの融点は-3℃であり、これらは融点が比較的高いため、低温では電解液が凝固し、キャパシタの特性が著しく低下してしまうという問題点があった。
特許文献3には、溶媒がスルホラン又はその誘導体を15~85体積%、及び、鎖状炭酸エステルとしてエチルメチルカーボネートを85~15体積%を含む溶媒に、第4級オニウム塩を溶解した電解液を、ポリアセン骨格を有する有機半導体材料を電極に用いた有機電解質電池に用いる方法が開示されている。
しかし、この方法では、スルホランよりも耐酸化性に劣るエチルメチルカーボネートが電解液の耐電圧に大きく影響し、耐電圧が著しく劣ってしまうという問題点があった。
特許文献4には、スルホラン:鎖状アルキルスルホン化合物を70:30~90:10で混合した有機溶媒に、第4級アンモニウム塩であるテトラフルオロホウ酸スピロ-(1,1’)-ピロリジニウム等を溶解させた電解液を、電気二重層キャパシタに用いる方法が開示されている。
しかしながら、この電解液は、極低温下では凝固が生じる場合があり、また、長期信頼性の面においても充分なものではなかった。
特開2000-114105号公報 特開平7-74061号公報 特開平10-27623号公報 特開2008-171902号公報
本発明は、導電率及び耐電圧が高く、広い温度範囲、特に低温において凝固や塩の析出がなく安定した液状を有し、優れた電気的特性を発現することができ、かつ、長期信頼性に優れるキャパシタ用電解液を提供することを目的とする。また、本発明は、該キャパシタ用電解液を用いて製造された電気二重層キャパシタ及びリチウムイオンキャパシタを提供することを目的とする。
本発明は、有機溶媒中に第4級アンモニウム塩又はリチウム塩を溶解した電解液であって、上記有機溶媒は、下記式(1)で表される鎖状アルキルスルホン化合物とアセトニトリルとを含有するキャパシタ用電解液である。
Figure JPOXMLDOC01-appb-C000003
式(1)中、R、Rは、直鎖状又は分岐鎖状の炭素数1~4のアルキル基を示し、それぞれ独立し、互いに同一であってもよいし、異なってもよい。
以下、本発明について詳述する。
本発明者は鋭意検討した結果、特定の鎖状アルキルスルホン化合物及びアセトニトリルを含有する有機溶媒に第4級アンモニウム塩又はリチウム塩を溶解させることにより、導電率及び耐電圧が高く、広い温度範囲、特に低温において凝固や塩の析出がなく安定した液状を有し、優れた電気的特性を発現することができ、かつ、長期信頼性に優れるキャパシタ用電解液が得られることを見出し、本発明を完成させるに至った。
本発明のキャパシタ用電解液は、有機溶媒中に第4級アンモニウム塩又はリチウム塩を溶解した電解液である。
上記有機溶媒は、上記式(1)で表される鎖状アルキルスルホン化合物(以下、単に鎖状アルキルスルホン化合物ともいう)を含有する。上記鎖状アルキルスルホン化合物を含有することにより、本発明のキャパシタ用電解液は、電位窓が広く、安定なものとなる。更に、上記鎖状アルキルスルホン化合物を含有することにより、キャパシタの長期信頼性を向上させることができる。
上記式(1)中、R、Rは、直鎖状又は分岐鎖状の炭素数1~4のアルキル基を示し、それぞれ独立し、互いに同一であってもよいし、異なってもよいが、融点が低くなることから、RとRとは、異なっていることが好ましい。R及び/又はRの炭素数が5以上であると、常温で固体を呈し、得られるキャパシタ用電解液の粘度が著しく高くなり、導電率や静電容量等のキャパシタの特性が悪化する。また、R及び/又はRの炭素数が多くなると、誘電率が低下して電解質の溶解度が低下する傾向にあるため、R、Rの炭素数は、3以下であることが好ましい。更に、R、Rは、結晶性が低くなって融点が低くなることから、分岐鎖状であることが好ましい。
上記鎖状アルキルスルホン化合物の沸点は、キャパシタに高耐熱性や高耐久性を付与するため、240℃以上であることが好ましい。
上記鎖状アルキルスルホン化合物の融点は、キャパシタの低温での安定動作を保証するため、0℃以下であることが好ましい。
上記鎖状アルキルスルホン化合物の粘度は、低いほどデバイスの内部抵抗を低くすることができ、25℃の条件で測定した粘度が10cP以下であることが好ましい。なお、本明細書において前記粘度は、円錐平板型回転粘度計で測定される値を意味する。
上記鎖状アルキルスルホン化合物としては、具体的には例えば、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、プロピルメチルスルホン、イソプロピルメチルスルホン、プロピルエチルスルホン、イソプロピルエチルスルホン、ジプロピルスルホン、ジイソプロピルスルホン等が挙げられる。上記鎖状アルキルスルホン化合物は、単独で使用してもよいが、上記鎖状アルキルスルホン化合物を2種以上組み合わせて使用することにより、得られるキャパシタ用電解液の凝固点を下げたり、第4級アンモニウム塩やリチウム塩の溶解性を向上させたりすることができる。
上記有機溶媒は、アセトニトリルを含有する。上記アセトニトリルを含有することにより、本発明のキャパシタ用電解液は、低温における導電性に優れるものとなる。
