WO2013146105A1 - ハイブリッド車用自動変速装置の制御装置 - Google Patents

ハイブリッド車用自動変速装置の制御装置 Download PDF

Info

Publication number
WO2013146105A1
WO2013146105A1 PCT/JP2013/055802 JP2013055802W WO2013146105A1 WO 2013146105 A1 WO2013146105 A1 WO 2013146105A1 JP 2013055802 W JP2013055802 W JP 2013055802W WO 2013146105 A1 WO2013146105 A1 WO 2013146105A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
backlash
automatic transmission
engagement element
internal combustion
Prior art date
Application number
PCT/JP2013/055802
Other languages
English (en)
French (fr)
Inventor
庸祐 上田
雅広 浅井
計彦 元土肥
田島 陽一
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201380007019.2A priority Critical patent/CN104080678A/zh
Priority to DE112013000463.1T priority patent/DE112013000463T5/de
Publication of WO2013146105A1 publication Critical patent/WO2013146105A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • F16H2061/062Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means for controlling filling of clutches or brake servos, e.g. fill time, fill level or pressure during filling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Definitions

  • the present invention relates to a hybrid vehicle that includes a rotary electric machine (hereinafter simply referred to as a motor) as a drive source and an internal combustion engine, and transmits the power of the internal combustion engine to drive wheels via an automatic transmission, and more specifically, controls the automatic transmission. Relates to the device.
  • a rotary electric machine hereinafter simply referred to as a motor
  • an internal combustion engine is connected to the front wheels, and a motor is connected to the rear wheels.
  • a hybrid vehicle drive device that transmits the rotation of the internal combustion engine to the front wheels via an automatic transmission (Patent Document 1).
  • the hybrid vehicle drive device is provided with an electric pump because the mechanical pump is also stopped when the internal combustion engine is stopped.
  • the first friction that is engaged at the first speed of the automatic transmission is provided.
  • a hydraulic pressure based on the electric pump is supplied to the engagement element (clutch C-1) to prevent a delay at the time of starting and to engage with the first friction engagement element to achieve the first gear.
  • the combined element is a one-way clutch to avoid the drag caused by oil when the vehicle is stopped.
  • Patent Document 1 when the internal combustion engine is stopped, the electric oil pump is driven in preparation for the start of the internal combustion engine, and hydraulic pressure necessary for engagement is supplied in advance to the friction engagement element that achieves the first gear. .
  • the internal combustion engine is started in response to the driver's depression of the accelerator pedal, and the friction engagement element is immediately engaged, so that the vehicle runs after starting the internal combustion engine with good response and no sense of delay. Can do.
  • Patent Document 1 discloses that when the internal combustion engine is stopped, the engagement state of the friction engagement element that achieves the first gear is maintained. The case of engaging the friction engagement element based on the hydraulic pressure from the pump is not disclosed. For example, in a general automatic transmission, the hydraulic pressure to the friction engagement element is supplied via a manual shift valve.
  • the electric oil pump that supplies the hydraulic pressure necessary for engaging the friction engagement element generally has a smaller discharge capacity than the mechanical oil pump because of cost and mountability. Therefore, if the hydraulic pressure supplied to the frictional engagement element is controlled in the same manner as when the frictional engagement element is engaged based on the hydraulic pressure from the mechanical oil pump, the piston stroke at the time of loosening the frictional engagement element is insufficient. When the piston stroke is insufficient, the hydraulic pressure suddenly increases, and the friction engagement element is suddenly engaged during the piston stroke to generate an engagement shock.
  • an object of the present invention is to provide a control device for an automatic transmission for a hybrid vehicle in which backlash control is performed so that the backlash stroke of the backlash of the friction engagement element is surely completed to solve the above-described problem. It is what.
  • the present invention includes, for example, a rotating electrical machine (20) and an internal combustion engine (2) as drive sources, and the automatic transmission (10) ) Can be transmitted to the wheels (80fl, 80fr), and the internal combustion engine (2) is stopped and the rotating electric machine (20) can drive the wheels (80rl, 80rr).
  • the hydraulic oil source includes an electric oil pump (32) and a mechanical oil pump (14) driven by the power of the internal combustion engine (2), and a hydraulic pressure from the hydraulic source is regulated by a valve (SLC1).
  • the pressure is adjusted by the pressure and supplied to the hydraulic servo (46) of a predetermined friction engagement element (for example, C-1) of the automatic transmission (10).
  • Friction engagement element control means (53) for controlling the pressure regulating valve (SLC1) to gradually increase the hydraulic pressure from the backlash pressure after the backlash of the engagement element is provided,
  • the friction engagement element control means (53) (see, eg, FIG.
  • the first backlash filling pressure (Pw) is a traveling state in which the internal combustion engine (2) is used as a drive source, and the predetermined friction engagement element is engaged by hydraulic pressure from the mechanical oil pump (14).
  • the first set time (t (Pw)) is a traveling state using the internal combustion engine (2) as a drive source, and the predetermined friction engagement is performed by hydraulic pressure from the mechanical oil pump (14).
  • the present invention provides a control device for an automatic transmission for a hybrid vehicle. Note that a command pressure (hydraulic command value) is transmitted from the friction engagement element control means to the pressure regulating valve, and therefore the backlash filling pressure is the command pressure.
  • the control device (1) starts the internal combustion engine (2) and operates the internal combustion engine (2) while the first backlash control means (60) is operating.
  • the engine When the engine is used as a drive source, it operates in place of the first backlash control means (60), and a second backlash pressure (Pm) higher than the first backlash pressure (Pw) Second settling control means (61) for setting the set time (tx).
  • the second backlash control means (61) controls the second backlash control means (60) with respect to the second set time (tx) with respect to the first set time (t (Pw)). It is calculated based on the ratio (ts / t (Pw)) of the elapsed time (ts) that has elapsed from the start until the switching to the second backlash control means (61).
  • the predetermined friction engagement element is a first friction engagement element (C-1) for the automatic transmission (10) to achieve the first forward speed.
  • the second backlash control means (61) is started when the internal combustion engine (2) reaches a predetermined rotational speed (for example, 500 rpm) or more.
  • the power of the internal combustion engine (2) is transmitted to one of the front wheels and the rear wheels (80fl, 80fr) via the automatic transmission (10).
  • the power of the rotating electrical machine (20) is transmitted to one of the front wheels and the rear wheels (80rl, 80rr).
  • the first backlash pressure based on the predetermined low pressure of the electric oil pump is used when shifting the automatic transmission in preparation for traveling by the internal combustion engine. Since the operation of the backlash of the predetermined friction engagement element is terminated by the first backlash control means according to the first set time in the above, the electric oil pump is a small one having a predetermined low pressure capacity, Engagement of the predetermined friction engagement element is started after the end of the backlashing operation, and it is possible to prepare for traveling by the internal combustion engine in a state in which the generation of the engagement shock is suppressed.
  • the second backlash control means based on the mechanical oil pump is provided. It operates in place of the first backlash control means by the electric oil pump, and the second backlash control means finishes the backlash operation in a time shorter than the first set time, and feels a delay, etc.
  • the driving by the internal combustion engine can be started in a state where the sense of discomfort is reduced, and the engagement of the predetermined friction engagement element is started after the backlashing operation is ended by the second backlash pressure, and the engagement shock is Can be suppressed.
  • the second backlash control means has already advanced the second set time by the second backlash control means with the internal combustion engine started.
  • the elapsed time of the backlash control means it is possible to calculate easily and accurately, perform backlash operation with high accuracy and reliability, and suppress the engagement shock at the start of engine running.
  • the predetermined friction engagement element to be controlled to be loose is the first predetermined friction engagement element (clutch C-1) that achieves the first forward speed of the automatic transmission.
  • the vehicle can be driven by the internal combustion engine at the first speed of the automatic transmission while the vehicle is running on the rotating electrical machine.
  • the second backlash control means when the internal combustion engine exceeds a predetermined number of revolutions (for example, 500 rpm), the second backlash control means is started. Therefore, the second set pressure having a relatively low hydraulic pressure is applied to the engine. It is possible to switch between engine runnings that occur immediately after the start and with little delay and little engagement shock.
  • a predetermined number of revolutions for example, 500 rpm
  • a small electric oil having a small capacity is applied to a hybrid vehicle in which the power of the internal combustion engine is linked to one of the front and rear wheels via an automatic transmission and the rotating electric machine is linked to the other. While adopting a pump to reduce power loss and improve fuel efficiency, it is engaged by the first backlash control pressure by the first backlash control means that is relatively long when running with a rotating electrical machine.
  • the automatic transmission is shifted to prepare for engine running with the shock suppressed, and when switching to engine running, the engagement shock is suppressed with a relatively fast second backlash control means with little delay. In this state, the engine can run.
  • FIG. 1 Schematic which shows the drive device for hybrid vehicles which can apply this invention.
  • the schematic sectional drawing which shows the automatic transmission.
  • the block diagram which shows the control part of the automatic transmission in the drive device for hybrid vehicles.
  • (A) is a time chart which shows the engagement state of the friction engagement element at the time of vehicle start in EV driving
  • (B) is the same time chart in engine driving
  • the time chart which shows the engagement state of the friction engagement element when an internal combustion engine starts in the middle of the vehicle start by EV driving
  • the flowchart which shows engagement of the friction engagement element at the time of vehicle start by this invention.
  • a hybrid vehicle (for driving device) 100 is for a rear motor type hybrid vehicle, and an internal combustion engine (E / G) 2 is mounted on the front side.
  • an automatic transmission 10 mounted on a transmission path between the left and right wheels 80fl and 80fr on the front side, and is configured as a so-called FF (front engine, front drive) type vehicle, It has a rear motor (rotary electric machine) 20 that is drivingly connected to the left and right wheels 80rl and 80rr, that is, front wheel drive during engine running, rear wheel drive during EV running, and four wheel drive during hybrid running. It is configured as follows.
  • a belt-type integrated starter generator 3A is connected to the internal combustion engine 2, and the internal combustion engine 2 is configured to be startable.
  • the belt-type integrated starter / generator (BISG) 3A can start the internal combustion engine 2 at a high output by being supplied with electric power from a high voltage battery (Hi-V Battery) 24 via an inverter 23. At the same time, the high-voltage battery 24 can be charged while the internal combustion engine 2 is operating (driving).
  • One starter (Starter) 3B is a starter that is driven by a general low-voltage battery (Lo-V Battery) 26 (so-called 12V type power supply).
  • Lo-V Battery general low-voltage battery
  • 12V type power supply a general low-voltage battery
  • BISG belt-type integrated starter generator