上記有機溶媒中のアセトニトリルの含有量の好ましい下限は5質量%、好ましい上限は80質量%である。上記アセトニトリルの含有量が5質量%未満であると、得られるキャパシタ用電解液が、低温において、凝固したり、塩を析出させたりすることがある。上記アセトニトリルの含有量が80質量%を超えると、得られるキャパシタ用電解液の揮発性や毒性が高くなり、取り扱いが困難になることがある。上記アセトニトリルの含有量のより好ましい下限は10質量%、より好ましい上限は50質量%、更に好ましい下限は20質量%、更に好ましい上限は30質量%である。
また、上記鎖状アルキルスルホン化合物100質量部に対する上記アセトニトリルの含有量の好ましい下限は5質量部、好ましい上限は400質量部である。上記鎖状アルキルスルホン化合物100質量部に対する上記アセトニトリルの含有量が5質量部未満であると、得られるキャパシタ用電解液が、低温において、凝固したり、塩を析出させたりすることがある。上記鎖状アルキルスルホン化合物100質量部に対する上記アセトニトリルの含有量が400質量部を超えると、得られるキャパシタ用電解液の揮発性が高くなり、取り扱いが困難になることがある。上記鎖状アルキルスルホン化合物100質量部に対する上記アセトニトリルの含有量のより好ましい下限は11質量部、より好ましい上限は100質量部である。
上記有機溶媒は、上記鎖状アルキルスルホン化合物及び上記アセトニトリルに加えて、他の有機溶媒を含有してもよい。他の有機溶媒としては、下記式(2)で表されるスルホラン(以下、単にスルホランともいう)、3-メチルスルホラン、γ-ブチロラクトン、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等が挙げられる。なかでも、スルホランを含有することが好ましい。上記スルホランは上記鎖状アルキルスルホン化合物よりも安価であることから、上記スルホランを配合することにより、本発明のキャパシタ用電解液の製造コストを下げることができる。また、スルホランは上に挙げた炭酸エステル類よりも耐電圧が高く、鎖状アルキルスルホン類の高耐電圧特性を損なうことなく混合溶媒とすることができる。更に、スルホランと鎖状アルキルスルホン類の混合溶媒とすることで、電解質の溶解度を高める効果もある。
Figure JPOXMLDOC01-appb-C000004
上記有機溶媒中のスルホランの含有量の好ましい下限は10質量%、好ましい上限は90質量%である。上記スルホランの含有量が10質量%未満であると、電解質の溶解度が低下することがある。上記スルホランの含有量が90質量%を超えると、電解液の凝固点が高くなることがある。上記スルホランの含有量のより好ましい下限は20質量%、より好ましい上限は80質量%である。
また、上記鎖状アルキルスルホン化合物100質量部に対する上記スルホランの含有量の好ましい下限は11質量部、好ましい上限は900質量部である。上記鎖状アルキルスルホン化合物100質量部に対する上記スルホランの含有量が11質量部未満であると、電解質の溶解度が低下することがある。上記鎖状アルキルスルホン化合物100質量部に対する上記スルホランの含有量が900質量部を超えると、電解液の凝固点が高くなることがある。上記鎖状アルキルスルホン化合物100質量部に対する上記スルホランの含有量のより好ましい下限は25質量部、より好ましい上限は400質量部である。
本発明のキャパシタ用電解液における電解質は、第4級アンモニウム塩又はリチウム塩である。
上記第4級アンモニウム塩としては、トリエチルメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、ジエチルジメチルアンモニウム、エチルトリメチルアンモニウム、ジメチルピロリジニウム、ジエチルピロリジニウム、エチルメチルピロリジニウム、スピロ-(1,1’)-ピロリジニウム、N-メチル-N-スピロピロリジニウム、ジエチルピペリジニウム、スピロ-(1,1’)-ピペリジニウム等のテトラアルキルアンモニウムと、アニオンとからなる塩等が挙げられる。
上記第4級アンモニウム塩又はリチウム塩を構成するアニオンとしては、BF 、PF 、CFSO 、N(CFSO 、N(CSO 、N(CFSO)(CSO 、C(CFSO 、C(C が好ましい。なかでも、上記有機溶媒への溶解度が高く、電気化学的安定性に優れ、電解液としたときに高い導電率が得られるため、BF 、PF 、N(CFSO がより好ましく、BF 、PF が更に好ましい。これらのアニオンは、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なかでも、上記第4級アンモニウム塩としては、テトラフルオロホウ酸トリエチルメチルアンモニウムが好ましく、上記リチウム塩としては、LiPFが好ましい。
本発明のキャパシタ用電解液における第4級アンモニウム塩又はリチウム塩の濃度の好ましい下限は0.1モル/L、好ましい上限は3.0モル/Lである。第4級アンモニウム塩又はリチウム塩の濃度が0.1モル/L未満であると、導電率が不足することがある。第4級アンモニウム塩又はリチウム塩の濃度が3.0モル/Lを超えると、得られるキャパシタ用電解液の粘度が増大して含浸性が低下し、キャパシタが電気特性に劣るものとなることがある。第4級アンモニウム塩又はリチウム塩の濃度のより好ましい下限は0.5モル/L、より好ましい上限は2.0モル/L、更に好ましい下限は0.8モル/L、更に好ましい上限は1.5モル/Lである。
本発明のキャパシタ用電解液は、含浸性や難燃性を付与するような添加剤を含有してもよい。上記添加剤としては、具体的には例えば、ヘキサメチルジシロキサン、ヘキサメチルシクロトリシロキサン等のシロキサン化合物が挙げられる。
本発明のキャパシタ用電解液は、以下の製造方法により調製することができる。
即ち、上記有機溶媒に、第4級アンモニウム塩又はリチウム塩からなる電解質を加え、攪拌して完全に溶解したことを確認する。得られた電解液を脱水し、電解液中の水分を100ppm以下、好ましくは20ppm以下にまで減少させることで、目的とするキャパシタ用電解液が得られる。
このようにして調製したキャパシタ用電解液を使用することにより、キャパシタを作製することができる。本発明のキャパシタ用電解液を用いて製造された電気二重層キャパシタ、及び、リチウムイオンキャパシタもまた、本発明の1つである。以下、本発明の電気二重層キャパシタと本発明のリチウムイオンキャパシタとを併せて、本発明のキャパシタともいう。
本発明の電気二重層キャパシタの作製は、一般的なキャパシタ製造方法によることができ、即ち、セパレータを挟み込んだ分極性電極に、駆動用電解液となる本発明のキャパシタ用電解液を含浸させ、これを容器に密封することにより行なわれる。
リチウムイオンキャパシタの作製も同様に、一般的なリチウムイオンキャパシタ製造方法によることができ、即ち、セパレータを挟み込んだ分極性電極(正極)とリチウムイオンが脱挿入可能な炭素極(負極)に、駆動用電解液となる本発明のキャパシタ様電解液を含浸させ、これを容器に密封することにより行なわれる。
上記分極性電極としては、活性炭粉末、活性炭繊維等の多孔性炭素材料や金属酸化物材料、導電性高分子材料等が挙げられる。なかでも、安価で入手が容易であることから、多孔性炭素材料が好ましい。
上記リチウムイオンが脱挿入可能な炭素極としては、ハードカーボン、黒鉛、カーボンナノチューブ等の材料が挙げられる。なかでも、リチウムイオン電池の負極として使われており入手が容易であることから、黒鉛材料が好ましい。上記黒鉛材料は、リチウムイオンキャパシタの組立前にはリチウムイオンをプレドープした上で使用する。
上記セパレータとしてはセルロース、ポリエチレン、ポリプロピレン系不織布等の素材からなるセパレータを用いることができる。
本発明のキャパシタの形状は特に限定されず、例えば、フィルム型、コイン型、円筒型、箱型等の形状が挙げられる。
本発明によれば、導電率及び耐電圧が高く、広い温度範囲、特に低温において凝固や塩の析出がなく安定した液状を有し、優れた電気的特性を発現することができ、かつ、長期信頼性に優れるキャパシタ用電解液を提供することができる。また、本発明によれば、該キャパシタ用電解液を用いて製造された電気二重層キャパシタ及びリチウムイオンキャパシタを提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
実施例、比較例において、溶媒として使用した鎖状アルキルスルホン化合物(「エチルメチルスルホン」「エチルイソプロピルスルホン」、「エチルイソブチルスルホン」)、環状スルホン化合物(「スルホラン」)、鎖状ニトリル化合物(「アセトニトリル」)、及び、炭酸エステル化合物(「プロピレンカーボネート」)について、それぞれの構造式を表1に示す。
Figure JPOXMLDOC01-appb-T000005
(実施例1)
露点温度が-50℃以下に管理されたアルゴンガス循環型ドライボックス内で、エチルメチルスルホン(EMS、沸点239℃、融点34℃、粘度6cP(35℃))80質量部とアセトニトリル20質量部とをガラス製スクリュー管に投入、混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを攪拌子と共に加えて密栓をした。これをマグネティックスターラーを用いて、電解質が完全に溶解するまで約1時間程度攪拌を行ない、キャパシタ用電解液を得た。調製した電解液はカールフィッシャー水分測定装置(平沼産業社製、「AQ-2200」)を用いて、得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(実施例2)
エチルイソプロピルスルホン(EIPS、沸点265℃、融点-11℃、粘度6cP(25℃))16質量部とスルホラン64質量部とアセトニトリル20質量部とを混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(実施例3)
エチルメチルスルホン18質量部とスルホラン72質量部とアセトニトリル10質量部とを混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(実施例4)
エチルメチルスルホン20質量部とスルホラン60質量部とアセトニトリル20質量部とを混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(実施例5)
エチルメチルスルホン60質量部とエチルイソプロピルスルホン20質量部とアセトニトリル20質量部とを混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(実施例6)