  • the internal combustion engine 2 is ignited, and at a low temperature (for example, less than 0 degrees), the internal combustion engine 2 is normally started using the starter 3B.
  • the internal combustion engine 2 is connected to an automatic transmission 10 described later in detail.
  • the automatic transmission 10 roughly includes a torque converter (T / C) 4, an automatic transmission mechanism (T / M) 5, a hydraulic control device (V / B) 6, and the like.
  • a torque converter 4 is connected to the drive.
  • An automatic transmission mechanism (T / M) 5 is drivingly connected to the torque converter 4, and the automatic transmission mechanism 5 is connected to the left and right axles 81l through a differential device D (see FIG. 2) as will be described in detail later.
  • 81r is connected to the front left and right wheels 80fl and 80fr.
  • a mechanical oil pump (MOP) 14 driven by the rotation of the internal combustion engine 2 is disposed between the automatic transmission mechanism 5 and the torque converter 4 in the automatic transmission 10.
  • MOP mechanical oil pump
  • the automatic transmission mechanism 5 is provided with a hydraulic control device (V / B) 6 for hydraulically controlling a frictional engagement element (clutch or brake) for shifting, which will be described later.
  • a hydraulic control device V / B 6 for hydraulically controlling a frictional engagement element (clutch or brake) for shifting, which will be described later.
  • a control unit Transmission Control Unit
  • a built-in solenoid valve pressure regulating valve
  • the hydraulic control device 6 is provided with an electric oil pump 32 that is driven independently of the internal combustion engine 2 (that is, can be driven while the mechanical oil pump is stopped).
  • the hydraulic oil pump 32 can supply hydraulic pressure to the hydraulic control device 6. That is, the engagement pressure supplied to each hydraulic servo of the above-mentioned frictional engagement element for shifting is regulated by the hydraulic control device 6 based on the hydraulic pressure generated by the electric oil pump 32 and the mechanical oil pump 14. Is done.
  • the electric oil pump 32 and the control unit (control device) 1 are driven using the power of the low voltage battery 26.
  • the low voltage battery 26 is connected to a high voltage battery 24 via a DC / DC converter (step-down circuit) 25 and is configured to be supplied with electric power from the high voltage battery 24.
  • the rear motor 20 is connected to a high voltage battery 24 via an inverter 23, and is configured to be capable of power running and regeneration.
  • the rear motor 20 is drivingly connected to a gear box (Gear Box) 21 through a motor disconnecting clutch CM.
  • the gear box 21 incorporates a reduction gear mechanism and a differential device with a predetermined reduction ratio (not shown).
  • the motor disconnecting clutch CM When the motor disconnecting clutch CM is engaged, the rotation of the rear motor 20 is reduced to the reduction gear of the gear box 21. While decelerating by the mechanism and absorbing the differential rotation of the left and right axles 82l and 82r by the differential device, it is transmitted to the left and right wheels 80rl and 80rr on the rear side.
  • the automatic transmission 10 is arranged on a transmission path between the internal combustion engine 2 (see FIG. 1) and the front left and right wheels 80fl, 80fr, and can be connected to the crankshaft of the internal combustion engine 2.
  • the above-described torque converter 4 and the automatic transmission mechanism 5 are provided centering on the axial direction of the input shaft 8.
  • the torque converter 4 includes a pump impeller 4a connected to the input shaft 8 of the automatic transmission 10, a turbine runner 4b to which rotation of the pump impeller 4a is transmitted via a working fluid, and the turbine runner 4b to the pump impeller 4a.
  • the turbine runner 4b has a stator 4c that rectifies the returning oil and produces a torque increasing action, and the turbine runner 4b is provided with an input shaft (input) of the automatic transmission mechanism 5 disposed coaxially with the input shaft 8. Member) 12.
  • the torque converter 4 is provided with a lock-up clutch 7, and when the lock-up clutch 7 is engaged, the rotation of the input shaft 8 of the automatic transmission 10 is changed to the input shaft of the automatic transmission mechanism 5. 12 is transmitted directly.
  • the stator 4c is fixed by the one-way clutch F-1 in a state where the rotation of the turbine runner 4b is lower than the rotation of the pump impeller 4a, and receives the reaction force of the oil flow to cause a torque increasing action.
  • the rotation of the turbine runner 4b is exceeded, the engine runs idle and the oil flow does not act in the negative direction.
  • the pump impeller 4a is drivingly connected at its automatic transmission mechanism 5 side to a mechanical oil pump 14 disposed in a partition fixed to the transmission case 9, that is, the mechanical oil pump 14 is connected to an input shaft. 8 is coupled to the internal combustion engine 2 via the drive.
  • the automatic transmission mechanism 5 includes a planetary gear SP and a planetary gear unit PU on the input shaft 12.
  • the planetary gear SP is a so-called single pinion planetary gear that includes a sun gear S1, a carrier CR1, and a ring gear R1, and has a pinion P1 that meshes with the sun gear S1 and the ring gear R1.
  • the planetary gear unit PU has a sun gear S2, a sun gear S3, a carrier CR2, and a ring gear R2 as four rotating elements.
  • the carrier CR2 has a long pinion PL that meshes with the sun gear S2 and the ring gear R2, and the sun gear S3.
  • This is a so-called Ravigneaux type planetary gear that has meshing short pinions PS that mesh with each other.
  • the sun gear S1 of the planetary gear SP is fixed integrally with the transmission case 9, and the rotation is fixed.
  • the ring gear R1 is rotated in the same rotation as the input shaft 12 (hereinafter referred to as “input rotation”). Further, the carrier CR1 is decelerated by the input rotation being decelerated by the fixed sun gear S1 and the input rotating ring gear R1, and the clutch (predetermined friction engagement element) C-1 and the clutch C-3. It is connected to the.
  • the sun gear S2 of the planetary gear unit PU is connected to a brake B-1 formed of a band brake and can be fixed to the transmission case 9, and is connected to the clutch C-3.
  • the sun gear S3 is connected to the clutch C-1, so that the decelerated rotation of the carrier CR1 can be input.
  • the carrier CR2 is connected to a clutch C-2 to which the rotation of the input shaft 12 is input, and the input rotation can be freely input via the clutch C-2, and the one-way clutch F-1 and Connected to the brake B-2, rotation in one direction with respect to the transmission case is restricted via the one-way clutch F-1, and rotation can be fixed via the brake B-2.
  • the ring gear R2 is connected to a counter gear (output member) 11, and the counter gear 11 is connected to wheels 80fl and 80fr via a countershaft 15 and a differential device D.
  • the motor disconnection clutch CM shown in FIG. The state is separated from 80 rl and 80 rr.
  • the hydraulic control device 6 is electronically controlled by determining the optimum gear position by the control unit 1 in accordance with the vehicle speed and the accelerator opening, and the first forward speed formed based on the shift determination.
  • the driving force of the internal combustion engine 2 is shifted between the first to sixth forward speeds and the reverse speed, and the driving force of the internal combustion engine 2 is transmitted to the wheels 80fl and 80fr.
  • the first forward speed to the sixth forward speed and the reverse speed of the automatic transmission 10 are the clutches C-1 to C-3, brakes B-1 to B-2,
  • the one-way clutch F-1 is actuated (engaged control), and this is achieved by changing the rotation transmission state of the automatic transmission mechanism 5.
  • the motor disconnection clutch CM shown in FIG. 1 is engaged, and the rear motor 20 is drivingly connected to the wheels 80rl and 80rr.
  • the driving force of the rear motor 20 is appropriately assisted or regenerated based on the accelerator opening (driver's driving force request), that is, the driving force of the internal combustion engine 2 and the rear motor 20.
  • the hybrid vehicle is driven using the driving force of
  • the motor disconnecting clutch CM When accelerating in the engine running mode by the driving force of the internal combustion engine 2, the motor disconnecting clutch CM is released, and the rear motor 20 is disconnected from the wheels 80rl and 80rr so as not to become running resistance. Also good. Even when the engine is running, it is preferable to improve the fuel consumption by engaging the motor separating clutch CM and executing the regenerative braking with the rear motor 20 during deceleration.
  • the motor disconnection clutch CM shown in FIG. 1 is engaged, the rear motor 20 is drivingly connected to the wheels 80rl and 80rr, the internal combustion engine 2 is stopped, and the automatic transmission 10
  • the clutches C-2 to C-3 and the brakes B-1 to B-2 are controlled to be released so that the automatic transmission 10 is in a neutral state in which it can idle.
  • the driving force of the rear motor 20 is appropriately powered or regenerated based on the accelerator opening (the driver's request for driving force), that is, the hybrid vehicle is driven using only the driving force of the rear motor 20.
  • members for example, the differential device D, the counter shaft 15, the counter gear 11, the planetary gear unit PU, etc.
  • the mechanical oil pump 14 is stopped when the internal combustion engine 2 is stopped. Accordingly, during EV traveling, the lubricating oil is supplied to the lubrication part of the automatic transmission mechanism 5 by the electric oil pump 32.
  • the hybrid vehicle (drive device) 100 normally travels (EV traveling) by driving the rear wheels 80 rl and 80 rr by the rear motor 20. At this time, the vehicle speed is set so that traveling by the internal combustion engine 2 can be immediately activated. Is engaged with a predetermined friction engagement element of the automatic transmission mechanism 5, for example, the clutch C-1, which is the first friction engagement element, under the condition that is less than a predetermined vehicle speed (eg, 40 km or less). Other engagement elements such as the one-way clutch F-1 and the brake B-1 are released. That is, the one-way clutch F-1 is automatically idling because the front wheels 80fl and 80fr are rotated by the travel by the rear motor 20, and the automatic transmission 10 is idling without achieving the gear position. Thus, the internal combustion engine 2 is stopped. When the vehicle speed is higher than the predetermined vehicle speed, all the friction engagement elements including the predetermined friction engagement element are released.
  • a predetermined friction engagement element of the automatic transmission mechanism 5 for example, the clutch C-1, which is the first
  • the internal combustion engine 2 is started by the starter / generator 3A or the starter 3B, and the automatic transmission mechanism 5 is engaged, and the automatic transmission device 10 achieves a predetermined shift speed in combination with the predetermined friction engagement element already engaged in the EV traveling mode.
  • the driving force from the engine 2 is transmitted to the front wheels 80fl and 80fr by a predetermined gear position of the automatic transmission 10. For example, when the vehicle is in a low speed state immediately after starting, in addition to the already engaged clutch C-1, the rear motor 20 stops or decelerates, and the disengagement clutch CM is disengaged and the rear wheel by the rear motor 20 is disengaged.
  • the driving force of 80 rl and 80 rr is lost, the idle one-way clutch F-1 is engaged, and the automatic transmission mechanism 5 achieves the first gear.
  • the control unit (control unit) (TCU) 1 of the automatic transmission 10 includes an engine speed sensor 40, an input shaft speed sensor 41, an accelerator sensor 47, a vehicle speed sensor 48, and a remaining battery level. Signals from the (SOC) sensor 50 and the shift position sensor 51 for detecting the position of the shift lever are input. Then, the remaining battery level (SOC) sensor 47 or the like determines whether the EV travel mode or the engine travel mode. In both modes, the gear position is determined based on the speed map or the like, and the friction engagement element control means 53 is operated.
  • the engine travel mode is a mode in which the engine travels using the internal combustion engine as a drive source, and includes the hybrid travel mode.
  • the friction engagement element control means 53 gives the clutch command value (for example, C-1 pressure), the piston of the clutch strokes from the mounting position, and the clutch increases the torque capacity.
  • the solenoid valve or the like is controlled by the hydraulic pressure command value so that the hydraulic pressure is gradually increased (sweep up) from the backlash pressure.
  • the friction engagement element control means 53 operates in preparation for switching to the engine travel mode even in the EV travel mode.