エチルメチルスルホン70質量部とアセトニトリル30質量部とを混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(実施例7)
エチルイソプロピルスルホン70質量部とアセトニトリル30質量部とを混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(実施例8)
エチルイソブチルスルホン(EIBS、沸点261℃、融点-16℃、粘度4cP(25℃))70質量部とアセトニトリル30質量部とを混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(実施例9)
エチルイソプロピルスルホン95質量部とアセトニトリル5質量部とを混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(実施例10)
エチルイソプロピルスルホン20質量部とアセトニトリル80質量部とを混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(比較例1)
アセトニトリルに、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
なお、比較例1で得られたキャパシタ用電解液は、揮発性が高く、使用や保管時には揮発を抑制するため温度を25℃以下に管理する必要があった。
(比較例2)
エチルメチルスルホンに、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(比較例3)
プロピレンカーボネートに、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(比較例4)
スルホランに、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
(比較例5)
エチルイソプロピルスルホン80質量部とスルホラン20質量部を混合して得られた溶媒に、濃度が1.0モル/Lになるようにテトラフルオロホウ酸トリエチルメチルアンモニウムを加え、キャパシタ用電解液を得た。得られたキャパシタ用電解液の水分値を測定し、100ppm未満であることを確認した。
<評価>
(1)電気二重層キャパシタ用電解液の物性測定
実施例及び比較例で得られたキャパシタ用電解液について、20℃及び-30℃における導電率(mS/cm)、並びに、電位窓(V)を測定した。なお、導電率は日置電機社製の「LCRハイテスタ3532-50」を用いて測定し、電位窓は、ALS社製の「電気化学アナライザーModel660C」を用いて、作用極にグラスカーボン(直径1.7mm)、対極に白金線、参照電極にAg/Ag、掃引速度5mV/sで0.2mA/cmの電流密度が測定されるまでの電圧から、酸化分解電位及び還元分解電位を求めることにより決定した。結果を表2に示す。なお、表2中、EMSはエチルメチルスルホンを示し、EIPSはエチルイソプロピルスルホンを示し、EIBSはエチルイソブチルスルホンを示す。
Figure JPOXMLDOC01-appb-T000006
(2)電気二重層キャパシタの物性測定
実施例及び比較例で得られたキャパシタ用電解液を用いて、以下の工程で電気二重層キャパシタを作製した。
直径14mm、厚さ0.1mmの円形の活性炭塗工アルミニウムシート2枚を分極性電極とし、直径17mm、厚さ0.05mmの円形のセルロースからなるセパレータを介在させて、互いに対向させて、ポリプロピレン製ガスケットを配置したステンレス鋼製の外装容器中(直径20mm、高さ3.2mm、ステンレス鋼厚さ0.25mm)に収納し、キャパシタ用電解液を含浸させ、容器をカシメ機にて嵌合してCR2032サイズのコイン型電気二重層キャパシタを完成した。
作製した電気二重層キャパシタの特性を、それぞれの電気二重層キャパシタについて20℃及び-30℃において充放電試験を行なうことで求めた。具体的には、各キャパシタを所定の測定温度下で30分以上放置し、キャパシタが所定温度に達した後、定格電圧2.5Vを30分印加した後、放電電流2mAにて定電流放電し、キャパシタ端子間電圧が2Vから1Vになるまでの時間を測定し、静電容量を算出した。また、放電下限値を0.0Vとした。内部抵抗は静電容量測定時と同様に、定格電圧2.5Vを30分印加した後、放電電流100mAにて定電流放電し、IRドロップより算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007
表2及び表3から、アセトニトリルを添加した混合溶媒を用いた実施例のキャパシタ用電解液を用いた場合、低温でも機能し、これを用いた電気二重層キャパシタは低温でも充分な静電容量を有する。
本発明によれば、導電率及び耐電圧が高く、広い温度範囲、特に低温において凝固や塩の析出がなく安定した液状を有し、優れた電気的特性を発現することができ、かつ、長期信頼性に優れるキャパシタ用電解液を提供することができる。また、本発明によれば、該キャパシタ用電解液を用いて製造された電気二重層キャパシタ及びリチウムイオンキャパシタを提供することができる。

Claims (5)

  1. 有機溶媒中に第4級アンモニウム塩又はリチウム塩を溶解した電解液であって、
    前記有機溶媒は、下記式(1)で表される鎖状アルキルスルホン化合物とアセトニトリルとを含有することを特徴とするキャパシタ用電解液。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、R、Rは、直鎖状又は分岐鎖状の炭素数1~4のアルキル基を示し、それぞれ独立し、互いに同一であってもよいし、異なってもよい。
  2. 有機溶媒は、更に、下記式(2)で表されるスルホランを含有することを特徴とする請求項1記載のキャパシタ用電解液。
    Figure JPOXMLDOC01-appb-C000002
  3. 有機溶媒は、アセトニトリルの含有割合が5~80質量%であることを特徴とする請求項1又は2記載のキャパシタ用電解液。
  4. 請求項1、2又は3記載のキャパシタ用電解液を用いて製造されたことを特徴とする電気二重層キャパシタ。
  5. 請求項1、2又は3記載のキャパシタ用電解液を用いて製造されたことを特徴とするリチウムイオンキャパシタ。
PCT/JP2013/056099 2012-03-27 2013-03-06 キャパシタ用電解液、電気二重層キャパシタ及びリチウムイオンキャパシタ WO2013146136A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380006921.2A CN104081487B (zh) 2012-03-27 2013-03-06 电容器用电解液、双电层电容器和锂离子电容器
KR1020147029103A KR102104687B1 (ko) 2012-03-27 2013-03-06 커패시터용 전해액, 전기 이중층 커패시터 및 리튬 이온 커패시터
US14/387,766 US9646773B2 (en) 2012-03-27 2013-03-06 Electrolyte solution for capacitors, electric double layer capacitor, and lithium ion capacitor
EP13767784.5A EP2833383B1 (en) 2012-03-27 2013-03-06 Electrolyte solution for capacitors, electric double layer capacitor, and lithium ion capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012072144 2012-03-27
JP2012-072144 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146136A1 true WO2013146136A1 (ja) 2013-10-03