  • the friction engagement element control means 53 is based on the electric oil pump 32 and has a first backlash pressure having a predetermined constant low pressure.
  • a first backlash control means 60 having a preset first set time.
  • the EV travel mode has second backlash control means 61 that functions in place of the first backlash control means 60 when the engine is started especially during travel by the motor 20,
  • the second backlash control means 61 is switched to the second backlash control means for the second backlash pressure, which is a constant low pressure based on the mechanical oil pump 14, and the first set time.
  • the second set time calculated based on the ratio of the elapsed time of the first backlash control means that has already passed.
  • the valve body 6 switches the hydraulic path in accordance with each hydraulic pressure command value from the friction engagement element control means 53 and a predetermined switching signal, adjusts the line pressure or the like to a predetermined regulator pressure, and controls the lockup clutch 7 and the automatic
  • the hydraulic pressures of the hydraulic servos of the frictional engagement elements C1 to C-3, B-1, and B-2 of the speed change mechanism 5 are adjusted according to the traveling state.
  • a linear solenoid valve (pressure regulating valve) SLC1 controlled by a hydraulic pressure command value from the friction engagement element control means 53 is connected to the line pressure P L (or The modulator pressure obtained by adjusting the line pressure) is adjusted to a hydraulic pressure corresponding to a traveling state or a predetermined looseness filling pressure that is set in advance for engagement of a predetermined friction engagement element, and the hydraulic pressure is applied to the clutch C-1 hydraulic pressure.
  • the servo 46 is supplied.
  • the hydraulic oil source includes the mechanical oil pump 14 and the electric oil pump 32.
  • the mechanical oil pump 14 is driven by the rotation of the internal combustion engine 2, but the electric oil pump 32 is low in power.
  • a small-capacity and small-sized one driven by a voltage battery is used, and is operated by a signal from the control unit 1 particularly in the EV traveling mode.
  • the oil pumps 14 and 32 communicate with the supply side of the line pressure oil passage via check valves 55a and 55b, respectively.
  • the check valves 55a and 55b are connected to the pump 14 from the line pressure oil passage side. , 32 is prevented from flowing backward.
  • the internal combustion engine is automatically started when the predetermined friction engagement element is engaged in the EV traveling mode and during the engagement of the predetermined friction engagement element in the EV traveling mode.
  • the control of the transmission will be described.
  • the electric oil pump 32 is always driven because the internal combustion engine 2 is stopped.
  • the vehicle is running (running at a vehicle speed greater than 0 km / h), for example, due to the inertia of the vehicle when the shift lever is at N (neutral) and the EV running mode is stopped.
  • N neutral
  • S-1 drive
  • the electric oil pump 32 has a small capacity and, as shown in FIG. 5 (A), is slightly smaller than a pressure (end pressure) Pe that strokes a predetermined friction engagement element, for example, a piston of a hydraulic servo of the clutch C-1. It is configured to be able to discharge a discharge capacity having a minimum compensation pressure (first backlash filling pressure) Pw that is very large. Until the piston of the hydraulic servo 46 strokes from the mounting position by the discharge pressure of the electric oil pump 32 and the multi-plate friction plate comes into contact and the friction engagement element is in a loose state just before obtaining the torque capacity.
  • first backlash filling pressure first backlash filling pressure
  • the play back pressure Pw (first play back pressure) is commanded (set) for a preset first set time t (Pw) (S-3).
  • the backlash filling pressure Pw (first backfilling pressure) set here is set as a constant pressure in advance, but it may not be constant, and the piston of the hydraulic servo 46 is stroked from the mounting position. Any pressure may be used as long as the multi-plate friction plates come into contact with each other until the friction engagement element is in a loosely packed state immediately before obtaining the torque capacity.
  • a relatively low constant pressure is commanded next, and the piston moves to the end of the stroke.
  • the loose filling pressure may be set including the relatively fast first fill pressure and the relatively low constant pressure for the predetermined time.
  • the timer 1 starts measuring the set first set time t (Pw) (S-4).
  • first backlash control only the oil from the electric oil pump 32 is supplied to the hydraulic servo 46 continuously for a relatively long set time t (Pw) at the constant low pressure Pw. Will move to the stroke end and the backlash state just before the torque capacity is obtained. At this time, the vehicle is brought into an EV traveling state by driving the rear wheels 80rl and 80rr by the rear motor 20.
  • FIG. 5B shows a state in which the internal combustion engine 2 is rotating even when the vehicle is in a traveling state, and the vehicle can be driven by the internal combustion engine 2 (engine traveling mode).
  • the clutch command value (C-1 pressure) becomes a relatively high first fill pressure A for a predetermined time, the oil is rapidly filled in the hydraulic servo, and then the piston strokes through a relatively low constant pressure Pm. It is a backlash operation that moves to the end. Thereafter, the hydraulic pressure is swept up and the clutch C-1 is engaged.
  • the relatively low backlash pressure Pm is set for a predetermined set time t (Pm) as shown by the dotted line in FIG.
  • a second set time which will be described later, is calculated on the basis of the set time t (Pm) in the case of the backlashing operation in which the piston moves to the stroke end.
  • a constant pressure lower than the first fill pressure A after the first fill pressure A (a pressure that does not cause a rotational change in the input shaft rotational speed (not shown) under any circumstances).
  • the backlash filling pressure Pm in the second backlash filling control to be described later is the same pressure, but may be a different pressure.
  • the backlash filling pressure Pm in the second backlash filling control may be higher than the constant pressure lower than the first fill pressure A after the first fill pressure A, or vice versa.
  • the hydraulic pressure of the clutch C-1 is controlled by a relatively large flow amount of oil by the mechanical oil pump 14, and is completed in a relatively early time.
  • the above-described engagement control by EV traveling requires a relatively long time by the electric oil pump 32 having a relatively small capacity.
  • the clutch is swept up to the clutch. Since the engagement of C-1 starts, the clutch C-1 is suddenly engaged and the rotation of the input shaft does not change rapidly, and the occurrence of engagement shock is small.
  • the vehicle travels by the driving force of the rear motor 20, and the automatic transmission 10 is in an idling state by engaging only one engaging element in advance in preparation for engine traveling. Even if it takes time to complete the engagement of the clutch C-1, there is no inconvenience such as a sense of delay.
  • the mechanical oil pump 14 is also operated by the rotation of the internal combustion engine 2 (S-10), and the oil pressure by the oil pump 14 is also generated.
  • a predetermined rotational speed for example, 500 rpm (T5)
  • the hydraulic pressure is switched to the hydraulic pressure based on the mechanical oil pump 14, so the command pressure is controlled by the hydraulic pressure based on the electric oil pump 32.
  • a second pressure which is a constant pressure determined in advance from a predetermined first backlash filling pressure Pw by a relatively low discharge pressure (discharge amount) of the mechanical oil pump 14 due to low engine speed such as the engine speed of 500 rpm.
  • Change backlash packing pressure Pm The second backlash filling pressure Pm is higher than the first backlash filling pressure Pw based on the electric oil pump 32. Therefore, the check valve 55b communicating with the electric oil pump 32 is closed, and the mechanical oil pump 14 The check valve 55a communicates, and the discharge pressure from the mechanical oil pump 14 is supplied to the line pressure oil passage.
  • the second set time t (Pw) is calculated based on the time ratio (ts / t (Pw)) that has already elapsed by the first backlash control pressure until the start of the second backlash control.
  • the set time tx is calculated, and the timer 2 is set to the calculated value tx (S-11).
  • the second backlash control by the second backlash pressure (Pm) by the mechanical oil pump 14 is performed for the set time tx of the timer 2 (S-12). 2 is finished (S-13: YES).
  • S-13: YES the piston of the hydraulic servo of the clutch C-1 moves to the stroke end, the backlashing operation is finished, and then the hydraulic pressure based on the discharge of the mechanical oil pump 14 is adjusted, and the C-1 hydraulic pressure is swept up.
  • S-14 the clutch C-1 is completely engaged (S-9).
  • the first backlash pressure Pw is switched to the second backlash pressure Pm, and backlash control is performed by backlash control with a constant pressure of two stages and a predetermined time [t (s) + tx].
  • the clutch engagement operation by sweep-up is started after the completion, the hydraulic pressure does not increase suddenly during the stroke of the hydraulic servo piston, and an engagement shock does not occur. Further, when the engine is started during EV traveling, the clutch C-1 can be engaged earlier than the first backlash control using only the first backlash pressure Pw by the second backlash pressure (Pm). Therefore, there is little delay.
  • the internal combustion engine 2 is started, and the power of the internal combustion engine 2 is transmitted to the input shaft 12 of the automatic transmission 10 via the torque converter 4.
  • the one-way clutch F with the transmission mechanism 5 of the automatic transmission 10 in a state where the driving force of the front wheels 80fl and 80fr exceeds the driving force of the rear wheels 80rl and 80rr by the rear motor 20 with the clutch C-1 engaged. -1 engages to the first speed, and the vehicle is driven by driving the front wheels 80fl and 80fr.
  • the automatic transmission 10 is shifted by the vehicle speed and the throttle opening, and travels at the cruising speed.
  • the above description is applied when the engine is started and travels using the internal combustion engine as a power source in EV travel, and the clutch C is also applied in the engine travel mode in which the disengagement clutch CM is disengaged and travel is performed only by the engine.
  • the present invention is also applicable to a hybrid travel mode in which the rear motor 20 assists or regenerates by driving the rear wheels with the internal combustion engine driving the front wheels while the -M is connected.
  • the hybrid travel mode the engine is stopped while the vehicle is stopped, the vehicle is started by a rear (electric) motor, the engine is started when the vehicle reaches a predetermined speed, and the vehicle is driven by engine power.
  • the vehicle is traveling at a low speed.
  • the automatic transmission is not limited to the first speed stage, and the clutch C-2 is the target of the backlash control as long as the fourth speed stage or more.
  • the brake B-2 is a target at the time of reverse travel, and can be applied to a predetermined friction engagement element of the automatic transmission.
  • a predetermined friction engagement element for example, the clutch C-1
  • the clutch C-1 is engaged by the hydraulic pressure from the electric oil pump while the internal combustion engine is stopped when the shift range is switched from N to D.
  • a predetermined oil temperature range (for example, 0 ° C. to 100 ° C.) is set in advance as the operating condition of the electric oil pump. Since the predetermined frictional engagement element needs to be engaged by hydraulic pressure from the pump, the same applies.
  • the automatic transmission 10 has been described as a multi-stage automatic transmission that achieves the sixth forward speed and the reverse speed.
  • the present invention is not limited to this.
  • the present invention can be applied even to a multi-stage transmission with a lower speed.
  • one of the front and rear wheels is driven by an electric motor
  • the other is a four-wheel drive type hybrid vehicle drive device that drives the power of the internal combustion engine via an automatic transmission.
  • the present invention can also be applied to a driving device.
  • the present invention is used in an automobile (hybrid vehicle) in which a drive source is an engine and a rotating electric machine (motor).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 電動オイルポンプを小型・小容量のものにすると共に、自動変速装置の係合ショックを低減する。EVモードでの走行中、N→Dシフトがある場合、電動オイルポンプ(32)の最低補償圧に基づく第1のガタ詰め圧(Pw)により第1の設定時間(t(Pw))保持する(第1のガタ詰め制御)。該第1のガタ詰め制御中にエンジンが始動すると、機械式オイルポンプ(14)に基づく第2のガタ詰め制御に切替わる。該第2のガタ詰め制御は、第1のガタ詰め圧(Pw)より高い第2のガタ詰め圧(Pm)と、第1のガタ詰め制御により既に経過した時間割合(ts/t(Pw))により演算される第2の設定時間(tx)とからなる。

Description

ハイブリッド車用自動変速装置の制御装置
 本発明は、駆動源として回転電機(以下単にモータという)と内燃エンジンとを備え内燃エンジンの動力を自動変速装置を介して駆動車輪に伝達するハイブリッド車両に係り、詳しくは上記自動変速装置の制御装置に関する。
 近時、車両の燃費向上を図るために、種々のハイブリッド車用駆動装置が提案されており、例えば前輪に内燃エンジンを連繋し、後輪にモータを連繋して、ハイブリッド走行中やエンジン走行中に内燃エンジンの回転を自動変速装置を介して前輪に伝達するハイブリッド車用駆動装置がある(特許文献1)。該ハイブリッド車用駆動装置は、内燃エンジン停止時には機械式ポンプも停止するため、電動ポンプが設けられており、内燃エンジンが停止した状態では、自動変速装置の1速時に係合する第1の摩擦係合要素(クラッチC-1)に上記電動ポンプに基づく油圧を供給して、発進時の遅れを防止すると共に、上記第1の摩擦係合要素と共に係合して1速段を達成する係合要素を一方向クラッチとして、車両停止状態におけるオイルによる引きずりの発生を回避している。
特開2010-223399号公報
 前記特許文献1のものは、内燃エンジンの停止中において、内燃エンジンの始動時に備え電動オイルポンプを駆動して、1速段を達成する摩擦係合要素に予め係合に必要な油圧を供給する。これにより、運転者のアクセルペダルの踏込みに応じて、内燃エンジンを始動すると共に直ちに上記摩擦係合要素を係合して、レスポンスの良い遅れ感のない状態で内燃エンジン始動後の走行を行うことができる。しかし、前記特許文献1では、内燃エンジンを停止する際に1速段を達成する摩擦係合要素の係合状態を維持することが開示されているが、内燃エンジンを停止した状態で、電動オイルポンプからの油圧に基づいて摩擦係合要素を係合する場合については開示されていない。例えば、一般的な自動変速装置では摩擦係合要素への油圧がマニュアルシフトバルブを介して供給されるため、シフトレンジが非走行レンジ(Nレンジ又はPレンジ)にされた場合には摩擦係合要素への油圧の供給が遮断されて摩擦係合要素が解放される。従って、内燃エンジンが停止し且つシフトレンジが非走行レンジである場合に、シフトレンジが走行レンジ(Dレンジ等)に切り替えられると、上記のように内燃エンジンを停止した状態で電動オイルポンプからの油圧に基づいて摩擦係合要素を係合する必要がある。
 ここで、上記摩擦係合要素の係合に必要な油圧を供給する電動オイルポンプは、コスト及び搭載性の関係から機械式のオイルポンプより吐出容量が小さいことが一般的である。そのため、機械式オイルポンプからの油圧に基づいて摩擦係合要素を係合する場合と同様に摩擦係合要素へ供給する油圧を制御すると、摩擦係合要素のガタ詰めに際してのピストンストロークが不足し、上記ピストンストロークが不十分な状態で油圧が急上昇して、該ピストンストローク中に上記摩擦係合要素を急係合して係合ショックを発生する。
 そこで本発明は、摩擦係合要素のガタ詰め用のピストンストロークが確実に終了するようにガタ詰め制御して、上述した課題を解決したハイブリッド車用自動変速装置の制御装置を提供することを目的とするものである。
 本発明は、例えば図1,図4及び図5を参照して、駆動源として回転電機(20)と内燃エンジン(2)とを備え、前記内燃エンジン(2)の動力を自動変速装置(10)を介して車輪(80fl,80fr)に伝達可能であると共に、該内燃エンジン(2)を停止して前記回転電機(20)にて車輪(80rl,80rr)を駆動可能なハイブリッド車両(100)に搭載され、油圧源として電動オイルポンプ(32)と前記内燃エンジン(2)の動力により駆動される機械式オイルポンプ(14)とを備え、前記油圧源からの油圧を調圧バルブ(SLC1)により調圧して前記自動変速装置(10)の所定摩擦係合要素(例えばC-1)の油圧サーボ(46)に供給してなる、ハイブリッド車用自動変速装置の制御装置(1)において、
 前記所定摩擦係合要素を係合する際、該所定摩擦係合要素のピストンが取り付け位置からストロークして該所定摩擦係合要素がトルク容量を得る直前の状態になるガタ詰め圧にて所定摩擦係合要素のガタ詰めを行った後、該ガタ詰め圧から徐々に油圧を増加させるように前記調圧バルブ(SLC1)を制御する摩擦係合要素制御手段(53)を備え、
 前記摩擦係合要素制御手段(53)は(例えば図5を参照して)、
 前記回転電機(20)のみを駆動源とした走行状態であって、前記電動オイルポンプ(32)からの油圧により前記所定摩擦係合要素を係合する場合には、前記ガタ詰め圧としての第1のガタ詰め圧(Pw)を第1の設定時間(t(Pw))設定する第1のガタ詰め制御手段(60)を有し、
 前記第1のガタ詰め圧(Pw)は、前記内燃エンジン(2)を駆動源とした走行状態であって、前記機械式オイルポンプ(14)からの油圧により前記所定摩擦係合要素を係合する場合におけるガタ詰め圧より低く、
 且つ、前記第1の設定時間(t(Pw))は、前記内燃エンジン(2)を駆動源とした走行状態であって、前記機械式オイルポンプ(14)からの油圧により前記所定摩擦係合要素を係合する場合におけるガタ詰め圧が設定される設定時間より長い、
 ことを特徴とするハイブリッド車用自動変速装置の制御装置にある。
 なお、前記摩擦係合要素制御手段から調圧バルブには指令圧(油圧指令値)が発信され、従ってガタ詰め圧は指令圧である。
 例えば図4,図6,図7を参照して、前記制御装置(1)は、前記第1のガタ詰め制御手段(60)の作動中において、前記内燃エンジン(2)を始動して該内燃エンジンを駆動源とする場合、前記第1のガタ詰め制御手段(60)に代って作動し、前記第1のガタ詰め圧(Pw)より高い第2のガタ詰め圧(Pm)を第2の設定時間(tx)設定する第2のガタ詰め制御手段(61)を有してなる。
 前記第1のガタ詰め圧(Pw)及び前記第2のガタ詰め圧(Pm)が、それぞれ予め設定された一定圧からなり、
 前記第2のガタ詰め制御手段(61)は、前記第2の設定時間(tx)を、前記第1の設定時間(t(Pw))に対する前記第1のガタ詰め制御手段(60)の制御開始から前記第2のガタ詰め制御手段(61)に切替わるまでに経過した経過時間(ts)の割合(ts/t(Pw))に基づき演算してなる。
 前記所定摩擦係合要素は、前記自動変速装置(10)が前進1速段を達成するための第1の摩擦係合要素(C-1)である。
 前記第2のガタ詰め制御手段(61)は、前記内燃エンジン(2)が所定回転数(例えば500rpm)以上になったとき開始される。
 例えば図1を参照して、前記内燃エンジン(2)の動力が、前記自動変速装置(10)を介して前輪及び後輪のいずれか一方(80fl,80fr)に伝達され、
 前記回転電機(20)の動力が、前記前輪及び後輪のいずれか他方(80rl,80rr)に伝達されてなる。
 なお、上記カッコ内の符号は、図面と対照するためのものであるが、これにより請求の範囲に記載の構成に何等影響を及ぼすものではない。
 請求項1に係る本発明によると、回転電機を駆動源とする場合でも、内燃エンジンによる走行に備えて自動変速装置を変速制御する際、電動オイルポンプの所定低圧に基づく第1のガタ詰め圧での第1の設定時間による第1のガタ詰め制御手段で所定摩擦係合要素のガタ詰めの作動を終了するので、電動オイルポンプを、所定低圧容量の小型のものを用いるものでありながら、ガタ詰め作動の終了後に所定摩擦係合要素の係合が開始されて、係合ショックの発生を抑制した状態で内燃エンジンによる走行に備えることができる。
 請求項2に係る本発明によると、第1のガタ詰め制御手段の作動中において、内燃エンジンが始動してエンジンによる駆動が開始する場合、機械式オイルポンプに基づく第2のガタ詰め制御手段が上記電動オイルポンプによる第1のガタ詰め制御手段に代って作動し、該第2のガタ詰め制御手段は、上記第1の設定時間より短い時間でガタ詰め作動を終了して、遅れ感等の違和感を低減した状態で内燃エンジンによる駆動を開始することができ、かつ上記第2のガタ詰め圧によりガタ詰め作動が終了した後に所定摩擦係合要素の係合が開始されて、係合ショックの発生を抑制することができる。
 請求項3に係る本発明によると、第2のガタ詰め制御手段は、内燃エンジンが始動された状態で、第2のガタ詰め制御手段による第2の設定時間を、既に進行している第1のガタ詰め制御手段の経過時間により、容易かつ正確に演算して、高い精度及び信頼性でガタ詰め作動を行い、エンジン走行開始時の係合ショックを抑制することができる。
 請求項4に係る本発明によると、ガタ詰め制御される所定摩擦係合要素が自動変速装置の前進1速段を達成する第1の所定摩擦係合要素(クラッチC-1)であるので、回転電機で車両走行している状態で自動変速装置の1速段にて内燃エンジンにより車両を走行することができる。
 請求項5に係る本発明によると、内燃エンジンが所定回転数(例えば500rpm)を越えると、第2のガタ詰め制御手段が開始されるので、比較的低い油圧からなる第2の設定圧をエンジン始動直後から発生して、遅れ感の少ないかつ係合ショックの少ないエンジン走行の切換えを行うことができる。
 請求項6に係る本発明によると、前後車輪の一方に内燃エンジンの動力を自動変速装置を介して連動し、他方に回転電機を連動するハイブリッド車両に適用して、容量の小さな小型の電動オイルポンプを採用して、動力損を減少して燃費性能を向上することができるものでありながら、回転電機による走行では比較的長い第1のガタ詰め制御手段による第1のガタ詰め圧により係合ショックを抑制した状態で自動変速装置を変速してエンジン走行に備え、またエンジン走行への切換えに際しては、比較的早い第2のガタ詰め制御手段により遅れ感の少ない状態でかつ係合ショックを抑制した状態でエンジンによる走行を行うことができる。
本発明を適用し得るハイブリッド車用駆動装置を示す概略図。 その自動変速装置を示す概略断面図。 その自動変速装置の係合表。 ハイブリッド車用駆動装置における自動変速装置の制御部を示すブロック図。 (A)は、EV走行における車両発進時の摩擦係合要素の係合状態を示すタイムチャート、(B)はエンジン走行における同様のタイムチャート。 EV走行による車両発進時の途中で内燃エンジンが始動した時の摩擦係合要素の係合状態を示すタイムチャート。 本発明による車両発進時における摩擦係合要素の係合を示すフローチャート。
 以下、本発明に係る実施の形態を図1乃至図7に沿って説明する。まず、図1に沿って、本発明を適用し得るハイブリッド車用駆動装置を説明する。
 図1に示すように、本実施の形態に係るハイブリッド車両(用駆動装置)100は、リヤモータ式ハイブリッド車用であり、前方側に内燃エンジン(E/G)2を搭載し、該内燃エンジン2と前側の左右の車輪80fl,80frとの間の伝達経路上に自動変速装置10が搭載された、いわゆるFF(フロントエンジン、フロントドライブ)タイプの車両のように構成されていると共に、後側の左右の車輪80rl,80rrに駆動連結されるリヤモータ(Rear Motor)(回転電機)20を備えており、つまりエンジン走行時には前輪駆動、EV走行時には後輪駆動、ハイブリッド走行時には四輪駆動が可能となるように構成されている。
 詳細には、内燃エンジン2には、ベルト式統合型スタータ・ジェネレータ(Belt Integrated Starter Generator)3Aが接続されており、該内燃エンジン2が始動自在に構成されている。ベルト式統合型スタータ・ジェネレータ(BISG)3Aは、インバータ(Inverter)23を介して高電圧バッテリ(Hi-V Battery)24から電力が供給されることで、内燃エンジン2を高出力で始動し得ると共に、内燃エンジン2の動作中(駆動中)は、高電圧バッテリ24に対する充電も可能に構成されている。
 一方のスタータ(Starter)3Bは、一般的な低電圧バッテリ(Lo-V Battery)26(いわゆる12V型電源)で駆動するようなスタータである。本ハイブリッド車用駆動装置100では、常温(例えば0度以上)ではベルト式統合型スタータ・ジェネレータ(BISG)3Aを用いてアイドル回転数よりも高い回転数まで内燃エンジン2の回転数を上昇した後に該内燃エンジン2の点火を行い、低温時(例えば0度未満)ではスタータ3Bを用いて内燃エンジン2の通常始動を行う。
 上記内燃エンジン2には、詳しくは後述する自動変速装置10が接続されている。自動変速装置10は、大まかに、トルクコンバータ(T/C)4、自動変速機構(T/M)5、油圧制御装置(V/B)6などを有して構成されており、内燃エンジン2にはトルクコンバータ4が駆動連結されている。該トルクコンバータ4には自動変速機構(T/M)5が駆動連結されており、該自動変速機構5は、詳しくは後述するようにディファレンシャル装置D(図2参照)を介して左右車軸81l,81rに接続され、前側の左右の車輪80fl,80frに駆動連結されている。上記自動変速装置10における自動変速機構5とトルクコンバータ4との間部分には内燃エンジン2の回転により駆動される機械式オイルポンプ(MOP)14が配置されている。
 また、該自動変速機構5には、後述の変速用の摩擦係合要素(クラッチやブレーキ)を油圧制御するための油圧制御装置(V/B)6が付設されており、該油圧制御装置6は、制御部(TCU:Transmission Control Unit)(ハイブリッド車両用自動変速機の制御装置)1からの電子指令に基づき、内蔵されたソレノイドバルブ(調圧バルブ)等が電子制御される。また、油圧制御装置6には、詳しくは後述するように、内燃エンジン2とは独立して駆動される(即ち機械式オイルポンプの停止中に駆動し得る)電動オイルポンプ32が付設されており、該電動オイルポンプ32から油圧制御装置6に対して油圧供給し得るように構成されている。即ち、上記変速用の摩擦係合要素の各油圧サーボに供給される係合圧は、電動オイルポンプ32及び機械式オイルポンプ14の発生する油圧に基づき油圧制御装置6で調圧自在に調圧される。
 なお、電動オイルポンプ32や制御部(制御装置)1は、低電圧バッテリ26の電力を用いて駆動される。該低電圧バッテリ26は、DC/DCコンバータ(降圧回路)25を介して高電圧バッテリ24に接続されており、該高電圧バッテリ24から電力が供給されるように構成されている。
 一方、上記リヤモータ20は、インバータ23を介して高電圧バッテリ24に接続されており、力行・回生自在に構成されている。該リヤモータ20は、モータ切離しクラッチC-Mを介してギヤボックス(Gear Box)21に駆動連結されている。ギヤボックス21には、図示を省略した所定減速比の減速ギヤ機構及びディファレンシャル装置が内蔵されており、モータ切離しクラッチC-Mの係合時には、該リヤモータ20の回転を、ギヤボックス21の減速ギヤ機構で減速しつつ、かつディファレンシャル装置で左右車軸82l,82rの差回転を吸収しつつ、後側の左右の車輪80rl,80rrに伝達する。
 続いて、自動変速装置10の構成について図2に沿って説明する。本自動変速装置10は、内燃エンジン2(図1参照)と前側の左右の車輪80fl,80frとの間の伝達経路上に配置されており、内燃エンジン2のクランク軸に接続し得る自動変速装置の入力軸8を有していると共に、該入力軸8の軸方向を中心として上述のトルクコンバータ4と自動変速機構5とを備えている。
 トルクコンバータ4は、自動変速装置10の入力軸8に接続されたポンプインペラ4aと、作動流体を介して該ポンプインペラ4aの回転が伝達されるタービンランナ4bと、タービンランナ4bからポンプインペラ4aに戻るオイルを整流しつつトルク増大作用を生じさせるステータ4cとを有していると共に、該タービンランナ4bは、上記入力軸8と同軸上に配設された上記自動変速機構5の入力軸(入力部材)12に接続されている。また、該トルクコンバータ4には、ロックアップクラッチ7が備えられており、該ロックアップクラッチ7が係合されると、上記自動変速装置10の入力軸8の回転が自動変速機構5の入力軸12に直接伝達される。
 なお、ステータ4cは、ワンウェイクラッチF-1によって、ポンプインペラ4aの回転よりタービンランナ4bの回転が下回る状態で回転が固定されて、オイルの流れの反力を受圧してトルク増大作用を生じさせ、タービンランナ4bの回転が上回る状態になると空転して、オイルの流れが負方向に作用しないように構成されている。
 また、ポンプインペラ4aは、その自動変速機構5側が、ミッションケース9に固定された隔壁内に配設された機械式オイルポンプ14に駆動連結されており、つまり機械式オイルポンプ14は、入力軸8を介して内燃エンジン2に連動されるように駆動連結されている。
 上記自動変速機構5には、入力軸12上において、プラネタリギヤSPと、プラネタリギヤユニットPUとが備えられている。上記プラネタリギヤSPは、サンギヤS1、キャリヤCR1、及びリングギヤR1を備えており、該キャリヤCR1に、サンギヤS1及びリングギヤR1に噛合するピニオンP1を有している、いわゆるシングルピニオンプラネタリギヤである。
 また、該プラネタリギヤユニットPUは、4つの回転要素としてサンギヤS2、サンギヤS3、キャリヤCR2、及びリングギヤR2を有し、該キャリヤCR2に、サンギヤS2及びリングギヤR2に噛合するロングピニオンPLと、サンギヤS3に噛合するショートピニオンPSとを互いに噛合する形で有している、いわゆるラビニヨ型プラネタリギヤである。
 上記プラネタリギヤSPのサンギヤS1は、ミッションケース9に一体的に固定され、回転が固定されている。また、上記リングギヤR1は、上記入力軸12の回転と同回転(以下「入力回転」という。)になっている。更に上記キャリヤCR1は、該固定されたサンギヤS1と該入力回転するリングギヤR1とにより、入力回転が減速された減速回転になると共に、クラッチ(所定摩擦係合要素)C-1及びクラッチC-3に接続されている。
 上記プラネタリギヤユニットPUのサンギヤS2は、バンドブレーキからなるブレーキB-1に接続されてミッションケース9に対して固定自在となっていると共に、上記クラッチC-3に接続され、該クラッチC-3を介して上記キャリヤCR1の減速回転が入力自在となっている。また、上記サンギヤS3は、クラッチC-1に接続されており、上記キャリヤCR1の減速回転が入力自在となっている。
 更に、上記キャリヤCR2は、入力軸12の回転が入力されるクラッチC-2に接続され、該クラッチC-2を介して入力回転が入力自在となっており、また、ワンウェイクラッチF-1及びブレーキB-2に接続されて、該ワンウェイクラッチF-1を介してミッションケースに対して一方向の回転が規制されると共に、該ブレーキB-2を介して回転が固定自在となっている。そして、上記リングギヤR2は、カウンタギヤ(出力部材)11に接続されており、該カウンタギヤ11は、カウンタシャフト15、ディファレンシャル装置Dを介して車輪80fl,80frに接続されている。
 以上のように構成されたハイブリッド車用駆動装置100は、内燃エンジン2の駆動力を用いたエンジン走行にあっては、図1に示すモータ切離しクラッチC-Mが解放されて、リヤモータ20が車輪80rl,80rrから切離された状態にされる。そして、自動変速装置10において、車速やアクセル開度に応じて制御部1により最適な変速段が判断されることで油圧制御装置6が電子制御され、その変速判断に基づき形成される前進1速段~前進6速段及び後進段で内燃エンジン2の駆動力を変速して、車輪80fl,80frに該内燃エンジン2の駆動力を伝達する。なお、自動変速装置10の前進1速段~前進6速段及び後進段は、図3に示す作動表のように、各クラッチC-1~C-3、ブレーキB-1~B-2、ワンウェイクラッチF-1が作動(係合制御)されることにより、自動変速機構5の回転伝達状態が変更されて達成される。
 また、上記エンジン走行モードからハイブリッド走行に移行する際は、図1に示すモータ切離しクラッチC-Mが係合されて、リヤモータ20が車輪80rl,80rrに駆動連結される。これにより、上記内燃エンジン2の駆動力に加え、アクセル開度(運転者の駆動力要求)に基づき、リヤモータ20の駆動力が適宜にアシスト或いは回生され、つまり内燃エンジン2の駆動力とリヤモータ20の駆動力とを用いてハイブリッド車両が走行される。
 なお、上記内燃エンジン2の駆動力によるエンジン走行モード時の加速時などにあっては、モータ切離しクラッチC-Mを解放し、リヤモータ20を車輪80rl,80rrから切離して走行抵抗にならないようにしてもよい。また、エンジン走行時であっても、減速時にはモータ切離しクラッチC-Mを係合し、リヤモータ20で回生ブレーキを実行する方が燃費向上に対して好ましい。
 そして、EV走行にあっては、図1に示すモータ切離しクラッチC-Mが係合されて、リヤモータ20が車輪80rl,80rrに駆動連結され、かつ内燃エンジン2が停止されると共に自動変速装置10における各クラッチC-2~C-3、ブレーキB-1~B-2が解放制御されて、該自動変速装置10が空転可能なニュートラル状態にされる。これにより、アクセル開度(運転者の駆動力要求)に基づき、リヤモータ20の駆動力が適宜に力行或いは回生され、つまりリヤモータ20の駆動力だけを用いてハイブリッド車両が走行される。
 このEV走行中にあっては、自動変速機構5の車輪80fl,80frに駆動連結された部材(例えばディファレンシャル装置D,カウンタシャフト15、カウンタギヤ11、プラネタリギヤユニットPUの各ギヤなど)が連れ回されると共に、内燃エンジン2の停止によって機械式オイルポンプ14が停止される。従って、EV走行中は、電動オイルポンプ32によって、自動変速機構5の潤滑部位への潤滑油の供給を行う。
 本ハイブリッド車両(用駆動装置)100は、通常、リヤモータ20により後輪80rl,80rrを駆動して走行(EV走行)するが、この際、内燃エンジン2による走行を直ちに作動し得るように、車速が所定車速以下(例えば、40km以下)という条件において、自動変速機構5の所定摩擦係合要素、例えば第1の摩擦係合要素であるクラッチC-1を係合し、かつ変速段を達成する他の係合要素、例えばワンウェイクラッチF-1やブレーキB-1等を解放する。即ち、ワンウェイクラッチF-1は、前記リヤモータ20による走行により前輪80fl,80frが回転して自動的に空転状態となっており、自動変速装置10は、変速段を達成せずに空転状態となって内燃エンジン2は停止している。また、車速が所定車速より大きい場合には、所定摩擦係合要素を含む全ての摩擦係合要素を解放するようにしている。
 該EV走行モード中にあって、バッテリ残量(SOC)が不足してエンジン走行モード又はハイブリッド走行モードに切換わる際、内燃エンジン2がスタータ・ジェネレータ3A又はスタータ3Bにより始動され、前記自動変速機構5の他の係合要素を作動状態として、前記EV走行モードで既に係合状態にある所定摩擦係合要素と相俟って、自動変速装置10が所定変速段を達成して、直ちに上記内燃エンジン2による駆動力を自動変速装置10の所定変速段により前輪80fl,80frに伝達する。例えば、車両が発進直後の低速状態にある場合、既に係合しているクラッチC-1に加えて、リヤモータ20が停止又は減速すると共に、切離しクラッチC-Mが切断されてリヤモータ20による後輪80rl,80rrの駆動力がなくなることにより、上記空転していたワンウェイクラッチF-1が係合して、自動変速機構5が1速段を達成する。
 ついで、前記EV走行モード及び該EV走行モード中に内燃エンジンが始動される状況の自動変速装置10の制御について説明する。前記自動変速装置10の制御部(制御装置)(TCU)1には、図4に示すように、エンジン回転数センサ40、入力軸回転数センサ41、アクセルセンサ47、車速センサ48、バッテリ残量(SOC)センサ50及びシフトレバーの位置を検出するシフト位置センサ51からの信号等が入力されている。そして、上記バッテリ残量(SOC)センサ47等により、EV走行モードかエンジン走行モードか判断され、両モードにあって、速度マップ等により変速段が判断されて、摩擦係合要素制御手段53が各油圧指令値及び所定切換え信号をバルブボディ6に出力する。なお、上記エンジン走行モードは、内燃エンジンを駆動源として走行するモードであって、上記ハイブリッド走行モードを含む。また、摩擦係合要素制御手段53は、クラッチを係合する際に、該クラッチの指令値(例えばC-1圧)を、該クラッチのピストンが取り付け位置からストロークして該クラッチがトルク容量を得る直前の状態になるガタ詰め圧にてクラッチのガタ詰めを行った後、当該ガタ詰め圧から徐々に油圧を増加させる(スイープアップ)ように油圧指令値によりソレノイドバルブ等を制御する。
 前記摩擦係合要素制御手段53は、EV走行モードにあっても、エンジン走行モードへの切換えに備えて作動しており、特に電動オイルポンプ32に基づき所定一定低圧からなる第1のガタ詰め圧及び予め設定されている第1の設定時間からなる第1のガタ詰め制御手段60を有する。また、EV走行モードに、特にモータ20による走行中にエンジンが始動する際に前記第1のガタ詰め制御手段60に代って機能する第2のガタ詰め制御手段61を有しており、該第2のガタ詰め制御手段61は、機械式オイルポンプ14に基づく一定低圧からなる第2のガタ詰め圧と、前記第1の設定時間に対する、上記第2のガタ詰め制御手段に切替るまでに既に経過した第1のガタ詰め制御手段の経過時間の割合に基づき演算される第2の設定時間とからなる。
 上記バルブボディ6は、上記摩擦係合要素制御手段53からの各油圧指令値及び所定切換え信号に応じて油圧経路を切換え、ライン圧等を所定レギュレータ圧に調圧すると共に、ロックアップクラッチ7及び自動変速機構5の各摩擦係合要素C1~C-3,B-1,B-2の油圧サーボの油圧を走行状況に応じて調圧する。各摩擦係合要素の代表として、クラッチC-1を示すと、摩擦係合要素制御手段53からの油圧指令値により制御されるリニアソレノイドバルブ(調圧バルブ)SLC1が、ライン圧P(又は該ライン圧を調圧したモジュレータ圧)を走行状況に応じた油圧又は所定摩擦係合要素の係合に備える予め設定される所定ガタ詰め圧に調圧して、該油圧をクラッチC-1用油圧サーボ46に供給する。
 前述したように、油圧源として機械式オイルポンプ14と電動オイルポンプ32とを有しており、機械式オイルポンプ14は、内燃エンジン2の回転により駆動されるが、電動オイルポンプ32は、低電圧バッテリにより駆動される小容量、小型のものが用いられ、特にEV走行モードにて制御部1からの信号により作動される。また、各オイルポンプ14,32は、それぞれ逆止弁55a,55bを介してライン圧油路の供給側に連通しており、各逆止弁55a,55bは、ライン圧油路側から各ポンプ14,32への逆流を阻止する。
 ついで、図5~図7に沿って、EV走行モードでの所定摩擦係合要素の係合時、並びにEV走行モードで所定摩擦係合要素の係合時途中に内燃エンジンが始動した状態の自動変速装置の制御について説明する。尚、EV走行モードにおいては、内燃エンジン2が停止しているため常に電動オイルポンプ32は駆動している。エンジン停止状態で車両が走行状態(0km/hより大きい車速で走行している状態)である場合、例えばシフトレバーがN(ニュートラル)にあってEV走行モードが中止された状態で車両の慣性により車両が走行している場合、シフトレバーがN(ニュートラル)からD(ドライブ)レンジにシフトされると(S-1)、リヤモータ20を駆動可能な状態(クラッチC-Mを係合する)と共に(S-2)、以下のS-3以降の処理を実行する(図5(A)のT1)。尚、該電動オイルポンプ32は小容量からなり、図5(A)に示すように、所定摩擦係合要素、例えばクラッチC-1の油圧サーボのピストンをストロークする圧(エンド圧)Peより僅かに大きい最低補償圧(第1のガタ詰め圧)Pwからなる吐出容量を吐出可能に構成されている。該電動オイルポンプ32の吐出圧にて、上記油圧サーボ46のピストンが取り付け位置からストロークして多板摩擦板が接触して摩擦係合要素がトルク容量を得る直前のガタ詰め状態になるまでのガタ詰め圧Pw(第1のガタ詰め圧)を、予め設定された第1の設定時間t(Pw)の間指令(設定)する(S-3)。尚、ここで設定されるガタ詰め圧Pw(第1のガタ詰め圧)は一定圧として予め設定されているが、一定圧でなくても良く、油圧サーボ46のピストンを、取り付け位置からストロークして多板摩擦板が接触し摩擦係合要素がトルク容量を得る直前のガタ詰め状態になるまで移動させることが出来る圧であれば良い。例えば、クラッチの指令値(C-1圧)を、所定時間比較的高いファーストフィル圧を指令した後、それに次ぐ比較的低圧の一定圧を指令してピストンがストロークエンドまで移動するガタ詰めを行う場合には、前記所定時間比較的高いファーストフィル圧と比較的低圧の一定圧とを含んでガタ詰め圧としても良い。そして、上記設定された第1の設定時間t(Pw)の計時がタイマ1により開始される(S-4)。
 上記電動オイルポンプ32による最低補償圧(第1のガタ詰め圧)Pwに基づく前記リニアソレノイドバルブ(調圧バルブ)SLC1により一定低圧で上記タイマ1の計時が終了するまでが(S-7;NO)、第1のガタ詰め制御となる(S-5)。該第1のガタ詰め制御では、上記一定低圧Pwで比較的長い設定時間t(Pw)を連続して油圧サーボ46に電動オイルポンプ32からのオイルのみが供給され、該油圧サーボ46は、ピストンがストロークエンドまで移動してトルク容量を得る直前のガタ詰め状態となる。この際、車両は、リヤモータ20により後輪80rl,80rrが駆動されてEV走行状態となる。
 上記タイマ1の計時が終了すると(S-7;YES)(図5(A)のT2)、ピストンガタ詰め作業が完了した状態となり、その後ストロークエンド圧Peと最低補償圧(第1のガタ詰め圧)Pwの差分油圧でクラッチC-1のトルク容量がゆっくりと上昇し、さらにその後に緩勾配で油圧が上昇させるスイープアップ制御を実行し(S-8)、該スイープアップ後、所定摩擦係合要素(C-1)の係合が完了する(S-9)(図5(A)のT3)。なお、図5(A)の実線は、C-1圧の制御部1からの油圧指令値であり、点線は、C-1油圧サーボの実圧を示す。
 図5(B)は、車両が走行状態にあっても内燃エンジン2が回転しており、該内燃エンジン2により車両を駆動可能な状態(エンジン走行モード)であって、上記EV走行と同様に、シフトレバーがNレンジにあって車両が慣性で走行している場合、シフトレバーがN(ニュートラル)からD(ドライブ)レンジにシフトされた際のクラッチC-1の油圧を示す。該クラッチの指令値(C-1圧)は、所定時間比較的高いファーストフィル圧Aとなって、油圧サーボにオイルが急速に満たされ、それに次ぐ比較的低圧の一定圧Pmを経てピストンがストロークエンドまで移動するガタ詰め作動となる。その後、油圧をスイープアップしてクラッチC-1を係合する。尚、後述する第2のガタ詰め制御においては、図5(B)の点線で示すような、仮に上記の比較的低圧のガタ詰め圧Pmが所定の設定時間t(Pm)の間設定されることで、ピストンがストロークエンドまで移動するガタ詰め作動となる場合の設定時間t(Pm)を基準として、後述する第2の設定時間を演算する。
 尚、本実施の形態では上記のファーストフィル圧Aに次ぐファーストフィル圧Aよりも低圧の一定圧(どのような状況下であっても図示しない入力軸回転速度に回転変化を生じさせない圧)と、後述する第2のガタ詰め制御におけるガタ詰め圧Pmを同じ圧としたが、異なる圧であってもよい。例えば、ファーストフィル圧Aに次ぐファーストフィル圧Aよりも低圧の一定圧よりも第2のガタ詰め制御におけるガタ詰め圧Pmを高い圧としても良いし、その逆であっても良い。
 該内燃エンジン2を駆動源とするエンジン走行モード(含むハイブリッド走行)では、機械式オイルポンプ14による比較的大流量のオイルによりクラッチC-1の油圧が制御されて、比較的早い時間で完了する。これに対し、上述したEV走行による係合制御は、比較的小容量の電動オイルポンプ32により、比較的長い時間を要するが、ピストンストロークエンドまでガタ詰め制御が完了した後、スイープアップしてクラッチC-1の係合が開始するので、クラッチC-1が急係合されて入力軸の回転が急激に変化することがなく、係合ショックの発生は少ない。また、該EV走行による係合制御では、リヤモータ20の駆動力で車両が走行し、自動変速装置10は、エンジン走行に備えて予め一方の係合要素のみを係合して空転状態にあるため、上記クラッチC-1の係合完了までに時間がかかっても、遅れ感等の不都合となることはない。
 前記電動オイルポンプ32の吐出圧に基づく第1のガタ詰め制御中(S-5)にあって、バッテリ残量(SOC)が不足する或いはアクセルが踏み込まれて内燃エンジンの駆動が必要と判断された場合等により、エンジン走行モードに切換わると、スタータ3A(又は3B)により内燃エンジン2が始動される(S-6;YES)。図6において、シフトレバーのN→D切換え(T1)により上述した電動オイルポンプ32の最低補償圧(第1のガタ詰め圧)Pwに基づく第1のガタ詰め制御中にあって、制御部(制御装置)1からアイドルストップフラグの1→0への切換えによるエンジン始動信号が出力される(T4)。該エンジン始動指令からスタータ3A(又は3B)により実際にエンジンが始動するまでは所定の遅れがあるが、該所定遅れ後に内燃エンジン2が始動してエンジン回転数が上昇する(E)。該内燃エンジン2の回転により機械式オイルポンプ14も作動して(S-10)、該オイルポンプ14による油圧も発生する。該内燃エンジン2の回転数が、例えば500rpm等の所定回転数以上になると(T5)、油圧が該機械式オイルポンプ14に基づく油圧に切り替わるため、指令圧を上記電動オイルポンプ32に基づく油圧により予め定めた第1のガタ詰め圧Pwから、上記エンジン回転数500rpm等のエンジン低回転による機械式オイルポンプ14の比較的低い吐出圧(吐出量)により予め定められた一定圧である第2のガタ詰め圧Pmに変更する。該第2のガタ詰め圧Pmは、前記電動オイルポンプ32に基づく第1のガタ詰め圧Pwより高く、従って電動オイルポンプ32に連通する逆止弁55bは閉塞され、機械式オイルポンプ14からの逆止弁55aが連通して、ライン圧油路に上記機械式オイルポンプ14からの吐出圧が供給される。
 そして、第2のガタ詰め圧Pmによる第2のガタ詰め制御の設定時間tx(タイマ2)が制御装置1により演算される(S-11)。該演算は、機械式オイルポンプによる第2のガタ詰め圧PmによりクラッチC-1油圧サーボがストロークエンドまで充填に要する時間(ガタ詰め終了時間:第2の設定時間)をt(Pm)、電動オイルポンプ32による上記第1のガタ詰め圧Pwによる上記ストロークエンドまでの充填に要する時間(第1の設定時間)をt(Pw)とし、該電動オイルポンプ32による第1のガタ詰め圧Pwがスタートして機械式オイルポンプ14による第2のガタ詰め圧Pmがスタートするまで(T1~T5)に既に上記第1のガタ詰め圧Pwで油圧が充填された経過時間をtsとすると、摩擦係合要素制御手段による上記第2の設定時間txは、
   tx=t(Pm)・[1-ts/t(Pw)]
となる。即ち、第1の設定時間t(Pw)に対する、第2のガタ詰め制御が開始されるまでに第1のガタ詰め圧により既に経過した時間割合(ts/t(Pw))により上記第2の設定時間txが演算され、タイマ2は、該演算された値txに設定される(S-11)。
 上記機械式オイルポンプ14による第2のガタ詰め圧(Pm)による第2のガタ詰め制御が、上記タイマ2の設定時間tx行われ(S-12)、該タイマ2の計時の終了により該第2のガタ詰め制御が終了する(S-13:YES)。これにより、クラッチC-1の油圧サーボのピストンは、ストロークエンドまで移動し、ガタ詰め作動が終了し、その後機械式オイルポンプ14の吐出に基づく油圧を調圧して、C-1油圧がスイープアップして(S-14)、クラッチC-1は完全係合する(S-9)。これにより、第1のガタ詰め圧Pwから上記第2のガタ詰め圧Pmに切替えられて、2段の一定圧でかつ所定時間[t(s)+tx]からなるガタ詰め制御によるガタ詰め作動が終了した後に、スイープアップによるクラッチの係合作動が開始されるので、油圧サーボピストンのストローク中に急激に油圧が上昇して係合ショックを生ずることはない。また、EV走行中にエンジンが始動する場合は、上記第2のガタ詰め圧(Pm)により、第1のガタ詰め圧Pwのみによる第1のガタ詰め制御より早くクラッチC-1を係合できるため、遅れ感も少ない。
 この状態では、車両は、リヤモータ20により走行している状態で、内燃エンジン2が始動して、内燃エンジン2の動力がトルクコンバータ4を介して自動変速装置10の入力軸12に伝達される。該自動変速装置10の変速機構5が、上記クラッチC-1が係合した状態で、前輪80fl,80frの駆動力がリヤモータ20による後輪80rl,80rrの駆動力を越えた状態でワンウェイクラッチF-1が係合して1速段となり、前輪80fl,80frを駆動して車両を走行する。自動変速装置10は、車速及びスロットル開度により変速されて、巡航速度で走行する。
 上記説明は、EV走行において、エンジンが始動して内燃エンジンを動力源として走行する場合は適用され、切離しクラッチC-Mが切離されて、エンジンのみにより走行するエンジン走行モードでも、該クラッチC-Mが接続されたままで、上記内燃エンジンが前輪を駆動している状態で、リヤモータ20により後輪を駆動してアシストするか又は回生するハイブリッド走行モードでも適用可能である。該ハイブリッド走行モードでは、車両停止中はエンジンを停止し、かつリヤ(電気)モータで発進し、車両が所定速度になるとエンジンが始動され、エンジン動力により車両が駆動される。
 なお、上記説明は、車両の低速走行時について説明したが、自動変速装置は、1速段に限らず、4速段以上であれば、クラッチC-2が上記ガタ詰め制御の対象になってもよく、後進時にあってはブレーキB-2が対象となり、自動変速装置の所定摩擦係合要素に適用可能である。上述した実施の形態では、シフトレンジがN→Dに切換えた際、内燃エンジンの停止中に電動オイルポンプからの油圧により所定摩擦係合要素(例えばクラッチC-1)を係合する場合について説明したが、車速が所定車速より大きい状態から所定車速以下の状態に遷移した場合でも電動オイルポンプからの油圧により所定摩擦係合要素を係合する必要があるため、同様に適用される。また、電動オイルポンプの作動条件として所定油温範囲(例えば0℃~100℃)が予め設定されており、該条件温度範囲から外れた状態から条件温度範囲内となった場合にも、電動オイルポンプからの油圧により所定摩擦係合要素を係合する必要があるため、同様に適用される。
 また、本実施の形態では、自動変速装置10が前進6速段及び後進段を達成する多段式自動変速機であるものを説明したが、これに限らず、例えば前進7速段以上や前進5速段以下の多段変速機であっても、本発明を適用し得る。
 なお、本実施の形態は、前後車輪の一方を電気モータで駆動し、他方を内燃エンジンの動力を自動変速装置を介して駆動する4輪駆動タイプのハイブリッド車用駆動装置としたが、電気モータはインホイールモータであってもよく、また内燃エンジンの動力を自動変速装置を介して一方の車輪に伝達すると共に該一方の車輪に電気モータの動力を伝達する、いわゆる1モータタイプのハイブリッド車用駆動装置にも適用可能である。
 本発明は、駆動源がエンジンと回転電機(モータ)である自動車(ハイブリッド車両)に利用される。
  1   制御装置(部)
  2   内燃エンジン
 10   自動変速装置
 14   機械式オイルポンプ
 20   回転電機(モータ)
 32   電動オイルポンプ
 46   油圧サーボ
 53   摩擦係合要素制御手段
 60   第1のガタ詰め制御手段
 61   第2のガタ詰め制御手段
 80fl,80fr  一方の車輪(前輪)
 80rl,80rr  他方の車輪(後輪)
 100  ハイブリッド車両(用駆動装置)
 Pw   第1のガタ詰め圧
 Pm   第2のガタ詰め圧
 t(Pw)  第1の設定時間
 tx   第2の設定時間
 ts   経過時間
 C-1  所定(第1の)摩擦係合要素(クラッチ)
 SLC1 調圧バルブ(リニアソレノイドバルブ)

Claims (6)

  1.  駆動源として回転電機と内燃エンジンとを備え、前記内燃エンジンの動力を自動変速装置を介して車輪に伝達可能であると共に、該内燃エンジンを停止して前記回転電機にて車輪を駆動可能なハイブリッド車両に搭載され、油圧源として電動オイルポンプと前記内燃エンジンの動力により駆動される機械式オイルポンプとを備え、前記油圧源からの油圧を調圧バルブにより調圧して前記自動変速装置の所定摩擦係合要素の油圧サーボに供給してなる、ハイブリッド車用自動変速装置の制御装置において、
     前記所定摩擦係合要素を係合する際、該所定摩擦係合要素のピストンが取り付け位置からストロークして該所定摩擦係合要素がトルク容量を得る直前の状態になるガタ詰め圧にて所定摩擦係合要素のガタ詰めを行った後、該ガタ詰め圧から徐々に油圧を増加させるように前記調圧バルブを制御する摩擦係合要素制御手段を備え、
     前記摩擦係合要素制御手段は、
     前記回転電機のみを駆動源とした走行状態であって、前記電動オイルポンプからの油圧により前記所定摩擦係合要素を係合する場合には、前記ガタ詰め圧としての第1のガタ詰め圧を第1の設定時間設定する第1のガタ詰め制御手段を有し、
     前記第1のガタ詰め圧は、前記内燃エンジンを駆動源とした走行状態であって、前記機械式オイルポンプからの油圧により前記所定摩擦係合要素を係合する場合におけるガタ詰め圧より低く、
     且つ、前記第1の設定時間は、前記内燃エンジンを駆動源とした走行状態であって、前記機械式オイルポンプからの油圧により前記所定摩擦係合要素を係合する場合におけるガタ詰め圧が設定される設定時間より長い、
     ことを特徴とするハイブリッド車用自動変速装置の制御装置。
  2.  前記制御装置は、前記第1のガタ詰め制御手段の作動中において、前記内燃エンジンを始動して該内燃エンジンを駆動源とする場合、前記第1のガタ詰め制御手段に代って作動し、前記第1のガタ詰め圧より高い第2のガタ詰め圧を第2の設定時間設定する第2のガタ詰め制御手段を有してなる、
     請求項1記載のハイブリッド車用自動変速装置の制御装置。
  3.  前記第1のガタ詰め圧及び前記第2のガタ詰め圧が、それぞれ予め設定された一定圧からなり、
     前記第2のガタ詰め制御手段は、前記第2の設定時間を、前記第1の設定時間に対する前記第1のガタ詰め制御手段の制御開始から前記第2のガタ詰め制御手段に切替わるまでに経過した経過時間の割合に基づき演算してなる、
     請求項2記載のハイブリッド車用自動変速装置の制御装置。
  4.  前記所定摩擦係合要素は、前記自動変速装置が前進1速段を達成するための第1の摩擦係合要素である、
     請求項3記載のハイブリッド車用自動変速装置の制御装置。
  5.  前記第2のガタ詰め制御手段は、前記内燃エンジンが所定回転数以上になったとき開始される、
     請求項4記載のハイブリッド車用自動変速装置の制御装置。
  6.  前記内燃エンジンの動力が、前記自動変速装置を介して前輪及び後輪のいずれか一方に伝達され、
     前記回転電機の動力が、前記前輪及び後輪のいずれか他方に伝達されてなる、
     請求項1ないし5のいずれか記載のハイブリッド車用自動変速装置の制御装置。
PCT/JP2013/055802 2012-03-30 2013-03-04 ハイブリッド車用自動変速装置の制御装置 WO2013146105A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380007019.2A CN104080678A (zh) 2012-03-30 2013-03-04 混合动力车用自动变速装置的控制装置
DE112013000463.1T DE112013000463T5 (de) 2012-03-30 2013-03-04 Steuerungsvorrichtung für Hybridfahrzeugautomatikgetriebe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-082950 2012-03-30
JP2012082950A JP2013212728A (ja) 2012-03-30 2012-03-30 ハイブリッド車用自動変速装置の制御装置

Publications (1)

Publication Number Publication Date
WO2013146105A1 true WO2013146105A1 (ja) 2013-10-03

Family

ID=49235800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055802 WO2013146105A1 (ja) 2012-03-30 2013-03-04 ハイブリッド車用自動変速装置の制御装置

Country Status (5)

Country Link
US (1) US8715135B2 (ja)
JP (1) JP2013212728A (ja)
CN (1) CN104080678A (ja)
DE (1) DE112013000463T5 (ja)
WO (1) WO2013146105A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769025B2 (ja) * 2011-12-19 2015-08-26 ジヤトコ株式会社 車両用ライン圧制御装置
GB2523080A (en) * 2014-02-12 2015-08-19 Ford Global Tech Llc An apparatus and method for starting an engine
JP6044569B2 (ja) * 2014-03-12 2016-12-14 株式会社デンソー 制御装置
JP6364630B2 (ja) * 2014-06-09 2018-08-01 日産自動車株式会社 ハイブリッド車両の変速制御装置
US9477236B2 (en) 2014-06-23 2016-10-25 Ford Global Technologies, Llc Vehicle system and method for providing anticipatory line pressure for transmission engagements
KR101566752B1 (ko) * 2014-07-30 2015-11-13 현대자동차 주식회사 하이브리드 자동차의 제어 방법 및 제어 시스템
GB2531309B (en) * 2014-10-16 2019-08-07 Ford Global Tech Llc A method of controlling a turbocharged engine
DE102015206919A1 (de) * 2015-04-16 2016-10-20 Ford Global Technologies, Llc Elektro-Kraftfahrzeug und Betriebsverfahren für ein Elektro-Kraftfahrzeug
US10005462B2 (en) * 2015-11-02 2018-06-26 Ford Global Technologies, Llc System and method for operating a transmission during an engine stop and start for a rolling vehicle
JP6428688B2 (ja) * 2016-03-22 2018-11-28 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
US9828924B1 (en) * 2016-11-22 2017-11-28 Ford Global Technologies, Llc Coordinated actuation to start an engine
US10815951B2 (en) 2016-11-22 2020-10-27 Ford Global Technologies, Llc Coordinated actuation to start an engine
DE102017217402A1 (de) * 2017-09-29 2019-04-04 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Automatgetriebes
JP7131417B2 (ja) * 2019-02-01 2022-09-06 トヨタ自動車株式会社 車両の制御装置
CN110979306B (zh) * 2019-12-07 2021-08-24 宁波吉利罗佑发动机零部件有限公司 一种混合动力汽车工作模式的配置方法、装置及系统
WO2022118896A1 (ja) * 2020-12-01 2022-06-09 株式会社アイシン 車両用駆動装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041317A (ja) * 1999-07-28 2001-02-13 Daihatsu Motor Co Ltd 車両用自動変速機の制御方法
JP2004215402A (ja) * 2002-12-27 2004-07-29 Aisin Aw Co Ltd 車輌の制御装置
JP2004347066A (ja) * 2003-05-23 2004-12-09 Toyota Motor Corp 車両の制御装置および制御方法
JP2005083492A (ja) * 2003-09-09 2005-03-31 Toyota Motor Corp 自動変速機の制御装置
JP2005096574A (ja) * 2003-09-24 2005-04-14 Toyota Motor Corp ハイブリッド車輌の制御装置
JP2006347431A (ja) * 2005-06-17 2006-12-28 Toyota Motor Corp 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2007153110A (ja) * 2005-12-05 2007-06-21 Toyota Motor Corp 車両用駆動装置の制御装置
JP2010223399A (ja) * 2009-03-25 2010-10-07 Aisin Aw Co Ltd 車両用制御装置及び車両駆動システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564967B2 (ja) 1997-09-22 2004-09-15 日産自動車株式会社 ハイブリッドシステム車両の発進装置
JP3585798B2 (ja) * 1999-12-24 2004-11-04 本田技研工業株式会社 四輪駆動車両の駆動力制御装置
JP2004316480A (ja) * 2003-04-14 2004-11-11 Jatco Ltd アイドルストップ車両用駆動装置
JP4249147B2 (ja) * 2005-02-18 2009-04-02 本田技研工業株式会社 ハイブリッド車両の電動オイルポンプ制御装置
DE102007055827A1 (de) * 2007-12-17 2009-06-18 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Betrieb eines Hybridantriebes eines Fahrzeuges
JP5282752B2 (ja) * 2010-03-23 2013-09-04 三菱自動車工業株式会社 ハイブリッド車における自動変速機のオイルポンプ制御装置
JP5622038B2 (ja) * 2010-09-06 2014-11-12 アイシン・エィ・ダブリュ株式会社 制御装置
CN104884324B (zh) * 2012-12-25 2017-05-24 日产自动车株式会社 混合动力车辆的控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041317A (ja) * 1999-07-28 2001-02-13 Daihatsu Motor Co Ltd 車両用自動変速機の制御方法
JP2004215402A (ja) * 2002-12-27 2004-07-29 Aisin Aw Co Ltd 車輌の制御装置
JP2004347066A (ja) * 2003-05-23 2004-12-09 Toyota Motor Corp 車両の制御装置および制御方法
JP2005083492A (ja) * 2003-09-09 2005-03-31 Toyota Motor Corp 自動変速機の制御装置
JP2005096574A (ja) * 2003-09-24 2005-04-14 Toyota Motor Corp ハイブリッド車輌の制御装置
JP2006347431A (ja) * 2005-06-17 2006-12-28 Toyota Motor Corp 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2007153110A (ja) * 2005-12-05 2007-06-21 Toyota Motor Corp 車両用駆動装置の制御装置
JP2010223399A (ja) * 2009-03-25 2010-10-07 Aisin Aw Co Ltd 車両用制御装置及び車両駆動システム

Also Published As

Publication number Publication date
US8715135B2 (en) 2014-05-06
US20130260957A1 (en) 2013-10-03
JP2013212728A (ja) 2013-10-17
CN104080678A (zh) 2014-10-01
DE112013000463T5 (de) 2014-09-11

Similar Documents

Publication Publication Date Title
WO2013146105A1 (ja) ハイブリッド車用自動変速装置の制御装置
JP3915698B2 (ja) ハイブリッド車輌の制御装置
US8882632B2 (en) Control device of vehicle power transmission device
JP5799873B2 (ja) ハイブリッド車両の制御装置
JP5644941B2 (ja) 車両用駆動装置の制御装置
JP5772627B2 (ja) 車両用伝動装置
US20120202646A1 (en) Control apparatus for hybrid vehicle
JP2002213266A (ja) 車両の駆動力制御装置
JP5839110B2 (ja) ハイブリッド車両用自動変速機の制御装置
KR20130081298A (ko) 하이브리드 차량의 제어 장치
US20190359216A1 (en) Control apparatus for hybrid vehicle
JP4113919B2 (ja) パワートレーンの制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP5673519B2 (ja) 車両の制御装置
JP3948361B2 (ja) 車両制御装置
WO2015146385A1 (ja) フライホイール式回生システム
JP5716620B2 (ja) ハイブリッド車両の駆動装置
JP5578362B2 (ja) 制御装置
WO2015019789A1 (ja) フライホイール回生システム及びその制御方法
JP2012040998A (ja) 変速制御装置
JP2013067265A (ja) 車両の制御装置
JP3931809B2 (ja) 車輌の制御装置
JP2017154694A (ja) 車両用駆動装置
JP2021154952A (ja) ハイブリッド駆動装置
JP6459720B2 (ja) 車両用駆動装置
WO2015019783A1 (ja) フライホイール回生システム及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130004631

Country of ref document: DE

Ref document number: 112013000463

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768423

Country of ref document: EP

Kind code of ref document: A1