Family

ID=49259407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056099 WO2013146136A1 (ja) 2012-03-27 2013-03-06 キャパシタ用電解液、電気二重層キャパシタ及びリチウムイオンキャパシタ

Country Status (6)

Country Link
US (1) US9646773B2 (ja)
EP (1) EP2833383B1 (ja)
JP (1) JPWO2013146136A1 (ja)
KR (1) KR102104687B1 (ja)
CN (1) CN104081487B (ja)
WO (1) WO2013146136A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122393A (ja) * 2013-12-24 2015-07-02 日本ケミコン株式会社 電気二重層キャパシタ
JP2019153790A (ja) * 2018-03-05 2019-09-12 株式会社ジェイテクト 蓄電デバイス
WO2024024675A1 (ja) * 2022-07-29 2024-02-01 パナソニックIpマネジメント株式会社 電気化学キャパシタ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774061A (ja) 1994-06-15 1995-03-17 Asahi Glass Co Ltd 電気二重層キャパシタ
JPH1027623A (ja) 1996-07-09 1998-01-27 Asahi Glass Co Ltd 有機電解質電池
JP2000114105A (ja) 1999-11-04 2000-04-21 Asahi Glass Co Ltd 電気二重層キャパシタ
WO2008059990A1 (fr) * 2006-11-17 2008-05-22 Im & T Ltd. Condensateur
JP2008171902A (ja) 2007-01-10 2008-07-24 Japan Carlit Co Ltd:The 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP2010258333A (ja) * 2009-04-28 2010-11-11 Sanyo Chem Ind Ltd 第4級アンモニウム塩電解質を用いた電解液および電気化学素子
JP2010272610A (ja) * 2009-05-20 2010-12-02 Sanyo Chem Ind Ltd イミダゾリウム塩電解質を用いた電解液および電気化学素子
JP2011023330A (ja) * 2009-06-18 2011-02-03 Panasonic Corp 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液、ならびに、これらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0979347B1 (de) 1997-04-28 2002-06-26 Siemens Aktiengesellschaft Vorrichtung zur wärmeisolierung für eine dampfturbine
JP3737729B2 (ja) * 2001-09-26 2006-01-25 株式会社東芝 非水電解液電池および非水電解液
AUPS119502A0 (en) * 2002-03-19 2002-04-18 Energy Storage Systems Pty Ltd An electrolyte for an energy storage device
KR100816592B1 (ko) * 2006-03-24 2008-03-24 마쯔시다덴기산교 가부시키가이샤 비수전해질 2차전지
SG174024A1 (en) * 2006-08-02 2011-09-29 Ada Techonologies Inc High performance ultracapacitors with carbon nanomaterials and ionic liquids
JP2008277401A (ja) 2007-04-26 2008-11-13 Japan Carlit Co Ltd:The 電気二重層キャパシタ用電解液の精製法
JP5439009B2 (ja) 2009-03-31 2014-03-12 大塚化学株式会社 イミダゾリウム塩、電解液並びに電気化学デバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774061A (ja) 1994-06-15 1995-03-17 Asahi Glass Co Ltd 電気二重層キャパシタ
JPH1027623A (ja) 1996-07-09 1998-01-27 Asahi Glass Co Ltd 有機電解質電池
JP2000114105A (ja) 1999-11-04 2000-04-21 Asahi Glass Co Ltd 電気二重層キャパシタ
WO2008059990A1 (fr) * 2006-11-17 2008-05-22 Im & T Ltd. Condensateur
JP2008171902A (ja) 2007-01-10 2008-07-24 Japan Carlit Co Ltd:The 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP2010258333A (ja) * 2009-04-28 2010-11-11 Sanyo Chem Ind Ltd 第4級アンモニウム塩電解質を用いた電解液および電気化学素子
JP2010272610A (ja) * 2009-05-20 2010-12-02 Sanyo Chem Ind Ltd イミダゾリウム塩電解質を用いた電解液および電気化学素子
JP2011023330A (ja) * 2009-06-18 2011-02-03 Panasonic Corp 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液、ならびに、これらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122393A (ja) * 2013-12-24 2015-07-02 日本ケミコン株式会社 電気二重層キャパシタ
JP2019153790A (ja) * 2018-03-05 2019-09-12 株式会社ジェイテクト 蓄電デバイス
JP7400193B2 (ja) 2018-03-05 2023-12-19 株式会社ジェイテクト 蓄電デバイス
WO2024024675A1 (ja) * 2022-07-29 2024-02-01 パナソニックIpマネジメント株式会社 電気化学キャパシタ

Also Published As

Publication number Publication date
CN104081487B (zh) 2018-01-02
EP2833383A1 (en) 2015-02-04
KR102104687B1 (ko) 2020-04-24
EP2833383A4 (en) 2015-11-18
CN104081487A (zh) 2014-10-01
KR20140138978A (ko) 2014-12-04
US9646773B2 (en) 2017-05-09
JPWO2013146136A1 (ja) 2015-12-10
US20150049418A1 (en) 2015-02-19
EP2833383B1 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP4802243B2 (ja) 電解液用添加剤及び電解液
JP4908236B2 (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
KR101076513B1 (ko) 전기 이중층 캐패시터용 전해액
JP2004518300A (ja) 電気化学セル用の電解液
WO2013146136A1 (ja) キャパシタ用電解液、電気二重層キャパシタ及びリチウムイオンキャパシタ
TW201621947A (zh) 用於高溫edlc的電解質
JP2008277503A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP2009123789A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP2008091823A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP5275011B2 (ja) 第4級アンモニウム塩電解質を用いた電解液および電気化学素子
JP5430464B2 (ja) 電気二重層キャパシタ用電解液および電気二重層キャパシタ
JP2011159895A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP5296637B2 (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP4798609B2 (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP4707425B2 (ja) 電気二重層キャパシタ用電解質及び電気二重層キャパシタ
JP2012109539A (ja) 電気二重層キャパシタ用電解液およびこれを用いた電気二重層キャパシタ
JP5063172B2 (ja) 電気二重層キャパシタ用電解液
JP2009065074A (ja) シュードキャパシタ用電解液及びシュードキャパシタ
JP5305343B2 (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP6317743B2 (ja) 電気二重層キャパシタ用非水電解液
JP2008091821A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP2017028230A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP4993266B2 (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
KR101583525B1 (ko) 슈퍼캐패시터용 전해액 및 이를 함유한 슈퍼캐패시터
JP2007189024A (ja) 電気二重層キャパシタ用電解液及びそれを用いた電気二重層キャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507599

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387766

Country of ref document: US

Ref document number: 2013767784

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147029103

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE